
LECTURE ON THE FURSTENBERG BOUNDARY
AND C∗-SIMPLICITY

NARUTAKA OZAWA

Abstract. This is a handout for the lecture at the domestic “Annual Meeting of
Operator Theory and Operator Algebras” at Toyo university, 24–26 December 2014. In
this note, we first review the theory of the Furstenberg boundary for locally compact
groups and prove Kalantar and Kennedy’s theorem which identifies the Furstenberg
boundary with the Hamana boundary. We then deal with applications of the boundary
theory to the study of simplicity of C∗-algebras of discrete groups and their actions.

1. The Furstenberg boundary

Let G be a locally compact group. For a compact space X, we denote by M(X)
the space of Radon probability measures, equipped with the weak-topology. There is a
natural continuous embedding of X into M(X) as the point masses. We often identify
M(X) with the state space of C(X) with the weak∗-topology. When X is a compact
G-space (i.e., X is a compact topological space with a distinguished continuous G-action
G×X 3 (s, x) 7→ sx ∈ X), the space M(X) is also a compact G-space which contains
X as a G-invariant closed subspace. Also, C(X) becomes a G-C∗-algebra. Namely, it is
a C∗-algebra on which G acts continuously by ∗-automorphisms: (sf)(x) = f(s−1x) for
s ∈ G, f ∈ C(X), and x ∈ X. A compact G-space is called a G-boundary in the sense
of Furstenberg ([F1, F2]) if X is minimal and strongly proximal, or equivalently if X
is the unique minimal G-invariant closed subspace of M(X). (Here and there the term
“minimal” means “minimal nonempty.”) Recall that a compact G-space is said to be
minimal if there is no nontrivial G-invariant closed subset; and it is said to be strongly
proximal if for every µ ∈M(X) one has Gµ ∩X 6= ∅.

Example 1 ([F1, F2]). Let G be a connected simple Lie group and H be a maximal
closed amenable subgroup (e.g., G = SL(n,R) and H upper triangular matrices). Then,
G/H is compact and is a G-boundary. See Proposition 10.

Example 2. Let X be a compact G-space. An element s is said to be “hyperbolic” if
there are points x±s in X such that limn→∞ s

nx→ x+s for all x ∈ ∂G \ {x−s }. When the
set {x+s : s hyperbolic} of attracting points has more than two elements (i.e., when the
action is “non-elementary”), its closure X∞ is a G-boundary. Indeed, let µ ∈M(X) be
given. Then for any hyperbolic element t, one has tnµ→ µ({x−t })δx−t +(1−µ({x−t }))δx+t
by the bounded convergence theorem. Take another hyperbolic element s such that
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x−s /∈ {x±t }. Now, one has limm limn s
mtnµ = δx+s ∈ X. This proves that X∞ is strongly

proximal. The proof of minimality is similar.
WhenG is a discrete non-elementary hyperbolic group and ∂G is its Gromov boundary,

every infinite order element acts hyperbolically and the set of attracting points is dense
in ∂G, and so ∂G is a G-boundary.

Lemma 3. If {Xi}i∈I is a family of compact strongly proximal G-spaces, then
∏

i∈I Xi

with the diagonal G-action is also strongly proximal.

Proof. By the definition of the product topology, it suffices to prove this when I is finite,
which in turn reduces to prove that X × Y is strongly proximal when X and Y are so.
Let µ ∈M(X × Y ) be given and let Q∗ : M(X × Y )→M(X) denote the pushforward

map. Since Q∗(Gµ) = GQ∗(µ) contains δx for some x ∈ X, there is ν ∈ M(Y ) such
that δx ⊗ ν ∈ Gµ. Then, there is a net (sn) in G and y ∈ Y such that snν → δy. By
compactness, we may assume that snx→ x′ in X. It follows that δx′ ⊗ δy ∈ Gµ. �

A map between G-spaces is said to be G-equivariant or a G-map if it intertwines the
G-actions. Unital (completely) positive maps between unital commutative C∗-algebras
are simply referred to as morphisms. There is a one-to-one correspondences between
G-morphisms φ : C(X)→ C(Y ) and continuous G-maps φ∗ : Y →M(X), given by

φ(f)(y) = 〈φ∗(y), f〉 for f ∈ C(X) and y ∈ Y .

The following lemma is the most fundamental observation of the boundary theory.

Lemma 4 (Furstenberg). Let X be a G-boundary and Y be a minimal compact G-space.
Then, every continuous G-map from Y into M(X) has X as its range. Equivalently,
every G-morphism from C(X) into C(Y ) is an isometric ∗-homomorphism. Moreover
there is at most one such map.

