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Abstract: One of the best known theorem of Masamichi is the Con-
ditional Expectation Theorem proved in [M. Takesaki, Conditional
expectations in von Neumann algebras. JFA 1972] about normal
conditional expectations. We prove the analogue for non-normal
conditional expectations. Based on a joint work with J. Bannon and

A. Marrakchi in CMP 2020.
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Happy 88 (&5 ) to Masamichi!

88 /o0



Conditional Expectation

Let N C M be von Neumann algebras.
Perhaps, we do not want to study the inclusion like CL® N C M ® B(¢>).

Definition (Umegaki 1954 (& Nakamura, Turumaru,...))

A conditional expectation of M onto N is a unital completely positive map
E: M — N which satisfies E(axb) = aE(x)b for x € M and a,b € N.

Tomiyama '59: If N C M admits a normal c.e., then Type(N) < Type(M).

Dixmier '563, Umegaki '54: Any N C M with a faithful normal tracial state

7 admits a normal c.e. In fact, it is given by E: L2(M,7) — L2(N,7|n).

1 Thisis no longer true for a general f.n. state. Takesaki's theorem gives
an appropriate generalization.

Theorem (Takesaki 1972)
N C M admits a normal c.e. <= yL2(N)y C nL2(M)p




Tomita—Takesaki Theory (1967, 1970~)

¢ a f.n. state (weight) on N )
~ Spi xEy =+ x*Ey has polar decomposition S, = JyA, on L2(N, ¢)
modular conjugation J, satisfies J¢NJ¢, =N
A defines modular automorphism oy 2(x) = AtxA~it on N
characterized by KMS condition

poor =¢
Vx,y 3F € A(S) F(it) = ¢(0f(x)y) and F(1 + it) = ¢(yof(x))
Here A(S) analytic functions on S = {Rez < 1} that are continuous on S

This gives the “right action” of N on L?(N, ¢);
ol s NP 3 X s Jyx*Jy, € B(L?(N, ¢))
which makes L2(N, #) an N-N bimodule;
x¢y = ma ()T (YRS (= xao?, ,(y)Es for & = aky).
In fact the N-N blmodule L2(N, ¢) is indep. of ¢ (Araki, Connes '74).

So, we simply denote it by L2(N) and call it the standard form,
an: N © NP — B(L2(N)).
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Conditional expectation theorem

If N C M admits a normal c.e., then Tomita—Takesaki theories for (N, ¢)
and (M, ¢ o E) are compatible.

Theorem (Takesaki 1972)

N C M admits a normal c.e. <= yL2(N)y C nL2(M)p

Easy direction (<): For the orthogonal projection e onto L%(N), put
E(x) := exe € B(L2(N)y) = N.
Hard direction (=): yL2(N,¢)n C nL2(M, ¢ o E)p. O

What about the non-normal case?
E.g., If G ~ M and G is amenable, then 3 c.e. of M onto ME.

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)
N C M admits a c.e. < yL2(N)y = NL2(M)y

The proof relies on complex interpolation theory (a la Pisier) and
Tomita—Takesaki theory (a la Haagerup).
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Weak containment and (relative) injectivity

A von Neumann algebra N C B(¢,) is injective if 3 c.e. of B(¢2) onto N.
Hakeda—Tomiyama, Sakai '67: L(I") is injective <= T is amenable.
Connes '76, Wassermann '77: N is injective <= N is semi-discrete.

A von Neumann algebra N is semi-discrete if
B(L2(N) & L2(N)) D N @ N°° ™ B(L2(N))
is continuous. In other words, yL2(N)y =< nL2(N) & L2(N)y.
Note: NP 5 x°P ¢ x* € N C B(7).
nHy an N-N bimodule, 7: N©® NP — B(H), x&y = myu(x ® y°P)¢

NHN 2 Ky EVF e NVEeH Ve > 0T, e K

st. (x€y, &) ~e ) i(xmiy,mi) Vx,y € F
& C*(me(N @ N°P)) — C*(my (N © N°P)) continuous

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

N C M admits a c.e. <= nL2(N)y = nL2(M)y

i.e., relative injectivity is equivalent to relative semi-discreteness
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Corollaries

A < T co-amenable & /A admits l-invariant mean
<:> P
& LA < LT co-amenable
N C M is co-injective &M N admits a cee.
< M C (M, en) admits a c.e. (provided Jep)
co-semi-discrete & MLZMpy = mLPM @y L2 My (= L2(M, epn))

Corollary (Popa 1986, Anantharaman-Delaroche 1995, BMO 2020)

co-injectivity < co-semi-discreteness

We say it co-amenable.

N C M co-amenable and N ¢ P C M = P C M co-amenable \

I N C P may not! (Monod-Popa 2003)




Operator space theory and the operator Hilbert space

Row := M x the row Hilbert operator space

k
I35 % @ rillsenyerowe = 1[0+ X g w(mien)) = || iy xix|[1/2
Coly := My 1 the column Hilbert operator space
k k
H Zi:l Xj & CI'HB(Zg)@Colk = T = H Z,-zl X,?inHl/2

Operator space duality (Effros—Ruan & Blecher—Paulsen): Colx = Row},
OHy the operator Hilbert space (Pisier 1993)

K
1301 % ® eillpyson, = | Sy xi @ X /z2®ez)

Unique o.s. such that OHy =2 ¢ (isometric) and OH, = OHj, (c.i.)
~» complex interpolation formula OHy = (Rowyg, Colk)1 /5.

For (x1,...,xk) € N¥, define ®: T — 37K | x T
1905 = 10X [verow, and (Sl a iy = 106, Xl lwec,
Theorem (Pisier 1995 and Haagerup)

2 2
Imn(E % ® ) aznyy = 1952y = 10315172

*.» Factorization thm for vN algebra valued analytic functions and so on.



Proof of Theorem

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)
N C M admits a c.e. <= nL2(N)y = nL2(M)y

(«<): Extend the x-hom C*(mp (N ® N°P)) — C*(mn(N © N°P)) to

a u.c.p. map ®: C*(mp(M © N°P)) — B(L?(N)) and E := ®|p.
(=): Since N C M admits a c.e., the corresp. contraction

(N @ Rowg, N ® Colk)1 /2 C (M ® Rowy, M ® Colk)y /2
is isometric, i.e., for any x; € N C M,
|32 xi @ Xi)llsez(vy) = llmm (D2 xi @ Xi)llB(e2(my)-
By HB, for any unit vector £ in L2(N), 3 a state ¢¢ on B(L?(M)) s.t.
Vx e N (x(x*,&) < Ye(mm(x @ X)).

They must be equal by maximality of the self-polar form (Connes,

Woronowicz '74). Moreover, (x{y*, &) = v¢(mm(x ® ¥)) by polarization.
This implies yL2(N)y = yL2(M)p. O
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