Kazhdan's property (T) and semidefinite programming

Narutaka OZAWA (小澤登高)

RIMS, Kyoto University

The 6th KTGU Mathematics Workshop for Young Researchers 2021 February 15

- N. Ozawa; About the Connes Embedding Conjecture. Jpn. J. Math., **8** (2013), 147–183. arXiv:1212.1700
- N. Ozawa; Noncommutative real algebraic geometry of Kazhdan's property (T). J. Inst. Math. Jussieu, 15 (2016), 85–90. arxiv:1312.5431
- M. Kaluba, P. W. Nowak, and N. Ozawa; Aut(F₅) has property (T). Math. Ann., **375** (2019), 1169–1191. arXiv:1712.07167
- M. Kaluba, D. Kielak, and P. W. Nowak; On property (T) for Aut(F_n) and SL_n(ℤ). Ann. of Math. (2), to appear. arXiv:1812.03456
- M. Nitsche; Computer proofs for Property (T), and SDP duality. Preprint. arXiv:2009.05134

The problem and the answer

Problem (..., popularized in Lubotzky's book 1994, ...)

Does $Aut(\mathbf{F}_n)$ have Kazhdan's property (T)?

- Aut(\mathbf{F}_n) is the noncommutative analogue of $\operatorname{GL}_n(\mathbb{Z})$. $\mathbf{F}_n \twoheadrightarrow \mathbb{Z}^n$ abelianization $\rightsquigarrow \operatorname{Aut}(\mathbf{F}_n) \twoheadrightarrow \operatorname{Aut}(\mathbb{Z}^n) = \operatorname{GL}_n(\mathbb{Z})$.
- Property (T) inherits to finite-index subgroups and quotient groups. Any property (T) group that is abelian (amenable) is finite.
 ~ Any f.i. subgroup with property (T) has finite abelianization.
- $GL_n(\mathbb{Z})$ has property (T) iff $n \ge 3$. \rightsquigarrow $Aut(\mathbf{F}_2)$ fails property (T).
- Aut(**F**₃) also fails property (T) (McCool 1989).

Thm (KNO '17 for n = 5, KKN '18 for n > 5, Nitsche '20 for n = 4)

Aut(\mathbf{F}_n) has Kazhdan's property (T) for $n \ge 4$.

- This is proved by a computer (but **it's rigorous!**).
- Prior works by Netzer–Thom, Fujiwara–Kabaya, and Kaluba–Nowak.

Some reaction

Thm (KNO '17 for n = 5, KKN '18 for n > 5, Nitsche '20 for n = 4)

Aut(\mathbf{F}_n) has Kazhdan's property (T) for $n \ge 4$.

- This is proved by a computer. $\stackrel{\circ}{\rightarrow} \stackrel{\circ}{\rightarrow} \stackrel{\circ}$
- Prior works by Netzer-Thom, Fujiwara-Kabaya, and Kaluba-Nowak.

"But they (= computers) are useless. They can only give you answers." Pablo Picasso, 1968.

Revista Vea y Lea, January 1962

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z}), n \geq 3$) have property (T). $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Definition (for a discrete group Γ)

 $\begin{array}{l} \Gamma \text{ has }(\mathsf{T}) \stackrel{\text{def}}{\Longleftrightarrow} \exists S \subset \Gamma \text{ finite } \exists \kappa > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi_{s}v\|. \\ \Leftrightarrow \Gamma \text{ is f.g. } \& \forall S \subset \Gamma \text{ generating } \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \cdots \\ \text{The optimal } \kappa(\Gamma, S) \text{ is called the Kazhdan constant for } (\Gamma, S). \end{array}$

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite abelian group) does not have property (T).
 - $\because \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z}) \text{ is asymp. } \mathbb{Z} \text{-invariant, but } \ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}.$

An application of property (T): Expander graphs

Explicit construction of expanders (Margulis 1973)

$$\begin{split} & \Gamma = \langle S \rangle, X \text{ a finite set, and } \Gamma \frown X \text{ transitively} \\ & \rightsquigarrow \text{ Schreier graph: Vertices} = X \text{ and Edges} = \{\{x, sx\} : x \in X, \ s \in S\} \\ & \text{ is a } (|S|, \frac{\kappa(\Gamma, S)^2}{2})\text{-expander. Namely, for } \forall A \subset X \text{ one has} \\ & |\partial A| \geq \frac{\kappa(\Gamma, S)^2}{2} |A| (1 - \frac{|A|}{|X|}). \end{split}$$

 \rightsquigarrow Random walk on X has mixing time $O(\log |X|)$.

