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Growth of a group

G finitely generated group, G = 〈S〉
S finite symmetric (i.e., g ∈ S ⇔ g−1 ∈ S) generating subset, e ∈ S
 word metric |x |S := min{n : x ∈ Sn} and dS(x , y) := |x−1y |S

Definition

G has polynomial growth if ∃d > 0 s.t. lim supn |Sn|/nd <∞.
weak polynomial growth if ∃d > 0 s.t. lim infn |Sn|/nd <∞.

Note:
• independent of the choice of S
• H ≤ G finite index⇒ H and G have the same growth type

∵ the growth type (|S |n � nd , exponential growth, etc.) is a QI-invariant.

Definition

A map f : (X , dX )→ (Y , dY ) is a quasi-isometry (QI) if ∃K , L > 0 s.t.
1
K dX (x , y)− L ≤ dY (f (x), f (y)) ≤ KdX (x , y) + L and Y ⊂L f (X ).

Homework:
H ≤f.i. G and G = 〈S〉, H = 〈T 〉 ⇒ (G , dS) 'QI (H, dT )

⇒ G and H has the same growth type.
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Introduction

Theorem (Milnor 1968)

M complete Riem mfld with non-negative Ricci curvature
Then ∀ f.g. subgroup of π1(M) has PG.

Theorem (Milnor–Wolf 1968)

Virtually nilpotent groups (i.e. ∃ finite-index nilp subgroups) have PG.
Moreover ∀ f.g. v.solvable group is either v.nilp or exponential growth.
In fact, ∃d ∈ N s.t. |Sn| ∼ nd (Bass–Guivarch).

Theorem (Tits Alternative 1972)

G ≤ GL(n,F ) f.g. linear grp ⇒ Either G v.solv or F2 ≤ G ( exp growth)

Corollary: Every f.g. linear group with wPG is v.nilp.

Theorem (Gromov 1981 (van den Dries–Wilkie 1984))

Every f.g. group with wPG is v.nilp.
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Gromov’s Theorem

Theorem (Gromov 1981 (van den Dries–Wilkie 1984))

Every f.g. group with wPG is v.nilp.

A cornerstone result of Geometric Group Theory: a geometric condition
yields an algebraic result.

Proof: Geometric.
An ultralimit of (G , 1

K(n)dS)∞n=1 is a metric group, which can be arranged

to be locally compact under the wPG assumption (bounded doubling).
 One can apply the solution to Hilbert’s 5th problem by Montgomery,
Zippin, and Yamabe, and reduce the problem to a problem on a Lie group.

Other proofs: Kleiner 2007, Analytic “Elementary but Hard”
... Shalom–Tao 2009, Hrushovski 2009, Breuillard–Green–Tao 2011

A new proof (2015): Functional Analytic “Soft and Simple”
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The first (or the last) steps of the proof.
Algebraic parts.

Recall that G is nilpotent if the lower (or upper) central series terminates:

G = G0 . G1 . · · · . Gn = {e},
where Gi+1 = [Gi ,G ], i.e., Gi/Gi+1 = Z(G/Gi+1).
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The first (or the last) step of the proof

• Proof is done once we know any infinite G with wPG virtually surjects
onto Z, i.e, there is a finite index subgrp H ≤f.i. G s.t. H � Z.

Proof à la Milnor–Wolf.
Let G be a f.g. group with wPG of degree d . We want to show G is v.nilp.
WMA ∃q : G � Z. Then N := ker q is f.g. of wPG of degree ≤ d − 1.
Sketch of the proof: G = 〈t, s1, . . . , sm〉, q(t) = 1 and q(si ) = 0.

Sl := {tks±i t−k : i = 1, . . . ,m, k ∈ Z, |k | ≤ l} ∪ {e}  N = 〈
⋃

l Sl〉
Observe that Bl := (Sl)

l ⊂ S (2l+1)l has polynomial growth (of deg ≤ 2d).
If ∃x ∈ Sl+1 \ (Bl)

2, then xBl t Bl ⊂ Bl+1 and so |Bl+1| ≥ 2|Bl |.
 ∃l0 s.t. Sl0+1 ⊂ (Bl0)2 ⊂ 〈Sl0〉, which implies 〈Sl0〉 = 〈

⋃
l Sl〉 = N.

