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Preface

This is a lecture note for the lecture course “Probability Theory” in the University of
Bielefeld (240111, WS 2011/2012).

Several theorems and exercises are adopted from an unpublished lecture note [6]
on measure theory by Professor Jun Kigami in Kyoto University, and some other prob-
lems are borrowed from an unpublished lecture note by Professor Grigor’yan in the
University of Bielefeld. The author would like to express his deepest gratitude toward
Professor Kigami and Professor Grigor’yan for their permission to quote their unpub-
lished notes in this lecture note.
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Chapter 0

Prologue

It is assumed that the reader is already familiar with elementary probability theory,
e.g. calculation of probabilities of events resulting from coin flipping or dice. The
purpose of this course is to provide a rigorous mathematical background of probability
theory. Modern probability theory, as a part of mathematics, is developed on the basis
of measure theory, which will be treated in the first half of this course.

0.1 Introduction

How to formulate “probability” rigorously?

Let us consider the situation where we throw a dice and see the outcome X. X is a
“random variable” taking values in {1, 2, 3, 4, 5, 6}, and each side of the dice appears
with “probability” 1/6; P[X = k] = 1/6 for k € {1,2,3,4,5,6}.! Of course we
can consider the “probabilities” of other “events”; for example, P[X is odd] = 1/2,
P[X is divisible by 3] = 1/3, P[X is a prime number| = 1/2.

We have used the terms “probability”, “random variable” and “event”, which are
fundamental notions in probability theory. These phrases, however, are used only in
very naive manners and their mathematical meanings are still unclear. We would like to
give a rigorous mathematical formulation to these notions, in order to treat probability
theory as a part of mathematics.

Here is an idea of how to formulate “probability” mathematically: let €2 be the
collection of all possible “cases”. Suppose that there is a function P, which assigns to
each subset Qg of Q a real number P[] € [0, 1], interpreted as the “probability” of
Q0. A “random variable” X should tell us a number X (w) € R for each “case” w € R,
and such X is nothing but a function X : 2 — R on Q. For example, in the above
situation of a dice,

e 2 ={1,2,3,4,5,6},

o P[A] =#A/6 for A C 2, where #A4 denotes the number of elements of A.

't is implicitly assumed that all sides of the dice are equally likely to appear.

1



2 CHAPTER 0. PROLOGUE

e The outcome X of the dice is the function X : Q — R given by X (k) = k.

Let A be an “event”. In each “case” w € €2, either the “event” A occurs or it does
not occur, and the set Q24 := {w € Q | 4 occurs in the “case” w} represents precisely
when A occurs. Then the “probability of A” should be P[24]. In this way, each “event”
A is represented by the corresponding set €24 of “cases” where it occurs, and then it
seems natural to identify €24 with the “event” A. In other words, an “event” should be a
subset of 2. In the above example of a dice, the three events “X is odd”, “X is divisible
by 3” and “X is a prime number” correspond to {w € Q | X(w) is odd} = {1, 3,5},
{w € Q| X(w) is divisible by 3} = {3,6} and {w € Q | X(w) is a prime number} =
{2, 3, 5}, respectively.

In summary, a rigorous mathematical formulation of “probability” will require

e aset 2, called the sample space, and

e a [0, 1]-valued function P, whose argument is an event (a subset of 2) and whose
values are the probabilities of events,

and then the outcome of a random trial is represented by

e a random variable X, which is a function X : 2 — R on 2.

Required properties of a “probability”’ and its domain

In order for the above [0, 1]-valued function P to be considered as a “probability”, of
course it has to possess certain properties. First, we need to specify the conditions to
be satisfied by the domain F of P, which is a subset of 222 and is the collection of sets
whose probabilities are defined. Here is a list of properties which J is desired to have:3

e J,Q2 € F, where @ denotes the empty set.
o IfAcTFthen A :=Q\AecF. IfA,BeTFthen A\ B e 7.
o IfneNand{4;}/_, CTthenA;U---UA, € Fand A N---NA, €T

In fact, the third condition is still too weak for theoretical purposes, and instead F will
be required to satisfy the following stronger condition:

o If {4,}22, C FthenJjo, Ay € Fand (52, 4, € F.

Such a subset F C 2% is called a o-algebra in 2, and each A € JF is called an event.

At this point one might wonder why we have to consider not 2% but a subset F
of 2%, In fact, when we consider the probabilities of events involving infinitely many
random trials, we need to choose an uncountable set as the sample space Q* and then
24 is too large to be the domain of a natural “probability” P. Why 2% is “too large”
will become clear during the first half of this course.

2252 denotes the power set of 2: 252 := {A | A C Q}, i.e. the set consisting of all subsets of 2.
3A subset F C 2% satisfying these three conditions is called an algebra in Q2.

“For example, a natural choice of €2 for the trial of throwing a dice infinitely many times is to take
Q:={1,2,3,4,5,6}", which is an uncountable set.
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As explained above, a “probability” P is required to be defined on a o-algebra &
in 2. Then what properties should P have? Here are conditions to be satisfied by a
“probability” P:

o P[] =1.
e P[7] = 0.

e IfneN,{A;}7_, CTFand A, NA; =@ foranyi,j € {l,...,n} withi # j,
then P[A; U---U A4,] = P[A1] + -+ + P[4,].

The third property is called the finite additivity, which is still insufficient for theoretical
purposes and has to be replaced by the following countable additivity:
o If {A,}5°2, C Fand A4, N Aj = @ forany i,j € N withi # j, then

n=1

P{UpZy An] = 252, Pl4s).

A function P : § — [0, 1] which is defined on a o-algebra F and satisfies the above
conditions is called a probability measure, and the triple (2, F,P) of a set 2, a o-
algebra F in 2 and a probability measure P on F is called a probability space. This is
the correct mathematical formulation of the notion of probability.

Note that the “volume” functions, e.g. the “length” of subsets of R, the “area” of
subsets of RZ and the “volume” of subsets of R3, are also desired to satisfy these condi-
tions except P[2] = 1. Such a function (i.e. a countably additive non-negative function
on a o-algebra) is called a measure, which is the correct mathematical formulation of
the notion of volume.

Random variables and expectation

Let (2,3, P) be a probability space. As described above, the outcome of a random
trial is represented by a random variable, which is a function X : 2 — R. Once a
random variable X is given, it is natural to consider its expectation (or mean) E[X].
Mathematically, it is a synonym for the integral of X with respect to IP:

E[X] = / XdP. 0.1)
Q

In order for E[X] to be defined, X has to be suitably related with F. For example, if X
takes its values in the set N of positive integers, then E[X] should be given by

E[X] = in-]P’[X = n],
n=1

where {X = n} = {w € Q | X(w) = n} = X~ !(n) is required to belong to F.
Such a function X is called F-measurable, and only F-measurable functions on 2 are
(and deserve to be) called random variables. The precise definition of F-measurable
functions is given in Section 1.2, and integration with respect to a measure will be
defined in Section 1.3.
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The role of the countable additivity of P becomes clear when we consider a se-
quence {X,}°2 , of random variables. Suppose that { X, ()}, converges to X(w) €
R for any w € 2. Then since & is a o-algebra, X : Q2 — R is shown to be F-
measurable (and hence it is also a random variable), and the countable additivity of P
assures that, under certain reasonable conditions on {X,}72 ,,

lim E[X,] = E[X], thatis, lim E[X,] = ]E[ lim X,,]. 0.2)
n—00 n—00 n—00

(0.2) asserts the possibility of interchange of the order of limit and integral, which
often plays fundamental roles in analysis! In measure theory, this type of assertions
are called convergence theorems. The properties of o-algebras and measures make
the conditions for convergence theorems much simpler than those in classical calculus,
where one usually assumes the uniform convergence of the sequence of functions. The
precise statements of convergence theorems will be presented in Section 1.3 below.

0.2 Some Basic Facts and Notations

Here we collect some basic facts and notations which the reader is assumed to be
familiar with. By an equation of the form

A:=B

we mean that A is defined by B.

As usual, N, Z, Q, R and C denote the set of natural numbers, integers, rational
numbers, real numbers and complex numbers, respectively. Here our convention is that
N does NOT contain 0, so that N = {1,2,3,...}.

Let X be a set. 2% denotes the power set of X, i.e. 2X .= {A| A C X}, as noted
before. X is called countably infinite if and only if there exists a bijection ¢ : N — X,
and X is called countable if and only if it is either finite or countably infinite. A set
which is not countable is called uncountable. Clearly N, Z and Q are countable, and
it is easy to see that X; x --- x X}, is countable if » € N and X; is a countable set for
eachi € {1,...,n}. On the other hand, R, C and AN, where A is any set with at least
2 elements, are shown to be uncountable.

Let X,Y be sets, let f : X — Y be amap and let A C X. Then the map
fla:A— Y defined by f|a(x) := f(x) is called the restriction of f to A.

0.3 The Extended Real Line [—o0, oo]

In measure theory, it is essential to consider functions with values in the extended real
line. Here we collect basic definitions and facts concerning the extended real line.

Definition 0.1. (1) Let co and —oo be two elements distinct from real numbers. The
extended real line is defined as the set [—00, 00] := {—o0} U R U {o0}. The canonical
order relation < on R is naturally extended to [—00, 0o] by defining a < co and —oco <
a for any a € [—00, 0]. For a, b € [—00, 0], we write a < b if and only if ¢ < b and
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a # b, as usual. Fora,b € [—o0, 00], we set (a,b) := {x € [-00,00] | a < x < b}
and [a,b] := {x € [-00, 0] | @ < x < b}, and (a, b] and [a, b) are similarly defined.
(2) We say that a sequence {a, }°2, C [—00, 00] converges to oo (resp. to —o0)’, and
write lim, o @, = oo (resp. lim, .o @, = —00), if and only if for any b € R there
exists N € N such that a,, > b (resp. a, < b)foranyn > N.

The convergence of {a,}52, to areal number a € R is defined in the usual manner.

Below we state basic definitions and facts concerning [—oo, o] without proofs.
Their proofs are left to the reader as exercises.

Proposition 0.2. Let A C [—00, 00| be non-empty. Then the supremum (least upper
bound) sup A and the infimum (greatest lower bound) inf A of A exist in [—o0, 00].

Proposition 0.3. Let {a,};>, C [—00, 00] and suppose that a, < a1 foranyn € N.
Then limy— o0 ap = SUP,5 1 dp.

Definition 0.4. For {a,}5>; C [—00, 0o], we define its upper limit lim sup,,_, .. a, and
its lower limit lim inf,,_, o a, by

limsupa, := inf (sup ak), liminfa, := sup(inf ak).

n—o00 21\ >y n—oo n>1\k=n

Clearly liminf, o a, < limsup,_, . a,. Since the set {ax | kK > n} is decreasing
in n, supg-, ak is non-increasing in n and infy >, ax is non-decreasing in #, so that

lim supay = limsupa,, lim inf a; = liminfa,.
n—00 k>n n—00 n—>00 k>n n—00

Proposition 0.5. Let {a,}72, C [—00,00]. Then lim,_.o a, exists in [—00, o0] (i.e.
limy, 00 dp = a for some a € [—00, 00]) if and only if

limsupa, = liminfa,.
n—00 n—>00

Moreover, if lim,, o0 ay exists in [—00, 00] then limsup,,_, o an = limy o0 an.

Definition 0.6. The addition + and the product - in R are extended to [—o0, 0o] by
setting

a+o00o=00+a:=00 for a € (—o0, 00,
a+(—o00) =—00+a:=-o00 fora e [—o0o0,00),
00 ifa € (0, o0,
a-co=00-a:=140 ifa =0,

—oo ifa € [—o0,0),

S¢resp.” is an abbreviation for “respectively”.

5The supremum and infimum in [—00, 00] are defined in the same way as those in R. To be precise, the
supremum of A C [—00, 00] is a number M € [—00, 00] suchthata < M foranya € Aand M < b
whenever b € [—00, 00] satisfies a < b for any a € A. Such M, if exists, is clearly unique. The infimum
of A is similarly defined and, if exists, unique. Proposition 0.2 asserts that they always exist.
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—oo ifa € (0, ],
a-(—oo0) =(—00)-a:=140 ifa =0,

00 ifa € [—00,0).
We also set —(00) := —o0 and —(—o0) := 0.

Note that co 4 (—o0) and —oo + oo are NOT defined. It may look strange to define
0 - o0 := 0, but with this convention we can easily verify the following proposition.

Proposition 0.7 (Arithmetic in [0, o0]). (1) Leta, b, ¢ € [0, o0]. Then

a+0=0+a=a, a+b=b+a, (a+b)+c=a+ (b+c),
a-1=1-a =a, ab = ba, (ab)c = a(bc),
alb+c) =ab+ ac, (a +b)c =ac+ bc.

2) If {an}5> 1. 4bn}5>, C [0, 00] satisfy ap < any1 and b, < b,y for anyn € N,
then

Jim anb = (Jim,an) Jim )
Remark 0.8. It also holdsthata -1 =1-a = a,ab = ba and (ab)c = a(bc) for any
a,b,c € [—00, o]

Definition 0.9. The sum Y > | a, of a non-negative sequence {a,}3>, C [0, oc] is
defined as

o0 n n
Zan = nll)rgo Zai = supZai = sup Zan.7 (0.3)
n=1 i=1

nENi=1 ACN: ﬁnitenEA

Note that, by the last equality in (0.3), the sum Y ;> a, of {a,}°>, C [0, o0]
remains the same even if the order of {a,};2; is changed.

Proposition 0.10. Let {ay i };% _; C [0,00], and let N 5 £ + (ng,ky) € NxNbea
bijection. Then

o 00 o oo o
Z Z apk = Z Z an k = Zané,ke
n=lk=1 k=1n=1 =1
) (0.4)
- AC NSEII:T: finite (n,kZ)GA dn.je = ngzzl ap k-

0.4 Topology of Subsets of R?

We assume the reader to be familiar with the notions of open and closed subsets of the
Euclidean spaces and that of continuity of maps between those sets, but it is sometimes

"The sum Y_,,c 4 @n for A = @ is set to be 0.
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useful to present the same notions in a slightly more general setting. Here we restate
those topological notions for a general subset of the Euclidean spaces.

Let d € N. The Euclidean inner product and norm on R? are denoted by (-, -) and
| - |, respectively: For x, y € RY, x = (X15--5%3), Yy = V1, ---5Vd)s

(x.y)i=xiyi++ xqya.  Ixl=V{xx) = /xF 4+ 4 X3

Also for r € (0,00) we set Bg(x,r) == {y e R? | |y — x| < r}. A C R? is called
bounded if and only if A C B4(0,r) for some r € (0,00). Recall that U C R is
called an open subset of R¢ or simply open in R? if and only if every x € U admits
e € (0,00) such that Bz(x,e) C U, and that F C R is called a closed subset of R?
or simply closed in R? if and only if R? \ F is open in R?.

We would like to generalize these notions to the case where the whole space is not
R but a subset S C R?. This is done in the following manner. Let us fix a subset
S of R¥ in the rest of this section. For x € S and r € (0, 00), we set Bg(x,r) :=
Bix,r)NS={yeS||ly—x|<r}.

Definition 0.11. (1) U C S is called an open subset of S or simply open in S if and
only if every x € U admits ¢ € (0, co) such that Bg(x,&) C U.

(2) F C S is called a closed subset of S or simply closed in S if and only if S \ F is
openin S.

In this definition, the set Bsg(x,¢) = {y € S | |y — x| < ¢} plays the role of the
e-neighborhood of x. Note that these notions depend heavily on the whole space S.
For example, [0, 1) is open in [0, 1] but not in R.

We have the following simple description of open and closed subsets of S.

Proposition 0.12. Let A C S.
(1) Aisopenin S ifand only if A = U N S for some open subset U of R¥.
(2) A is closed in S if and only if A = F N S for some closed subset F of R%.

Proof. (1) “if” part is clear. Conversely suppose A is open in S. Define

Z:={(x,e) € Ax(0,00) | Bs(x,¢e) C A}, U .= U Ba(x,¢).
(x,6)eZ

Then U isopenin R? and U N § = Ux.e)ez Bs(x, &) C A. On the other hand, since
A is open in S, for any x € A there exists ¢ € (0, 00) such that Bg(x,e) C 4, i.e.
(x,e) e Z,andthen x € By(x,e) NACUNS. ThusACcUNSandA=UnNS.

(2) This is immediate from (1) and the definition of closed subsets of S. O]

The continuity of a map is also defined in the usual way.

Definition 0.13. Letk € N. Amap f : § — R¥ is called continuous if and only if for
any x € S and any ¢ € (0, 00) there exists § € (0, 00) such that | f(y) — f(x)| < € for
any y € Bg(x,§).

There are several equivalent ways of stating the continuity of a map, as follows.
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Proposition 0.14. Lerk € Nandlet f : S — RK. Then f is continuous if and only if
any one of the following conditions are satisfied.

(1) f~Y(U) is open in S for any open subset U of R¥.

(2) f~(F) is closed in S for any closed subset F of R¥.

Proof. The conditions (1) and (2) are clearly equivalent. If (1) holds, then for x € S
and ¢ € (0,00), f~'(Bx(x,¢)) is open in S and contains x and hence Bg(x,8) C
Y (Bi(x,¢)) for some § € (0,00). Thus | f(y) — f(x)| < & for any y € Bg(x,8),
and f is continuous. Conversely suppose f is continuous, and let U C R* be open in
R¥. Then for x € f~'(U), there exists ¢ € (0, 00) such that Bx(f(x),e) C U, and
then | f(y) — f(x)| < e forany y € Bg(x, ) for some § € (0, c0) by the continuity
of f. Thus Bs(x,8) C f~Y(Br(f(x).8)) C f~'(U)and f~1(U)isopenin S. O

At the last of this section, we recall a basic result from multivariable calculus, which
concerns the compactness of subsets of R?.

Definition 0.15. S is called compact if and only if for any family {Uj },ca of open
subsets of RY with S C | J;cs Ua, there exists a finite subset Ag of A such that

S C UAEAO UA
Theorem 0.16. S is compact if and only if it is closed in R® and bounded.

Proof. Suppose S is compact. Then {B;(0,n)}2, is a family of open subsets of R4
with § € RY = |Jo, B4(0,n) and hence S C |J,<; Ba(0,n) for some finite set
I C N by compactness. Setting n := max [, we obtain S C By;(0,n), i.e. S is
bounded. To prove that R? \ S is open in R?, let x € R \ S. Then

S C U Bd(y, ly —x|) and hence by compactness, S C U By (y, ly —X|)

yes 2 yeF 2
for some finite set F C S. Letr := minyer |y;x|. Then By (x,r)N By (y. |y;x‘) =0
for any y € F, which and S C J,cp Ba(y, ‘y;xl) imply By(x,r) NS = @, ie.

By(x,r) C R\ S. Thus R? \ S is open in R and S is closed in R?.

For the converse, assume that S is closed in R¢ and bounded. Suppose S is not
compact, so that there exists a family {Uj}iea of open subsets of R? with S C
e Ua such that S ¢ |, cp, U for any finite sunset Ag of A. Since

U Uy, = U{Bd(x,r) | x€Q?,r €QN(0,00), By(x,r) C U, for some A € A}
AeA

and the family of balls By (x, r) in the right-hand side is countable, we may assume that
A is countably infinite, or more specifically, A = N. Choose x, € S\|J;—, U; for each
n € N. Then {x,}52, C S, and since S is bounded, the Bolzano-Weierstrass theorem
implies that there exist x € R and a strictly increasing sequence {n kthrey C Nsuch
that limg_, o X, = x. For each n € N and for sufficiently large k, x,, belongs to
S\ U, U;. Since this set is closed in R¢, it follows that x € S \ |J’_, U; for any
n € N and hence that x € S \ | Jy—; Up, which contradicts S C | J,—; Un. Therefore
S is compact. O
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Exercises

Problem 0.1. Prove Propositions 0.2, 0.3 and 0.5.

Problem 0.2. (1) Let A C [—00, 0] be non-empty. Prove that sup(—A4) = —inf A4,
where —A4 :={—a | a € A}.
(2) Let{a,};2, C [—00, 00]. Prove that limsup,,_, ,.(—a,) = —liminf, .o an.

Problem 0.3. Let {a,};2,,{bn}5>; C [—00, 0]
(1) Suppose a,, < b, for any n € N. Prove that

limsupa, <limsupb, and liminfa, < liminfb,.
n—o0 n—»00 n—00 n—00

(2) Suppose that {limsup,,_, ., @n, limsup,_, ., bn} # {00, —oco} and that {a,, b,} #
{00, —oco} for any n € N. Prove that

limsup(a, + b,) < limsupa, + limsup b, (0.5)

n—oo n—>oo n—>o0

and that the equality holds in (0.5) if lim, o @, exists in [—o0, oo]. Give an example
of {an}52 1, {bn}5>, C [0, 1] for which the strict inequality holds in (0.5).

Problem 0.4. Prove Proposition 0.7 and the assertion in Remark 0.8.

Problem 0.5. Prove the latter two equalities in (0.3) and the first three equalities in
0.4).
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Chapter 1

Measure and Integration

In this chapter, we introduce the notion of (countably additive) measures and develop
the theory of integration with respect to measures. We follow the presentation of [7,
Chapter 1] for the most part of this chapter.

1.1 o-Algebras and Measures

We start with the definition of o-algebras.

Definition 1.1 (c-algebras). (1) Let X be a set and let M C 2X. M is called a o-
algebra in X (or a o-field in X) if and only if it possesses the following properties:

(ol) B € M.
(02) If A € M then A€ € M, where A€ := X \ A.
(03) If{A,)°, C M then |, An € M.

(2) The pair (X, M) of a set X and a o-algebra M in X is called a measurable space,
and then a set A € M is often called a measurable set in X .

Proposition 1.2. Let (X, M) be a measurable space. Then

(1) X eM.

() If {An}32, C M then (72 An € M.

) Ifn e Nand {A;}_, CMthen Ay U---UA, e Mand Ay N---N A, € M.
@ IfA,BeMthen A\ B e M.

Proof. (1) X = 0° € M by (01) and (02).

(2) Since {A5}22, C M by (62), (nei An = (Unzy AZ)C € M by (03) and (02).
(3) Setting A; = @ fori > n + 1 and an application of (¢3) yield 4; U---U A4, € M.
Then A; N--- N A, € M follows in exactly the same way as (2).

(4) Since B€ € M by (62), A\ B = AN B € Mby (3). O

13
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Definition 1.3 (Measures). Let (X, M) be a measurable space.
(1) A function u : M — [0, oo] is called a measure on M (or on (X, M)) if and only if
w(?) = 0 and p is countably additive, that is,

u(U An) =D 1u(4n) (L.D)
n=1 n=1

whenever {4,}52, C Mand 4; N A; =@ foranyi, j € Nwithi # j. If u(X) =1
in addition, then u is called a probability measure.

(2) The triple (X, M, ) of a set X, a o-algebra M in X and a measure u on M is
called a measure space. If p is a probability measure in addition, then (X, M, ) is
called a probability space.

Proposition 1.4. Let (X, M, ) be a measure space.

(W Ifn e NAAi}/_, CMand A; N A; = @ foranyi,j € {l,....,n} withi # ],
then p(Ay U---U A4,) = n(Ar) + -+ + u(An).

Q) IfA, B e Mand A C B then u(A) < u(B).

Q) If {An}5>, C M satisfies Ay, C Apg1 for any n € N, then limy 00 4(A,) =
1(UnZy An)-

@) If {An};2, C M satisfies Ap D Aptq for any n € Nand p(Ay) < oo, then
limy— 00 1 (Ap) = M(ﬂf;l An)-

Proof. (1) This follows by letting A; := @ fori > n + 1in (1.1) and using u(9) = 0.
(2) Since B = AU(B\A)and AN(B\ A) = @, (1) yields u(B) = u(A)+un(B\A) >
u(A).

(3) Set By := Ay and B, := A, \ Ay,—1 forn > 2. Then B, e M, B; N B; = @ for
i,j € Nwithi # j,and A, = By U---U By, so that | J;2; A4, = s~ Bn. Hence

o0 o0 o0 n

u(U An) = M(U Bn) =D i(By) = lim D " p(By) = lim pu(Ay)
n=1 n=1 n=1 i=1

by (1.1) and (1) above.

(4)Set Cy, := A1\ A,. Then C,, € M and C,, C Cp 41 forany n € N, and Uff’:l C, =

Al\(ﬂf,il An)~ Therefore pu(An)+pu(Cp) = p(41) = M(ﬂ:il An)+M(U;.,O=1 Ca
by (1), and hence p(A;) < oo and (3) together yield

u(ﬂ An) = u(A) = lim @(Cy) = lim (s(A) = w(C)) = lim_ p(An).
n=1

This completes the proof. O

Here are some simple examples of measures.

Example 1.5. Let X be a set. Note that 2% is clearly a o-algebra in X.

(1) For A C X, let #A denote its cardinality, i.e. #4 is the number of the elements of
A if A is a finite set and otherwise #4 := 0o. The function # : 2X — [0, o0] is easily
seen to be a measure on (X, 2X ) and called the counting measure on X .

(2) Fix x € X, and define §, : 2X — [0,1] by §x(A4) = 1if x € A and §,(A4) = 0 if
x ¢ A. Then §, is a measure on (X, 2X) and called the unit mass at x.
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For measures on countable sets, we have the following clear picture.

Example 1.6. Let X be a countable (i.e. either finite or countably infinite) set. Then
any [0, oo]-valued function ¢ : X — [0, co] defines a measure ft,, on (X, 2%) given by

Ho(A) =) p(x). (12)

xX€A

Conversely, for any measure p on (X,2%), there exists a unique ¢ : X — [0, 0]
such that u = p,; it suffices to set ¢(x) := w({x}). In other words, a measure on a
countable set is completely characterized by its values on one-point sets.!

The construction of interesting measures requires some (heavy) task and will be
treated in Chapter 2. Here we present two fundamental examples, for which we need
the following proposition.

Proposition 1.7. Let X be a set.

(1) Let A be a non-empty set and suppose that M, is a o-algebra in X for each A € A.
Then (yep My is a o-algebra in X.

(2) Let A C 2% and set

ox (A) == N M. (1.3)

M: o-algebrain X, A C M
Then ox (A) is the smallest o-algebra in X that includes A.

ox (A) in (1.3) is called the o-algebra in X generated by A, and it is simply denoted as
o (A) when no confusion can occur.

Proof. (1) We verify that (), c, M, satisfies the conditions (o1), (62) and (03) in
Definition 1.1-(1). @ € M forany A € A andhence @ € ();cp Ma. If A € () cp Ma
then A € M, and hence A° € M, for any A € A. Thus A° € () cp M. If
{4}, C Naea My, then forany A € A, {4,}22, C M, and hence | J,—, 4n €
M. Thus U:‘;l A, € mAeA M.

(2) Since 2% is a o-algebra in X including A, we can take the intersection given in
(1.3) to define oy (A). Then (1) shows that ox (A) is a -algebra in X. By definition,
A C ox(A), and ox (A) C M for any o-algebra M in X with A C M. O

Example 1.8 (Borel o-algebra and Lebesgue measure on R?). Let d € N. We define
the Borel o-algebra B(R?) of R? to be the o-algebra in RY generated by its open
subsets, i.e.

BR?) := o({U C R? | U is open in R?}). (1.4)

Then each A € B(R?) is called a Borel set of R?. In fact, as stated in the following
proposition, B(R?) is generated by d-dimensional intervals. As we will see in the

"Here we could consider a o-algebra M in X which differs from 2X , but then for some x € X we
would have {x} & M (the one-point set {x} is nor measurable), which looks very weird for a countable set
X . This is why we considered measures on 2X only.
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course of this lecture, B(R?) is the right o-algebra to be considered when dealing with
measures on R? and R?-valued functions.

Later we will see many examples of measures defined on (R, B(IR?)), but here we
present only the most standard and most important one: there exists a unique measure
my on B(R?) such that for any d-dimensional interval [ay,by] x -+ % [ag, bg],

my ([ar, bi] x -+ x [ag, bal) = (by —ay) -+ (bg — aq). (1.5)

my is called the Lebesgue measure on R% 2 This is the mathematically correct formu-
lation of the notion of “d -dimensional volume”; my, m, and m3 represent length, area
and volume, respectively.

We need rather long preparations for the proof of the existence and uniqueness,
especially existence, of such a measure and we will treat it in the next chapter.

Proposition 1.9. Let d € N and define

Fg = {[al,bl] XX [ag,bq] | arp, by e R, ap <bgforl <k < d} U {a}, (1.6)
I3 :={lar.bi] x -+~ x [ag.ba] | ax.bx € Q,ax < by for 1 <k <d} U{B}. (1.7)

Then B(RY) = 0(F4) = o (F3).

Proof. 3'"(3 C F4 by definition, and we also have F; C B(R?) since any I € Fy is
closed in R? and hence /¢ € B(R?). Thus o(&"?) C 0(F;) € B(RY). Let U be an
open subset of R . For the proof of B(R?) C 0(3’8), it suffices to show U € 0(5"9).
Set

A={led3|1cU).

Since F7 is countable, so is A and hence ;¢4 I € o(Fy). Clearly ;e I C U.
On the other hand, any x € U admits / € A such that x € I; indeed, since U is open,
there exists r € (0, oo) such that B(x, V/dr) = {y e R? | |y—x| < +/dr} Cc U.If we

choose ay, by € Qsothat xp —r < ap < xx < by < xp +r,where x = (x1,...,Xq),
then I :=[ay,b1] X -+ X [ag, bg] satisfies x € I, I C U and hence I € A. Therefore
x€Urea I, thusU € Ujeu I andhence U = Uyey I € 0(F5). O

The following lemma is sometimes useful.

Lemma 1.10. Let X be a set, let A C 2% and let Y C X. Define Aly C 2Y by
Aly . ={ANY | A e A}. (1.8)

() IfAisao-algebrain X, then Aly is a o-algebrain Y .
(2) oy (Aly) = ox (A)ly.

2More precisely, the completion of mg, which is an extension of my to a certain larger o-algebra, is
usually called the Lebesgue measure on R?; see Theorem 1.37 below for the notion of completion.
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Proof. (1) Suppose A isac-algebrain X. Then@ =@NY € Aly,andY \(ANY) =
A°NY € Aly forany A € A. If {4,}32, C A, thenJ,~,(4,NY) =YNUyo; An €
Aly. Thus Aly is a o-algebrain Y.

2) oy (Aly) C ax(A)|y follows since Aly C ox(A)|y and ox (A)|y is a o-algebra
in Y by (1). For the converse, let B:={A C X | ANY € oy(Aly)}. Then A C B,
and it is immediate to see that B is a o-algebra in X. Thus oy (A) C B, that is,
ox(A)ly Coy(Aly). [

Example 1.11 (Borel o-algebra in subsets of R?). Let d € Nand S C R?. Then the
Borel o-algebra B(S) of S is defined in the same way as that of R?, i.e.

B(S):=0({U C S| U isopenin S}), (1.9)
and each A € B(S) is called a Borel set of S. Since Proposition 0.12 means that
{UcCS|UisopeninS} ={U c R? | U is open in R%}|s,
an application of Lemma 1.10 shows that
B(S) = B(RY)|s. (1.10)
In particular, if § € B(R?), then B(S) = {A € B(RY) | A C S} € BRY).

Example 1.12 (Bernoulli measures). Let Q := {0, 1}" = {(04)32; | @, € {0,1}}. If
we write O for tails of a coin flip and 1 for heads, then the outcome of infinitely many
coin flips is represented by a sequence w = (wn)5~; € £2, where w, corresponds to
the n-th outcome, and therefore €2 is a natural choice of the sample space for infinitely
many coin flips.

Which o-algebra should we equip €2 with? An obvious requirement is that any
“event” determined only by the outcomes of finitely many flips, i.e. any subset of the
form A, x {0, )N\ with 4, € {0, 1}, should be measurable. Therefore an easy
choice is to consider the following o-algebra J:

F = 0({An x {0, 1M\Lm |y e N, 4, C {0, 1}"}). (1.11)

F is actually the right o-algebra in 2 to be considered, and we can construct a natural
probability measure on I which represents the randomness of infinitely many flips of a
coin: for any p € [0, 1], there exists a unique probability measure P, on F such that*

Pp[{(@i)f=y} > {0, TN = T p (1 = p)! = (1.12)

i=1

for any n € N and any (w;)7_, € {0,1}". P, is called the Bernoulli measure on
of probability p. The proof of its existence and uniqueness is postponed until later
chapters.

3The number p corresponds to the probability of heads at each flip.
“Here 00 := 0.
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1.2 Measurable and Simple Functions

In this section, we define measurable functions and present their basic properties.
Throughout this section, we fix a measurable space (X, M).

Definition 1.13 (Measurable functions). A function f : X — [—o0, 00] is called M-
measurable if and only if f~1(A4) € M for any A € B(R) and for A = {oo}, {—o0}.

Proposition 1.14. A function f : X — [—00, 0] is M-measurable if and only if
! ((a, oo]) € M for any a € Q (or equivalently, for any a € R).

Proof. If f is M-measurable, then f~'((a,o0]) = f7!((a,00)) U f~'(c0) € M
for any a € R. For the converse, suppose f~!((a,o0]) € M for any a € Q. Then

J7H00) = Myen f 7 (1, 00]) € M, £ ((—00.00]) = Upen /7! (=11, 00]) € M
and hence f~!(—00) = f~!((—00,0])* € M. We claim that

A:={ACR| f1(4) e M} is a o-algebra in R and satisfies ff? CA, (1.13)

where F? is given by (1.7) with d = 1. Then (1.13) yields B(R) = o () C A.
Letus verify (1.13). f71(@) =08 eM, f'[R) = (f~'(c0) U 7 (~00)) e M
and hence ,R € A. If A € Athen f7I(R\ 4) = f~'(R)\ f~'(4) € M and
hence R\ A4 € A. If {4,}32, C A then f~'(Upli 4n) = Unei /7 (An) €
M and therefore UZO=1 A, € A. Thus A is a o-algebra in R. For a,b € Q with
a<b, f7([a,00]) = Nz, f " ((a —1/n,00]) € M and therefore f~*([a,b]) =
=Y ([a,00]) \ f71((b,00]) € M. Thus [a,b] € A, proving F? C Aand (1.13). [

Proposition 1.15. Let f,g : X — [—00, 00] be M-measurable.

