(Non-normal) Conditional expectations in von Neumann algebras

Narutaka Ozawa (小澤登高)

RIMS, Kyoto University
Masamichifest
2021 August 26

Abstract: One of the best known theorem of Masamichi is the Conditional Expectation Theorem proved in [M. Takesaki, Conditional expectations in von Neumann algebras. JFA 1972] about *normal* conditional expectations. We prove the analogue for *non-normal* conditional expectations. Based on a joint work with J. Bannon and A. Marrakchi in CMP 2020.

1 / 8

Happy 88 (米壽) to Masamichi!

Conditional Expectation

Let $N \subset M$ be von Neumann algebras.

Perhaps, we do not want to study the inclusion like $\mathbb{C}1 \otimes N \subset M \otimes \mathbb{B}(\ell_2)$.

Definition (Umegaki 1954 (& Nakamura, Turumaru,...))

A conditional expectation of M onto N is a unital completely positive map $E: M \to N$ which satisfies E(axb) = aE(x)b for $x \in M$ and $a, b \in N$.

Tomiyama '59: If $N \subset M$ admits a normal c.e., then Type(N) \leq Type(M).

Dixmier '53, Umegaki '54: Any $N \subset M$ with a faithful normal tracial state τ admits a normal c.e. In fact, it is given by $E: L^2(M,\tau) \to L^2(N,\tau|_N)$.

This is no longer true for a general f.n. state. Takesaki's theorem gives an appropriate generalization.

Theorem (Takesaki 1972)

 $N \subset M$ admits a normal c.e. $\iff {}_{N}L^{2}(N)_{N} \subset {}_{N}L^{2}(M)_{N}$

Tomita–Takesaki Theory (1967, 1970 \sim)

 ϕ a f.n. state (weight) on N

 $ightharpoonup S_{\phi} \colon x\xi_{\phi} \mapsto x^*\xi_{\phi}$ has polar decomposition $\bar{S}_{\phi} = J_{\phi}\Delta_{\phi}$ on $L^2(N,\phi)$ modular conjugation J_{ϕ} satisfies $J_{\phi}NJ_{\phi} = N'$

 Δ_{ϕ} defines modular automorphism $\sigma_t^{\phi}(x) = \Delta^{it} x \Delta^{-it}$ on N characterized by KMS condition

$$\begin{array}{l} \phi \circ \sigma_t^\phi = \phi \\ \forall x, y \; \exists F \in \mathcal{A}(\mathbb{S}) \; F(it) = \phi(\sigma_t^\phi(x)y) \; \text{and} \; F(1+it) = \phi(y\sigma_t^\phi(x)) \end{array}$$

Here $A(\mathbb{S})$ analytic functions on $\mathbb{S}=\{\operatorname{\mathsf{Re}} z<1\}$ that are continuous on $\bar{\mathbb{S}}$

This gives the "right action" of N on $L^2(N, \phi)$;

$$\pi_{\phi}^{\mathsf{op}} \colon \mathsf{N}^{\mathsf{op}}
i x^{\mathsf{op}} \mapsto J_{\phi} x^* J_{\phi} \in \mathbb{B}(L^2(\mathsf{N}, \phi))$$

which makes $L^2(N,\phi)$ an N-N bimodule;

$$x\xi y := \pi_{\phi}(x)\pi_{\phi}^{\mathsf{op}}(y^{\mathsf{op}})\xi \ (= x\mathsf{a}\sigma_{-i/2}^{\phi}(y)\xi_{\phi} \ \text{for} \ \xi = \mathsf{a}\xi_{\phi}).$$

In fact the *N-N* bimodule $L^2(N,\phi)$ is indep. of ϕ (Araki, Connes '74).

So, we simply denote it by $L^2(N)$ and call it the *standard form*,

$$\pi_{\mathsf{N}} \colon \mathsf{N} \odot \mathsf{N}^{\mathsf{op}} \to \mathbb{B}(\mathsf{L}^2(\mathsf{N})).$$

Conditional expectation theorem

If $N \subset M$ admits a normal c.e., then Tomita–Takesaki theories for (N, ϕ) and $(M, \phi \circ E)$ are compatible.

Theorem (Takesaki 1972)

$$N \subset M$$
 admits a normal c.e. $\iff {}_NL^2(N)_N \subset {}_NL^2(M)_N$

Hard direction (\Rightarrow) : $NL^2(N,\phi)_N \subset NL^2(M,\phi \circ E)_N$.