Moreover, (Sl0 ∪ {t±})2n ⊃
⊔
|k|≤n t

k(Sl0)n yields nd � n|(Sl0)n|.
Thus, by induction hypothesis, WMA N is nilp and G = 〈N, t〉 ∼= N ot Z.
We claim ∃K ∈ N s.t. the f.i. subgrp 〈N, tK 〉 is nilp.
Idea of the proof: Assume for simplicity N is f.g. abelian, N = Zm × F .
 ∃K1 s.t. [F , tK1 ] = {e}  AdtK1 ∼ A ∈ GLm(Z) with eigenvalues roots
of unity (∵ Zm oA Z wPG,...)  ∃K2 s.t. AK2 unipotent, K := K1K2.
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The second (or the last) step of the proof

• If G has a finite-dim (unitary) repn G yπ H with infinite image π(G ),
then ∃H ≤f.i. G s.t. H � Z.

This follows from Tits Alternative, but here’s an elementary proof.

Proof by Shalom.

Suppose G has wPG of degree d and G ⊂ U(H), dimH <∞. Note that
‖1−[g , h]‖ = ‖gh−hg‖ = ‖(1−g)(1−h)−(1−h)(1−g)‖ ≤ 2‖1−g‖‖1−h‖.
Take ε > 0 small enough. One has 〈{g ∈ G : ‖1− g‖ < ε}〉 ≤f.i. G .
WMA G = 〈S〉, S ⊂ {g ∈ G : ‖1− g‖ < ε} and G ⊂ U(H) irreducible.
We claim dimH = 1. S’pose not: ∃g0 ∈ G \ C1 s.t. ε0 := ‖1− g0‖ < ε.
· · · ∃sk ∈ S s.t. gk := [gk−1, sk ] 6= 1  gk /∈ C1 (∵ det gk = 1 and gk ≈ 1)
g0, g1, . . . are s.t. εk := ‖1− gk‖ < 2εεk−1 and |gk |S ≤ ek .

gk0
0 gk1

1 · · · gkm
m , m ∈ N, |ki | ≤ (10ε)−1, are mutually distinct.

∵ Given kl and k ′l , put l := min{l : kl 6= k ′l }. Then ‖gkl
l − g

k ′l
l ‖ ≥ εl and

‖gkl+1

l+1 · · · g
km
m − g

k ′l+1

l+1 · · · g
k ′
m′

m ‖ ≤
∑

k>l εk ·
1

10ε <
1
2εl .

 |BallS( 1
10εmem)| ≥ ( 1

10ε)m  |BallS(n)| � ( 1
10ε)

1
2

log n = n
1
2

log( 1
10ε

). 
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Digest of the first day lecture

G finitely generated group, G = 〈S〉
S finite symmetric (i.e., g ∈ S ⇔ g−1 ∈ S) generating subset, e ∈ S
 word metric |x |S := min{n : x ∈ Sn} and dS(x , y) := |x−1y |S
G has weak polynomial growth if ∃d > 0 s.t. lim infn |Sn|/nd <∞.

Theorem (Gromov 1981 (van den Dries–Wilkie 1984))

Every f.g. group with wPG is virtually nilpotent.

• Proof is done once we know any infinite G with wPG virtually surjects
onto Z, i.e, there is a finite index subgrp H ≤f.i. G s.t. q : H � Z.

∵ ker q is f.g. and has wPG of degree ≤ d − 1.  Induction.

• If G has a finite-dim (unitary) repn G yπ H with infinite image π(G ),
then ∃H ≤f.i. G s.t. q : H � Z.

∵ Tits Alternative or an elementary proof by Shalom.

