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Chapter 1

Topological Dynamical Systems

In the sequel, we shall use the following notations:

P(D) = the power set of D,

N = {0, 1, 2, . . .}, Z+ = {1, 2, . . .},
[m,n] = {m,m+ 1, . . . , n} for m ≤ n ∈ Z.

Definition 1.0.0.1. A topological dynamical system (TDS for short) is a pair (X,T ),
where X is a compact Hausdorff nonempty topological space and T : X → X is a continuous
mapping. The TDS (X,T ) is called invertible if T is a homeomorphism.

An invertible TDS (X,T ) defines two ”one-sided” TDSs, namely the forward system
(X,T ) and the backward system (X,T−1).

Topological dynamics is about what happens when the map T is applied repeatedly. If
one takes a point x ∈ X, then we are primarily interested in the behaviour of T nx as n
tends to infinity. Some basic questions one might ask are:

(i) Will two points that are close to each other initially, stay close even after a long
time?

(ii) Will a point return to its original position (at least very near to it)?

(iii) Will a certain point x never leave a certain region or will it come arbitrarily close to
any other given point ot X?

Let (X,T ) be a TDS and x ∈ X. The forward orbit of x is given by

orb+(x) = {T nx | n ∈ N} = {x, Tx, T 2x, . . .}. (1.1)

If (X,T ) is invertible, the (total) orbit of x is

orb(x) = {T nx | n ∈ Z}. (1.2)

5
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We shall write

orb+(x) = {T nx | n ∈ N} and orb(x) = {T nx | n ∈ Z} (1.3)

for the closure of the forward and the total orbit, respectively.
Furthermore, we shall use the notation

orb>0(x) = {T nx | n ∈ Z+} = orb+(x) \ {x} = orb+(Tx) = {Tx, T 2x, T 3x, . . .}. (1.4)

It is obvious that many notions, like the forward orbit of a point x, do make sense
in the more general setting of a continuous self-map of a topological space. However, we
restrict ourselves to compact Hausdorff spaces and reserve the term TDS for this special
situation.

Lemma 1.0.0.2. Let (X,T ) be a TDS and U ⊆ X.

(i) T (orb+(x)) = orb>0(x).

(ii) For all x ∈ X, orb+(x) ∩ U 6= ∅ iff x ∈
⋃
n≥0 T

−n(U).

(iii) If (X,T ) is invertible, then for all x ∈ X, orb(x) ∩ U 6= ∅ iff x ∈
⋃
n∈Z T

n(U).

Proof. (i) T (orb+(x)) = {T n+1(x) | n ∈ N} = orb>0(x).

(ii)

orb+(x) ∩ U 6= ∅ iff there exists n ≥ 0 such that T nx ∈ U
iff there exists n ≥ 0 such that x ∈ T−n(U)
iff x ∈

⋃
n≥0 T

−n(U).

(iii)
orb(x) ∩ U 6= ∅ iff there exists n ∈ Z such that T nx ∈ U

iff there exists n ∈ Z such that x ∈ T−n(U)
iff x ∈

⋃
n∈Z T

−n(U) =
⋃
n∈Z T

n(U).

Definition 1.0.0.3. Let (X,T ) be a TDS. A point x ∈ X is called periodic if there is
n ≥ 1 such that T nx = x.

Thus, x is periodic if and only if x ∈ orb>0(x).

1.1 Examples

Let us give some examples of topological dynamical systems.
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1.1.1 Finite state spaces

Let X be a finite set with the discrete metric. Then X is a compact metric space and every
map T : X → X is continuous. The TDS (X,T ) is invertible if and only if T is injective
(or surjective).

1.1.2 Finite-dimensional linear nonexpansive mappings

Let ‖ · ‖ be a norm on Rn and let T : Rn → Rn be linear and nonexpansive with respect to
the chosen norm, i.e.:

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ Rn. (1.5)

Lemma 1.1.2.1. Let T : Rn → Rn be linear. The following are equivalent

(i) T is nonexpansive

(ii) ‖Tx‖ ≤ ‖x‖ for all x ∈ Rn.

Proof. (i)⇒ (ii) Take y = 0 in (1.5) and use the fact that T0 = 0.

(ii)⇒ (i) Since T is linear, ‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖x− y‖.

Then the unit ball K := {x ∈ Rn | ‖x‖ ≤ 1} is compact and T |K is a continuous
self-map of K.

Hence, (K,T |K) is a TDS.

1.1.3 Translations on compact groups

Let G be a compact group.

For every a ∈ G, let

La : G→ G, La(g) = a · g.

be the left translation. By C.0.0.18, La is a homeomorphism for all a ∈ G.

Hence, (G,La) is an invertible TDS.

1.1.4 Rotations on the circle group

The unit circle S1 = {z ∈ C | |z| = 1} with the group operation being multiplication is an
abelian compact group, called the circle group.

Since the group is abelian, left and right translations coincide, we call them rotations
and denote them Ra for a ∈ S1.

Hence, (S1, Ra) is an invertible TDS.
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1.1.5 Rotations on the n-torus Tn

The n-dimensional torus, often called the n-torus for short is the topological space

Tn := S1 × . . .× S1.

with the product topology. The 2-dimensional torus is simply called the torus.
If we define the multiplication on Tn pointwise, the n-torus Tn becomes another example

of an abelian compact group. For any a = (a1, . . . , an) ∈ Tn, the rotation by a is given
by

Ra : Tn → Tn, Ra(x) = a · x = (a1x1, . . . , anxn) for all x = (x1, x2 . . . , xn) ∈ Tn.
(1.6)

Then (Tn, Ra) is a TDS.

1.1.6 The tent map

Let [0, 1] be the unit interval and define the tent map by

T : [0, 1]→ [0, 1], T (x) = 1− |2x− 1| =

{
2x if x < 1

2

2(1− x) if x ≥ 1
2
.

(1.7)

It is easy to see that T is well-defined and continuous. Since [0, 1] is a compact subset of
R, we get that (X,T ) is a TDS.

1.2 The shift

Let W be a finite nonempty set of symbols which we will call the alphabet. We assume
|W | ≥ 2. Elements of W are also called letters, and they will typically be denoted by
a, b, c, . . . or by digits 0, 1, 2, . . ..

Although in real life sequences of symbols are finite, it is often extremely useful to treat
long sequences as infinite in both directions (or bi-infinite).

Definition 1.2.0.1. The full W -shift is the set W Z of all bi-infinite sequences of symbols
from W , i.e. sequences taking values in W indexed by Z. The full r-shift (or simply
r-shift) is the full shift over the alphabet {0, 1, . . . , r − 1}.

We shall denote with boldface letters x,y, z, . . . the elements of W Z and call them also
points of W Z. Points from the full 2-shift are also called binary sequences. If W has
size |W | = r, then there is a natural correspondence between the full W -shift and the full
r-shift, and sometimes the distinction between them is blurred. For example, it can be
convenient to refer to the full shift on {+1,−1} as the full 2-shift.

Bi-infinite sequences are denoted by x = (xn)n∈Z, or by

x = . . . x−2x−1x0x1x2 . . . . (1.8)
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The symbol xi is the ith coordinate of x. When writing a specific sequence, you need to
specify which is the 0th coordinate. This is conveniently done with a ”decimal point” to
separate the xi’s with i ≥ 0 from those with i < 0. For example,

x = . . . 010.1101 . . .

means that x−3 = 0, x−2 = 1, x−1 = 0, x0 = 1, x1 = 1, x2 = 0, x3 = 1, and so on.
A block or word over W is a finite sequence of symbols from W . We will write blocks

without separating their symbols by commas or other punctuation, so that a typical block
over W = {a, b} looks like aababbabbb. It is convenient to include the sequence of no
symbols, called the empty block (or empty word) and denoted by ε.

The length of a block u is the number of symbols it contains, and is denoted by |u|.
Thus if u = a1a2 . . . ak is a nonempty block, then |u| = k, while |ε| = 0. A k-block is
simply a block of length k. The set of all k-blocks over W is denoted W k. A subblock or
subword of u = a1a2 . . . ak is a block of the form aiai+1 . . . aj, where 1 ≤ i ≤ j ≤ k. By
convenience, the empty block ε is a subblock of every block. Denote

W+ =
⋃
n≥1

W n, W ∗ = W+ ∪ {ε} =
⋃
n≥0

W n. (1.9)

If u = a1 . . . an, v = b1 . . . bm ∈ A?, define uv to be a1 . . . anb1 . . . bm (an element of
Wm+n). By convention, εu = uε = u for all blocks u. This gives a binary operation on
W ? called concatenation or juxtaposition. If u, v ∈ W+ then uv ∈ W+ too. Note that
uv is in general not the same as vu, although they have the same length. If n ≥ 1, then
un denotes the concatenation of n copies of u, and we put u0 = ε. The law of exponents
umun = um+n then holds for all integers m,n ≥ 0. The point . . . uuu.uuu . . . is denoted by
u∞.

If x ∈ W Z and i ≤ j, then we will denote the block of coordinates in x from position i
to position j by

x[i,j] = xixi+1 . . . xj−1xj. (1.10)

If i > j, define x[i,j] to be ε. It is also convenient to define

x[i,j) = xixi+1 . . . xj−1. (1.11)

The central (2k + 1)-block of x is x[−k,k] = x−kx−k+1 . . . xk−1xk.
If x ∈ W Z and u is a block over W , we will say that u occurs in x (or that x contains

u) if there are indices i and j so that u = x[i,j]. Note that the empty block ε occurs in
every x, since ε = x[1,0].

The index n in a point x = (xn)n∈Z can be thought of as indicating time, so that, for
example, the time-0 coordinate of x is x0. The passage of time corresponds to shifting the
sequence one place to the left, and this gives a map or transformation from W Z to itself.

Definition 1.2.0.2. The (left) shift map T on W Z is defined by

T : W Z → W Z, (Tx)n = xn+1 for all n ∈ Z. (1.12)
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In the sequel, we shall give a metric on W Z. The metric should capture the idea that
points are close when large central blocks of their coordinates agree.

If x = (xn)n∈Z,y = (yn)n∈Z are two sequences in W Z such that x 6= y, then there exists
N ≥ 0 such that xN 6= yN or x−N 6= y−N , so the set {n ≥ 0 | xn 6= yn or x−n 6= y−n} is
nonempty. Then N(x,y) = min{n ≥ 0 | xn 6= yn or x−n 6= y−n} is well-defined. Thus,

N(x,y) = 0 if x0 6= y0, and (1.13)

N(x,y) = 1 + max{k ≥ 0 | x[−k,k] = y[−k,k]} if x0 = y0. (1.14)

Let us define d : W Z ×W Z → [0,+∞) by

d(x,y) =

{
2−N(x,y)+1 if x 6= y

0 if x = y
(1.15)

=


2 if x 6= y and x0 6= y0

2−k if x 6= y, x0 = y0 and k ≥ 0 is maximal with x[−k,k] = y[−k,k]

0 if x = y.

In other words, to measure the distance between x and y, we find the largest k for which the
central (2k+ 1)-blocks of x and y agree, and use 2−k as the distance (with the conventions
that if x = y then k =∞ and 2−∞ = 0, while if x0 6= y0, then k = −1).

For every k ≥ 0 and x ∈ W Z, let B2−k(x) be the open ball with center x and radius
2−k and B2−k(x) be the closed ball with center x and radius 2−k.

Proposition 1.2.0.3. (i) If x,y ∈ W Z, then for all k ≥ 0,

d(x,y) ≤ 2−k iff d(x,y) < 2−k+1 iff x[−k,k] = y[−k,k].

(ii) d is a metric on W Z.

(iii) For all x ∈ W Z, B2(x) = W Z, and, for all k ≥ 0,

B2−k+1(x) = B2−k(x) = {y ∈ W Z | y[−k,k] = x[−k,k]}.

(iv) Let (x(n)) be a sequence in W Z and x ∈ W Z. Then lim
n→∞

x(n) = x exactly when, for

each k ≥ 0, there is nk such that

x
(n)
[−k,k] = x[−k,k]

for all n ≥ nk.

Proof. (i) If x = y or x 6= y and x0 6= y0, the conclusion is trivial. We can assume that
x 6= y and x0 = y0. Then d(x,y) ≤ 2−k iff 2−N(x,y)+1 ≤ 2−k iff −N(x,y) + 1 ≤ −k
iff k ≤ N(x,y)− 1 iff x[−k,k] = y[−k,k], by (1.14)
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(ii) It remains to verify the triangle inequality. Let x,y, z be pairwise distinct points of
W Z. If d(x,y) = 2 or d(y, z) = 2, this is obvious, so we can assume that d(x,y) = 2−k

and d(y, z) = 2−l with k, l ≥ 0. By (i), we get that x[−k,k] = y[−k,k] and y[−l,l] = z[−l,l].
If we put m := min{k, l} ≥ 0, it follows that x[−m,m] = z[−m,m], hence

d(x, z) ≤ 2−m ≤ 2−k + 2−l = d(x,y) + d(y, z).

(iii) By (i).

(iv) We have that

lim
n→∞

x(n) = x iff for all k ≥ 0 there exists nk such that d(x(n),x) ≤ 2−k for all n ≥ nk

iff for all k ≥ 0 there exists nk such that x
(n)
[−k,k] = x[−k,k] for all n ≥ nk.

Thus, a sequence of points in a full shift converges exactly when, for each k ≥ 0, the
central (2k + 1)-blocks stabilize starting at some element of the sequence. For example, if

x(n) = (10n)∞ = . . . 10n10n.10n10n . . . ,

then lim
n→∞

x(n) = . . . 0000.10000 . . ..

Proposition 1.2.0.4. (i) T is invertible, its inverse being the right shift

T−1 : W Z → W Z, (T−1x)n = xn−1 for all n ∈ Z. (1.16)

(ii) For all x,y ∈ W Z,

d(Tx, Ty) ≤ 2d(x,y) and d(T−1x, T−1y) ≤ 2d(x,y).

Hence, both T and T−1 are Lipschitz continuous.

Proof. (i) It is easy to see.

(ii) The cases d(x,y) = 0 and d(x,y) = 2 are obvious, so we can assume d(x,y) = 2−k

with k ≥ 0, so that x[−k,k] = y[−k,k]. It follows that

(Tx)i = xi+1 = yi+1 = (Ty)i for all i = −(k + 1),−k,−(k − 1), . . . , k − 1, and

(T−1x)i = xi−1 = yi−1 = (T−1y)i for all i = −(k − 1), . . . , k − 1, k, k + 1,

so that (Tx)[−(k−1),k−1] = (Ty)[−(k−1),k−1] and (T−1x)[−(k−1),k−1] = (T−1y)[−(k−1),k−1].
By Proposition 1.2.0.3.(i), we get that

d(Tx, Ty), d(T−1x, T−1y) ≤ 2−(k−1) = 2d(x,y).
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Theorem 1.2.0.5. (W Z, T ) is an invertible TDS.

Proof. By Proposition 1.2.0.4, T is a homeomorphism. Furthermore, W Z is Hasudorff,
since it is a metric space. It remains to prove that W Z is compact. We shall actually
show that W Z is sequentially compact. Given a sequence (x(n))n≥1 in W Z, we construct a
convergent subsequence using Cantor diagonalization as follows.

