Amenability for C*-dynamical systems

Narutaka Ozawa (小澤登高)

RIMS, Kyoto University

North British Functional Analysis Seminar

2021 November 05

Disclaimer: Locally compact groups G are assumed second countable if needed.

A brief history of amenable actions A LCG G is amenable $\stackrel{\mathsf{def}}{\Longleftrightarrow} \exists$ a G-invariant state $L^{\infty}(G) \to \mathbb{C}$.

 $\iff \exists \ \xi_i \in L^2(G) \ \text{such that} \ \|\xi_i\| = 1 \ \text{and}$ (Reiter's condition) $\lim_i \|\xi_i - g\xi_i\| = 0$ for $\forall g \in G$ unif. on compacta

Zimmer 1977: amenability for measurable dyn. system $G \curvearrowright (X, \mu)$

• $G \curvearrowright (X, \mu)$ p.m.p. & amenable $\Rightarrow G$ amenable; • $G \curvearrowright G$ is amenable Anantharaman-Delaroche 1979&1987, AD-Renault 2000

For a von Neumann algebra M and a u-continuous action $G \curvearrowright M$ $G \curvearrowright M$ amenable $\stackrel{\text{det}}{\iff} \exists$ a G-equivariant cond. exp. $L^{\infty}(G) \bar{\otimes} M \to M$

 $\iff G \curvearrowright \mathcal{Z}(M)$ amenable If G is discrete $\iff \exists \ \xi_i \in L^2(G, \mathcal{Z}(M)) \text{ s.t. } \langle \xi_i, \xi_i \rangle_{\mathcal{Z}(M)} = 1 \text{ and }$ $\lim_{i} \|\xi_{i} - g\xi_{i}\| = 0$ for $\forall g \in G$

If G is **discrete**, for a C*-algebra A and an action $G \curvearrowright A$, $\stackrel{\mathsf{def}}{\iff} G \curvearrowright A^{**}$ is amenable (in the W*-sense) $G \curvearrowright A$ amenable \iff $G \cap X$ topologically amenable, if $A = C_0(X)$ The notion of amenability for measurable/topological dynamical systems has had numerous applications in ergodic group theory, study of exactness

for C*-algebras Baum-Connes conjecture classification of you Neumann

For a von Neumann algebra M and a u-continuous action $G \curvearrowright M$

$$G \curvearrowright M$$
 is amenable $\stackrel{\text{def}}{\Longleftrightarrow} \exists$ a G -equivariant cond. exp. $L^{\infty}(G) \bar{\otimes} M \to M$ $\iff G \curvearrowright \mathcal{Z}(M)$ amenable

If G is **discrete**

$$\iff \exists \ \xi_i \in L^2(G,\mathcal{Z}(M)) \text{ s.t. } \langle \xi_i, \xi_i \rangle_{\mathcal{Z}(M)} = 1 \text{ and } \lim_i \|\xi_i - g\xi_i\| = 0 \text{ for } \forall g \in G$$

If G is **discrete**, for a C*-algebra A and an action $G \curvearrowright A$,

$$G \curvearrowright A$$
 amenable $\stackrel{\mathsf{def}}{\Longleftrightarrow} G \curvearrowright A^{**}$ is amenable

Problem 1: Is the discreteness assumption above necessary?

Bearden-Crann: Not necessary.

How do we define amenability for $G \curvearrowright A$ when G is not **Problem 2:** discrete? ! $G \curvearrowright A^{**}$ may not be u-continuous.

Buss-Echterhoff-Willett, BC, OS: All reasonable definitions are equivalent.

Problem 3: Are there examples of amenable $G \curvearrowright A$ for interesting A?

Suzuki. O-Suzuki: Yes!

A Reiter type condition for $G \curvearrowright A$

Let $\alpha: G \curvearrowright A$ be given. Equip $C_c(G, A)$ with the obvious (i.e., untwisted) A-bimodule structure, A-valued inner product

$$\langle \xi, \eta \rangle = \int_C \xi(x)^* \eta(x) \, dm(x) \in A,$$

and the diagonal G-action $G \curvearrowright C_c(G,A)$

$$(g\xi)(x) = \alpha_{\sigma}(\xi(g^{-1}x)).$$

By completion, we obtain the (G, A)-C*-correspondence $L^2(G, A)$.