(1) The function f + g : X — [—00,00], (f + g)(x) := f(x) + g(x), is M-
measurable, provided { f(x), g(x)} # {00, —oo} for any x € X°.

(2) The function fg : X — [—o00,00], (fg)(x) := f(x)g(x), is M-measurable.

Proof. (1) For any a € R we have

S+ (@)= | /7 ((noo]) ng™((s.00]) € M.

r,s€Q,r+s>a

and hence f + g is M-measurable by Proposition 1.14.
(2) It holds that for any a € [0, c0),

(/&)™ ((a,o0)
= U (/o) ng ™ (.00])) U (7 (1mo0 =) ng ™ (=00, —s)) )

r,s€QN(0,00)
rs>a
and therefore ( fg)™! ((a, oo]) € M. On the other hand, for any a € (—o0, 0),

(f2)""((a,0))

Sthat is, provided neither “co + (—00)” nor “—o0 + 00” appears in the sum f(x) + g (x)
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= U (F(omng (0)u(f (o) ng(©.9))

r,s€QN(0,00)
rs<l|al

eM

and hence (fg)~((a.00]) = (f£)!((@.0)) U (f£)™1(0) U (fg)~*((0.00]) € M:
note that ( fg)~1(0) = £~1(0) U g~1(0) € M. Now Proposition 1.14 implies that fg
is M-measurable. O

For a sequence { f,}52, of [—o0, oo]-valued functions on X, we define [—oo, oc]-

valued functions sup, > fu, infy>1 fu, limsup,_, o, fn and liminf, o fu on X by

(so0 5 )= sup(fu). (1imsp £, ) 0 = timsu ).

( inf fn)(x> :

Proposition 1.16. Let f, : X — [—00, 00] be M-measurable for each n € N. Then
Sup,>1 fu, infp>1 fu, limsup,_, o fn and liminf, o fy are all M-measurable.

(). (tmint )0 1= imint(7, (o)

Proof. Forany a € R, (sup,=; fu) "' ((a,00]) = Un=; £, *((a. o0]) € M, and hence
Sup,-1 Jfn is M-measurable by Proposition 1.14. Then inf,>1 f, = —sup,~,(—/n)
is also M-measurable by Proposition 1.15-(2). In particular, SUPg>, fn and iﬁszn fr
are M-measurable for any 7 € N and so are limsup,,_, . f = inf,>1(supy-, fx) and
liminfy o0 fn = sup,>(infx>n fi)- O

The following lemma is useful in verifying measurability of basic functions.

Lemma 1.17. Letd € Nandlet S C Re. If f : S — R is continuous, then f is
B(S)-measurable.

A B(S)-measurable function on S is also referred to as a Borel measurable func-
tion. Lemma 1.17 asserts that every R-valued continuous function is Borel measurable.

Proof. LetA:={A CR| f~1(A) € B(S)}. We easily see that A is a o-algebrain R,
and any open subset U of R belongs to A since f~!(U) is open in S by the continuity
of f. Thus B(R) C A, which means that f is B(S)-measurable. O

For E C X, wedefine 1 : X — Rby

1 ifxeE
15(x) := : 1.14
£(X) {0 ifx & E. (1.14)

1 is called the indicator function® of E. It is easy to see that 1g is M-measurable if
and only if E € M.

%1 is usually called the characteristic function of E , but in the context of probability theory, this phrase
is kept for the Fourier transform of probability measures on RY . See Chapter 4 for details.
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Definition 1.18 (Simple functions). s : X — R is called M-simple if and only if it is
M-measurable and its range s(X) is a finite set.

Note that co and —oo are explicitly excluded from the values of simple functions.
Since an M-simple function s is written as s = ZaES(X) alg—1,) with s7(a) e M,
we easily see from Proposition 1.15 that s : X — R is M-simple if and only if

n
s = ZailAi forsomen € N, {a;}7_; C Rand {4;}/_; C M. (1.15)

i=1

Proposition 1.19. Let f : X — [0, 00] be M-measurable. Then there exists a se-
quence {sp }5> | of M-simple functions on X such that for each x € X,

(S1) 0 <s,(x) < spy1(x) foranyn € N,
(S2) limy 00 sy (x) = f(X).
Proof. Forn € N, define s, : X — [0, 00) by

n2" .

i—1
$ni= ) Nt po gy ki, (1.16)

i=1

where {Zh < f < L) = 7[5 &) and {f > n} := f7([n,oc]). These
sets belong to M by the M-measurability of f and hence s, is M-simple.

Letx € X. Itis easy to verify (S1). If f(x) < oothen f(x)—27" < s,(x) < f(x)
forn € Nwithn > f(x), and if f(x) = oo then s,(x) = n for any n € N. Thus
limy, 00 Sz (x) = f(x) in both cases, proving (S2). O

1.3 Integration and Convergence Theorems

In this section, we define integration with respect to measures and prove fundamental
convergence theorems. Throughout this section, we fix a measure space (X, M, u).

1.3.1 Non-negative functions

First we define integration of non-negative simple functions. Recall our convention
that0- 0o =00 -0:=0.

Definition 1.20 (Integration of non-negative simple functions). Let s : X — [0, 00)
be M-simple. We define its p-integral fX sdu on X by

/};sd,u = Z apL(s_l(a)). (1.17)

aes(X)

Lemma 1.21. Lets,t : X — [0, 00) be M-simple and let o, § € [0, 00). Then

/(as+ﬁt)du=a/ sd,u—i—ﬂ/ tdu. (1.18)
X X X
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Proof. Note that as + Bt is also [0, 00)-valued and M-simple, so that the left-hand side
of (1.18) is defined. It is easy to see that [y asdu = a [y sdu; indeed, [y asdp =
0=« fX sdu for @ = 0, and if a € (0, c0) then (as) ™! (aa) = s (a) fora € [0, o)
and hence

/asdu— Z (@a)p(s™"(a)) =« Z au(sil(a))za/Xsdu.

aes(X) aes(X)

Thus it suffices to show [y (s + 1)dpu = [y sdp + [y tdp. Fora € (s + 1)(X) we
have

c+nT@= |J sTTene
(b,c)es(X)xt(X)
b+c=a

where s~1(h) N t~!(c) are mutually disjoint, and therefore

/(s-i—t)du
X
= Y ap(s+n7'@)

ae(s+1)(X)

= Z Z ap(s~ )Nt (e))

ac(s+1)(X) (b,c)es(X)xt(X)
b

+c=a
YT bHousT )N ()
bes(X) cet(X)
Db Y ulTt N @)+ Y. e D ulsTe)ynee)
bes(X) cet(X) cet(X) bes(X)
= 2 (T @)+ Y en(rH©)
bes(X) cet(X)
:/sd,u—i—/ tdu,
X X
which completes the proof. O

Definition 1.22 (Integration of non-negative functions). Let f : X — [0, oo] be M-
measurable. We define its p-integral fX fdu on X by

/deu = sup{/Xsd/L

Note that (1.19) is consistent with (1.17) for non-negative M-simple functions;
indeed, the supremum in (1.19) is attained by f if f : X — [0, oo] is itself M-simple,
since we see from Lemma 1.21 that [, sdu < [y sdu + [y (t —s)dp = [y tdp for
M-simple functions s, : X — [0, 00) withs < on X.

The following lemma is immediate from (1.19).

s:X —> R,sis M-simpleand 0 < s < fonX}. (1.19)
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Lemma 1.23. If f,g : X — [0,00] are M-measurable and f < g on X, then
Jx fdu < [y gdp.

Now we are in the stage of presenting the first fundamental convergence theorem.

Theorem 1.24 (Monotone convergence theorem, MCT). Let f, : X — [0, co] be M-
measurable for each n € N and suppose fn(x) < fuy1(x) foranyn € N, x € X.
Then f : X — [0, 00] defined by f(x) := lim,_ o fr(x) is M-measurable, and

lim f,,d/L:[ fdu. (1.20)
n—>00 X X

Proof. Since f = lim, 00 fn = sup,-; fn by Proposition 0.3, f is M-measurable
by Proposition 1.16. Letn € N. Then 0 < [y fudp < [y fa+1dp < [y fdu by
Lemma 1.23, and letting n — oo yields lim, o0 [y fudp < [y fdpu.

For the converse inequality, let s : X — R be M-simple and satisfy 0 < s < f on
X. Letc € (0,1) and define

Ay =X € X | fu®) = es)) = (S —es) T ((0.00]).  n €N,

Then for n € N, A, € M by Proposition 1.15, and 4, C A,+1. Furthermore we have
UsZ, 4n = X; indeed, if x € s71(0) then fi(x) > 0 = cs(x) and hence x € Ay,
and if x € s71((0,00)) then f(x) = sup,s; fu(x) = s(x) > cs(x) and therefore
Ja(x) > cs(x) for some n € N. Now for n € N, by Lemma 1.23 and Lemma 1.21 we
have

/fndMZf fnlAnd/’LE/CSIAnd/’LZ/ Z cals_l(“)nA”d'u
e X X X

aes(X)
(121)
= Z ca/ Li-1(gyna,dit = ¢ Z ap(s~ (@) N A4y,).
acs(X) X aes(X)

Since limy,_ o0 //,(s_l(a) N A,,) = ,u(s_l(a)) by Proposition 1.4-(3), letting n —
oo in (1.21) yields limy—oo [y fadit = ¢ Y gesxyam(s~(@)) = ¢ [y sdu, where
¢ € (0,1) is arbitrary, and hence lim, o0 [y fudit > [y sdu. Finally, taking the
supremum over M-simple s with 0 < s < f shows lim, o0 [y fudp > [y fdp. O

Proposition 1.25. Let f,g : X — [0, 0] be M-measurable and let a, 8 € [0, o<].
Then

/(Otf + Bg)du = a/ fdu+ﬁ/ gdp. (1.22)
X X X
Proof. Let {sp}5>; and {#,};2; be sequences of non-decreasing non-negative M-

simple functions on X converging to f and g, respectively, as given in Proposition
1.19. Then by virtue of Lemma 1.21, Theorem 1.24 yields

/afdu: lim /min{a,n}snduz lim min{a,n}/snduza/ fdu
X n—o0 X n—>o0 X X
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and
[+ = tim [ 50+ 1
X n—>oo X
= lim (/ s,,du—i—/ lndu) :/ fdu—i—/ gdu,
n—=>o\Jx X X X
which together imply (1.22). O

Proposition 1.26. Let f, : X — [0, oo] be M-measurable for each n € N. Then

/X(g fn)du=§;/}(fndu. (1.23)

Proof. Since Y !_, fi(x) is non-decreasing in n € N and converges to Y o fn(x)
asn — oo for any x € X, Theorem 1.24 and Proposition 1.25 yield

/(an)du—nlggo (;ﬁ)du=ngrgo;/xﬁdu=;/xfndu,

completing the proof. O

Here is another important limit theorem for integrals of non-negative functions.

Theorem 1.27 (Fatou’s lemma). Let f,, : X — [0, 00] be M-measurable for each
n € N. Then

[ (liminf f,,)d,u < liminf f fudps. (1.24)
X n—>oo n—>o00 X

Proof. Let m,n € N, m > n. Since infgs, fx < fm on X, fX(inka,, fk)du <
[x fmdp by Lemma 1.23 and hence

/(mf fr)dp < 1nff frdu. (1.25)

k>n
Since infg >, fi(x) is non-decreasing in n and converges to lim infy, oo frn(x) asn —

oo for any x € X, (1.24) follows by using Theorem 1.24 to let n — oo in (1.25). [

1.3.2 [—o0, oo]-valued functions
Definition 1.28. For f : X — [—o0, 00], we define f+, f~ : X — [0, o0] by
fT(x) :=max{f(x),0} and £~ (x):= —min{f(x),0}, (1.26)

sothat f = f* — f~and|f| = fT + f~ (of course we set |oo| := | — oo| := 00).
By Propositions 1.15 and 1.16, if f is M-measurable then so are f+, f~ and | f|.
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Definition 1.29 (Integration of [—o00, co]-valued functions). Let f : X — [—o00, 0]
be M-measurable and let A € M. We say that f admits the p-integral on A if and only
if min{ [y 1 14dp, [y f714dp} < oo, and in this case its p-integral [, fdu on A
is defined by

/fdu:z/erlAdu—/f_lAd,u. (1.27)
A X X

Moreover, f is called p-integrable on A if and only if [y | f[1adpn < oo. When
A = X, the part “on X ” will be omitted from these phrases. Finally, we set

LYX, M, ) :={f : X - R| f is M-measurable and p-integrable}, (1.28)
which will be simply written as £ (X, ) or £! (1) when no confusion can occur.

Note that (1.27) with A = X is consistent with (1.19) for non-negative functions,
since f* = f and f~ = 0 for M-measurable f : X — [0, o0]. Note also that f is
p-integrable on A if and only if f admits the y-integral on A and [, fdu € R.

Notation. The integral | 4 fd is often written in slightly different notations, e.g.

/ FE)du(x) = / FEO(dx) = / fdu. (1.29)
A A A

These alternative notations are used especially when it should be made clear in which
variable the integral is taken.’

Proposition 1.30. Let f : X — [—o0, o0] be M-measurable.

(1) Let A € M satisfy u(A) = 0. Then f is p-integrable on A and [, fdu = 0.

Q) If A, B € M and f is -integrable on A and B, then f is u-integrable on AU B.
If AN B = @ in addition, then

/A = /A fdu + fB fdu. (1.30)

(B) If f is u-integrable, then /L(f_l(oo) U f_l(—oo)) =0.

Proof. (1) 1t suffices to show [y | f|14dp = 0. Lets : X — R be M-simple and
satisfy 0 < s < | f|14 on X. Then for any a € s(X) \ {0}, s~!(a) C A and hence
w(s~'(a)) = 0. Thus [y sdu = 0 for any such s and therefore [ | f[14dp = 0.

(2) By Proposition 1.25 and 14up < 14 + 15,

/X|f|1AUBdus/X|f|(1A+1B>du=/X|f|1Adu+/X|f|1Bdu<oo.

If ANB = @, then 14yp = 14+1p, which together with Proposition 1.25 immediately
shows (1.30).

(3)Set A := f~1(oco) U f~!(—oo) and let n € N. Then | f| > |f|14 > nlg on X
and hence nju(A) = [y nlgdp < [y | fldp < co. Thus 0 < u(A) <n' [y | fldu,
and letting n — oo yields p(A4) = 0. O

"The first and second notations in (1.29) have exactly the same meaning, but for certain reasons the
second notation is often preferred in the context of probability theory.
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Proposition 1.31. (1) If f,g : X — [—00,00] are M-measurable, admit the ji-
integrals and satisfy f < g on X, then

/fdui/gdu- (1.31)
X X

In particular, if f: X — [—00, 00] is M-measurable and admits the ji-integral, then

[ s

Q) If f.g € LY(w) and o, B € R, then af + Bg € L () and

5/ | fldu. (1.32)
X

[X(aerﬂg)du =a/deu+ﬁ/ngu- (1.33)

Proof. (1) f < g implies f+ < g* and f~ > g~, and hence by Lemma 1.23 we
have [y fTdu < [y ¢Tdwand [y f~dp > [y g du. (1.31) is immediate from
these two inequalities, and (1.32) follows from (1.31) and —| f| < f < | f|.

(2) It is easy to see that af € L£'(u) and that [y afdu = o [y fdu; indeed, this
is immediate from Proposition 1.25 for o € [0, 00), and the case of « = —1 follows
from (—f)* = f~and (—f)” = f*. Thus it remains to prove the assertions for
a=B=1 f+g e LYu) follows by | f + g| < |f| + |g|, Lemma 1.23 and
Proposition 1.25. From (f + @)t —(f +g) = f+g=fT—f " +gt —g we
have (f + )"+ f~+g = (f +g)~ + fT + g*, and Proposition 1.25 yields

/X(f+g)+du+/xf_du+/xg‘du :/)((f+g)_du+/)(f+du+/xg+d,u

where all the integrals are finite. Therefore [y (f + g)du = [y fdpu + [y gdn. O
The following convergence theorem often plays fundamental roles in analysis.

Theorem 1.32 (Lebesgue’s dominated convergence theorem, DCT). Let f, : X —
[—00, 00] be M-measurable for each n € N. Suppose the following two conditions:

(L1) The limit f(x) := limy_ oo fn(X) exists in [—00, 00] for any x € X.

(L2) There exists an M-measurable, j1-integrable function g : X — [0, 00] such that
| fn(x)| < g(x) forany x € X and any n € N.

Then f : X — [—o00, 00] is M-measurable and p-integrable, and
lim fndp = / fdu. (1.34)
n—>o0 X X

Proof. The M-measurability of f follows from Proposition 1.16. Since | f,| < g we

have | f| < g, and Lemma 1.23 yields [y | f|du < [ gdp < oo. Let A := g71(00),
so that £ (A) = 0 by Proposition 1.30-(3). Then

/andu—/xfdu=/Ac fndu—/AC fdM=/X(fn—f)1Acdu (1.35)



26 CHAPTER 1. MEASURE AND INTEGRATION

by Proposition 1.30-(1),(2) and Proposition 1.31-(2) (note that f, and f are R-valued
on A°). Since 2g — | f, — f| = 0 on A°, Theorem 1.27 and Proposition 1.31-(2) yield

f 2¢glgcdp = f liminf((2g — | fu— f|)1Ac)d,u
X X n—>0o0
< timinf [ Qg 1fy = DLacdp
n—oo X

= liminf([ 2g1ye —/ | fo — f|1Acdu)
n=oo \Jx X

= / 2g1Acd,u—limsup/ | fo — fllacdp.
X X

n—>o0

(1.36)

Since each term in (1.36) is finite, we may subtract [, 2g14cdp to obtain

limsup/ | fo — fllaedp <0, ie. lim / | fo — flacdp =0.  (1.37)
n—oo JX n—oo Jy

Now (1.34) follows from (1.32), (1.35) and (1.37). O

1.3.3 Sets of measure zero and completion of measure spaces

In the above proof of Theorem 1.32, we already utilized the fact that the set g~!(c0)
is “negligible” since it is of p-measure zero. There are a lot of situations in measure
theory where it is necessary to neglect sets of measure zero appropriately, and here is
an important definition used in those situations.

Definition 1.33 (Almost everywhere, a.e.). Let P(x) be a proposition on x for each
x € X, and let A € M. Then we say that P holds p-almost everywhere on A, or P
holds p-a.e. on A for short, if and only if there exists N € M with w(N) = 0 such
that P(x) holds for any x € A\ N. For A = X, we simply say P holds p-a.e. instead
of saying P holds jt-a.e. on X.

For example, P(x) can be “ f(x) = 0” for a given function f : X — R, or can be
“the limit lim, o f» (x) exists in R” for a given sequence { f,}5>, of functions on X.

Measure theoretic assumptions naturally imply p-a.e. assertions, as illustrated in
the following proposition.

Proposition 1.34. (1) If f : X — [0, 00] is M-measurable and [y fdu = 0, then
f =0 p-ae.

Q) If f : X — [—00, 00] is M-measurable, p-integrable and satisfies [, fdu = 0 for
any A € M, then [ =0 u-a.e.

Proof. (1)Letn € Nandset A, := f~'([n7",00]). Then0 = [y, fdu > Ja, fadpn >
n~'11(A,) and hence 1(A,) = 0. Letting n — oo yields /L(f_l(((), oo])) =0.
(2) Let A := f7'([0,00]). Then since f*t14 = f*+, fT1ye = f~ and fT14 =

ftlye =0, wehave 0 = [, fdu = [y fTdpand 0 = — [, fdp = [y f~du.
Thus f* = f~ = 0 u-a.e. by (1) and hence f = 0 p-a.e. O
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The following proposition says that sets of p-measure zero are in fact negligible as
long as p-integrals are concerned.

Proposition 1.35. Let f,g : X — [—00,00] be M-measurable and satisfy [ = g
u-a.e. Then for any A € M, f admits the p-integral on A if and only if so does g, and

in that case we have
/ fdu = f gdu. (1.38)
A A

Proof. Choose N € M with u(N) = 0so that f(x) = g(x) forany x € X \ N. Then
since (A N N) = 0, Proposition 1.25 and Proposition 1.30-(1) imply

/filAd,U«Z/ filA\NdH+/ filAmNdMZ/gilA\NdquO
X X X X

=/gi1A\Nd,M+[ gilAﬂNdllv:/gilAdlL
X X X
from which the assertions are immediate. O

Remark 1.36. In the above proof, we can take {x € X | f(x) # g(x)} as the set N; in
fact, it is not difficult to verify that {x € X | f(x) # g(x)} € M (see Problem 1.16).

By virtue of Proposition 1.35, we can slightly weaken the assumptions of the results
in this section by allowing exceptional sets of p-measure zero. For example, Theorem
1.32 is still valid if “for any x € X ” in the conditions (L.1) and (L.2) are replaced by
“for p-a.e. x € X”; indeed, if N, € M with u(N,) = 0, n € N U {0}, are chosen so
that

(L1) the limit f(x) := limy 0 f5(x) exists in [—00, o] for any x € X \ Ny, and
(L2) |fu(x)] < g(x) forany x € X \ N, foreachn € N,

then since N := (5, Ny is of p-measure zero by Problem 1.10, we obtain (1.34) by
applying the original Theorem 1.32 to {g,}52, defined by

() 1= fa(x) ifxe X\ N,
0 ifxeN.
Note here that the limit function f is defined only p-almost everywhere, only on the
set A (= {x € X | limsup,_, fn(x) = liminf,e fu(x)} € M, but still its p-
integral [y fdu is uniquely defined. Indeed, since f = limsup,_,, fn on A and it is
M| 4-measurable, if we set f := h on A, where h : A° — [—00, 00] is an arbitrary
M| 4c-measurable function, then f is M-measurable, and Proposition 1.35 together
with jt(A€) = 0 assures that the integral [y, fdu is independent of &1 = f'|4e.

Such a situation is quite common in measure theory and probability theory: once an
M| x\n-measurable function f : X \ N — [—o00, oc] is defined outside a set N € M
with £(N) = 0, we define [y fdu as the p-integral of any M-measurable extension
of f to X, and we often do NOT specify the values on N.

For f : X \ N — [—o00,00] as above, it is natural to regard any extension of
f to X as measurable since the way of extension does not affect the integral. This
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measurability is, however, not necessarily true since N may contain a subset which
does not belong to M. In fact, we can achieve this measurability by enlarging the
o-algebra M in the following way.

Theorem 1.37 (Completion of a measure space). We define
M= {ACX|BCACC forsome B,C €¢ Mwith u(C\ B) =0}, (1.39)

Then M is a o-algebra in X larger than M, and [ is uniquely extended to a measure
on M. M is called the pu-completion of M, and [t is called the completion of u.

Proof. If A € M then setting B := A =: C shows 4 € M. Thus M C ﬁ“, and in
particular @ € M. If A € M’ and B, C € M are as in (1.39), then C¢ C A° C B¢,
w(B\C€) = u(C\B) = 0and hence A€ € M If{A,}52, C M and B,, C, € M
are as in (1.39) for A, foreachn € N, then | Jyo | B, C Upe An C Uney Cns

U\ BucJG\ By
n=1 n=1 n=1

and hence by Problem 1.10,

M(U Cy \ U Bn) < M(U(Cn\Bn)) < ZM(Cn \Bn) =0.
n=1 n=1

n=1 n=1

Thus Uzozl A, € ﬁ“, and ﬁ"“ is a o-algebrain X.

We would like to define i : M - [0, 00] by w(A) := u(B) = u(C \ B) +
w(B) = u(C), where B,C € M are as in (1.39). If By, C; € M also satisfy B; C
A C Cyand u(Cy \ By) = 0, thensince BU By C A C C N Cy we have u(B) <
u(C1) = pn(B1), u(B1) < u(C) = u(B) and hence u(B) = p(By). Thus [(4) :=
w(B) = p(C) is independent of a particular choice of B,C € M as in (1.39), and it
defines a function @ : M- [0,00]. For A € M, we may take B := A =: C and
therefore (A) = u(A). In particular, t(#) = 0. The countable additivity of [ is
immediate from that of 1, and the uniqueness of such an extension is also clear. O

Definition 1.38. We call u, or (X, M, u), complete if and only if A € M whenever
A C N forsome N € M with u(N) = 0.

By the construction, the completion & of u is actually complete, which and (1.39)
easily imply that (X, M, u) is complete if and only if M" = M. On the other hand,
it is known that the Lebesgue measure my on (]Rd, B(Rd)) (Example 1.8) and the
Bernoulli measure P, on I (Example 1.12) are not complete.

1.3.4 Complex functions

In this course, we usually consider R-valued or [—o0, co]-valued functions, but we will
need integration of complex functions later in Chapter 4. Here we collect some basic
definitions and facts concerning integration of complex functions.

Let i denote the imaginary unit. As usual, C = {x + iy | x, y € R} is naturally
identified with R?, so that C is equipped with the metric structure inherited from R2.
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Definition 1.39. f : X — C is called M-measurable if and only if f~1(A) € M for
any A € B(C).

Proposition 1.40. f : X — C is M-measurable if and only if its real part Re( f) and
imaginary part Im( f) are both R-valued M-measurable functions.

Proof. Ttis clear that f is M-measurable if and only if f := (Re(f), Im(f )X —

R satisfies /~1(A4) € M for any A € B(RR?). By Problem 1.15, this is equivalent to
the condition that Re( /') and Im( /') are M-measurable. O

Note that | /| is M-measurable if f : X — C is M-measurable, since the function
C > z + |z] € R is continuous and hence B(C)-measurable by Lemma 1.17.

Definition 1.41 (Integration of complex functions). Let f : X — C be M-measurable
and let A € M. f is called p-integrable on A if and only if [y | f|14dp < oo, or
equivalently, Re( ) and Im( /) are p-integrable on A, and in this case its wu-integral
[y fdp on A is defined by

/ fdu = / Re(f)du +i / Im(f)du. (1.40)

A A A

When A = X, the part “on X ” will be omitted from these phrases. Finally, we set
LYX, M, 0,C) :=={f : X - C| f is M-measurable and p-integrable}, (1.41)

which will be simply written as £! (X, u, C) or £!(u, C) when no confusion can occur.

Proposition 1.42. (1) If f € L (i, C), then

'/deu

QIff.ge LY (n,C)anda, B € C, thenaf + Bg € L (u, C) and

5/ | fldu. (1.42)
X

/ @f +Be)dp = o / fdu+ B / gdp. (1.43)
X X X
Proof. (2) Using Proposition 1.31-(2), we have
[ iran = [ (<1 +iRe(r)dn = [ (~um(H)du+i [ Re()dn
X X X X
_ [ Im(f)dpt + i / Re(/)du = i / fdp.
X X X

which together with Proposition 1.31-(2) easily implies the assertion.
(1) Choose a € C with |a| = 1 so that | [y fdu| = o [y fdu. Then

‘/;;fdu‘Za/deﬂZ/Xafdﬂz/};Re(O‘f)dMS/;(Iﬂdu,

where the third equality is due to fX afdu € R and the inequality follows from
Re(af) < |af| = |f] and (1.31). O
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1.4 Some basic consequences

In this section, we present some consequences of the integration theory developed so
far in this chapter. In the proof of the first two theorems, we will utilize monotone
approximation of a measurable function by simple functions (Proposition 1.19) and the
monotone convergence theorem (Theorem 1.24) in a typical way.

Throughout this section, (X, M, ;) denotes a given measure space.

Theorem 1.43. Let f : X — [0, 0o] be M-measurable and define v : M — [0, oo] by

b(A) = /A fdu. (1.44)

Then v is a measure on (X, M). Moreover, if g : X — [—00, 0] is M-measurable,
then g admits the v-integral if and only if g f admits the p-integral, and in that case

/gdv:/gfd,u. (1.45)
X X

The measure v is denoted by f - u, and (1.45) is sometimes written as dv = fdpu.

Proof. v(0) = fXOd,u =0. If {4,}52, C Mand 4, N 4; = @ fori,j € N with
[ # j,then fljjeo 4 = = Y72, /14, and therefore Proposition 1.26 implies that

o

v(L=jl An) =/X};mndu=;/xfundu= D v(An).

n=1

Thus v is a measure on (X, M). For the other assertions, since (gf)* = g* f, it
suffices to show (1.45) for g : X — [0, oo]. For an M-simple function s : X — [0, 00),
Proposition 1.25 yields

[stv= 2 a(s @)= ¥ a [ S

aes(X) aes(X)

=/ Z aflg-1ydp = /f Z al _1(a)—/sfdu

aes(X) aes(X)

(1.46)

Therefore by choosing a sequence {s,},=,; of M-simple functions monotonically in-
creasing to g, as in Proposition 1.19, we have [y sp,dv = [y s, fdu, and letting
n — oo results in [y gdv = [y g fdu by virtue of Theorem 1.24. O

Remark 1.44. Note that the measure v = f -y satisfies v(A4) = 0 for any A € M with
n(A) = 0. A measure on (X, M) with this property is called absolutely continuous
with respect to |4, and it is known that this property completely characterizes measures
on (X, M) of the form f - u for some f € L£'(u). This fact is very fundamental in
measure theory and probability theory and known as the Radon-Nikodym theorem, but
we do not treat this theorem in this course. See [7, Chapter 6] and [1, Sections 5.5 and
5.6] for details of the Radon-Nikodym theorem.
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Definition 1.45. Let (S, B) be a measurable space. A map ¢ : X — § is called
M/ B-measurable if and only if ¢~1(A) € M for any A € B.

The following result is a fundamental tool in probability theory.

Theorem 1.46 (Image measure theorem). Let (S, B) be a measurable space and let
¢ : X — S be M/B-measurable. Then the function o ¢~ : B — [0, 00] defined by
(Lo H(A) = /,L((p_l(A)) is a measure on (S, B). Moreover, if f : S — [—00, 0]
is B-measurable, then f admits the (1 o ¢~ V)-integral if and only if f o ¢ admits the
W-integral, and in that case

f fd(uog™) = / (f o @)dp. (147)
S X

1

The measure p o ¢~ is called the image measure of u by ¢.

Proof. Tt is immediate to see that i o ¢! is a measure on (S, B). Note that the B-
measurability of f yields the M-measurability of f o ¢. If f = 14 for some 4 € B,
then [ Lad(pno¢™") = u(p~(4) = [y 1,-1ydp = [y (14 o 9)du, which and
Proposition 1.25 together imply (1.47) for M-simple f : X — [0, co) similarly to
(1.46). Then by using Theorem 1.24, we obtain (1.47) for [0, oo]-valued f and hence
for [—oo, oo]-valued f as well, noting that (f o )* = f* 0 ¢. O

An application of the dominated convergence theorem (Theorem 1.32) gives rise to
the following theorem.

Theorem 1.47. Leta,b € [—00,00], a < b andlet f : X X (a,b) — R be such that
f(.t) € LY () for any t € (a,b) and f(x,-) : (a,b) — R is differentiable for any
x € X. Suppose there exists an M-measurable ji-integrable function g : X — [0, o0]
such that |(3f/0t)(x,1)| < g(x) for any (x,t) € X x (a,b). Then [y f(x,-)du(x) :
(a,b) — R is differentiable, and for any t € (a,b), (3f/0t)(-.t) € L () and

d X
» /X F)dp(x) = /X (e 0dut). (1.48)
Proof. Lett € (a,b). By the definition of df/d¢,
af . fer+1/n) — f(x, 1)
ﬁ(x,t)—nll)ngo n , x € X,

which is M-measurable in x € X by Proposition 1.16 since f(-,+1/n) and f(-,¢) are
M-measurable. Then it follows from |(3f/31)(-,1)| < g that (3f/0t)(-, 1) € L ().
Let {h,}52, C R\ {0} satisty t 4+ h, € (a,b) and lim, o i, = 0. Then

I Gt ) — f(e)
E( /X Pt +ha)dp() - /X f(x,z>du<x>) - [X " dﬁ(:;)

where the integrand in the right-hand side satisfies

'f(x,t +h}:)—f(x’f) - ‘%(x,t + 0(x.t, hn)hy)

<g(x), xe€X, (1.50)
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for some 0(x,t,h,) € (0,1), by the mean value theorem. By (1.50), the dominated
convergence theorem (Theorem 1.32) applies to the right-hand side of (1.49) to imply
that the left-hand side of (1.49) converges to fX (0f/0t)(x,t)du(x). This proves that
fX f(x,-)du(x) is differentiable at ¢ and that (1.48) holds, since {h,}5>; C R\ {0} is
an arbitrary sequence satisfying ¢t + &, € (a,b) and lim, 0 i, = 0. O

Next we present two frequently used inequalities. For p € (0, co0), we naturally
extend the power function [0, 00) > x +— x? to [0, o0] by setting co? := oco. Note
that, if f : X — [0, co] is M-measurable then so is f? for any p € (0, 00).

Theorem 1.48 (Holder’s inequality). Let p € (1,00) and set g :== p/(p — 1), so that

p~ '+ g7 = 1. (q is called the conjugate exponent of p.) Let f.g : X — [0, o0] be
M-measurable. Then

/ngdus (/X f”du)l/p(/xquu)l/q. (1.51)

Proof. Let A := (fy fpdu)l/p and B := ([y qu,u)l/q. (1.51)is trivial if AB = oo.
If either A or B is equal to 0, then either f = 0 p-a.e. or g = 0 p-a.e. by Proposition
1.34-(1) and hence [y fgdu =0 = AB by Proposition 1.30-(1).

