Kazhdan＇s property（ T$)$ for $\operatorname{Aut}\left(\mathrm{F}_{n}\right)$ and $E L_{n}(\mathcal{R})$

Narutaka OZAWA（小澤 登高）

\oint RIMS，Kyoto University

Yasu Festa，University of Tokyo，2023．07．25

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=\operatorname{SL}_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$) have property (\mathbf{T}).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group.

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\Longleftrightarrow} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$

$$
d\left(v, \mathcal{H}^{\ulcorner }\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|,
$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}} \Gamma(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
$\because \frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z})$ is asymp. \mathbb{Z}-invariant, but $\ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}$.
\rightsquigarrow Any f.i. subgroup of a property (T) group has finite abelianization.

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: \mathrm{d}(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{\mathrm{c}}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup
$\rightsquigarrow X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$, is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
? What if $S_{p}=\left\{I+p E_{i j}: i \neq j\right\}$ and $X_{p, q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \perp p$?

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $E L_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$
(Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- Aut $\left(\mathbf{F}_{n}\right), n \geq$ 4. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20).
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have (T). Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$ (McCool 1989).
! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

$$
\begin{aligned}
R_{i, j}: & \left(g_{1}, \ldots, g_{n}\right) \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{j}, g_{i+1}, \ldots, g_{n}\right) \\
L_{i, j} & :\left(g_{1}, \ldots, g_{n}\right) \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{j} g_{i}, g_{i+1} \ldots, g_{n}\right) .
\end{aligned}
$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\text { Aut }^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\}
$$

Hilbert's 17th Pb: $f \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right), f \geq 0$ on \mathbb{R}^{d}
(E. Artin 1927) $\quad \Longrightarrow f=\sum_{i} g_{i}^{2}$ for some $g_{1}, \ldots, g_{k} \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right)$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\} \text {positive cone }
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^{+}:=\left\{A=A^{*}:\langle A v, v\rangle \geq 0 \forall v \in \mathcal{H}\right\}=\Sigma^{2} \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall(\pi, \mathcal{H})$ unitary rep'n, $\pi\left(\sum_{i} f_{i}^{*} f_{i}\right)=\sum_{i} \pi\left(f_{i}\right)^{*} \pi\left(f_{i}\right) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.

Laplacian (non normalized): For $\Gamma=\langle S\rangle$,

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s)=2|S|-\sum_{s \in S}\left(s+s^{-1}\right) \in \Sigma^{2} \mathbb{R}[\Gamma]
$$

Then, $\langle\pi(\Delta) v, v\rangle=\sum_{s \in S}\|v-\pi(s) v\|^{2}$ and
Γ has $(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \quad \forall(\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset\{0\} \cup[\lambda, \infty)$ $\Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \geq 0$ in $C^{*}[\Gamma]$

$$
\rightsquigarrow \kappa(\Gamma, S) \geq \sqrt{\lambda /|S|}
$$

Algebraic characterization of property (T)

Let $\Gamma=\langle S\rangle$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s) \in \Sigma^{2} \mathbb{R}[\Gamma] .
$$

$C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.
Then,
Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \geq 0$ in $\mathrm{C}^{*}[\Gamma]$

Theorem (O 2013)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \succeq 0 \quad$ in $\mathbb{R}[\Gamma]$
Stability (Netzer-Thom): It suffices if $\exists \lambda>0 \exists \Theta \in \Sigma^{2} \mathbb{R}[\Gamma]$ such that

$$
\left\|\Delta^{2}-\lambda \Delta-\Theta\right\|_{1} \ll \lambda,
$$

i.e., an almost solution to the inequality is close to an honest solution.

Semidefinite Programming (SDP)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \in \Sigma^{2} \mathbb{R}[\Gamma]$

$$
\Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0 \text { s.t. } \Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}
$$

By fixing a finite subset $E \in \Gamma$, we arrive at the SDP:

$$
\begin{array}{ll}
\begin{array}{l}
\operatorname{maximize} \\
\text { subject to }
\end{array} & \Delta^{2}-\lambda \Delta=\sum_{x, y \in E} P_{x, y} x^{-1} y,
\end{array} \quad P \in \mathbb{M}_{E}^{+}
$$

- Due to computer capacity limitation, we almost always take

$$
E:=\text { Ball }(2)=\{e\} \cup S \cup S^{2}=\operatorname{supp} \Delta \cup \operatorname{supp} \Delta^{2} .
$$

\leadsto Size of SDP: dimension $|E|^{2}$ and constraints $\left|E^{-1} E\right|=\mid$ Ball $(4) \mid$.

Certification Procedure:

Suppose (λ_{0}, P_{0}) is a hypothetical solution obtained by a computer.
Find $P_{0} \approx Q^{\mathrm{T}} Q$ (with $Q \mathbf{1}=0$) and calculate with guaranteed accuracy

$$
\left\|\Delta^{2}-\lambda_{0} \Delta-\sum_{x, y}\left(Q^{\mathrm{T}} Q\right)_{x, y}(1-x)^{*}(1-y)\right\|_{1} \ll \lambda_{0} .
$$

- Solving SDP is computationally hard, but certifying (T) is relatively easy.

Results

Γ has $(T) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

Kaluba, Nowak, and I tried Aut ${ }^{+}\left(\mathbf{F}_{d}\right)$ with a help of Polish supercomputer.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): ~ \odot \odot \odot \quad$ No response.
- Aut ${ }^{+}\left(\mathbf{F}_{5}\right):!\odot \wedge \odot 人 \odot!$ YES!!! with $\lambda>1.2$.