Day 2: How to obtain a non-trivial finite-dim repn?
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Reduced Cohomology
and

Finite-Dimensional Representation
from Random Walks
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Harmonic 1-cocycles

Fix µ a fin-supp symm prob measure on G s.t. G = 〈suppµ〉 & µ(e) > 0.
(π,H) a unitary repn, given (not necessarily fin-dim).

b : G → H 1-cocycle
def⇔ b(gx) = b(g) + πgb(x) for ∀g , x ∈ G

e.g., 1-coboundary bv (g) = v − πgv , where v ∈ H
µ-harmonic

def⇔
∑

x b(gx)µ(x) = b(g) for ∀g ∈ G (or just g = e)

 
‖b(x)‖ ≤ |x |S max

s∈S
‖b(s)‖ and 0 = b(e) = b(x−1) + πx−1b(x) for ∀x

‖b(x−1y)‖ = ‖b(x−1) + πx−1b(y)‖ = ‖b(x)− b(y)‖
b is a 1-cocycle iff ρg : v 7→ πgv + b(g) is an affine isometric action on H.
 b is a coboundary ⇔ ρ has a fixed point ⇔ b is bounded

Z 1(G , π) := {1-cocycles} ⊃ {1-coboundaries} =: B1(G , π),

Z 1 is a Hilbert space w.r.t. ‖b‖L2(µ) := (
∑

x ‖b(x)‖2µ(x))1/2.

Z 1(G , π) = B1(G , π)⊕ B1(G , π)⊥ and

H1(G , π) := Z 1(G , π)/B1(G , π) ∼= B1(G , π)⊥ = {harmonic cocycles}.
∵
∑

x〈b(x), v − πxv〉µ(x) = 2〈
∑

x b(x)µ(x), v〉 = 0 ∀v ⇔ harmonic.
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Shalom’s property HFD

Theorem H (Mok 95, Korevaar–Schoen 97, Shalom 99)

G a f.g. infinite grp of wPG (or amenable or non-(T))
Then, ∃(π,H, b) non-zero µ-harmonic 1-cocycle.

b(gx) = b(g) + πgb(x)  span b(G ) is π(G )-invariant.
If K is a π(G )-invariant subspace, then PKb is a (harmonic) cocycle.

Observation (Shalom): If G is v.nilp, then it has property HFD.

HFD: Any (π,H) with H1(G , π) 6= 0 has a non-zero finite-dim subrepn.
Equivalently, any harmonic 1-cocycle has a finite-dim summand.

Shalom’s Idea (2004): Prove “wPG ⇒ HFD” w/o using Gromov’s Thm.
 A new proof of Gromov’s Thm.

∵


By Theorem H and HFD, ∃(π,H, b) s.t. π : G → U(H) f.d. repn
and b : G → H non-zero harmonic cocycle (unbdd).
If |π(G )| =∞, then we are done.
If |π(G )| <∞, then b is an unbdd additive hom from ker π into H.

We are left to prove Theorem H (→ Day 3) and HFD for wPG grps.
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Proof of HFD

A f.g. group G with wPG has Shalom’s property HFD:
Any harmonic 1-cocycle b : G → H with π no non-zero f.d. subrepn is zero.

We want to show 〈b(g), v〉 = 0 for ∀ g ∈ S and v ∈ H.

〈b(g), v〉 =
∑

x〈b(gx)− b(x), v〉µ∗n(x)

=
∑

x 〈b(x), v)〉︸ ︷︷ ︸
(1)

(g · µ∗n − µ∗n)(x)︸ ︷︷ ︸
(2)

(♠)

Lemma (1)

Let (π,H) weakly mixing (i.e., no non-zero f.d. subrepn) and b harmonic.

Then, 1
n

∑
x |〈b(x), v〉|2µ∗n(x)→ 0.

Note:
∑
‖b(x)‖2µ∗n(x) =

∑
‖b(x−1y)‖2µ∗n−1(x−1)µ(y)

=
∑
‖b(x)− b(y)‖2µ∗n−1(x)µ(y)

=
∑
‖b(x)‖2µ∗n−1(x) + ‖b‖2

L2(µ) = n‖b‖2
L2(µ).
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Some functional analysis (after Shalom, Chifan–Sinclair)

Lemma (1)

(π,H) weakly mixing and b harmonic ⇒ 1
n

∑
x |〈b(x), v〉|2µ∗n(x)→ 0.