Thus we may assume that A, B € (0, 0c0). A standard one-dimensional differential
calculus together with p~! 4+ ¢~ = 1 easily shows that

14 q
xy < X + - for any x, y € [0, o<]. (1.52)
p q

By applying (1.52) to A~! f and B~ g, we obtain

1 f g 1 f? 1 / g4 1 1
— du= | =-Zdp<—| —d — | Z=du=—+-=1
iz f e = [ e = [ e g [ =g
by virtue of Lemma 1.23 and Proposition 1.25, completing the proof. O

Definition 1.49. Let p € (0, o0). For an M-measurable function f : X — [—00, o0],
we define

1/p
1 L = ( /X Ifl”du) , (1.53)

which will be simply denoted as || f'||L»(4) or || f|lL» when no confusion can occur.
Moreover, we also define

LP(X, M, ) :={f : X - R| f is M-measurable and || f || »(x,,) < 00}, (1.54)
which will be simply written as £? (X, i) or L? () when no confusion can occur.

Note that (1.54) is consistent with (1.28). We easily see that £LP(u) is a vector
space over R for each p € (0,00), since (a + b)? < (2max{a,b})? < 2P(a? + b?)
for a,b € [0,00]. According to Theorem 1.48, for p € (1,00), q = p/(p — 1),
f € LP(u)and g € L(u) we have fg € L (n) and || fgllz1 < | fllzrllgllLa. See
Problems 1.31 and 1.32 below for other important facts concerning £? (1), p € [1, 00).

To state and prove another inequality, we need the following definition and lemma.
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Definition 1.50 (Convex functions). Leta,b € [—00,00],a < b and let ¢ : (a,b) —
R. Then g is called convex if and only if for any x, y € (a, b) and any ¢ € [0, 1],

(A =0)x +1y) = (1 =1)e(x) +1e(y), (1.55)
or equivalently, for any x, y,z € (a,b) withx <z < y,

92) —p(x) _ ¢(y) = ¢(2)
z—-x =  y—-z

(1.56)

For example, ¢ is convex if ¢ is differentiable on (a, b) and ¢’ is non-decreasing,
by virtue of the mean value theorem in one-dimensional calculus.

Lemma 1.51. Let a,b € [—00,00], @ < b. If ¢ : (a,b) — R is convex, then it is
continuous.

Proof. Letx,y € (a,b), x < y and choose c,d € (a,b) sothatc < x <y < d. Set
s:=J=candt = J—.sothats,z € (0,1),x = (1-s)c+syand y = (1-t)x+1d.
From the convexity of ¢ we see that

p(x) — (1 —s)p(c)
S

<o) = (1 -1)(x) +te((d). (1.57)

Sinces — landt — Oasy | xorasx 1 y, it follows from (1.57) that lim,  x ¢(y) =
@(x) and limy4, @(x) = @(y). This establishes the continuity of ¢, as x,y € (a,b)
are arbitrary. O

Remark 1.52. Note that Lemma 1.51 is based on the assumption that the domain of ¢
is an open interval. In fact, if we define ¢ : [0, 1] = R by ¢(x) := 0 for x € [0, 1) and
(1) := 1, then ¢ satisfies (1.55) for any x, y,t € [0, 1] but it is not continuous.

Theorem 1.53 (Jensen’s inequality). Assume that p is a probability measure, that is,
w(X) = 1. Leta,b € [—00,00], a < b and let ¢ : (a,b) — R be convex. If
f:X — (a.b)and f € LY(1), then ¢ o f admits the ji-integral and

w( / fdu) < [weo ran (1.58)

Proof. Note that ¢ o f is M-measurable by virtue of Lemmas 1.17 and 1.51 and
B((a,b)) C B(R). Let z := [y fdu. Thenz € (a,b) by u(X) = 1,a < f < b,
9@=¢(*)  Then

Z—X

Proposition 1.31-(2) and Proposition 1.34-(1). Let y := sup,¢(q z)
yeRandy < % for any y € (z,b) by (1.56), and hence

o(x) > @(z)+y(x—z) foranyx € (a,b). (1.59)

Thus g o f > ¢(z) + y(f —z), which implies [y (¢ o f)~du < oo, and taking the -
integrals of both sides results in (1.58) in view of (1.31) and Proposition 1.31-(2). [
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Exercises

Problem 1.1. Let X := {1, 2, 3}. Provide all o-algebras in X.
Problem 1.2. For aset X and A C X, prove that {@, A, A°, X'} is a o-algebra in X.

The notion of independence is very important in probability theory. The following
definitions, problems and exercises provide some basics about independence of events.

Definition. Let (2, F,P) be a probability space.

(1) A pair {A, B} of events A, B € JF is called independent if and only if P[4 N B] =
P[A]P[B].

(2) A (possibly infinite) family {4, },eca C F of events is called independent if and
only if it holds that P[mAer A;] = [11ea, PlA4] for any non-empty finite Ao C A.

Problem 1.3. Let (2, F, P) be a probability space.

(1) Let A, B € F. Prove that if {A, B} is independent then {A¢, B}, {4, B¢} and
{A€, B¢} are also independent.

(2) Let {A;}rea C F be a (possibly infinite) family of events. Prove that {4} e
is independent if and only if P[ﬂ reno B A] = [Liea o P[B,] for any non-empty finite
Ao C A and any By, € {0, A,, Ai, Q}, A e Ay.

Problem 1.4. Give an example of a probability space (2, F, P) and events A, B, C €
JF such that the pairs {4, B}, {B, C} and {4, C} are independent but P[A N B N C] #
P[A]P[B]P[C]. (Consider 2 := {1,2,3,4} and P[A] := #A4/4, A C Q.)

Exercise 1.5. Give an example of a probability space (2, F,P) and events A, B,C €
F such that {4, B} and {B, C} are independent, P[4 N B N C]| = P[A]P[B]P[C] but
{A, C} is not independent. (Consider Q2 := {1,...,16} and P[A] := #A4/16, A C Q.)

Definition. Let (2, J, P) be a probability space and let B € JF satisty P[B] > 0. For
each A € F, We define the conditional probability P[A | B] of A given B by

P[A N B]

PIA|Bli= —pp

(1.60)
Problem 1.6. Let (2, F, P) be a probability space and let B € JF satisfy P[B] > 0.
(1) Let A € F. Prove that {A, B} is independent if and only if P[4 | B] = P[A].

(2) Prove that the set function & > A + P[4 | B] is a probability measure on (2, F).
This probability measure is called the conditional probability measure given B.

Problem 1.7. Let (2, F,P) be a probability space and let {Q,}Y_, C F, where N €
N U {oc}, satisty P[2,] > O for any n, Q; N Q; = @ for any i, j withi # j and
U,I,V:l Q, = Q. Also let A € J. Prove the following statements:
() P[A] = 32,0, P[A | 2,]PIQ].
(2) (Bayes’ theorem) If P[A] > 0, then for each n,

P[A | 24]P[S2,]

P[22, | A] = . (1.61)
(2 14] S PlA | QP[]
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Exercise 1.8. Suppose people have a certain disease with probability 0.001. Doctors
use a test to detect the disease, and suppose that the test gives a positive result on a pa-
tient with the disease with probability 0.99 and on a patient without it with probability
0.004. Evaluate the probability that one has this disease under the condition that

(1) the result of the test was positive.

(2) the result of the test was negative.

In the problems and the exercises below, (X, M, ) denotes a given measure space.

Problem 1.9. Letn € N and let {4;}7_, C M satisfy u(lJi—; Ai) < oo. Prove the
following inclusion-exclusion formula:

n n k
M(U Ai> =y > (—1)"%(0 Ai@). (1.62)
i=1 =1

k=11<ij<-<ix<n

Problem 1.10. Prove the following countable subadditivity of u: for {A,}5>, C M,

u(U An> < D 1u(An). (1.63)
n=1 n=1

(Set By := A; and B,, := A,,\U;’;ll Aj,n > 2,and show that  Js—; 4» = U5e; Bn.)

Problem 1.11. Let # be the counting measure on N (recall Example 1.5-(1)). Provide
an example of {4}, C 2" such that 4, D A4 forany n € Nbut lim, 00 #4, #
H52 An)

Problem 1.11 shows that the conclusion of Proposition 1.4-(4) is not necessarily
valid if the assumption “u (A1) < 00 is dropped.

Problem 1.12. Let Y be a set and define N := {4 C Y | either A or A€ is countable}
and Ny := {4 C Y | either A or A€ is finite}. Prove that N is a o-algebra in ¥ and
that o(Np) = N.

Problem 1.13. Let {4,};2, C 2% and define lim SUP,, o0 An and liminf, o 4, by
o0 o0 o0 o0

limsup Ay = () | 4. liminf 4, := | J (") 4x. (1.64)
n—00 n=1k=n nee n=1k=n

so that they belong to M if {4, }72, C M. Prove the following assertions.
(1) (lim sup,,_, oo An)* = liminf, o0 AS and
limsup A, = {x € X | x € A, for infinitely many n € N},
oo (1.65)
1in_1) infA, = {x € X | x € A, for sufficiently large n € N}.
n—oo

(2) (First Borel-Cantelli lemma) If {A4,}5°, C M and Y ;2 ; t(An) < oo, then

C
wltimsup 4, ) = 1 (nmian;) —0. (1.66)
n—00 n—00

(Noting limsup,,_, o, An C s—x An, use the countable subadditivity (1.63) of /1.)
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Problem 1.14. Assume p(X) < oo. Let A be aset and let {4, },cp C M be such that
Ay, NAy, =@ forany A1, A € A with A1 # A,. Prove that {A € A | u(4;) > 0} is
a countable set. (Show that {A € A | u(A,) > 1/n} is finite for any n € N.)

Problem 1.15. (1) Let S be a set, let A C 25 and let £ : X — S. Prove that f is
M/os(A)-measurable (see Definition 1.45) if and only if f~1(4) € M forany 4 € A.
(2)Letd € Nand let f = (fi,...,f2) : X — R? where f; : X — R for
eachi € {l,...,d}. Prove that f is M/B(R¢)-measurable if and only if f; is M-
measurable for any i € {1,...,d}.

Problem 1.16. (1) Let f, g : X — [—00, o0] be M-measurable. Prove that the follow-
ing sets belong to M:

xeX|flx)<gx)}), {xeX[f(x)=gW)} {xeX|[f(x)>gx)

(2) Let f, : X — [—00,00] be M-measurable for eachn € Nandleth : X —
[—00, 00] be M-measurable. Define f, g : X — [—o00, 00] by

Fx) = limy, oo fu(x) ifthe li.mit lim, 00 fn(x) exists in R, (1.67)
h(x) otherwise,
lim, o0 fr(x) if the limit lim,— o fr(x) exists in [—o0, 00],

g(x) = . (1.68)
h(x) otherwise.

Prove that the functions f and g are M-measurable.

Exercise 1.17. Letd € N,let S ¢ R? andlet f : S — [—o0, 00].
(1) Let ¢ € (0, 00) and define ¢, f, : S — [—o0, 00] by

ff(x):== sup f(y) and fe(x):= _inf S)f(y)- (1.69)

Y€Bs (x.¢) y€Bs(x,
Prove that /¢ and f; are Borel measurable. (Show that (/)™ ((a, 0c]) is open in S.)
(2) Prove that the functions £, S 1§ — [—00, 00] defined by

f(x):=limsup f(y) and f(x):= }giminf f) (1.70)
- Sy—x

Ssy—x

are Borel measurable.
(3) Prove that {x € S | limgs,—x f(¥) = f(x)}is aBorel setof S.

Problem 1.18 (Chebyshev’s inequality). Let ¢ : [0, 00] — [0, co] be non-decreasing
and let f : X — [0, oo] be M-measurable. Prove that ¢ o f is M-measurable and that

p(lx e X | () = a)) < m / (0o f)du (L.71)

for any a € [0, oo] with p(a) € (0, 00).
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Problem 1.19. Let X be a countable set and let 4 be a measure on (X, 2%).
(1) Prove that any function f : X — [—o00, oo] on X is 2% -measurable.

(2)Let f : X — [0, 00]. Prove that [y fdu =Y .cx f(x)u({x}).

Problem 1.20. Let A € M, and define a measure pu|g on M|y = {BNA| B € M}
by p|a = plny, (note that M|y C M). Let f : X — [—00, 00] be M-measurable.
Prove that f admits the u-integral on A if and only if f|4 admits the p|4-integral on
A, and in that case

/ fdp = / Flad(ula). (1.72)
A A

(It suffices to prove (1.72) when f is non-negative. Show first for M-simple functions
and then use Proposition 1.19 and Theorem 1.24 for general non-negative f'.)

According to Problem 1.20, [ 4 fduu could alternatively be defined as the integral
of f with respect to |4 = |, the restriction of p to A.

Problem 1.21. Let N be a o-algebra in X such that N € M, and let f : X —
[—o0, 0o] be N-measurable. Prove that f admits the p-integral if and only if it admits
the u|n-integral (note that p| is a measure on (X, N)), and in that case

/X fdp = /X Fd(ul). (1.73)

Problem 1.22. Let m; be the Lebesgue measure on B(R) introduced in Example 1.8.
(1) Prove that m; ({a}) = O for any a € R.
(2)Leta,b e R,a < b,and let f : [a,b] — R be continuous. Prove that

b
fdm; = / f(x)dx, (1.74)
[a,b] a
where the integral in the right-hand side denotes the Riemann integral on [a, b]. (The
right hand side is the limit of some Riemann sums. Regarding each Riemann sum as
the integral of a simple function, use the dominated convergence theorem.)
(3)Leta € Rand let f : [a,00) — R be continuous. Prove that f is m;-integrable

on [a, o0) if and only if limp_, o fab | f(x)|dx < 00,8 and in that case

b
/ fdmlzblim/ f(x)dx. (1.75)
[a,00) —>0 Ja

By Problem 1.22-(2), for a continuous function on a bounded closed interval, its
integral with respect to the Lebesgue measure m; coincides with its Riemann integral.
In fact, this fact can be generalized to any Riemann integrable function f on a bounded
closed interval of any dimension. See Section 2.6 below for details.

On the other hand, Problem 1.22-(3) says that the same is true also for a continuous
function on an unbounded interval provided the improper Riemann integral is abso-
lutely convergent. Here the assumption of the absolute convergence is necessary; see
Problem 2.14 in this connection.

8Note that the limit limp_ oo f: | f(x)|dx always exists in [0, 00], since j(f | f(x)|dx is non-
decreasing in b € (a, 00).
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Problem 1.23. Find the limits as n — oo of the following integrals:

1 d ) SlIlE d 3 ncosSx
M 1+ x @ odx Q) 1+n2x3/2x

Problem 1.24 ([7, Chapter 1, Exercise 9]). Let« € (0, oo), let f: X — [0, 0] be M-
measurable and suppose [y fdu € (0, 00). Find the limit (with log 0o := 00® := 00)

lim [ nlog(l+ (f/n)*)du
X

n—o0
(The integrands are dominated by «f if @ > 1, and otherwise Fatou’s lemma applies.)

Exercise 1.25 ([1, Section 4.3, Problem 1]). Let f € £1(u) and {/,}°>, C L1 ().
Suppose that f,, > 0 on X for any n € N, that lim, o f,(x) = f(x) for any x € X,

and that lim, o0 [y fadp = [y fdu. Prove that lim, oo [y | fu — fldp = 0.

Problem 1.26. Let f, : X — [—o00, 00] be M-measurable for each n € N and suppose
Yomet Jx | fuldp < oo. Prove that lim, . fn(x) = 0 for p-ae. x € X.

Problem 1.27. Let f : X — [—00, o0]. Prove that the following three conditions are
equivalent:

(1) fis M" -measurable.

(2) There exist M-measurable functions f1, f> : X — [—00,00] such that f1 < f <

fron X and f1 = f> p-ae.
(3) There exists a M-measurable function fy : X — [—00, oo] such that fo = f p-a.e.

((1) = (2): this is easy if f is J\_/[M-simple. For a general M -measurable function f,
take non-decreasing sequences of M“—simple functions converging to f*.)

Exercise 1.28. Let f : X — [0, oo] be M-measurable and p-integrable. Prove that,
for any & € (0, 00) there exists § € (0, 00) such that [, fdu < e forany A € M with
(A) < 8. (Proof by contradiction. Problem 1.13-(2) can be used.)

Problem 1.29. Let p € (0,00) and let f € LP(u). Prove that

lim / | f = fLyf1em|Pdp = 0. (1.76)

n—oo X

Problem 1.30. Let p,g € (0,00), p < ¢, and let f : X — [0, co] be M-measurable.

Prove that
1/p 1/q
( [ f”du) < ( / fqa’u) u(Xx)=prira, (1.77)
X X

By Problem 1.30, if u(X) < oo, then £9(X, u) C LP (X, p) forany p, g € (0, 00)
with p < ¢.

Problem 1.31 (Minkowski’s inequality). Let p € [1,00) and let f, g : X — [0, oo] be
M-measurable. Use Holder’s inequality to prove that

1/p 1/p 1/p
(/ (f+g)”du) < (/ f”du) + (/ g”d,u) ) (1.78)
X X X
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Problem 1.32. Assume that (X, M, u) is o-finite (see Definition 2.24). Let p €
(1,00),q¢ := p/(p—1),and let f : X — [0, oo] be M-measurable. Prove that

| fller = sup{/ fedu ‘ g: X — [0,00], g is M-measurable and ||g||rs < 1}.
X
(1.79)

(Let g := (h/||h||L»)?~! for a suitable & with ||h|L» € (0,00). Treat the case of
| fllLr < oo and that of || f||L» = oo separately.)

For the next problem, we need the following definition.

Definition. Let f : X — Rand f, : X — R, n € N, be M-measurable. We say that
{ fu 152, converges in p-measure to f if and only if for any € € (0, 00),

n=1
Tim pu({x € X [ fa(0) = f(0)] = &}) = 0. (1.80)

Problem 1.33. Let f : X — Rand f, : X — R, n € N, be M-measurable.

(1) Let p € (0,00) and suppose lim, oo || fu — fllLr(u) = 0. Prove that { f,}°,
converges in u-measure to f.

(2) Suppose that { f,}5; converges in jt-measure to f. Prove that there exists a strictly
increasing sequence {ny}7> ; C Nsuchthatlimg oo fn, (x) = f(x) for u-ae. x € X.
(Choose ny € N so that /L({x EX | fap(x)= f(x)] > 27k }) < 27 and use Problem
1.13-(2).)
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Chapter 2

Construction and Uniqueness of
Measures

In this chapter, we provide general criteria for existence and uniqueness of measures
and apply them to some important examples. In the latter part of this chapter, we will
also discuss products of measures and integration of functions in two variables.

2.1 Uniqueness of Measures: Dynkin System Theorem

The purpose of this section is to state and prove the Dynkin system theorem, which
is a fundamental tool in probability theory. This theorem enables us to establish vari-
ous equalities and measurability properties among measures and integrals. As an easy
application, a uniqueness theorem for measures is also proved at the last of this section.

Definition 2.1 (;r-systems and Dynkin systems). Let X be a set and let A, D C 2¥.
(1) Ais called a w-system if and only if AN B € A forany A, B € A.
(2) D is called a Dynkin system in X if and only if the following conditions are satisfied:

DI) X e D.
(D2) If A, B € Dand A C B, then B\ A € D.
(D3) If {A,}3>, C Dand A, C Ap4; foranyn € N, then | J5—; 4, € D.

Proposition 2.2. Let X be a set.

(1) Let A be a non-empty set and suppose that D), is a Dynkin system in X for each
A € A. Then (", cp Dy is a Dynkin system in X.

(2) Let A C 2% and set

Sx (A) == N D. (2.1)

D: Dynkin system in X, A C D

Then 8x (A) is the smallest Dynkin system in X that includes A, and §x (A) C ox (A).

41
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8x (A) in (2.1) is called the Dynkin system in X generated by A, and it is simply
denoted as §(A) when no confusion can occur.

Proof. §x(A) C ox(A) holds since a g-algebra in X is a Dynkin system in X. The
other assertions are proved in exactly the same way as Proposition 1.7. O

Here is the statement of the Dynkin system theorem.

Theorem 2.3 (Dynkin system theorem). Let X be a set and let A C 2% be a w-system.
Then
8(A) = o(A). 2.2)

We need the following lemma.

Lemma 2.4. Let X be a set and let D C 2% be a Dynkin system in X. If D is a
m-system, then it is a o-algebra in X.

Proof. X € D by (D1), and therefore @ = X \ X € D and A° = X \ A € D for any
A € Dby (D2). If A, B € D, then A€, B¢ € D, A° N B¢ € D by the assumption that
D is a w-system, and hence A U B = (A° N B€)¢ € D. Now let {4,}52, C D. If we
set B, := U?:l A; forn € N, then B, C By+1, B, € D by the previous argument,
and therefore | 2, Ay = Ur—, Bn € D by (D3). Thus Dis ac-algebrain X. O

Proof of Theorem 2.3. Once we show that §(A) is a o-algebra in X, we obtain o (A) C
3(A) and (2.2) follows. By Lemma 2.4, it suffices to show that §(A) is a 7-system.

LetY € 6(A)andset Dy :={A C X | ANY € §(A)}. Then Dy is a Dynkin
system in X. Indeed, X NY =Y € §(A) and hence X € Dy. If A, B € Dy and
A C B,then (B\A)NY =(BNY)\(ANY) e §(A)since ANY,BNY € §(A) and
ANY C BNY. If{A,};2, C Dy and A, C A, foranyn € N, then 4,NY € §(A),
ApNY C Apy1 NY andhence Y N2, An = Ure (A NY) € §(A).

Since A is a w-system, if Y € Athen ANY € A C §(A) for any A € A and
hence A C Dy. Thus §(A) C Dy for any Y € A, which means that A C Dy for any
Y € §(A). Thus §(A) C Dy forany Y € §(A), that is, §(A) is a w-system. O

Now we present a uniqueness theorem for measures, whose proof illustrates when
and how to use the Dynkin system theorem (Theorem 2.3).

Theorem 2.5 (Uniqueness of measures). Let X be a set, let A C 2X be a w-system
and let v : A — [0, 00]. Suppose that there exists { X, }neq C A such that

o0
X = U Xy and v(Xy) < oo foranyn € N. (2.3)
n=1

Then there exists at most one measure | on o (A) such that (|4 = v.

Proof. Suppose we have two measures (41 and pp on o (A) such that u1|a = pz|la =
v. Let Y € A satisfy p1(Y) < oo, and define

D:={Adco(A)[mANY)=pu(ANY)}
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Then A C D, since for A € A wehave ANY € A andhence u;(ANY)=v(AN
Y) = u(A NY). We claim that D is a Dynkin system in X. Indeed, u; (X NY) =
wi(Y) =v(¥)fori = 1,2 and hence X € D. If A,B € D and A C B, then by

p1(Y) =v(Y) = pa(Y) < oo,
m(B\NANY) = (BNY)\(ANY)) =i (BNY)—m(ANY)
= 2(BNY)—p2(ANY) = p(BNY)\(ANY))
= u2((B\A)NY)

andhence B\ A € D. If {4,}72, C Dand A, C A, forany n € N, then

o o0
Ml(Y n Y An) = lim u1(4, NY) = lim u(4, NY) = Mz(Y nJ An)
net n—>oo n—>oo

n=1

by Proposition 1.4-(3) and hence | J;=; 4, € D. Thus D is a Dynkin system in X.
Now using Theorem 2.3, we obtain a(A) = §(A) C D, that is, for Y € A with
p1(Y) < oo,
n1(ANY)=wu(ANY) forany A € o(A). 2.4)
Finally, let A € 0(A) and n € N. Then the inclusion-exclusion formula (Problem 1.9)
yields

n n k
Wi (A N U X,-) = Z Z (—D)* 1y, (A n ﬂ le> (2.5)
j=1

k=11=<j1<-<jg=<n =1

fori = 1,2, where y,l(ﬂ](;lle) < mi(Xj;) = v(Xj,) < o0, and ﬂ]E:lij eA
since A is a w-system. Thus (2.4) applies to the right-hand side of (2.5) to imply that
p(ANU7; Xj) = u2(ANUj 2, X)), and lettingn — oo results in 11 (A) = ju2(A)
by virtue of Proposition 1.4-(3) and U:ozl X, =X. O

Example 2.6. Let d € N, let F; be as in (1.6), and define v : F; — [0, c0) by
v([al,bl] X eoe X [ad,bd]) =(b1—ay) - (bg —ay), V(@) :=0.

Then F, is clearly a m-system and (2.3) is satisfied with X,, := [-n,n]?. Thus by
Theorem 2.5, a measure on o(Fy7) = B(R?) extending v is unique. This is nothing
but the uniqueness of the Lebesgue measure on (R?, B(R%)) stated in Example 1.8.

2.2 Construction of Measures

The following theorem is our criterion for construction of measures, which is due to Jun
Kigami in Kyoto University and has been borrowed from his unpublished lecture note
[6]. We use this theorem in the next section to construct measures on (Rd, ‘B(]Rd)).

Theorem 2.7 (Kigami [6, Theorem 1.4.3]). Let X be a set, let A C 2% be a TT-System
and let v : A — [0, 00]. Suppose that the following three conditions are satisfied:
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(C1) 0 € A and v(B) = 0.
(C2) If A€ A, {An)S2, CAand A C\UyZ An, then v(A) < Y 02 1 v(Ap).

(C3) For any A,B € A, there exist n € N and {A;}7_, C A such that A\ B C
Uiz Ai and v(A) = v(AN B) + > i, v(4)).
Then the set function | : o (A) — [0, o0] defined by

oo

n(A) = inf{z v(An)

n=1

{2, c A Ac | A,,} (inf@ := c0)  (2.6)

n=1
is a measure on o (A) such that u|4 = v.

The rest of this section is devoted to the proof of Theorem 2.7. We need the fol-
lowing definition and theorem, which are also fundamental in measure theory.

Definition 2.8 (Outer measures). Let X be a set. A set function v : 2X — [0, 00] is
called an outer measure on X if and only if it has the following properties:

(01) v(@) =0.

(02) If A C B C X, thenv(A) < v(B).

(03) If {A4,)32, C 2%, then v({Up; An) < Y me; v(A4s). (countable subadditivity)

Moreover, for an outer measure v on X, we define M(v) C 2X by
My):={ACX|v(E)=v(ENA)+v(E\ A)forany E C X}. 2.7

Each A € M(v) is called v-measurable.

Note that an outer measure v on a set X satisfies v(E) < v(E N A) 4+ v(E \ A) for
any A, E C X by (0O1),(0O3)and E = (ENA)U(E\A)UPUGU..., and hence that
A C X belongs to M(v) if and only if v(E) > v(E N A) +v(E \ A) forany £ C X.

Theorem 2.9 (Carathéodory’s theorem). Let X be a set and let v be an outer measure
on X. Then M(v) is a c-algebra in X and v\ is a complete measure on M(v).

Proof. Let E C X. @ € M(v) sincev(E) =04+ v(E)=v(EN@)+v(E\Q).If A € M(v),
then v(E) = v(E N A) + v(E \ A) = v(E \ A°) + v(E N A€) and hence A¢ € M(v). If
A, B € M(v) then AU B € M(v), because

v(EN(AUB))+v(E\ (AU B))

=v(EN(AUB)NA)+v(EN(AUB)\ A) + v(E N A° N B°)

=vw(ENA) +v((E\A)NB))+v((E\A))\B))

=v(ENA)+v(E\ A =v(E).

Let {An}52; C M(v). Set By := Ay and B, := Ap \U;’;ll A; for n > 2. Then for any
n €N, we have v(E N U A7) = v(E N Buy1) +v(E N Uy A7) by Uy Ai € M(v),

i=1
and hence inductively
n

v(Eﬂ UA,-) =Y vw(ENB). (2.8)
i=1

i=1
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Using (J?—; A4; € M(v) and (2.8), we obtain

V(E) = v(Eﬂ U A,-) +V(E\ U A,-) > Zv(EﬂB,-)—i—v(E\ U A,-), (2.9)

i=1 i=1 i=1 i=1

where the inequality follows by U?=1 A; C Ufil A; and the condition (O2). Now by letting
n — oo in (2.9) and using the condition (03) and | J52; Bn = | Jseq An. we get

EDY v(EﬂBn)+u(E\ U A,,) > U(Eﬂ U An) +v<E\ U An), (2.10)

n=1 n=1 n=1 n=1

where actually the equalities hold by the remark after Definition 2.8. Thus Uff’:l Ap € M(v),
proving that M(v) is a o-algebra in X. If in addition 4; N A; = @ forany i, j € Nwithi # j,
then B, = Aj in the above argument, and hence the equalities in (2.10) with E := Uflozl An
yield v(UnZ| 4n) = Y21 v(An). Thus v|y(y) is a measure on M(v).

Finally, if A C X and v(A) = 0, then v(E N A) + v(E \ A) < v(A) + v(E) = v(E)
for any £ C X by the condition (0O2) and hence A € M(v). In particular, if A C N for some
N € M(v) with v(N) = 0, then v(4) = 0 by (O2) and hence 4 € M(v), proving that v|y;(y)
is a complete measure. O

We also need the following easy lemma.

Lemma 2.10. Ler X be a set, let A C 2% and letv : A — [0, 00]. Suppose & € A and
V(@) = 0. Then the set function v : 2X — [0, 00| defined by

(o]

Vi(A) 1= inf{z v(Ap)

n=1

n=1

{4,)°, C A AC UAH} (inf@ := 00) (2.11)

n=1
is an outer measure on X.

The proof of Lemma 2.10 is left to the reader as an exercise (Problem 2.3).

Proof of Theorem 2.7. Define vy : 2X — [0, 00] by (2.11), so that it = vx lo(Aa)- v+ is an outer
measure on X by (C1) and Lemma 2.10. For A € A, (C2) yields v(A) < v«(A), and we obtain
v« (A) < v(A) by choosing A} := A and A, := @ forn > 2in (2.11). Thus u|4 = v«|a = v.

To show that A C M(vs), let A € A and E C X. It suffices to show that v« (E) >
v«(E N A) + v« (E \ A), for which we may assume v« (E) < oo. Let {A4,}52, C A satisfy
E CUpZi An. Then ENA C Uy (An N A), and {4, N A}32 | C A since A is a w-system.
Moreover, E \ A C |J52(An \ A) and, by (C3), for each n € N there exist m, € N and
{Bn,k}fil C A suchthat 4, \ A C Urk"il B,k and v(4p) = v(4p, N A) + Z;c"il v(By k)
Thus { By, x}neN,1<k<m, CAand E\ A C 52, U’k”il By, k., and it follows that

D vAn) = Y (A N A+ DY v(Byg) = ve(ENA) + vk (E \ A).
n=1 n=1 n=1k=1

Hence v« (E) > v« (E N A) + v«(E \ A), proving A € M(v«) and A C M(v«). Now since
M(v«) is a o-algebra in X and v«|n(y,) is a measure on M(v«) by Theorem 2.9, A C M(v«)
yields 6(A) C M(v«), and b = vilga) = (Vx|nwy))lo(a) is @ measure on o (A). O
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2.3 Borel Measures on R? and Distribution Functions

In this section, we construct Borel measures on R? (i.e. measures on (R?, B(R?)))
by using Theorem 2.7. At the last of this section, we will also present a useful result
concerning approximation of measures by open sets and compact sets.

2.3.1 Borel measures on R: Lebesgue-Stieltjes measures

This subsection is devoted to the construction of Borel measures on R from right-
continuous non-decreasing functions on R. In particular, we prove the existence of the
Lebesgue measure on (R, B(R)) stated in Example 1.8.

Definition 2.11. A function F : R — R is called right-continuous if and only if!

liin F(y) = F(x) forany x € R. (2.12)
yix

Proposition 2.12. Let @ be a Borel measure on R such that /L((—I’l, n]) < 00 for any
n € N. Define F : R — R by

n(0.x])  ifx € (0.00),
F(x):=10 ifx =0, (2.13)

—/L((X,O]) if x € (—o0,0].

Then F is right-continuous, non-decreasing and satisfies ,u((a, b]) = F(b)— F(a) for
any a,b € Rwitha < b.

Proof. For a,b € R with a < b, /L((a,b]) = F(b) — F(a) easily follows since
w( (e, y]) = pu((x. z]) + [L((Z, y]) for any x, v,z € R with x < z < y by Proposition
1.4-(1). In particular, F(b) — F(a) > 0, that is, F is non-decreasing.

Let x € R and let {x,};2,; C (x,00) be a non-increasing sequence converging to

x. Then Proposition 1.4-(4) yields

|F(xn) = F()] = p((x, xa]) ——> u<ﬂ(x,xn]) = u(®) =0,

n=1
which means that lim,, |, F(y) = F(x). O

Conversely, any right-continuous non-decreasing function on R gives rise to exactly
one Borel measure on R, as follows.

Theorem 2.13. Let F : R — R be right-continuous and non-decreasing. Then there
exists a unique Borel measure (L on R such that up ((a, b]) = F(b) — F(a) for any
a,b € Rwitha < b.

wr is called the Lebesgue-Stieltjes measure associated with F .

"Fora € R, limy, | F(y) = a (resp. limy 4 F(y) = a) means that for any & € (0, 00) there exists
§ € (0,00) such that | F(y) —a| < eforany y € (x,x + 8) (resp. forany y € (x — &, x)).
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Proof. Let A := {(a,b] | a,b €R,a <b} U {@} and define v : A — [0,00) by
v(®) := 0 and v((a,b]) := F(b) — F(a). Clearly A is a n-system, A C B(R) and
hence o(A) C B(R). Since [a,b] = (o= (a — 1/n,b] € o(A) for any a,b € R
witha < b, B(R) = o({[a.b] | a.b € R,a < b} U {@}) C o(A) by Proposition 1.9.
Thus 0 (A) = B(R). The condition (2.3) is satisfied with X;, = (—n, n], and therefore
Theorem 2.5 implies the uniqueness of a measure on 0 (A) = B(R) extending v, that
is, the uniqueness of ©F.