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)
$\Gamma_{n}:=\operatorname{Aut}^{+}\left(\mathbf{F}_{n}\right), \quad S_{n}:=\left\{R_{i, j}, L_{i, j}: i \neq j\right\}, \quad \mathrm{E}_{n}:=\{\{i, j\}: i \neq j\}$
Want to show $\Delta_{n}=\sum_{s \in S_{n}}(1-s)^{*}(1-s)$ satisfies $\Delta_{n}^{2}-\lambda_{n} \Delta_{n} \succeq 0$.

$$
\begin{aligned}
\Delta_{n} & =\sum_{\mathrm{e} \in \mathrm{E}_{n}} \Delta_{\mathrm{e}} \\
\Delta_{n}^{2} & =\sum_{\mathrm{e}} \Delta_{\mathrm{e}}^{2}+\sum_{\mathrm{e} \sim \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}}+\sum_{\mathrm{e} \perp \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \\
& =: \mathbf{S q}_{n}+\quad \mathbf{A d j}_{n}+\mathbf{O} \mathbf{p}_{n}
\end{aligned}
$$

- $\mathbf{S q}_{n}$ and $\mathbf{O p}$ ne positive, but $\mathbf{A d j}_{n}$ may not.

For $n>m$, let's see what we can tell about Δ_{n} knowing about Δ_{m} :

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\Delta_{m}\right) & =m(m-1) \cdot(n-2)!\cdot \Delta_{n} \\
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\mathbf{A d j} j_{m}\right) & =m(m-1)(m-2) \cdot(n-3)!\cdot \mathbf{A d j}_{n} \\
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\mathbf{O} \mathbf{p}_{m}\right) & =m(m-1)(m-2)(m-3) \cdot(n-4)!\cdot \mathbf{O} \mathbf{p}_{n}
\end{aligned}
$$

! $\mathbf{O} \mathbf{p}_{n}$ multiplies faster and overtakes $\mathbf{A d j}_{n}$.
Trial and error on the computer has confirmed

$$
\text { (®) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O} \mathbf{p}_{5}-\varepsilon \mathbf{\Delta}_{5} \succeq 0
$$

for $\alpha=2$ and $\varepsilon=0.13$. It follows that for $n \geq 2 \alpha+3$

$$
0 \preceq 60(n-3)!\left(\mathbf{A d j} j_{n}+\frac{2 \alpha}{n-3} \mathbf{O} \mathbf{p}_{n}-\frac{n-2}{3} \varepsilon \Delta_{n}\right) \preceq 60(n-3)!\left(\Delta_{n}^{2}-\frac{n-2}{3} \varepsilon \Delta_{n}\right)
$$

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

Computer taught us the ad hoc inequality ($(\Omega) \mathbf{A d j}_{5}+\alpha \mathbf{O p}_{5}-\varepsilon \Delta_{5} \succeq 0$ is not only true but even easy to prove if $\alpha>0$ is large enough.
We apply the KKN method to $\mathrm{EL}_{n}(\mathcal{R})$ with the "rng" (= "ring"- "i")
$\mathcal{R}=\mathbb{Z}\left\langle X_{1}, \ldots, X_{d}\right\rangle$ polynomials with zero constant term.
The group $E L_{n}(\mathcal{R})$ appears as the parent group for, e.g.,

- $\left\{\mathrm{EL}_{n}(p \mathbb{Z}): p \in \mathbb{N}\right\}$ which are not uniformly (T$)$.
- $\left\{\left(\mathrm{SL}_{n}(\mathbb{Z}), S_{p, q}=\left\{e_{i j}(p), e_{i j}(q): i \neq j\right\}\right): p \perp q\right\}$, uniformly (T) ??
! $E L_{n}(\mathcal{R}) \rightarrow E L_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)}$ abelian quotient
Motto: $\exists(\mathrm{T})$ type rigidity if the nilp. quotients $E L_{n}\left(\mathcal{R} / \mathcal{R}^{k}\right)$ are kept away.

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough, $\Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad$ for $E_{n}(\mathcal{R})$ and
$\Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)$ for $\operatorname{EL}_{n}\left(\mathcal{R}^{2}\right)$
in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[E L_{n}(\mathcal{R})\right]$ for some $\lambda>0$.

Theorem (O. 2022)

For any f.g. comm. $\mathbf{r n g} \mathcal{R}$ generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad \text { for } \operatorname{EL}_{n}(\mathcal{R}) \text { and }
$$

$$
\Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right) \quad \text { for } \mathrm{EL}_{n}\left(\mathcal{R}^{2}\right)
$$

in $\mathbb{R}\left[\mathrm{EL}_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[\mathrm{EL}_{n}(\mathcal{R})\right]$ for some $\lambda>0$.

Corollary

$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(\mathrm{SL}_{n}(\mathbb{Z} / q \mathbb{Z}),\left\{e_{i j}(p): i \neq j\right\}\right), p \perp q$, are ε-expanders.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori) that, for the Heisenberg group $H=\langle x, y: z=[x, y]$ is central \rangle, $\Delta_{H}^{2}=\left((1-x)^{*}(1-x)+(1-y)^{*}(1-y)\right)^{2} \geq \frac{1}{4}(1-z)^{*}(1-z)=\frac{1}{4} \Delta_{Z(H)}$ holds in $\mathrm{C}^{*}[H]$ (! but never in $\mathbb{R}[H]$; a failure of Hilbert's 17 th $)$.