First consider the 0th coordinates x
(n)
0 for n ≥ 1. Since there are only finitely many

symbols, there is an infinite set S0 ⊆ Z+ for which x
(n)
0 is the same for all n ∈ S0.

Next, the central 3-blocks x
(n)
[−1,1] for n ∈ S0 all belong to the finite set of possible 3-

blocks, so there is an infinite subset S1 ⊆ S0 so that x
(n)
[−1,1] is the same for all n ∈ S1.

Continuing this way, we find for each k ≥ 1 an infinite set Sk ⊆ Sk−1 so that all blocks

x
(n)
[−k,k] are equal for n ∈ Sk.

Define x ∈ W Z as follows: for any k ≥ 0, take n ∈ Sk arbitrary and define xk = x
(n)
k ,

x−k = x
(n)
−k . By our construction, x

(n)
k , resp. x

(n)
−k , have the same values for all n ∈ Sk, so x

is well-defined. Furthermore, since (Sk)k≥0 is decreasing, we have that x[−k,k] = x
(n)
[−k,k] for

all n ∈ Sk.
Define inductively a strictly increasing sequence of natural numbers (nk)k≥0 by: n0 is

any element in S0, and, for k ≥ 0, nk+1 is the smallest element in Sk+1 strictly greater than
nk.

Then (x(nk))k≥0 is a subsequence of x(n) such that lim
k→∞

x(nk) = x, by Proposition

1.2.0.3.(iv).

1.2.1 Cylinder sets and product topology

For every n ∈ Z, let
πn : W Z → W, πn(x) = xn. (1.17)

be the nth-projection.
An elementary cylinder is a set of the form

Cw
n = π−1

n ({w}) = {x ∈ W Z | xn = w}, where n ∈ Z, w ∈ W.

A cylinder in W Z is a set of the form

Cw1,...,wt
n1,...,nt

= {x ∈ W Z | xni
= wi for all i = 1, . . . , t}

=
t⋂
i=1

Cwi
ni

where t ≥ 1, n1, . . . , nt ∈ Z are pairwise distinct and w1, . . . , wt ∈ W . A particular case
of cylinder is the following: if u is a block over X and n ∈ Z, define Cn(u) as the set of
points in which the block u occurs starting at position n. Thus,

Cn(u) = {x ∈ W Z | x[n,n+|u|−1] = u} = C
u1,u2,...,u|u|
n,n+1,...,n+|u|−1 .
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Notation 1.2.1.1. We shall use the notations C for the set of all cylinders and Ce for the
set of elementary cylinders.

The following lemma collects some obvious properties of cylinders.

Lemma 1.2.1.2. (i) For all n ∈ Z, W Z =
⋃
w∈W Cw

n .

(ii) For all m,n ∈ Z, u,w ∈ W ,

Cw
n ∩ Cu

m =


∅ if m = n and w 6= u,

Cw
n if m = n and w = u,

Cw,u
n,m if m 6= n.

W Z \ Cw
n =

⋃
z∈W, z 6=w

Cz
n, Cw

n \ Cu
m =

⋃
z∈W, z 6=u

Cw
n ∩ Cz

m.

(iii) For all k ≥ 0 and x ∈ W Z,

B2−k(x) = C−k−1(x[−k−1,k+1]).

(iv) For all n ∈ Z, w ∈ W ,

T (Cw
n ) = Cw

n−1 and T−1(Cw
n ) = Cw

n+1.

Let us consider the discrete metric on W :

d(x, y) =

{
1 if x = y,

0 otherwise.

Since W is finite, we have that (W,d) is a compact metric space. Furthermore, a
subbasis for the metric topology is given by

SW := {{w} | w ∈ W}. (1.18)

Let us consider the product topology on W Z.

Proposition 1.2.1.3. (i) The set Ce of elementary cylinders is a subbasis for the product
topology on W Z.

(ii) The set C of cylinders is a basis for the product topology on W Z.

(iii) Cylinders are clopen sets in the product topology.

Proof. (i) By the fact that SW is a subbasis on W and apply B.7.0.16.(ii).

(ii) Any cylinder is a finite intersection of elementary cylinders.
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(iii) Since Cw
n = π−1

n ({w}) and {w} is closed in W , we have that elementary cylinders are
closed. As cylinders are finite intersections of elementary cylinders, they are closed
too.

Proposition 1.2.1.4. The metric d given by (1.15) induces the product topology on W Z.

Proof. By Lemma 1.2.1.2.(iii), any ball B2−k(x) (k ≥ 0) is a cylinder, hence is open in the
product topology. Let us prove now that every elementary cylinder Cw

n (n ∈ Z, w ∈ W )
is open in the metric topology. Let y ∈ Cw

n and take k ≥ 0 such that k ≥ |n| − 1, so
n ∈ [−k − 1, k + 1]. Then B2−k(y) ⊆ Cw

n , since z ∈ B2−k(y) = C−k−1(y[−k−1,k+1]), implies
that zn = yn = w.

1.3 Basic constructions

1.3.1 Homomorphisms, factors, extensions

Definition 1.3.1.1. Let (X,T ) and (Y, S) be two TDSs. A homomorphism from (X,T )
to (Y, S) is a continuous map ϕ : X → Y such that the following diagram commutes:

X
ϕ

- Y

X

T

? ϕ
- Y

S

?

which means ϕ ◦ T = S ◦ ϕ. We use the notation ϕ : (X,T )→ (Y, S).
A homomorphism ϕ : (X,T ) → (Y, S) is an isomorphism if ϕ : X → Y is a homeo-

morphism; in this case the TDSs are called isomorphic.

If ϕ : (X,T ) → (Y, S) is a homomorphism (resp. isomorphism), it is easy to see by
induction on n that ϕ ◦ T n = Sn ◦ ϕ for all n ≥ 1 (resp. for all n ∈ Z).

An automorphism of a TDS (X,T ) is a self-isomorphism ϕ : (X,T ) → (X,T ).
Hence, ϕ : (X,T ) → (X,T ) is an automorphism of (X,T ) if and only if ϕ : X → X is a
homeomorphism that commutes with T .

Definition 1.3.1.2. Let (X,T ) and (Y, S) be two TDSs. We say that (Y, S) is a factor of
(X,T ) or that (X,T ) is an extension of (Y, S) if there exists a surjective homomorphism
ϕ : (X,T )→ (Y, S).

1.3.2 Invariant and strongly invariant sets

In the following, (X,T ) is a TDS.
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Definition 1.3.2.1. A nonempty subset A ⊆ X is called

(i) invariant under T or T -invariant if T (A) ⊆ A.

(ii) strongly invariant under T or strongly T -invariant if T−1(A) = A.

Trivial strongly T -invariant subsets of X are ∅ and X.

Lemma 1.3.2.2. Let (X,T ) be a TDS.

(i) Any strongly T -invariant set is also T -invariant.

(ii) The complement of a strongly T -invariant set is strongly T -invariant.

(iii) The closure of a T -invariant set is also T -invariant.

(iv) The union of any family of (strongly) T -invariant sets is (strongly) T -invariant.

(v) The intersection of any family of (strongly) T -invariant sets is (strongly) T -invariant.

(vi) If A is T -invariant, then T n(A) ⊆ A and T n(A) is T -invariant for all n ≥ 0.

(vii) If A is strongly T -invariant, then T n(A) ⊆ A and T−n(A) = A for all n ≥ 0; in
particular, T−n(A) is strongly T -invariant for all n ≥ 0.

(viii) For any x ∈ X, the forward orbit orb+(x) of x is the smallest T -invariant set con-
taining x and orb+(x) is the smallest T -invariant closed set containing x.

Proof. (i) By A.0.6.5.(v).

(ii) If T−1(A) = A, then T−1(X \ A) = X \ T−1(A) = X \ A.

(iii) If T (A) ⊆ A, then T (A) ⊆ T (A) ⊆ A, by B.4.0.25.

(iv) Let (Ai)i∈I be a family of subsets of X. If T (Ai) ⊆ Ai for all i ∈ I, then

T (
⋃
i∈I

Ai) =
⋃
i∈I

T (Ai) ⊆
⋃
i∈I

Ai.

If T−1(Ai) = Ai for all i ∈ I, then

T−1(
⋃
i∈I

Ai) =
⋃
i∈I

T−1(Ai) =
⋃
i∈I

Ai.

(v) Let (Ai)i∈I be a family of subsets of X. If T (Ai) ⊆ Ai for all i ∈ I, then

T (
⋂
i∈I

Ai) ⊆
⋂
i∈I

T (Ai) ⊆
⋂
i∈I

Ai.

If T−1(Ai) = Ai for all i ∈ I, then

T−1(
⋂
i∈I

Ai) =
⋂
i∈I

T−1(Ai) =
⋂
i∈I

Ai.
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(vi) By A.0.6.5.(i).

(vii) By (i), A is T -invariant, hence we can apply (vi) to conclude that T n(A) ⊆ A for all
n ≥ 0. Apply A.0.6.5.(vi) to obtain that T−n(A) = A for all n ≥ 0.

(viii) By Lemma 1.0.0.2, We have that T (orb+(x)) = orb>0(x) ⊆ orb+(x), hence orb+(x)
is T -invariant . If B is a T -invariant set containing x, then Tx ∈ T (B) ⊆ B and,
by induction, T nx ∈ B for all n ≥ 1. Thus, orb+(x) ⊆ B.

By (iii), orb+(x) is also T -invariant. Furthermore, if B is a closed T -invariant set
containing x, then orb+(x) ⊆ B and, since B is closed, orb+(x) ⊆ B.

Lemma 1.3.2.3. Let (X,T ) be an invertible TDS.

(i) A ⊆ X is strongly T -invariant if and only if T (A) = A if and only if A is strongly
T−1-invariant.

(ii) The closure of a strongly T -invariant set is also strongly T -invariant .

(iii) If A ⊆ X is strongly T -invariant , then T n(A) = A for all n ∈ Z; in particular,
T n(A) is strongly T -invariant for all n ∈ Z.

(iv) For any x ∈ X, the orbit orb(x) of x is the smallest strongly T -invariant set contain-
ing x and orb(x) is the smallest strongly T -invariant closed set containing x.

(v) For any nonempty open set U of X,
⋃
n∈Z T

n(U) is a nonempty open strongly T -
invariant set, and X \

⋃
n∈Z T

n(U) is a proper closed strongly T -invariant subset of
X.

Proof. (i) Using the fact that T is a homeomorphism, we get that A ⊆ X is strongly
T -invariant if and only if T−1(A) = A if and only if T (T−1(A)) = T (A) if and only
if A = T (A).

(ii) Let A be strongly T -invariant. By (i) and B.4.1.3, we get that T (A) = T (A) = A.

(iii) Apply (i) and A.0.6.6.(ii).

(iv)

T (orb(x)) = T

(⋃
n∈Z

T nx

)
=
⋃
n∈Z

T n+1x = orb(x),

so orb(x) is strongly T -invariant. If B is a strongly T -invariant set containing x, then
for all n ∈ Z, T nx ∈ T n(B) = B, by(iii). Thus, orb(x) ⊆ B.

By (ii), orb(x) is also strongly T -invariant. Furthermore, if B is a closed strongly
T -invariant set containing x, then orb(x) ⊆ B and, since B is closed, orb(x) ⊆ B.
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(v) Let A :=
⋃
n∈Z T

n(U). Then A is open, since T n is an open mapping for all n ∈ Z,
and A is nonempty, since ∅ 6= U = T 0(U) ⊆ A. Furthermore,

T (A) = T

(⋃
n∈Z

T n(U)

)
=
⋃
n∈Z

T n+1(U) = A.

Finally, X \A is proper, closed and strongly T -invariant, as a complement of an open
strongly T -invariant set).

1.3.3 Subsystems

Let (X,T ) be a TDS, A ⊆ X be a nonempty closed T -invariant set and

jA : A→ X, jA(x) = x

be the inclusion.

Notation 1.3.3.1. We shall use the notation TA for the mapping obtained from T by
restricting both the domain and the codomain to A.

TA : A→ A, TAx = Tx for all x ∈ A. (1.19)

Obviously, TA is continuous.

Then A is compact Hausdorff and TA : A→ A is continuous, hence (A, TA) is a TDS.

Definition 1.3.3.2. A subsystem of the TDS (X,T ) is any TDS of the form (A, TA),
where A is a nonempty closed T -invariant set.

For simplicity, we shall say that A is a subsystem of (X,T ). Obviously, X is a trivial
subsystem of itself. A proper subsystem is one different from (X,T ).

Lemma 1.3.3.3. Let (X,T ) be a TDS.

(i) For any subsystem A of (X,T ), jA : (A, TA)→ (X,T ) is an injective homomorphism.

(ii) Any subsystem of a subsystem of (X,T ) is also a subsystem of (X,T ).

(iii) For any x ∈ X, orb+(x) is a subsystem of (X,T ).

(iv) If (X,T ) is invertible, and A ⊆ X is a nonempty closed strongly T -invariant set,
then the subsystem (A, TA) is invertible.

(v) If (X,T ) is invertible, then orb(x) is an invertible subsystem of (X,T ).

Proof. (i),(ii),(iv) are easy to see.
(iii),(v) follow by Lemma 1.3.2.2.(viii) and Lemma 1.3.2.3.(iv).
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The next proposition shows that every TDS contains a surjective subsystem.

Proposition 1.3.3.4. Let A be a subsystem of a TDS (X,T ). Then there exists a nonempty
closed set B ⊆ A such that T (B) = B.

Proof. Using the fact that X is compact Hausdorff, A is closed (hence compact) and T n is
continuous, we get that T n(A) is compact (hence closed) in X for all n ≥ 0. Furthermore,
by A.0.6.5.(i), (T n(A))n≥0 is a decreasing sequence. Applying B.10.0.14, it follows that

B :=
⋂
n≥0

T n(A)

is nonempty. Furthermore, B ⊆ A and B is closed, as intersection of closed sets.

Claim T (B) = B.

Proof of Claim ” ⊆ ” B is T -invariant as the intersection of a family of T -invariant sets,
by Lemma 1.3.2.2.(vi),(v.

” ⊇ ” Let x ∈ B and set Bn+1 := T−1({x})∩T n(A) for all n ≥ 0. Since {x} is closed in
the compact Hausdorff space X and T is continuous, we get that T−1({x}) is also closed,
hence, Bn+1 is closed. Furthermore, (Bn+1)n≥0 is a decreasing sequence.

Let us prove that Bn+1 is nonempty for all n ≥ 0. Since x ∈ B, we get that x ∈ T n+1(A),
so x = Ty for some y ∈ T n(A). Thus, y ∈ Bn+1.

We can apply again B.10.0.14 to conclude that

∅ 6=
⋂
n≥0

Bn+1 = T−1({x}) ∩
⋂
n≥0

T n(A) = T−1({x}) ∩B.

Thus, there exists y ∈ B such that Ty = x, i.e. x ∈ T (B).

Applying the above proposition for A := X, we get the following useful results.

Corollary 1.3.3.5. If (X,T ) is a TDS, then there exists a nonempty closed set B ⊆ X
such that T (B) = B.

Corollary 1.3.3.6. In an invertible TDS (X,T ), any nonempty closed T -invariant subset
contains a nonempty closed strongly T -invariant set.

Proof. Apply Proposition 1.3.3.4 and Proposition 1.3.2.3.(i).