Thus it remains to verify the conditions (C2) and (C3) of Theorem 2.7. For any
a,b,c,d €e Rwitha < b and ¢ < d, we have

(a,b] N (c,d] (a,b] \ (c,d]
[ (a,b] ifd <aorb <c,
(a,d] (d, b] ifc<a<d<b,
= 4 (a,b] and =10 ifc<a<b<d, (2.14)
(c,d] (a,c]U(d,b] ifa<c<d<b,
(c,b] (a,c] ifa<c<b<d,

from which (C3) easily follows.

For (C2),leta,b € R, a < b. We first show that for any n € N and g;, b; € R with
a; <bi,i € {1,...,7’1},

n n
v((a,b]) < Zv((a,-,b,-]) whenever  (a,b] C U(ai,bi]. (2.15)
i=1 i=1

The proof is by induction in n. (2.15) is clear if n = 1. Suppose (2.15) is valid for
n € N. Leta;,b; e R,a; < b;,i €{1,...,n+1}, and suppose (a, b] C U"H(a,,b I
Then b € (a;j,bj] for some j € {1,...,n + 1}. If a; < a then (a,b] C (a;,b;] and
hence v((a,b]) < Y75 v((ai, b)) Ifa < aj, then (a,a;] C U <j<pir,in, (@isbil,
and the induction hypothesis together with b < b; yields

v((a,b]) = F(a;)— F(a) + F(b) — F(a;) = v((a,aj]) + v((aj,b])

n+1
< Y (@ bil) +v((@.bil) <Y v((aiby),
1<i<n+1,i#j i=1

completing the induction procedure. Now let a,, b, € R, n € N, be such that a,, < b,
and (a,b] C Une (an,bn]. Let & € (0,00). By the right-continuity of F, we can
choose {8, }52; C (0,00) and § € (0,b — a) so that F'(b, + 8,) — F(b,) < 27"¢ for
any n € Nand F(a + 8) — F(a) < e. Since [a + 8,b] C Uy—;(an,bn + 8,), the
compactness of [a + 8, b] yields a finite set / C N such that (¢ + 8,b] C [a + 8,b] C
Uper(@n,bn + 8,) C U, ez (@n, by + 64], and then by (2.15),

v((a.b]) = F(b) — F(a) < v((a+8.b]) + & < > _v((@an.bn + 8a]) + &
nel

f:( ((an.bal) + 27" ) Zv (an. bn]) + 2¢.

n=1
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Letting ¢ | O results in (C2), completing the proof. [

Corollary 2.14 (Lebesgue measure on B(R)). There exists a unique Borel measure m;
on R such that my ([a, b]) = b — a for any a,b € R witha < b.

As already mentioned in Example 1.8, m; is called the Lebesgue measure on R.

Proof. Define F : R — R by F(x) := x, which is continuous and non-decreasing.
Set m; := pr. Then Proposition 1.4-(4) implies that for any a,b € R witha < b,

my ([a, b]) = nli)rgloml((a —1/n,b]) = Jim (b —a + 1/n)=b—a.

Thus m; is a Borel measure on R with the desired property. The uniqueness of such a
measure easily follows from Theorem 2.5, as described in Example 2.6. O

The case of probability measures is of particular importance.

Definition 2.15 (Distribution functions). Let u be a Borel probability measure on R
(i.e. a probability measure on B(R)). Then the function F,, : R — [0, 1] defined by
Fu(x):= /L((—OO, x]) is called the distribution function of .

Similarly to Proposition 2.12, F, is right-continuous, non-decreasing and satisfies
w((a,b]) = Fu(b) — Fu(a) for any a,b € R with a < b. By Theorem 2.13, p is
equal to F, , the Lebesgue-Stieltjes measure associated with Fy,, and in particular p
is uniquely determined by its distribution function F,.

Corollary 2.16. A function F : R — R is the distribution function of a (unique)
Borel probability measure on R if and only if F is right-continuous, non-decreasing
and satisfies limy_, oo F(x) = 1 and limy_,_o, F(x) = 0.

Proof. Suppose F(x) = ,u((—oo, x]), x € R, for a Borel probability measure y on R.
Then F is right-continuous and non-decreasing, and Proposition 1.4-(3),(4) yield

I=pu®) = lim p((-oo.n]) = lim F(n) = lim F(x),
0=p@) = lim p((—o0,—n]) = lim F(-n) = lim F(x).

Conversely, suppose F satisfies these conditions, and let 4 := pur be the Lebesgue-
Stieltjes measure associated with F'. Then Proposition 1.4-(3) yields

;L((—oo,x]) = lim M((—n,x]) = lim (F(x) — F(—n)) = F(x) forany x € R,
n—oo n—>o0
w(R) = lim /L((—OO,I’!]) = lim F(n) =1.
n—>00 n—>oQ
Thus p is a Borel probability measure on R and F is its distribution function. O

According to Corollary 2.16 and the argument after Definition 2.15, u +— F, gives
a bijection from the set of Borel probability measures on R to the set

{F R—R llmx—>oo F(x) =1 and limx—>—oo F(X) =0

F is right continuous, non-decreasing and satisﬁes}
,

and its inverse map is given by F' — wr. Through this bijection, a Borel probability
measure on R is often identified with its distribution function.
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2.3.2 Borel probability measures on R¢ and distribution functions

Corollary 2.16 can be generalized to Borel probability measures on R¢, as described
below in this subsection.

Definition 2.17 (Distribution functions on R). Let d € N and let i be a Borel prob-
ability measure on R?. Then the function F, W R? — [0, 1] defined by

Fu(x1,....xq) = p((=00,x1] x -+ x (—00, x4]) (2.16)
is called the distribution function of .

Proposition 2.18. Let d € N, let ju be a Borel probability measure on R? and let F, W
be the distribution function of |L.
(1) For any (x1,...,xq) € R% and any (hy, ..., hg) € [0, 00)%,
p(Ger = hy,x] X - X (xg — ha. xq))
- S DTS F — ik xg —agha) 20, (217)

(G Old)E{O,l}d

where (a,a) := 0 fora € R.
(2) Forany x = (x1,...,Xq) € R,

lim' Fu(y1.-...ya) = Fu(x). (2.18)
3150sya)>x
yi 2%, i €{1,.,d}

(3) limy 500 Fiu(x,...,x) = 1, and limy, 5 oo Fy(X1,...,%i,...,Xg) = O for any
ie{l,....,d}yandany x; e R, j e{l,....d}\ {i}
(4) w is uniquely determined by its distribution function F),.

The proof of Proposition 2.18 is left to the reader as an exercise (Problem 2.7).
Theorem 2.19. Let d € N, and let F : R¢ — R satisfy the following conditions:
(F1) Forany (x1,...,xq) € R? and any (hy, ..., hg) € (0, 00)%,
d o
Y (DE=%F(xy —enhy. . Xg —aghg) 2 0. (2.19)
(@15-,04)€{0,1}4
(F2) limpyo F(x1 + h,...,xg +h) = F(x1,...,xq) forany (xi,...,x4) € RY.

(F3) limxsoo F(x,...,x) = 1, and limy; oo F(x1,...,%;,...,xq) = O for any
ie{l,....,d}yandanyx; € R, j €{1,...,d}\ {i}.

Then F is the distribution function of a (unique) Borel probability measure on R,

Proof. We have already seen the uniqueness of such p in Proposition 2.18-(4). To use Theorem
2.7to construct i, let A := {(a1,b1]x--x(ag.bgl | ai.bj € R,a; < b;,i €{1,....d}}U{@}.
Clearly A is a r-system, and by using Proposition 1.9 we easily see that o0(A) = B(RY). We
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define v : A — [0, 00) by setting v((x1 —h1] X -+ X (xg —hg,x4]) to be the left-hand side of
(2.19) for each (x1,...,x4) € R4 and (h1,....hg) € (O, oo)d, and v(@) := 0. Let us verify
the conditions (C2) and (C3) of Theorem 2.7 for A and v. Note that

F(x —he;) < F(x) forany x eR% he [0,00)andi € {1,...,d}, (2.20)

where ¢; 1= (l{i}(j));i:l € R¥; indeed, letting h; — —oo in (2.19) for j € {1,....d}\ {i}
yields (2.20) by virtue of (F3). Then by (F2) and (2.20), we obtain (2.18) with F' in place of Fj,.
Note also that v((x1 —h] % x(xg —hg, xd]) is equal to the left-hand side of (2.19), not
only for (hy,....hg) € (0, oo)d but also for (h1,...,hg) € [0, oo)d, since the left-hand side
of (2.19) is easily seen to be 0 if #; = 0 for some i € {1,...,d}.

For the rest of the proof, we use the following notations: for a,b € ]Rd, a=(ay,....aq),
b = (b1,....bg), we write a < b if and only if a; < b; foreachi € {l,...,d},anda < b
if and only if a; < b; foreachi € {1,...,d}. We set (a,b] := (a1,b1] x --- x (ag4,b,] and
la,b] :==la1,b1] x---x[ag,bglifa < b,and (a,b) := (a1,b1) X --- % (ag,byz) ifa < b.

We first prove (C3). Let x = (x1,...,Xg) € R? and h* = (hk,...,hlé) € [O,oo)d,
k = 1,2,3. We claim that for any G : RY — R,

3 3
Z (—1)2?:10”G(X1 —aq Zhllc,...,xd—(xd th) (2.21)
(@1 50es0q) €40, 134 k=1 k=1
d ) B1—-1 Ba—1
= > (—1)Zi:1“zG(x1 - kz W —ahPr kg — kz nk —adhgd),
=1 =1

(@1,--,0tq)€{0,1}4
(B1>---Ba)€f1,2,3}4

which we prove by induction in d. (2.21) is immediate if d = 1. Let d > 2 and suppose (2.21)
is valid with d — 1 in place of d. Then by the induction hypothesis and (2.21) for d = 1, the
right-hand side of (2.21) is equal to

a B—1 3 3

Z (—I)Zi=] “lG(xl — Z h]f _Ollhlf»xz — o Z /’llzc,...,xd — oy Z /’llé)

(@15..,00)€{0,1}¢ k=1 k=1 k=1
Be{1,2,3}

d . 3 3
= Z (—l)zi=1a’G(X1—(11 Zhllc,...,xd—athZ),
(@132 )€{0,1}¢ k=1 k=1

completing the induction procedure of the proof of (2.21). For G = F, (2.21) means that

3 d Bi Bi—1
v((x -y hk’x:|) = Z v(l_[(x,- -3 hf-‘,x,- - hfc:|) (2.22)
k=1 (B1,Ba)el1,2,34d  \i=1 k=1 k=1

In relation to (2.22), it also holds that

3k d Bi k Bi—1 k
(x— h ,x]= U l_[(xi— > hixi— Zhi], (2.23)
k=t Brobaetizydi=t > k=1 k=t
where the right-hand side is a disjoint union. Now if 4, B € A, then we can choose x € R4 and

hk e [0,oo)d,k =1,2,3,so0that A = (x_213<=1 hk,x] and AN B = (x —h! —h2, x —hl],
and then (C3) is immediate from (2.23) and (2.22).
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It remains to prove (C2). Let a, b e R a < b. We first show that for any n € N and
al bl e RY witha! < bi,i € {1,...,n},

n

v((a.b]) < Z v((ai,bi]) whenever  (a,b] C U(ai,bi]. (2.24)

i=1 i=1
The proof is by induction in n. (2.24) is clear from (C3) if n = 1. Let n € N and suppose
(2.24) is valid for n. Let a?,b? e RY, at < b, i e{l,..., n + 1}, and suppose (a,b] C
U:’:ll(a‘ b']. We can choose vk € [O oo)d k =1,2,3, so that (a,b] = (b — Zi:l vk, b)
and (a,b] N (@11, b”'H] =0b-vl—vZ b—vl].For 8 =(B1,.... Ba) € {1,2,3}4 we set
Ig := Hz—l(b - Zk L Vi ,b Zﬂ’_l lk] where b = (b1,...,bg). By (2.23) and (2.22),

(a,b] = U Ig (disjoint union),  v((a,b]) = Z v(Ip). (2.25)
Be{1,2,3}4 Be{1,2,3}4
Let B € {1.2.3}4, B £ (2...., 2). Since (a,b] N (@"+1, b7+ = I(2,...,2) we have Ig N
(@1, b" 1] = g and hence Ig C I (a’,b"], ie. Ig C U}—;(Ig N (a'.b']). Then the
induction hypothesis shows v(Ig) < Y 7_; v(Ig N (@', b']) = Z”i'll v(Ig N (a',b']) for
Be{1,2,3}9 B+ (2,...,2), and therefore
n+1 o
v(lg) < Y v(lg (@ . b)), peil.2.3}. (2.26)
i=1
On the other hand, for eachi € {1,..., n+1}, (a,b] N (d,bi] = Upef1,2,334 (Ig N (@, b']),
and it is easy to see that there exist x = (x1,...,Xxyg) € R4 and hk = (hk, .. .,hs) € [0, 0)4,
k = 1,2, 3, such that for any 8 = (81,..., ﬂd)€{1,2,3}d,
o 3. 4 o d Bi k Bi—1 X
(a,b] N (a*,b'] = (x— Sh ,x] and IgN(a',b'] = l_[(x,' - > hfxi— Y hii|,
k=1 i=1 k=1 k=1
which together with (2.22) and (C3) yields

> w(Ign(@. b)) =v(@bln(@ b)) <v(@.b'). iefl...n+1} 227
Be{1,2,3}4

By combining (2.25), (2.26) and (2.27), we obtain

n+1 n+1
v(@ol)= Y wup=d Y (Ipn@.bi) < > v(@ ).
Be{1,2,3}4 i=18e{1,2,3}4 i=1

completing the induction procedure and the proof of (2.24).

Now leta,b € R?, a < b, and let a”,b" € RY, n € N, be such that ¢” < b" and (a,b] C
Uflozl(a”,b”]. Setl:=(1,...,1) € R? and let e € (0, 00). By (2.18) for F, we can choose
{60352, C (0,00) and 8§ € (0,00) so that v((a”,b" + §,1]) — v((a™,b"]) < 27"& for any
neN,a+81 <bandv((a,b])—v((@+681,b]) <e. Since [a+81,b] C |UpZ,(a",b" +68,1),
the compactness of [a + 8, b] yields a finite set I C N such that (¢ + 61,b] C [a + §1,b] C
Uner (@™, o™ +6,1) C U,y (@™, b" + 6,1, and then by (2.24),

v((@.b]) <v((a+81.b]) +e <y v(@".b" +8,1]) +

nel
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M8

=

(V((an,bn]) + 2_n8) + &= Z v((a”,b”]) + 2e.
n=1

Il
—

n

Letting ¢ | 0 results in (C2), and by Theorem 2.7 there exists a measure i on o (A) = 'B(]Rd)
such that u|4 = v. Finally, by (F3), letting h; — oo fori € {1,..., d} successively in
(2.19) yields F(x1,...,xq) = p((—00,x1] x -+ x (—00, x4]) for any (x1,...,xg) € R4, and
/,L(Rd) = limy o0 ;L((foo,x]d) = limy—seo F(x,...,x) = 1. O

2.3.3 Topology and Borel measures on R?

The purpose of this subsection is to prove the following theorem, which asserts that the
measure of a Borel set can be approximated from above by open sets and from below
by compact sets.

Theorem 2.20. Let d € N, and let pu be a Borel measure on R? such that ju(R?) < oc.
Then for any A € B(RY),

w(A) = inf{u(U) | A c U c R?, U is open in R%} (2.28)
= sup{u(K) | K C A, K is compact}. (2.29)
Proof. Define
A=14cRr? for any ¢ € (0, 00) there exist an open subset U of R? and a
' closed subset F of R? suchthat F ¢ A C U and (U \ F) < ¢’

(2.30)
We prove that A is a o-algebra in R containing all closed subsets of R?. Let F C R¢
be closed in R? and let U, := Uyer Ba(x,1/n) for n € N. Then U, is open in
RY, F C Uy+1 C Uy, and F = ﬂ;’lozl U, since F is closed in R?. Therefore
w(F) = lim,_ 0 £ (U,) by Proposition 1.4-(4) and +(R?) < 0o, and hence F € A.
We have @ € A since @ is closed in RY. If 4 € A, then for ¢ € (0,00) and
U,F c R? asin (2.30), U C A° C F€and u(F°\U°®) < gsince FE\U¢ = U\ F,
and hence A° € A. Let {4,}52, C A and ¢ € (0,00), and for each n € N choose
an open subset U,, of R4 and a closed subset F,, of R? so that F, C A, C U, and
w(Un \ Fy) <27"e. Then |52, Fr C Uy An C Upey Uy and

M(U Un\U Fn) flL(U(Un\Fn)) = ZM(Un\Fn)<8~
n=1 n=1

n=1 n=1

Since pu(Un; Fn) = limy—oo u(U;—; F;) by Proposition 1.4-(3), we can take k € N
such that (U= Fn) < M(Uﬁ:l Fyu) + &, and then p({Up—; Un \ Uﬁ=1 Fy) < 2e,
where | J°, U, is open and | J¥_, F,, is closed in R¢. Therefore | J°2, A, € A and
hence A is a o-algebra in R?.

Thus we conclude that B(R?) C A, and this means (2.28) and (2.29) with “closed
in R?” in place of “compact”, from which (2.29) also follows since any closed subset
F of RY satisfies u(F) = limy—o0 u(F N [-n,n]?) with F N [-n,n]? compact. [

The equalities (2.28) and (2.29) are true also for a certain class of infinite Borel
measures on R?, e.g. for the Lebesgue measure. See Exercise 2.9 in this connection.
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2.4 Product Measures and Fubini’s Theorem

Recall the following basic fact for Riemann integrals: Let f : [0, 1]> — R be bounded
and Riemann integrable on [0,1]2. If f(x,-) and f(-,y) are Riemann integrable on
[0,1] for any x, y € [0, 1], then so are fol f(,y)dy and fol f(x,)dx, and

1 1 1 1
0.1]2 f(2)dz :/(; (/0 f(X,y)dx)dy :/(; (/(; f(x,y)dy)dx' (2.31)

The aim of this section is to establish the counterpart of this fact in the framework
of measure theory, for which we need the notions of the product of o-algebras and that
of measures. We start with the definition of the product of o-algebras.

Definition 2.21 (Product o-algebras). Let n € N, and for each i € {1,...,n} let
(X;,M;) be a measurable space. We define My x --- x M, C 2X1>>Xn and a o-
algebra M; ® --- ® M, in X1 X --- X X, by

My X oo X My i= {A1 X+ X Ay | A € M fori € {1,...,n}}, (2.32)
M ® - @My 1= 0x;xexx, (M1 X -+ X M) (= My if n = 1). (2.33)

M ® - ® M, is called the product o-algebra of {M; }7_,.

Proposition 2.22. Let n,k € N, and for each i € {1,...,n + k} let (X;, M;) be a
measurable space. Then

M@ dMp) @ Mp4+1® -+ @ Mpgp) =M ® -+ @ My 1. (2.34)

Proof. SetY) := X1 X+ x X;, Yo i= Xp41 X X Xk N1 =M1 Q@ - @M,
and Ny := Mp41 ® -+ @ M, 4%. Clearly Ny x Ny D My x --- x M, +x and hence
Ni®@N2 DM @+ ® My k-

For the converse inclusion, define A :={A C Y] |Ax Y, e M1 ® - @ My 41}
Clearly M; x -+ x M, C A. We claim that A is a o-algebra in Y;. Indeed, @ € A by
OxY,=0eM® - QM,yx,andif A € Athen Y1\ 4 € Asince (Y;\ A)xY, =
YixYo\AxY, € My Q-+ ® Myqp If {A;}2, C A, then (U2, 4i) x Y2 =
Ufil(Al- xY3) e M1 ® - ® M, +r and hence Uf’il A; € A. Thus we conclude that
Ni =0y My x---xM,) CA,ie. AxY, e M; ® -+ ® M,y forany A € Nj.
It follows in exactly the same way that Y1 x B € M; ® --- ® M,,4x for any B € N,.
Thus AXx B =(AxY))N (Y1 xB) e M; ®---Q@M, 4 forany A € Ny and B € N,,
thatis, Ny xNo C M1 ® -+ @ M4k, and hence Ny @ N C M; ® - Q@ My x. O

The following proposition provides an important example of product o-algebras.

Proposition 2.23. (1) Let n,k € N. Then B(R"**) = B(R") ® B(RX).
(2) Let d € N. Then B(R?) = B(R)®? := B(R) ® - -- @ B(R) (d-fold product).

Proof. (1) Let F, 1 be as in (1.6) with d = n + k. Then clearly F, 1 C B(R") x
B(R¥), and therefore B(R"**) = 0(F,4x) € B(R") ® B(R¥). On the other hand,
{A C R" | AxRK e B(R"tk)} is easily shown to be a o-algebra in R” in the same
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way as the above proof of Proposition 2.22, and it contains all open subsets of R” and
hence all Borel sets of R” as well. Thus for A € B(R") and B € B(R¥), we have
A x R e B(R"tF), similarly R” x B € B(R"tk) as well, and hence A x B =
(A x RF) N (R” x B) € B(R"*). Therefore B(R") x B(R¥) c B(R"*¥), which
yields B(R") ® B(R¥) ¢ B(R"*¥).

(2) This easily follows by an induction in d using (1) and Proposition 2.22. O

Next we prove the existence and the uniqueness of the product of measures. We
need the following definition for the uniqueness statement.

Definition 2.24. Let (X, M, ;) be a measure space. Then p (or (X, M, p)) is called
o-finite if and only if there exists { X, }o>; C M such that

o0
X = U Xn and w(Xy) < oo foranyn € N. (2.35)
n=1

Note that, by considering {{J{_; X; }f,o:l instead of {X,,}32 ,, in (2.35) we may assume
without loss of generality that X,, C X,+1 foranyn € N.

Theorem 2.25 (Product measures). Letn € N, n > 2, and for eachi € {1,...,n} let
(Xi, M, ;) be a measure space. Then there exists a measure L on M1 ® --- @ M,
such that for any A;j € M;, i € {1,...,n},

p(Ay X oo X Ap) = 1 (A1) -+~ pin (An). (2.36)

If (Xi, M, ;) is o-finite for each i € {1,...,n} in addition, then such a measure |
on My ® --- ® M,, is unique and o -finite, and it is denoted as L1 X -+ X [y.

In the latter case, 41 X --+ X Wy is called the product measure of {j1; }7_, .

Proof. Definev : My x--- XM, — [0,00] by v(A; X---X Ap) 1= w1(A1) -+ un(4y)
for A, € M;, i € {1,...,n}, so that v(@) = 0, regardless of how @ is written as
an element of M; x -+ x M,,. Since M; x --- x M, is a w-system and generates
M ® - ® M, Theorem 2.5 applied to M x --- x M, and v immediately shows the
uniqueness assertion; here the o-finiteness of (X;, M;, u;) fori € {1,...,n} assures
the condition (2.3), and then clearly the measure extending v has to be o-finite.

By virtue of Proposition 2.22, the existence of y for general n easily follows from
that for » = 2 and an induction in n. Thus it suffices to prove the existence of ;& when
n = 2. To apply Theorem 2.7, we need to verify its conditions (C2) and (C3) for
My x My and v. For the proof of (C3), let A;, B; € M;,i = 1,2. Then

Al X A2 \ B] X Bz = ((A] \Bl) X A2) U ((Al N B]) X (A2 \ Bz))
and

V((A1 x A2) N (By X Bz)) + v((A1\ B1) x A2) +v((A; N By) x (42 \ B2))
= p1(A1 N Bi)pa(A2 N Bz) + w1 (A1 N Br)ua(Az \ Ba) + pi(A1 \ Bi)pa(4z)
= u1(A1 N By pa(A2) + pu1(Ar \ Br)pa(Az) = pi1(A1)pu2(42) = v(41 x Az),
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proving (C3). Next for the proof of (C2), let A € My, B € My, {4;}72, C My
and {B;}?2, C M, be such that A x B C (J;2,(4; x B;). Then 14(x)15(y) <
372 14, (x)1p, (y) for any (x,y) € X; x X», and therefore by using Propositions
1.25 and 1.26, we obtain

(Z 14, (X)1p, (y))duz(y)

2 N=1

12(B)Ly(x) = /

X

1)1 (n)dpa(y) < /

-y fX Ly, ()15, 0)dp2(v) = 3 (B, ()
2 i=1

i=1

for each x € X;, and hence

V(A X B) = pua(B)p1(A) = / p2(B)1a(x)dpey(x)

X1

< [ (St )dme = Y [ i@t e
X1 i=1 X1

i=1
%}

= Z/LZ(BI)//LI(AI) = ZV(Ai X Bi)v

i=1 i=1

proving (C2). Now Theorem 2.7 applied to X; x X5, M; x M, and v shows that v is
extended to a measure p on o (M; x My) = M; @ M. O

Corollary 2.26. Let n,k € N, and for eachi € {1,...,n + k} let (X;, M;, ui) be a
o -finite measure space. Then

(1 X oo X ) X (Rn1 X oo X fpk) = 1 X oo Xl (2.37)

Proof. According to Proposition 2.22, the two measure in (2.37) are defined on the
same o-algebra (M; @ -+ @My) @ My+1 Q- @Mp4x) = M; ® -+ @ My, 4, and
they clearly coincide on M X -+ X M, 1. Now (2.37) follows from the uniqueness
of 1 X -++ X lp4k stated in Theorem 2.25. O

Theorem 2.25 gives rise to the existence of the Lebesgue measure on R?, d > 2.
Note that the Lebesgue measure m; on R constructed in Corollary 2.14 is o-finite and
hence that its product my x --- x my (d-fold product) is defined and o-finite.

Corollary 2.27 (Lebesgue measure on B(R?)). Let d € N and define my := m‘{l =
mp X ---x my (d-fold product). Then my is the unique Borel measure on R? such that
forany a;,b; € Rwitha; < b;, i € {1,...,d},

my ([ay,b1] X -+ X [ag,bal) = (by —a1)--- (bg — aq). (2.38)
Moreover, m, 4 = m, X my foranyn,k € N.

As already mentioned in Example 1.8, my is called the Lebesgue measure on R?.
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Proof. my is a measure on B(R)®? = B(R%) by Proposition 2.23-(2), and it clearly
satisfies (2.38). The uniqueness of such my is already verified in Example 2.6, and the
last assertion is nothing but (2.37) with u; = my,i € {1,...,n + k}. O

We would like to write down integrals with respect to ; X -+ X u, as iterated
integrals with respect to u;, i € {1,...,n}. This is established in Theorem 2.29 below,
which requires some preparations concerning measurability of functions. Note that, in
view of Proposition 2.22 and Corollary 2.26, it suffices to consider the case of n = 2.

Proposition 2.28. Let (X, M), (Y, N) be measurable spaces and let f : X xY —
[—00, 00] be M ® N-measurable. Then f(-,y) : X — [—00, 00] is M-measurable for
anyy € Y, and f(x,-): Y — [—00, 00] is N-measurable for any x € X.

Proof. Lety € Y and define A, := {4 C X x Y | 14(:, y) is M-measurable}. Then
M xN C Ay since 14xp(-,y) = 1p(y)14 for A € M and B € N, and Ay isao-
algebrain X x Y;indeed, 14(-, ) = Oyields @ € Ay, and 1xxy\a(-, ) = 1=14(, »)
shows X x Y \ A € Ay for A € Ay. If {An}32; C Ay, then 1noo  (xxy\a,)(5Y) =
limp o0 (Lxxy\a; -+ Lxxy\a,) (. ¥) shows (72, (X x Y \ A,) € A, and hence
Unzi An = X xY \ 12 (X x Y \ 4p) € A,. It follows that M @ N C A,.

Now let A be either a Borel set of R or any one of {oo} and {—oc}. Then we have
L re-1ca) = Lr—1(4)(, ¥), which is M-measurable since f~1(A) € M ® N. Thus

(fC, y))_1 (A) € M, thatis, (-, y) is M-measurable. The N-measurability of f(x,-)
is proved in exactly the same way. O

Theorem 2.29 (Fubini’s theorem). Let (X, M, ), (Y, N, v) be o-finite measure spaces
andlet f : X XY — [—00, 00] be M ® N-measurable.

W Iff =0o0n X xY, then [y f(-.,y)dv(y) : X — [0,00] is M-measurable,
Jx f(x,)dp(x) 1 Y — [0, 00] is N-measurable, and

[ raxn = [ ( / f(x,y)dv(y))du(x) -/ ( / f(x,y)du(X))d;Z(z)g-)

(2) Suppose that any one of [y.y | fld(n x v), [x([y | fCx, »)|dv(y))dp(x) and
Jy s | f o Ndpn(x))dv(y) is finite. Then f(x,-) is v-integrable for p-a.e. x €
X with [, f(-,y)dv(y) M-measurable and ji-integrable, f(-,y) is p-integrable for
v-a.e. y € Y with [y f(x,-)du(x) N-measurable and v-integrable, f is ju x v-
integrable, and (2.39) holds.

Remark 2.30. (1) In the situation of Theorem 2.29-(2), the function [, f(-, y)dv(y)
is defined only off M :={x € X | [, | f(x,y)|dv(y) = oo}, which belongs to M by
Theorem 2.29-(1). The first assertion of Theorem 2.29-(2) means that u(M) = 0 and
that the function [, f(-, y)dv(y) on X \ M is M|x\»-measurable and p-integrable.
The same remark of course applies to [y f(x,-)du(x) as well.

(2) Theorem 2.29-(2) is easily verified also for C-valued M ® N-measurable f.

Proof of Theorem 2.29. (1) Choose {X,}52, C M and {Y,}5>, C N sothat X =
U2y X Y =Us2 Ya,and forany n € N, X, C Xpg1, Yn C Yagr, p(Xy) < 00
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and v(Y,) < oo. Let n € N and define
Ap = {4 € M ® N | all the conclusions of (1) are valid for /" = 14n(x, xv,)}-

Then by virtue of u(X,) < oo, v(¥,) < oo and the monotone convergence theorem
(Theorem 1.24), we easily see that A, is a Dynkin system in X x Y including M x N,
and the Dynkin system theorem (Theorem 2.3) yields M®N = §(MxN) C A,. Thus
for A € M ® N, the conclusions of (1) are valid with f = 14n(x, xy,) forany n € N,
and letting n — oo yields those with f = 14 by virtue of the monotone convergence
theorem (Theorem 1.24), since 14n(x,, xv,) (X, y) is non-decreasing in n and converges
to 14(x, y) forany (x,y) € X x Y.

Now for M ® N-measurable f : X xY — [0, o], let {s,}>2, be a non-decreasing
sequence of non-negative M ® N-simple functions converging to f, as in Proposition
1.19. Then by the previous paragraph and Proposition 1.25, the conclusions of (1) is
valid with s, in place of f, and letting n — oo results in (1), again by Theorem 1.24.

@ fy(Jy lf G »Idv)dux) = [y (fx |fx)ldpx)dv(y) < oo by (2.39)
with | ] in place of f, and Proposition 1.30-(3) yields u(M) = v(N) = 0, where

M :={xeX| [y|f(x,y)ldv(y) = 0o} € M,
N:={yeY | [x|f(x,y)ldu(x) = oo} € N.

Jy FC)av(y) = [y £ p)dv(y) = [y f7(, y)dv(y) is defined on X \ M, and
it is M|x\ pr-measurable and j-integrable since [} f *(., y)dv(y) are M-measurable
and fi-integrable by (1). Similarly [y f(x,-)du(x) is defined on ¥ \ N, N|y\n-
measurable and v-integrable. Finally, (2.39) applied to f* yields (2.39) for f. [

The assumption of o-finiteness of 1 and v and the integrability assumption in (2)
are indeed necessary in Theorem 2.29; see Exercise 2.13 for concrete counterexamples.
The assumption of M ® N-measurability of f is much more subtle and there is no
easy counterexample that shows its necessity, but the reader should always keep this
measurability assumption in mind when using Theorem 2.29.

2.5 Fubini’s Theorem for Completed Product Measures

In the last section we have proved Fubini’s theorem (Theorem 2.29). In fact, however,
it is still insufficient when we consider complete measures, e.g. the completion m; of
the Lebesgue measure on B(R%). A simple reason for this is that the product measure
1 x v of two o-finite measures p on (X, M) and v on (Y, N) is usually not complete
even if p and v are complete; indeed, if N € N, N # @, v(N) = 0and A C X,
AZM,then AXxN C X xN e M®Nand (uxv)(X xN)=0,but AxN  MQN
since 1yxn (-, ¥) = 1n(y)1y4 is not M-measurable for y € N (recall Proposition
2.28). As a consequence, we cannot apply Theorem 2.29 directly to my-integrals of
kit aly
B(R4) " -measurable functions.

The purpose of this section is to overcome this difficulty by extending Fubini’s
theorem to the case of the completion of the product measure. We first prove a theorem
which asserts a certain uniqueness of the completion of a product measure.
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Theorem 2.31. Letn € N, n > 2, and for each i € {1,...,n} let (X;, M;, u;) be a
o -finite measure space. Then it holds that

UL X = X g = 1 X =++ X . (2.40)

Proof. We prove that the domains of the two measures in (2.40) coincide, that is,

- —_— L XX [y
Mi® @M, M =M @ @M, : (2.41)

Since [11 X+ - X Wn | M1 @-~@M,, = M1X"*+X [y by the uniqueness of 11 X+ -X iy, (2.41) means
that the two measures in (2.40) are both extensions of (11 XX toM; ® -+ ® JV[nM XNXM",
and therefore they are equal by the uniqueness assertion of Theorem 1.37.

Thus it suffices to show (2.41). The inclusion “C” easily follows from @1 x -+ X up =

1 X -+ X fn | v, ®--@M,, - For the converse inclusion, let us first prove that
MM @ @M MG @@ M, T (2.42)

Fori € {1,...,n}, let A; € WM, and choose B;,C; € M; sothat B; C A; C C; and
1i(Ci \ Bj) =0. Then By X ++-x B, C A} X---X Ap C Cy X -+ x Cp, and

p1 X o X i (Cp X -+- x Cp \ By X -+ X By)

n
=1 X"'><Mn<U(C1 X e x (G \Bi)X“'XCn)) =0,
i=1
where we used (1.63). Thus A} X+ X A, e M1 Q- ® J\/[nmxmxun, which implies (2.42).