Proof. Since X is a boundary, the G-invariant closed subset φ∗(Y ) of M(X) contains
X. Since Y is minimal, the nonempty G-invariant closed subset φ−1∗ (X) coincides with
Y . If there are two such maps φ∗ and ψ∗, then (φ∗ + ψ∗)/2 is also a continuous G-map
and hence it ranges in point masses, which implies that φ∗ = ψ∗. �

Every G-equivariant quotient of a G-boundary is again a G-boundary. The (maximal)
Furstenberg boundary ∂FG is a G-boundary which is universal in the sense that it has
every G-boundary as a G-quotient ([F1, F2]). Such a maximal G-boundary exists: Take
the set {Xi} of all G-boundaries (up to G-homeomorphisms) and define ∂FG to be a
minimal G-invariant closed subset of

∏
Xi. By Lemma 3, it is a G-boundary and by

Lemma 4 such a maximal G-boundary is unique.
The following result says G-boundary is ubiquitous. A compact convex G-space is a

compact convex subset K of a locally convex topological vector space, equipped with a
continuous G-action on K by affine homeomorphisms.
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Proposition 5 ([Gl, Theorem III.2.3]). Let K be a compact convex G-space. Then, K
contains a G-boundary. In fact, if K is a minimal compact convex G-space, then the
closed extreme boundary ex(K) is a G-boundary.

Proof. First, we observe that ex(K) is a compact G-space. Since every compact convex
G-space contains a minimal compact convex G-space (which is not a minimal compact
G-space), we may assume K is minimal. We recall that there is a barycenter map
β : M(K)→ K such that

∫
f dµ = f(β(µ)) for every continuous affine function f on K.

The map β is continuous, affine, and G-equivariant. Moreover, for any extreme point x
in K, one has β(µ) = δx if and only if µ = δx. (See III.2 in [Gl] for the proof of these
facts.) It follows that for any µ ∈M(K), one has β(conv(Gµ)) = conv(Gβ(µ)) = K by
minimality. Hence, ex(K) ⊂ conv(Gµ). This proves that ex(K) is a G-boundary. �

2. The Hamana boundary

Let C lu
b (G) = {f ∈ L∞(G) : G 3 s 7→ sf ∈ L∞(G) is norm continuous} be the C∗-

algebra of bounded left uniformly continuous functions G. Here (sf)(x) = f(s−1x) for
s ∈ G, f ∈ L∞(G), and x ∈ G. Let V be a Banach G-space (i.e., a Banach space
on which G acts continuously by isometries). Then there is a bijective correspondence
between v∗ ∈ V ∗ and bounded linear G-maps θv∗ : V → C lu

b (G), given by

θv∗(v)(x) = 〈x−1v, v∗〉 = 〈v, xv∗〉.
This implies that C lu

b (G) is G-injective in the category of Banach G-spaces: for any
Banach G-spaces V ⊂ W and any bounded linear G-map θ : V → C lu

b (G), there is

a norm-preserving G-equivariant extension θ̃ : W → C lu
b (G). We will work with the

category of G-operator systems: a G-operator system is a unital ∗-closed subspace V
of a unital C∗-algebra, equipped with a continuous G-action on V by unital completely
isometric isomorphisms. (Actually, we only deal with G-C∗-algebras.) A G-morphism
will mean a unital completely positive G-map. Since unital linear functionals are positive
if and only if contractive, C lu

b (G) is alsoG-injective in the category ofG-operator systems.
Hamana ([H1, H2]) has proved that every G-operator system has a unique minimal G-

injective extension, called a G-injective envelope. The G-injective envelope of the trivial
G-C∗-algebra C is a commutative G-C∗-algebra and we call its Gelfand spectrum ∂HG
the Hamana boundary.

Theorem 6 (Kalantar–Kennedy [KK]). ∂FG = ∂HG.
In particular, for every G-operator system V , there is a G-morphism from V into

C(∂FG).

Proof. Theorem means that C(∂FG) is G-injective. Once this is proven, one sees that
for any G-injective G-operator system V , there are G-morphisms φ : V → C(∂FG) and
ψ : C(∂FG)→ V (that extend the trivial G-morphism C1V ↔ C1C(∂FG)). By Lemma 4,
they satisfy φ ◦ ψ = idC(∂FG). Now let us prove C(∂FG) is G-injective. Note that we
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will not use Hamana’s theorem which assures existence of the Hamana boundary. Take
µ ∈ M(∂FG) and consider the G-morphism θµ : C(∂FG) → C lu

b (G). Let X denote the
Gelfand spectrum of C lu

b (G), i.e., X is the compact G-space such that C lu
b (G) = C(X).

