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Introduction: Gromov’s theorem

We connect geometry (quasi-isometry, random walks, etc.) of a finitely
generated group to algebra (∃ a virtually-Z quotient) of it via analysis.

G = 〈S〉 with finite generating subset S = S−1

 |x | := min{n : x ∈ Sn} and d(x , y) := |x−1y |
γG (n) := |Ball(n)| = |{x : |x | ≤ n}| growth

These are (up to a certain equivalence) indep. of S , in fact a QI invariant.
A map f : (X , dX )→ (Y , dY ) is a quasi-isometry (QI) if ∃K , L > 0
1
K dX (x , y)− L ≤ dY (f (x), f (y)) ≤ KdX (x , y) + L and Y ⊂ NL(f (X )).

For example, if G0 ≤finite index G , then G0
∼=QI G .

Theorem (Gromov 1981)

If G has polynomial growth (∃d γG (n) � nd), then it is virtually nilpotent.

Proof: By induction on d .
It suffices to show ∃ a virtually-Z quotient: G ≥finite index G0

q
� Z.

∵ ker q is f.g. and has polynomial growth of degree ≤ d − 1.
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Further motivation: Grigorchuk’s Conjecture

γG (n) := |Ball(n)| = |{x : |x | ≤ n}|

Theorem (Gromov 1981)

If G has polynomial growth (∃d γG (n) � nd), then it is virtually nilpotent.

Proof: By induction on d .
It suffices to show ∃ a virtually-Z quotient: G ≥finite index G0

q
� Z.

∵ ker q is f.g. and has polynomial growth of degree ≤ d − 1.

Grigorchuk’s Gap Conjecture (1990)

If γG (n)� e
√
n (or exp n0.01), then G has polynomial growth.

There are several empirical evidences, but here’s an optimistic heuristic:
Fix a symmetric probability measure µ with suppµ = S and consider the
random walk Xn = s1 · · · sn, si µ-i.i.d.
If γG (n)� e

√
n, then the µ-RW is maybe diffusive, e.g., E[|Xn|] �

√
n.

In turn, as we will see, this probably implies G has a virtually-Z quotient.
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How to find a v-Z quotient ?

· · · It suffices to find a finite-dim repn with an infinite image.

Theorem (Tits Alternative 1972)

If G ≤ GL(n,F ) is a finitely generated infinite amenable subgroup,
then G is virtually solvable and has a virtually-Z quotient.

Shalom’s idea (2004):
Use reduced cohomology to get a non-trivial
finite-dimensional representation.

Given an orthogonal repn π : G y H (which need not be finite-dim)

b : G → H cocycle
def⇔ b(gt) = b(g) + πgb(t) for ∀g , t ∈ G

e.g., coboundary bv (g) = v − πgv , where v ∈ H
harmonic

def⇔
∑

t b(gt)µ(t) = b(g) for ∀g ∈ G (or just g = e)

e.g., ∀ harm. cob. is zero: v −
∑
µ(g)πgv = 0  v = π(g)v for ∀g .

Z 1(G , π) := {cocycles} is a Hilbert space w.r.t.
‖b‖2 :=

∑
t ‖b(t)‖2µ(t)

H1(G , π) := Z 1(G , π) /B1(G , π) ∼= B1(G , π)⊥ = {harmonic cocycles}
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Shalom’s property HFD

Theorem (Mok ’95, Korevaar–Schoen ’97, Shalom ’99 I )

If G is a f.g. infinite amenable group, then ∃π s.t. H1(G , π) 6= 0.

In general, π decomposes as

π =

almost periodic repn︷ ︸︸ ︷⊕
(fd repns) ⊕

weakly mixing repn︷ ︸︸ ︷
(no nonzero fd subrepns)

Accordingly
b = ba.p. ⊕ bw.m.

Obs: G f.g. amenable ∃b harmonic with ba.p. 6= 0 ⇒ ∃ v-Z quotient.