Now let A belong to the right-hand side of (2.41), and choose B, C € J\/Tlm R ® J\/T,Mn
sothat B C A C C and i1 X+ X 4z (C \ B) = 0. Then by (2.42) there exist By, B»,C1,C3 €
M;®---®My suchthat By C B C By, C; CC C Cyp, 1 X -+ X un(Bz \ B1) = 0 and
1 XX p(C2\C1) = 0. Then By C A C Caand C2\ By C (B2\B1)U(C\B)U(C2\C1),
which together with p1 X -+ X up = Wy X -+ X n |, @--@M, implies that

p1 %X fin(C2 \ B1) < Tx % -+ x I ((B2 \ B1) U(C \ B) U (C2 \ Cy)) = 0.

L] XX

Thus A e M; ® --- @ My, Hon , proving (2.41). O

Corollary 2.32. Letn,k € N. Then m,, {; = m, X mg.
Proof. This is immediate by m,, 1y = m, xmy (Corollary 2.27) and Theorem 2.31. []
Now we state and prove Fubini’s theorem for the completion of a product measure.

Theorem 2.33 (Fubini’s theorem for completion). Let (X, M, n), (Y, N, v) be com-
plete o-finite measure spaces and f : X XY — [—00, 00] be M ® N _measurable.
©) f(,y) : X = [—00,00] is M-measurable for v-a.e. y € Y and f(x,-) : Y —
[—00, 00] is N-measurable for p-a.e. x € X.

(W If f =00n XxY, then [, f(-,y)dv(y) is defined ji-a.e. on X and M-measurable,
fX f(x,)du(x) is defined v-a.e. on Y and N-measurable, and

[, saa = ([ reniv)ane = [ ([ 1 ndneo ),

(2.43)
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(2) Suppose that any one of [y.y | fld(@xv), [x(fy |f(x.y)dv(y))du(x) and
Iy (fx 1 /e, »)ldi(x))dv(y) is finite. Then f(x,-) is v-integrable for p-a.e. x €
X with [, f(-, y)dv(y) M-measurable and pi-integrable, f(-,y) is p-integrable for
v-ae. y € Y with [y f(x,-)du(x) N-measurable and v-integrable, f is [i X v-
integrable, and (2.43) holds.

Remark 2.34. (1) In the situation of Theorem 2.33-(1), [y f(-, y)dv(y) is defined only
off M := {x € X | f(x,-)is not N-measurable}, which belongs to M by Theorem
2.33-(0) and the completeness of (X, M, ). Similarly to Remark 2.30-(1), the first
assertion of Theorem 2.33-(1) means that the function [} f(-,y)dv(y) on X \ M is
M| x\a-measurable. The same remark of course applies to [y f(x,-)du(x) as well.
(2) The same remarks as those in Remark 2.30 apply to Theorem 2.33-(2).

Proof of Theorem 2.33. By Problem 1.27, there exist M ® N-measurable functions fi, fo :
X XY — [-o0,00] suchthat f1 < f < fpbon X xY andtheset N :={z € X xY | fi(z) <
f2(2)} € M ® N has pu x v-measure 0. Then 0 = 1 x v(N) = [y (fy In (x,y)dv(y))du(x)
by Theorem 2.29-(1) and hence v({y € Y | (x,y) € N}) = [y In(x, y)dv(y) = 0 for p-a.e.
X € X by Proposition 1.34. This means that v({y eY | filx,y) < fg(x,y)}) = 0 for p-a.e.
x € X, thatis,

filx,)) = f(x,?) = fa(x,) v-ae. forp-ae xeX. (2.44)

In exactly the same way, we also obtain

fity)= f(G,y) = f2(,y) p-ae. forv-ae yeVY. (2.45)
Now by virtue of (2.44), (2.45) and f; = f = f> u x v-a.e., the assertions of Theorem 2.33 are
all immediate from Proposition 2.28, Theorem 2.29 and the completeness of p and v. O

2.6 Riemann Integrals and Lebesgue Integrals

The purpose of this section is to prove the following theorem, which asserts that Rie-
mann integrals on bounded closed intervals are just special cases of integrals with re-
spect to (the completion of) the Lebesgue measure. Recall that a function f : X — C
on a set X is called bounded if and only if sup,.cy | f(x)| < oo.

Theorem 2.35. Letd € N, let a;,b; € R, a; < b; foreachi € {1,...,d} and set
I :=lay,b1] X+ x[ag,bg]. Let f : I — R be bounded and Riemann integrable on
I. Then f € £LY(1,B(I) *,Tg) and

/Ifdm_dzflf(x)dx, (2.46)

where the integral in the right-hand side denotes the Riemann integral on I.
Proof. For each n € N, we define Borel measurable functions g5, /#, : I — R by
on
aim 2 (Lt 10 e + (i )i,

. - X€ln(i1,ensiq)
131 ,...,ld=1
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2[1
= Y sup L) )iy + ( sUp £00) )10y,
xel

il yeig=1 x€lpn(it,..siq)

where J := (a1, b1] X --- X (aq,bq],

d

. . i —1 Ik
I,(iy,...,ig) = l_[ |:ak + n (b —ar),ar + 2_n(bk —ak)i|,
k=1
d i — 1 i
Jn(ir, ..., i) = l_[ (ak + T (br —ax),ax + 2_”(bk —ak)].
k=1
Then
inf f(x) <gn < gnt+1 < f < hny1 <hy <sup f(x) onl,
xel xel
so that g := lim,_, o gn and h := lim,_, h, are defined, Borel measurable and

satisty infyer f(x) < g < f < h < sup,c; f(x) on I. In particular, we have
g.he LY, B(I), my)bymy(l) < co.
Since md(ln(il, R id)) = md(Jn(il, R id)) and my (1 \ J) = 0, we see that
0] 500ig=1

fgndmd
1
2”

/Ihndmd= Z ( sup f(x))md(ln(ilm-wid)),

il ig=1 x€l,(iy,e.., ig)

2]1

> ( inf _d)f(x))md(l,,(il,...,id)),

X€In (1,000

which both converge to [; f(x)dx by the Riemann integrability of f on /. On the
other hand, since infxes f(x) < gn < hy < sup,¢; f(x) on I and my (/) < oo, the
dominated convergence theorem (Theorem 1.32) yields

/gdmd = lim [ g,dmy =/f(x)dx= lim | h,dmy =/hdmd. (2.47)
Thus [;(h — g)dmg = 0, which and h — g > 0 imply ¢ = h mg-a.e. on I in view
of Proposition 1.34-(1). Finally, since g < f < hon/l and g = f = h my-ae.
onl, fis mmd -measurable by Problem 1.27, and f is mg-integrable on / and
J; fdmg = [, gdmg = [; f(x)dx by Proposition 1.35 and (2.47). O

Remark 2.36. In Theorem 2.35, we cannot conclude that f is Borel measurable. In
fact, there exists a Riemann integrable function on / which is NOT Borel measurable.

Notation. In view of Theorem 2.35, an integral [, fdmg with respect to (the comple-
tion of) the Lebesgue measure my is also denoted as [, fdx or [, f(x)dx:

/Afdx :=/Af(x)dx :=/Afdm_d. (2.48)
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Ifd =1and A = (a,b),a,b € [—00, ], a < b, then we write

/ab fdx = /{;b f(x)dx := /(a,b) fdmy. (2.49)

In short, an integral on a subset A of R¢ written as Ju fdx or [, f(x)dx will always
mean one with respect to (the completion of) the Lebesgue measure mg.

Remark 2.37. Letd € N. Elements of B(R4 )md are called Lebesgue measurable sets

of R? and B(R4 )md -measurable functions are called Lebesgue measurable. B(R? )md
is called the Lebesgue o-algebra of R? or the o-algebra of Lebesgue measurable sets
of R4,

2.7 Change-of-Variables Formula

At the last of this chapter, we prove the invariance of the Lebesgue measure m; under
parallel translations and invertible linear transformations and present the change-of-
variables formulas for mg.

Theorem 2.38. Letrd € N.
(1) Ifa € R?, then
my (A + o) = my(A) (2.50)

forany A € B(R?), where A+« :={x +a | x € A
Q) If T : R¢ — R is linear and invertible, then for any A € B(R?),

mg(T(A)) = | det T|mg (A). 2.51)

Remark 2.39. (1) Note that A + «, T(A) € B(R?) in the situation of Theorem 2.38;
indeed, since T~ is continuous, it is B(R?)/B(R?)-measurable by Problem 1.15-(1)
(see also Lemma 1.17) and hence T'(4) = (T~")"1(4) € B(R?). The same argument
works for 4 4 o as well. .

Q) If T : R? — R? is linear and NOT invertible, then T(A) € B(RY) * and
mg(T(A)) = 0 for any A € B(R?). Indeed, T(R?) is contained in a (d — 1)-
dimensional subspace H, which can be written as

H = {(x1,...,xd) S Rd ‘ Xg = leksd’k#eakxk}

for some £ € {1,...,d}and ay € R, k # £. Therefore H € B(R?) and my(H) = 0
by Corollary 2.27 and Fubini’s theorem (Theorem 2.29-(1)), which implies the claim.

Proof of Theorem 2.38. (1) Set u(A) := my(A+a) for A € B(R?). Then w is clearly
a Borel measure on R? and satisfies j1([a1, b1]x---X[ag, bg]) = (b1—a1) -+ (ba—aq)
for any a;,b; € R witha; < b;, i € {1,...,d}. Therefore x = my by the uniqueness
of the Lebesgue measure mg on R? stated in Corollary 2.27.

(2) Set ur(A) := mgy (T (A)) for A € B(R?), so that yur is a Borel measure on R?. If
d =1, then T (x) = Bx for some § € R\ {0} and hence /LT([a,b]) =|B8|(b—a) =
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|detT|(b — a) for any a,b € R with a < b. Therefore |detT|~'ur = m; by the
uniqueness of the Lebesgue measure m; on R stated in Corollary 2.14.

Thus we may assume that d > 2. Let (eq,...,eq) be the standard basis of RY,
that is, ¢; = (1{,-}(k))]il=1 eRY, i e {1,...,d}. Recall that T can be written as
T =T,---Ty forsome N € N and T;, where each T; is of one of the following three
types:

(1) (Tiey,...,Tiey) is a permutation of (eq,...,eq).
(ii) Tieq = PBey and Tiex = ex, k € {2,...,d}, for some f € R\ {0}.
(iii) Tje; = e; + ez and Tier = ep, k €{2,....,d}.

Since det T = (det 77) - - - (det T ), it suffices to prove wr = | det T'|my when T itself
is of one of the above three types. For this purpose, let a;, b; € R satisfy a; < b; for
i € {l,....,d}and set I := [ay,b1] X --- X [ag,bg]. If T is of the type (i), then
|detT| =1and ur(I) = (by —ay)---(bg —ag) = |det T'|my(1). If T of the type
(ii), then |det T'| = |B| and ur (1) = |Bl(b1 —a1) -+ (bg —aq) = |det T |mg(]).

Now suppose T is of the type (iii). Then T'(/) = J x [as,b3] x --- X [ag, bg]
with J := {(s,s + ) | s € [a1.b1]. t € [az,bs]} C R?, which is a parallelogram
formed by the vectors (b; — ay, by — aq) and (0, b, — a3). Therefore it is immediate
that my(J) = (b — ay) (b2 — a), from which and det 7 = 1 we see that

pr (1) =mg(T (1)) = ma(J)(b3 —az) - (bg —aq) = mg(I) = |det T|mg(I).

Thus if T is of the type (i), (ii) or (iii) as above, then |det T|~"'ur = my by the
uniqueness of my stated in Corollary 2.14, completing the proof. O

In view of the image measure theorem (Theorem 1.46), Theorem 2.38 yields the
following change-of-variables formula.

Corollary 2.40 (Change-of-variables formula: linear version). Let d € N, a € R4
and let T : R — R? be linear and invertible. Let f : R? — [—o0, 00] be Borel
measurable (i.e. B(R?)-measurable). Then f admits the mg-integral if and only if so
does the function R? > x + f(Tx + «), and in that case

/ f(y)dy =/ f(Tx +«a)|detT|dx. (2.52)
R Rd

Proof. Define ¢ : R? — R? by ¢(x) := Tx +a, so that ¢ is continuous and bijective.
By Theorem 2.38, for any 4 € B(RY) we have

mg (p(A)) = my (T'(A) + @) = my(T(A)) = [det T|mg(A)

and hence
mg (A) = mg(p(¢~" (4))) = |det T|my (¢~ (4)) (2.53)

since 9~1(4) € B(R?) by Problem 1.15-(1) and the continuity of ¢, similarly to
Remark 2.39-(1). Now (2.53) means my = |det T'|my o ¢!, which and the image
measure theorem (Theorem 1.46) immediately show the assertion. O]
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In fact, we have a much more general change-of-variables formula for the Lebesgue
measure. Recall the following notions from multivariable calculus.

Definition 2.41. Let d € N, let U be an open subset of R4 and let o U — Rd,
¢ = (§01,-~-7§0d)~

(1) g is called continuously differentiable, or simply C!, if and only if ¢ is continuous,
all its partial derivatives dg; /0x;, i, j € {1,...,d}, exist at any point of U and they
are continuous on U. If ¢ is C!, then for x € U, its derivative (or Jacobian matrix) at

x is defined as the matrix Dg(x) := ((8(pi/8xj)(x))7j=l.
(2) ¢ is called a C'-embedding if and only if ¢ is C' and injective and Dg(x) is
invertible for any x € U.

Note also the following fact, which follows by the inverse mapping theorem: if
¢ : U — R? js a C'-embedding defined on an open subset U of R, then its image
@(U) is open in R? and the inverse ¢~ : p(U) — U is also a C'-embedding.

Theorem 2.42 (Change-of-variables formula: general version). Let d € N, let U be
an open subset of R% and let ¢ : U — R? be a C'-embedding. Let f : ¢(U) —
[—00, 00] be Borel measurable (i.e. B(p(U))-measurable). Then f admits the mg-
integral on ¢(U) if and only if (f o ¢)|det Do| admits the mg-integral on U, and in
that case

F)dy = [ F(p(x))] det Do(x)|dx. (2.54)
) U

(U

The proof of Theorem 2.42 requires various preparations and is too long to be given
here. We refer the interested readers to the proof in Rudin’s book [7, Definition 7.22
— Theorem 7.26]. (In fact, the change-of-variables formula [7, Theorem 7.26] in his
book is proved under much weaker assumptions than those of Theorem 2.42 above.)

Exercises

Problem 2.1. Let X be a set and let D C 2X. Prove that D is a Dynkin system in
X if and only if D satisfies the conditions (D1) and (D2) of Definition 2.1-(2) and the
following condition (D3)':

(D3) If{A,}3>, CDand A;NA; =@ foranyi, j € Nwithi # j,then |y, An €
D.

The next exercise requires the following definition.

Definition. Let X be a set and let A, M C 2X.
(1) A is called an algebra in X if and only if it possesses the following properties:

(A1) 0 € A.
(A2) If A € A then A€ € A, where A€ := X \ A.

(A3) If n € Nand {4;}!_, C Athen | J;_, 4; € A.
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(2) M is called a monotone class in X if and only if it satisfies the following conditions:
M1) If {4,}22, C Mand 4, C A4 forany n € N, then | J;2; A, € M.
(M2) If {A,}22, C M and A, D Ay41 forany n € N, then (7o, An € M.

Exercise 2.2. Let X be a set and let A C 2X.
(1) Prove that

M(A) := My (A) := N M (2.55)

IM: monotone class in X, A C M

is the smallest monotone class in X that includes A, and that M(A) C o (A).
(2) (Monotone class theorem) Suppose A is an algebra in X . Prove that

M(A) = o (A). (2.56)
Problem 2.3. Prove Lemma 2.10.

Problem 2.4 ([4, Corollary 7.1]). Let x be a Borel probability measure on R and let F
be its distribution function. Recalling that F is non-decreasing, we define F(x—) :=
limy4, F(y) foreach x € R. Leta,b € R, a < b. Prove the following equalities:

(1) u(la. b)) = F(b) — F(a-).

@ u(ja. b)) = F(b—) — F(a-).

(3) u((a, b)) = F(b—) — F(a).

4) n({a}) = F(a) — F(a—). (Thus u({a}) = 0if and only if F is continuous at a.)

Problem 2.5. Let F be the distribution function of a Borel probability measure on
R. Prove that the set {x € R | F(x) # F(x—)} is countable, where F(x—) is as in
Problem 2.4. (Noting Problem 2.4-(4), use Problem 1.14.)

Problem 2.6 ([4, Exercise 7.18]). Define F : R — R by

21
F = Z Z—nl[nfl,oo). (2.57)
n=1

(1) Prove that F is the distribution function of a Borel probability measure i on R.
(2) Let u be as in (1). Calculate the following values (i)—(vi):

() p(ll,00) (Gi) p([1/10,00) @)  p({0})
(v) n([0.1/2) v pu((=00,0)) (vi) p((0,00))

Problem 2.7. Prove Proposition 2.18. (For (1), use the inclusion-exclusion formula
(1.62).)

Problem 2.8. Let d € N and let i be a Borel probability measure on R¢. Define

Cui=1{a e R| u(Hi(@)) =0}, where H;(a) :={(x1.....x5) €R? | x; = a},
(2.58)

foreachi € {1,...,d}and C;, := Cy; 1 x--- x Cy_g. Prove the following statements:

()R\ C,,,; is a countable set forany i € {1,...,d}. (Use Problem 1.14.)

(2) The distribution function Fj, : R? — [0, 1] of 41 is continuous at x for any x € C W
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Exercise 2.9. Let d € N. Prove that for any A € B(R%),

mg(A) = inf{mg (U) | A C U C R?, U is open in R¥} (2.59)
= sup{my (K) | K C A, K is compact}. (2.60)

Problem 2.10. Let (X,M) be a measurable space. Let n € N, and for each i €
{1,...,n}, let (S;, B;) be a measurable space and let f; : X — S;. Prove that the map
=1, fa): X > 81 x---x S, isM/B; ® --- ® B,-measurable if and only
if f; is M/B;-measurable for any i € {1,...,n}.

Problem 2.11. Letn € N. Foreachi € {1,...,n}, let (X;,M;, u;) be a o-finite
measure space and let f; : X; — [—00, 0o] be M;-measurable. Define f1 @ --- ® f, :
X1x:-x Xy = [-00,00]by (1R ® fn)(X1,....Xn) == f1(x1) -+ fu(xn). Prove
the following statements:

1) 1R ® funisM; ® --- ® M,,-measurable.

(2) If f; is p;-integrable foreachi € {1,...,n}, then f; ® --- ® fr is (1 X -+ X ty-
integrable and

[ J1 @ ® fud(pr X -+ X fin) =/ fld/u---/ Jndpn.  (2.61)
X xxXp, X1 Xn

(Induction in n. Use Proposition 2.22 and Corollary 2.26 to apply Theorem 2.29-(2).)

Problem 2.12. Let (X, M, ) be a o-finite measure space, let f : X — [0,00] be
M-measurable and set Sy := {(x,1) € X xR |0 <t < f(x)}.

(1) Prove that Sy € M®B(R) and that [0, 00) 5 ¢ — u({x eX| flx)> t}) € [0, o]
is Borel measurable.

(2) Prove that [y fdu = pu x m;(Sy) and that for any p € (0, 00),

/ fPdu = pfoo P u({x € X | f(x) > 1})dt. (2.62)
X 0

(3) Prove that mz({x €R? | x| <r}) = nr? forany r € (0, 00).

Exercise 2.13 ([7, Counterexamples 8.9]). (1) Let # denote the counting measure on
[0, 1] and set Afg,1] := {(x,y) € [0,1]* | x = y}, which is closed in R?. Prove that

! 1
/0 (/[0,1] 1A[O,1](x,y)d#(y))dx =1#0= /[0’1](/0 IA[OSI](x,y)dx)d#(y).

(2.63)
(2) Let {6,}52, C [0,1) be such that 6o = 0, §,—1 < 8, for any n € N and
limy, 006, = 1. Also foreachn € N, let g, : [0,1) — R be a continuous func-
tion such that g, [0,1)\(5,_,.5,) = 0 and /01 gn(x)dx = 1. Define f : [0,1)> - R
by
o
Feey) =) (8n (%) = gnr1(x) gn (7). (2.64)

n=1

Prove the following statements:
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@) f is continuous and fol (fol | f(x, y)|dx)dy = oo.

(ii) Forany x,y € [0, 1), f(x,-), f(-,y) € El([O, 1),m1), fol f(x,2)dz = g1(x) and

fol f(z,y)dz = 0. In particular,

/01(/01 f(x,y)dy)dx =1#0= /01(/01 f(x,y)dx)dy. (2.65)

Problem 2.14. (1) Prove that

sin x

r

(2) Use x~! = fooo e dt, x € (0, 00), to prove that

X

A
lim

dx = oo.

sin x 1 —cosx o
dx = —zdx =
A—ooJg X 0 X 0

(2.66)

. 2
Smx) dx = % (2.67)

X
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Chapter 3

Random Variables and
Independence

On the basis of measure theoretic tools developed so far, from this chapter on we
present various limit theorems in probability theory. First in this chapter, we intro-
duce various notions concerning random variables including independence of random
variables, which is one of the most important notions in probability theory, and state
the laws of large numbers for sequences of independent real random variables. In Sec-
tion 3.6, we also prove the existence and the uniqueness of the product of an infinite
sequence of probability measures, which assures the existence of infinite sequences of
independent random variables.

3.1 Random Variables and their Probability Laws

In this section, we give the precise definition of random variables and state basic facts
for them, which are more or less immediate from the results of the preceding chapters.

Throughout this section, we fix a probability space (2, F, P); recall from Definition
1.3-(2) that a probability space is the triple (2, F,P) of a set 2, a o-algebra F in Q
and a probability measure IP on . We begin with some probabilistic terminology.

Definition 3.1. (1) The set €2 is called the sample space of (2, F, P).
(2) Each A € JFis called an event. For an event A € F, P[A] is called its probability.

(3) We use the phrase “almost surely” (or “a.s.” for short) as a synonym for “P-almost
everywhere”. When an explicit reference to the probability measure P is necessary, we
also say “P-almost surely” (or “P-a.s.” for short).

Definition 3.2 (Random variables). (1) Let (S, B) be a measurable space. An F/B-
measurable map X : Q — § (recall Definition 1.45) is called an (S, B)-valued random
variable, or a random variable taking values in (S, B), or simply an S-valued random
variable when B is clear from the context.

69
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(2) When d € Nand S C R?, we always equip S with its Borel o-algebra B(S)
unless otherwise stated, and an (S, B(S))-valued random variable is simply called an
S-valued random variable.

(3) An R-valued random variable is called a real random variable. For d € N, an
R?-valued random variable is called a d -dimensional random variable.

Note that a real random variable is nothing but an R-valued F-measurable function
on 2.

Proposition 3.3. Lerd € Nandlet X = (X1,...,Xq) : Q@ — R?, where X; : Q —
R for eachi € {1,...,d}. Then X is a d-dimensional random variable if and only if
X; is a real random variable for any i € {1,...,d}.

Proof. By Problem 1.15-(2) (or by Problem 2.10 together with Proposition 2.23-(2)),
X is F/B(R%)-measurable if and only if X; is F-measurable for any i € {1,....d},
which is the asserted equivalence. O

Proposition 3.4. Let (S, B) be a measurable space and let X be an (S, B)-valued
random variable. If (E, £) is a measurable space and f : S — E is B/E-measurable,
then f(X) (= f o X)isan (E, £)-valued random variable. In particular, if f : S —
R is B-measurable, then f(X) is a real random variable.

Proof. Forany A € €, f~1(A) € B and hence (f(X))"1(4) = X~ 1(f~1(4)) € 7.
Thus f(X) is F/E-measurable, that is, it is an (£, £)-valued random variable.
The latter assertion is nothing but the case where (E, £) = (R, B(R)). O

In particular, for d,k € N, if X is a d-dimensional random variable and f :
RY — R is continuous, then f(X) is a k-dimensional random variable, since such
£ is B(RY)/B(R¥)-measurable by Problem 1.15-(1) (see also Lemma 1.17).

Definition 3.5 (Expectation (mean)). Let X be a real random variable (or more gen-
erally, a [—o0, oo]-valued F-measurable function on 2). We say that X admits the
expectation (or it admits the mean) if and only if X admits the P-integral, and in this
case its expectation (or mean) E[X] is defined by

E[X] := / X(w)P(dw). 3.1
Q
X is called integrable if and only if it is P-integrable, or equivalently, if and only if X
admits the mean and E[X] € R.
Recall the definition of L?(P) = L? (2, F,P) for p € (0, o0) (Definition 1.49):
LP(P) := LP(Q,F,P) := {X | X is areal random variable, E[| X |?] < c0}. (3.2)

Proposition 3.6. Ler X be a real random variable.

(1) If X is almost surely bounded, that is, | X| < M a.s. for some M € [0, 00), then
X € LP(P) for any p € (0, 00).

(2) Let p,q € (0,00), p < gq. Then || X ||Lr < ||X||za. In particular, LI1(IP) C LP (P).
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Proof. (1) Since | X|? = min{|X|?, M?} a.s., by Proposition 1.35, Lemma 1.23 and
P[2] = 1 we have E[| X |?] = E[min{| X |?, M?}] < E[MP] = M? < oco.

(2) This is immediate from Problem 1.30 (or more directly, this is an easy consequence
of Holder’s inequality, Theorem 1.48). [

By Proposition 3.6-(2), if X € L£L2(P) then X € £!(P) and hence E[X] is defined
and finite. Note also that, by Holder’s inequality, if X, Y € £2(P) then XY € L!(P).

Definition 3.7 (Variance and covariance). (1) Let X be a real random variable. We
define the variance of X, denoted as var(X) or 62(X), by

E[(X —E[X])*] = E[X?] — (E[X])* ifE[X?] < oo,

var(X) = {Oo FE[X?] = oo, (3.3)

Then o(X) := /var(X) is called the standard deviation of X .
(2) For X, Y € L2(P), we define their covariance cov(X,Y) by

cov(X,Y) := E[(X —E[X])(Y —E[Y])] = E[XY]—E[X]E[Y].  (3.4)

Mean and (co-)variance are the most fundamental quantities in probability theory.
In fact, they naturally appear in the statements of limit theorems for random variables
presented in the rest of this course.

The following definition is quite fundamental in the development of probability
theory. Recall Theorem 1.46 for the notion of image measures.

Definition 3.8 (Law of a random variable). Let (S, B) be a measurable space and let
X be an (S, B)-valued random variable. The law (or distribution) Px of X is defined
as the image measure P o X! of P by X, that is, Py is a measure on (S, B) given by

Px(A) :=Po X 1(A) :=P[X (4] =P[X € 4], Ae®B. (3.5)

PPy is in fact a probability measure on (S, B) since Py (S) = P[X~1(S)] = P[Q] = 1.
Py is also referred to as the probability law of X or the probability distribution of X .

Notation. Let (S, B) be a measurable space and X an (S, B)-valued random variable.
(1) As already used in (3.5), for A € B, the event X "1 (A) = {w € Q | X(w) € A} is
abbreviated as {X € A} and its probability is simply written as P[X € A].

(2) The law Py of a random variable X is also denoted as £(X). (This notation is used
especially when no explicit reference is made to the probability space (2, F, P) where
the random variable X is defined.)

(3) For a probability measure w on (S, B), we write X ~ p if and only if £(X) = p.

The following proposition asserts that any probability measure on any measurable
space is the law of a random variable on some probability space.

Proposition 3.9. Let (S, B) be a measurable space and let | be a probability measure
on (S,B). Then the map X : S — S defined by X(x) := x is an (S, B)-valued
random variable on the probability space (S, B, i) whose law is [i.
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Proof. This is immediate from the fact that X ~1(4) = A forany A C S. O

The following theorem is just a rephrase of the latter half of Theorem 1.46.

Theorem 3.10. Let (S, B) be a measurable space, let X be an (S, B)-valued random
variable and let f : S — R be B-measurable. Then f(X) admits the mean if and only
if f admits the Py -integral, and in this case

ELf(X)] = [S F()Px (dx). (3.6)

Corollary 3.11. Let X be a real random variable.
(1) X admits the mean if and only if the function R > x + x admits the Py -integral,
and in this case

E[X] =/ﬂ;x}P’X(dx). (3.7)

(2) E[X?] = [ x*Px (dx). Moreover if [ x*Px (dx) < oo then

2 2
var(X) = /R(x—/RyIP’X(dy)) Px(dx) = /RxZIP’X(dx)—(/H;xPX(dx)) . (3.8)

Proof. (1) This is nothing but Theorem 3.10 with (S, B) = (R, B(R)) and f(x) = x.
(2) E[X?] = [ x*Px(dx) follows by applying Theorem 3.10 with f(x) = x?. If
these integrals are finite, then X € L£L!(P), so that E[X] = [z XPx (dx) € R by (1),
and Theorem 3.10 with f(x) = (x — ]E[X])2 yields (3.8). O

Definition 3.12. Let d € N, and let ;1 be a Borel probability measure on R?. A Borel
measurable function p : R? — [0, co] is called a density of ju if and only if 1 = p-my
(recall Theorem 1.43), that is,

n(A) = /A p(x)dx  forany A € B(R?). (3.9)

The relation & = p - my is also written as u(dx) = p(x)dx. If the law Py of a
d-dimensional random variable X has a density p, it is referred to as a density of X .
A density p of a Borel probability measure on R? clearly satisfies Jra P(X)dx = 1.

Conversely by Theorem 1.43, any Borel measurable function p : R¢ — [0, 0o] with
Jra p(x)dx =1 defines a Borel probability measure p - mg on R? (with a density p).

Proposition 3.13. Ler d € N and let y be a Borel probability measure on R? with a
density p. If h : R4 — [0, 00] is Borel measurable, then h is a density of i if and only
ifh = pmg-a.e.

Proof. If h = p mg-a.e., then [, h(x)dx = [, p(x)dx = ju(A) forany A € B(RY)
by Proposition 1.35 and hence % is a density of p. Conversely suppose / is a density
of . Then i = hly <oy mg-a.e. and p = plyy<00) My-a.e. by Proposition 1.30-(3),
hh<oot, Pl{p<oo} € L!(my), and Proposition 1.35 implies that for any A € B(RY),

[ 100 = P pr)x = [ B0~ [ pCordx = ) — i) =
A A A

By Proposition 1.34-(2), we conclude that 1 = hl<o0) = plip<co} = pmg-ae. [
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Not every Borel probability measure on R has a density (see Problem 3.1), but
many important probability measures are defined by determining densities p on R?, as
we will see in the next section.

For a random variable with a density, Theorem 3.10 and Corollary 3.11 take the
following form by virtue of Theorem 1.43.

Theorem 3.14. Let d € N, let X be a d-dimensional random variable with a density
p, and let f : R? — R be Borel measurable. Then f(X) admits the mean if and only
if fp admits the mg-integral, and in this case

EL/(X)] = /R f@pdx. (3.10)

Corollary 3.15. Let X be a real random variable with a density p.
(1) X admits the mean if and only if the function R > x — xp(x) admits the m;-
integral, and in this case

E[X] = /;oo xp(x)dx. (3.11)

e 0]

() E[X?] = [ x%p(x)dx. Moreover, if [°2 x?p(x)dx < oo then

o] 00 2
w0 = [ (x— [ yp(y)dy) p(x)dx

_ /Z 2p(x)dx — (/Z x,o(x)dx)z.

Theorem 3.16. Letd € N, let U be an open subset of R? and let X be a d-dimensional
random variable with a density py and such that X € U a.s. Let ¢ : U — R? be a
C'-embedding and let = ¢~ ' : ¢(U) — U. Then Y := {"’(g() Z’lgzgi is a
d-dimensional random variable with a density py given by

py = (px o ¥)|det DY [1yw). (3.13)

Since X € U a.s. and hence Y = ¢(X) a.s., in what follows the random variable
Y in Theorem 3.16 will be simply denoted as ¢(X).

(3.12)

Proof. Since ¢ is continuous, it is B(U)/B(R?)-measurable. Therefore if we define
7 :RY = RY by §(x) := ¢(x) for x € U and ¢(x) := 0 for x € R? \ U, then
@ is B(R?)/B(R¥)-measurable and hence ¢(X) = Y is F/B(R?)-measurable. Now
¥ : o(U) — U is a surjective C '-embedding, and therefore Theorem 2.42 together
with P[X € U] = 1 implies that for any A € B(R?),

Py(A) =P[g(X) € A|=P[X €3 ' (A)NU]=Px (g (4 NU)

=/ 14 (9(x)) px (x)dx =/ La()px (¥ (y))| det DY (y)|dy
U U)

o(

- /A px (¥ ()| det DY (3) |1y (1)dy.

Thus py := (px o ¥)|det Dy |1,) is a density of Y. O
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Note that by Proposition 3.3, if X = (Xi,..., X}) is an n-dimensional random
variable and ¥ = (Y1,..., Yy) is a k-dimensional random variable, then (X,Y) =
(X1,...,X,,Y1,...,Y) is an (n + k)-dimensional random variable. In this situation,

the law of (X, Y) is often called the joint law (or joint distribution) of X, Y .

Proposition 3.17. Letn,k € N, let X be an n-dimensional random variable and Y a
k-dimensional random variable. If the (n + k)-dimensional random variable (X,Y)
has a density p, then X and Y have densities px and py, respectively, given by

px () = /R pedy and pr(y) = /}R Cpendv. (G4

Proof. The first half of Fubini’s theorem (Theorem 2.29-(1)) implies that for any A €
B(R"),

Py(4) = P[(X.Y) € A x B] = /A PR, ) = [A ( /R k p(x,y)dy)dx,

which means Py (dx) = ( Jrk p(x, y)dy)dx. Exactly the same argument also shows
Py (dy) = (fgn p(x. y)dx)dy. O

3.2 Basic Examples of Probability Distributions

In this section, we collect several important examples of Borel probability measures on
R and illustrate usages of the tools presented in the last section by concrete calculations
of means and variances of random variables.