By adapting topological amenability of Anantharaman-Delaroche-Renault:

Definition (Exel-Ng 2002, Buss-Echterhoff-Willett 2019; modified)

- $G \curvearrowright A$ has the QAP (quasi-central approx. property) if $\exists \xi_i \in L^2(G, A)$ s.t. \bullet $(\langle \xi_i, \xi_i \rangle)_i$ is an approximate unit for A,
- $\|[\xi_i, a]\| \to 0$ for $a \in A$, and
- $\|\xi_i g\xi_i\| \to 0$ for $g \in G$ uniformly on compacta.

A-D 1987: If G discrete and A commutative, then QAP \Leftrightarrow amenability. Is it true in general? Consider

$$\Phi : L^{\infty}(G) \bar{\otimes} A^{**} \ni f \mapsto LIM_n \int_G \xi_n(x)^* f(x) \xi_n(x) dm(x) \in A^{**}.$$

The map Φ is u.c.p. and G-equivariant, but is it a conditional expectation?

Suzuki's example: $G \curvearrowright \mathcal{O}_2$

Let G be a countable discrete group that is amenable at infinity i.e., \exists amenable $G \curvearrowright X$ with X compact. \bullet \bullet \bullet \bullet always amenable. Guentner–Kaminker 2000, O 2000 for discrete G, Brodzki–Cave–Li 2017 G amenable at infinity $\iff G$ exact

$$\begin{split} &\exists \eta_n \colon X \to \mathsf{Prob}(G) \text{ cont's and } \lim_n \sup_{\mathsf{x}} \|\eta_n(g\mathsf{x}) - g\eta_n(\mathsf{x})\| = 0 \text{ for } g \in G. \\ &\mathsf{Then} \ \xi_n = \eta_n^{1/2} \in L^2(G, C(X)) \text{ satisfies } \langle \xi_n, \xi_n \rangle = 1 \text{ and } \|\xi_n - g\xi_n\| \to 0. \\ &\mathsf{Consider} \ C(X) \rtimes G \subset \mathcal{O}_2 \text{ and } A := \bigotimes_{\mathbb{N}} \mathcal{O}_2 \cong \mathcal{O}_2 \text{ with the diag. } G\text{-action.} \\ &\mathsf{Then} \ \xi_n \in L^2(G, A) \text{ in the } n\text{-th tensor component witnesses the QAP:} \\ &\langle \xi_n, \xi_n \rangle = 1, \ \|[\xi_n, a]\| \to 0 \text{ for } a \in A, \text{ and } \|\xi_n - g\xi_n\| \to 0 \text{ for } g \in G. \end{split}$$

Theorem (Szabo 2018 for amenable G, Suzuki 2020)

Let G be a countable discrete group that is amenable at infinity. Then, modulo strong cocycle conjugacy, there exists a **unique** action $\alpha\colon G\curvearrowright \mathcal{O}_2$ that is equivariantly \mathcal{O}_2 -absorbing, pointwise outer, and with the QAP. For any action $\beta\colon G\curvearrowright B$ on a unital simple separable nuclear C*-algebra, the diagonal action $\alpha\otimes\beta$ is strongly cocycle conjugate to α .

Definition of amenability for $G \curvearrowright A$

Let $\alpha \colon G \curvearrowright A$ be given. Recall that if G is discrete

$$G \curvearrowright A$$
 amenable $\stackrel{\text{def}}{\Longleftrightarrow} G \curvearrowright A^{**}$ amenable (in the W*-sense)

 $ilde{m L}$ $G \curvearrowright A^{**}$ may not be u-continuous. For a fix, consider

$$A_{\alpha}^{\prime\prime}:=\overline{A}^{\mathsf{w}^{f{*}}}\subset (A\rtimes G)^{**}$$
,

the univ. enveloping vN algebra for covariant rep'ns. Note that $(A''_{\alpha})_* = \{\phi \in A^* : g \mapsto g\phi \text{ is norm-continuous}\} = L^1(G) \cdot A^*.$

Example: For a topological dynamical system $G \curvearrowright X$,

 $C_0(X)_{\alpha}'' = \text{completion w.r.t.}$ quasi-invariant probability measures. In particular, $C_0(G)_{\alpha}'' = L^{\infty}(G)$. Generally very difficult to describe A_{α}'' .

