Kazhdan's property (T) for $Aut(\mathbf{F}_n)$ and $EL_n(\mathcal{R})$

Narutaka OZAWA (小澤 登高)

de RIMS, Kyoto University

Yasu Festa, University of Tokyo, 2023.07.25

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**. $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \mathsf{\Gamma} \text{ has } (\mathsf{T}) & \stackrel{\mathsf{def}}{\longleftrightarrow} \exists \kappa = \kappa(\mathsf{\Gamma}, \mathcal{S}) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\mathsf{\Gamma}}) \leq \kappa^{-1} \max_{s \in \mathcal{S}} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
 - $\therefore \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z})$ is asymp. \mathbb{Z} -invariant, but $\ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}$.

 \rightsquigarrow Any f.i. subgroup of a property (T) group has finite abelianization.

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε -expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

·→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

? What if $S_p = \{I + pE_{ij} : i \neq j\}$ and $X_{p,q} = SL(3, \mathbb{Z}/q\mathbb{Z}), q \perp p$? 2/10

Some examples of property (T) groups

• $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.

- EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
- Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index} 2} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

$$\operatorname{Aut}^+(\mathbf{F}_n) \frown \{(h_1,\ldots,h_n) \in \Lambda^n : \Lambda = \langle h_1,\ldots,h_n \rangle\}.$$

Noncommutative real algebraic geometry of property (T)

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \dots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_k \in \mathbb{R}(x_1, \dots, x_d)$.

 $\mathbb{R}[\Gamma] \text{ real group algebra with the involution } (\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}.$ $\Sigma^2 \mathbb{R}[\Gamma] := \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \text{ positive cone}$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

•
$$\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$$
 psd operators.

• $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \ge 0$ in $\mathbb{B}(\mathcal{H})$.

• $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Laplacian (non normalized): For $\Gamma = \langle S \rangle$,

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) = 2|S| - \sum_{s \in S} (s+s^{-1}) \in \Sigma^2 \mathbb{R}[\Gamma].$$

Then, $\langle \pi(\Delta)v, v \rangle = \sum_{s \in S} \|v - \pi(s)v\|^2$ and
 Γ has $(T) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty)$
 $\iff \exists \lambda > 0 \quad \operatorname{such that} \quad \Delta^2 - \lambda \Delta \ge 0$
 $\rightsquigarrow \kappa(\Gamma, S) \ge \sqrt{\lambda/|S|} \quad t^2 - \lambda t \ge 0$

4/10

Algebraic characterization of property (T)

Let $\Gamma = \langle S \rangle$.

$$\begin{split} \mathbb{R}[\Gamma] \quad \text{real group algebra with the involution } (\sum_t \alpha_t t)^* &= \sum_t \alpha_t t^{-1}.\\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \end{split}$$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping $C^*\mbox{-algebra}$ of $\mathbb{R}[\Gamma].$ Then,

$$\Gamma$$
 has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $C^*[\Gamma]$

Theorem (O 2013)

$$\Gamma$$
 has $(T) \iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma$

$$\begin{split} \textbf{Stability (Netzer-Thom): It suffices if } \exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma] \text{ such that} \\ \|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda, \end{split}$$

i.e., an almost solution to the inequality is close to an honest solution.

Semidefinite Programming (SDP)

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \underline{\Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma]} \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+ \} \end{array}$$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

maximize
$$\lambda$$
 subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

Due to computer capacity limitation, we almost always take
 E := Ball(2) = {e} ∪ S ∪ S² = supp Δ ∪ supp Δ².

 \rightsquigarrow Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$.

Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer. Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate **with guaranteed accuracy** $\|\Delta^2 - \lambda_0 \Delta - \sum_{x,y} (Q^T Q)_{x,y} (1-x)^* (1-y)\|_1 \ll \lambda_0.$

• Solving SDP is computationally hard, but certifying (T) is relatively easy.

Results

Γ has (T) $\iff \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- SL_n(ℤ) with S = {e_{ij} : i ≠ j}: λ₃ > 0.27, λ₄ > 1.3, λ₅ > 2.6. (Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

Kaluba, Nowak, and I tried $Aut^+(\mathbf{F}_d)$ with a help of Polish supercomputer.

- $Aut^+(F_4)$: :: :: :: No response.
- Aut⁺(\mathbf{F}_5): $! \odot \land \odot \land \odot !$ **YES!!!** with $\lambda > 1.2$.