Convention. (1) In accordance with the terminology in Definition 3.8, for d € N and
S c R4, a Borel probability measure on S is often referred to as a law (probability
law) on S or a distribution (probability distribution) on S.

(2) A random variable X with a known probability distribution will be referred to with
the name of that distribution. For example, an exponential random variable is a random
variable whose law is an exponential distribution.

3.2.1 Probability distributions on integers

We start with examples of probability measures on (subsets of) N U {0}. Note that, if
S C R is a countable set then B(S) = 25, since {x} is a closed set in S and hence
belongs to B(S) for each x € S.

Example 3.18 (Binomial distribution). Let n € N and p € [0,1]. The binomial
distribution of size n and probability p is the probability measure B(n, p) on{0,...,n}
given by

n -
B pe) = (§) rFa=pr kel 619
where (ﬁ) = #Lk)' and 0° := 1. ((3.15) is nothing but the probability of having

heads exactly k times from 7 flips of a coin which shows heads with probability p; see
Example 3.33 below.)
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Recall the following equality (the binomial theorem): for any x, y € C,

n

x4y => (Z) xkynk, (3.16)

k=0

(3.16) with x = pand y = 1 — p shows Y ;_, B(n, p)({k}) = 1, which means that
B(n, p) is actually a probability measure on {0, ..., n}.

Example 3.19 (Poisson distribution). Let A € (0, 00). The Poisson distribution of
parameter A is the probability measure Po(1) on N U {0} given by

n

Po(A)({n}) = e—*%, n e NUJ{0}. (3.17)

Example 3.20 (Geometric distribution). Let « € [0, 1). The geometric distribution of
parameter o is the probability measure Geom(cz) on N U {0} given by (with 0° := 1)

Geom(a)({n}) = (1 —a)a”, neNUJ{0}. (3.18)

It is clear that Po(1) and Geom(w) are probability measures on NU{0}. Calculation
of mean and variance for random variables with these distributions is left to the readers
as an exercise (Problem 3.2). Note that an N U {0}-valued random variable X can be
naturally regarded as a real random variable, and then the law £(X) of X is regarded
as a law on R. In particular, B(n, p), Po(1) and Geom(«) are regarded as laws on R.

3.2.2 Probability distributions on R
Next we give examples of probability distributions on R.
Example 3.21 (Uniform distribution). Let a,b € R, a < b. The uniform distribution
on [a, b] is the probability distribution Unif(a, b) on R given by
1
Unif(a, b)(dx) = b_l[a’b] (x)dx. (3.19)
—a

Example 3.22 (Exponential distribution). Let o € (0, 0c0). The exponential distribu-
tion of parameter o is the probability distribution Exp(c) on R given by

Exp(a)(dx) = ae™* 19,00 (x)dx. (3.20)

The exponential distributions are characterized by their “memoryless property”; see
Problem 3.4 and Exercise 3.5.

Example 3.23 (Gamma distribution). Leta, 8 € (0, 00). The gamma distribution with
parameters o,  is the probability distribution Gamma(c, 8) on R given by
_ :30{ a—1,—Bx
Gamma(o, 8)(dx) = m|x| e "*1(0,00)(x)dx, (3.21)
o
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where ' denotes the gamma function' T : (0, 00) — (0, o) defined by
o0
I'(s):= / xS le ™ dx. (3.22)
0

It is again clear that Unif(a, b), Exp(«) and Gamma(w, B) are probability distribu-
tions on R. Calculation of mean and variance for random variables with these distribu-
tions is left to the readers as an exercise (Problem 3.3).

Example 3.24 (Normal distribution). Let m € R and v € [0, 00). The normal (or
Gaussian) distribution with mean m and variance v is the probability distribution
N(m,v) on R given by N(m,0) = 8, (the unit mass at m) if v = 0 and

1 (x — m)z)
exp| — dx (3.23)
V2mv p( 2v
if v > 0. In particular, N (0, 1) is called the standard normal distribution.

The following calculations show that (3.23) actually defines a probability distribu-
tion on R: Corollary 2.40 with y = /vx + m yields

[e9) 1 (y_ )2 _ o] 1 x2
[l o= [ men(-5 )

and by the first half of Fubini’s theorem (Theorem 2.29-(1)) and Theorem 2.42 with the
polar coordinates (0, 00) x (0,27) > (r,0) + (r cos 0, r sin §) € R?\ ([0, 00) x {0}),

0o 2 oo 27
(/ e_xz/zdx) = / e P2g, = f (/ e_rz/zrdG)dr = 2.
—00 R2 0 0

As suggested in the name of N (m, v), a real random variable X with X ~ N(m, v)
has mean m and variance v. Indeed, if v > 0, Theorem 3.14 and Corollary 2.40 yield

[ele) _ _ [ele) —y2/
E[(X —m)?] :/ Mexp(—M)a’x = v/ yze i 2dy

N(m,v)(dx) =

—oo 27V 2v —00 W27
n 2/2
=i [
(3.24)
e V22 n o=v?/2

=v lim | |— + —d )

"_’°°(|: Y 21 i|_n —n 2w y

0 ,—y?/2

= y =V <00,

v

where we used integration by parts in the third line and the monotone convergence
theorem (Theorem 1.24) in the second and fourth lines. In particular, E[X?2] < oo,
hence E[| X |] < oo, and then by Corollary 3.15-(1) and Corollary 2.40 we have

E[X]=/‘:x\/21n_vexp(—(x;vm)2)dx=/ (m-i‘x/_Y) \/y—/z =m,

't easily follows by integration by parts that I'(x + 1) = xI'(x) for any x € (0, 00), which and
T'(1) = 1 imply that I'(n) = (n — 1)! forany n € N.
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which and (3.24) show var(X) = v.

The following example presents a probability distribution on R with which a ran-
dom variable does not admit the mean.

Example 3.25 (Cauchy distribution). Let m € R and @ € (0, 00). The Cauchy distri-
bution with parameters m, o is the probability distribution Cauchy(m, ) on R given
by

1 o
Cauchy(m,o)(dx) = — ———=dx. 3.25
auchy(m, @) (dx) = -~ d (3.25)
This indeed defines a probability distribution on R since
[e%e} a m+n a n
/ ———dx = lim —————dx = lim 2arctan — =&
o0 @2+ (x —m)? n—soo [ a2+ (x —m)? n—00 o

by the monotone convergence theorem (Theorem 1.24) and (arctanx)’ = (1 + x2)7L.

It is easy to see that a Cauchy random variable does not admit the mean (Problem 3.8).

3.3 Independence of Random Variables

Throughout this section, (€2, F, P) denotes a probability space, and random variables
are always assumed to be defined on (€2, &, IP) unless otherwise stated.

Definition 3.26 (Independence). Let n € N, and for each i € {1,...,n} let (S;, B;)
be a measurable space and X; an (S;, B;)-valued random variable. We call {X;}?_,
independent if and only if for any A; € B;,i € {1,...,n},

IP[X] € Al,.... X, € An] = P[Xl € Al]P[Xn € An] (3.26)

According to Problem 2.10, in the situation of Definition 3.26, (X1, ..., X,) is an
(81 x---x8,,B1 ® --- ® By)-valued random variable and hence its law Px, .. x,)
is defined as a probability measure on (S; X -+- X S, B1 ® -+ ® Bp).

Theorem 3.27. Let n € N, and for each i € {1,...,n} let (S;, B;) be a measurable
space and X; an (S, B;)-valued random variable. Then {X;}!_, is independent if and
only if

P(Xl ,,,,, Xn) — ]P)Xl X oo X PX,,- (3.27)
Proof. Note that for A; € B;,i € {1,...,n}, we have

P[Xl € A,.... X, € An] = IED(X1 Xn)(Al X oo X An) (3.28)

and
P[X; € Ay]---P[X, € An] = Px, (A1) ---Px,, (An)

3.29
=Py, x---xPx, (A1 x--- x 4y). ( )

Thus if (3.27) holds then (3.28) and (3.29) are equal and hence {X;}”_, is independent.
Conversely if {X;}”_, is independent, then by (3.28) and (3.29), P(x, ... x,,) coincides

with Py, x---xPx, on By x---xB,,and henceon 6 (B x---xB,) = B ®---®B,
as well by Theorem 2.5. O



78 CHAPTER 3. RANDOM VARIABLES AND INDEPENDENCE

Theorem 3.28. Letn € N, and for each i € {1,...,n} let (S;, B;) be a measurable
space and [u; a probability measure on (S;, Bi). Then there exist a probability space
(Q,F",P) and an (S;, Bi)-valued random variable X; on (2',F ') with X; ~ u;
fori € {l,...,n}, such that { X;}}_, is independent.

Proof. Let Q' := 81 x+++x 8, F =B, ®---® B, and P := puy x -+ X up, and
foreachi € {I,...,n} define X; : Q" — S; by X;(x1,...,xn) := x;. Then for each
i €{l,...,n}, X; is clearly '/ B;-measurable, and for any A4; € B;,

P&i(A,-) =P[X;c Al =1 X+ X p(Sy X+ x A; x -+ x Sp) = pwi(4;),

i.e. X; ~ u;. Moreover, X := (Xy1,..., X,) is the identity mapon Q' = Sy X+ x Sy
(.e. X(x1,...,xn) = (x1,...,x,) for any (x1,...,x,) € Q') and therefore P}, =
PoX 1 =P =px XUy = Py, x---xPy . Thus {X;}/_, is independent. [J

Theorem 3.29. Letn € N. Foreachi € {1,...,n}, letd; € N, let X; be a d;-
dimensional random variable and let p; : R% — [0, 00] be Borel measurable and
satisfy [za; pi(x)dx = 1. Then the following conditions are equivalent to each other:
(1) {X;}}_, is independent and X; has a density p; forany i € {1,...,n}.

(2) (X1,...,Xn) has a density p given by p(x1,...,Xn) = p1(X1) -+ pn(Xn).

Proof. (1) = (2): For any A; € B(R%),i €{1,...,n}, the independence yields
Px,,..xn (A1 x -+ x Ay) =P[X1 € A1,.... X, € Ay]

— P[X, € Ay]---B[X, € 4] =[A pr(x1)dx, / P Cn)d

n

(by Problem 2.11-(2)) = / p1(x1) -+ pn(xn)d(x1, ..., Xp),
ApX-xAp

which and Theorem 2.5 imply P(x, ... x,)(dx) = p1(x1) - pu(Xn)d(x1, ..., Xn).
(2) = (1): For any A; € B(Rd"),i € {1,...,n}, by Problem 2.11-(2) we have

PIX; € Ay..... Xp € Ay] = P(x,... x,) (A1 X -+ X Ay) (3.30)

.....

_ / P1(1) - o () (X1 ) = / p1(x1)dxs - / P (o).
A xxAp A An

Foreachi € {1,...,n}, setting Ay := R% fork € {1,...,n}\ {i} in (3.30) shows
Py, (dx) = p;(x)dx, and then (3.30) implies the independence of {X;}7_,. O

Example 3.30. Let X, Y be independent real random variables with X ~ N(0, 1) and
Y ~ N(0,1). We calculate densities of X + Y and X — Y by using Theorems 3.16
and 3.29. By Theorem 3.29, (X, Y) has a density p given by

p(x y) — Le_(x2+y2)/2.
’ 2

Define ¢ : R — R2 by ¢(x, y) := (x + y,x — y). Then ¢~ (x,y) = (32, 2),

D(p™ Y (x,y) = 3(1 ). |det D(¢~)(x, y)| = 1/2 and therefore by Theorem 3.16,
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(X + 7Y, X —Y) has a density given by

(X+y x—y).lzie_(xuyzm: U e L 52
2 2 )2 4n Jan Jar

Thus by Theorem 3.29, {X +Y, X —Y } is independent, X +Y ~ N(0,2)and X —Y ~
N(0,2).

Proposition 3.31. Letn € N, and foreachi € {1,...,n} let (S;, B;) be a measurable
space and X; an (S;i, B;)-valued random variable. Suppose { X;}!_, is independent.
() Foranyl <iy <---<ix <mn, {Xig}lz=l is independent.

(2) Foreachi € {1,...,n}, let (E;, E;) be a measurable space and let f; : S; — E;
be B;/&;-measurable. Then { f;(X;)}!_, is independent.

(B)Letk e Nk <nandsetY := (X1,....,Xx) and Z := (Xg41,..., Xn). Then
{Y, Z} is independent.

Proof. (1)LetA;, € B;,,£ €{l,... . k}andsetA; :=S;,i e {1,...,n}\{i1,... ik}
Then since P[X; € A;] = 1fori € {1,...,n}\ {i1,.... ik}

P[Xil € Ail»--‘»Xik EAik] =P[X1 € Ay,.... X, € An]
=P[X; € Ay]---P[X, € A,] = P[X;, € A;,]--P[X;, € Aj].

(2)Let A; € &;,i € {1,...,n}. Thensince f;"'(4;) € B;,

P[f1(X1) € A1..... fu(Xn) € Anl = P[X1 € f7 ' (AD)..... Xn € £, (An)]
= IED[Xl € fl_l(Al)]"']P[Xn € fn_](An)] = IED[fl(Xl) € Al]"']P)[fn(Xn) € An]~

(3) By Theorem 3.27, Corollary 2.26 and (1) above,

Py,z)y =Px, x---xPx, = (Px, x---xPx,) x (IPXH] x -+ x Py, ) =Py x Pz,
and hence {Y, Z} is independent by Theorem 3.27. O
Proposition 3.32. Letn € N and let {X;}"_, C L' (P) be independent. Then

Xy Xy € L'P),  E[X;--- X,] = E[Xy]---E[X,], (3.31)
var(z Xi) =) var(X;). (3.32)
i=1 i=1

Proof. By Problem 2.11-(2), R” 5 (x1,...,X,) > X1 --- X, is integrable with respect
tOIPXl X "'X]P)Xn :P(Xl

.....

/ xl---xn]P)(X]’m,Xn)(dxl...dxn):/XIPXl(dxl)-u/anXn(dxn)7
RrR7? R

R

which and Theorem 3.10 yields (3.31).
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For (3.32), let Y; := X;—E[X;] € L!(P), so that {¥;}"_, is independent, E[Y;] = 0
and var(X;) = E[Y?] fori € {1,...,n},and var(}_/_, X;) = E[(D/_, Y,-)z]. Then

n

2 n
(ZY,-) =) Y242 ) vy, (3.33)
i=1

i=1 1<i<j<n

and Y, ;i Yi¥; € L'(P)and E[Y", ;i , YiY;] = 0 by (3.31). It follows from

these facts that var(37_, X;) = E[(X0, ¥i)’] < oo if and only if Y7_, var(X;) =
i E[Yiz] < 00, and in this case taking the mean of (3.33) shows (3.32). O

Example 3.33. Let p € [0,1]. A Bernoulli random variable of probability p is a
{0, 1}-valued random variable X with P[X = 1] = p and P[X = 0] = 1 — p. For
such X we have

EX]=E[X?]=0-(1-p)+1-p=p,
var(X) = E[X?] — (E[X])* = p(1 - p).

Now let n € N and let {X;}?_, be independent Bernoulli random variables of
probability p, which exist by Theorem 3.28. Then S := )_;_; X; is a binomial random
variable of size n and probability p; indeed, for k € {0, 1,...,n},

PIS=k= Y P[(Xl,...,xn)=(a1,...,an>]=(Z)p"(l—p)"‘k-

(e15...,01)€{0,1}"
Z?=1 a;i=k

These facts together with Proposition 3.32 allow us to calculate easily the mean and
the variance of a binomial random variable of size n and probability p, as follows:

E[S] = ZE[X,] =np, var(S) = Zvar(X,-) =np(l — p). (3.34)

i=1 i=1
‘We need a lemma for the next definition.

Lemma 3.34. Letd € N, A € B(R?) and let v be a law on R¢.
(1) Forn € N, R4" 5 (X1,...,xn) > 14(x1 + --- + x3) is Borel measurable.
(2) Let x € R? and set A—x 1= {z—x | z € A}. Then v(A—x) = fRd 14(x+y)v(dy)

and it is a Borel measurable function in x € R4,

Proof. (1) Since R4" 5 (X1,...5x0) > X1+ -+ x, € R4 is continuous, it is
B(R")/B(R?)-measurable and hence R?”" 5 (x1,...,xp) > lg(x1 + -+ + x,) is
B(R")-measurable.

(2) 14(x + y) = 14_x(y) yields [pq 14(x + y)v(dy) = v(A — x), and then its Borel
measurability in x € R? follows by Fubini’s theorem (Theorem 2.29-(1)). O
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Definition 3.35 (Convolution). Let d € N. For probability laws 1, v on R?, their
convolution [ * v is defined as the law on R? given by, for each A € B(R%),

(1 *v)(A4) = /RM La(x + y)(u x v)(dxdy) = /Rd v(A—x)udx).  (3.35)

The second equality in (3.35) follows by Lemma 3.34 and Fubini’s theorem (Theorem
2.29-(1)). Clearly (i * v)(R?) = 1, and Proposition 1.26 easily shows that % v is a
Borel measure on R. Thus x * v is indeed a law on R?.

Proposition 3.36. Let d € N and let X,Y be independent d-dimensional random
variables. Then Px +y = Px * Py.

Proof. For A € B(R?), Theorem 3.10 applied to R2¢ 5 (x, y) = 14(x + y) yields
Paer () = PIX +7 € 4] = EILX + V)] = [ Lax + 9P (dxdy)
= [, 14 + D)@ x Br)(drdy) = B 5 Py)(),
proving Py y = Px x Py. O
Proposition 3.37. Let d € Nand let A, ju, v be laws on R%. Then

wxv=vkpu and (Lxv)*xA=p*(x*xA). (3.36)

Proof. By Fubini’s theorem (Theorem 2.29-(1)), the definition (3.35) of w * v is inde-
pendent of the order of /¢, v and hence % v = v * y. Furthermore for A € B(R?),

(1% (0% )(4) = /R 0 (A =)

:/ (/ MA=2) _y)”(dy))ﬂ(dx)
R4 \JRd
= Ad (/]Rd (/Rd Tgy(x+y+ Z)X(dz))v(dy))u(dxl

which is independent of the order of u, v, A by Fubini’s theorem (Theorem 2.29-(1)).
Therefore (u * v) * A = u * (v % A). O

Proposition 3.38. Ler d € N and let ju,v be laws on R, If v has a density p, then
W * v has a density h given by h(x) = fRd p(x — y)u(dy). If n also has a density g,
then h(x) = [ga p(x — y)g(y)dy.

Proof. For A € B(R?), from Theorem 1.43, Corollary 2.40 and Fubini’s theorem
(Theorem 2.29-(1)) we see that

(1 * v)(4)

-/ (/ 1A(x+y>v<dx))u(dy)= [ (/ 1A(x+y)p(x>dx)u<dy)
R4 \JR4 R4 \JR4
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-/, ( [, 1A(x>p(x—y)dx)u(dy> -/ ( [, p(x—y)u(dy))dx ~ [ hax.

Note here that the Borel measurability of 4 is also a consequence of Fubini’s theorem
(Theorem 2.29-(1)). The latter assertion is immediate by Theorem 1.43. L]

So far we have considered independence for finitely many random variables only.
Next we define the independence of an infinite sequence of random variables.

Definition 3.39. For each n € N, let (S, B,) be a measurable space and let X, be an
(Sn, Bp)-valued random variable. We call { X}, independent if and only if {X; }7_,
is independent for any n € N.

Then in accordance with Theorem 3.28, we have the following existence theorem
for independent sequences of random variables, whose proof will be provided later in
Section 3.6.

Theorem 3.40. For each n € N let (S,, B,) be a measurable space and let p,, be a
probability measure on (Sy,, By,). Then there exist a probability space (', F , ') and
an (S, Bp)-valued random variable X, on (Q',F' , ') with X, ~ p forn € N, such
that {X,}52, is independent.

The following theorem is frequently used in probability theory. Recall that, as in
Problem 1.13, for {4,}32, C 2% we set

o0 o0 o0 oo
timsup A, == () | 4. liminf A, := U ) 4. (1.64)

nee n=1k=n n=lk=n
so that limsup,,_, oo Ay, liminf, o A, € Fif {4,}52, C F.

Theorem 3.41 (Borel-Cantelli lemma). Let {A,};2, C J.
(W IFY 02 | P[An] < oo, then P[liminf,_oo AS] = 1.
(2) If {4, )22, is independent and Y, | P[A,] = oo, then P[limsup,,_, o, An] = 1.

Remark 3.42. Recall that the notion of independence of events has been treated in
Problem 1.3 and the definition before it. In fact, {A4,}52, C J is independent if and

only if {14, }52, is independent. This equivalence easily follows from Problem 1.3-(2)

and the fact that for A € F and B € B(R),

@ if0Z€Band1 ¢ B,
A if0ZBandl1 € B,
A¢ if0e Band1 ¢ B,
Q if0eBandl € B.

{IAEB}Z

We need the following easy lemma.

Lemma 3.43. Let {p,}72, C [0,1). Then lim,_oc(1 — p1)---(1 — py) = 0 if and
only if Y 02| pn = 00.
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Proof. Since 1l —x < e *forx € [0, 1], forn € Nwehave 0 < (1—p1)---(1—py) <
exp(— Y_j—; pi) and hence Y ;2| p, = oo implies limy (1 — p1) -+ (1 — py) = 0.

For the converse, suppose lim, oo (1 — p1)---(1 — p,) = 0. If p, > 1/2 for
infinitely many n € N then clearly Y oo, p, = 0o, and therefore we may assume that
there exists N € N such that p, < 1/2 forany n > N. Note that 1 — x > ¢~2* for
x € [0,1/2]; indeed, g(x) := 1 —x —e~2* increases on [0, (log 2)/2] and decreases on
[(log2)/2,1/2] since g’(x) = 2¢2* — 1, and thus g(x) > min{g(0), g(1/2)} = O for
x €10,1/2]. Now forn e Nyn > N, exp(—ZZZ:N pk) <(1—pn)---(1—py)and
hence2 ) _y Pk > — log((l —pn)---(1 —p,,)), which together with the assumption
limy—oo(1 — p1) -+ (1 — py) = 0 shows Y no | pp = oo. O

Proof of Theorem 3.41. (1) By Problem 1.13, (lim SUP, 00 A,,)C = liminf,_o A§
and P[liminf, o A5] = 1 —Pllimsup,_, Ax] =1-0=1.
(2) For n € N, by the independence of {4,}52 ,, >"7> | P[A,] = oo and Lemma 3.43,

o) c 00 L V4
P A =P AS | = lim P AC | = i 1—1P[A4;]) =
[(U k)] [ﬂ ki| Jim, [ﬂ ki| Jim TT( = Pra)
k=n k=n k=n k=n
and hence P[| g2, Ak ] = 1. Letting n — oo, we obtain P[limsup,,_,, A,] = 1. O

We conclude this subsection with another important consequence of independence.
We need some definitions.

Definition 3.44. Let {X, },ca be a family of random variables with X taking values
in a measurable space (S, B, ) for each A € A. We define

o({Xatren) =0a({{Xr € A3} | A € A, A; € By}) (3.37)
so that 0({X)L},1€A) C F. We call 0({X,1})LeA) the a-algebra generated by { X })ecn-

By definition, 0({X e A) is the smallest o-algebra in 2 with respect to which X,
is measurable for any A € A.

Definition 3.45 (Tail o-algebra). Let {X,}52, be random variables with X, taking
values in a measurable space (S,, B,) for each n € N. We define

o

oo ({Xn}ns) ﬂ o ({Xi)72,) (3.38)

so that ooo({X el ) is a o-algebra in Q and Uoo({Xn}ff’:I) c F. aoo({X,,};’f’:I) is
called the tail 0-algebra of {X,}52,, and each A € 0 ({Xn }ff’:l) is called a tail event
Sfor {X,}52 .

Theorem 3.46 (Kolmogorov’s 0-1 law). Let {X,},>, be random variables with X,
taking values in a measurable space (Sy,, By) for each n € N If{X,}52, is indepen-
dent, then for any A € 04 ({Xn},‘;ozl), P[A] is either 0 or 1.
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Proof. Letn € N and set
An={{X1 €A1,.... Xn € Ap} | Ai € By i €{l,....n}},
Dy = {{Xn+1 € Anst,. .. Xnak € Ansic} |k €N, Apyi € Buyiyi €{1,... .k},

so that Dy, is a 7-system containing 2 and oq(D,) = o ({X;}2,,,,)-
First we prove that for any 4 € A, and B € o ({X;}2,,,,).

P[4 N B] = P[A]P[B]. (3.39)

The independence of {X;}$2, implies that (3.39) holds for A € A, and B € D,,. If we
fix A € Ay, then P[4 N (-)] and P[A]P are both [0, 1]-valued measures on F and they
coincide on D,,, so that they are equal on g (D,) = 0({X il n+1) by Theorem 2.5.
Thus (3.39) holds for any A € A, and B € 0({X, }i=n+l)'

Now let B € 0o ({Xn }2":1). If A € Dy, then (3.39) holds since A € A, for some
n € Nand B € o({X;}?2,, ). This means that the [0, 1]-valued measures P[(-) N B]
and P[B]P coincide on Dy, and hence Theorem 2.5 again implies that they are equal
onoq(Dy) = 0({Xi}?iz)’ i.e. P[A N B] = P[A]P[B] for any A € o({Xi};?iz). Since
B e 0({Xi}?iz)’ we may let A := B here and obtain P[B] = P[B]?. Thus P[B] is
either O or 1. O

Corollary 3.47. Let {X,}72, be random variables with X, taking values in a mea-
surable space (Sn,By) for each n € N. If {X,}52, is independent and Z : Q —
[—00, 00] is 000 ({X,, },ﬁl)—measurable, then Z = c a.s. for some ¢ € [—00, 00].

Proof. Let F(x) :=P[Z < x] for x € R. Since {Z < x} is a tail event for {X,}52,
F(x) is either O or 1 for each x € R by Theorem 3.46. If F(x) = O for any x € R,
then P[Z < oo0] = limyeoP[Z < n] = 0and Z = oo as. If F(x) = 1 for any
x € R, then P[Z = —o0] = limy oo P[Z < —n] = 1and Z = —oco a.s.

Thus we may assume that F(a) = 0 and F(b) = 1 for some a,b € R. Then
since F is non-decreasing, a < b, F(x) = 0 for any x € (—o00,a] and F(x) =
for any x € [b,00). Now let ¢ := sup{x € R | F(x) = 0}, so that ¢ € [a,b].
Then F(x) = 1 for any x € (¢,00), F(x) = 0 for any x € (—o0,c), and hence
P[Z <c] = F(c) =limyo0 F(c+1/n) = 1,P[Z < ¢] =lim,, F(c—1/n) = 0.
ThusP[Z =c¢]=P[Z <c]-P[Z<c]=1. O

Example 3.48. Let {X,}°, be real random variables. Then the following [—c0, oo]-
valued random variables are all 000 ({ X, }32, )-measurable:

lim sup X, 11rn 1nf Xn, limsup — Z Xi, liminf— Z Xi. (3.40)

n—o00 n—oo N n—-oo n
i=1 i=1

Indeed, let N € N. Then for any n € N with n > N, supy., Xi is 0 ({Xx}32 y)-
measurable, and hence so is limsup,_,,, X» = limy— oo SUpys, Xx. Moreover, by

. —1
limy -0 & YN X; = 0, we have

lim sup — ZX—hmsup( ZX—{— ZX)—O—i—hmsup ZX,,

n—oco N n—o00
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which is 0({Xk}§;°= N)—measurable. Since N € N is arbitrary, limsup,,_, ., X, and
limsup, o 2 371 X; are Ny—; 0 ({Xk )22 y) = 0oo({Xn}32,)-measurable. The
same proof applies to liminf,, - X, and liminf, . ,ll Z?:l X; as well.

Therefore by Corollary 3.47, if {X,}72, is independent, then the random variables
in (3.40) are constant a.s.

3.4 Convergence of Random Variables

In the next section, we consider convergence of the form
1 n
lim — X, =m 3.41
i=

for independent real random variables { X, };2; such that E[|X,|] < oo and E[X,] =
m for any n € N. Such a convergence is called a law of large numbers. In probability
theory, however, there are several ways of “convergence” of random variables, depend-
ing on how one measures the size of the difference between each random variable and
the limit. The purpose of this section is to introduce various notions of convergence of
random variables and study relations between them.

Again throughout this section, (2, F, P) denotes a probability space, and random
variables are always assumed to be defined on (€2, F, IP) unless otherwise stated.

Definition 3.49. Letd € N, and let X, {X,}2, be d-dimensional random variables.
(1) We say that {X,,}72 ; converges to X almost surely and write

X, 25 x

if and only if lim, . X, = X a.s., thatis, P[lim, 0 X; = X] = 1.
(2) We say that {X,,}72, converges to X in probability and write

P
X, — X

if and only if
lim P[|X, — X|>¢]=0 forany ¢ € (0, c0) (3.42)
n—>00

(that is, X, converges to X in P-measure; recall the definition before Problem 1.33).
(3) We say that {X,,}°, converges to X in law (or in distribution) and write?

L
X, — X
if and only if, for any bounded continuous function® f : R¢ — R,

lim E[£(X,)] = E[/(X)] (343

L A . D . . . .
2X, — X is also written as X,, —> X, but we do not use this latter notation in this course.
3Recall that a function f : S — C on a set S is called bounded if and only if sup . < 5 | f(x)| < oo.
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or equivalently (by virtue of Theorem 3.10),

lim / f(x)Px, (dx) =/ f(x)Px (dx). (3.44)
n—>o0 Jpd R4
(4) Let p € (0,00). We say that {X,,}52; converges to X in L? and write
x, 25 x
if and only if
lim E[|X, — X|?] = 0. (3.45)
n—oo

(5) (Adopted from Grigor’yan [3, Section 5.6]) We say that {X,}°2, converges to X
in the Borel-Cantelli sense and write

X, 25 x

if and only if
o0
Z]P’HXn —X|>¢]<oo foranye € (0,00). (3.46)

n=1
Remark 3.50. Note that only the laws of X and X, n € N, are involved in the definition

c c
(3.44) of X, — X. In particular, in defining X,, — X, we do not have to assume
that X and {X,}, are defined on the same probability space,

Theorem 3.51. Let d € N, and let X,{X,}72, be d-dimensional random variables.
Let p € (0, 00). Then we have the following four implications:
(X,, Ry X) — (X,, 28 X) — (X,, N X) — (X,, LN X) (3.47)
(X0 =5 %) = (X% 5 x) (3.48)
Proof. The implication (3.48) has been already seen in Problem 1.33-(1).

Assume X, E) X . Then the first Borel-Cantelli lemma (Theorem 3.41-(1)) shows
that P[liminf, 0 {| X, — X| < 1/k}] = 1 for any k € N and hence that

o0
P[Qo] = 1. where Qo := () liminf{|X, — X| < 1/k}.
k=1 n—>o0

Letw € Q¢ and ¢ € (0,00). Choose k € N so that 1/k < e. Since w belongs to
liminf, o {| X, — X| < 1/k}, there exists Ni(w) € N such that

| Xyn(w) — X(w)| < 1/k <& foranyn > Ni(w),

which means lim, o X (@) = X(w). Thus lim,—c0 X5 (0) = X(w) forany o € Qo
and hence X, —> X by P[Q2] = 1.
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Next suppose X, 2% Xandlete € (0, 00). Then since 1y x,—x|>¢} 25 0,0 <
1yx,-x1>ey < land E[1] = 1 < oo, the dominated convergence theorem (Theorem
1.32) yields

n—o0

P[|X, — X| > €] = E[1qx, —x|ze}] — 0.

Thus X, —> X.

Finally, assume X, Iox and let f : RY — R be bounded and continuous.
Suppose E[ f(X,)] does not converge to E[ f(X)]. Then there exist ¢ € (0, 00) and a
strictly increasing sequence {n(k)}>; C N such that

|ELf (Xn@)] —E[f(X)]| =& foranyk € N. (3.49)

On the other hand, X, —> X yields X,¢) —> X, and by Problem 1.33-(2) there
exists a further strictly increasing sequence {k(£)}72, C N such that X, (¢)) 2% X,

Then f(Xnk))) 2% £(X) by the continuity of £, | f(X,)| < SUP,epa | f(X)] < o0,
and therefore an application of the dominated convergence theorem (Theorem 1.32)
yields limy—, o0 E[ f(Xnk0)))] = E[f(X)], which contradicts (3.49). Thus we obtain

limy o0 E[ f(Xn)] = E[£(X)] and hence X, —> X. O

Theorem 3.52. Let d € N, and let X,{X,}32, be d-dimensional random variables.

P
Then X, —> X if and only if for any strictly increasing sequence {n(k)}3>, C N there
exists a further strictly increasing sequence {k(€)}72, C N such that Xp () 2% x.

P P
Proof. 1If X, —> X and {n(k)}?>,; C Nis strictly increasing, then X, ) —> X, and
Problem 1.33-(2) implies that X, ¢)) 2% X for some strictly increasing {k(£)}72, C

N. Conversely if X, ", X does not hold, then for some ¢ € (0, 00), P[| X, — X| > ¢]
does not converge to 0 and hence there exist § € (0,00) and a strictly increasing
sequence {n(k)}?>,; C N such that P[|X,x) — X| > ¢] > § for any k € N. Then
for any strictly increasing {k(£)}72 ;. Xn (o) Iox does not hold and hence neither
does X, k() —> X by (3.47) of Theorem 3.51. O
Corollary 3.53. Let d,k € N, let X,{X,}°L, be d-dimensional random variables
and let f : R4 — R¥ be continuous.
() If Xp =5 X then f(X,) —> f(X).
Q) If Xy —> X then f(Xn) —> f(X).

c
B3) If Xn —> X then f(X,) — f(X).
Proof. (1) is obvious. (2) follows from Theorem 3.52, since the latter condition of
Theorem 3.52 for { X, }°2 , implies that for { f(X,)}52,.

