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Outline of the Classification Problem Classification Problem
Production Process
Brief History

What do we classify?

r countable discrete group
(X, 1) standard probability measure space
'~ (X,u) measure preserving action

We only consider either
o (X, u) =2 ([0,1], Lebesgue) and

[~ X is essentially-free i.e. u({x :sx =x}) =0Vs e\ {1}
or

o X = {pt}.

In passing, recall that ' ~ X is ergodic if
ACXandTA=A= u(A)=0,1.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

How do we classify?

To what extent do vN/OE
remember OE/GA/GP? \

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Outline of the Classification Problem Classification Problem
Production Process
Brief History

Group measure space constructions

7T L2(Xp)
A (X,p1) pmp.  —~—t Us(f)() (s'x)
[os(f)du= [fdu

We encode the information of [ ~ X into a single x-algebra

finite

AXHT):={) fis:fie ®(X,p)},

sel

which is generated by the group algebra CI' and the function
algebra L°°(X) with the relationship

sfst = og(f).
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Group measure space constructions

Hence, Z fss th t) Z fsos(ge) st.

A(X xT) is a pre- H|Ibert|an algebra

1D fisla = [> I3
s S

Denote H = A(X x F)H o L2(X, 1) ®7 £>() and define
VN(X x ) := WOT-cl(A(X x T)) C B(H).

vN(X x T) is often written as L>°(X) x ' and has a finite trace 7,
given by 7(x) = (x 1,1). (It follows 7(xy) = 7(yx).)
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Group measure space constructions

L®(X) CvN(X % T)
= vN((u® X)(T),L*(X) ® C1)
¢ B(L2(X, 1) @ 6a(I))
and L*°(X) is a Cartan subalgebra of vN(X x I).

Definition
A von Neumann subalgebra A C M is called a Cartan subalgebra
if it is a maximal abelian subalgebra such that the normalizer

N(A) ={u € M : unitary vAu* = A}

generates M.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Orbit Equivalence Relation

Theorem (Singer, Dye, Krieger, Feldman-Moore 1977)
LetT ~ X and A ~ Y be ess-free p.m.p. actions, and
0: (X,p) = (Y,v)
be an isomorphism. Then, the isomorphism
O : L®(Y,v)>f > fobel®X,pu)

extends to a x-isomorphism

m: VN(Y X A) = vN(X xT)
if and only if 6 preserves the orbit equivalence relation:

O(F'x) = NO(x) for p-a.e. x.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Lack of rigidity

FA(n) o L9(X) C vN(X xT)

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes-Jones 1982)

OE ===p vN /s not one-to-one,
i.e. 4 a I1y-factor with non-conjugate Cartan subalgebras.

Theorem (Dykema 1993)
vN(l'y x2) =2 vN(IFy) for any infinite amenable groups 'y and I'5.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Lack of rigidity

GP vN
r vN(I)

Theorem (Connes 1975)

3 a Il -factor which is not x-isomorphic to its complex conjugate.

Theorem (Voiculescu 1994)
vN(F,) does not have a Cartan subalgebra.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Rigidity
ST
[~ (X, p) L°(X) C vN(X xT) vN(X x T

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, loana)
Some OE fully remembers GA.

Theorem (Oz-Popa)

Some vN fully remembers OE, i.e.
3 a (non-amenable) 11;-factor with a unique Cartan subalgebra,
unique up to unitary conjugacy.
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Outline of the Classification Problem Classification Problem
overing GA f E Production Process
Brief History

Open problems

@ Is there vN which fully remembers GA?
@ |s there vN which fully remembers GP?
o VN(Fz) % VN(F3) ?
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Recovering GA from OE Cocycle Superrigidity

OE to Cocycle (after Zimmer)

Suppose (T ~ X) 2op (A~ Y), ie. 30: X 5 Y such that
O0(F'x) = Nf(x) for u-a.e. x.
Define ao: X x ' — A by
0(x) = a(x,s)8(s"1x).
Then, « satisfies the cocycle identity:
a(x, s)a(s71x, t) = a(x, st).

Cocycles o and 3 are equivalent if 3 ¢: X — A such that

Bx,s) = p(x)alx,s)¢(s *x) 1.
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Recovering GA from OE Cocycle Superrigidity

Cocycle Superrigidity

One can recover GA from OE if one has

Theorem (Cocycle Superrigidity)

With some assumption on T ~ X (and not on N\), any cocycle
a: ' xX—=>A

is equivalent to a cocycle 3 which is independent on x € X.

