Furstenberg boundary and C*-simplicity

Narutaka OZAWA

C Research Institute for Mathematical Sciences, Kyoto University

The mathematical legacy of Uffe Haagerup Copenhagen, June 2016

Main Problem of C*-simplicity

A discrete group G is C^{*}-simple if its reduced grp C^{*}-alg C_r^*G is simple. Recall $\lambda : G \curvearrowright \ell_2 G$ the left regular repn, and $C_r^*G = \overline{\lambda(\mathbb{C}G)} \subset \mathbb{B}(\ell_2 G)$.

A Well-Known Fact

Let $N \triangleleft G$ be a normal subgroup. Then the quotient $G \rightarrow G/N$ extends to a *-homomorphism from C_r^*G onto $C_r^*(G/N)$ iff N is amenable.

R(G): amenable radical, the largest amenable normal subgroup of G. Hence, G is C*-simple $\Longrightarrow R(G) = \mathbf{1}$.

Is the converse also true?

Motivated by Kadison's problem if $C_r^* F_d$ is simple and projectionless,

Theorem (Powers 1975/1968)

The reduced free group C^* -algebra $C^*_r F_d$, $d \ge 2$, is simple.

 F_d has Powers Averaging Property $\rightsquigarrow C_r^* F_d$ is simple and monotracial. **PAP**: $\exists E_n \Subset G$ s.t. $\lim_n \left\| \frac{1}{|E_n|} \sum_{t \in E_n} \lambda(tgt^{-1}) \right\| = 0$ for $\forall g \neq 1$.

Narutaka OZAWA (RIMS)

Characterization of C*-simple groups

$\begin{aligned} \textbf{PAP} &: \exists \ E_n \Subset \ G \ \text{s.t. } \lim_n \left\| \frac{1}{|E_n|} \sum_{t \in E_n} \lambda(tgt^{-1}) \right\| = 0 \ \text{for } \forall \ g \neq 1. \\ &\Rightarrow \tau_\lambda(a) 1 \in \overline{\text{conv}} \{\lambda(t) a \lambda(t^{-1}) : t \in G\} \ \text{for every } a \in C_r^* G \\ &\Rightarrow C_r^* G \ \text{is simple and monotracial.} \end{aligned}$

A striking "if and only if" characterization of C^* -simplicity in terms of the Furstenberg boundary has been found by Kalantar and Kennedy.

Theorem (Kalantar–Kennedy 2014)

 ${\mathcal G} ext{ is } \mathrm{C}^* ext{-simple} \Longleftrightarrow {\mathcal G} \curvearrowright \partial_\mathrm{F} {\mathcal G} ext{ is (topologically) free}$

This lead to a very satisfactory solution to the C*-simplicity problem.

Theorem (Breuillard–Kalantar–Kennedy–O. 2014)

 $\mathrm{C}^*_\mathrm{r} \mathcal{G}$ is monotracial $\Leftrightarrow \mathcal{R}(\mathcal{G}) = \mathbf{1} \Leftrightarrow \mathcal{G}$ has no non-trivial IRS

Theorem (Haagerup, Kennedy 2015 (based on Kalantar–Kennedy))

G is C^* -simple $\Leftrightarrow G$ has PAP $\Leftrightarrow G$ has no non-trivial amenable URS

Characterization of $\mathrm{C}^*\mbox{-simple}$ groups

$\begin{aligned} \textbf{PAP} &: \exists \ E_n \Subset \ G \ \text{s.t. } \lim_n \left\| \frac{1}{|E_n|} \sum_{t \in E_n} \lambda(tgt^{-1}) \right\| = 0 \ \text{for } \forall \ g \neq 1. \\ &\Rightarrow \tau_\lambda(a) 1 \in \overline{\text{conv}} \{\lambda(t) a \lambda(t^{-1}) : t \in G\} \ \text{for every } a \in C_r^* G \\ &\Rightarrow C_r^* G \ \text{is simple and monotracial.} \end{aligned}$

Theorem (Kalantar–Kennedy 2014)

 ${\mathcal G} ext{ is } \mathrm{C}^* ext{-simple} \Longleftrightarrow {\mathcal G} \curvearrowright \partial_\mathrm{F} {\mathcal G} ext{ is (topologically) free}$

This lead to a very satisfactory solution to the C^* -simplicity problem.

Theorem (Breuillard-Kalantar-Kennedy-O. 2014)

 $\mathrm{C}^*_\mathrm{r} {\mathcal G}$ is monotracial $\Leftrightarrow {\mathcal R}({\mathcal G}) = {\mathbf 1} \Leftrightarrow {\mathcal G}$ has no non-trivial IRS

Theorem (Haagerup, Kennedy 2015 (based on Kalantar–Kennedy))

 ${\it G} \text{ is } \mathrm{C}^*\text{-simple} \Leftrightarrow {\it G} \text{ has PAP} \Leftrightarrow {\it G} \text{ has no non-trivial amenable URS}$

Here a URS (uniformly recurrent subgroups) is a minimal component of $G \curvearrowright \mathbf{Sub}(G) \subset \{0,1\}^G$ (the Chabauty compactum). In particular, G is C*-simple iff every minimal compact $G \curvearrowright X$ with amenable stabilizers is topologically free, i.e., $G_X^\circ := \{g \in G : g = \text{id on a nbhd of } x\}$ is trivial.