Product Replacement Algorithm (Celler et al., Lubotzky–Pak 2001)

$$\operatorname{Aut}^{+}(\mathbf{F}_{n}) = \langle R_{i,j}^{\pm}, L_{i,j}^{\pm} \rangle \leq_{\operatorname{index 2}} \operatorname{Aut}(\mathbf{F}_{n}), \text{ where } \mathbf{F}_{n} = \langle g_{1}, \ldots, g_{n} \rangle \text{ and} \\ R_{i,j}^{\pm} \colon (g_{1}, \ldots, g_{n}) \mapsto (g_{1}, \ldots, g_{i-1}, g_{i}g_{j}^{\pm}, g_{i+1}, \ldots, g_{n}), \\ L_{i,j}^{\pm} \colon (g_{1}, \ldots, g_{n}) \mapsto (g_{1}, \ldots, g_{i-1}, g_{j}^{\pm}g_{i}, g_{i+1}, \ldots, g_{n}).$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

 $\operatorname{Aut}^+(\mathbf{F}_n) \frown \{(h_1,\ldots,h_n) \in \Lambda^n : \Lambda = \langle h_1,\ldots,h_n \rangle\}.$

Noncommutative real algebraic geometry of property (T)

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \ldots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \ldots, g_k \in \mathbb{R}(x_1, \ldots, x_d)$.

 $\mathbb{R}[\Gamma]$ real group algebra with the involution $(\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}$. $\Sigma^2 \mathbb{R}[\Gamma] := \{ \sum_i f_i^* f_i \} = \{ \sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+ \} \text{ positive cone}$ Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices. • $\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$ psd operators. • $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) > 0$ in $\mathbb{B}(\mathcal{H})$. • $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$. **Laplacian:** For $\Gamma = \langle S \rangle$ with $S = S^{-1}$ finite, $\Delta := \frac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s \in \Sigma^2 \mathbb{R}[\Gamma].$ Γ has $(\mathsf{T}) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \mathsf{Sp}(\pi(\Delta)) \subset \{\mathsf{0}\} \cup [\lambda, \infty)$ $\iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \pi(\Delta^2 - \lambda \Delta) \geq 0 \text{ in } \mathbb{B}(\mathcal{H})$ 0 $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $C^*[\Gamma]$ $t^2 - \lambda t > 0$ $\rightsquigarrow \kappa(\Gamma, S) \geq \sqrt{2\lambda/|S|}$

6/12

Algebraic characterization of property (T)

Let
$$\Gamma = \langle S \rangle$$
 with $S = S^{-1}$ finite.

 $\begin{aligned} \mathbb{R}[\Gamma] \quad \text{real group algebra with the involution } (\sum_t \alpha_t t)^* &= \sum_t \alpha_t t^{-1}. \\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+ \} \end{aligned}$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

$$\Delta := rac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$. Then,

T has (T)
$$\iff \exists \lambda > 0$$
 such that $\Delta^2 - \lambda \Delta \ge 0$ in $C^*[\Gamma]$
 $\rightsquigarrow \kappa(\Gamma, S) \ge \sqrt{2\lambda/|S|}$

Theorem (O 2013)

 Γ has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $\mathbb{R}[\Gamma]$

Stability (Netzer-Thom): It suffices if $\exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma]$ such that $\|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda$. $\therefore \Delta$ is an order unit for $I[\Gamma] := \ker(\mathbb{R}[\Gamma] \to \mathbb{R})$.

7/12

Semidefinite Programming (SDP)

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma] \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+\} \end{array}$$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

minimize
$$-\lambda$$

subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

• Due to computer capacity limitation, we almost always take

$$\mathsf{E}:=\mathsf{Ball}(2)=\{\mathsf{e}\}\cup \mathsf{S}\cup\mathsf{S}^2=\mathsf{supp}\,\Delta\cup\mathsf{supp}\,\Delta^2\}$$

→ Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$. Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer. Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate with guaranteed accuracy $r := \|\Delta^2 - \lambda_0 \Delta - \sum_{x,y} (Q^T Q)_{x,y} (1-x)^* (1-y)\|_1 \ll \lambda_0.$

↔ Γ has (T) with $\lambda = \lambda_0 - 2r$ (in the case of E = Ball(2)).

• Solving SDP is computationally hard, but certifying (T) is relatively easy.

Previous implementation results

Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017 • $\Gamma = SL_n(\mathbb{Z})$ and $S = \{I \pm E_{i,j} : i \neq j\}$.

п	3	4	5	6	
S =2n(n-1)	12	24	40	60	
$\lambda({\sf \Gamma},{\cal S})>$.27	1.3	2.6		

• $\Gamma = \operatorname{Aut}^+(\mathbf{F}_n)$ and $S = \{L_{i,j}^{\pm}, R_{i,j}^{\pm}\}.$

n	3	4	5	6	
S = 4n(n-1)	24	48	80	120	
$\lambda(\Gamma, S) >$					

• A few more groups that are known to have property (T).

So, we needed (1) some speed-up of the algorithm and (2) an infinite ladder to climb up the sequence n = 3, 4, 5, ...