1.3.4 Products

Let (X1, T1), . . . , (Xn, Tn) be TDSs, where n ≥ 2. The product TDS is defined by:

X :=
n∏
i=1

Xi = X1 × . . .×Xn

T :=
n∏
i=1

Ti = T1 × . . .× Tn : X → X, that is T (x1, . . . , xn) = (T1x1, . . . , Tnxn).
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For any i = 1, . . . , n, let us consider the natural projections

πi :
n∏
i=1

Xi → Xi, πi(x1, . . . , xn) = xi.

Proposition 1.3.4.1. (i) (X,T ) is a TDS.

(ii) (Xi, Ti) is a factor of (X,T ) for all i = 1, . . . , n.

(iii) (X,T ) is invertible whenever (Xi, Ti) (i = 1, . . . , n) are invertible TDSs.

Proof. (i) X is compact Hausdorff as a product of compact Hausdorff spaces. Further-
more, T is continuos as a product of continuous functions, by B.7.0.18.

(ii) It is easy to see that πi : (X,T ) → (Xi, Ti) is a surjective homomorphism: πi is
surjective, continuous, and for all x = (x1, . . . , xn) ∈ X, we have that

(πi ◦ T )(x) = πi(Tx) = Tixi and (Ti ◦ πi)(x) = Tixi.

(iii) T is a homeomorphism as a product of homeomorphisms, by B.7.0.18.

Example 1.3.4.2. The TDS (Tn, Ra) (see Example 1.1.5) is the n-fold product of the
TDSs (S1, Rai

), i = 1, . . . , n (see Example 1.1.4).

1.3.5 Disjoint unions

Let (X1, T1) and (X2, T2) be TDSs and consider the disjoint union X := X1 t X2 of the
topological spaces X1, X2.

Let us define

T : X → X, Tx =

{
T1x if x ∈ X1,

T2x if x ∈ X2.

Proposition 1.3.5.1. (X,T ) is a TDS, called the disjoint union of the TDSs (X1, T1)
and (X2, T2).

Proof. Apply B.6.0.14 and B.10.0.15.(vdisj-union-compact).

Lemma 1.3.5.2. Let (X,T ) be a disjoint union of (X1, T1) and (X2, T2).

(i) both (X1, T1) and (X2, T2) are subsystems of (X,T ).

(ii) If (X1, T1) and (X2, T2) are both invertible, then (X,T ) is invertible too.

Proof. (i) X1 is nonempty closed and T -invariant, since T (X1) = T1(X1) ⊆ X1. Fur-
thermore, T1 = TX1 . Similarly for X2.
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(ii) The inverse T−1 : X → X of T is given by

T−1x =

{
T−1

1 x if x ∈ X1,

T−1
2 x if x ∈ X2.

and is continuous, by B.6.0.14.(ii).

1.4 Transitivity

Definition 1.4.0.3. Let (X,T ) be a TDS. A point x ∈ X is called forward transitive
if its forward orbit orb+(x) is dense in X. If there is at least one forward transitive point,
the TDS is called (topologically) forward transitive.

The property of a TDS being forward transitive expresses the fact that if we start at
the point x we can reach, at least approximately, any other point in X after some time.

Definition 1.4.0.4. Let (X,T ) be an invertible TDS. A point x ∈ X is called transitive
if its orbit orb(x) is dense in X. The TDS is called (topologically) transitive if there
is at least one transitive point.

The following is obvious.

Lemma 1.4.0.5. Let (X,T ) be a TDS.

(i) For every x ∈ X, (orb+(x), Torb+(x)) is a forward transitive subsystem of (X,T ).

(ii) If (X,T ) is invertible, then (orb(x), Torb(x)) is a transitive subsystem of (X,T ) for all
x ∈ X.

Lemma 1.4.0.6. Let (X,T ) be a TDS and x ∈ X.

(i) x is a forward transitive point if and only if x ∈
⋃
n≥0 T

−n(U) for every nonempty
open subset U of X.

(ii) Assume that (X,T ) is invertible. Then x is a transitive point if and only if x ∈⋃
n∈Z T

n(U) for every nonempty open subset U of X.

Proof. (i) Applying B.1.0.16.(ii) and Lemma 1.0.0.2.(ii), we get that x is forward transi-
tive if and only if orb+(x)∩U 6= ∅ for any nonempty open set U iff x ∈

⋃
n≥0 T

−n(U)
for any nonempty open set U .

(ii) Similarly, using Lemma 1.0.0.2.(iii).

Lemma 1.4.0.7. Let (X,T ) be a TDS with X metrizable and (Un)n≥1 be a countable basis
of X (which exists, by B.10.0.19).
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(i) {x ∈ X | orb+(x) = X} =
⋂
n≥1

⋃
k≥0

T−k(Un).

(ii) If (X,T ) is invertible, then {x ∈ X | orb(x) = X} =
⋂
n≥1

⋃
k∈Z

T k(Un).

Proof. As the proof of the above lemma, using B.1.0.16.(iii).

Theorem 1.4.0.8. Let (X,T ) be an invertible TDS and assume that X is metrizable. The
following are equivalent:

(i) (X,T ) is transitive.

(ii) If U is a nonempty open subset of X such that T (U) = U , then U is dense in X.

(iii) If E 6= X is a proper closed subset of X such that T (E) = E, then E is nowhere
dense in X.

(iv) for any nonempty open subset U of X,
⋃
n∈Z T

n(U) is dense in X.

(v) for any nonempty open subsets U, V of X, there exists n ∈ Z such that T n(U)∩V 6= ∅.

(vi) The set of transitive points is residual.

Proof. (i)⇒ (ii) Let x be a transitive point, so that orb(x) is dense. Let U be a nonempty
open set satisfying T (U) = U . Since orb(x) ∩ U 6= ∅, we have that T kx ∈ U for some
k ∈ Z. It follows that for all n ∈ Z, T nx = T n−k(T kx) ∈ T n−k(U) = U , by A.0.6.5.(vi).
Hence, orb(x) ⊆ U and, since orb(x) = X, we must have U = X.
(ii)⇔ (iii) By B.1.0.16.(iv).
(iv)⇔ (v) follows immediately from B.1.0.16.
(ii)⇒ (iv) Apply Proposition 1.3.2.3.(v).
(iv)⇒ (vi) Let (Un)n≥1 be a countable basis of X. By Lemma 1.4.0.7, the set of transitive

points is
⋂
n≥1

⋃
k∈Z

T k(Un), which is an intersection of countably many open dense sets, by

(iv). Hence, the set of transitive points is residual, by B.11.0.6.
(vi)⇒ (i) Since X is compact Hausdorff, we get that X is a Baire space, by Baire Category
Theorem B.11.0.10. Apply now B.11.0.9 to conclude that there exist transitive points.

1.5 Minimality

Definition 1.5.0.9. A TDS (X,T ) is called minimal if there are no non-trivial closed
T -invariant sets in X.
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This means that if A ⊆ X is closed and T (A) ⊆ A, then A = ∅ or A = X. Equivalently,
(X,T ) is minimal if and only if it does not have proper subsystems. Hence, ”irreducible”
appears to be the adequate term. However, the term ”minimal” is generally used in
topological dynamics.

Proposition 1.5.0.10. (i) (X, 1X) is minimal if and only if |X| = 1.

(ii) If (X,T ) is minimal, then T is surjective.

(iii) A factor of a minimal TDS is also minimal.

(iv) If a product TDS is minimal, then so are each of its components.

(v) If (X1, TX1), (X2, TX2) are two minimal subsystems of a TDS (X,T ), then either
X1 ∩X2 = ∅ or X1 = X2.

Proof. Exercise.

As a consequence of the above proposition, minimality is an isomorphism invariant, i.e.
if two TDSs are isomorphic and one of them is minimal, so is the other.

Proposition 1.5.0.11. Let (X,T ) be a TDS. The following are equivalent:

(i) (X,T ) is minimal.

(ii) Every x ∈ X is forward transitive.

(iii) X =
⋃
n≥0 T

−n(U) for every nonempty open subset U of X.

(iv) For every nonempty open subset U of X, there are n1, . . . , nk ≥ 0 such that X =
k⋃
i=1

T−ni(U).

Proof. (i)⇒ (ii) By Lemma 1.3.3.3.(iii).
(ii)⇒ (i) Assume that A 6= ∅ is a closed T -invariant set and let x ∈ A be arbitrary. Then
X = orb+(x) ⊆ A, by Proposition 1.3.2.2.(viii). Hence, X = A.
(ii)⇔ (iii) Apply Lemma 1.4.0.6.(i).
(iv)⇒ (iii) Obviously.
(iii)⇒ (iv) By the compactness of X, since T−n(U) is open for all n ≥ 0.

Corollary 1.5.0.12. Every minimal TDS is forward transitive.

Theorem 1.5.0.13. Any TDS (X,T ) has a minimal subsystem.

Proof. Let M be the family of all nonempty closed T -invariant subsets of X with the
partial ordering by inclusion. Then, of course, X ∈M, soM is non-empty. Let (Ai)i∈I be
a chain in M and take A :=

⋂
i∈I Ai. Then A ∈ M, since A is nonempty (by B.10.0.13),

A is closed, and A is T -invariant (by Proposition 1.3.2.2.(v)). Thus, by Zorn’s Lemma
A.0.6.4 there exists a minimal element F ∈ M. Then (F, TF ) is a minimal subsystem of
(X,T ).
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1.6 Topological recurrence

We now turn to the question whether a state returns (at least approximately) to itself from
time to time.

Let A ⊆ X be arbitrary and consider the successive sites x, Tx, T 2x, . . . , T nx, . . . of an
arbitrary point x ∈ A as time runs through 0, 1, 2, . . . , n, . . .. The set of all points which
return (= are back) to A at time n ≥ 1 is

{x ∈ A | T nx ∈ A} = A ∩ T−n(A).

Notation 1.6.0.14. We shall use the following notations:

(i) Aret is the set of those points of A which return to A at least once.

(ii) Ainf is the set of those points of A which return to A infinitely often.

(iii) For every x ∈ A, rt(x,A) is the set of return times of x in A.

Thus,

Aret = A ∩
⋃
n≥1

T−n(A), Ainf = A ∩
⋂
n≥1

⋃
m≥n

T−m(A),

rt(x,A) = {n ≥ 1 | T nx ∈ A} = {n ≥ 1 | x ∈ T−n(A)}.

Furthermore, for every x ∈ A we have that x ∈ Aret if and only if rt(x,A) is nonempty,
and x ∈ Ainf if and only if rt(x,A) is infinite.

Definition 1.6.0.15. Let (X,T ) be a TDS. A point x ∈ X is called

(i) recurrent if x ∈ Uret for every open neighborhood U of x.

(ii) infinitely recurrent if x ∈ Uinf for every open neighborhood U of x.

Thus, x is recurrent if and only if x returns at least once to U for every open neighbor-
hood U if and only if x ∈ orb>0(x).

Definition 1.6.0.16. A set S ⊆ Z+ is called syndetic if there exists an integer N ≥ 1
such that [k, k +N ]

⋂
S 6= ∅ for any k ∈ Z+.

Thus syndetic sets have ”bounded gaps”. Any syndetic set is obviously infinite.

Definition 1.6.0.17. Let (X,T ) be a TDS. A point x ∈ X is called almost periodic
or uniformly recurrent if for every open neighborhood U of x the set of return times
rt(x, U) is syndetic.

Lemma 1.6.0.18. (i) Any periodic point is almost periodic.

(ii) Any almost periodic point is recurrent.
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Proof. (i) Let x be a periodic point. Let N ≥ 1 be the smallest positive integer such
that TNx = x. Then for every k ≥ 1, there exists n ∈ [k, k +N ] such that T nx = x,
in particular n ∈ rt(x, U) for every open neighborhood U of x.

(ii) Obviously.

Lemma 1.6.0.19. (i) If ϕ : (X,T ) → (Y, S) is a homomorphism of TDSs and x ∈ X
is recurrent (almost periodic) in (X,T ), then ϕ(x) is recurrent (almost periodic) in
(Y, S).

(ii) If (A, TA) is a subsystem of (X,T ) and x ∈ A, then x is recurrent (almost periodic)
in (X,T ) if and only if x is recurrent (almost periodic) in (A, TA).

Proof. Exercise.

As a consequence, isomorphisms map recurrent (almost periodic) points in recurrent
(almost periodic) points.

Proposition 1.6.0.20. Let (X,T ) be a TDS and x ∈ X. The following are equivalent:

(i) x is recurrent.

(ii) x is infinitely recurrent.

Proof. Exercise.

Lemma 1.6.0.21. Let (X,T ) be a TDS and assume that X is metrizable. For any x ∈ X,
the following are equivalent:

(i) x is recurrent.

(ii) lim
k→∞

T nkx = x for some sequence (nk) in Z+.

(iii) lim
k→∞

T nkx = x for some sequence (nk) in Z+ such that lim
k→∞

nk =∞.

Proof. Exercise.

Proposition 1.6.0.22. [G. D. Birkhoff]
Every point in a minimal TDS (X,T ) is almost periodic.

Proof. Assume that (X,T ) is minimal and let x ∈ X, and U be a an open neighbor-
hood of x. Applying Proposition 1.5.0.11.(iv), there are n1, . . . , nk ≥ 0 such that X =⋃k
i=1 T

−ni(U). Let N := max{n1, . . . , nk}. For each n ≥ 1, there exists i = 1, . . . , k such
that T nx ∈ T−ni(U), that is T n+nix ∈ U . It follows that n+ni ∈ [n, n+N ]∩ rt(x, U).

Combining Theorem 1.5.0.13 with Proposition 1.6.0.22, we immediately obtain the
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Theorem 1.6.0.23 (Birkhoff Recurrence Theorem).
Every TDS contains at least one point x which is almost periodic (and hence recurrent).

Corollary 1.6.0.24. Let (X,T ) be a TDS and assume that X is metrizable. Then there
exists x ∈ X satisfying lim

k→∞
T nkx = x for some sequence (nk) in Z+ such that lim

k→∞
nk =∞.

Proof. Apply Theorem 1.6.0.23 and Lemma 1.6.0.21.

Proposition 1.6.0.25. Let (X,T ) be a TDS and x ∈ X. The following are equivalent:

(i) x is almost periodic.

(ii) For any open neighborhood U of x there exists N ≥ 1 such that

orb+(x) ⊆
N⋃
k=0

T−k(U).

(iii) (orb+(x), Torb+(x)) is a minimal subsystem.

Proof. Exercise.

1.6.1 An application to a result of Hilbert

The following result, due to Hilbert [43], is presumably the first result of Ramsey theory.
Hilbert used this lemma to prove his irreducibility theorem: If the polynomial P (X, Y ) ∈
Z[X, Y ] is irreducible, then there exists some a ∈ N with P (a, Y ) ∈ Z[Y ].

The finite sums of a set D of natural numbers are all those numbers that can be
obtained by adding up the elements of some finite nonempty subset of D. The set of all
finite sums over D will be denoted by FS(D). Thus,

FS(D) =

{∑
m∈F

m | F is a finite nonempty subset of D

}
. (1.20)

If D = {n1, n2, . . . , nl}, we shall denote FS(D) by FS
(
n1, . . . , nl

)
.