(3) If g : RF — R is bounded and continuous, then g o f : R? — R is also bounded
and continuous, and therefore

Elg(f(X2))] = El(g o £)(Xn)] =5 E[(g o £)(X)] = E[g(f(X))]
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by X, —> X. Thus f(Xn) —> f(X). O

Example 3.54. Let us show that the converses of the implications in Theorem 3.51 are
not true in general: for p € (0, 00),

(Xnix)#(xnix)#(xngx)#(X,,ﬁx)
(X,,—P>X)7$<XnL—p>X>

For this purpose, we consider the probability space ([0, 1], B,m;), B := B([0, 1]).
(1) Define X(w) := w, w € [0, 1], and forn € N,

"k
Xoi= 2N 4]
k=1

Then clearly lim, o0 Xy (w) = X(w) for any w € [0, 1]. In particular, as random

variables on ([0 1], B, ml), Xn 2% X and hence Xn i) X by Theorem 3.51. On the

other hand, for any a € [0, 1], ml(l—X <a)=m(X >1-a) = ml([l—a, 1]) =a,
c

and hence £(1 — X) = £(X). Thus X, — 1 — X, but subsequences of {X, ()},

can converge to 1 — X(w) only if 1 — X(w) = X(w), i.e. w = 1/2, and hence X, LN
1 — X does not hold.
(2) Let {1,};2, be the sequence of intervals given by I, := [

max{{ € NU {0} | 2t < n}, that is,

Lo 0= (0.0 00, 5] [50 1) [0. 3] [ 5] [50 30 (310 [0 5]

and define real random variables {X,}5° ; on ([0, 1], B, ml) by X, := 1j,. Then for

n—2kK n—2k41 o
T2k z—k]’ k=

e € (0,1, my(|X,| = &) = m;({,) - 0asn — oo, and hence X, N 0. On the
other hand, for each w € [0, 1], X, (w) = 1y, (®w) = 1 for infinitely many n € N, and

hence { X, (w)}52, does not converge to 0. Thus X, 2% 0 does not hold.
(3)Forn € Nlet I, := [0, 1/n] and define a real random variable X, on ([0 1], B, ml)

by X, := n'/P1; . Then lim, 0 X,(w) = 0 for w € (0, 1], so that X,, 2% 0, but
for e € (0,1], my(|X,| > &) = mi(I,) = 1/n and hence Y oo ; my(|X,| > &) = oo.

BC
Therefore X;, —> 0 does not hold. Moreover, m; (| X,| > ¢) = 1/n — 0fore € (0, 1]

and hence X, i> 0, but f[o,l] | Xn|Pdmy = nmy(I,) = 1 for any n € N, so that

LP
X, —> 0 does not hold.

3.5 Laws of Large Numbers

Once again throughout this section, (€2, F, P) denotes a probability space, and random
variables are always assumed to be defined on (€2, F, P) unless otherwise stated.
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As described at the beginning of the last section, in this section we prove laws
of large numbers, which assert convergence of the form (3.41) for independent real
random variables {X,}5>, with E[X,] = m, n € N. The most important case is that
of independent and identically distributed random variables, which appear quite often
in probability theory:

Definition 3.55 (Independent and identically distributed, i.i.d.). Let (S, B) be a mea-
surable space and let {X}, };11V=1 be (S, B)-valued random variables, where N € N U
{oo}. {Xn}_, is called independent and identically distributed, or i.i.d. for short, if
and only if it is independent and £(X,) = L£(X;) foranyn e Nyn < N.

Note that by Theorem 3.40, for any measurable space (S, B) and any probability
measure |1 on (S, B), there exist a probability space (Q',F ') and i.i.d. (S,B)-
valued random variables {X,}°2  on (Q', ', ) with X1 ~ p.

Theorem 3.56 (Weak law of large numbers). Let m € R, and let {X,}°°, C L*(P)
be independent and satisfy E[X,] = m for any n € N and sup,,cy var(X,) < co. Then
the weak law of large numbers holds, that is,

1 P
-3 Xi —m. (3.50)
s

In particular, the weak law of large numbers holds for any i.i.d. {X,}3>, C L*(P).

Proof. Lete € (0,00),n € Nand set S, := Y ;_, X;. Then by Chebyshev’s inequal-
ity (Problem 1.18 with ¢(x) = x2) and (3.32) of Proposition 3.32,

P Sn > <1]E S ’ ! (Sp) ! Z (X))
— —m|>¢ —E||——-m| | = == var = —— ) var(X;
n - T e n £2n2 " £2n2 — '
< supkeszar(Xk) nooo (3.51)
e%n
P
Thus S, /n — m. O

The estimate (3.51) can be used to prove the following well-known result from
calculus.

Theorem 3.57 (Weierstrass approximation theorem). Let a,b € R, a < b, and let
f i la,b] = R be continuous. Then for any ¢ € (0,00), there exists a polinomial
P(x) =50 ax®, where n € N U {0} and {ak}i—o C R, such that

sup | f(x)—P(x)| <e. (3.52)

x€la,b]

Proof. 1t suffices to consider the case of [a,b] = [0,1]. As in Example 3.33, let
p € [0,1], n € N, and let {X;}7_, be independent Bernoulli random variables of
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probability p, which exist by Theorem 3.28. Then S, := Y ;_, X; is a binomial
random variable of size n and probability p, and

B (Su/m] = 32 fk/mELS, =k = Y- 50/ () 70 = p ™ = By(p).
k=0 k=0

(3.53)
The polinomial B, (p) is called the Bernstein polynomial for f of degree n. We claim
that

lim sup |f(p)— Ba(p)| =0, (3.54)
=00 ,el0,1]

which immediately implies the assertion. Let ¢ € (0, 00). Recall that f is uniformly
continuous on [0, 1]: there exists § € (0, co) such that for any x, y € [0, 1],

x—yl<éd= /) - fOl<e (3.55)

Note also that M := sup,¢(o,1] | f(x)| < oo. By using (3.53), (3.55) and (3.51), for
n € N we obtain

| f(p) = Bu(p)| = |ELf(p) — f(Su/m]| <E[|f(p) = f(Su/n)|]
=E[|f(p) = f(Sn/m) 15, /n—pi<st] + E[| F(p) = f(Sn/1) |15, /n—pi=5}]
p(l— p)

>8| <e+2M e+ M
e — oo
pr=°1= 5n 5n

S
55+2M19>[—"
n

which implies that sup,c(o 17|/ (p) — Bn(p)| < 2& forany n € N with n > M/(8%¢).
Thus (3.54) is proved. O]

Theorem 3.58 (Strong law of large numbers). If {X,}°>, C L*(P) is i.i.d., then the
strong law of large numbers holds, that is,

I~ as.
" > Xi = E[Xy]. (3.56)

Proof. If we define f,g : R — R by f(x) := max{x,0} and g(x) := —min{x, 0},

then X, = f(Xn) and X,, = g(X,). Therefore by Proposition 3.31-(2), {X,/}5

and {X 152, are both 1ndependent and it is clear that they are identically dlstrlbuted

and belong to £2(P). It is also immediate that (3.56) follows from % Zi=1 X i+ &

E[X;]and 137 X 25 E[X;]. Thus by considering {X,/}5°, and {X, }32,

instead of {X 192 1, we assume without loss of generality that X,, > 0 for any n € N.
Set S, := Y 7_, X, forn € N. Then for any ¢ € (0, 00), (3.51) yields

> >, var(X;)
Z |: >8:|§kz_:l 242 < 00

Skz

— E[X4]

and hence Sy / k> i E[X1]. Then Si2/k? 2% E[X] by Theorem 3.51.
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Letn € Nandsetk(n) := max{k € N | k2 < n},sothatk(n)? <n < (k(n)+1)>2.
Then k(n) > /n — 1, hence lim, .o, k(n) — 00, and

( k() )Zsk(nﬂ_ kw2 _ Sn _ Swm+12
n

k(n)y+1) km)?  (k(n) +1)2 ~ = k(n)? , (3.57)
_ (k(n)+1) Stkm)+1)2
k(n) ) (k) + 1)?

Since lim, 00 k(1) = 00, lim,oo(k(n) + 1)/ k(n) = limn_wo(l + 1/k(n)) =1
and Sy2/k? 25 E[X1], letting n — o0 in (3.57) results in S, /n 25 E[X1]. O

Example 3.59. (1) Let p € [0, 1] and let {X,,}72; bei.i.d. Bernoulli random variables
of probability p. Then since E[X1] = E[X?] = p, Theorem 3.58 yields

1 n
_E Xl—)pv
n

i=1

This result fits our intuition that, if we flip a coin and see the outcome (heads or tails)
very many times, then the number of heads divided by the total number of trials should
give an approximation of the probability for the coin to show heads.

(2) Let {X,}52, beiid. {1,2,3,4,5, 6}-valued random variables with P[X; = k] =
1/6 forany k € {1,...,6}. Then for any k € {1,..., 6}, Theorem 3.58 yields

#ie{l,...n}| Xi=k} 1
n _I’llZ

a.s. 1
1y (X)) — 3
—

since {1y (X,)}52; isi.i.d. Bernoulli random variables of probability 1/6. This result
again fits our intuition that, if we throw very many times a dice whose all sides are
equally likely to appear, then all sides should appear approximately the same number
of times.

Example 3.60. Consider the probability space ([0, 1), B,m;), B := B([0, 1)). For
eachw € [0, 1), let
o =0.wiwws ...

be the usual decimal expansion of w, where we choose the finite decimal expansion if
exists. Then let X, (w) := w, for n € N. Since

107—1—1 . .
k k+1
=kt = U |+ 1 o + o)

= Lo 107" 10n-1 T qon

for each k € {0,...,9}, X, isa {0,..., 9}-valued random variable on ([0 1), B, ml)
and

1
m(X, = k) =10""110" = o for any k € {0,...,9}. (3.58)
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Moreover, for each {k;}7_, C {0,...,9},

1 1
my (X1 =kq,..., n—k)_ml(|:2 o 10‘ 10n>)=ﬁ,
i=1

i=1

from which it immediately follows that { X, }52 ; is independent. Thus {X,}5° ; isi.i.d.
Now for k € {0,...,9}, let

#ie{l,...,n} | w; =k} 1}
lim =\

n—00 n 10

Ag = {a) eo.1) (3.59)

Then since #{i € {1,....n} | w; = k} = >/ Liy(Xi(®)) and {1y (X))}, is
i.i.d. Bernoulli random variables of probability 1/10, Theorem 3.58 implies that

1 1 2
m;(Ag) = my (nlgr;o;ZI{k}(X,-) = E) =1, whence ml(ﬂ Ak) =1

i=1 k=0
(3.60)
The same argument applies to the p-ary expansion w =, 0.wp 1Wp20p3... of @ €
[0,1) forany p € N, p > 2, by replacing 10 by p. Thus if we set

#Hiell,....n}|wp; =k} _l}
P

n

Ap = {a) e[0,1) ' nhrrolo (3.61)

for p >2and k € {0, ..., p — 1}, then similarly to (3.60) we have m; (A4, %) = 1, and

hence we conclude that
oo p—1
ml(ﬂ ﬂ Ap,k) =1. (3.62)

P=2k=0

In fact, we can prove the following stronger version of the strong law of large
numbers with a quite similar idea to, but by more complicated arguments than, the
above proof of Theorem 3.58.

Theorem 3.61 (Strong law of large numbers). Let {X,}°2, be i.i.d. real random vari-

ables. If E[|X1|] < oo, then the strong law of large numbers holds: % S Xi 2%
E[X1]. IfE[|X1|] = oo, then almost surely {% i X,-}Zozl does not converge in R.

We follow [1, Proof of Theorem 8.3.5] for the following proof of Theorem 3.61.
We need the following lemma.

Lemma 3.62. Let X be a non-negative real random variable. Then
o0
E[X] <) P[X >n] <E[X]+ L. (3.63)
n=0

In particular, E[X] < oo if and only if ¥ ;2 o P[X > n] < oo
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Proof. Let Ay :={k < X <k + 1}, k € NU{0}. Then since {X > n} = Ui‘;n Ag,

00 00 0 oo k [es)
SPX >al=) Y Pl =) ) PlA] =) (k+ DP[Ag]. (3.64)
n=0

n=0k=n k=0n=0 k=0

LetY := Z?:o klg,,sothatY < X <Y+1;y.oyand E[X] < E[Y]+P[X > 0] < E[X]+1.
Now since

E[Y] +P[X > 0] = ZkIP’AkH— ZIP’[Ak] ZP[X>n]

by Proposition 1.26 and (3.64), we obtain (3.63). O

Proof of Theorem 3.61. Set Sy := Z;l=1 X; forn € N. Letw € 2 and suppose for some c € R
we have limy,, 00 Sy (w)/n = ¢. Thenasn — oo, Sp—1(w)/n = (1-1/n)Sp—1(@)/(n—1) —
¢ and hence X, (w)/n = (S,, (w) — Sn_l(a)))/n — 0. On the other hand, if E[|X1]|] = oo,
then {{Xn > n}} —, is independent and Yo PlXnl > n] = Y o2 PlIX1| > n] =
by Lemma 3.62. Therefore by the second Borel-Cantelli lemma (Theorem 3.41-(2)), for P-a.e.
0 € Q, Xp(w) > n for infinitely many n € N. For such w € Q, {Xn(w)/n}52, does not
converge to 0 and hence {Sy (w)/n}>2 ; cannot converge in R.

For the converse, suppose E[|X1|] < co. As in the proof of Theorem 3.58, by considering
{X+}°° pand {X,7}°° | instead of {X;}52 ;, we assume without loss of generality that X, > 0
for any n € N. For x € R, we write | x] := max{k e N | k < x},sothat [x] <x < |x] + L.
Note that [ x| > x/2 for x € [1,00),since | < |[x] <x < [x] + 1 <2|x].

Leta € (1,00) and ¢ € (0, 00). Forn € N, we set k(n) := |«" | and define

n
Yn := Xnlix,<ny = Xnlon)(Xn) and Ty := Z Y;,

so that k(n)™2 < 402", and {Yn}52, is independent by Proposition 3.31-(2). We first show
that
Tin) — ElTk ()] B,
k(n)
By Chebyshev’s inequality (Problem 1.18 with ¢(x) = x2) and (3.32) of Proposition 3.32,

- O var(T,
Yae = Z P[|Tk(n) _E[Tk(n)” > ek(n)] < Z M

(3.65)

= Azt (ek(m)?
oo k(n)

e72 Y Y k(m) T var(Y)) = &2 Z var(Y;) Z k(1) 721[ o0) (k(n)).
n=1j=1 j=1 n=1

We would like to show X4 ¢ < 0o. Let u be the law of X1; recall that p is the law of X;, for any
n € N. Since var(Y;) < ]E[sz] = .f(o,j] x2(dx) and

oo 0 4
D KO0y (k(m) =43 a2 00) @) = 757 %

1-—
n=1 n=1

setting cq ¢ := 4672(1 — oz_z), we obtain Xy s < 00, i.e. (3.65), as follows:

00
Ya,e < Cae Z j_z/ X H(dx) = Ca,e Z Z ]_2/ Xzﬂ(dx)
i=1

(0,4] j=lk=1 (k—1,k]
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_6“2/

(k—1,k]

j=k
_ 2 o )
_ca,gz /( e | (s Pax

<Ca€2/k lklxzu(dX)/koo
—CaaZ/ x2u(dx) - 7—46(182/

(k—1,k] klk]k

) Y

p(dx)

<dcqe Z /; xp(dx) = 4ca,e/; )xu(dx) = 4cq,E[X1] < o0.
=1 -

0,00

(3.65) and Theorem 3.51 imply that (Tk(n) — E[Tk(n)])/k(n) 2% 0. Since

E[¥] = [[ o) 1% /[0 () = EL]

by the monotone convergence theorem (Theorem 1.24), we easily see that E[Tg(,)]/k(n) =

SO ELY;)/ k() — ELX1]. and hence Ty () / k(1) ~ E[X1]. On the other hand, by Lemma
3.62,

o0 o
D P, £ Y] = ZPX,>]] ZP[X1>]]<E[X1]+1<OO
Jj=1 Jj= J=1
and therefore the first Borel-Cantelli lemma (Theorem 3.41-(1)) implies that, for P-a.e. w € €,
there exists £(w) € N such that X (w) = Y; (@) for any j > £(w). For such @, we have

l(w) n
Z (X (@) = Yj (@) ==250, where S, := > X

j=1

Sk(n) (@) — Tgmy(@) 1
k(n) " k) (n)

Hence Sk (n)/ k(1) 2% E[X1]. Clearly limp— o0 k(1 + 1)/ k(n) = «, and therefore 1 < k(n +
1)/k(n) < a? forany n > N for some N € N. Now let j € N satisfy j > k(N) and let nj €N
be such that k(nj) < j < k(nj +1). Thennj > N and

25k _ Sk _ S Sk o2 Sk(nj+1)'
knj) ~k(nj+1) = j = k(nj) — k(;+1)

(3.66)

Since Sg()/ k() ~ E[X1], letting j — oo in (3.66) yields

S S
2E[Xx,] < hm 1nf—n <limsup — < o?E[X;] as.
n n—oo N

Finally, since o € (1, 0o) is arbitrary, we obtain

[ l] Sn Sn —2\2 .
m 51'11n%110%f7 < hnn_l)solép— < (14, °)°E[X1] foranyj €N, as.

and letting j — 00 shows Sy /n —> E[X1]. O
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Note that in the situation of Theorem 3.58 or Theorem 3.61, if E[X;] = O then
n~1Y " X; =5 0. In view of this, it is natural to expect 17 Y7 X; —> 0 even
for « < 1. In fact, this is true for « € (1/2, 1) under certain mild assumptions, and
indeed the following much stronger result is valid.

Theorem 3.63 (Law of iterated logarithm). If {X,}°2, C L*(P) is i.i.d., E[X;1] = 0
and E[X?] = 1, then the law of iterated logarithm holds, that is, almost surely,

. Yoo Xi . Yo X
limsup —==1"! _ —1 gnd liminf —=2=L"1 _ —
n—>oop v/2nloglogn n=>00  /2nloglogn

The proof of Theorem 3.63 is lengthy and difficult and is not given in this lecture
note. A proof of Theorem 3.63 is found in Dudley [1, Section 12.5], but the reader will
have to learn quite a lot to follow the proof there.

~1. (3.67)

3.6 Infinite Product of Probability Spaces

The purpose of this section is to give a proof of Theorem 3.40. Similarly to Theorem
3.28, this amounts to construct the product of an infinite sequence of probability spaces.

Definition 3.64 (Infinite product o-algebras). Let (2, J,) be a measurable space for
each n € N and set Q := [[2, Q,. We define [[32, F, C 2% and a o-algebra
®nzy Fn in Q by

o0 o0
H?:z{Alx---xAnx H Q;
n=1

i:n+1 .
Q) Fn =00 (]‘[ 3:,). (3.69)
n=1 n=1

®n2, Fn is called the product o-algebra of {F,}2,

neN, A, € F fori e {1,...,n}}, (3.68)

Theorem 3.65 (Infinite product probability measures). Let (2, F,,P,) be a prob-
ability space for each n € N. Then there exists a unique probability measure P on
(TThz: @n. Qney Fn) such that for any k € N and any A, € Fy, n € {1,... k},

]P’[Al X -0 X Ag X ]_[ Q } = Pi[A1] - Pe[Ak]. (3.70)
n=k+1

The probability measure [P in Theorem 3.65 is denoted by [ ]~ P, and called the
product probability measure of {P,}5>,

Proof of Theorem 3.40. Set Q" := [[72, Su, F := Qe By and P’ := [[02 in-
For each n € N, define X, : Q" — S, by X, ((Xk)k 1) = X, (the projection onto the
n-th component). Then for 4, € By, {X,, € Ap} = Sy x---xSy—1 XAy an=n+1 iy
which belongs to ¥’ and has P’-probability w1[S1]- - n—1[Sn—1]1n[An] = pnlAn]-
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Thus X, is F'/B,-measurable and X,, ~ w,. Moreover, for k € N and 4, € B,
nell,... .k},

o
IP”[XleAl,...,XkeAk]=P’|:A1x---xAkx I1 S,,:|
n=k+1
= wi(A1) - ur(Ax) = P'[X) € A1]---P'[Xg € Ag].

Hence {X,, }ﬁzl is independent, and so is { X, }52; since k € N is arbitrary. O
Example 3.66 (Bernuolli measures). Let Q := {0, 1} = {(a)n)zo=1 | w, € {0, 1}}
In Example 1.12, we have introduced a o-algebra 3 in 2 given by

T = a({An x {0, M1 | e N, 4, C {0, 1}"}). (1.11)

which is nothing but the product o-algebra @52, 2{%1} of countable copies of 21},
Let p € [0,1] and set P, := [[o2, B(1, p), where B(l, p) is as in Example 3.18 (note
that B(1, p) is nothing but the law of a Bernoulli random variable of probability p).
Then

Pp[{(@)i_y} x {0, 1"\ = T p (1 = p)' = (1.12)
i=1

for any n € N and any (w;)?_, € {0,1}", which shows the existence of the Bernoulli

measure on {0, 1}V of probability p stated in Example 1.12. Its uniqueness follows by

The rest of this section is devoted to the proof of Theorem 3.65. We need the
following proposition.

Proposition 3.67. Let (2,,,F,) be a measurable space for each n € N. Then for any
keNandany A e F1 ® --- Q Fy, AXH;o:k+1 Qn € ey T

Proof. Letk € Nanddefine 7y : [[72; Qn — Q1 x-+-xQp by 7 ((@n)52;) = (@1....,wk)

(the projection onto the first kK components). Then for any A, € F,,n € {1,...,k},
o o0 o0
nk_l(Al><-~><Ak)=(A1><~~><Ak)>< 1_[ Qnel_[ffnc®3"n,
n=k+1 n=1 n=1

that is, nk_l(A) € ®52, Fpforany A € Fyx---xFy. Then since oQ x..xy (F1 %+ xFg) =
F1 ® -+ ® T, Problem 1.15-(1) implies that 7y is @uey Fn/F1 ® - -+ ® F-measurable, i.e.
Ax]_[flo:kHQn :rrk_l(A) €@, Fpforanyd e F; ®-- ® Fy. O

Proof of Theorem 3.65. Set Q := [[oeq Q and F := Q52 Fn. Since [[owq Fn is a 7-
system, Q@ € [[n2 Fn and F = 0@ ([T,21 Fx), Theorem 2.5 implies that, if two probability
measures P, P’ on (R, F) coincide on ]—Iflozl JFp then P = P/, which shows the uniqueness of P
asserted in Theorem 3.65.

To apply Theorem 2.7 to prove the existence of a probability measure P on (2, F) with the
desired properties, we define A C 2% andv: A — [0, 1] by

o0
A::{Ax ]_[ Q.

n=k+1

kEN,AEgj]@---@?k}, (3.71)
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00
v(C) =Py x--- x Pr[A] forC = A x l_[ QukeNAecFIQ---®@F. (3.72)
n=k+1

Note that the definition of v(C) in (3.72) is independent of how C is written in the form C =
A x ]_[Z°=k+1 Qp, so that the definition (3.72) of v : A — [0, 1] makes sense; indeed, suppose
C € Aiswrittenas C = Axﬂff’zk+1 Q, = an;.f):l-i-l Qpfork,LeN, AT ® - QF
and B € F1 ® --- @ F;. We must show that Py x --- x P [A] = Py x --- x Pg[B]. Without
loss of generality we may assume k < £. Taking the projection of C onto the first £ components
shows that B = A x [ <,,<¢ ©2n, and then by Proposition 2.26,

L
Py x - x Pg[B] = (P x -+ x Py ) x (P ><---><IF’4)|:A>< I1 Q,,i|
n=k+1

L
=Py x - X Pg[A] - Pryq ><---><IF’(|: I1 sz,,} =Py x - x Pg[A].
n=k+1

By virtue of Proposition 3.67, we have ]_[Zozl Fn € A C JF and hence og(A) = F.
Clearly 8,2 € A, v(@) = P1[d] = 0 and v(R2) = P1[Q21] = 1. Let C,D € A and write
C = AX]_[flo:k_HQn,D = Bxl_[:o=5+19n for some k,{ e N, A € F1 ® --- ® F
and B € F1 ® --- ® F;. Note that here k can be replaced by any j € N with j > k, since
for such j we have C = A x [[72; 4 Qn = (A X Qpyq X - x Q) X [1p% ;41 @n and
AXQpiq x---xQ; € F1 ®---®F; by Proposition 2.22. Therefore by replacing both
k and ¢ by max{k, £}, we may assume without loss of generality that k = {. Then we see
that CUD = (AUB)x[[72; 192 € A, CND = (ANB) x[[72; 1, € A,
C\D = (A\B)x[[;Zt41 2n € Aand

v(CND)+v(C\D) =Py x---xPr[ANB]+Py x- - xPr[A\ B] = Py x---xPr[A] = v(C).
Thus we have verified that forany C, D € A,
cuDb,cCnNnD,C\DeA and v(C)=v(CND)+v(C\D), (3.73)

which implies that A is a -system and that A and v satisty the condition (C3) of Theorem 2.7.
The condition (C1) of Theorem 2.7 has been already verified. Hence if we prove that A and v
satisfy the condition (C2) of Theorem 2.7 as well, then Theorem 2.7 yields a probability measure
Ponog(A) = F such that P| 4 = v, which clearly satisfies (3.70) by the definition (3.72) of v.
Thus it remains to verify the condition (C2) of Theorem 2.7 for A and v. We prove that

o0
if {An}ff:l CA, Ay D Ap4q forany n € N and ﬂ Ap = @, then nll)ngo v(4,) =0, (3.74)
n=1
which easily implies the condition (C2) of Theorem 2.7 as follows: let A € A, {An}5>; C A
and A C |52 An. Set By := A\ Uﬁ:l Ap for k € N, so that {Bg}72 , C A by (3.73),
By D By fork € Nyand (72, By = 0by A C |U;2 An. Letk € N. (3.73) yields

v(kol A,,) = v(Ak+1 n kol A,,) + v((kol An) \Ak+1)

n=1 n=1 n=1

k k
—o(Agsn) + v((U An) \Ak+1) < V() + v(U An)

n=1 n=1
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and hence inductively v(Uﬁ=1 A,,) < Z],i:l V(Ap). Then again by (3.73),

k k k k
v(A) = v(A nUJ A,,) +v<A\ U An) < u(U A,,) +v(Bk) < Y v(An) + v(By).

n=1 n=1 n=1 n=1

and letting k — oo results in v(A) < Z?Lo=1 V(Ap) since limg _, oo v(Bg) = 0 by (3.74).
Thus it suffices to show (3.74). We closely follow [1, Proof of Theorem 8.2.2] for the
argument below. We need some preparation. Let k¥ € N and Q®) .= ]_[ff:k 11 Qn. Define

A 229 gpg @ 40) [0, 1] by the right-hand sides of (3.71) and (3.72), respectively,
with (k47 Fk4n- Pryn) in place of (Qp,F,,Py). Foreach C C Q and wy € 2y, n €
{1,...,k}, we set

c® @y, ... o) = {(w,,);f’:kJrl cq® ‘ (@0n)%2, € C}. (3.75)

We claim that, if C € A, then C®)(w;,... o) € A® forany (w1, ... . wx) € Q1 x---x Q
and

v(C) =/ v®O(C® (@, 0p))P1 X - x Py (dwy ... doy). (3.76)
Ql X-~-XQk

Indeed, we can choose £ € Nwith{ > kand A € F1 ®--- @ Fysothat C = Ax[[;2,, | Q.
Setting A(w1.,....0g) = {(@f41.....0¢) € Qg1 X+ x Qg | (w1....,wp) € A}, we have

o0
C(k)(a)l,...,a)k)zA(a)l,...,wk)x l_[ Qyn (3.77)
n=L+1

and 14w, .. 00) (@k415 - - @g) = 14(w1, ..., wg), whichis a Fg | ® --- ® Fy-measurable
function of (wgy1,...,wy) € Q41 X -+ x Q4 by Propositions 2.22 and 2.28. It follows that
A(@1,...,0) € Fryq ® - ® Fy and hence that C©) (wy, ..., w) € A® in view of (3.77).
Furthermore Fubini’s theorem (Theorem 2.29-(1)) together with Corollary 2.26 yields

V(C) =Py x--- xPyg[A]

= / (/ 1A(a)1,...,wk)d(]pk+1 X---X]P’g))]P’l ><~-><]P’k(da)1...da)k)
QIX-"XQk Qk+1X~-~XQg

= / Pk—i—l Xoees XP([A(wl,...,a)k)]Pl Xoeee XPk(da)l ...da)k)
Q]X~~~><Qk

= / V(k)(c(k)(a)l, . ,wk))IP’l X X ]P’k(da)l . da)k),
QIX-"XQk

proving (3.76).

Now let {An}o2, C A satisfy Ay D Ap41 forany n € N, so that v(4n) > v(An+1)
by (3.73) and hence ¢ := limy—o00 V(Ax) € [0, 1] exists. For the proof of (3.74), we deduce
MNozy An # @ by supposing ¢ > 0. For n,k € Nand (o1,...,@;) € Q1 x -+ x Qp, let
Ag,k)(a)l ,...,op) beasin (3.75) with C := A,. We prove that

there exists w1 € €21 such that U(l)(AS,I) (a)l)) > g forany n € N. (3.78)
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Letn € Nand Fp, = {w; € Q1 | v(l)(Afll)(a)l)) > ¢/2}. Since Ay, D Apy1. we have
As,l)(a)l) D Ale-i)-l (w1) for each w1 € Q1 and hence F,; D Fy41. Moreover, (3.76) yields

e < v(An) = /Q v (AD (1)) P1 (doy)
1

:/ v(1>(A§,1)(w1))Pl(dw1)+/ v (48D (@1))P1 (dwr) 5PI[F,,]+§
Fa

1 n

and hence P1[Fy,] > /2. Letting n — oo, we obtain P1[(\;2; Fn]| > &/2 > 0. In particular,
ﬂzozl Fn # @, and we can choose w; € ﬂ;’,ozl F;,. This w satisfies the condition of (3.78).

Next let k € N and suppose that we already have (w1,...,0r) € Q1 X --- X Qf such
that v(k)(A,gk)(wl,...,wk)) > 8/2k for any n € N. Then {Af,k)(wl,...,wk)}:il c A®
by the claim in the previous paragraph, and Ag,k)(a)l, ce, W) D Ag:)_l(wl, ...,wy) for any

n e Nby Ay D Apt1. If we replace A, with A% (w1,... . wx) and (Q;,F,.P;) with
(2744 Fj 44k, Pj4x) for each j € N, then (3.78) is still applicable, and hence there exists
Ok +1 € Q41 such that forany n € N,

v(k+1)(A£,k+l)(a)1, o a)k_H))

_ k1 _ k+1 . (k) €
= U( )({(wl);ik+2 e Q( ) ‘ (a)]);ik_i_l € Ay, (a)l,...,a)k)}) > W
Thus by induction in k, we conclude that there exists (w; );";1 € Q such that for any n,k € N,

p®) (Ag,k)(a)l, ..., ) = /2K and hence Aﬁ,k)(wl, ...,wx) # 0. Now let n € N and choose
keNand B, € F1 ® --- ® F so that A, = B, X ;ik-i-l Q;. ThenAﬁ,k)(a)l,...,a)k) #0

implies (w1,....wx) € By and hence (0;)?2, € By x ]_[}”;,H_l = Ap. Sincen € Nis
arbitrary, (w; );";1 € ﬂzozl Ay and therefore (;2; An # @, proving (3.74). O
Exercises

In the problems and the exercises below, (2, F, P) denotes a probability space and all
random variables are assumed to be defined on (2, F, P).

Problem 3.1. Let d € N and let x € R?. Prove that the unit mass 8, at x defined by
8x(A) 1= 14(x), A € B(R?) (recall Example 1.5-(2)), does not have a density.

Problem 3.2. Calculate E[X] and var(X) for a real random variable X with
(1) the binomial distribution B(n, p),n € N, p € [0, 1].

(2) the Poisson distribution Po(14), A € (0, 00).

(3) the geometric distribution Geom(«), o € [0, 1).

Problem 3.3. Calculate E[X] and var(X) for a real random variable X with
(1) the uniform distribution Unif(a, b), a,b € R,a < b.

(2) the exponential distribution Exp(x), o € (0, 00).

(3) the gamma distribution Gamma(e, ), «, B € (0, c0).
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Problem 3.4. Let X be an exponential random variable. Prove that
P[X >s+4+1¢t|X >s]=P[X >¢] foranys,t € [0, 00) (3.79)
(recall (1.60) for the definition of conditional probabilities).

(3.79) is known as the “memoryless property” of exponential random variables.
Due to this property, exponential random variables are often used as “random alarm
clocks with no memory”.

Exercise 3.5. Let X be a real random variable such that P[X > 0] > 0, and suppose
PX >s+4+1¢t| X >s] =P[X > t]forany s,t € (0,00) with P[X > 5] > 0. Define
h:R — [0,1] by i(t) := P[X > t]. Prove the following statements:

(1) h is right-continuous and A (s 4 t) = h(s)h(¢) for any s, € [0, 00).

(2) There exists « € (0, 0o) such that 4(z) = e~ for any ¢ € [0, c0).

(3) X is an exponential random variable of parameter «.

Problem 3.6. Let X be a normal random variable with mean m and variance v €
(0, 00). Prove that the real random variable Y := ¥ has a density py given by

1 _ 2
Xp (—%) 1(0.00) (X)- (3.80)

1
py (x) = e
X+/2mv
The law of Y is called the lognormal distribution with parameters m, v.