∵ If |π(G )| =∞, then use Tits Alternative.
If |π(G )| <∞, then ker π ≤f.i. G and b|ker π is a 6= 0 additive character.

Shalom
(2004)

:

v-nilpotent +3 HFD (∀ harmonic cocycle is a.p.)

polynomial growth

Gromov

KS

Oz. ’15

3;
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Groups with HFD

Theorem (Shalom 2004)

Amenable + HFD is a quasi-isometry invariant.

Examples of groups with HFD (Shalom 2004)

Polycyclic groups, BS(1, n), Lamplighter Z o (Z/2), Kazhdan (T),. . .

Conjecture (Gromov ?): Virtual polycyclicity is a QI invariant.(
Malcev–Mostow Theorem: G is v-polycyclic iff it is virtually isomorphic
to a (uniform) lattice in a simply connected solvable Lie group.

)
Non-examples of groups with HFD

Z3 o (Z/2), Z o Z, f.g. (amenable) torsion/simple groups, Fr ,. . .

Open Problem

Z2 o (Z/2), EL(n,R) for nonunital R, . . .
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Criterion for a cocycle to be a.p./w.m. via RW

Xn = s1 · · · sn, si µ-i.i.d
b harmonic, i.e.,

∑
t µ(t)b(gt) = b(g) +

∑
t µ(t)πgb(t) = b(g) for ∀g

⇔ b(Xn) martingale i.e., E[ b(Xn+1) | X1, . . . ,Xn ] = b(Xn)
⇒ E[ ‖b(Xn)‖2 ] = n‖b‖2 for ∀n

Proposition (Martingale Central Limit Theorem)

∀v ∈ H 〈 1√
n
b(Xn), v〉 dist−→ N(0, q(v))

Compute q(v) = limn E[ 〈 1√
n
b(Xn), v〉2 ] = limn

1
n E[ 〈(b ⊗ b)(Xn), v ⊗ v〉 ].

E[(b ⊗ b)(Xn)] = E[ (b ⊗ b)(Xn−1Z ) ] here Z is an indep copy of X1

= E
[

(b ⊗ b)(Xn) + (π ⊗ π)(Xn−1)(b ⊗ b)(Z )
]

= E[(b ⊗ b)(Xn−1)] + T n−1w

= · · · = (1 + T + · · ·+ T n−1)w ,

where T =
∑

g µ(g)(π ⊗ π)(g) ∈ B(H⊗H) a self-adjoint contraction
and w =

∑
t µ(t)(b ⊗ b)(t) ∈ H ⊗H.
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Criterion for a cocycle to be a.p./w.m. via RW

Proposition (Martingale Central Limit Theorem)

∀v ∈ H 〈 1√
n
b(Xn), v〉 dist−→ N(0, q(v))

Compute q(v) = limn E[ 〈 1√
n
b(Xn), v〉2 ] = limn

1
n E[ 〈(b ⊗ b)(Xn), v ⊗ v〉 ].

E[(b ⊗ b)(Xn)] = E[ (b ⊗ b)(Xn−1Z ) ] here Z is an indep copy of X1

= E[(b ⊗ b)(Xn−1)] + T n−1w

= · · · = (1 + T + · · ·+ T n−1)w ,

where T =
∑

g µ(g)(π ⊗ π)(g) ∈ B(H⊗H) a self-adjoint contraction
and w =

∑
t µ(t)(b ⊗ b)(t) ∈ H ⊗H.

q(v) = limn 〈 1n (1 + T + · · ·+ T n−1)w , v ⊗ v〉
= 〈ET ({1})w , v ⊗ v〉 = 〈Sv , v〉,

where ET ({1}) coincides with the orth projection onto (H⊗H)(π⊗π)(G)

and S is the Hilbert–Schmidt op assoc with ET ({1})w ∈ (H⊗H)(π⊗π)(G).
 S is positive, compact, and Adπ(G )-invariant.
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Criterion for a cocycle to be a.p./w.m. via RW, cont’d

Proposition (Martingale Central Limit Theorem)

∀v ∈ H 〈 1√
n
b(Xn), v〉 dist−→ N(0, q(v))

where q(v) = 〈Sv , v〉 for some positive compact Adπ(G )-inv operator S .