Examples of C*-simple groups

The results of BKKO, Haagerup, and Kennedy give very simple proof of C*-simplicity (PAP) for all known examples: (assume R(G) = 1)

- Free groups (Powers 1975)
- Acylindrically hyperbolic groups (Dahmani–Guirardel–Osin 2011).
- Linear groups (Bekka–Cowling–de la Harpe 1994, Poznansky 2008).
- Groups with nontrivial ℓ_2 -Betti numbers (Peterson-Thom 2011).
- Free Burnside groups, etc. (Olshanskii-Osin 2014).

A counterexample to " $R(G) = \mathbf{1} \Rightarrow C^*$ -simple" ?

Haagerup–Olesen (2014) suggested Thompson's group T, by showing that T is **not** C*-simple **if** Thompson's group F is amenable. Thompson's group T is a certain subgroup of piecewise-linear homeomorphisms of $S^1 = \mathbb{R}/\mathbb{Z}$, which is non-amenable and simple. Thompson's group F is the stabilizer subgroup at $0 \in \mathbb{R}/\mathbb{Z}$, and whether F is amenable or not is a very (in)famous open problem (that Uffe was crazy about for these years).

Narutaka OZAWA (RIMS)

Counterexamples to C*-simplicity

Haagerup–Olesen (2014): Thompson's group T is a certain simple subgroup of piecewise-linear homeomorphisms of $S^1 = \mathbb{R}/\mathbb{Z}$, and Thompson's group F is the stabilizer subgroup at $0 \in \mathbb{R}/\mathbb{Z}$. Consider $\pi: T \curvearrowright \ell_2 T/F$. It is continuous on $C_r^* T$ iff F is amenable. Since $T/F \cong T0 = \mathbb{Z}[\frac{1}{2}] \cap [0, 1)$, it is easy to find $a, b \in T \setminus 1$ such that $\operatorname{supp}(a) \cap \operatorname{supp}(b) = \emptyset$ on T/F, which guarantees $\pi((1 - a)(1 - b)) = 0$.

Hence if F is amenable, then T is not C^{*}-simple.

More recently Matte Bon and Le Boudec (2016) have classified the URS's of T and proved that T is not C*-simple iff F is amenable.

Theorem (Le Boudec 2015)

Aside from $F \leq T$, there is a natural $H \leq G$ as above with H amenable. In particular, there are simple groups G which are not C^{*}-simple.

 $G \leq Aut(Tree)$ a variant of the Burger–Mozes grp, H a vertex stabilizer.

Topological Boundary Theory.

Furstenberg 1963 \sim 1973 Hamana 1979 \sim 1985

A compact *G*-space *X* is minimal if $\overline{Gx} = X$ for every $x \in X$.

It is a *G*-boundary if $\overline{\operatorname{conv}} G\mu = \operatorname{Prob}(G)$ for every $\mu \in \operatorname{Prob}(G)$.

$$\Rightarrow \begin{bmatrix} \forall Y \text{ minimal cpt } G \text{-space, } \forall \phi \colon C(X) \to C(Y) \text{ } G \text{-ucp map} \\ \to \phi \text{ is an isometric } \ast \text{-homomorphism} \end{bmatrix}$$

Example

- \bullet Trivial G-space $\{\mathrm{pt}\}.$ If G is amenable, there is no other G-boundary.
- G: a (non-elementary) Gromov hyperbolic group and $X = \partial G$.

Furstenberg: \exists ! largest *G*-boundary $\partial_{\mathrm{F}} G$. Ubiquitousness \forall cpt cvx *G*-space $K \exists \partial_{\mathrm{F}} G \rightarrow K$.

Hamana: \exists ! smallest unital *G*-inj C*-alg $C(\partial_H G)$.Rigidity $\hookrightarrow \forall G$ -ucp map on $C(\partial_H G)$ is id.

- Point stabilizers are amenable.
- $\ker(G \curvearrowright \partial_F G) = R(G).$

Kalantar–Kennedy 2014: $\partial_{\rm F} G = \partial_{\rm H} G$.

Topological Boundary Theory.

Furstenberg $1963 \sim 1973$ Hamana 1979 \sim 1985

A compact G-space X is minimal if $\overline{Gx} = X$ for every $x \in X$.

