Noncommutative real algebraic geometry of Kazhdan's property (T)

Narutaka OZAWA (小澤 登高)

de Research Institute for Mathematical Sciences, Kyoto University

von Neumann algebras and ergodic theory at UCLA, September 2014

J. Inst. Math. Jussieu, to appear. (arxiv:1312.5431)

Noncommutative Real Algebraic Geometry

NCRAG: equations and inequalities in an algebra over \mathbb{R} (or $\mathbb{C},...$).

Hilbert's 17th Pb: $f \in \mathbb{R}[x_1, \dots, x_d]$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_n \in \mathbb{R}(x_1, \dots, x_d)$.

 $\begin{array}{l} \mathcal{A} \text{ a unital } *\text{-algebra together with } \mathcal{A}^+. \ \text{E.g., } \mathbb{M}_n(\mathbb{R}), \ \mathbb{B}(\mathcal{H}), \ \mathbb{R}[\Gamma], \ \dots \\ \mathcal{A}^h = \{x \in \mathcal{A} : x^* = x\} \\ \cup \\ \mathcal{A}^+ = \Sigma^2 \mathcal{A} := \{\sum_i x_i^* x_i\} \end{array} (\begin{array}{c} \text{or any other cone } \mathcal{A}^+ \ \text{in } \mathcal{A}^h \ \text{s.t. } 1 \in \mathcal{A}^+ \\ \text{and } x^* a x \in \mathcal{A}^+ \ \text{for } \forall \ a \in \mathcal{A}^+ \ \forall x \in \mathcal{A}. \end{array}) \\ \|x\| := \inf\{R \ge 0 : x^* x \le R^2 1\} \in [0, \infty]. \quad \rightsquigarrow \text{ This is a } C^*\text{-norm.} \\ \text{We call } \mathcal{A} \ \text{a semi-pre-}C^*\text{-algebra if all elements are bounded.} \\ C^*(\mathcal{A}): \ \text{the univ env } C^*\text{-alg for the positive } *\text{-rep's on Hilbert spaces.} \\ \sim C^*(\mathbb{R}[\Gamma]) = C^*(\Gamma) \ \text{the full group } C^*\text{-algebra.} \end{array}$

Theorem (Hahn–Banach + Gelfand–Naimark–Segal)

The "inclusion" $\iota \colon \mathcal{A} \hookrightarrow \mathrm{C}^*(\mathcal{A})$ is isometric and $\iota(a) \ge 0 \iff a \in \overline{\mathcal{A}^+}$.

Topology on real vector spaces

$$\mathcal{A}$$
: a semi-pre-C*-algebra with $\mathcal{A}^+ = \Sigma^2 \mathcal{A} = \{\sum_i x_i^* x_i\}.$

Theorem (HB+GNS)

The "inclusion" $\iota \colon \mathcal{A} \hookrightarrow \mathrm{C}^*(\mathcal{A})$ is isometric and $\iota(a) \ge 0 \iff a \in \overline{\mathcal{A}^+}$.

For every \mathbb{R} vector space V, we consider the finest locally convex topology. For a cone $V^+ \subset V$, $e \in \operatorname{int} V^+$ if $\forall v \in V \exists R > 0 \text{ s.t. } v + Re \in V^+$, and $\overline{V^+} = \{v \in V : v + \epsilon e \in V^+ \text{ for } \forall \epsilon > 0\}.$ (archimedean closure of V^+ .) \mathcal{A} is a semi-pre-C*-algebra $\iff 1 \in \operatorname{int} \mathcal{A}^+$ $\rightsquigarrow \overline{\mathcal{A}^+} = \{a \in \mathcal{A}^h : a + \epsilon 1 \in \mathcal{A}^+ \text{ for } \forall \epsilon > 0\}.$

Problem: Is $\Sigma^2 \mathbb{R}[\Gamma]$ (or $\Sigma^2 \mathbb{C}[\Gamma]$) closed?

- YES if $\Gamma = \mathbb{Z}$ (Fejér 1916), F_d (Schmüdgen 80s), \mathbb{Z}^2 (Scheiderer 06).
- NO if $\Gamma \supset \mathbb{Z}^3$ (Scheiderer 00).
- How about hyperbolic groups? $F_d \times F_d$?