Note that |〈b(x), v〉|2 = 〈b(x)⊗ b̄(x), v ⊗ v̄〉H⊗H̄.∑
x(b(x)⊗ b̄(x))µ∗n(x) =

∑
x ,y (b(xy)⊗ b̄(xy))µ∗n−1(x)µ(y)

=
∑

x ,y (b(x) + πxb(y))⊗ (b̄(x) + π̄x b̄(y))µ∗n−1(x)µ(y)

=
∑

x(b(x)⊗ b̄(x))µ∗n−1(x) + T n−1w

where T :=
∑

g (πg ⊗ π̄g )µ(g) and w :=
∑

y (b(y)⊗ b̄(y))µ(y) ∈ H ⊗ H̄
= (1 + T + · · ·+ T n−1)w .

T is a self-adjoint contraction on H⊗ H̄.
π w.mixing  π(G )′ ∩K(H) = 0  no nonzero (π⊗ π̄)(G )-inv vector(
∵

Under H⊗ H̄ ∼= S2(H), a (π ⊗ π̄)(G )-invariant vector corresponds
to a Hilbert–Schmidt operator which commutes with π(G ).

)
 1 is not an eigenvalue of T (∵ H is strictly convex).
1
n

∑
x(b(x)⊗ b̄(x))µ∗n(x) = 1

n (1 + T + · · ·+ T n−1)w → 0 by LDCT.
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Entropy (after Erschler–Karlsson) and QED for HFD

For p prob measure, H(p) := −
∑

x p(x) log p(x) ≥ 0. Shannon entropy

p 7→ H(p) is concave ∵ (−t log t)′′ = (−1/t) < 0.

δ(p, q) := H(p+q
2 )− 1

2 (H(p) + H(q)) ≥ 1
8

∑
x
|p(x)−q(x)|2
p(x)+q(x) .

Thus for ∀f ≥ 0 one has∑
x f (x)|p(x)− q(x)| ≤

(
8δ(p, q)

∑
x f (x)2(p(x) + q(x))

)1/2
. (2)

Why entropy?
• Can estimate ♠ :=

∑
x〈b(x), v)〉(g · µ∗n − µ∗n)(x).

• Convenient to the telescoping argument.

H(p) =
∑

x p(x) log(1/p(x)) ≤ log | supp p | by concavity of log.

 H(µ∗n) ≤ log | suppµ∗n | = log |(suppµ)n| � d log n (w.r.t. lim infn)

µ ∗ ν =
∑

g µ(g)g · ν and H(µ ∗ ν) ≥
∑

g µ(g)H(g · ν) = H(ν).

 H(µ ∗ ν)− H(ν) ≥ 2 min{µ(e), µ(g)} δ(ν, g · ν) for ∀g ∈ S

 lim infn n δ(µ∗n, g · µ∗n) ≤ C lim infn n (H(µ∗n+1)− H(µ∗n)) <∞
|♠|2 ≤ 8nδ(µ∗n, g · µ∗n) · 1

n

∑
x |〈b(x), v)〉|2(g · µ∗n + µ∗n)(x) →

lim inf
0.
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Digest of the second day lecture

G finitely generated group, G = 〈S〉
S finite symmetric (i.e., g ∈ S ⇔ g−1 ∈ S) generating subset, e ∈ S
 word metric |x |S := min{n : x ∈ Sn} and dS(x , y) := |x−1y |S
G has weak polynomial growth if ∃d > 0 s.t. lim infn |Sn|/nd <∞.

Theorem (Gromov 1981 (van den Dries–Wilkie 1984))

Every f.g. group with wPG is virtually nilpotent.

Theorem H (Mok 95, Korevaar–Schoen 97, Shalom 99. To be proved.)

G a f.g. infinite grp of wPG (or amenable or non-(T))
Then, ∃(π,H, b) non-zero harmonic 1-cocycle.

A f.g. group G with wPG has Shalom’s property HFD:
Any non-zero harmonic 1-cocycle has a non-zero finite-dim summand.

∃ non-trivial f.d. cocycle  ∃ a virtual surjection to Z  Gromov’s Thm.

Day 3: Proof of Theorem H and further development
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Review on Amenability
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Review on Amenability

Fix µ a fin-supp symm prob measure on G s.t. G = 〈suppµ〉.
A group G is amenable if it satisfies the following equivalent conditions.