Theorem 1.6.1.1 (Hilbert (1892). Let r ∈ Z+ and N =
r⋃
i=1

Ci. Then for any l ≥ 1 there

exist n1 ≤ n2 ≤ . . . ≤ nl ∈ N such that infinitely many translates of FS
(
n1, . . . , nl

)
belong

to the same Ci. That is, ⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ Ci

for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N and some infinite set B ⊆ N.
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Proof. Let W = {1, 2, . . . , r} and consider the full shift (W Z, T ). Let x ∈ WZ be defined
by:

xn =

{
i if n ≥ 0 and n ∈ Ci
arbitrarily if n < 0.

Step 1 Assume that x is recurrent.
We construct a finite sequence (Wk), k = 0, 1, . . . , l of blocks of x inductively as follows:

(i) Let N := x0 and define W0 := N .

(ii) Assume that W0, . . . ,Wk were defined. Since x is recurrent, the block Wk occurs in
x a second time (see H2.5). Hence, there exists a (possibly empty) block Yk+1 such
that WkYk+1Wk occurs in x. Define Wk+1 := WkYk+1Wk.

For every k = 1, . . . , l, let nk be the length of WkYk+1, so that 1 ≤ n1 ≤ . . . ≤ nl. Let us
remark that

Wk = x[0,|Wk|−1], |Wk+1| = |Wk|+ nk,

and that if some symbol occurs at position p in Wk, then it occurs also at position p+ nk
in Wk+1.

Let 1 ≤ i1 < i2 < . . . < ip ≤ l, where 1 ≤ p ≤ l. Then N occurs at position 0 in x, at
position ni1 in Wi1 , at position ni1 + ni1+1 in Wi1+1, at position ni1 + ni1+2 in Wi1+2, and
so on, at position ni1 + ni2 in Wi2 . Applying the above argument repeatedly, we get that
N occurs at position ni1 + ni2 + . . .+ nip in Wip , hence in x. It follows that N occurs in x
at any position in FS

(
n1, . . . , nl

)
.

Applying again the fact that x is recurrent, we get that the block Wl occurs in x at an
infinite number of positions, say 0 = p1 < p2 < . . . < pk < . . .. Take B = {pk | k ≥ 1} to

get that N occurs at any position in
⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
. That is,

⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ CN .

Step 2 Let us consider the general case, when x is not necessarily recurrent. Consider
the subsystem (orb+(x), Torb+(x)), and apply Birkhoff recurrence theorem 1.6.0.23 to get a
recurrent point y of this TDS. We have two cases:

Case 1: y = Tmx for some m ≥ 0. Applying Step 1 for y, we get that N := y0 = xm
occurs in y at any position in

⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
. Letting C := m+B, we get that

C is infinite and ⋃
a∈C

(
a+ FS

(
n1, . . . , nl

))
⊆ CN
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Case 2: y ∈/ orb+(x). Then lim
k→∞

Tmkx = y for some strictly increasing sequence (mk)

of natural numbers. Applying Step 1 for the recurrent point y, we get that N := y0 occurs
at any position p ∈ FS

(
n1, . . . , nl

)
for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N.

Take n := n1 +n2 + . . .+nl. It follows that there exists K ≥ 0 such that (Tmkx)[−n,n] =
y[−n,n] for all k ≥ K. Let B = {mk | k ≥ K}. Then B is infinite, and

xmk+p = (Tmkx)p = yp = N for all p ∈ FS
(
n1, . . . , nl

)
, and all mk ∈ B.

Thus ⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ CN .
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1.7 Multiple recurrence

Let X be a compact metric space, l ≥ 1, and T1, . . . , Tl : X → X be continuous mappings.

Definition 1.7.0.2. We say that a point x ∈ X is multiply recurrent (for T1, . . . , Tl)
if there exists a sequence (nk) in N with lim

k→∞
nk =∞ such that

lim
k→∞

T nk
1 x = lim

k→∞
T nk

2 x = . . . = lim
k→∞

T nk
l x = x. (1.21)

Furthermore, the mappings T1, . . . , Tl : X → X are said to be commuting if Ti ◦ Tj =
Tj ◦ Ti for all i, j = 1, . . . , l. This implies T ni ◦ Tmj = Tmj ◦ T ni for all m,n ∈ Z+; if the Ti’s
are homeomorphisms, then T ni ◦ Tmj = Tmj ◦ T ni holds for all m,n ∈ Z.

In this section, we extend Birkhoff’s Recurrence Theorem. We shall prove the following
result.

Theorem 1.7.0.3 (Multiple Recurrence Theorem (MRT)).
Let l ≥ 1 and T1, . . . , Tl : X → X be commuting homeomorphisms of a compact metric
space (X, d). Then there exists a multiply recurrent point for T1, . . . , Tl.

Corollary 1.7.0.4.
Let (X, d) be a compact metric space and T : X → X be a homeomorphism. For all l ≥ 1,
there exists a multiply recurrent point for T, T 2, . . . , T l.

Proof. Let Ti := T i for all 1 ≤ i ≤ l. Then T1, . . . , Tl are commuting homeomorphisms
of the compact metric space (X, d), so we can apply MRT to conclude that there exists a
multiply recurrent point x ∈ X.

Corollary 1.7.0.5.
Let (X, d) be a compact metric space and T : X → X be a continuous mapping. For all
l ≥ 1, there exists a multiply recurrent point for T, T 2, . . . , T l.

Proof. Exercise.

1.7.1 Some useful lemmas

In the sequel, (X, d) is a compact metric space, l ≥ 1, and T1, . . . , Tl : X → X are
continuous mappings.

Consider the product TDS (X l, T̃ ):

X l = X ×X × . . .×X︸ ︷︷ ︸
l

, T̃ :=
l∏

i=1

Ti.

Then the metric dl(x,y) = max
i=1,...,l

d(xi, yi) induces the product topology on X l, by B.7.1.1.
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For every ∅ 6= Y ⊆ X, let

Y l
∆ := {y = (y, y, . . . , y) | y ∈ Y }

be the diagonal of Y . For every i = 1, . . . , l, let

T̃i : X l → X l, T̃i = Ti × . . .× Ti︸ ︷︷ ︸
l

.

Lemma 1.7.1.1. (i) dl(x,y) = d(x, y) for all x,y ∈ X l
∆.

(ii) For all x ∈ X, (Bε(x))l∆ = {y ∈ X l
∆ | dl(x,y) < ε} = Bε(x) ∩X l

∆.

(iii) V is open in X l
∆ if and only if V = U l

∆ for some open subset U of X.

(iv) Let Y ⊆ X be a nonempty closed set. Then

(a) Y l
∆ is a compact metric space.

(b) For all i = 1, . . . , l, T̃i(Y
l

∆) = (Ti(Y ))l∆.

We have the following characterization of multiply recurrent points.

Lemma 1.7.1.2. Let x ∈ X and x = (x, . . . , x) ∈ X l
∆. The following are equivalent:

(i) x is multiply recurrent for T1, . . . , Tl.

(ii) x is a recurrent point in (X l, T̃ ).

(iii) For all ε > 0 there exists N ≥ 1 such that dl(x, T̃
Nx) < ε.

(iv) For all ε > 0 there exists N ≥ 1 such that d(x, TNi x) < ε for all i = 1, . . . , l.

Proof. Exercise.

Lemma 1.7.1.3. Assume that T1, . . . , Tl : X → X are commuting homeomorphisms. Then

(i) X contains a subset X0 which is minimal with the property that it is nonempty closed
and strongly Ti-invariant for all i = 1, . . . , l.

(ii) For every nonempty open subset U of X0, there are M ≥ 1 and nij ∈ Z, i =

1, . . . , l, j = 1, . . . ,M such that X0 =
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nlj

l

)
(U).

(iii) (X0)l∆ is strongly T̃i-invariant for all i = 1, . . . , l.

Proof. Exercise.

The following lemma is one of the most important steps in proving Theorem 1.7.0.3.
According to Furstenberg, its proof is due to Rufus Bowen.



30 CHAPTER 1. TOPOLOGICAL DYNAMICAL SYSTEMS

Lemma 1.7.1.4. Let (X,T ) be a TDS with (X, d) metric space. Let A ⊆ X be a subset
with the property that

for every ε > 0 and for all x ∈ A there exist y ∈ A and n ≥ 1 with d(T ny, x) < ε. (1.22)

Then for every ε > 0 there exist a point z ∈ A and N ≥ 1 satisfying d(TNz, z) < ε.

Proof. Let ε > 0 be given. We define inductively sequences ε1 > ε2 > . . . of positive
parameters, z0, z1, . . . , of points in A, and p1, p2, . . . , pn, . . . of positive integers satisfying
the following for all k ≥ 1:

(i) εk <
ε

2k+1 ,

(ii) d(zk, T
pk+1zk+1) < εk+1, and

(iii) for all u, v ∈ X, d(u, v) < εk+1 implies

d(T pku, T pkv) < εk, d(T pk−1+pku, T pk−1+pkv) < εk, . . . , d(T p1+...+pku, T p1+...+pkv) < εk.

Let z0 ∈ A be arbitrarily. Let ε1 < ε/4 and apply (1.22) to get z1 ∈ A and p1 ≥ 1 such
that

d(T p1z1, z0) < ε1.

Since T p1 : X → X is uniformly continuous, there exists δ > 0 such that for all u, v ∈ X,

d(u, v) < δ implies d(T p1u, T p1v) < ε1.

Let ε2 < min{δ, ε1/2} and apply again (1.22) to get z2 ∈ A and p2 ≥ 1 such that

d(z1, T
p2z2) < ε2.

Since T p2 , T p1+p2 : X → X are uniformly continuous, there exists δ > 0 such that for all
u, v ∈ X,

d(u, v) < δ implies d(T p1u, T p1v) < ε2, d(T p1+p2u, T p1+p2v) < ε2.

Let ε3 < min{δ, ε2/2} and apply again (1.22) to get z3 ∈ A and p3 ≥ 1 such that

d(z2, T
p3z3) < ε3.

Assume ε1, . . . , εk, z0, z1, . . . , zk, and p1, . . . , pk were defined. Since T pk ,T pk−1+pk , T p1+...+pk :
X → X are uniformly continuous, there exist δ1, . . . , δk > 0 such that for all u, v ∈ X,

d(u, v) < δk implies d(T pku, T pkv) < εk, and for all i = 1, . . . , k − 1,

d(u, v) < δi implies d(T pi+...+pku, T pi+...+pkv) < εk.
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Let εk+1 < min{δ1, . . . , δk, εk/2} and apply again (1.22) to get zk+1 ∈ A and pk+1 ≥ 1 such
that

d(zk, T
pk+1zk+1) < εk+1.

By sequential compactness, the sequence (zn) has a convergent subsequence. In particular,
there exist 1 ≤ i < j such that d(zi, zj) < ε/2. It follows that

d(zi, T
pi+1zi+1) < εi+1, by (ii) for k = i

d(T pi+1zi+1, T
pi+1+pi+2zi+2) < εi+1, by (ii), (iii) for k = i+ 1,

d(T pi+1+pi+2zi+2, T
pi+1+pi+2+pi+3zi+3) < εi+2, by (ii), (iii) for k = i+ 2,

d(T pi+1+pi+2+...pj−1zj−1, T
pi+1+pi+2+...pjzj) < εj−1, by (ii), (iii) for k = j − 1.

Hence,

d(zi, T
pi+1+pi+2+...+pjzj, ) ≤ εi+1 + εi+1 + . . .+ εj−1 <

ε

2i+2
+

ε

2i+2
+

ε

2i+3
+ . . .

ε

2j

< ε/8 + ε/8
∞∑
k=0

1/2k = ε/8 + ε/4 < ε/2.

By the triangle inequality we then have

d(zj, T
pi+1+pi+2+...+pjzj) ≤ d(zj, zi) + d(zi, T

pi+1+pi+2+...pjzj) < ε/2 + ε/2 = ε.

The conclusion of the lemma follows on taking x := zj and N := pi+1 + pi+2 + . . . pj.

1.7.2 Proof of the Multiple Recurrence Theorem

In the sequel, we give a proof of Theorem 1.7.0.3.
Let us denote with MRT (l) the statement of the theorem. We prove it by induction on
l ≥ 1.

MRT (1) follows from Birkhoff Recurrence Theorem (see Corollary 1.6.0.24).

MRT (l − 1)⇒MRT (l) Let l ≥ 2 and T1, . . . , Tl : X → X be l commuting homeomor-
phisms of X. By Lemma 1.7.1.3.(i), we can assume that X does not contain a proper
nonempty closed subset Y such that Ti(Y ) = Y for all i = 1, . . . , l.

Claim 1: For all ε > 0 there exist x,y ∈ X l
∆ and N ≥ 1 such that dl(x, T̃

Ny) < ε.

Proof: For every i = 1, . . . , l − 1, let Si := Ti ◦ T−1
l . Then S1, . . . , Sl−1 are commuting

homeomorphisms, so we can apply MRT (l − 1) to get the existence of x ∈ X such that,
for all ε > 0, there exists N ≥ 1 satisfying d(x, SNi x) < ε for all i = 1, . . . , l− 1. By letting
y := T−Nl x, and x,y ∈ X l

∆,x = (x, x, . . . , x),y = (y, y, . . . , y), we get that

dl(x, T̃
Ny) = max{d(x, SN1 x), . . . , d(x, SNl−1x), d(x, x)} < ε.
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Claim 2: For all ε > 0 and for all x ∈ X l
∆ there exist y ∈ X l

∆ and N ≥ 1 such that
dl(x, T̃

Ny) < ε.

Proof: Let U := Bε/2(x) ⊆ X. Applying Lemma 1.7.1.3.(ii), we get the existence of

M ≥ 1 and nij ∈ Z, i = 1, . . . , l, j = 1, . . . ,M such that X =
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nlj

l

)
(U). As

an immediate consequence,

X l
∆ =

(
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nlj

l

)
(U)

)l

∆

=
M⋃
j=1

(
T̃1

n1j ◦ . . . ◦ T̃l
nlj
)
(U l

∆). (1.23)

Let us denote, for all j = 1, . . . ,M ,

Sj :=
(
T̃1

n1j ◦ . . . ◦ T̃l
nlj
)−1

= T̃1
−n1j ◦ . . . ◦ T̃l

−nlj
, since T̃i’s commute. (1.24)

X l
∆ is compact and strongly Sj-invariant, by Lemma 1.7.1.3.(iii), so Sj : X l

∆ → X l
∆ is

uniformly continuous. We get then for all j = 1, . . . ,M the existence of δj > 0 such that
for all z,u ∈ X l

∆,
dl(z,u) < δj implies dl(Sjz, Sju) < ε/2. (1.25)

Take δ := min{δ1, . . . , δj} > 0 and apply Claim 1 to get z0,u0 ∈ X l
∆ and N ≥ 1 such that

dl(u0, T̃
Nz0) < δ. (1.26)

Since u0 ∈ X l
∆, by (1.23) there exists j0 = 1, . . . ,M such that Sj0u0 ∈ U l

∆, hence

dl(x, Sj0u0) < ε/2. (1.27)

Let y := Sj0z0. Applying (1.25), (1.26), and the fact that T̃N and Sj0 commute, we get
that

dl(T̃
Ny, Sj0u0) = dl(Sj0(T̃

Nz0), Sj0u0) < ε/2. (1.28)

Finally, it follows that

dl(T̃
Ny,x) ≤ dl(T̃

Ny, Sj0u0) + dl(Sj0u0,x)

< ε/2 + ε/2 = ε.