@ [ higher rank lattice + A simple Lie group (Zimmer)
o [ Kazhdan (T) / product + I' ~ X malleable (Popa)
o [ Kazhdan (T) + I' ~ X profinite (loana)
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Recovering GA from OE Cocycle Superrigidity

Popa’s formulation

M~ X o: T~ L%(X)
a: T — L(X,vN(N))
a: X xT = A ~—— 2 [®(X)&N

as(x) = a(x, s)
a(x,s)a(s71x, t) = a(x, st) asos(ag) = ag

Since o5(f) =sfsLin vyN(X xT),
Fys—assevVN(XxTN)&®N
is a group homomorphism which extends to an inclusion

©: vN(IN) = vN(X xT)&® N.
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups T > T > T > ---;

or equivalently 3A; C Ay C -+ C L*(X) finite dimensional
I-invariant vN-subalgebras with dense union. (A, = (/T h).)

VN ) = (UWN(T/T) 2 D) = (UM (0N (T))

What's behind loana's Cocycle Superrigidity

"

©: yN(I) < vN(X x ) & N = (U(VN((r/rn) 1 T) & N) )
Because of the Kazhdan property (T), for a large n,
©(vN(l)) is almost contained in vN((I'/T,) x )& N.
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Complete Metric Approximation Property

Definition
A group I has the CMAP if 3 f, such that
@ fp: [ — C finitely supported,

o f, — 1 pointwise,

o ||my [l < 1.

The multiplier mg: vN(I') — vN(I') is defined by m¢(s) = f(s) s.
Besides amenable groups, the following groups have the CMAP.

Theorem (De Canniere-Haagerup 1985, Cowling-Haagerup 1989)

Free groups ¥, have the CMAP.
Discrete subgroups of SO(n, 1) and SU(n, 1) have the CMAP.
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, A\ has an invariant mean which is Ad(I')-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) = LOO(K) via the Fourier transform /() = LZ(K).
Let 79: C(7\\) — C be the evaluation at the trivial character 1.

f: N — Cfin. supp. = oo ms = f € LY(A) and ||f |1 = [|m¢ep-
Take (f,) as in Definition. Then Vs ||mg, — mg, o Adg||cp, — 0.
Hence, if £2(A) 3 &, &5 |£[a]? € L2(R), then [¢[2 € (1(A) is
approximately A-invariant and approximately Ad(l)-invariant. [

-
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, A\ has an invariant mean which is Ad(I')-invariant.
In particular, T is inner-amenable.

The lamplighter group

(Z/2Z)1F, = (@y, (Z/2Z)) x F,
does not have the CMAP.

Theorem (de Cornulier-Stalder-Valette)

The lamplighter group (Z/2Z)1F, has the Haagerup property.
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

von Neumann algebra with CMAP

A finite vN-algebra M has the CMAP if 3 ¢, such that
9 ¢n: M — M finite rank,
@ ¢, — idy pointwise-ultraweak,

® ||gnller < 1.

>
Examples

o [ has CMAP < vN(I') has CMAP (Haagerup)
@ CMAP inherits to a vN-subalgebra (assuming finiteness).

@ [ has CMAP and ' ~ X profinite = vN(X x I') has CMAP.
(Note: vN(X x I') can be non-(I').)

A\
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Upgrading Theorem A

Use p:P®P 2> ap® bk 7(3 akb;) €C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has C_MAP and P is an amenable vN-subalgebra.
Then, 3 n, € L>(P & P), such that

@ ||nn — (u® T)nnll2 = 0 for every u € U(P);
@ ||nn — Ad(u ® T)nall2 — 0 for every u € N(P);
o ((x® 1)nn,mn) = 7(x) = (Nn, (1 @ X)np) for every x € M.

We say P C M is weakly profinite if the above conclusion holds.

If M=PxTandd P, C P, C---C P finite dim. I'-invariant
vN-subalgebras with dense union, then P C M is weakly profinite

with n, = us/? € 12(P, & Pp)y4.
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly profinite.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
o N(P)" is amenable relative to Q.

@ P C vN(F,) diffuse amenable = N(P)" amenable.
@ Q CMAP = Q ® vN(F,) has no Cartan subalgebra.

L*(X) C vN(X x F,) is the unique
Cartan subalgebra.

o F, ~ X profinite =
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CMAP
Weakly profinite action
Recovering OE from vN Main Results

Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and My = (b1,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism a;: M — M x My by

ar(ak) = ak exp(t log bi).

Observe that Ep o o is the Haagerup multiplier on M associated
with F, 3 s — 7|ts| € R, where y; = 7(exp(tlog bx)) = %

For a given finite subset § C N (P), choose t > 0 small enough

so that a = « satisfies a(u) =~ u for all v € §.

Since n, € L?(P & P) are “almost supported on diagonal,”

((Eij o @) ® 1)n, is a non-null sequence, almost Ad(g)-invariant.
But L2(M % My) © L2(M) = @ L>(M) & L?(M) as an M-bimodule,
this implies amenability of AV(P)". O
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