• (invariant mean) ∃ϕ : `∞(G )→ C a left G -invariant state;

• (approximate invariant mean) ∃ξn ∈ Prob(G ) approx G -invariant;

• (Hulanicki) ∃ξn ∈ `2(G ) approx G -invariant unit vectors;

• (Kesten) limn µ
∗2n(e)1/2n = ‖λ(µ)nδe‖1/n = ‖λ(µ)‖ = 1.

Here λ : G y `2G the left reg repn, λgδx = δgx , or λ(µ)ξ = µ ∗ ξ.

(µ ∗ ν)(x) := (
∑

g µ(g) g · ν)(x) =
∑

g µ(g)ν(g−1x), λ(µ ∗ ν) = λ(µ)λ(ν).

Q!
µ∗n may not be approx G -inv in Prob(G ) (failure of the Liouville prty),
although they are always approx G -inv in `2(G ) after normalization.

Examples of amenable grps include finite grps, abelian grps, subgrps,
quotients, extensions, inductive limits, solvable grps, subexp growth grps
(∵ µ(e)∗2n ≥ µ∗2n(g) for ∀g and µ∗2n(e) ≥ 1

| suppµ∗2n| = 1
|(suppµ)2n|).

Grigorchuk (1980/84):
∃ an intermediate growth group,
G = 〈S〉 with exp(n0.5) � |Sn| � exp(n0.9).
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Existence of harmonic cocycles

Narutaka OZAWA (RIMS) FA Proof of Gromov’s Theorem (Day 3) August 2016 19 / 24



Existence of a harmonic 1-cocycle

Theorem (Mok 95, Korevaar–Schoen 97, Shalom 99)

G a f.g. infinite grp of wPG or more generally amenable (or non-(T))
Then, ∃(π,H, b) non-zero µ-harmonic 1-cocycle.

Fix a free ultrafilter U on N. limU : `∞(N)→ C non-principal character

H Hilb space  HU := `∞(N;H)/{(vn)n : limU ‖vn‖ = 0} ultrapower

〈[v ′n]n, [vn]n〉HU := limU 〈v ′n, vn〉H, πUg [vn]n := [πgvn]n ultrapower repn

To avoid the parity problem, we will assume µ∗1/2 exists.

‖λ(µ)n/2δe‖2 = µ∗n(e)→ 0 but ‖λ(µ)n/2δe‖2/n = µ∗n(e)1/n → 1.

bn(g) := λ(µ∗n/2 − g · µ∗n/2)δe = µ∗n/2 − g · µ∗n/2 (omit writing λ).

γ(n) := ‖bn‖2
L2(µ) =

∑
g ‖bn(g)‖2µ(g) = 2(µ∗n(e)− µ∗n+1(e)).

b(g) := [γ(n)−1/2bn(g)]n ∈ (`2G )U  b is normalized, i.e., ‖b‖L2(µ) = 1.

‖
∑

x b(x)µ(x)‖2 = limU γ(n)−1‖µ∗n/2−µ∗n/2+1‖2 = limU
γ(n)−γ(n+1)

2γ(n) =
Lem

0.

Hence b is a normalized µ-harmonic 1-cocycle into (`2G )U .
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Existence of a harmonic 1-cocycle: Proof continues

Recall that G is amenable iff
∑

g µ(g)‖µ∗n/2−g ·µ∗n/2‖2

2‖µ∗n/2‖2 = µ∗n(e)−µ∗n+1(e)
µ∗n(e) → 0.

Lemma (A refinement of Avez’s Lemma)

For γ(n) = 2(µ∗n(e)− µ∗n+1(e)), one has limn→∞
γ(n+1)
γ(n) = 1.

Proof. Recall that ∃µ∗1/2, µ∗n(e)→ 0, and µ∗n(e)1/n → 1.

γ(n) = 2〈λ(µ)n(1− λ(µ))δe , δe〉 decreasing (∵ λ(µ) = λ(µ∗1/2)2 ≥ 0).

δ(n) := γ(2n) + γ(2n + 1) = 2(µ∗2n(e)− µ∗2(n+1)(e)) also decreasing.

δ(n + 1)2 = (
∑

g 〈µ∗n − g ·µ∗n, µ∗n+2− g ·µ∗n+2〉µ∗2(g))2 ≤ δ(n)δ(n + 2).