It is a *G*-boundary if $\overline{\text{conv}} G\mu = \text{Prob}(G)$ for every $\mu \in \text{Prob}(G)$.

$$\Rightarrow \begin{bmatrix} \forall Y \text{ minimal cpt } G\text{-space, } \forall \phi \colon C(X) \to C(Y) \text{ } G\text{-ucp map} \\ \to \phi \text{ is an isometric } *\text{-homomorphism} \end{bmatrix}$$

Example

- Trivial G-space $\{pt\}$. If G is amenable, there is no other G-boundary.
- G: a (non-elementary) Gromov hyperbolic group and $X = \partial G$.

Furstenberg: \exists ! largest *G*-boundary $\partial_{\mathbf{F}} G$. Ubiquitousness $\forall cpt cvx G$ -space $K \exists \partial_F G \to K$. $\ell_{\infty}G$ is *G*-injective: **Hamana:** \exists ! smallest unital *G*-inj C*-alg *C*($\partial_{\rm H}G$). В $\bigcup \overset{\scriptstyle \checkmark}{\underset{\scriptstyle }} \exists \tilde{\phi} \ \, \textit{G-ucp extension} \\ \bigcup \overset{\scriptstyle \checkmark}{\underset{\scriptstyle }}$ $\stackrel{\frown}{\to} \forall G$ -ucp map on $C(\partial_H G)$ is id. Rigidity

- Point stabilizers are amenable.
- ker $(G \curvearrowright \partial_F G) = R(G)$.

Kalantar–Kennedy 2014: $\partial_{\rm F}G = \partial_{\rm H}G$.

 $A \xrightarrow[\forall \neq]{} \ell_{\infty} G$

 $\therefore \phi \longleftrightarrow \operatorname{ev}_1 \circ \phi \in S(A)$

Tracial states on $\mathrm{C}^{*}_{\mathrm{r}}\textit{G}$

Corollary (Breuillard–Kalantar–Kennedy–O, Kennedy)

Every tracial state on C_r^*G is zero outside of R(G). In particular if $R(G) = \mathbf{1}$, then τ_{λ} is the unique tracial state. If moreover $\partial_H G$ is (topo) free, then τ_{λ} is the unique G-ucp map from C_r^*G into $C(\partial_H G)$.

Proof.

Observe that a tracial state is a *G*-ucp map from C_r^*G into $\mathbb{C}1 \subset C(\partial_H G)$. Let $\phi: C_r^*G \to C(\partial_H G)$ be a *G*-ucp map. By *G*-injectivity, it extends to $\tilde{\phi}: C(\partial_F G) \rtimes_r G \to C(\partial_H G)$, which is a conditional expectation by rigidity. Thus, for any $t \in G$ and $x \in \partial_H G$ with $tx \neq x$, one has $\phi(\lambda_t)(x) = 0$. (Take $f \in C(\partial_H G)$ s.t. f(x) = 1 and $\operatorname{supp}(f) \cap t \operatorname{supp}(f) = \emptyset$. Then $\phi(\lambda_t)(x) = \tilde{\phi}(f\lambda_t f)(x) = 0$.) Recall that $\ker(G \curvearrowright \partial_H G) = R(G)$.

An IRS (invariant random subgroup) is a *G*-inv prob measure on **Sub**(*G*). \rightsquigarrow Every amenable IRS μ is contained in *R*(*G*). (Bader–Duchesne–Lécureux 2014) $\because \phi(g) := \mu(\{H : g \in H\})$ is a tracial state on C_r^*G (Tucker-Drob 2012).

Closing the Circle

Theorem (Kalantar-Kennedy 2014)

 ${\it G} \text{ is } \mathrm{C}^*\text{-simple} \Longleftrightarrow {\it G} \curvearrowright \partial_\mathrm{F}{\it G} \text{ is (topo) free}$

Note that $G \curvearrowright \partial_F G$ is a minimal action with amenable point stabilizers. Hence by Effros–Hahn, Kawamura–Tomiyama, and Archbold–Spielberg, $G \curvearrowright \partial_F G$ topo free $\iff C(\partial_F G) \rtimes_r G$ simple.

Theorem (Breuillard–Kalantar–Kennedy–O 2014)

G is C^* -simple $\iff A \rtimes_\mathrm{r} G$ is simple for any unital G-simple C^* -alg A

Theorem (Haagerup, Kennedy 2015)

G is C*-simple \iff G has Powers Averaging Property

Proof of \Rightarrow .

It suffices to show that for every state ψ on C_r^*G , one has $\tau_\lambda \in \overline{\text{conv}} G\psi$. By ubiquitousness, there is a *G*-map $\phi_* : \partial_F G \to \overline{\text{conv}} G\psi$. This gives rise to a *G*-ucp map $\phi : C_r^*G \to C(\partial_F G)$, defined by $\phi(a)(x) = \langle \phi_*(x), a \rangle$. But $\phi = \tau_\lambda(\cdot)1$ by the previous Corollary, and so $\phi_*(\partial_F G) = \{\tau_\lambda\}$.