Easy direction (\Leftarrow): For the orthogonal projection e onto $L^2(N)$, put $E(x) := exe \in \mathbb{B}(L^2(N)_N) = N$.

E.g., If $G \curvearrowright M$ and G is amenable, then \exists c.e. of M onto M^G .

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

$$N \subset M$$
 admits a c.e. $\iff_N L^2(N)_N \leq_N L^2(M)_N$

The proof relies on complex interpolation theory (à la Pisier) and Tomita—Takesaki theory (à la Haagerup).

Weak containment and (relative) injectivity

A von Neumann algebra $N \subset \mathbb{B}(\ell_2)$ is *injective* if \exists c.e. of $\mathbb{B}(\ell_2)$ onto N. Hakeda–Tomiyama, Sakai '67: $L(\Gamma)$ is injective $\iff \Gamma$ is amenable.

Connes '76, Wassermann '77: N is injective $\iff N$ is semi-discrete.

A von Neumann algebra N is semi-discrete if

$$\mathbb{B}(L^2(N) \bar{\otimes} L^2(N)) \supset N \otimes N^{\text{op}} \xrightarrow{\pi_N} \mathbb{B}(L^2(N))$$
 is continuous. In other words, ${}_NL^2(N)_N \preceq {}_NL^2(N) \bar{\otimes} L^2(N)_N$.

Note: $N^{\text{op}} \ni x^{\text{op}} \leftrightarrow \overline{x}^* \in \overline{N} \subset \mathbb{B}(\overline{\mathcal{H}})$.

$$_{N}\mathcal{H}_{N}$$
 an N - N bimodule, $\pi_{\mathcal{H}} \colon N \odot N^{\mathrm{op}} \to \mathbb{B}(\mathcal{H}), \quad x\xi y := \pi_{\mathcal{H}}(x \otimes y^{\mathrm{op}})\xi$
 $_{N}\mathcal{H}_{N} \preceq {}_{N}\mathcal{K}_{N} \stackrel{\mathsf{def}}{\Leftrightarrow} \forall F \in N \ \forall \xi \in \mathcal{H} \ \forall \varepsilon > 0 \ \exists \eta_{1}, \dots, \eta_{k} \in \mathcal{K}$

s.t.
$$\langle x\xi y, \xi \rangle \approx_{\varepsilon} \sum_{i} \langle x\eta_{i}y, \eta_{i} \rangle \ \forall x, y \in F$$

$$\Leftrightarrow \mathrm{C}^*(\pi_{\mathcal{K}}(\mathsf{N}\odot\mathsf{N}^\mathsf{op})) \to \mathrm{C}^*(\pi_{\mathcal{H}}(\mathsf{N}\odot\mathsf{N}^\mathsf{op}))$$
 continuous

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

$$N\subset M$$
 admits a c.e. $\iff {}_NL^2(N)_N\preceq {}_NL^2(M)_N$

i.e., relative injectivity is equivalent to relative semi-discreteness

Corollaries

 $\Lambda \leq \Gamma$ co-amenable $\stackrel{\text{def}}{\Leftrightarrow} \Gamma/\Lambda$ admits $\Gamma\text{-invariant}$ mean

 $\Leftrightarrow \cdots \\ \Leftrightarrow L\Lambda \leq L\Gamma \text{ co-amenable}$

 $N \subset M$ is co-injective $\stackrel{\mathsf{def}}{\Leftrightarrow} M' \subset N'$ admits a c.e.

 $\Leftrightarrow M \subset \langle M, e_N \rangle$ admits a c.e. (provided $\exists e_N$)

co-semi-discrete $\stackrel{\text{def}}{\Leftrightarrow} {}_M L^2 M_M \preceq {}_M L^2 M \bar{\otimes}_N L^2 M_M \ (= L^2 \langle M, e_N \rangle)$

Corollary (Popa 1986, Anantharaman-Delaroche 1995, BMO 2020)

co-injectivity \Leftrightarrow co-semi-discreteness

We say it co-amenable.