Claim 3: For all ε > 0 there exist x ∈ X l
∆ and N ≥ 1 such that dl(x, T̃

Nx) < ε.

Proof: follows from Claim 2, after applying Lemma 1.7.1.4 with A = X l
∆.

Claim 4: For all ε > 0 the set

Yε = {x ∈ X l
∆ | there exists N ≥ 1 such that dl(x, T̃

Nx) < ε} (1.29)

is dense in X l
∆.
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Proof: Let ε > 0. We shall prove that Yε ∩U l
∆ 6= ∅ for any open subset U of X. As in the

proof of Claim 2, we get

M ≥ 1, nij ∈ Z, i = 1, . . . , l, j = 1, . . . ,M, Sj = T̃1
−n1j ◦ . . . ◦ T̃l

−nlj

satisfying

(i) X l
∆ =

M⋃
j=1

S−1
j (U l

∆), and

(ii) there exists δ > 0 such that for all j = 1, . . . ,M , and for all z,u ∈ X l
∆,

dl(z,u) < δ implies dl(Sjz, Sju) < ε.

By Claim 3, Yδ is nonempty. Let x ∈ Yδ and N ≥ 1 be such that dl(x, T̃
Nx) < δ. Since

x ∈ X l
∆, there exists j0 = 1, . . . ,M such that y := Sj0x ∈ U l

∆. Since T̃N and Sj0 commute,
it follows that

dl(y, T̃
Ny) = dl(Sj0x, Sj0(T̃

Nx)) < ε,

hence y ∈ U l
∆ ∩ Yε.

Claim 5: MRT (l) is true, that is there exists x ∈ X l
∆ such that, for all ε > 0, there exists

N ≥ 1 such that
dl(T̃

Nx,x) < ε.

Proof: For every n ≥ 1, by Claim 5, By Claim 5, Y1/n is dense in X l
∆. Furthermore,

Y1/n = U l
∆, where

U =
⋃
N≥1

l⋂
i=1

{x ∈ X | d(x, TNi x) < 1/n}.

It is easy to see that U is open in X, hence Y1/n is is open in X l
∆. Thus, Y :=

⋂
n≥1

Y1/n is a

residual set and we can apply B.11.0.9 to conclude that Y is nonempty. Then any x ∈ Y
satisfies the claim.
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Chapter 2

Ramsey Theory

Ramsey theory is that branch of combinatorics which deals with structure which is pre-
served under partitions. The theme of Ramsey theory:

”Complete disorder is impossible.” (T.S. Motzkin)

Thus, inside any large structure, no matter how chaotic, will lie a smaller substructure
with great regularity. One looks typically at the following kind of question: If a particular
structure (e.g. algebraic, combinatorial or geometric) is arbitrarily partitioned into finitely
many classes, what kind of substructure must always remain intact in at least one class?

Ramsey theorems are natural, and they can be very powerful, as they assume very
little information; they are usually very easy to state, but can have very complicated
combinatorial proofs.

Ramsey theory owes its name to a very general theorem of Ramsey from 1930 [68],
popularized by Erdös in the 30’s.

A number of results in Ramsey theory have the following general form:

(*) Let X be a set. For any r ∈ Z+, and any r-partition X =
r⋃
i=1

Ci of X, at least

one of the classes possesses some property P .

X could be N,Z,Nd,Zd (d ≥ 1), . . .. The statement can be expressed also in terms of finite
colourings of X. For any r ≥ 1, an r-colouring of X is a mapping c : X → {1, 2, . . . , r}.
Then (*) becomes:

For any finite colouring of a set X, there exists a monochromatic subset of X having
some property P .

An affine image of a set F ⊆ N (resp. F ⊆ Z) is a set of the form

a+ bF = {a+ bf | f ∈ F} where a ∈ N, b ∈ Z+( resp. a ∈ Z, b ∈ Z \ {0}). (2.1)

35
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2.1 van der Waerden theorem

One of the most fundamental results of Ramsey theory is the celebrated van der Waerden
theorem:

Theorem 2.1.0.1 (van der Waerden).

Let r ≥ 1 and N =
r⋃
i=1

Ci. For any k ≥ 1, there exists i ∈ [1, r] such that Ci contains an

arithmetic progression of length k.

This result was conjectured by Baudet and proved by van der Waerden in 1927 [85].
The theorem gained a wider audience when it was included in Khintchine’s famous book
Three pearls in number theory [49].

Let us denote with (vdW1) the above formulation of van der Waerden theorem and
consider the following statements:

(vdW2) Let r ≥ 1 and N =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

arithmetic progression of arbitrary finite length.

(vdW3) Let r ≥ 1 and N =
r⋃
i=1

Ci. For any finite set F ⊆ N there exists i ∈ [1, r]

such that Ci contains affine images of F .

(vdW4) Let r ≥ 1 and N =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

affine images of every finite set F ⊆ N.
Let (vdWi∗), i = 1, 2, 3, 4 be the statements obtained from (vdWi), i = 1, 2, 3, 4 by chang-
ing N to Z in their formulations.

Proposition 2.1.0.2. (vdWi), (vdWi∗), i = 1, 2, 3, 4 are all equivalent.

Proof. Exercise.

(vdW2) states that for any finite partition of N, one of the cells contains arithmetic
progressions of arbitrary finite length. Equivalently, any finite colouring of N contains
monochromatic arithmetic progressions of arbitrary finite length.

We remark that one cannot, in general, expect to get from any finite colouring of N a
monochromatic infinite arithmetic progression (why?).

2.1.1 Topological dynamics proof of van der Waerden Theorem

The topological dynamics proof we give here is due to Furstenberg and Weiss [31].

Proposition 2.1.1.1.
Let l ≥ 1 and ε > 0. For any compact metric space (X, d) and homeomorphism T : X → X
there exist x ∈ X and N ≥ 1 such that

d(x, T iNx) < ε for all 1 ≤ i ≤ l. (2.2)
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Proof. Apply Corollary 1.7.0.4 and Lemma 1.7.1.2.(iv)

Let us denote with (vdW-dynamic) the statement of the above proposition.

Theorem 2.1.1.2. (vdW-dynamic) implies (vdW1*).

Proof. Let r, k ≥ 1 and let Z =
r⋃
i=1

Ci. Set W = {1, 2, . . . , r} and consider the full shift

(W Z, T ). Let γ ∈ WZ be defined by:

γn = i if and only if n ∈ Ci.

Let X := {T nγ | n ∈ Z} be the orbit closure of γ and consider the subsystem (X,TX).
Applying (vdW-dynamic) with ε := 2 and l := k − 1, we get x ∈ X and N ≥ 1 such

that

d(x, T jNx) < 2 for all 1 ≤ j ≤ k − 1.

Thus, by Proposition 1.2.0.3.(i),

x0 =
(
TNx

)
0

= . . . =
(
T (k−1)Nx

)
0
, i.e. x0 = xN = . . . = x(k−1)N .

Since x ∈ X, by letting p = (k − 1)N − 1, we get the existence of M ∈ Z such that

d(x, TMγ) < 2−p, hence, x[−(k−1)N,(k−1)N ] = (TMγ)[−(k−1)N,(k−1)N ].

Let i := x0. It follows that i = x0 = xN = . . . x(k−1)N , hence

i = (TMγ)0 = (TMγ)N = . . . = (TMγ)(k−1)N , i.e. i = γM = γM+N = . . . = γM+(k−1)N .

By the definition of γ, it follows that the k-term arithmetic progression

{M,M +N,M + 2N . . . ,M + (k − 1)N} (2.3)

is contained in Ci.

Theorem 2.1.1.3. (vdW1) implies (vdW-dynamic).

Proof. Let l ≥ 1, ε > 0, (X, d) be a compact metric space, and T : X → X be a
homeomorphism. Since X is compact, it is totally bounded (see B.10.2.2). Thus, there
exists a finite cover of X by ε/2-balls. From this we can construct a finite cover of X by
pairwise disjoint sets U1, . . . , Ur of less than ε diameter (see A.1.0.9).

Let y ∈ X and define for all i = 1, . . . , r,

Ci := {n ∈ N | T ny ∈ Ui}.
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Then N =
r⋃
i=1

Ci, and the Ci’s are pairwise disjoint, so by taking the nonempty ones of

them we get a finite partition of N.
Applying (vdW1), one of the cells Ci contains an arithmetic progression {a, a +

N, . . . , a + lN} of length l + 1, where a ∈ N, and N ≥ 1, since l ≥ 1. This means
that

T ay ∈ Ui, T a+Ny ∈ Ui, . . . , T a+lNy ∈ Ui.

By letting x := T ay, it follows that {x, TNx, . . . , T lNx} ⊆ Ui. Since Ui is of diameter less
than ε, the conclusion follows.

2.1.2 The compactness principle

The compactness principle, in very general terms, is a way of going from the infinite
to the finite. It gives us a ”finite” (or finitary) Ramsey-type statement providing the
corresponding ”infinite” Ramsey-type statement is true.

Theorem 2.1.2.1 (The Compactness Principle).
Let r ≥ 1 and let F be a family of finite subsets of Z+. Assume that for every r-colouring
of Z+ there is a monochromatic member of F . Then there exists a least positive integer
N = N(F , r) such that, for every r-colouring of [1, N ], there is a monochromatic member
of F .

Proof. The proof we give is essentially what is known as Cantor’s diagonal argument. Let
r ≥ 1 be fixed and assume that every r-colouring of Z+ admits a monochromatic member
of F . Assume by contradiction that for each n ≥ 1 there exists an r-colouring

χn : [1, n]→ [1, r]

with no monochromatic member of F . We proceed by constructing a specific r-colouring
χ of Z+. Since there are only finitely many colours, among χ1(1), χ2(1), . . . , there must be
some colour that appears an infinite number of times. Call this colour c1, and let C1 be the
infinite set of all colourings χj with χj(1) = c1. Within the set of colours {χj(2) | χj ∈ C1}
there must be some colour c2 that occurs an infinite number of times. Let C2 ⊆ C1 be the
infinite set of all colourings χj ∈ C1 with χj(2) = c2. Continuing in this way, we find for
each k ≥ 2 a colour ck such that the family of colourings

Ck = {χj ∈ Ck−1 | χj(k) = ck}

is infinite. We define the r-colouring

χ : Z+ → [1, r], χ(k) = ck.

Then χ has the property that for every k ≥ 1, Ck is the collection of colourings χj with
χ(i) = χj(i) for all i = 1, . . . , k.
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By assumption, χ admits a monochromatic member of F , say S. Let M := maxS and
take some arbitrary colouring χj ∈ CM . Then χj|S = χ|S, hence S ∈ F is monochromatic
under χj. This contradicts our assumption that all of the χn’s avoid monochromatic
members of F .

Remark 2.1.2.2. The compactness principle does not give us any bound for N(F , r); it
only gives us its existence.

Corollary 2.1.2.3. Let r ≥ 1 and let F be a family of finite subsets of Z+. The following
are equivalent:

(i) For every r-colouring of Z+ there is a monochromatic member of F .

(ii) There exists a least positive integer N = N(F , r) such that, for every r-colouring of
[1, N ], there is a monochromatic member of F .

(iii) There exists a least positive integer N = N(F , r) such that, for all m ≥ N and for
every r-colouring of [1,m], there is a monochromatic member of F .

Proof. (i)⇒ (ii) By the Compactness Principle.
(ii)⇒ (iii) If m ≥ N(F , r), and χ is an r-colouring of [1,m], then we can apply (ii) for its
restriction to [1, N(F , r)] to get a monochromatic member of F .
(iii)⇒ (i) is obvious.

2.1.3 Finitary version of van der Waerden theorem

As a consequence of the Compactness Principle, we get the following

Theorem 2.1.3.1 (Finitary van der Waerden theorem).
Let r, k ≥ 1. There exists a least positive integer W = W (k, r) such that for any n ≥ W

and for any partition [1, n] =
r⋃
i=1

Ci of [1, n], some Ci contains an arithmetic progression

of length k.

In terms of colourings, there exists a least positive integer W = W (k, r) such that for all
n ≥ W , and for any r-colouring of [1, n] there is a monochromatic arithmetic progression
of length k. In fact, by Corollary 2.1.2.3, van der Waerden theorem and its finitary version
are equivalent.

Definition 2.1.3.2. The numbers W (r, k) are called the van der Waerden numbers.

We have that W (1, k) = k for any k ≥ 1, since one colour produces only trivial
colourings. W (r, 2) = r + 1, since we may construct a colouring that avoids arithmetic
progressions of length 2 by using each color at most once, but once we use a color twice, a
length 2 arithmetic progression is formed.
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The combinatorial proof of van der Waerden theorem proceeds by a double induction
on r and k and yields extremely large upper bounds for W (k, r). Shelah [77] proved that
van der Waerden numbers are primitive recursive. In 2001, Gowers [32] showed that van
der Waerden numbers with r ≥ 2 are bounded by

W (r, k) ≤ 22r22
k+9

. (2.4)

There are only a few known nontrivial van der Waerden numbers. We refer to

http://www.st.ewi.tudelft.nl/sat/waerden.php

for known values and lower bounds for van der Waerden numbers.

2.1.4 Multidimensional van der Waerden Theorem

An affine image of a set F ⊆ Nd (resp. F ⊆ Zd) is a set of the form

a+ bF = {a+ bf | f ∈ F} where a ∈ Nd, b ∈ Z+ ( resp. a ∈ Zd, b ∈ Z \ {0}). (2.5)

Here is the formulation of the multidimensional analogue of van der Waerden’s theorem.
It was first proved by Grünwald (also referred to in the literature by the name of Gallai),
who apparently never published his proof (Grünwald’s authorship is acknowledged in [66,
p.123]).

Theorem 2.1.4.1 (Multidimensional van der Waerden).

Let d ≥ 1, r ≥ 1, and Nd =
r⋃
i=1

Ci be an r-partition of Nd. There exists i ∈ [1, r] such that

Ci contains affine images of every finite set F ⊆ Nd.

Proof. Exercise.

2.1.5 Polynomial van der Waerden’s theorem

The following generalization of van der Waerden theorem is due to Bergelson and Leib-
man [12], who proved it using topological dynamics methods. A combinatorial proof was
obtained in 2000 by Walters [86].

Theorem 2.1.5.1 (Polynomial van der Waerden theorem). [12]
Let k ≥ 1, and p1, . . . , pk : Z→ Z be polynomials of one variable with integer coefficients,
which vanish at the origin (i.e. pi(0) = 0 for all i = 1, . . . , k). For any finite colouring of
Z, there exists a monochromatic configuration of the form

{a+ p1(d), . . . , a+ pk(d)}, a, d ∈ Z, d 6= 0.

The case with a single polynomial was proved by Furstenberg [27] and Sarkozy [74]
independently.

Remark that by specializing to the linear case pi(n) := in, i = 1, . . . , k one recovers the
ordinary van der Waerden theorem.

http://www.st.ewi.tudelft.nl/sat/waerden.php
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2.2 The ultrafilter approach to Ramsey theory

We present now a different approach to Ramsey theory, based on ultrafilters via the Stone-
Čech compactification. We refer to [45] or to the surveys [10, 6, 7] for details.