By Proposition 5 and the maximality of the Furstenberg boundary, there is a continuous
G-map φ∗ : ∂FG→M(X). Let φ : C lu

b (G)→ C(∂FG) be the corresponding G-morphism.
Then, one has φ◦ θµ = idC(∂FG) by Lemma 4. Thus G-injectivity of C(∂FG) follows from
that of C lu

b (G). The second statement is a consequence of G-injectivity applied to the
trivial G-morphism C1V → C1C(∂FG). �

This theorem will be used in combination with the following fact about the multiplica-
tive domain. See around Definition 1.5.8 in [BO] for a proof and more information.

Lemma 7. For a morphism φ : A→ B between C∗-algebras, one has

mult(φ) := {a ∈ A : φ(ax) = φ(a)φ(x) and φ(xa) = φ(x)φ(a) for all x ∈ A}
= {a ∈ A : φ(a∗a) = φ(a)∗φ(a) and φ(aa∗) = φ(a)φ(a)∗}
= span{u ∈ A : ‖u‖ = 1 and φ(u) is unitary in B}.

In particular, the multiplicative domain mult(φ) of φ is the largest C∗-subalgebra of A to
which the restriction of φ is multiplicative.

Proposition 8. If G is a discrete group, then C(∂FG) is an injective C∗-algebra, or
equivalently ∂FG is a Stonean space. In particular, ∂FG is either a one-point space or a
non-second countable space.

Proof. This is because C lu
b (G) = `∞(G) is an injective C∗-algebra. Since ∂FG is a G-

boundary, it does not admit a G-invariant probability measure, unless it consists of a
point. Every non-finite Stonean space is non-second countable. �

It will be shown (Corollary 12) that ∂FG consists of a point if and only if G is amenable.
When G is not discrete, C lu

b (G) need not be an injective C∗-algebra (although it is G-
injective). In particular, ∂FG can be “small,” e.g., for a connected group (which has a
cocompact closed amenable subgroup). See Proposition 10.

3. Kernel of the boundary action

For every G-space X and x ∈ X, we denote by Gx = {g ∈ G : gx = x} the stabilizer
subgroup of x. Recall that a subgroup H ≤ G is said to be relatively amenable in G if
there is an H-invariant state on C lu

b (G). Since C(∂FG) is G-injective, this is equivalent
to the existence of an H-invariant probability measure on ∂FG. When G is a discrete
group, there is an H-morphism from C lu

b (H) = `∞(H) into C lu
b (G) = `∞(G) and so

the notions of relatively amenability and amenability coincide, but it is not known (!)
whether they coincide in general. See [CM] for more information. In particular, if G has
a cocompact amenable subgroup, then G is amenable at infinity and so amenability and
relative amenability coincide for subgroups of G ([CM]).
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Lemma 9. For every x ∈ ∂FG, the subgroup Gx is relatively amenable in G. In partic-
ular, Gx is amenable when G is a discrete group.

Proposition 10. Suppose that G has a cocompact closed (relatively) amenable subgroup.
Then, a maximal closed (relatively) amenable subgroup H is unique up to conjugacy in
G and ∂FG ∼= G/H as a compact G-space.

Proof. Let P be a cocompact closed relatively amenable subgroup, and take a compact
subset K of G such that G = KP and a P -invariant probability measure µ on ∂FG.
Then, Gµ = Kµ is a G-invariant compact subset ofM(∂FG) and hence it contains ∂FG.
But this implies that µ is a point mass and for the stabilizer subgroup H = Gµ one
has ∂FG = Gµ ∼= G/H. It follows that H is relatively amenable and contains P . In
particular, P = H when P was a maximal relatively amenable subgroup. Since G acts
transitively on ∂FG, all stabilizer subgroups are conjugate to each other. �

The amenable radical R(G) of G is the largest closed amenable normal subgroup of G
that contains all amenable normal subgroups of G. Existence of R(G) follows from the
fact that the class of amenable groups is closed under directed unions and extensions.

Theorem 11 ([Fu, Proposition 7]). ker(Gy ∂FG) = R(G).
Moreover, ∂FG ∼= ∂F(G/R(G)) as a compact G-space.