Eigenspaces of S with nonzero eigenvalues are π(G )-invariant
finite-dimensional subspaces of H.
λ1, λ2, . . . nonzero eigenvalues; v1, v2, . . . orthonormal eigenvectors

 〈 1√
n
b(Xn), vi 〉 → λ

1/2
i gi , gi i.i.d. N(0, 1)

‖ 1√
n
b(Xn)‖2 =

∑
i |〈

1√
n
b(Xn), vi 〉|2 + (missing part due to ker S)

Theorem (Erschler–O. 2016)

∀ harmonic cocycle b ‖ 1√
n
b(Xn)‖2 dist−→

∑
i λig

2
i + θ

where θ ≥ 0 is the constant s.t.
∑

i λi + θ = ‖b‖2.

b = ba.p. ⊕ bw.m. with ‖ba.p.‖2 =
∑

i λi and ‖bw.m.‖2 = θ.
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Diffusive random walk and HFD

Theorem (Erschler–O. 2016)

‖ 1√
n
b(Xn)‖2 dist−→

∑
i λig

2
i + θ and so b = ba.p. ⇔ θ = 0.

Since ‖b(x)‖ ≤ K |x | for K = maxg∈S ‖b(g)‖, one obtains

Corollary

G has HFD, i.e., b = ba.p. for ∀b harmonic ( ∃ v.-Z quotient), provided
2 ∀c > 0 lim supn→∞ P(|Xn| ≤ c

√
n) > 0

One has 0
EZ⇒ 1 ⇒ 2 ⇒ 3 . How about the opposite implications?

0 Controlled Følner condition: ∃δ, K > 0 such that for infinitely many n

∃F ⊂ Ball(n) satisfying |Nδn(F )| ≤ K |F |
Polycyclic groups as well as poly.gro. groups satisfy this (R. Tessera).

1 ∀c > 0 lim supn→∞ P(maxk=1,...,n |Xk | ≤ c
√
n) > 0

3 ∃C > 0 lim supn→∞ P(|Xn| ≤ C
√
n) > 0

J. Brieussel & T. Zheng (2017): HFD 6⇒ 3 .
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Epilogue: Beyond HFD?

Theorem (Mok ’95, Korevaar–Schoen ’97, Shalom ’99 J )

If G is a f.g. infinite amenable group, then ∃ non-zero harmonic cocycle.

Proof in the case G is amenable and µ∗1/2 exists.

Consider cm(g) := µ∗m/2 − gµ∗m/2 ∈ `2(G ) and bm(g) := cm(g)/‖cm‖.
 ‖cm‖2 =

∑
g µ(g)‖µ∗m/2 − gµ∗m/2‖22 = 2(µ∗m(e)− µ∗m+1(e))

Fix a free ultrafilter U and put bU (g) := [ bm(g) ]m ∈ `2(G )U .
Then, bU is a normalized cocycle, which is moreover harmonic, since
‖
∑

g µ(g)cm(g)‖2 = ‖µ∗m/2 − µ∗m/2+1‖22
= µ∗m(e)− 2µ∗m+1(e) + µ∗m+2(e)� ‖cm‖2.

Q! bU may depends on the choice of an ultrafilter U .

Thus, if G is a f.g. amenable without v-Z quotient, then one has

sup
U

lim
n→∞

E
∣∣∣∣‖bU (Xn)‖2

n
− 1

∣∣∣∣2 = lim
n→∞

lim sup
m→∞

E
∣∣∣∣µ∗m(Xn)− µ∗m+n(e)

µ∗m(e)− µ∗m+n(e)

∣∣∣∣ = 0.
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