Definition 2.2.0.2. Let D be any set. A filter on D is a nonempty set F of subsets of
D with the following properties:

(i) ∅ ∈/F .

(ii) If A,B ∈ F , then A ∩B ∈ F .

(iii) If A ∈ F and A ⊆ B ⊆ D, then B ∈ F .

We remark that D ∈ F for any filter F on D. A classic example of a filter is the set
of neighborhoods of a point in a topological space. If D is an infinite set, an example of a
filter on D is the family of cofinite subsets of D, defined to be those subsets of D whose
complement is finite.

Definition 2.2.0.3. An ultrafilter on D is a filter on D which is not properly contained
in any other filter on D.

Proposition 2.2.0.4. Let U ⊆ P(D). The following are equivalent.

(i) U is an ultrafilter on D.

(ii) U has the finite intersection property and for each A ∈ P(D)\U there is some B ∈ U
such that A ∩B = ∅.

(iii) U is maximal with respect to the finite intersection property. (That is, U is a maximal
member of {V ⊆ P(D) | V has the finite intersection property}.)

(iv) U is a filter on D and for any collection C1, . . . , Cn of subsets of D, if
n⋃
i=1

Ci ∈ U ,

then Cj ∈ U for some j = 1, . . . n.

(v) U is a filter on D and for all A ⊆ D either A ∈ U or D \ A ∈ U .

Proof. Exercise. See [45, Theorem 3.6, p.49].

If a ∈ D, then e(a) := {A ∈ P(D) | a ∈ A} is easily seen to be an ultrafilter on D,
called the principal ultrafilter defined by a. It is immediate the fact that e(a) = e(b) if
and only if a = b, so e is an embedding of D into the set of ultrafilters of D.

Proposition 2.2.0.5. Let U be an ultrafilter on D. The following are equivalent:

(i) U is a principal ultrafilter.

(ii) There is some F ∈ Pf (D) such that F ∈ U .
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(iii) The set {A ⊆ D | D \ A is finite } is not contained in U .

(iv)
⋂
A∈U A 6= ∅.

(v) There is some x ∈ D such that
⋂
A∈U A = {x}.

Proof. Exercise. See [45, Theorem 3.7, p.50].

Proposition 2.2.0.6. Let D be set and let A be a subset of P(D) which has the finite
intersection property. Then there is an ultrafilter U on D such that A ⊆ U .

Proof. Exercise.

Corollary 2.2.0.7. Let D be set, let F be a filter on D, and let A ⊆ D. Then A ∈/F if
and only if there is some ultrafilter U with F ∪ {D \ A} ⊆ U .

Proof. Exercise.

To see that non-principal ultrafilters exist, take, for example,

A = {A ⊆ Z+ | Z+ \ A is finite}.

Clearly A has the finite intersection property, so there is an ultrafilter U on Z+ such that
A ⊆ U . It is easy to see that such U cannot be principal.

The following result shows that questions in Ramsey theory are questions about ultra-
filters.

Proposition 2.2.0.8. Let D be a set and let G ⊆ P(D). The following are equivalent.

(i) Whenever r ≥ 1 and D =
⋃r
i=1Ci, there exists i ∈ [1, r] and G ∈ G such that G ⊆ Ci.

(ii) There is an ultrafilter U on D such that for every member A of U , there exists G ∈ G
with G ⊆ A.

Proof. Exercise.

Those more familiar with measures may find it helpful to view an ultrafilter on D as
a {0, 1}-valued finitely additive measure on P(D). Given an ultrafilter p on D, define a
mapping µp : P(D) → {0, 1} by µp(A) = 1 ⇔ A ∈ p. It is easy to see that µp(∅) =
0, µp(D) = 1, and the fact that for any finite collection of pairwise disjoint sets C1, . . . , Cn,

one has µp

(
n⋃
i=1

Ci

)
=

n∑
i=1

µp(Ci). The members of the ultrafilters are the ”big” sets.
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2.2.1 The Stone-Čech compactification

Let D be a discrete topological space. We shall denote with p, q ultrafilters on D and we
shall use the following notations

βD = {p | p ultrafilter on D}, (2.6)

Â = {p ∈ βD | A ∈ p} for any A ⊆ D, (2.7)

B = {Â | A ⊆ D}. (2.8)

Lemma 2.2.1.1. Let A,B ⊆ D.

(i) Â ∩B = Â ∩ B̂ and Â ∪B = Â ∪ B̂.

(ii) D̂ \ A = βD \ Â.

(iii) Â = ∅ if and only if A = ∅.

(iv) Â = βD if and only if A = D.

(v) Â = B̂ if and only if A = B.

Proof. Exercise. See [45, Lemma 3.17, p.53].

It follows that the family B forms a basis for a topology on βD. We define the topology
of βD to be the topology which has these sets as a basis.

We consider any a ∈ D as an element of βD by identifying it with the principal filter
e(a) defined by a.

Theorem 2.2.1.2. βD is the Stone-Čech compactification of D.

Proof. See [45, Theorem 3.27, p.56].

Being a nice compact Hausdorff space, βD is, for infinite discrete spaces D, quite a
strange object.

Proposition 2.2.1.3. Let D be an infinite discrete topological space.

(i) |βD| = 22|D|. In particular, |βZ+| = 2c, where c is the cardinality of the continuum,
c = |R| = 2ℵ0.

(ii) βD is not metrizable.

(iii) Any infinite closed subset of βD contains a homeomorphic copy of all βZ+.

Proof. (i) See [45, Section 3.6, p.66].

(ii) Otherwise, being a compact and hence separable metric space, it would have cardi-
nality not exceeding c.

(iii) See [45, Theorem 3.59, p.66].
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2.2.2 Topological semigroups

In the sequel, (S,+) is a semigroup. For every A,B ⊆ S, A+B = {a+ b | a ∈ A, b ∈ B}.
An element x ∈ S is an idempotent if and only if x + x = x. We shall denote with

E(S) the set of all idempotents of S.

Definition 2.2.2.1. Let ∅ 6= L,R, I ⊆ S.

(i) L is a left ideal of S if and only if S + L ⊆ L.

(ii) R is a right ideal of S if and only if R + S ⊆ R.

(iii) I is an ideal of S if and only if I is both a left and a right ideal of S.

Of special importance is the notion of minimal left and right ideals. By this we mean
simply left or right ideals which are minimal with respect to set inclusion.

Let (S,+) be a semigroup with S a topological space and define for each x ∈ S, the
functions

ρx, λx : S → S, ρx(y) = y + x, λx(y) = x+ y. (2.9)

Definition 2.2.2.2. (i) (S,+) is a right topological semigroup if ρx is continuous
for all x ∈ S.

(ii) (S,+) is a left topological semigroup if λx is continuous for all x ∈ S.

(iii) (S,+) is a semitopological semigroup if it is both a left and a right topological
semigroup.

(iv) (S,+) is a topological semigroup if + : S × S → S is continuous.

We shall be concerned with compact Hausdorff right topological semigroups. Of fun-
damental importance is the following result.

Theorem 2.2.2.3. Any compact Hausdorff right topological semigroup has an idempotent.

Proof. See [45, Theorem 2.5, p.33].

Proposition 2.2.2.4. Let (S,+) be a compact Hausdorff right topological semigroup. Then
every left ideal of S contains a minimal left ideal. Minimal left ideals are closed, and each
minimal left ideal has an idempotent.

Proof. See [45, Corollary 2.5, p.34].

Definition 2.2.2.5. A minimal idempotent of (S,+) is an idempotent which belongs
to a minimal left ideal.

Hence, any compact Hausdorff right topological semigroup has minimal idempotents.
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2.2.3 The Stone-Čech compactification of Z+

Let us consider the discrete semigroup (Z+,+) and its Stone-Čech compactification βZ+.
It is natural to attempt to extend the addition + from Z+ to βZ+. We recall that we
consider Z+ ⊆ βZ+, by identifying n ∈ Z+ with the principal ultrafilter e(n).

We define the following operation on βZ+: for all p, q ∈ βZ+,

p+ q = {A ⊆ Z+ | {n ∈ Z+ | A− n ∈ q} ∈ p}. (2.10)

Proposition 2.2.3.1. (i) + extends to βZ+ the addition + on Z+.

(ii) (βZ+,+) is a right topological semigroup.

(iii) (βZ+,+) is not commutative. In fact, for all non-principal ultrafilters p, q ∈ βZ+,
we have that p+ q 6= q + p.

Proof. (i), (ii) See [10, p. 43-44], or, for arbitrary discrete semigroups, [45, Chapter 4].
(iii) See [45, Theorem 6.9, p.109].

Proposition 2.2.3.2. (i) Any idempotent ultrafilter is non-principal.

(ii) There are minimal idempotents in βZ+.

Proof. (i) This follows from the fact that (Z+,+) has no idempotents.

(ii) Apply the fact that (βZ+,+) is a compact Hausdorff right topological semigroup.

Proposition 2.2.3.3. Let p be an idempotent ultrafilter and define for all A ⊆ Z+,

A?(p) := {n ∈ A | A− n ∈ p}. (2.11)

Then

(i) For every A ∈ p, A?(p) ∈ p.

(ii) For each n ∈ A?(p), A?(p)− n ∈ p.

Proof. (i) We have that p + p = {A ⊆ Z+ | {n ∈ Z+ | (A − n) ∈ p} ∈ p}. Hence,
A ∈ p = p + p implies {n ∈ Z+ | (A− n) ∈ p} ∈ p. In particular, A?(p) = A ∩ {n ∈
Z+ | A− n ∈ p} ∈ p.

(ii) Let n ∈ A?(p), and let B := A−n. Then B ∈ p and, by (i), B?(p) ∈ p. We prove that
B?(p) ⊆ A?(p)−n and then apply (ii) from the definition of a filter to conclude that
A?(p) − n ∈ p. Assume that m ∈ B?(p). It follows that m ∈ B, hence m + n ∈ A.
Furthermore, B −m ∈ p, that is A− (n + m) ∈ p. We get that m + n ∈ A?(p), i.e.
m ∈ A?(p)− n.

Property (i) from the above proposition is a shift-invariance property of idempotent
ultrafilters.
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2.2.4 Finite Sums Theorem

In this section, we shall give an ultrafilter proof of Hindman’s classical Finite Sums theorem
[44], which contains as very special cases two early classical results in Ramsey theory:
Hilbert theorem 1.6.1.1 and Schur theorem. Hindman’s original proof, elementary though
difficult, was greatly simplified by Baumgartner [2]. A topological dynamics proof was
given by Furstenberg and Weiss [31].

Given an infinite sequence (xn)n≥1 in Z+, the IP-set generated by (xn) is the set
FS
(
(xn)n≥1

)
of finite sums of elements of (xn) with distinct indices:

FS
(
(xn)n≥1

)
=

{∑
m∈F

xm | F is a finite nonempty subset of Z+

}
. (2.12)

The term ”IP-set”, coined by Furstenberg and Weiss [31], stands for infinite-dimensional
parallelepiped, as IP-sets can be viewed as a natural generalization of the notion of a
parallelepiped of dimension d.

Furthermore, for any finite sequence (xk)
n
k=1, let

FS
(
(xk)

n
k=1

)
= {

∑
m∈F

xm | F is a finite nonempty subset of {1, . . . , n}}. (2.13)

Then FS
(
(xn)n≥1

)
=
⋃
n≥1

FS
(
(xk)

n
k=1

)
.

Theorem 2.2.4.1. Let p ∈ βZ+ be a minimal idempotent and let A ∈ p. There exists a
sequence (xn)n≥1 in Z+ such that FS

(
(xn)n≥1

)
⊆ A.

Proof. Let p be a minimal idempotent and A ∈ p. By Proposition 2.2.3.3.(i), we have that
A?(p) ∈ p. We define (xn)n≥1 in Z+ such that FS

(
(xk)

n
k=1

)
⊆ A?(p) for all n ≥ 1. Since

A?(p) ⊆ A, the conclusion follows.
n = 1: Take x1 ∈ A?(p) arbitrary. Remark that A?(p) is nonempty, since p is a filter, hence
∅ ∈/A.
n ⇒ n + 1: Let n ≥ 1 and assume that we have chosen (xk)

n
k=1 satisfying FS

(
(xk)

n
k=1

)
⊆

A?(p). Let
E = FS

(
(xk)

n
k=1

)
. (2.14)

Then E is a finite subset of Z+ and for each a ∈ E we have, by Proposition 2.2.3.3.(ii),
that A?(p)− a ∈ p. Hence, B := A?(p) ∩

⋂
a∈E

(
A?(p)− a

)
∈ p, so we can pick xn+1 ∈ B.

Then xn+1 ∈ A?(p) and given a ∈ E, xn+1 + a ∈ A?(p). Thus, FS
(
(xk)

n+1
k=1

)
⊆ A?(p).

As an immediate corollary we obtain the Finite Sums theorem.

Corollary 2.2.4.2 (Finite Sums theorem).

Let r ≥ 1 and Z+ =
r⋃
i=1

Ci. There exist i ∈ [1, r] and a sequence (xn)n≥1 in Z+ such that

such that FS
(
(xn)n≥1

)
⊆ Ci.
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Proof. By Proposition 2.2.3.2.(ii), there exists a minimal idempotent p ∈ βZ+. Since
Z+ ∈ βZ+, we can apply Proposition 2.2.0.4.(iv) to get i ∈ [1, r] such that Ci ∈ p. The
conclusion follows from Theorem 2.2.4.1.

As an immediate corollary, we obtain Schur theorem, one of the earliest results in
Ramsey theory.

Corollary 2.2.4.3 (Schur theorem). [76]

Let r ≥ 1 and let Z+ =
r⋃
i=1

Ci. There exist i ∈ [1, r] and x, y ∈ N such that {x, y, x+y} ⊆ Ci.

Hilbert theorem 1.6.1.1, proved in Section 1.6.1 using topological dynamics, is also an
immediate consequence of Finite Sums theorem.

Corollary 2.2.4.4 ( see Hilbert theorem 1.6.1.1).

Let r ∈ Z+ and N =
r⋃
i=1

Ci. Then for any l ≥ 1 there exist n1 ≤ n2 ≤ . . . ≤ nl ∈ N such

that infinitely many translates of FS
(
n1, . . . , nl

)
belong to the same Ci. That is,⋃

a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ Ci

for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N and some infinite set B ⊆ N.

Proof. Exercise.

2.2.5 Ultrafilter proof of van der Waerden

Theorem 2.2.5.1. Let p ∈ βZ+ be a minimal idempotent and let A ∈ p. Then A contains
arbitrarily long arithmetic progressions.

Proof. See [10, Theorem 3.11, p. 50] or [, ].

As an immediate corollary, we get van der Waerden theorem.

Corollary 2.2.5.2. Let r ≥ 1 and Z+ =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

arithmetic progression of arbitrary finite length.

2.2.6 Ultralimits

Definition 2.2.6.1. Let p ∈ βZ+, X be a Hausdorff topological space, x ∈ X, and (xn)n≥1

be a sequence in X. Then x is said to be a p-limit of (xn) if

{n ∈ Z+ | xn ∈ U} ∈ p

for every open neighborhood U of x.
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We write p−limxn = x.

Proposition 2.2.6.2. Let X be a Hausdorff topological space and (xn)n≥1 be a sequence
in X.