Proof. We first observe that N := ker(Gy ∂FG) =
⋂
xGx is a closed relatively amenable

normal subgroup of G. We claim that N is amenable (Proposition 3 in [CM]). Let µ be
an N -invariant state of C lu

b (G) and consider the G-morphism θ′µ : L∞(G) → L∞(G) =

L1(G)∗ defined by 〈θ′µ(f), ξ〉 = 〈ξ̌ ∗f, µ〉 for f ∈ L∞(G) and ξ ∈ L1(G). Here (ξ̌ ∗f)(x) =∫
G
ξ(t)f(tx) dt for the left Haar measure dt on G and note that it belongs to C lu

b (G)

and that θ′µ is indeed a G-map because (šξ) ∗ (sf) = ξ̌ ∗ f for every s ∈ G. Moreover,
θ′µ maps L∞(G) into the subspace L∞(G/N) of right N -invariant functions. Indeed, for
every f ∈ L∞(G) and every a ∈ N , denoting by (ξa)(x) = ∆G(a)ξ(xa), one has

((ξ̌a) ∗ f)(x) =

∫
G

∆G(a)ξ(ta)f(tx) dt =

∫
G

ξ(t)f(ta−1x) dt = (a(ξ̌ ∗ f))(x)

and so
〈θ′µ(f), ξa〉 = 〈(ξ̌a) ∗ f, µ〉 = 〈a(ξ̌ ∗ f), µ〉 = 〈ξ̌ ∗ f, µ〉 = 〈θ′µ(f), ξ〉

for all ξ ∈ L1(G), which implies that θ′µ(f) is right N -invariant. But since N is normal,
the left N -action on L∞(G/N) is trivial. Thus composing θ′µ with any state on L∞(G/N),
one obtains an N -invariant state on L∞(G). Since there is an N -morphism from L∞(N)
into L∞(G) by Kehlet’s cross section theorem, this implies that N is amenable. We have
shown that N ⊂ R(G).

Since ∂F(G/R(G)) is a G-boundary, there is a (unique) G-quotient map Q from ∂FG
onto ∂F(G/R(G)). We will show Q is a homeomorphism. For this, it suffices to show
there is a continuous G-map from ∂F(G/R(G)) into ∂FG. Take an R(G)-invariant state
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µ on C lu
b (G) and consider the G-morphism θµ : C lu

b (G)→ C lu
b (G) (recall that it is defined

by θµ(f)(x) = 〈f, xµ〉). Since µ is N -invariant, the map θµ ranges in C lu
b (G/R(G)). Thus

there is a G-morphism ψ : C(∂FG)→ C(∂F(G/R(G))), which, in view of Lemma 4, gives
rise to a continuous G-map from ∂F(G/R(G)) into ∂FG. �

Corollary 12. G is amenable if and only if ∂FG is a one-point space.

4. Tracial States

Let G be a discrete group. For a subgroup H, we denote by EH the canonical con-
ditional expectation from the reduced group C∗-algebra C∗r (G) onto C∗r (H) ⊂ C∗r (G),
defined by EH(λs) = λs if s ∈ H and EH(λs) = 0 otherwise. When H = 1, it coincides
with the canonical tracial state τλ on C∗r (G), given by τλ(λs) = 1 if s = 1 and else 0.

Theorem 13 ([B+]). Let G be a discrete group and τ be a tracial state τ on C∗r (G).
Then, τ = τ ◦ ER(G). In particular, if R(G) = 1, then τ = τλ.

Proof. 1 We view τ as a G-morphism from C∗r (G) to C1 ⊂ C(∂FG) and extend it to
a G-morphism φ from the reduced crossed product C(∂FG) or G into C(∂FG). Since
φ|C(∂FG) = idC(∂FG) by Lemma 4, the map φ is a conditional expectation. For every
s ∈ G\R(G), there is nonzero f ∈ C(X) such that supp f ∩s supp f = ∅ by Theorem 11.
It follows that fλsf = f(sf)λs = 0 in C(∂FG) or G and so τ(λs)f

2 = φ(fλsf) = 0,
which implies τ = τ ◦ ER(G). �

5. Simplicity of reduced crossed products

Let G be a discrete group. A G-C∗-algebra is a C∗-algebra A equipped with a G-action
on it. The canonical tracial state τλ on C∗r (G) extends to the canonical conditional
expectation E from the reduced crossed product A or G onto A, which is given by
E(aλs) = a if s = 1 and E(aλs) = 0 otherwise. We note that E is G-equivariant and
faithful. On the other hand, if φ is a G-invariant state on A, then it extends to a canonical
conditional expectation Eφ from AorG onto C∗r (G), which is given by Eφ(aλs) = φ(a)λs.

A G-C∗-algebra is called G-simple if there is no nontrivial G-invariant closed ideal.
When X is a compact G-space, the G-C∗-algebra C(X) is G-simple if and only if X is
minimal. For a compact G-space X and x ∈ X, let G◦x denote the subgroup consisting of
elements of G that act as identity on some neighborhood of x. It is a normal subgroup
of the stabilizer subgroup Gx = {g ∈ G : gx = x}. The compact G-space X is said to
be free (resp. topologically free) if Gx = 1 (resp. G◦x = 1) for all x ∈ X.