Kazhdan's property (T)

 $\label{eq:Gamma-formula} \ensuremath{\Gamma} \text{ has } (\mathsf{T}) & \stackrel{\mathrm{d}}{\longleftrightarrow} \forall \text{ orth rep } (\pi, \mathcal{H}) \text{ and } \forall v \in \mathcal{H} \text{, if } v \text{ is almost } \ensuremath{\Gamma} \text{-invariant,} \\ \text{then } v \text{ is close to a } \ensuremath{\Gamma} \text{-invariant vector.} \end{cases}$

 $\iff \exists S \subset \Gamma \text{ finite, } \exists K > 0 \text{ such that}$

 $d(\mathbf{v}, \mathcal{H}^{\Gamma}) \leq K \max_{g \in S} \|\mathbf{v} - \pi(g)\mathbf{v}\|.$

 $\rightsquigarrow \Gamma = \langle S \rangle$ and K^{-1} is called the **Kazhdan constant** for (Γ, S) .

Non-examples: infinite amenable groups, groups that act on a tree.

Example (Kazhdan 1967)

 $SL(3,\mathbb{Z})$ and $S = \{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ldots \}$, or any lattice of a s.c. Lie group of rank ≥ 2 . $\longrightarrow X_m := Cayley(SL(3,\mathbb{Z}/m\mathbb{Z}), S)$ form a sequence of expanders.

i.e.,
$$\forall A \subset V(X_m)$$
 one has $|\partial A| \geq K^{-1}|A|(1 - \frac{|A|}{|V(X_m)|})$.

Explicit estimate of the Kazhdan constant: Burger 91 and Shalom 99.

OPEN PROBLEM: Aut(F_d), $d \ge 4 \longrightarrow$ Product Replacement Algorithm

Laplacian

Let $\Gamma = \langle S \rangle$ with S finite and symmetric. $\Delta := \frac{1}{2|S|} \sum_{g \in S} (1 - g)^* (1 - g) = 1 - \frac{1}{|S|} \sum_{g \in S} g \in \mathbb{R}[\Gamma].$ Since $\langle \pi(\Delta)v, v \rangle = \frac{1}{2|S|} \sum ||v - \pi(g)v||^2$, v is Γ -invariant iff $\pi(\Delta)v = 0$. Hence, Γ has $(T) \iff \exists \kappa > 0$ s.t. $\operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\kappa, \infty)$ for $\forall (\pi, \mathcal{H})$ $\iff \exists \kappa > 0$ s.t. $\Delta^2 - \kappa \Delta \ge 0$ in $\operatorname{C}^*(\Gamma)$. $\iff \exists \kappa > 0$ s.t. $\forall \epsilon > 0 \Delta^2 - \kappa \Delta + \epsilon 1 \in \Sigma^2 \mathbb{R}[\Gamma]$. \notin No Good! \notin

Theorem (Oz. 2013)

 Γ has (T) iff $\exists \kappa > 0$ s.t. $\Delta^2 - \kappa \Delta \in \Sigma^2 \mathbb{R}[\Gamma]$ (or $\Sigma^2 \mathbb{Q}[\Gamma]$).

Note that (\Leftarrow) is trivial. Explicit formula for $(SL(3,\mathbb{Z}), S)$ has been found by Netzer and Thom with **Matlab** in May 2014.

 $\begin{array}{l} \Delta^2 - \kappa \Delta = \sum_{i=1}^n \xi_i^* \xi_i \text{ with } \kappa = \frac{1}{120}, \ n = 80, \text{ and } \operatorname{supp} \xi_i \subset (S \cup \{1\})^2. \\ \rightsquigarrow \text{ Kazhdan const} \geq 1/16. \ (\text{Previous record by a human} \sim 1/700.) \end{array}$

Algorithm that detects (T)

Theorem (Oz. 2013)

 Γ has (T) iff $\exists \kappa > 0$ s.t. $\Delta^2 - \kappa \Delta = \sum_{i=1}^n \xi_i^* \xi_i$ for some $\xi_1, \ldots, \xi_n \in \mathbb{R}[\Gamma]$.

Corollary (Shalom 00)

Every (T) group is a quotient of finitely presented (T) group.

Corollary

There is a "good" algorithm that detects (T). \rightarrow Implementation?

Input:
$$\Gamma = \langle S \mid \mathcal{R} \rangle$$
. $\rightsquigarrow Q \colon F_S \twoheadrightarrow \Gamma$.

Step 1: Take R > 0 and \sim on $B_R = B_R(F_S)$ s.t. $x \sim y \Rightarrow Q(x) = Q(y)$.