(i) For every p ∈ βZ+, the following are satisfied:

(a) The p-limit of (xn), if exists, is unique.

(b) If X is compact, then p−limxn exists.

(c) If f : X → Y is continuous and p−limxn = x, then p−lim f(xn) = f(x).

(ii) lim
n→∞

xn = x implies p−limxn = x for every non-principal ultrafilter p.

Proof. Exercise.

Proposition 2.2.6.3. Let (xn)n≥1, (yn)n≥1 be bounded sequences in R, and p be a non-
principal ultrafilter on Z+.

(i) (xn) has a unique p-limit. If a ≤ xn ≤ b, then a ≤ p−limxn ≤ b.

(ii) For any c ∈ R, p−lim cxn = c · p−limxn.

(iii) p−lim(xn + yn) = p−limxn + p−lim yn.

Proof. Exercise.
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Appendix A

Set theory

Proposition A.0.6.4 (Zorn’s Lemma).
Let (X,≤) be a nonempty partially ordered set. Assume every chain (i.e. totally ordered
subset) has an upper bound (resp. a lower bound). Then X has a maximal element (resp.,
minimal element).

Let T : X → X. For any n ≥ 1, T n : X → X is the composition of T n-times. For
n ≥ 1 and A ⊆ X, we shall use the notation

T−n(A) := (T n)−1(A) = {x ∈ X | T nx ∈ A}. (A.1)

If T is bijective with inverse T−1, then the inverse of T n is (T−1)
n
, the composition of

T−1 n-times. We shall denote it with T−n. Thus,

T−n =
(
T−1

)n
= (T n)−1 . (A.2)

Lemma A.0.6.5. Let T : X → X and A ⊆ X.

(i) If T (A) ⊆ A, then T n+1(A) ⊆ T n(A) ⊆ A for all n ≥ 0.

(ii) If T (A) = A, then T n(A) = A for all n ≥ 0.

(iii) T−n−1(A) = T−1(T−n(A)) = T−n(T−1(A)).

(iv) If T−1(A) ⊆ A, then T−n−1(A) ⊆ T−n(A) ⊆ A for all n ≥ 0.

(v) If T−1(A) = A, then T (A) ⊆ A.

(vi) If T−1(A) = A, then T−n(A) = A for all n ≥ 0.

Lemma A.0.6.6. Let T : X → X be bijective and A ⊆ X.

(i) T (A) = A if and only if T−1(A) = A.

(ii) If T (A) = A, then T n(A) = A for all n ∈ Z.
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A.1 Collections of sets

Definition A.1.0.7. Let X be a set. A collection C of subsets of X is said to cover X,
or to be a cover or a covering of X, if every point in X is in one of the sets of C, i.e.
X =

⋃
C.

Given any cover C of X, a subcover of C is a subset of C that is still a cover of X.

Definition A.1.0.8. Let X be a set. A collection C of subsets of X is said to have
the finite intersection property if for every finite subcollection {C1, . . . , Cn} of C, the
intersection C1 ∩ . . . ∩ Cn is nonempty.

Remark A.1.0.9. If X has a finite cover X =
n⋃
i=1

Ai, then we can always construct a

cover X =
n⋃
i=1

Bi of X such that m ≤ n, Bi ⊆ Ai, and Bi ∩Bj = ∅ for all i 6= j. Just take

Bi := Ai \
⋃
j 6=i

Aj.



Appendix B

Topology

In the sequel, spaces X, Y, Z are nonempty topological spaces.

Definition B.0.0.10. A point x in X is said to be an isolated point of X if the one-point
set {x} is open in X.

Definition B.0.0.11. Let X, Y be topological spaces and f : X → Y .

(i) f is said to be an open map if for each open set U of X, the set f(U) is open in Y .

(ii) f is said to be a closed map if for each closed set U of X, the set f(U) is closed in
Y .

B.1 Closure, interior and related

Let A be a subset of X.

Definition B.1.0.12. The closure of A, denoted by A, is defined as the intersection of
all closed subsets of X that contain A.

Definition B.1.0.13. The interior of A, denoted by A◦, is the union of all open subsets
of X that are contained in A.

Proposition B.1.0.14. (i) If U is an open set that intersects A, then U must intersect
A.

(ii) If X is a Hausdorff space without isolated points, then given any nonempty set U of
X and any finite subset S of X, there exists a nonempty open set V contained in U
such that S ∩ V = ∅.

Proof. See [56, proof of Theorem 27.7, p.176].

Definition B.1.0.15. A subset A of X is dense in X if A = X.
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Proposition B.1.0.16. Let A ⊆ X. The following are equivalent:

(i) A is dense in X.

(ii) A meets every nonempty open subset of X.

(iii) A meets every nonempty basis open subset of X.

(iv) the complement of A has empty interior.

Definition B.1.0.17. A subset A of a topological space X is called nowhere dense if its
closure A has empty interior.

Hence, a closed subset is nowhere dense if and only if it has nonempty interior.

B.2 Hausdorff spaces

Definition B.2.0.18. X is said to be Hausdorff if for each pair x, y of distinct points of
X, there exist disjoint open sets containing x and y, respectively.

Proposition B.2.0.19. (i) Every finite subset of a Hausdorff topological space is closed.

(ii) Any subspace of a Hausdorff space is Hausdorff.

(iii) X is Hausdorff if and only if the diagonal ∆ = {(x, x) | x ∈ X} is closed in X ×X.

Proof. (i) See [56, Theorem 17.8, p.99].

(ii) See [51, Proposition 3.4, p.41-42].

(iii) See [56, Ex. 13, p.101].

B.3 Bases and subbases

Definition B.3.0.20. Let X be a set. A basis (for a topology) on X is a collection B of
subsets of X (called basis elements) satisfying the following conditions:

(i) Every element is in some basis element; in other words, X =
⋃
B∈B B.

(ii) If B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists a basis element B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

Let B be basis on a set X, and define

T := the collection of all unions of elements of B.
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Then T is a topology on X, called the topology generated by B. We also say that B is
a basis for T .

Another way of describing the topology generated by a basis is given in the following.
Given a set X and a collection B of subsets of X, we say that a subset U ⊆ X satisfies
the basis criterion with respect to B if for every x ∈ U , there exists B ∈ B such that
x ∈ B ⊆ U .

Proposition B.3.0.21. Let B be a basis on a set X and T be the topology generated by B.
Then T is precisely the collection of all subsets of X that satisfy the basis criterion with
respect to B.

Proof. See [51, Lemma 2.10, p.27-28].

Proposition B.3.0.22. Suppose X is a topological space, and B is a collection of open
subsets of X. If every open subset of X satisfies the basis criterion with respect to B, then
B is a basis for the topology of X.

Proof. See [51, Lemma 2.11, p.29].

Definition B.3.0.23. A subbasis (for a topology) on X is a collection of subsets of X
whose union equals X. The topology generated by the subbasis S is defined to be the
collection T of all unions of finite intersections of elements of S.

If S is a subbasis on X and B is the collection of all finite intersections of elements of
S, then B is a basis on X and T is the topology generated by B.

B.4 Continuous functions

A function f : X → Y is said to be continuous if for each open subset V of Y , the set
f−1(V ) is open in X.

Remark B.4.0.24. If the topology of Y is given by a basis (resp. a subbasis), then to
prove continuity of f it suffices to show that the inverse image of every basis element
(resp. subbasis element) is open.

Proof. See [56, p.103].

Proposition B.4.0.25. Let f : X → Y . The following are equivalent

(i) f is continuous.

(ii) For every closed subset B of Y , the set f−1(B) is closed in X.

(iii) For every subset A of X, f(A) ⊆ f(A).

(iv) For each x ∈ X and each open neighborhood V of Tx, there is an open neighborhood
U of x such that f(U) ⊆ V .
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Proof. See [56, Theorem 18.1, p.104].

Proposition B.4.0.26. Let X, Y, Z be topological spaces.

(i) (Inclusion) If A is a subspace of X, then the inclusion function j : A → X is
continuous.

(ii) (Composition) If f : X → Y and g : Y → Z are continuous, then the map g ◦ f is
continuous.

(iii) (Restricting the domain) If f : X → Y is continuous and A is a subspace of X, then
the restricted function f |A: A→ Y is continuous.

(iv) (Restricting or expanding the range) Let f : X → Y be continuous. If Z is a subspace
of Y , containing the image set f(X) of f , then the function g : X → Z obtained by
restricting the range of f is continuous. If Z is a space having Y as a subspace, then
the function h : X → Z, obtained by expanding the range of f is continuous.

(v) (Local formulation of continuity) The map f : X → Y is continuous if X can be
written as the union of open sets Ui(i ∈ I) such that f |Ui

is continuous for each
i ∈ I.

Proof. See [56, Theorem 18.2, p.108].

B.4.1 Homeomorphisms

Definition B.4.1.1. A mapping f : X → Y is called a homeomorphism if f is bijective
and both f and its inverse f−1 are continuous.

If f : X → X is a homeomorphism, then fn : X → X is also a homeomorphism for all
n ∈ Z.

Definition B.4.1.2. A continuous map f : X → Y is a local homeomorphism if
every point x ∈ X has a neighborhood U ⊆ X such that f(U) is an open subset of Y and
f |U : U → f(U) is a homeomorphism.

Proposition B.4.1.3. Let f : X → Y be bijective. The following properties of f are
equivalent

(i) f is a homeomorphism.

(ii) f is continuous and open.

(iii) f is continuous and closed.

(iv) f(A) = f(A) for each A ⊆ X.

(v) f is a local homeomorphism.
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Proof. See [21, Theorem 12.2, p.89] and [51, Ex. 2.8.(d), p.24].

Proposition B.4.1.4. Every local homeomorphism is an open map.

Proof. See [51, Ex. 2.8.(a), p.24].

B.5 Metric topology and metrizable spaces

Let (X, d) be a metric space. Given x ∈ X and r > 0, let

Br(x) = {y ∈ X | d(x, y) < r} is the open ball with centerx and radius r, while

Br(x) = {y ∈ X | d(x, y) ≤ r} is the open ball with centerx and radius r.

Proposition B.5.0.5. The collection

B := {Br(x) | x ∈ X, r > 0}

is a basis for a topology on X.

Proof. See [56, p.119].

The topology generated by B is called the metric topology (induced by d).

Remark B.5.0.6. It is easy to see that the set {B2−k(x) | x ∈ X, k ∈ N} is also a basis
for the metric topolgy.

Example B.5.0.7. (i) Let X be a discrete metric space. Then the induced metric
topology is the discrete topology.

(ii) Let (R, d) be the set of real numbers with the natural metric d(x, y) = |x− y|. Then
the induced metric topology is the standard topology on R.

(iii) Let (C, d) be the set of complex numbers with the natural metric d(z1, z2) = |z1−z2|.

(iv) Let Rn(n ≥ 1) and define the euclidean metric on Rn by

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

for all x = (x1, x2 . . . , xn), y = (y1, y2 . . . , yn).

The metric space (Rn, d) is called the euclidean n-space.

Definition B.5.0.8. Let (X, d) be a metric space and ∅ 6= A ⊆ X.

(i) A is said to be bounded if there exists M ≥ 0 such that d(x, y) ≤M for all x, y ∈ A.

(ii) If A is bounded, the diameter of A is defined by

diam(A) = sup{d(x, y) | x, y ∈ A}. (B.1)
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Let (X, d) be a metric space. Define

d : X ×X → [0,∞), d(x, y) = min{d(x, y), 1} (B.2)

Proposition B.5.0.9. d is a metric on X that induces the same topology as d.

Proof. See [56, Theorem 20.1, p.121].

The metric d is called the standard bounded metric corresponding to d. Thus,
(X, d) is bounded.

Definition B.5.0.10. If X is a topological space, X is said to be metrizable if there
exists a metric d on X that induces the topology of X.

Thus, a metric space is a metrizable topological space together with a specific metric d
that gives the topology of X.

Proposition B.5.0.11. Let X be a metrizable space.

(i) X is Hausdorff.

(ii) If A ⊆ X and x ∈ X, then x ∈ A if and only if there is a sequence of points of A
converging to x.

Proof. (i) is easy to see.

(ii) See [56, Lemma 21.2, p.129-130].

Proposition B.5.0.12 (Continuity). Let f : X → Y ; let X and Y be metrizable with
metrics dX and dY . The following are equivalent

(i) f is continuous.

(ii) Given x ∈ X and given ε > 0 there exists δ > 0 such that for all y ∈ X,

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

(iii) Given x ∈ X, for every sequence (xn) in X,

lim
n→∞

xn = x ⇒ lim
n→∞

f(xn) = f(x).
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B.6 Disjoint unions

Let X, Y be topological spaces. Consider the disjoint union X t Y of the sets X, Y .
Thus, the points in X t Y are given by taking all the points of X together with all the
points of Y , and thinking of all these points as being distinct. So if the sets X and Y
overlap, then each point in the intersection occurs twice in the disjoint union X t Y . We
can therefore think of X as a subset of X tY and we can think of Y as a subset of X tY ,
and these two subsets do not intersect.

Define a topology on X t Y by

T = {A ∪B | A open in X, B open in Y }.

It is easy to see that both X and Y are clopen subsets of X t Y .

Remark B.6.0.13. Formally, X t Y = {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }, j1 : X →
X t Y, j1(x) = (x, 1) and j2 : Y → X t Y, j2(y) = (y, 2) are the canonical embeddings, and

T = {j1(A) ∪ j2(B) | A open in X, B open in Y }.

Proposition B.6.0.14. (i) X t Y is Hausdorff if and only if both X and Y are Haus-
dorff.

(ii) For any topological space Z, a map f : X t Y → Z is continuous if and only if its
components f1 : X → Z, f2 : Y → Z are continuous.

Proof. See [19, Theorems 5.31, 5.35, 5.36, p.68-70].

B.7 Product topology

Let (Xi)i∈I be an indexed family of nonempty topological spaces and πi :
∏

i∈I Xi → Xi

be the projections.

Definition B.7.0.15. The product topology is the smallest topology on
∏

i∈I Xi for
which all the projections πi (i ∈ I) are continuous. In this topology,

∏
i∈I Xi is called a

product space.

Let us define, for i ∈ I

Si := {π−1
i (U) | U is open in Xi}

=

{∏
j∈I

Uj | Ui is open in Xi and Uj = Xj for j 6= i

}

and let S denote the union of these collections,

S :=
⋃
i∈I

Si. (B.3)



60 APPENDIX B. TOPOLOGY

Then S is a subbasis for the product topology on
∏

i∈I Xi.
Furthermore, if we define

B :=

{∏
i∈I

Ui | Ui is open in Xi for each i ∈ I and Ui = Xi

for all but finitely many values of i ∈ I
}
,

then B is the basis generated by S for the product topology .

Proposition B.7.0.16. (i) Suppose that the topology on each space Xi is given by a

basis Bi. Then the collection B :=

{∏
i∈I Bi | Bi ∈ Bi for finitely many indices i ∈ I

and Bi = Xi for the remaining indices

}
is a basis for the product topology.

(ii) Suppose that the topology on each space Xi is given by a subbasis Si. Then the

collection S :=
⋃
i∈I

{π−1
i (U) | U ∈ Si} is a subbasis for the product topology.

Proof. (i) See [56, Theorem 19.2, p.116].