Let X be a compact G-space and C(X) or G be the reduced crossed product. Then
for every x ∈ X the conditional expectation EGx from C∗r (G) onto C∗r (Gx) extends to a
canonical conditional expectation Ex from C(X) or G onto C∗r (Gx), which is given by
Ex(fλs) = f(x)EGx(λs).

1Perhaps, it is surprising that the proof is only 5-line modulo Hamana’s theorem [H1] in 1985.
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A discrete group G is said to be C∗-simple if the reduced group C∗-algebra C∗r (G) is
simple. We note that if G is C∗-simple, then the amenable radical R(G) of G is trivial,
because for any amenable normal subgroup N the quotient map from G onto G/N
extends to a ∗-homomorphism Q from C∗r (G) onto C∗r (G/N). (For this, observe that the
state τλ ◦Q is continuous on C∗r (G) if and only if the unit character τ0 is continuous on
C∗r (N) if and only if N is amenable.) In particular, if G is an amenable C∗-simple group,
then G = 1. Whether R(G) = 1 implies C∗-simplicity or not is a major open problem.
While it is likely that the answer will be negative, we can prove a weaker assertion in
Corollary 18.2 See [dlH] for a recent survey on this topic.

It would be interesting to find a characterization, in terms of stabilizer subgroups, of
a minimal compact G-space X for which C(X) or G is simple.3 The following result is
inspired from Kawamura–Tomiyama [KT] and Archbold–Spielberg [AS].

Theorem 14. Let G be a discrete group and X be a minimal compact G-space.

(1) If Gx is C∗-simple for some x ∈ X, then C(X) or G is simple. In particular, if
X is topologically free, then C(X) or G is simple.

(2) If C(X) or G is simple and G◦x is amenable for some x ∈ X, then G◦x = 1, i.e.,
X is topologically free.

Proof. Suppose there is a nontrivial closed ideal I in C(X)orG and let x ∈ X be given.
We will prove that Gx is not C∗-simple. We observe that E(I) is a nonzero (possibly
non-closed) G-invariant ideal of C(X) and hence it is dense in C(X) because of the
minimality assumption. It follows that Ex(I) is also a nonzero (possibly non-closed)
ideal of C∗r (Gx), since τλ ◦ Ex = δx ◦ E is nonzero on I. Thus it remains to prove that
Ex(I) is not dense in C∗r (Gx). Since X is minimal, C(X) ∩ I = 0. Hence, the state

C(X) + I → (C(X) + I)/I ∼= C(X)/(C(X) ∩ I) = C(X)
δx→ C

is well-defined and extends to a state φx on C(X) or G such that φx(I) = 0. We claim
that φx = φx ◦ Ex. Indeed, φx is multiplicative on C(X) by Lemma 7, and for every
s ∈ G \ Gx one has φx(λs) = 0, because there is h ∈ C(X) such that h(x) = 1 and
supph ∩ s supph = ∅ and hence φx(λs) = φx(hλsh) = 0. Since φx(Ex(I)) = φx(I) = 0,
the ideal Ex(I) is not dense in C∗r (Gx).

Now, let us stick to the notation of the previous paragraph and assume that X is
topologically free. We will prove that for every c ∈ I, there is x ∈ X such that δx(E(c)) =
0. This would contradict the fact that E(I) is dense in C(X). Given c ∈ I, take a
countable subgroup H of G such that c ∈ C(X) or H. Since X is topologically free, by
Baire’s category theorem one can find x ∈ X such that Gx ∩ H = 1. It follows that

2Exercise: Recall that G is said to be ICC if the conjugacy class of any non-neutral element is infinite;
and G is ICC if and only if C[G] has a trivial center. Prove that if R(G) = 1, then G is ICC.

3I think it should have something to do with the C∗-simplicity of Gx and/or G◦
x. For example, does

simplicity of C(X) or G imply C∗-simplicity of G◦
x ?
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Ex(c) = δx(E(c))1. Since the above state φx satisfies φx(Ex(c)) = φx(c) = 0, one has
δx(E(c)) = 0.

Next, we assume that C(X) or G is simple and x ∈ X is such that G◦x is amenable.
Since X is minimal, topological freeness is equivalent to that G◦x = 1. Let s ∈ G◦x be
arbitrary and take a nonempty open subset U of X on which s acts as identity. We
consider the representation π of C(X)orG on `2(G/G

◦
x) given by π(fλs)δp = f(spx)δsp

for f ∈ C(X), s ∈ G, and p ∈ G/G◦x. That π is continuous follows from the fact that
the state 〈π( · )δ1, δ1〉 = τ0 ◦ EG◦x ◦ Ex is continuous, where τ0 is the unit character on
C∗r (G

◦
x). Take f ∈ C(X) \ {0} such that supp f ⊂ U . Then, f(px) 6= 0 implies px ∈ U

and hence sp = p in G/G◦x. Thus π((1− λs)f) = 0. Since π is injective, one has s = 1.
This implies G◦x = 1. �

Theorem 15 ([B+, KK]). For a discrete group G, the following are equivalent.

