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Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank > 2 (e.g., G = SL,(R), n > 3) and
its lattice [ (e.g., [ = SLn(Z), n > 3) have property (T).
~~ [ is finitely generated and has finite abelianization.

Throughout this talk, I' = (S) is a finitely generated group.

Definition (for discrete groups)
[ has (T) & 3 = k(l,S) > 0 s.t. V(m,H) unitary rep'n and Vv € H
d(v, H") < k™! maxses [|lv — 7(s)v|],

i.e., an almost invariant vector v is close to an invariant vector Projqr(v).

@ Property (T) inherits to finite-index subgroups and quotient groups.

@ 7 (or any infinite amenable group) does not have property (T).

\/ﬁl[*/ﬂk] € (2(Z) is asymp. Z-invariant, but ¢>(Z)* = {0}.

~> Any f.i. subgroup of a property (T) group has finite abelianization.
1/10



An application of property (T): Expander graphs

Definition
A finite connected graph X is an e-expander if for VA C X (vertices)
0A] > e|A|(1 — {5)).

o For Ni(A) :={x € X : d(x, A) < k}, O endar s
INVk(A)| > (1 + £)|A| until it reaches 3|X]|.
After that [N (A)°| decreases by a factor 1+ 5.

N
T T T

@ Random walk on X has mixing time O(log |X]).

@ Want large e-expanders with degree and ¢ fixed. T

Explicit construction of expanders (Margulis 1973)

= (S) and N<T a finite index normal subgroup
~> X = Cayley(I'/N, S), where Edges = {{x,xs} : x € [/N, s € S},
is a k(I", S)?-expander.
Eg.,l=SL(3,Z), S={l+E;:i#j}, and Xq =SL(3,Z/qZ), q € N.

? What if S, = {/ +pEj:i#j}and X, 4 =SL(3,Z/qZ), q L p?
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Some examples of property (T) groups

e SL,(Z), n > 3, (Kazhdan 1967), but not SLy(Z).
® EL,(R) = (ejj(r) : i #j,r € R) C GLy(R), n >3,
where R finitely generated ring and ej;(r) := I, + rEj
(Shalom & Vaserstein, Ershov—Jaikin-Zapirain 2006-08).
o Aut(F,), n > 4. (Kaluba—Nowak-0., K-Kielak-N., Nitsche 17-20).
F, — Z" abelianization ~» Aut(F,) — Aut(Z") = GL,(Z).
~> Aut(F2) does not have (T). Neither Aut(F3) (McCool 1989).
I The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky—Pak 01)

Aut+(F ) = (Rij, Lij) <index 2 Aut(F,), where F, = (g1,...,gn) and
Rij:(g1,---.8n) > (81,---,8i-1,8i8> 8i+1,---+8n)
L;J: (815---:,8n) — (&1, ,8i—1,8)8i 8i+1---»8n)-
PRA is a practical algorithm to obtain “random” elements in a given finite
group A of rank < n via the PRA random walk
Aut™(F,) ~ {(h1,...,hn) €N A= (hy,..., h)}.
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Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb: f € R(xq,...,xq), f > 0 on R

(E. Artin 1927) = f =), g? for some gi,...,8« € R(x1,...,xq).

R[] real group algebra with the involution (3, at)* = >, art™ L.
PR = {3, f*fi} = {>°., PxyX 'y : P € M['} positive cone

Here Mﬁ finitely supported positive semidefinite matrices.

o B(H)t :={A=A*:(Av,v) > 0Vv € H} = L2B(H) psd operators.

@ Y(m, H) unitary rep'n, w(>_; £*f;) = >, n(fi)*n(f;) > 0 in B(H).

@ C*[I'] the universal enveloping C*-algebra of R[I].

Laplacian (non normalized): For [ = (S),

A= s(l—5s)"(1—5)=2|S| =Y cs(s +s71) € Z2R[r].

Then, (r(A)v,v) =Y csllv —7(s)v|]? and
[has (T) <= IA>0 V(m,H) Sp(n(A)) C {0}U[N 0) AO'U}\L
<= 3A >0 suchthat A%2—)XA >0 in C[l]

22— At>0

~ k(I,S) > \/A/|S] B
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Algebraic characterization of property (T)
Let T = (S).
R[] real group algebra with the involution (3, ast)* = >, art ™2
PAR[M = {3, f*fi} = {2y Puyx~ly i P e M{}
Here MF“ finitely supported positive semidefinite matrices.
A=Y s(1—s)*(1—s) e R[]

C*[T] the universal enveloping C*-algebra of R[I].
Then,

[ has (T) <= 3\ > 0 such that A2 — XA >0 in C*[l]

Theorem (O 2013)

[ has (T) <= 3X\ > 0 such that A2— XA =0 in R[]

Stability (Netzer—Thom): It suffices if 3\ > 0 3© € X2R[l] such that
|A2 — DA - 0|1 < A\,
i.e., an almost solution to the inequality is close to an honest solution.
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Semidefinite Programming (SDP)