Definition/Theorem (BEW, BC, SO 2020)

 $G \curvearrowright A$ is amenable if it satisfies one of the following equivalent conditions

- (i) $G \curvearrowright A''_{\alpha}$ is amenable: \exists a G-equiv. cond. exp. $L^{\infty}(G) \bar{\otimes} A''_{\alpha} \to A''_{\alpha}$.
- (ii) $G \curvearrowright A$ has the QAP.
- (iii) \exists a G-equivariant cond. exp. $L^{\infty}(G) \bar{\otimes} \mathcal{Z}(A^{**}) \to \mathcal{Z}(A^{**})$.
- (iv-x) AP by positive type functions, central sequence algebras, \dots

Furnishing examples to the ongoing classification program for amenable actions on Kirchberg algebras by Izumi–Matui, Szabo, . . .

Theorem (Pimsner 1995, Meyer 2019, Suzuki–O 2020)

For $\forall G \curvearrowright A$ amenable, $\exists G \curvearrowright B$ such that $A \subset B$ such that

- B is simple, purely infinite, and nuclear (provided that A is);
- $G \curvearrowright B$ is pointwise outer and amenable;
- $A \subset B$ induces KK^G -equivalence.

Pimsner–Meyer constr'n: $G \curvearrowright A \leadsto (G,A)$ -C*-corresp. $\mathcal{E} \leadsto B := \mathcal{T}(\mathcal{E})$

Want to show amenability of $G \curvearrowright B$.

Strategy: Look at the fixed-pt subalgebra $B^{\mathbb{T}}$ of the gauge action $\mathbb{T} \curvearrowright B$. $G \curvearrowright B^{\mathbb{T}}$ is built up by $G \curvearrowright \mathbb{K}(\mathcal{E}^{\otimes n})$, which are amenable in this situation.

Theorem (Suzuki–O 2020)

For $G \times K \curvearrowright A$, where K is compact, TFAE

- (i) $G \curvearrowright A$ amenable, (ii) $G \curvearrowright A^K$ amenable,
- (iii) $G \curvearrowright A \rtimes K$ amenable, (iv) $G \times K \curvearrowright A$ amenable.

G-C*-algebra $\mathcal{A}(H)$, one obtains

Corollary

If G has Haagerup prop'ty, \exists amenable $G \curvearrowright \mathcal{O}_{\infty} \otimes \mathbb{K}$ which is KK^G -trivial.

Applying the previous construction to the Higson-Kasparov proper

It is unclear for which $G \ni A$ an amenable $G \curvearrowright \mathcal{O}_{\infty}$ which is KK^G -trivial.

Theorem (Suzuki-O 2020)

- For $G \times K \curvearrowright A$, where K is compact, TFAE (ii) $G \curvearrowright A^K$ amenable. (i) $G \curvearrowright A$ amenable,
- (iii) $G \curvearrowright A \rtimes K$ amenable, (iv) $G \times K \curvearrowright A$ amenable.
- (i) \Rightarrow (ii): \exists G-equivariant cond. exp. $A \rightarrow A^K$.
- (ii) \Rightarrow (iii): $A \rtimes K = (A \otimes \mathbb{K}(L^2(K)))^K = \varinjlim (A \otimes \mathbb{K}(p_i L^2(K)))^K$ by P.-W. Hence it suffices to deal with a finite-index inclusion $A \subset B$.
- $(iii) \Rightarrow (iv): L^{\infty}(G \times K) \bar{\otimes} A''_{\alpha \times \beta} \to L^{\infty}(G) \bar{\otimes} (A''_{\alpha \times \beta} \bar{\rtimes} K) \to A''_{\alpha \times \beta} \bar{\rtimes} K \to A''_{\alpha \times \beta}$
- (iv) \Rightarrow (i): $L^{\infty}(G) \bar{\otimes} \mathcal{Z}(A^{**}) \subset L^{\infty}(G \times K) \bar{\otimes} \mathcal{Z}(A^{**}) \rightarrow \mathcal{Z}(A^{**})$.