(ii) See [21, 1.2, p.99].

Proposition B.7.0.17.

(i) For any topological space Y , a map f : Y →
∏

i∈I Xi is continuous if and only if each
of its components fi : Y → Xi, fi = πi ◦ f is continuous.

(ii) If each Xi is Hausdorff, then
∏

i∈I Xi is Hausdorff.

(iii) Let (xn) be a sequence in
∏

i∈I Xi and x ∈
∏

i∈I Xi. Then lim
n→∞

xn = x if and only if

lim
n→∞

xni = xi for all i ∈ I, where xni := πi(x
n), xi := πi(x).

Proof. (i) See [56, Theorem 19.6, p.117].

(ii) See [56, Theorem 19.4, p.116].

(iii) See [56, Exercise 6, p.118].

Proposition B.7.0.18. Let (fi : Xi → Yi)i∈I be a family of functions and∏
i∈I

fi :
∏
i∈I

Xi →
∏
i∈I

Yi,
∏
i∈I

fi((xi)i∈I) = (fi(xi))i∈I

be the product function. If each fi is continuous (resp. a homeomorphism), then
∏

i∈I fi is
continuous (resp. a homeomorphism).

Proof. See [21, Theorem 2.5, p.102].
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B.7.1 Metric spaces

Proposition B.7.1.1. Let (X1, d1), . . . , (Xn, dn) be metric spaces. Then

d :
n∏
i=1

Xi ×
n∏
i=1

Xi → [0,∞), d(x, y) := max
i=1,...,n

di(xi, yi) (B.4)

is a metric that induces the product topology on
n∏
i=1

Xi.

Proof. See [56, Ex 3, p. 133].

Proposition B.7.1.2. Any countable product of metric spaces is metrizable.

Proof. See, for example, [47, Theorem 14, p. 122].

B.8 Quotient topology

Definition B.8.0.3. Let X and Y be topological spaces and p : X → Y be a surjective
map. The map p is said to be a quotient map provided a subset U of Y is open if and
only if p−1(U) is open.

The condition is stronger than continuity; some mathematicians call it ”strong conti-
nuity”. An equivalent condition is to require that a subset F of Y is closed if and only if
p−1(F ) is closed.

Now we show that the notion of quotient map can be used to construct a topology on
a set.

Definition B.8.0.4. Let X be a topological space, Y be any set and p : X → Y be a
surjective map. There is exactly one topology Q on X relative to which p is a quotient
map; it is called the quotient topology induced by p.

The topology Q is of course defined by

Q := {U ⊆ Y | p−1(U) is open in X}. (B.5)

It is easy to check that Q is a topology. Furthermore, the quotient topology is the largest
topology on Y for which p is continuous

Proposition B.8.0.5. If p : X → Y is a surjective continuous map that is either open or
closed, then p is a quotient map.

Proposition B.8.0.6 (Characteristic property of quotient maps).
Let X and Y be topological spaces and p : X → Y be a surjective map. The following are
equivalent
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(i) p is a quotient map;

(ii) for any topological space Z and any map f : Y → Z, f is continuous if and only if
the composite map f ◦ p is continuous:

X

Y

p

?

f
- Z.

f ◦
p

-

Proof. See [51, Theorem 3.29, p.56] and [51, Theorem 3.31, p.57].

Proposition B.8.0.7 (Uniqueness of quotient spaces).
Suppose p1 : X → Y1 and p2 : X → Y2 are quotient maps that make the same identifications
(i.e., p1(x) = p1(z) if and only if p2(x) = p2(z)). Then there is a unique homeomorphism
ϕ : Y1 → Y2 such that ϕ ◦ p1 = p2.

X

Y1

p1

?

!ϕ
- Y2.

p
2

-

Proof. See [51, Corollary 3.32, p.57-58].

Proposition B.8.0.8. (Passing to the quotient) Suppose p : X → Y is a quotient
map, Z is a topological space and f : X → Z is a map that is constant on the fibers of p
(i.e. p(x) = p(z) implies f(x) = f(z)). Then there exists a unique map f̃ : Y → Z such
that f = f̃ ◦ p.

The induced map f̃ is continuous if and only if f is continuous; f̃ is a quotient map if
and only if f is a quotient map.

X

Y

p

?

!f̃
- Z.

f

-

Proof. [51, Corollary 3.30, p.56], [56, Theorem 22.2, p.142].
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The most common source of quotient maps is the following construction. Let ≡ be an
equivalence relation on a topological space X. For each x ∈ X let [x] denote the equivalence
class of x, and let X/ ≡ denote the set of equivalence classes. Let π : X → X/ ≡ be the
natural projection sending each element of X to its equivalence class. Then X/ ≡ together
with the quotient topology induced by π is called the quotient space of X modulo ≡.

One can think of X/ ≡ as having been obtained by ”identifying” each pair of equivalent
points. For this reason, the quotient space X/ ≡ is often called an identification space,
or a decomposition space of X.

We can describe the topology of X/ ≡ in another way. A subset U of X/ ≡ is a
collection of equivalence classes, and the set p−1(U) is just the union of the equivalence
classes belonging to U . Thus, the typical open set of X/ ≡ is a collection of equivalence
classes whose union is an open set of X.

Any equivalence relation on X determines a partition of X, that is a decomposition of
X into a collection of disjoint subsets whose union is X. Hence, alternatively, a quotient
space can be defined by explicitly giving a partition of X. Thus, let X? be a partition of
X into and π : X → X? be the surjective map that carries each point of X to the unique
element of X? containing it. Then X? together with the quotient topology induced by π
is called also a quotient space of X.

Whether a given quotient space is defined in terms of an equivalence relation or a
partition is a matter of convenience.

B.9 Complete regularity

Definition B.9.0.9. [56, p. 211]
A topological space X is completely regular if it satisfies the following:

(i) One-point sets are closed in X.

(ii) For each point x0 ∈ X and each closed set A not containing x0, there is a continuous
function f : X → [0, 1] such that f(x0) = 1 and f(A) = {0}.

B.10 Compactness

Definition B.10.0.10. An open cover of X is a collection of open sets that cover X.

Definition B.10.0.11. A topological space X is said to be compact if every open cover
A of X contains a finite subcover of X.

Proposition B.10.0.12 (Equivalent characterizations).
Let X be a topological space. The following are equivalent:

(i) X is compact.
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(ii) For every collection C of nonempty closed sets in X having the finite intersection
property, the intersection

⋂
C of all the elements of C is nonempty.

Proof. See [56, Theorem 26.9, p.169].

Corollary B.10.0.13. If C is a chain (i.e. totally ordered by inclusion) of nonempty closed
subsets of a compact space X, then the intersection

⋂
C is nonempty.

Proof. It is easy to see that C has the finite intersection property.

As an immediate consequence, we get

Corollary B.10.0.14. If (Cn)n≥0 is a decreasing sequence of nonempty closed subsets of

a compact space X, then the intersection
⋂
n≥0

Cn is nonempty.

Proposition B.10.0.15.

(i) Any finite topological space is compact.

(ii) Every closed subspace of a compact space is compact.

(iii) Every compact subspace of a Hausdorff space is closed.

(iv) The product of finitely many compact spaces is compact.

(v) X t Y is a compact space if and only if both X and Y are compact spaces.

(vi) The image of a compact space under a continuous map is compact.

Proof. (i) Obviously.

(ii) See [56, Theorem 26.2, p.165].

(iii) See [56, Theorem 26.3, p.165].

(iv) See [56, Theorem 26.7, p.167].

(v) See [56, Exercise 3, p.171].

(vi) See [56, Theorem 26.5, p.166].

Proposition B.10.0.16. Let X be a compact space.

(i) If x ∈ X and U is an open neighborhood of x, then there exists an open neighborhood
V of x such that V ⊆ U .

Theorem B.10.0.17 (Tychonoff Theorem).
An arbitrary product of compact spaces is compact in the product topology.
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Proof. See [56, Theorem 37.3, p.234].

Theorem B.10.0.18 (Heine-Borel Theorem).
A subspace A of the euclidean space Rn is compact if and only if it is closed and bounded.

Proof. See [56, Theorem 27.3, p.173].

Theorem B.10.0.19. Let X be a compact Hausdorff space. The following are equivalent:

(i) X is metrizable.

(ii) X is second-countable, that is X has a countable basis for its topology.

Proof. See [56, Ex. 3, p.218].

B.10.1 Sequential compactness

Definition B.10.1.1. A topological space X is sequentially compact if every sequence
of points of X has a convergent subsequence.

Proposition B.10.1.2. If X is metrizable, then X is compact if and only if it is sequen-
tially compact.

Proof. See [56, Theorem 28.2, p.179].

B.10.2 Total boundedness

Definition B.10.2.1. A metric space (X, d) is said to be totally bounded if for every
ε > 0 there is a finite cover of X by ε-balls.

Proposition B.10.2.2. A metric space (X, d) is compact if and only if it is complete and
totally bounded.

Proof. See [56, Theorem 45.1, p.276].

B.10.3 Stone-Čech compactification

Definition B.10.3.1. A compactification of a topological space X is a compact Haus-
dorff space Y containing X as a subspace such that X = Y . Two compactifications Y1 and
Y2 of X are said to be equivalent if there is a homeomorphism h : Y1 → Y2 such that
h(x) = x for every x ∈ X.

Proposition B.10.3.2. Let X be a completely regular space. There exists a compactifica-
tion βX of X having the following properties:

(i) βX satisfies the following extension property: Given any continuous map f :
X → C of X into a compact Hausdorff space C, the map f extends uniquely to a
continuous map f̃ : βX → C.
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(ii) Any other compactification Y of X satisfying the extension property is equivalent with
βX.

Proof. See [56, Theorem 38.4, p.240] and [56, Theorem 38.5, p.240].

βX is called the Stone-Čech compactification of X.

Proposition B.10.3.3. Let X and Y be completely regular spaces. Then any continuous
mapping f : X → Y extends uniquely to a continuous function βf : βX → βY .

B.11 Baire category

Definition B.11.0.4. [75, 20.6, p. 532] Let X be a topological space. A set A ⊆ X is
meager, or of the first category of Baire, if it is the union of countably many nowhere
dense sets.

A set that is not meager is called nonmeager, or of the second category of Baire.

Thus, every set is either of first or second category.

Definition B.11.0.5. [75, 20.6, p. 532] A set A is residual (or comeager or generic)
if X \ A is meager.

Lemma B.11.0.6. Let X be a topological space.

(i) A is meager iff A is contained in the union of countably many closed sets having
empty interiors.

(ii) A is comeager iff A contains the intersection of countably many open dense sets.

Definition B.11.0.7. A topological space X is said to be a Baire space if the following
condition holds:

Given any countable collection (Fn)n≥1 of closed sets each of which has empty interior,
their union

⋃
n≥1 Fn has empty interior.

Proposition B.11.0.8 (Equivalent characterizations). Let X be a topological space. The
following are equivalent:

(i) X is a Baire space.

(ii) Given any countable collection (Gn)n≥1 of open dense subsets of X, their intersection⋂
n≥1Gn is also dense in X.

(iii) Any residual subset of X is dense in X.

(iv) Any meager subset of X has empty interior.

(v) Any nonempty open subset of X is nonmeager.



B.12. COVERING MAPS 67

Proof. See [75, 20.15, p. 537].

An immediate consequence of Proposition B.11.0.8.(iii) is the following

Corollary B.11.0.9. Any residual subset of a Baire space is nonempty.

We may think of the meager sets as ”small” and the residual sets as ”large”. Although
”large” is a stronger property than ”nonempty”, in some situations the most conveninet
way to prove that some set A is nonempty is by showing the set is ”large”. That is one
way in which the above corollary is used.

The most important result about Baire spaces is

Theorem B.11.0.10 (Baire Category Theorem). If X is a compact Hausdorff space or a
complete metric space, then X is a Baire space.

Proof. See [56, Theorem 48.2, p. 296].

B.12 Covering maps

Definition B.12.0.11. Let p : Y → Y be a continuous surjective map. The open set U
of Y is said to be evenly covered by p if the inverse image p−1(U) can be written as the
union of disjoint open sets Vα in X such that for each α, the restriction of p to Vα is a
homeomorphism of Vα onto U . The collection (Vα) will be called a partition of p−1(U) into
slices.

Definition B.12.0.12. Let p : Y → Y be a continuous surjective map. If every point of Y
has an open neighborhood U that is evenly covered by p. then p is called a covering map,
and Y is said to be a covering space of X.

Lemma B.12.0.13. Any covering map is a local homeomorphism, but the converse does
not hold.

Proof. See [56, Example 2, p.338].

Proposition B.12.0.14. The map

ε : R→ S1, ε(t) = e2πit. (B.6)

is a covering map.

Proof. See [56, Theorem 53.3, p.339] or [51, Lemma 8.5, p.183].
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Appendix C

Topological groups

References for topological groups are, for example, [53] or [42].

Definition C.0.0.15. Let G be a set that is a group and also a topological space. Suppose
that

(i) the mapping (x, y) 7→ xy of G×G onto G is continuous.

(ii) the mapping x 7→ x−1 of G onto G is continuous.

Then G is called a topological group.

Definition C.0.0.16. A compact group is a topological group whose topology is compact
Hausdorff.

Example C.0.0.17. (i) Every group is a topological group when equipped with the
discrete topology.

(ii) All finite groups are compact groups with their discrete topology.

(iii) The additive group R of real numbers is a Hausdorff topological group which is not
compact.

(iv) More generally, the additive group of the euclidean spaceRn is a Hausdorff topological
group.

(v) The multiplicative group R? = R \ {0} with the induced topology is a topological
group.

(vi) The multiplicative group C? = C\{0} of nonzero complex numbers with the induced
topology is a topological group.

(vii) The unit circle S1 = {z ∈ C | |z| = 1} with the group operation being multiplication
is a compact group, called the circle group.

69



70 APPENDIX C. TOPOLOGICAL GROUPS

In the sequel, G is a topological group. For every a ∈ G, let us define the maps

La : G→ G, La(x) = ax, Ra : G→ G, Ra(x) = xa.

La is called the left translation by a, while Ra is the right translation by a.

Proposition C.0.0.18. Left and right translations are homeomorphisms of G. Thus, for
all a ∈ G, (La)

−1 = La−1 and (Ra)
−1 = Ra−1.
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of Math. (2) 166 (2007), no. 3, 897–946.

[34] R. L. Graham, Rudiments of Ramsey Theory, Amer. Math. Soc., 1981.

[35] R. L. Graham, B. Rotschild, Numbers in Ramsey Theory, Surveys in Combinatorics 1987,
London Math. Soc. Lecture Notes 123 (1987), 111-153.

[36] R. L. Graham, B. Rotschild, J. H. Spencer, Ramsey Theory, John-Wiley & Sons, 1980.

[37] R. L. Graham, B. Rotschild, J. H. Spencer, Ramsey Theory. Second Edition, John-Wiley
& Sons, 1990.

[38] B. Green, Ergodic Theory. Part III, Lecture Notes, 2008.

[39] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. of
Math. (2) 167 (2008), no. 2, 481–547.

[40] P. Halmos, Invariant measures, Ann. of Math. 48 (1947), 735-754.

[41] A. W. Hales, R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106
(1963), 222–229.

[42] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Volume I, 2nd edition, Springer, 1979.
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