(1) G is C∗-simple.
(2) C(∂FG) or G is simple or equivalently ∂FG is (topologically) free.
(3) There is a topologically free G-boundary.
(4) Every minimal compact G-space X for which Gx is amenable for some x ∈ X is

topologically free.
(5) AorG is simple for every unital G-simple G-C∗-algebra A. In particular, C(X)or

G is simple for every minimal compact G-space X.

For the proof, we need a few lemmas.

Lemma 16 (cf. Theorem 6.2 in [KK]). Let A be a unital G-C∗-algebra and X be a G-
boundary. Then for any nontrivial closed ideal I of AorG, the ideal J of (A⊗C(X))orG
generated by I is nontrivial.

Proof. Let π : A or G → B(H) be a ∗-representation such that ker π = I. We ex-
tend it to a morphism π̄ from (A ⊗ C(X)) or G into B(H). We note that A or G ⊂
mult(π̄) by Lemma 7. In particular, π(A) and π̄(C(X)) commute. Take a G-morphism
ψ : C∗(π̄(C(X))) → C(∂FG) (Theorem 6). Then, ψ ◦ π̄ is the inclusion of C(X) into
C(∂FG) by Lemma 4. It follows that π̄(C(X)) ⊂ mult(ψ) by Lemma 7 and ψ is a ∗-
homomorphism from C∗(π̄(C(X))) onto C(X). The C∗-algebra C∗(π̄(C(X))) is a G-C∗-
algebra with the conjugation G-action through π and the ideal K = kerψ is G-invariant.
We consider

D = C∗
(
π̄
(
(A⊗ C(X)) or G

))
= closure

(
C∗(π̄(C(X))) · π(Aor G)

)
and its ideal

L = closure
(
K · π(Aor G)

)
.

An element d ∈ D belongs to L if and only if eid→ d for an approximate unit (ei) of K.
This implies that L ∩ C∗(π̄(C(X))) = K. Let ψ still denote the quotient map from D
onto D/L. Then, ψ◦ π̄ is a ∗-homomorphism, since it a morphism which is multiplicative
and covariant on A⊗ C(X) and G. The ideal ker(ψ ◦ π̄) is proper and contains I. �
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Let B be a G-C∗-algebra and K be a G-invariant closed ideal of B. Then,

K ōr G := ker
(
B or G→ (B/K) or G

)
= {b ∈ B or G : E(bλ∗s) ∈ K ∀s ∈ G}

is a closed ideal in B or G which contains K or G (these two ideals coincide whenever
G is exact). The following is inspired from [AS].

Lemma 17. Let A be a unital G-C∗-algebra, X be a free compact G-space, and J be a
closed ideal in (A ⊗ C(X)) or G. Then, for JA = J ∩ (A ⊗ C(X)), one has JA or G ⊂
J ⊂ JA ōr G.

Proof. For x ∈ X, let JxA = (idA ⊗ δx)(JA) be the ideal of A (which may not be proper).
Here idA⊗δx is the homomorphism from A⊗C(X) onto A given by evaluation at x ∈ X.
Let πx denote the induced homomorphism from (A ⊗ C(X))/JA onto A/JxA. We note
that any irreducible representation of (A⊗C(X))/JA factors through some πx and hence
{πx} is a faithful family.

Let x ∈ X be such that JxA 6= A. Fix a faithful representation A/JxA ⊂ B(H) and
consider the representation

J + A⊗ C(X)
Q→ (J + A⊗ C(X))/J ∼= (A⊗ C(X))/JA

πx→ A/JxA ⊂ B(H).