 δ(n + 1)/δ(n) ≤ δ(n + 2)/δ(n + 1)↗ ∃δ ≤ 1.
Thus γ(n) ≤ Cδn/2 and so 2µ∗n(e) =

∑∞
k=n γ(k) ≤ C ′δn/2  δ = 1.

 limn γ(n + 1)/γ(n) = 1.

Thus b(g) := [γ(n)−1/2(µn/2 − g · µ∗n/2)]n ∈ (`2G )U is a nor. µ-harm. coc.

Q! The 1-cocycle b may depend on the choice of an ultrafilter U .

Is it possible to tell when b is f.d. or has a f.d. summand?
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Further applications: Motivations

Theorem (Shalom 2004)

HFD is a QI-invariant among f.g. amenable groups.

Some motivation: Virtual nilpotency is a QI invariant by Gromov’s Thm.

Conjecture (Gromov ?): Virtual polycyclicity is a QI invariant.(
Malcev–Mostow Theorem: G is v.polycyc iff it is virtually isomorphic to
a (uniform) lattice in a simply connected solvable Lie group.

)
Theorem (Shalom 2004)

Some groups have property HFD, e.g.,
L(F ) := Z n (

⊕
Z F ), BS(1, p) := {a, t : tat−1 = ap}, polycyclic grps,. . .

and many groups don’t, e.g.,
L(Z) := Z n (

⊕
Z Z), infinite amenable + no virtual surjection onto Z,. . .

Grigorchuk’s Gap Conjecture:
Any f.g. group of super-polynomial growth
has growth rate at least exp(

√
n).

Is it true: Every infinite sub-exp(
√
n) group has a virtual surjection onto Z?
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Further applications of harmonic cocycle methods

Xn Random Walk associated with (G , µ),
i.e., Xn :

∏
(G , µ)N 3 (sk)∞k=1 7→ s1 · · · sn ∈ G .

Theorem (Erschler–Oz.)

Let b be a normalized µ-harmonic 1-cocycle. Then,

β := lim
n→∞

1

2

∑
x

∣∣∣∣‖b(x)‖2

n
− 1

∣∣∣∣2 µ∗n(x) = lim
n→∞

1

2
E
∣∣∣∣‖b(Xn)‖2

n
− 1

∣∣∣∣2
exists. Moreover, β > 0 iff b has a non-zero f.d. summand (of dim ≤ 1/β).

Corollary (Erschler–Oz.)

If G does not have property HFD, then
• lim infn ‖µ∗n − µ∗(1+δ)n‖1 = 2 for every δ > 0.
• lim supn P(|Xn|S ≤ c

√
n) = 0 for some c > 0.

Proof.

If G fails HFD, then ∃ a normalized µ-harmonic w.mixing 1-cocycle b.
By Theorem, n−1/2‖b(Xn)‖ → 1 in probability.
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Further applications of harmonic cocycle methods

Corollary (Erschler–Oz.)

If G does not have property HFD, then
• lim infn ‖µ∗n − µ∗(1+δ)n‖1 = 2 for every δ > 0.
• lim supn P(|Xn|S ≤ c

√
n) = 0 for some c > 0.

This gives a simple proof of property HFD for many (all?) known cases.
E.g., L(Z/2Z) = Z n (

⊕
Z Z/2Z) has property HFD.

∵

[
µ := 1

2 (µ0 + µ1), µi standard nbhd RW on Z (resp. Z/2Z).
Yn the standard nbhd RW on Z. Then P(|Yn| ≤ c

√
n for all n) > 0.

Recall that G is amenable iff
∑

g µ(g)‖µ∗n/2−g ·µ∗n/2‖2

2‖µ∗n/2‖2 = µ∗n(e)−µ∗n+1(e)
µ∗n(e) → 0.

Corollary (Erschler–Oz.)

Let G be a f.g. amenable grp without virtual surjection onto Z.
(E.g. Grigorchuk’s grps, Matui–Juschenko–Monod, . . . .) Assume ∃µ∗1/2.

Then, lim
m→∞

lim
n→∞

∑
g

µ∗m(g)

∣∣∣∣µ∗n(g)− µ∗n+m(e)

µ∗n(e)− µ∗n+m(e)

∣∣∣∣ = 0.
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