Speed-up by Invariant SDP

$$\Sigma := \{ \sigma \in \operatorname{Aut}(\Gamma) : \sigma(S) = S \}$$

$$\cong \mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \text{ for } \Gamma = \operatorname{Aut}^+(\mathbf{F}_n).$$

When Σ is large, we can exploit it and arrive at the Σ -invariant SDP:

$$\begin{array}{ll} \text{minimize} & -\lambda \\ \text{subject to} & (\Delta^2 - \lambda \Delta)_t = \sum\limits_{\substack{x,y \in E \\ x^{-1}y = t}} P_{x,y}, \, \forall t \in E^{-1}E/\Sigma, \quad P \in (\mathbb{M}_E^{\Sigma})^+ \end{array}$$

- For n = 5, one has dim M_{Ball(2)} = 4641² and |Ball(4)| = 11154301, while dim M^Σ_{Ball(2)} = 13232 with 36 blocks and |Ball(4)/Σ| = 7229.
 Results (KNO 2017):
 Aut⁺(F₄): ≅ ≅ ≅ No result. → Probably no solution in Ball(2).
- Aut⁺(\mathbf{F}_5): $! \odot \land \odot \land \odot !$ **YES**!!! with $\lambda > 1.2$.

Climbing up the sequence $n = 5, 6, 7, \dots$ (KKN 2018)

$$\begin{split} \Gamma_n &:= \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n := \{R_{i,j}^{\pm}, \ L_{i,j}^{\pm} : i \neq j\}, \quad \operatorname{E}_n := \{\{i, j\} : i \neq j\} \\ \text{Want to show } \Delta_n &= \sum_{s \in S_n} 1 - s \text{ satisfies } \Delta_n^2 - \lambda_n \Delta_n \geq 0. \\ \Delta_n &= \sum_{e \in \operatorname{E}_n} \Delta_e, \\ \Delta_n^2 &= \sum_e \Delta_e^2 + \sum_{e \sim f} \Delta_e \Delta_f + \sum_{e \perp f} \Delta_e \Delta_f \\ &=: \ \mathbf{Sq}_n \ + \ \mathbf{Adj}_n \ + \ \mathbf{Op}_n. \\ \bullet \ \mathbf{Sq}_n \text{ and } \mathbf{Op}_n \text{ are positive, but } \mathbf{Adj}_n \text{ may not.} \end{split}$$

For n > m,

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \operatorname{Adj}_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \operatorname{Op}_n$$

Trial and error on the computer has confirmed

$$\operatorname{\mathsf{Adj}}_5 + lpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \ge 0$$

with $\alpha = 2$ and $\varepsilon = 0.13$. It follows that $0 \le 60(n-3)! \left(\operatorname{Adj}_n + \frac{2\alpha}{n-3} \operatorname{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n \right) \le 60(n-3)! \left(\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n \right),$ provided $2\alpha/(n-3) \le 1$. $\rightsquigarrow \kappa(\operatorname{Aut}^+(\mathbf{F}_n), S_n) \ge \sqrt{2\lambda_n/|S_n|} \ge \sqrt{\varepsilon/6n}$ 11/12

Simplifying SDP by duality (Nitsche 2020)

Recall $\Delta = |S| - \sum_{s \in S} s \in I[\Gamma] = \ker(\mathbb{R}[\Gamma] \to \mathbb{R}).$ If Γ does not have (T), $(\mathbb{R}\Delta^2 - \Delta) \cap \Sigma^2 I[\Gamma] = \emptyset$, then by the HB theorem, \exists a positive linear functional φ on $I[\Gamma]$ with $\varphi(\Delta) = 1$ and $\varphi(\Delta^2) = 0.$ To prove Γ has (T), it suffices to show $-\Delta \in \Sigma^2 I[\Gamma] + \mathbb{R}\Delta^2 + \ker \varphi.$

 \rightsquigarrow If one finds many elements in ker φ , it makes SDP easier.

 $\langle f,g \rangle := \varphi(f^*g)$ makes $I[\Gamma]$ a (pre-)Hilbert space \mathcal{H} on which Γ acts unitary. One has $||1-x||^2 = \varphi(2-x+x^*) = 2\varphi(1-x)$ and $||\Delta||^2 = \varphi(\Delta^2) = 0$.

→ This amounts to that the 1-cocycle $x \mapsto 1 - x \in \mathcal{H}$ is harmonic. Observation (Nitsche):

Assume that Γ has finite abelianization ($\rightsquigarrow \mathcal{H}^{\Gamma} = \mathbf{0}$). For any $t \in \Gamma$ with $tSt^{-1} = S$, one has $x(1 - t) \in \ker \varphi$ for $\forall x$.

 $\therefore \Delta(1-t) = (1-t)\Delta = 0 \text{ in } \mathcal{H}, \text{ which implies } 1-t = 0 \text{ in } \mathcal{H}.$ E.g., $t = L_{i,j}L_{j,i}^{-1}R_{i,j} = (g_i \mapsto g_j; g_j \mapsto g_i^{-1}) \text{ in } \operatorname{Aut}(\mathbf{F}_n).$

Theorem (Nitsche 2020)

Aut⁺(\mathbf{F}_4) has property (T).