Corollary

 $N \subset M$ co-amenable and $N \subset P \subset M \Rightarrow P \subset M$ co-amenable

 $\triangle N \subset P$ may not! (Monod–Popa 2003)

Operator space theory and the operator Hilbert space

 $\operatorname{Row}_k := \mathbb{M}_{1,k}$ the row Hilbert operator space

$$\|\sum_{i=1}^k x_i \otimes r_i\|_{\mathbb{B}(\ell_2) \otimes \mathrm{Row}_k} = \|\left[x_1 \cdots x_k\right]\|_{\mathbb{M}_{1,k}(\mathbb{B}(\ell_2))} = \|\sum_{i=1}^k x_i x_i^*\|^{1/2}$$

$$\operatorname{Col}_k := \mathbb{M}_{k,1}$$
 the column Hilbert operator space $\|\sum_{i=1}^k x_i \otimes c_i\|_{\mathbb{B}(\ell_2) \otimes \operatorname{Col}_k} = \cdots = \|\sum_{i=1}^k x_i^* x_i\|^{1/2}$

Operator space duality (Effros–Ruan & Blecher–Paulsen): $\operatorname{Col}_k = \overline{\operatorname{Row}_k^*}$

OH_k the operator Hilbert space (Pisier 1993)
$$\|\sum_{i=1}^k x_i \otimes e_i\|_{\mathbb{B}(\ell_2) \otimes \mathrm{OH}_k} = \|\sum_{i=1}^k x_i \otimes \bar{x}_i\|_{\mathbb{B}(\ell_2 \otimes \bar{\ell}_2)}^{1/2}$$

Unique o.s. such that $\mathrm{OH}_k\cong\ell_2^k$ (isometric) and $\mathrm{OH}_k\cong\overline{\mathrm{OH}_k^*}$ (c.i.) \leadsto complex interpolation formula $\mathrm{OH}_k=(\mathrm{Row}_k,\mathrm{Col}_k)_{1/2}.$

For
$$(x_1, \ldots, x_k) \in N^k$$
, define $\Phi \colon T \mapsto \sum_{i=1}^k x_i T x_i^*$.

For $(x_1, ..., x_k) \in N^n$, define $\Phi \colon I \mapsto \sum_{i=1}^n x_i I x_i$. $\|\Phi\|_{\mathbb{B}(N)}^{1/2} = \|(x_1, ..., x_k)\|_{N \otimes \text{Row}_k} \text{ and } \|\Phi\|_{\mathbb{B}(L^1(N))}^{1/2} = \|(x_1, ..., x_k)\|_{N \otimes \text{Col}_k}$

Theorem (Pisier 1995 and Haagerup)

$$\|\pi_{\mathcal{N}}(\sum x_i \otimes \bar{x}_i)\|_{\mathbb{B}(L^2(\mathcal{N}))}^{1/2} = \|\Phi\|_{\mathbb{B}(L^2(\mathcal{N}))}^{1/2} = \|(x_1,\ldots,x_k)\|_{1/2}$$

: Factorization thm for vN algebra valued analytic functions and so on.

Proof of Theorem

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

$$N \subset M$$
 admits a c.e. $\iff_N L^2(N)_N \leq_N L^2(M)_N$

- (⇐): Extend the *-hom $C^*(\pi_M(N \odot N^{\operatorname{op}})) \to C^*(\pi_N(N \odot N^{\operatorname{op}}))$ to a u.c.p. map $\Phi \colon C^*(\pi_M(M \odot N^{\operatorname{op}})) \to \mathbb{B}(L^2(N))$ and $E := \Phi|_M$.
- (⇒): Since $N \subset M$ admits a c.e., the corresp. contraction $(N \otimes \operatorname{Row}_k, N \otimes \operatorname{Col}_k)_{1/2} \subset (M \otimes \operatorname{Row}_k, M \otimes \operatorname{Col}_k)_{1/2}$ is isometric, i.e., for any $x_i \in N \subset M$,

$$\|\pi_N(\sum x_i\otimes \bar{x}_i)\|_{\mathbb{B}(L^2(N))} = \|\pi_M(\sum x_i\otimes \bar{x}_i)\|_{\mathbb{B}(L^2(M))}.$$

By HB, for any unit vector ξ in $L^2(N)_+$, \exists a state ψ_{ξ} on $\mathbb{B}(L^2(M))$ s.t.

$$\forall x \in N \quad \langle x \xi x^*, \xi \rangle \leq \psi_{\xi}(\pi_M(x \otimes \bar{x})).$$

They must be equal by maximality of the *self-polar form* (Connes, Woronowicz '74). Moreover, $\langle x\xi y^*, \xi \rangle = \psi_\xi(\pi_M(x \otimes \bar{y}))$ by polarization. This implies $_NL^2(N)_N \preceq _NL^2(M)_N$.