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The problem and the answer

Problem (. . ., popularized in Lubotzky’s book 1994, . . .)

Does Aut(Fn) have Kazhdan’s property (T) ?

Aut(Fn) is the noncommutative analogue of GLn(Z).
Fn � Zn abelianization  Aut(Fn)� Aut(Zn) = GLn(Z).

Property (T) inherits to finite-index subgroups and quotient groups.
Any property (T) group that is abelian (amenable) is finite.
 Any f.i. subgroup with property (T) has finite abelianization.

GLn(Z) has property (T) iff n ≥ 3.  Aut(F2) fails property (T).

Aut(F3) also fails property (T) (McCool 1989).

Thm (KNO ’17 for n = 5, KKN ’18 for n > 5, Nitsche ’20 for n = 4)

Aut(Fn) has Kazhdan’s property (T) for n ≥ 4.

This is proved by a computer (but it’s rigorous!).

Prior works by Netzer–Thom, Fujiwara–Kabaya, and Kaluba–Nowak.
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Some reaction

Thm (KNO ’17 for n = 5, KKN ’18 for n > 5, Nitsche ’20 for n = 4)

Aut(Fn) has Kazhdan’s property (T) for n ≥ 4.

This is proved by a computer. 3
∧∧
]o∈ 3

∧∧
]o∈ 3

∧∧
]o∈

Prior works by Netzer–Thom, Fujiwara–Kabaya, and Kaluba–Nowak.

Revista Vea y Lea, January 1962

“But they (= computers) are useless.
They can only give you answers.”

Pablo Picasso, 1968.
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Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and
its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).
 Γ is finitely generated and has finite abelianization.

Definition (for a discrete group Γ)

Γ has (T)
def⇐⇒ ∃S ⊂ Γ finite ∃κ > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − πsv‖.
⇐⇒ Γ is f.g. & ∀S ⊂ Γ generating ∃κ = κ(Γ, S) > 0 s.t. · · ·

The optimal κ(Γ, S) is called the Kazhdan constant for (Γ, S).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite abelian group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
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An application of property (T): Expander graphs

Explicit construction of expanders (Margulis 1973)

Γ = 〈S〉, X a finite set, and Γ y X transitively
 Schreier graph: Vertices = X and Edges = {{x , sx} : x ∈ X , s ∈ S}

is a (|S |, κ(Γ,S)2

2 )-expander. Namely, for ∀A ⊂ X one has

|∂A| ≥ κ(Γ,S)2

2 |A|(1− |A||X |).

 Random walk on X has mixing time O(log |X |).

Product Replacement Algorithm (Celler et al., Lubotzky–Pak 2001)

Aut+(Fn) = 〈R±i ,j , L
±
i ,j〉 ≤index 2 Aut(Fn), where Fn = 〈g1, . . . , gn〉 and

R±i ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gig
±
j , gi+1, . . . , gn),

L±i ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, g
±
j gi , gi+1 . . . , gn).

PRA is a practical algorithm to obtain “random” elements in a given finite
group Λ of rank < n via the PRA random walk

Aut+(Fn) y {(h1, . . . , hn) ∈ Λn : Λ = 〈h1, . . . , hn〉}.
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Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb:
(E. Artin 1927)

f ∈ R(x1, . . . , xd), f ≥ 0 on Rd

=⇒ f =
∑

i g
2
i for some g1, . . . , gk ∈ R(x1, . . . , xd).

R[Γ] real group algebra with the involution (
∑

t αtt)∗ =
∑

t αtt
−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈M+
Γ } positive cone

Here M+
Γ finitely supported positive semidefinite matrices.

B(H)+ := {A = A∗ : 〈Av , v〉 ≥ 0 ∀v ∈ H} = Σ2B(H) psd operators.

∀(π,H) unitary rep’n, π(
∑

i f
∗
i fi ) =

∑
i π(fi )

∗π(fi ) ≥ 0 in B(H).

C∗[Γ] the universal enveloping C∗-algebra of R[Γ].

Laplacian: For Γ = 〈S〉 with S = S−1 finite,

∆ := 1
2

∑
s∈S(1− s)∗(1− s) = |S | −

∑
s∈S s ∈ Σ2R[Γ].

Γ has (T) ⇐⇒ ∃λ > 0 ∀(π,H) Sp(π(∆)) ⊂ {0} ∪ [λ,∞)

⇐⇒ ∃λ > 0 ∀(π,H) π(∆2 − λ∆) ≥ 0 in B(H)

⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

 κ(Γ, S) ≥
√

2λ/|S |
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Algebraic characterization of property (T)

Let Γ = 〈S〉 with S = S−1 finite.

R[Γ] real group algebra with the involution (
∑

t αtt)∗ =
∑

t αtt
−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈M+
Γ }

Here M+
Γ finitely supported positive semidefinite matrices.

∆ := 1
2

∑
s∈S(1− s)∗(1− s) = |S | −

∑
s∈S s ∈ Σ2R[Γ].

C∗[Γ] the universal enveloping C∗-algebra of R[Γ].
Then,

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

 κ(Γ,S) ≥
√

2λ/|S |

Theorem (O 2013)

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in R[Γ]

Stability (Netzer–Thom): It suffices if ∃λ > 0 ∃Θ ∈ Σ2R[Γ] such that

‖∆2 − λ∆−Θ‖1 � λ.
∵ ∆ is an order unit for I [Γ] := ker(R[Γ]→ R).