Step 2: Use Semi-Definite Program to compute

 $\sup\{\kappa \ge 0 : \exists (a_{x,y})_{x,y} \in \mathbb{M}_{B_R}(\mathbb{R})^+ \text{ s.t. } \Delta^2 - \kappa \Delta = \sum a_{x,y} x^{-1}y \text{ mod } \sim \}.$ If this value is > 0, then Γ has (T). Else repeat with a larger R...

The problem ls(T)? is semidecidable, but not decidable (Silberman), i.e., there is no a priori estimate of *R* that works.

Proof of Theorem

$$\begin{split} &\omega\colon \mathbb{R}[\Gamma]\to \mathbb{R} \text{ the unit character, } \omega(\sum a_g g)=\sum a_g.\\ &\mathcal{I}[\Gamma]=\ker \omega, \quad \Delta=\frac{1}{2|S|}\sum_{g\in S}(1-g)^*(1-g)\in \Sigma^2\mathbb{R}[\Gamma]\cap \mathcal{I}[\Gamma]=\Sigma^2\mathcal{I}[\Gamma]. \end{split}$$

Lemma. $\Delta \in \operatorname{int} \Sigma^2 / [\Gamma]$ in $/ [\Gamma]^h$.

Proof.

Lemma claims that for $\forall f \in I[\Gamma]^{h} \exists R > 0$ s.t. $f \leq R\Delta$ (write $f \preceq \Delta$). Since $I[\Gamma]^{h}$ is spanned by $2 - x - x^{-1} = (1 - x)^{*}(1 - x)$, it suffices to show $(1 - x)^{*}(1 - x) \preceq \Delta$ for all $x \in \Gamma$. This is true for $x \in S$. Moreover, if true for xand y, then true for xy. $(1 - xy)^{*}(1 - xy) = (1 - x + x(1 - y))^{*}(----)$ $\leq 2(1 - x)^{*}(1 - x) + 2(1 - y)^{*}(1 - y) \preceq \Delta$.

Consequently, $\overline{\Sigma^2 I[\Gamma]} = \{ f \in I[\Gamma]^{\mathrm{h}} : f + \epsilon \Delta \in \Sigma^2 I[\Gamma] \text{ for } \forall \epsilon > 0 \}.$ Γ has (T) $\iff \exists \kappa > 0 \text{ s.t. } \Delta^2 - \kappa \Delta \in \overline{\Sigma^2 \mathbb{R}[\Gamma]} \cap I[\Gamma] \stackrel{?}{=} \overline{\Sigma^2 I[\Gamma]}$ $\implies \Delta^2 - (\kappa - \epsilon)\Delta \in \Sigma^2 I[\Gamma] \text{ for } \epsilon \in (0, \kappa)$

Proof of Theorem, completed

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \kappa > 0 \text{ s.t. } \Delta^2 - \kappa \Delta \in \overline{\Sigma^2 R[\Gamma]} \cap I[\Gamma] \stackrel{?}{=} \overline{\Sigma^2 I[\Gamma]} \\ \Longrightarrow \Delta^2 - (\kappa - \epsilon) \Delta \in \Sigma^2 I[\Gamma] \text{ for } \epsilon \in (0, \kappa) \end{array}$$

Lemma. $\overline{\Sigma^2 R[\Gamma]} \cap I[\Gamma] = \overline{\Sigma^2 I[\Gamma]}.$

Proof.

Since $\overline{\Sigma^2 R[\Gamma]} \cap I[\Gamma]$ is closed and contains $\Sigma^2 I[\Gamma]$, the inclusion \supset is clear. For the converse inclusion \subset , let $f \in \overline{\Sigma^2 R[\Gamma]} \cap I[\Gamma]$ be given. By HB, it suffices to show $\phi(f) \ge 0$ for $\forall \phi \colon I[\Gamma] \to \mathbb{R}$ positive. The function $\psi(g) = \phi(1-g)$ is conditionally negative type on Γ , i.e., for $\forall \xi \in I[\Gamma]$, one has $\psi(\xi^*\xi) = \sum_{x,y} \xi_x \xi_y \psi(x^{-1}y) = \sum_{x,y} \xi_x \xi_y \phi(1-x^{-1}y) = -\phi(\xi^*\xi) \le 0$. By Schoenberg's theorem, $\phi_t(x) = \exp(-t\psi(x))$ is positive type on Γ . Hence ϕ_t is positive on $\mathbb{R}[\Gamma]$ and $\phi(f) = \lim_{t \ge 0} t^{-1}\phi_t(f) \ge 0$.

Thank You for Your Attention!

Narutaka OZAWA (RIMS)