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Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

⇝ Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = ⟨S⟩ is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1maxs∈S ∥v − π(s)v∥,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ ℓ2(Z) is asymp. Z-invariant, but ℓ2(Z)Z = {0}.
⇝ Any f.i. subgroup of a property (T) group has finite abelianization.
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An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for ∀A ⊂ X (vertices)

|∂A| ≥ ε|A|(1− |A|
|X |).

For Nk(A) := {x ∈ X : d(x ,A) ≤ k},
|Nk(A)| ≥ (1 + ε

2)
k |A| until it reaches 1

2 |X |.
After that |Nk(A)

c| decreases by a factor 1 + ε
2 .

Random walk on X has mixing time O(log |X |).
Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

Γ = ⟨S⟩ and N ◁ Γ a finite index normal subgroup

⇝ X = Cayley(Γ/N, S), where Edges = {{x , xs} : x ∈ Γ/N, s ∈ S},
is a κ(Γ, S)2-expander.

E.g., Γ = SL(3,Z), S = {I + Eij : i ̸= j}, and Xq = SL(3,Z/qZ), q ∈ N.

S? What if Sp = {I + pEij : i ̸= j} and Xp,q = SL(3,Z/qZ), q ⊥ p ?
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Some examples of property (T) groups
SLn(Z), n ≥ 3, (Kazhdan 1967), but not SL2(Z).

ELn(R) = ⟨eij(r) : i ̸= j , r ∈ R⟩ ⊂ GLn(R), n ≥ 3,
where R finitely generated ring and eij(r) := In + rEij

(Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).

Aut(Fn), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
Fn ↠ Zn abelianization ⇝ Aut(Fn)↠ Aut(Zn) = GLn(Z).
⇝ Aut(F2) does not have (T). Neither Aut(F3) (McCool 1989).

Q! The proof is heavily computer-assisted.
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Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

Aut+(Fn) = ⟨Ri ,j , Li ,j⟩ ≤index 2 Aut(Fn), where Fn = ⟨g1, . . . , gn⟩ and
Ri ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gigj , gi+1, . . . , gn),

Li ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gjgi , gi+1 . . . , gn).

PRA is a practical algorithm to obtain “random” elements in a given finite

group Λ of rank < n via the PRA random walk

Aut+(Fn) ↷ {(h1, . . . , hn) ∈ Λn : Λ = ⟨h1, . . . , hn⟩}.
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Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb:
(E. Artin 1927)

f ∈ R(x1, . . . , xd), f ≥ 0 on Rd

=⇒ f =
∑

i g
2
i for some g1, . . . , gk ∈ R(x1, . . . , xd).

R[Γ] real group algebra with the involution (
∑

t αtt)
∗ =

∑
t αtt

−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈ M+
Γ } positive cone

Here M+
Γ finitely supported positive semidefinite matrices.

B(H)+ := {A = A∗ : ⟨Av , v⟩ ≥ 0 ∀v ∈ H} = Σ2B(H) psd operators.

∀(π,H) unitary rep’n, π(
∑

i f
∗
i fi ) =

∑
i π(fi )

∗π(fi ) ≥ 0 in B(H).

C∗[Γ] the universal enveloping C∗-algebra of R[Γ].
Laplacian (non normalized): For Γ = ⟨S⟩,

∆ :=
∑

s∈S(1− s)∗(1− s) = 2|S | −
∑

s∈S(s + s−1) ∈ Σ2R[Γ].
Then, ⟨π(∆)v , v⟩ =

∑
s∈S ∥v − π(s)v∥2 and

Γ has (T) ⇐⇒ ∃λ > 0 ∀(π,H) Sp(π(∆)) ⊂ {0} ∪ [λ,∞)

⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

⇝ κ(Γ,S) ≥
√

λ/|S |
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Algebraic characterization of property (T)
Let Γ = ⟨S⟩.
R[Γ] real group algebra with the involution (

∑
t αtt)

∗ =
∑

t αtt
−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈ M+
Γ }

Here M+
Γ finitely supported positive semidefinite matrices.

∆ :=
∑

s∈S(1− s)∗(1− s) ∈ Σ2R[Γ].
C∗[Γ] the universal enveloping C∗-algebra of R[Γ].
Then,

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

Theorem (O 2013)

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ⪰ 0 in R[Γ]

Stability (Netzer–Thom): It suffices if ∃λ > 0 ∃Θ ∈ Σ2R[Γ] such that

∥∆2 − λ∆−Θ∥1 ≪ λ,

i.e., an almost solution to the inequality is close to an honest solution.
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Semidefinite Programming (SDP)
Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ∈ Σ2R[Γ]

⇐⇒ ∃E ⋐ Γ ∃λ > 0 s.t. ∆2 − λ∆ ∈ {
∑

x ,y Px ,yx
−1y : P ∈ M+

E }
By fixing a finite subset E ⋐ Γ, we arrive at the SDP:

maximize λ
subject to ∆2 − λ∆ =

∑
x ,y∈E Px ,yx

−1y , P ∈ M+
E

Due to computer capacity limitation, we almost always take

E := Ball(2) = {e} ∪ S ∪ S2 = supp∆ ∪ supp∆2.

⇝ Size of SDP: dimension |E |2 and constraints |E−1E | = |Ball(4)|.
Certification Procedure:
Suppose (λ0,P0) is a hypothetical solution obtained by a computer.
Find P0 ≈ QTQ (with Q1 = 0) and calculate with guaranteed accuracy

∥∆2 − λ0∆−
∑

x ,y (Q
TQ)x ,y (1− x)∗(1− y)∥1 ≪ λ0.

Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Results
Γ has (T) ⇐⇒ ∃E ⋐ Γ ∃λ > 0 s.t. ∆2 − λ∆ ∈ {

∑
x ,y Px ,yx

−1y : P ∈ M+
E }

Results of SDP for E = Ball(2).

SLn(Z) with S = {eij : i ̸= j}: λ3 > 0.27, λ4 > 1.3, λ5 > 2.6.
(Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017)

No response for SL6(Z).
Kaluba, Nowak, and I tried Aut+(Fd) with a help of Polish supercomputer.

Aut+(F4): No response.

Aut+(F5): ! ⋏ ⋏ ! YES!!! with λ > 1.2.

Theorem

Aut+(Fn) has property (T) for

n = 5 (Kaluba–Nowak–O. 2017)

n ≥ 6 (Kaluba–Kielak–Nowak 2018, by “stability” explained below)

n = 4 (Nitsche 2020, by a new SDP method)
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Property (T) for an infinite series (KKN 2018)
Γn := Aut+(Fn), Sn := {Ri ,j , Li ,j : i ̸= j}, En := {{i , j} : i ̸= j}
Want to show ∆n =

∑
s∈Sn(1− s)∗(1− s) satisfies ∆2

n − λn∆n ⪰ 0.
∆n =

∑
e∈En

∆e,

∆2
n =

∑
e∆

2
e +

∑
e∼f ∆e∆f +

∑
e⊥f ∆e∆f

=: Sqn + Adjn + Opn .

Sqn and Opn are positive, but Adjn may not.
For n > m, let’s see what we can tell about ∆n knowing about ∆m:∑

σ∈S(n) σ(∆m) = m(m − 1) · (n − 2)! ·∆n∑
σ∈S(n) σ(Adjm) = m(m − 1)(m − 2) · (n − 3)! · Adjn∑
σ∈S(n) σ(Opm) = m(m − 1)(m − 2)(m − 3) · (n − 4)! ·Opn

Q! Opn multiplies faster and overtakes Adjn.
Trial and error on the computer has confirmed

(♡) Adj5+αOp5−ε∆5 ⪰ 0

for α = 2 and ε = 0.13. It follows that for n ≥ 2α+ 3

0 ⪯ 60(n− 3)!
(
Adjn +

2α
n−3 Opn −n−2

3 ε∆n

)
⪯ 60(n− 3)!

(
∆2

n − n−2
3 ε∆n

)
.
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Generalizing property (T) for ELn(R) for a rng R
Computer taught us the ad hoc inequality (♡) Adj5+αOp5−ε∆5 ⪰ 0
is not only true but even easy to prove if α > 0 is large enough.
We apply the KKN method to ELn(R) with the “rng” (=“ring”-“i”)

R = Z⟨X1, . . . ,Xd⟩ polynomials with zero constant term.

The group ELn(R) appears as the parent group for, e.g.,
{ELn(pZ) : p ∈ N} which are not uniformly (T).

{(SLn(Z), Sp,q = {eij(p), eij(q) : i ̸= j}) : p ⊥ q}, uniformly (T) ??

Q! ELn(R)↠ ELn(R/R2) ∼= (R/R2)⊕n(n−1) abelian quotient

Motto: ∃ (T) type rigidity if the nilp. quotients ELn(R/Rk) are kept away.

Theorem (O. 2022)

For any f.g. comm. rng R generated by R0 ⋐ R and for n large enough,

∆ :=
∑

r∈R0

∑
i ̸=j(1− eij(r))

∗(1− eij(r)) for ELn(R) and

∆(2) :=
∑

r ,s∈R0

∑
i ̸=j(1− eij(rs))

∗(1− eij(rs)) for ELn(R2)

in R[ELn(R)] satisfy ∆2 ≥ λ∆(2) in C∗[ELn(R)] for some λ > 0.
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Generalizing property (T) for ELn(R) for a rng R, cont’d

Theorem (O. 2022)

For any f.g. comm. rng R generated by R0 ⋐ R and for n large enough,

∆ :=
∑

r∈R0

∑
i ̸=j(1− eij(r))

∗(1− eij(r)) for ELn(R) and

∆(2) :=
∑

r ,s∈R0

∑
i ̸=j(1− eij(rs))

∗(1− eij(rs)) for ELn(R2)

in R[ELn(R)] satisfy ∆2 ≥ λ∆(2) in C∗[ELn(R)] for some λ > 0.

Corollary

∃n ∃ε > 0 s.t. Cayley(SLn(Z/qZ), {eij(p) : i ̸= j}), p ⊥ q, are ε-expanders.

∆2 ⪰ λ∆(2) does not hold in R[ELn(R)] and the proof is silicon-free.
Instead it relies on Boca & Zaharescu’s work (2005) on the almost
Mathieu operators in the rotation C∗-algebras Aθ (aka noncomm. tori)
that, for the Heisenberg group H = ⟨x , y : z = [x , y ] is central⟩,
∆2

H =
(
(1− x)∗(1− x) + (1− y)∗(1− y)

)2 ≥ 1
4(1− z)∗(1− z) = 1

4∆Z(H)

holds in C∗[H] (Q! but never in R[H]; a failure of Hilbert’s 17th).
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