By Arveson’s extension theorem, it extends to a morphism Φx from (A ⊗ C(X)) or G
into B(H). We claim that Φx = Φx ◦E, where E is the canonical conditional expectation
onto A⊗ C(X). Indeed, A⊗ C(X) ⊂ mult(Φx) by Lemma 7, and for every s ∈ G \ {1}
one has Φx(λs) = 0, because there is h ∈ C(X) such that h(x) = 1 and supp(h) ∩
s supp(h) = ∅ and hence Φx(λs) = Φx(hλsh) = 0. This proves the claim. Thus, we see
that πx(Q(E(J))) = Φx(E(J)) = Φx(J) = 0 for all x ∈ X. This implies E(J) ⊂ JA, or
equivalently J ⊂ JA ōr G. The other inclusion JA or G ⊂ J is obvious. �

Proof of Theorem 15. Ad (1) ⇒ (2): Let G be a C∗-simple group. We first prove that
C(X) or G is simple for every G-boundary X. It suffices to show every quotient map
π : C(X)orG→ B is injective. Since C∗r (G) is simple, the canonical trace τλ is continuous
on π(C∗r (G)). We view it as a G-morphism from π(C∗r (G)) into C(∂FG) and extend it
to a G-morphism φ on B. By Lemma 4, φ ◦ π|C(X) is the identity inclusion of C(X)
into C(∂FG). It follows that C(X) ⊂ mult(φ ◦ π) by Lemma 7, and so φ ◦ π = E, the
canonical conditional expectation from C(X) or G onto C(X). Since E is faithful, so is
π. This proves simplicity of C(X) or G. By Lemma 9 and Theorem 14, the maximal
Furstenberg boundary ∂FG is topologically free. Since ∂FG is a Stonean space, the fixed
point set of any homeomorphism on it is clopen by Froĺık’s theorem. Hence ∂FG is free.

Ad (2)⇒ (5): Let A be a unital G-C∗-algebra and I be a closed proper ideal in AorG.
By Lemma 16, the ideal J of (A⊗ C(∂FG)) or G generated by I is proper. By Lemma
17 for JA = J ∩ (A ⊗ C(∂FG)) one has J ⊂ JA ōr G. It follows that IA = J ∩ A is a
proper ideal such that I ⊂ IA ōrG. By assumption that A has no nontrivial G-invariant
closed ideal, IA = 0 and so I = 0.
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Ad (5)⇒ (1): Take A = C1.
Ad (5) ⇒ (4) ⇒ (3) ⇒ (2): This follows from Theorem 14. Note that if there is a

topologically free G-boundary, then ∂FG is topologically free. �

6. C∗-simple groups

Theorem 18 ([B+]). If G is not C∗-simple, then G has an amenable subgroup H such
that

⋂
t∈F tHt

−1 6= 1 for every finite subset F ⊂ G.

Proof. By Theorem 15, if G is not C∗-simple, then ∂FG is not topologically free. Thus
Gx 6= 1 for every x ∈ ∂FG. Moreover, Gx is amenable by Lemma 9. Let x ∈ ∂FG be
arbitrary and we claim that H = Gx satisfies the above property. Take s ∈ G\{1} which
acts as identity on a non-empty open subset U . Then by strong proximality, for every
finite subset F ⊂ G, one can find r ∈ G such that rFx ⊂ U . It follows that srtx = rtx
for every t ∈ F . This means that r−1sr ∈

⋂
t∈F tGxt

−1. �

This criterion applies to many groups, e.g., linear groups with trivial amenable radicals,
acylindrically hyperbolic groups with no nontrivial finite normal subgroups, groups with
nonzero `2-Betti numbers and no nontrivial finite normal subgroups, etc. However,
there are C∗-simple groups that do not satisfy the above criterion (e.g. the non-solvable
Baumslag–Solitar groups). See [B+] for more information.

Theorem 19 ([B+]). Let N be a normal subgroup of G. Then, G is C∗-simple if and
only if both N and CG(N) are C∗-simple. In particular, C∗-simplicity is preserved under
extensions.

Recall that CG(N) = {s ∈ G : st = ts for all t ∈ N} is the centralizer of N in G. If
N is normal in G, then so is CG(N). It is rather easy to show that if C∗r (G) is simple,
then C∗r (N) has no nontrivial G-invariant closed ideal, but that C∗r (N) has no nontrivial
closed ideal at all ultimately come from the following fact.

Lemma 20 ([Gl, Proposition II.4.3]). Let N be a normal subgroup of G. Then, the
N-action on the Furstenberg boundary ∂FN uniquely extends to a G-action on ∂FN . In
particular, ∂FN is a G-boundary.

Proof. Let σ be an automorphism of a group N . Then by universality of the Furstenberg
boundary, it “extends” to a homeomorphism, still denoted by σ, on ∂FN such that
σ(sx) = σ(s)σ(x) for s ∈ N and x ∈ ∂FN . Now, let σ be the conjugation action of G on
N , given by σs(a) = sas−1 for s ∈ G and a ∈ N . This extends to a G-action σ on ∂FN
such that σs(ax) = σs(a)σs(x) for every s ∈ G, a ∈ N , and x ∈ ∂FN . Let s ∈ N . Then,
x 7→ s−1σs(x) is a continuous N -map on ∂FN and hence it has to be the identity map
by Lemma 4. Thus σ is the extension of the original N -action to G. Similarly, for any
another extension σ′, the map x 7→ σ−1s (σ′s(x)) is the identity map for every s ∈ G, i.e.,
σ′ = σ. �
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Lemma 21. Let X be an N-boundary and U ⊂ X be a nonempty open subset. Then,
{t ∈ N : tU ∩ U 6= ∅} generates N as a subgroup.