[ has (T) <= 3\ > 0 such that A2 — \A € X2R[T]
= 3EETM3N>0st. A>—NA e (), Peyxly:PeME}
By fixing a finite subset E € I', we arrive at the SDP:

maximize A
subject to AZ—-)NA =) VeE Peyxty, PeMf

@ Due to computer capacity limitation, we almost always take
E := Ball(2) = {e} US U S? = supp A Usupp A2
~~ Size of SDP: dimension |E|? and constraints |[E~1E| = | Ball(4)|.
Certification Procedure:
Suppose (Ao, Pp) is a hypothetical solution obtained by a computer.
Find Py ~ Q" @ (with Q1 = 0) and calculate with guaranteed accuracy

1A% = XA = 37, (@ Q)xy(1 = x)"(1 = y)[l1 < Ao

@ Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Mhas (T) <= 3EET A >0st. A= NA e {>,  Poyx'y: PeMf}
Results of SDP for £ = Ball(2). J

o SLn(Z) with S = {ej : i # j}: A3 > 0.27, A\g > 1.3, \g > 2.6.
(Netzer—Thom 2014, Fujiwara—Kabaya 2017, Kaluba—Nowak 2017)
@ No response for SLg(Z).

Kaluba, Nowak, and | tried Aut™(F4) with a help of Polish supercomputer.

o Aut™(Fz): (& (® ® No response.
o Aut™(Fs): I(OAAG)! YESH! with A > 1.2,

Aut™(F,) has property (T) for
e n=>5 (Kaluba—Nowak-0. 2017)

@ n > 6 (Kaluba—Kielak—Nowak 2018, by “stability” explained below)
@ n =4 (Nitsche 2020, by a new SDP method)
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Property (T) for an infinite series (KKN 2018)

[h= AUt+(Fn)y Sn = {Ri,j7 Lij: I;lé_j}, Ep:= {{I,j} i 7&./}
Want to show A, =3 s (1 —5)"(1—s) satisfies A2 — X\,A, = 0.
Ap = ZeeEn A,
AL = DI Yot Delr + Y01 Dol
= Sq, + Adj, + Op,.
@ Sq, and Op,, are positive, but Adj, may not.
For n > m, let's see what we can tell about A, knowing about A;:
> ves(n 0(Bm) =m(m—1)-(n=2)!- A,
> ves(n 0(Adiy,) = m(m —1)(m —2) - (n—3)!- Adj,
>oes(n 0(0pPy) = m(m—1)(m—2)(m—3)-(n—4)!-Op,
! Op,, multiplies faster and overtakes Adj,,.
Trial and error on the computer has confirmed
(V) Adjs+aOps—cAs =0 )
for « = 2 and ¢ = 0.13. It follows that for n > 2o + 3
0 =< 60(n—3)!(Adj, +-2% Op, —"32cA,) = 60(n—3)I(A2 — "32eA,).

n—
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Generalizing property (T) for EL,(R) for a rng R

Computer taught us the ad hoc inequality (©) Adjs; +a Ops —cAs = 0
is not only true but even easy to prove if a > 0 is large enough.

R =Z(X1,...,Xq) polynomials with zero constant term.
The group EL,(R) appears as the parent group for, e.g.,
e {EL,(pZ) : p € N} which are not uniformly (T).
o {(SLn(Z), Sp.q = {eij(p),€ij(q) : i #j}): p L g}, uniformly (T)??
I EL,(R) = EL,(R/R?) = (R/R?)®"("—1) abelian quotient
Motto: 3 (T) type rigidity if the nilp. quotients EL,(R/R¥) are kept away.
Theorem (0. 2022)

For any f.g. comm. rng R generated by Ry € R and for n large enough,
A= cr, 2izi(1—€j(r))* (1 —ej(r)) for ELn(R) and
AR =37k 2is(1— eji(rs))*(1 — ej(rs))  for ELy(R?)

in R[EL,(R)] satisfy A2 > AA(®) in C*[EL,(R)] for some A > 0.

9/10



Generalizing property (T) for EL,(R) for a rng R, cont’d

Theorem (0. 2022)

For any f.g. comm. rng R generated by Ry € R and for n large enough,
A=3cr, Zi#(l — €;j(r))*(1 — ejj(r)) for EL,(R) and
AD =3 o 31— ej(rs))*(1— ej(rs)) for EL,(R?)

in R[EL,(R)] satisfy A2 > AA®) in C*[EL,(R)] for some A > 0.

dn Je > 0s.t. Cayley(SL,(Z/qZ),{ej(p) : i # j}). p L q, are e-expanders.

A2 = MA@ does not hold in R[EL,(R)] and the proof is silicon-free.
Instead it relies on Boca & Zaharescu's work (2005) on the almost
Mathieu operators in the rotation C*-algebras Ay (aka noncomm. tori)
that, for the Heisenberg group H = (x,y : z = [x, y| is central),

A% = (1= (=) + (1 -y)(1=y) > §0-2)'(1-2) = {Az)
holds in C*[H] (/! but never in R[H]; a failure of Hilbert's 17th).
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