Theorem

Aut⁺(\mathbf{F}_n) has property (T) for

- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Property (T) for an infinite series (KKN 2018)

$$\begin{split} & \Gamma_n := \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n := \{R_{i,j}, L_{i,j} : i \neq j\}, \quad \operatorname{E}_n := \{\{i, j\} : i \neq j\} \\ & \text{Want to show } \Delta_n = \sum_{s \in S_n} (1-s)^* (1-s) \text{ satisfies } \Delta_n^2 - \lambda_n \Delta_n \succeq 0. \\ & \Delta_n = \sum_{e \in \operatorname{E}_n} \Delta_e, \\ & \Delta_n^2 = \sum_e \Delta_e^2 + \sum_{e \sim f} \Delta_e \Delta_f + \sum_{e \perp f} \Delta_e \Delta_f \\ & =: \quad \mathbf{Sq}_n + \mathbf{Adj}_n + \mathbf{Op}_n. \end{split}$$

• Sq_n and Op_n are positive, but Adj_n may not.

For n > m, let's see what we can tell about Δ_n knowing about Δ_m :

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \operatorname{Adj}_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \operatorname{Op}_n$$
Trial and error on the computer has confirmed

(
$$\heartsuit$$
) $\operatorname{Adj}_{5} + \alpha \operatorname{Op}_{5} - \varepsilon \Delta_{5} \succeq 0$
for $\alpha = 2$ and $\varepsilon = 0.13$. It follows that for $n \ge 2\alpha + 3$
 $0 \le 60(n-3)! (\operatorname{Adj}_{n} + \frac{2\alpha}{n-3} \operatorname{Op}_{n} - \frac{n-2}{3} \varepsilon \Delta_{n}) \le 60(n-3)! (\Delta_{n}^{2} - \frac{n-2}{3} \varepsilon \Delta_{n}).$

Generalizing property (T) for $EL_n(\mathcal{R})$ for a rng \mathcal{R}

Computer taught us the ad hoc inequality (\heartsuit) $\operatorname{Adj}_5 + \alpha \operatorname{Op}_5 - \varepsilon \Delta_5 \succeq 0$ is not only true but even **easy to prove** if $\alpha > 0$ is large enough. We apply the KKN method to $\operatorname{EL}_n(\mathcal{R})$ with the "rng" (="ring"-"i")

 $\mathcal{R} = \mathbb{Z}\langle X_1, \dots, X_d \rangle$ polynomials with zero constant term.

The group $EL_n(\mathcal{R})$ appears as the parent group for, e.g.,

- $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ which are **not** uniformly (T).
- { $(SL_n(\mathbb{Z}), S_{p,q} = \{e_{ij}(p), e_{ij}(q) : i \neq j\}) : p \perp q\}$, uniformly (T)??
- $\stackrel{\bullet}{\checkmark} \mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)} \text{ abelian quotient}$

Motto: \exists (T) type rigidity if the nilp. quotients $EL_n(\mathcal{R}/\mathcal{R}^k)$ are kept away.

Theorem (O. 2022)

For any f.g. **comm.** rng \mathcal{R} generated by $R_0 \in \mathcal{R}$ and for *n* large enough, $\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r)) \quad \text{for EL}_n(\mathcal{R}) \text{ and}$ $\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs)) \quad \text{for EL}_n(\mathcal{R}^2)$ in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \ge \lambda \Delta^{(2)}$ in $\mathbb{C}^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

Generalizing property (T) for $EL_n(\mathcal{R})$ for a rng \mathcal{R} , cont'd

Theorem (O. 2022)

For any f.g. **comm.** rng \mathcal{R} generated by $R_0 \in \mathcal{R}$ and for *n* large enough, $\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r)) \quad \text{for EL}_n(\mathcal{R}) \text{ and}$ $\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs)) \quad \text{for EL}_n(\mathcal{R}^2)$ in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 > \lambda \Delta^{(2)}$ in $\mathbb{C}^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

Corollary

 $\exists n \ \exists \varepsilon > 0 \ \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \ p \perp q, \ \text{are } \varepsilon\text{-expanders.}$

 $\begin{array}{l} \Delta^2 \succeq \lambda \Delta^{(2)} \\ \text{ loss not hold in } \mathbb{R}[\mathsf{EL}_n(\mathcal{R})] \text{ and the proof is silicon-free.} \\ \text{Instead it relies on Boca & Zaharescu's work (2005) on the almost} \\ \text{Mathieu operators in the rotation C*-algebras } \mathcal{A}_{\theta} \text{ (aka noncomm. tori)} \\ \text{that, for the Heisenberg group } H = \langle x, y : z = [x, y] \text{ is central} \rangle, \\ \Delta^2_H = \left((1-x)^*(1-x) + (1-y)^*(1-y) \right)^2 \geq \frac{1}{4}(1-z)^*(1-z) = \frac{1}{4}\Delta_{Z(H)} \\ \text{holds in C}^*[H] \text{ (I but never in } \mathbb{R}[H]; a failure of Hilbert's 17th).} \end{array}$