Proof. Let H denote the subgroup generated by {t ∈ N : tU ∩ U 6= ∅}. Then, HU is
a nonempty open subset of X such that tHU ∩ HU = ∅ for all t ∈ N \ H. Since X is
a minimal compact N -space, {tHU : t ∈ N/H} is a finite clopen partition of X. This
gives rise to a continuous N -map from X onto N/H. Since X is strongly proximal, N/H
is a one-point space, i.e., H = N . �

Lemma 22. Let N be a normal subgroup of G. Assume that N is C∗-simple. Then,
s ∈ G belongs to CG(N) if and only if its action on ∂FN is not topologically free.

Proof. The ‘only if’ direction is trivial. To prove the converse, let s ∈ G be an element
which acts as identity on a nonempty open subset U ⊂ ∂FN . Then, for every t ∈ H
such that tU ∩ U 6= ∅, one has sts−1 = t on U ∩ t−1U . By C∗-simplicity of N and
Theorem 14, this implies that sts−1 = t. Since such t’s generate N by Lemma 21, we
conclude s ∈ CG(N). �

Proof of Theorem 19. For brevity, let K = CG(N) and L = NK. Consider the diagonal
G-action on X := ∂FN × ∂FK × ∂F(G/L). Here G acts on ∂FN and ∂FK by Lemma 20
and on ∂F(G/L) through G/L. We note that N (resp. K) acts non-trivially only on
the first (resp. second) coordinate. It is not hard to see X is a G-boundary. We claim
that G(x,y,z) is amenable for every (x, y, z) ∈ X. Indeed, both G(x,y,z) ∩ L = NxKy and
G(x,y,z)/(G(x,y,z) ∩ L) ⊂ (G/L)z are amenable by Lemma 9. First, assume that both N
and K are C∗-simple. We claim that X is topologically free and hence G is C∗-simple
by Theorem 14. Let s ∈ G be an element whose action on X is not topologically free.
Then s belongs to K by Lemma 22 and so s = 1 by C∗-simplicity of K. This proves
the claim. Next, assume that G is C∗-simple. Then, by Theorem 14 the G-action on
X is topologically free. It follows that the N -action on ∂FN is topologically free. By
Theorem 14 again, N is C∗-simple, and the same for CG(N). �

Example 23. Thompson’s group T is the group of all piecewise-linear homeomorphisms
of S1 = R/Z such that (1) they have finitely many breakpoints, (2) all breakpoints have
dyadic rational coordinates, and (3) all slopes are integral powers of 2. The group T is
non-amenable (it contains free groups) and simple (in particular R(G) = 1). It is not
difficult to see that S1 is a T -boundary which is not topologically free. (Observe that
there is a sequence gn in T such that gnx→ 0 for every x ∈ S1.) The stabilizer subgroup
at 0 is Thompson’s group F . Hence the T -space T/F is identified with the T -orbit of 0,
which is the set of diadic rational numbers Z[1

2
] ∩ [0, 1).

It is a big open problem whether F is amenable or not. Haagerup–Olesen ([HO],
see also [BJ]) relates this problem to C∗-simplicity of T as follows. Suppose F is
amenable. The action T y T/F induces the unitary representation π : T y `2(T/F ).
This representation extends to a continuous representation of C∗r (T ), because we have
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assumed F is amenable. It is easy to find nontrivial elements a, b ∈ T such that
suppT/F (a) ∩ suppT/F (b) = ∅, where suppT/F (a) = {x ∈ T/F : ax 6= x}. The oper-
ators π(a) and π(b) commute and π((1−a)(1− b)) = 0. Hence (1−λa)(1−λb) generates
a closed proper ideal of C∗r (T ). In conclusion, we have seen that if F is amenable, then T
is not C∗-simple. This conclusion also follows from Theorem 14. The Haagerup–Olesen
scheme says if G is a group which has an amenable subgroup H and nontrivial elements
a, b ∈ G such that suppG/H(a) ∩ suppG/H(b) = ∅, then G is not C∗-simple. No matter
whether T is C∗-simple or not, it seems reasonable to believe that there is such a group
G whose amenable radical is trivial (and so R(G) = 1 will not imply C∗-simplicity).
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