7 / 12



Semidefinite Programming (SDP)

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ∈ Σ2R[Γ]
⇐⇒ ∃E b Γ ∃λ > 0 s.t. ∆2 − λ∆ ∈ {

∑
x ,y Px ,yx

−1y : P ∈M+
E }

By fixing a finite subset E b Γ, we arrive at the SDP:

minimize −λ
subject to ∆2 − λ∆ =

∑
x ,y∈E Px ,yx

−1y , P ∈M+
E

Due to computer capacity limitation, we almost always take

E := Ball(2) = {e} ∪ S ∪ S2 = supp ∆ ∪ supp ∆2.

 Size of SDP: dimension |E |2 and constraints |E−1E | = |Ball(4)|.
Certification Procedure:
Suppose (λ0,P0) is a hypothetical solution obtained by a computer.
Find P0 ≈ QTQ (with Q1 = 0) and calculate with guaranteed accuracy

r := ‖∆2 − λ0∆−
∑

x ,y (QTQ)x ,y (1− x)∗(1− y)‖1 � λ0.

   Γ has (T) with λ = λ0 − 2r (in the case of E = Ball(2)).

Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Previous implementation results

Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017

Γ = SLn(Z) and S = {I ± Ei ,j : i 6= j}.
n 3 4 5 6 · · ·

|S | = 2n(n − 1) 12 24 40 60 · · ·
λ(Γ,S) > .27 1.3 2.6 · · ·

Γ = Aut+(Fn) and S = {L±i ,j ,R
±
i ,j}.

n 3 4 5 6 · · ·
|S | = 4n(n − 1) 24 48 80 120 · · ·
λ(Γ,S) > · · ·

A few more groups that are known to have property (T).

So, we needed (1) some speed-up of the algorithm and (2) an infinite
ladder to climb up the sequence n = 3, 4, 5, . . ..
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Speed-up by Invariant SDP

Σ := {σ ∈ Aut(Γ) : σ(S) = S}
∼= S(n) n (Z/2)⊕n for Γ = Aut+(Fn).

When Σ is large, we can exploit it and arrive at the Σ-invariant SDP:

minimize −λ
subject to (∆2 − λ∆)t =

∑
x ,y∈E
x−1y=t

Px ,y , ∀t ∈ E−1E/Σ, P ∈ (MΣ
E )+

For n = 5, one has dimMBall(2) = 46412 and |Ball(4)| = 11 154 301,

while dimMΣ
Ball(2) = 13 232 with 36 blocks and |Ball(4)/Σ| = 7 229.

Results (KNO 2017):
Aut+(F4): No result.  Probably no solution in Ball(2).

Aut+(F5): ! f f ! YES!!! with λ > 1.2.
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Climbing up the sequence n = 5, 6, 7, . . . (KKN 2018)

Γn := Aut+(Fn), Sn := {R±i ,j , L
±
i ,j : i 6= j}, En := {{i , j} : i 6= j}

Want to show ∆n =
∑

s∈Sn 1− s satisfies ∆2
n − λn∆n ≥ 0.

∆n =
∑

e∈En
∆e,

∆2
n =

∑
e ∆2

e +
∑

e∼f ∆e∆f +
∑

e⊥f ∆e∆f

=: Sqn + Adjn + Opn .

Sqn and Opn are positive, but Adjn may not.
For n > m,∑

σ∈S(n) σ(∆m) = m(m − 1) · (n − 2)! ·∆n∑
σ∈S(n) σ(Adjm) = m(m − 1)(m − 2) · (n − 3)! · Adjn∑
σ∈S(n) σ(Opm) = m(m − 1)(m − 2)(m − 3) · (n − 4)! ·Opn

Trial and error on the computer has confirmed

Adj5 +αOp5−ε∆5 ≥ 0

with α = 2 and ε = 0.13. It follows that

0 ≤ 60(n−3)!
(
Adjn + 2α

n−3 Opn−n−2
3 ε∆n

)
≤ 60(n−3)!

(
∆2

n− n−2
3 ε∆n

)
,

provided 2α/(n − 3) ≤ 1.  κ(Aut+(Fn),Sn) ≥
√

2λn/|Sn| ≥
√
ε/6n
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Simplifying SDP by duality (Nitsche 2020)

Recall ∆ = |S | −
∑

s∈S s ∈ I [Γ] = ker(R[Γ]→ R).
If Γ does not have (T), (R∆2 −∆)∩Σ2I [Γ] = ∅, then by the HB theorem,
∃ a positive linear functional ϕ on I [Γ] with ϕ(∆) = 1 and ϕ(∆2) = 0.
To prove Γ has (T), it suffices to show −∆ ∈ Σ2I [Γ] + R∆2 + kerϕ.
 If one finds many elements in kerϕ, it makes SDP easier.

〈f , g〉 := ϕ(f ∗g) makes I [Γ] a (pre-)Hilbert space H on which Γ acts unitary.
One has ‖1− x‖2 = ϕ(2− x + x∗) = 2ϕ(1− x) and ‖∆‖2 = ϕ(∆2) = 0.

 This amounts to that the 1-cocycle x 7→ 1− x ∈ H is harmonic.
Observation (Nitsche):
Assume that Γ has finite abelianization ( HΓ = 0).
For any t ∈ Γ with tSt−1 = S , one has x(1− t) ∈ kerϕ for ∀x .

∵ ∆(1− t) = (1− t)∆ = 0 in H, which implies 1− t = 0 in H.
E.g., t = Li ,jL

−1
j ,i Ri ,j = (gi 7→ gj ; gj 7→ g−1

i ) in Aut(Fn).

Theorem (Nitsche 2020)

Aut+(F4) has property (T).
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