Problem 3.7. Let X be a normal random variable with mean O and variance 1. Prove
that the real random variable Z := X2 has a density pz given by

pz(x) = me_x/zl(o,w)(x)- (3.81)

The law of Z is called the chi square distribution with one degree of freedom and
denoted as X%- (In fact, (3.81) and (3.21) easily imply that X% = Gamma(1/2,1/2).)

Problem 3.8. Let m € R, ¢ € (0,00) and let X be a Cauchy random variable with
parameters m, o. Prove that X does not admit the mean, i.e. E[X ] = E[X ] = co.

Problem 3.9. Let X, Y be independent geometric random variables of parameter 1/2.
Let k € N U {0}. Calculate the following probabilities:

() Pmin{X,Y}<k] (i) P[X <Y] (i) P[X = Y]

Problem 3.10. Let X be a real random variable with X ~ Unif(0, 7/2) and set Y :=
sin X . Find the following quantities:

(1) adensityof Y (i) E[Y] (ii) var(Y)

Exercise 3.11. Define p : R? — [0, 00) by

! -
plx.y) = S (x + y)e (g 002 (X, 7). (3.82)
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(1) Prove that > p(z)dz = 1, so that j1 := p - my is a probability law on R?.
(2) Let X, Y be real random variables with (X, Y) ~ w. Find the following quantities:

(i) adensity of X (ii) E[X] (iii) var(X)
@iv) cov(X,Y) (v) adensityof X +Y

((v): E[XY] = [g2 xyp(x,y)dmy(x,y) by Theorem 3.14. (v): find a density of
(X +Y,X —Y) in the same way as Example 3.30 and then use Proposition 3.17.)

In Exercise 3.11-(2), you will see that cov(X, Y) # 0, which together with (3.31)
in Proposition 3.32 implies that {X, Y } is not independent.

Problem 3.12. Let X be a real random variable with X ~ N(m, v). Let o € R. Prove
that X ~ N(am,a?v). (Note that a special treatment is required if v = 0 or & = 0.)

Problem 3.13. Let X, Y be independent real random variables with X ~ N(my,vq)
and Y ~ N(mj,v;3). Prove that X + Y ~ N(m; + my,v; + v3). (Use Propositions
3.36 and 3.38. Note again that a special treatment is required if v = 0 or v, = 0.)

Exercise 3.14. Letn € N, and let {X;}?_, be independent real random variables with
X; ~ N(mj,v;) forany i € {1,...,n}. Set X := Y 7"  X;, m :== Y !_ m; and
v:=>!_, v;. Prove that X ~ N(m,v). (Induction in n. Use Proposition 3.31.)

Problem 3.15. Let { X}, be real random variables. Prove the following statements:
(1) {lim,— o X, exists in R} is a tail event for {X,}°2 ;.

() If {a,}°2, C R satisfies limy—00an = O, then limsup,_, oo an ¥ r—, X; and
liminf,— o0 dn Y 1—; Xi are oo ({Xn 32 )-measurable. (Imitate Example 3.48.)

Exercise 3.16. Letd € N, and let {X,,}72 , be d-dimensional random variables. Prove
that {limn_wo X, exists in Rd} is a tail event for {X,}5° .

Problem 3.17. Let X, Y be independent real random variables with X ~ Po(4;) and
Y ~ Po(A;). Prove that X + Y ~ Po(A1 + A5).

Exercise 3.18. Letn € N, and let {X;}?_, be independent real random variables with
X; ~ Po(A;) foranyi € {1,...,n}. Set X := Y 7_, X;and A := > /_, ;. Prove
that X ~ Po(A). (Induction in . Similarly to Exercise 3.14, use Proposition 3.31.)

Problem 3.19. Leta,b € [—00,00], a < b and let i be a law on R. Prove that, if the
distribution function F, of w is C' on (a, b), limysp Fi,(x) = 1 and limy}, Fj,(x) =
0, then u(dx) = F) (x)1(4,p)(x)dx. (Show f_xoo Fj, () @p)(»)dy = Fu(x),x € R)
Problem 3.20. Let X,Y be independent real random variables with X ~ Exp(1)

and Y ~ Exp(l). Find a density of the random variable Z := X/Y. (Calculate
Fz(t) := P[Z < t], differentiate Fz and use Problem 3.19.)

Problem 3.21. Let X, Y be independent real random variables with X ~ Unif(0, 1)
and Y ~ Unif(0, 1). Find the following quantities:

(i) adensityof X +Y (ii) adensityof XY (iii) a density of X 2
(@iv) E[max{X, Y}] (v) E[min{X,Y}] (vi) E[max{X,Y} min{X,Y}]

((1): Use Propositions 3.36 and 3.38. (ii), (iii): Use Problem 3.19. (iv), (v), (vi): Apply
Theorem 3.10 to the random variable (X, Y) and use the independence of X, Y.)
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Problem 3.22. Let X, Y, {X,}2

o 1 1Ya )52 be real random variables such that

X, —>X and Y, —>7. (3.83)

(1) Prove that (X, Y) —> (X, Y).
(2) Prove that X, + Y, —> X +Y and that X, Y, —> XY. By (1), Corollary 3.53-(2)
applies to (X, Y) and {(X,, Yx)}52;.)

Problem 3.23. Let X, Y, {X,}52,,{Y,};=, be real random variables such that

n=1"

1 1 «
Y XX ad -y v v (3.84)
nk=1 n —

Define {Z,}5°, by Z2,—1 := X, and Z,,, := Y. Prove that

X+Y
—sz ’ + (3.85)

(Use Problem 3.22-(2).)

Exercise 3.24. Let d € N, x € R? and let {X, 12, be d-dimensional random vari-

L
ables with X;, — x. Prove that X, N x. (P[| Xy, —x| > ¢] = P[min{2¢, | X, —x|} >
¢] for ¢ € (0,00). Apply Chebyshev’s inequality (Problem 1.18) with ¢(x) = x and

L . . . .
then use X, —> x, noting that R? 5 y > min{2¢, |y — x|} is bounded continuous.)

Exercise 3.25. Let X, {X,}52, be real random variable with X, L, X and suppose
X # 0as. Prove that X, '1;x, 20} Lox (Use Theorem 3.52, similarly to the
proof of Corollary 3.53-(2).)

Problem 3.26. Let (S, B) be a measurable space and let {X,}5°, be i.i.d. (S, B)-
valued random variables. Let (E, ) be a measurable space and let f : S — E be
B/&-measurable. Prove that { f(X,)}5>, isii.d. (E, £)-valued random variables.

Problem 3.27. Let {X,}3°, C L!(P) be i.i.d. and set ¥, := = eXn for each n € N.
Prove that e
(Y1 -+ Y)'" =5 exp(E[X1]). (3.86)

(Y1 Yp)V/n = exp(% Y%, Xk). to which Theorem 3.61 applies.)

Problem 3.28. Let N € Nand let {X,};2, C LY (P) be i.i.d. Prove that
- ZXN 25 EX M. (3.87)

(Apply Theorem 3.61 to {X;¥}>° , which is i.i.d. by Problem 3.26.)

n=1"
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Problem 3.29. Letm € R, v € (0, 00) and let {X,,}52; be i.i.d. with X1 ~ N(m,v).

Prove that
ZZ:I X k as. m
— .
i1 X7 m? + v
(Divide both the numerator and the denominator by » and apply Theorem 3.61.)

(3.88)

Problem 3.30. Let {X,,}32, C £L*(P) be i.i.d. Prove that

1 & as.
- 3 (X —E[X11)* 25 var(X)). (3.89)
k=1
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Chapter 4

Convergence of Laws and
Central Limit Theorem

In Definition 3.49, we have defined the notion of convergence in law (or convergence
in distribution) of random variables, along with various other forms of convergence of
random variables. The aim of this section is to develop further theory of convergence
in law of random variables. Our principal goal is to state and prove the central limit
theorem. Its precise statement is first described in Section 4.1 in the case of i.i.d. real
random variables and then Sections 4.1 and 4.2 are devoted to preparing important
tools for the proof of the central limit theorem. The key notions of this chapter are:

e convergence of laws on R? (Section 4.1)
e characteristic functions of laws on R (Section 4.2)

Using the theories developed in Sections 4.1 and 4.2, in Section 4.3 we state and prove
the central limit theorem for i.i.d. d-dimensional random variables, which involves d -
dimensional normal distributions. Some details on d-dimensional normal distributions
are also presented in Section 4.3.

Throughout this chapter, we fix d € N and a probability space (2, &, P), and ran-
dom variables are always assumed to be defined on (€2, F, IP) unless otherwise stated.

4.1 Convergence of Laws

We start with some notations which will be frequently used in this chapter. Recall that
“law” is a synonym for “Borel probability measure” and that a function f : S — C on
aset S is called bounded if and only if sup, g | f(x)| < oo.

Definition 4.1. For S C RY, we define

P(S) :={u | pnisalawon S}, 4.1)
Cp(S):={f| f:S — R, f is bounded and continuous}. 4.2)

105
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The following definition is at the center of consideration in this chapter.

Definition 4.2 (Convergence of laws). Let S € R?, i € P(S) and {1, 21 CPS).

We say that {{, }oe, converges weakly to i, or simply {{,}52, converges to i, and

c
write ;, —> WU, if and only if

n—00

lim | fdu, = [ fdu  forany f e Cp(S). 4.3)
s s

This convergence is called weak convergence of laws or simply convergence of laws.

0o
n=1"

According to Definition 3.49-(3), for d -dimensional random variables X, { X}, }

X, > X ifandonlyif  L(X,) —> L(X); 4.4)

recall that £(Y) denotes the law of a random variable Y .
In the situation of Definition 4.2, one could consider other ways of convergence of
laws, e.g.
nll)n;o Un(A) = n(A)  forany A € B(S). (4.5)

The convergence in the sense of (4.5), however, is actually a stronger requirement than

c
MUn —> [, which will be verified in Theorem 4.10. The following example illustrates
the situation.

Example 4.3. For each x € R? let §, denote the unit mass at x given by §y(A4) =
14(x), A € B(R?) (recall Example 1.5-(2)). Let x € R? and {x,}3%, C R?. Then

c
lim, 00 X, = x if and only if §,, —> 8y; indeed, if lim, .o X, = x then for any
f € Cp(RY),

[ 10950 = 1) = p = [ rrpetan
L . L . .
and hence §x, —> 6, and conversely if , —> J, then lim,_, x, = x since

min{1, |x, —x|} = / min{1, |y —x|}8x, (dy) ——> / min{1, |y—x|}8x(dy) = 0.
R4 R4
On the other hand, {éy, }5— converges to §x in the sense of (4.5), i.e.
lim 8, (4) = 8,(4) forany 4 € B(R?) (4.6)
n—>oo

if and only if there exists k € N such that x, = x for any n € N withn > k. Indeed,
“if” part is clear, and conversely if (4.6) holds, then lim, . §x, ({x}) = 1, hence there
exists k € N such that 8y, ({x}) > 0 for any n > k, and thus x,, = x forany n > k.

The principal aim of this chapter is to prove the following central limit theorem,
which occupies a central position in modern probability theory as its name suggests.
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Theorem 4.4 (Central limit theorem). Let {X,}52, C L2(P) bei.id. Setm := E[X,],
v:=var(X1) and S, := Y jp_; Xx for eachn € N.
(1) It holds that

Sp—nm\ ¢

) If v > O, then for any x € R,

. Sy —nm L S, —nm B x e—yz/(2v)

Note that in the situation of Theorem 4.4, if v > 0 then by Theorem 3.63 we have
almost surely

Sy — S —
limsup —2 "™ _ _ /v and liminf—" " _ _fo.  (49)

n—oo +/2nloglogn B n—oo /2nloglogn

Thus roughly speaking, almost surely (S, —nm)/+/n oscillates between /2v loglog n
and —,/2vloglogn as n — oo, and the amplitude /2vloglogn of the oscillation
grows only very slowly. Then one might expect (S, — nm)//n to converge in some
sense as n — oo. Theorem 4.4 asserts that (S, — nm)/+/n does converge in law
and that the limit distribution is always the normal distribution N(0, v), as long as the
i.i.d. real random variables {X,}52 ; have finite variance v.! In this sense, the normal
distributions can be considered as the most fundamental probability laws on R.

Now we present basic facts concerning convergence of laws.

Lemma 4.5. Let F be a non-empty closed subset of R%, and for each n € N define
fo i R4 —[0,1] by

Ja(x) ;= min{l, ndist(x, F)}, where dist(x, F):= inIf7 |x — yl. (4.10)
ye

Then { fu}52, C Cp(R?) and limy, o0 fr(x) = 1ga\p (x) for any x € R4,

Proof. dist(x, F) = 0 for x € F, and if x € R? \ F then dist(x, F) > 0 since
R? \ F is open in R? and hence By (x, &) C R? \ F for some ¢ € (0, c0). (Recall that
By(x,e) = {y € R? | |y — x| < &}.) Therefore lim, o0 fy(x) = 1ga\ g (x) for any
x e R4, Moreover, we have

|dist(x, F) —dist(y, F)| < |x —y| forany x,y € R¢ (4.11)

and hence { f,}52, C Cp(R?). Indeed, forx,y e R andz € F, |y —z| > |x —z| —
|x — y| = dist(x, F) — |x — y| and taking the infimum over z € F yields dist(y, F) >
dist(x, F) — |x — y|, i.e. dist(x, F) — dist(y, F) < |x — y|. Interchanging the role of
x and y shows dist(x, F') —dist(y, F) > —|x — y|, and (4.11) follows. O

"Honestly, the explanation of the appearance of /7 here is a little cheating, since Theorem 4.4 can be
proved much more elementarily, and theoretically it should come earlier, than Theorem 3.63.
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Proposition 4.6. Let ju,v € P(RY). Suppose [pa fdp = [ga fdv for any continuous
function f : R? — R satisfying Slra\[—n,nj¢ = 0 for some N € N. Then p = v.

Note that if £ : R — R is as in Proposition 4.6 then f € Cp(R%), since
SUpegrd | f(X)| = supyei—n,nya | f(x)| < oo by the compactness of [N, N]4.

Proof. Let U be an open subset of R?. Let N € N and set F := R? \(Uﬂ(—N, N)d).
Let {fn}5%, C Cp(R?) be as in Lemma 4.5. Since 0 < Jo < fog1 < 1y, Ny On

R? for any n € N, the monotone convergence theorem together with the assumption
on u and v yields

(U N (=N, N)?) = lim/ fodp = lim fudv = v(U N (=N, N)?)
n—>oo Rd n—00 Rd

and letting N — oo results in u(U) = v(U). Thus u(U) = v(U) for any open subset
U of R, and hence ;& = v by Theorem 2.5 since {U C R¢ | U is openin R} is a
m-system and B(R?) = o ({U C R | U is open in R?}). O

Corollary 4.7. Let i, v € P(R?) and {mn}s>, C PRY). If tan N W and (uy, £ v,
then . = v.

c c
Proof. Since jt, —> p and p, —> v, for any f € Cp(R?) we have

[ fdu = lim fduy =[ fdv
R4 n—>o0 Jpd R

and hence p = v by Proposition 4.6. O

Proposition 4.8. Let ju € P(R?) and {11,}°>, C P(RY). Suppose that for any strictly

n=1
increasing sequence {n(k)}?>_; C N there exists a further strictly increasing sequence

c c
k(0)}72, C Nsuch that wy @y —> p- Then pn — .

Proof. Suppose (i, N w does not hold. Then for some f € Cp(R?), fRd fduy
does not converge to [, fdp and hence there exist & € (0, 00) and a strictly increasing
sequence {n(k)}3>, C Nsuch that | [ fdpnie)— [ga fdi| > eforany k € N. Then
for any strictly increasing sequence {k(£)}72, C N, [za fdin(k(e)) cannot converge

c
to fle Jfdu and hence pupx(¢)) —> @ does not hold, contradicting the assumption. [
Proposition 4.9. Let 1 € P(R?) have a density p and let i, € P(R?) have a density
c
on for each n € N. Iflim, o0 pp(x) = p(x) for my-a.e. x € RY, then y, —> .
Proof. Let f : R? — R be bounded Borel measurable and set M := sup,cgpa | f(x)|.
Then since f + M > 0, Fatou’s lemma (Theorem 1.27) yields

liminf/ fdp, + M = liminf/ (f + M)ppdx Z/ liminf((f + M)pa)dx
]Rd n—>o0 ]Rd Rd n—oo

n—>oo



4.1. CONVERGENCE OF LAWS 109

= [+ wpax = [ pan+

Thus [pe fdp < liminf, oo [pa fdn, and by replacing f with — f we also obtain

limsup,_, oo R? fdpin < [ga fdp. Therefore [pu fdpu = limsup, o [oa fdpn =
liminf, o0 [pa fdpn and hence lim, oo fza fdin = [za fdu. Thisis in particular

c
true for any f € Cp(R%), that is, it —> . O

Recall that, for u € P(R?), F, 1, denotes its distribution function given in Definition
2.17 (and in Definition 2.15 for d = 1).

Theorem 4.10. Let i € P(R?) and {jin Joo, C P(R?). Then the following conditions
are equivalent:

(1) tn —> 1.

(2) liminf, 00 pn(U) = n(U) for any open subset U of RY.

(3) limsup,,_, o n(F) < u(F) for any closed subset F of R4,

) limy o0 Fu,, (x) = Fu(x) forany x € R4 at which Fy, is continuous.

(5) limy 00 fga fdpin = [ga fdp for any continuous function f : R? — R such
that f|ga\[—n,n1a = 0 for some N € N.

Proof. (1) = (2): Let U be an open subset of R4 and set F := R4 \ U. The assertion
is clear if U = R?, and hence we may assume U # R%. Let { f,, ey C Cp (R?) be
as in Lemma 4.5. Then fork € N, fi < fi4+1 < 1y on R? and hence

k—
liminfu,,(U)zliminf/ Fedn = 1im/ Fredin :/ fedu == 1(U),
n—o00 n—oo Jpd n—oo Jpa R4

where we used the monotone convergence theorem (Theorem 1.24) at the last part.
(2) = (3): Let F be a closed subset of R?. Then since U := R¢ \ F is open in R,

limsup u, (F) = limsup(l —,un(U)) =1—liminf u,(U) <1—wU) = u(F).
—500 n—00

n—0o0 n

(3) = (2): Let U be an open subset of R?. Then since F := R4 \ U is closed in R4,

liminf u,(U) = liminf(l — /L,,(F)) =1—limsup u,(F)>1—pu(F) = pu(U).
n—00 n—>00 n—060

(2).,3) = @): Letx = (x1,...,xg7) € R? and suppose F), is continuous at x. Set
I := (—00,x1] X -+ X (—00,x4] and J := (—00, x1) X -+ X (—00, Xg). Then

pn(J) = lim p((=oo,x; —1/n] x -+ x (—=00,x4 —1/n))
n—>0o0
= HILHC:O Fu((x1=1/n,...,xq —1/n) = Fu(x) = p().
Since [ is closed in R?, J is open in R and J C I, by virtue of (2) and (3) we obtain

limsup F, (x) = limsup u,(I) < u({) = Fu(x) = p(J) < liminf u,(J)
n—>0o0

n—>00 n—o0
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<liminfu, (/) = liminf F,, (x) < limsup F,, (x).
n—o0 n—o0 n—00
Thus F),(x) = limsup,_, o, Fy, (x) = liminf, o Fy,, (X) = lim,—eo F, (X).
(5) = (1): Let k € N and define a continuous function g : R — [0, 1] by g (x) :=
(min{k — |x|,1})7T, so that gx(x) = 1if |[x| < k — 1 and g (x) = 0if |x| > k.
Let f € Cp(R?) and set M := sup,cpa | f(x)|. Then since f + M > 0 on R¢ and
((f + M)gk)hRd\[_k’k]d = 0, by using (5) we obtain

n—oo

liminf/ fdun + M liminf/ (f + M)du, > liminf[ (f + M)grdun
Rd n—oo Jpa n—o0o Jpa

n—>00

im [ (f + M)gedn = / (f + M)grdp. (4.12)
]Rd Rd

By virtue of the monotone convergence theorem (Theorem 1.24), letting k — oo
in (4.12) yields iminf, o0 [ga fdpn + M > [pa(f + M)dp = [za fdpu + M.
Thus [pq fdp < liminf, oo [ga fdiin, and by replacing f with — f we also obtain
limsup, o fpa fdin < [pa fdu. Hence [pq fdp = limsup, o [pa fdpn =

liminf, o0 [pa fdpn, thatis, lim,—eo [pa fdpin = [ga fdp. Thus i, £, .
(4) = (5): For simplicity we assume d = 1; the proof for general d is provided after
the proof ford = 1. Let C,, := {a € R | u({a}) = 0}. By Problem 2.4-(4) and
Problem 2.5, F,, is continuous at any x € C, and R\ C,, is a countable set, so that C;,
is dense in R, i.e. C,, N U # @ for any non-empty open subset U of R.

Let f : R — R be continuous, let N € N and suppose f |g\[-~+1,nv—1] = 0. Let
g € (0,00). Since [-N, N] is compact, f is uniformly continuous on [—N, N] and
hence there exists § € (0, 1) such that | f(x) — f(y)| < e for any x, y € [-N, N] with
|x — y| < é. In fact, more strongly

| f(x)— f(y)| <& foranyx,y € Rwith |[x — y| <. (4.13)

Indeed, let x, y € R satisfy |[x — y| < 6. If x,y € R\ [-N, N] then | f(x) — f(y)| =
0, and if x € [-N,N]and y € R\ [N, N] then by |[x — y|] < § < 1 we have
x € R\ [-N + 1, N — 1] and hence | f(x) — f(y)| = 0.

Since C,, is dense in R, we can choose x; € Cy, N (k$, (k + 1)3) foreach k € Z,
so that x; < xg41 < Xr + 6. We define g : R — R by

g= > [l (4.14)

k=—o00

which is actually a finite sum since f'|p\[—n,n] = 0. We claim that

|f(x)—g(x)] <e foranyx e R, (4.15)
lim gdu, = [ gdu. (4.16)

Indeed, if x € R then x € (xx_y,xx] for a unique k € Z4, so that |x — x¢| < & and
hence | f(x) — g(x)] = | f(x) — f(xx)| < € by virtue of (4.13), proving (4.15). For
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(4.16), let k € Z. By x¢—1,xx € Cy, Fy, is continuous at xx_; and x; and therefore
the assumption (4) yields

pn (k=1 xk]) = Fpu,, (xk) — Fpu,, (xk—1)
— Fulw) = Fuleor) = (-1, x4),

which immediately implies (4.16) since (4.14) is a finite sum.
Now by (4.16), we can choose £ € N so that | [pq gdin — [pa gdu| < & for any
n € N with n > £. For such n, by (4.15),

[ ram - [ fdu‘

- ' [ = oaun + [ gden— [ gan+ [ (g—f)du‘ (4.17)

5/|f—g|dﬂn+‘/gdun—/gdu’+/|g—f|du<3e,
R R R R

proving lim, e0 [pa fdpin = [ga fdp.
(4) = (5) for general d: Following Problem 2.8, we set

Cu,i ={a eR | pu(Hi(a) =0}, where H;(a) := {(x1..... xg) €R? | x; =a),

foreachi € {1,...,d} and Cy := Cy,1 x--- x Cy; 4. Then since H;(a) N H;(b) = @ for
a.b € R with a # b, it follows from Problem 1.14 that R \ C, ; is a countable set, so that C, ;
is dense in R.

Let f : R? — R be continuous, let N € N and suppose f|Rd\[—N+1,N—1]d = 0. Let
¢ € (0,00). Since [-N, N ]d is compact, f is uniformly continuous on [—N, N ]d, and similarly
to (4.13) we see that there exists § € (0, 1) such that

| f(x)— f(y)|<e  foranyux,y e R? with [x —y| <é. (4.18)

Set 69 := 8/+4d and leti € {1,..., d}. Since Cy, ; is dense in R, we can choose x; €
Cpi N (k8o. (k + 1)8¢) for each k € Z, so that x; ; < Xj 41 < Xk + 280. We define
g:R? > Rby

o0
8= Z f(xl,k(l) """ xdgk(d))l(xl.k(l)—laxl.k(l)]x’"x(xd.k(d)—laxd.k(d)]’
k(1),....,k(d)=—00
(4.19)
which is actually a finite sum since f |]R<d\[— NN = 0. We claim that
|f(x)—g(x)|<e  foranyx € R4, (4.20)
nll)moo o gdun = /]1‘@1 gdu. 4.21)

Indeed, if x € R¥ then x € (X1,k1)=1>X1,k(0)] X *++ X (Xg k(d)—1>Xd k(a)] for a unique

(k(1),....k(d)) € Z4, so that |x — (X1 k(1)s- -+ Xa k(@))| < Vd(280)2 = & and hence
| f(x) —g()| = | F(x) = f(X1,k(1): - - - - Xd k(a))| < & by virtue of (4.18), proving (4.20). For
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@21), let (k(1).....k(d)) € Z% and set h; := x; j) — Xi k(i)—1 fori € {1,....d}. Then for
any (ag,..., ag) €10, l}d, X; k(i) — @ih; is either x; g (;)—1 Or X; (;), Which belongs to Cy, ;,
and hence we have (xl,k(l) —arhy,..., X4 k(d) —adhd) € Cy,. Since Fy, is continuous at any
x € Cy, by Problem 2.8-(2), using Proposition 2.18-(1) and the assumption (4), we obtain
(X1 ke (1)=1 X1,k ()] X X (Xa k(@) 1+ Xd e(d)))
= pn (1) = P1 X1 )] X X (Y@ k(@) — hd - Xd je(@)])

d )
= Z (_1)2,‘:10‘1 Fu, (xl,k(l) —arhy, ..., Xd k(d) —Oldhd)
(a1,....0q)€{0,1}4

(4) Z:_i: @ _ _
— > (—=D&=1% Fy (x1 gy —@thi, ... Xg k(@) = 2aha)
(T ad)e{O,l}d
= (k) = I X k)] X X (Kg k@) = has Xa ka)))
= (1 k()1 ¥1.E)] X X (X k(@) =1 Xd k(@)
which immediately implies (4.21) since (4.19) is a finite sum.
Now by (4.21), we can choose £ € N so that ‘fRd gdpn — [ga gdp.’ < ¢ forany n € N with

n > ¢, and exactly the same calculation as in (4.17) shows that | [pa fdpn — [ga fdp| < 3¢
for any n € N with n > £, proving limy o0 fga fditn = [ga fdp. O

Proposition 4.11. Let X, {X,}5° | be d-dimensional random variables with X, £,
X. Letk € N, y € R¥ and let {Yu}ol, be k-dimensional random variables with
Yo — y. Then (Xy.Yy) —> (X, y).

Proof. Let f : R4*T* — R be continuous and satisfy f |Ra+k\[—n,n]d+& = O for some

N € N. We show limy,—, o E[ f(X,, Ys)] = E[f(X, )], which yields (X, Y3) N
(X, y) by virtue of Theorem 4.10. Let ¢ € (0, o0). Similarly to (4.13), f is uniformly
continuous on R4+ and hence there exists § € (0, o0) such that

| f(x)= f(z)| <& forany x,z € R4 with |x — z| < §. (4.22)

Then by ¥, N y there exists j € N such that

&
Pl|Y, —y| =6
[V =31 28] < 575

forany n € Nwithn > j, 4.23)
where M := sup,.cgpa+k | f(x)|. Moreover, since f(-,y) : R — R, x > f(x,y), is
bounded and continuous, by X, i) X there exists £ € N such that

’E[f(Xn,y)] —E[f(X, y)]’ <e¢ foranyn € Nwithn > £. (4.24)

Now for any n € N with n > max{j, £}, by using (4.24), (4.22) and (4.23) we see that

|ELf (Xn, Yo)] — E[f (X, )]
< |E[f (Xn. Ya) — f(Xp. ]| + [E[f (Xn. Y)] — E[f (X, y)]|
< E[lf(Xn. Yn) = [ (Xn. )Ny, —yiz8y + |/ (Xn. Yn) — f(Xn. ) Mgy, —yi<s}] + &
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<2MP[|Y, — y| = 8] + ¢ + ¢ < 4de,

proving lim, _,» E[ f (X, Y,)] = E[f(X, y)] and hence (X}, Y,) £, (X, y). O

Theorem 4.12. Let KX C P(R?). Then the following conditions are equivalent:
(1) K is tight, that is, imy —co SUp, e #(RY \ [N, N]?) = 0.
(2) For any {pn}52, C X, there exist |1 € P(R?) and a strictly increasing sequence

{n(k)}32, C Nsuch that py k) £, .
Proof. (2) = (1): Suppose & := limy o0 SUP e ,u(Rd \ [-N, N]d) > 0. Then for
any n € N there exists u, € X such that u, (Rd \ [-n, n]d) > ¢/2. By (2), there exist

w € P(RY) and a strictly increasing sequence {n (k)}3>; C N such that ) =N .
Let N € N. Since R? \ (=N, N)? is closed in R?, Theorem 4.10 yields

N ™

< 1i;n sup ey (RY \ [—n (k). n(k)]9)

< limsup ftn oy (R? \ (=N, N)?) < p(R?\ (=N, N)?)
k—

e ]

and letting N — oo results in ¢/2 < 0, a contradiction.

(1) = (2): For simplicity we assume d = 1; the proof for general d is provided after
the proof ford = 1. Set F, := F},, forn € Nand let {g } 3>, be an enumeration of Q.
Since {F,(q1)}32, C [0, 1], by the Bolzano-Weierstrass theorem there exists a strictly
increasing sequence {n (1, £)}32, C Nsuch that the limit limg— o0 Fy(1,0)(q1) =: p(q1)
exists. Inductively for k € N and a strictly increasing sequence {n(k, £)}72, C N, by
using the Bolzano-Weierstrass theorem we choose a subsequence {n(k + 1,€)}72,
of {n(k,£)}32, so that the limit limy oo Frk+1,0(gk+1) =: p(qr+1) exists. Thus
inductively we can choose a strictly increasing sequence {n(k,£)}72, C N for each
k € N, so that for any k € N, the limit limg_, o0 Fn(k,0)(qx) =: p(qx) exists and
{n(k + 1,£)}72, is a subsequence of {n(k,?)}72,. Let n({) := n({, ) for £ € N.
Then {n(£)}72, is strictly increasing, and for any k € N, {n(£)}72, is a subsequence
of {n(k,£)}72,. Thus limy_c Fu)(qx) = p(qx) for any k € N, or in other words,
limg— 00 Fuey(q) = p(gq) forany g € Q.

We define F : R — [0, 1] by

F(x):= inf  p(q), (4.25)
q€(x,00)NQ

so that F is non-decreasing since (y,00) N Q C (x,00) N Q for any x,y € R with
x < y. We claim that F is right-continuous. Indeed, let x € R and ¢ € (0, 0). By the
definition (4.25) of F we can take ¢ € (x, 00) NQ such that F(x) < p(g) < F(x) +e.
If y € (x,g9),theng € (y,00) NQ and hence F(x) < F(y) < p(q) < F(x)+ . Thus
limyx F(y) = F(x).

Next we prove limy_s_oo F(x) = 0 and limy_,oc F(x) = 1. Let ¢ € (0, 00). By
the assumption (1), there exists N € N such that sup,cy i) (R \ [N, N]) < &
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If x € (—oo,—N), then we can choose ¢ € (x,—N) N Q, and we have (—o0, ¢] C
R\ [-N, N] and

0= F(x) < plg) = lim Faey(q) = lim ) ((—00.q]) < e,

proving limy__oc F(x) = 0. On the other hand, if x € [N, 00) then for any ¢ €
(x,00) N Q, we have [-N, N] C (—o0, ¢] and

p(q) = lim Fyp(g) = lim pue)((—o00.q]) = 1 —e.
{—00 {—o00

Taking the infimum over g € (x,00) N Q, we conclude that F(x) > 1 — ¢ for any
X € [N, 00). Thus limy_,c0 F(x) = 1.

Since F is right-continuous, non-decreasing and satisfies limy_,_», F(x) = 0 and
limyoo F(x) = 1, F = F,, for some u € P(R) by Corollary 2.16 (recall that F,
denotes the distribution function of ). Now let x € R and suppose F is continuous
at x. We prove limg_,o, Fy)(x) = F(x), which and Theorem 4.10 together imply

c
Mny —> M. Let p,g,r € Qbesuchthat p < g < x < r. Then
F(p) = p(g) = lim Fy(q) < liminf F, () (x)
{—>00 {—>00

< limsup Fyu(x) < lim Fy)(r) = p(r),
{—00 {00

from which we obtain F'(x) = limsup,_, o, Fy¢)(x) = liminfy_, o, F, () (x) by taking

the infimum over r € (x, c0) N Q and using the continuity of F at x to let p 1 x. Thus

limg—00 Fu(ey(x) = F(x).

(1) = (2) for general d: Set Fy, := Fy,, forn € N. Since Qd is a countable set, in exactly the

same way as the above proof for d = 1, there exists a strictly increasing sequence {n (ﬁ)}?‘;l -

N such that the limit limg_, o, Fj,(g)(q) =: p(g) exists for any g € Q4.

Foreach x = (x1,...,x4) € RY, set J = (x1,00) X -+ x (xg,00) and define
F(x):= inf p(q), (4.26)
quxﬂQd
so that F : R4 — [0, 1] is a function on R . We claim that for any x = (x1,...,xg) € R4,
F(x) = lim plg) = lim  F(y). 4.27)
JxNQ93g—>x Jxdy—x

Indeed, let ¢ € (0, 00). By the definition (4.26) of F we can take ¢ = (¢1,..., qn) € Jx N
Q4 such that F(x) < p(q) < F(x) + e. Note that x; < ¢ forany k € {1,...,d}. If

Yy = 1,...,¥q) € Jx and |y — x| < min{g; — X1,...,94 — X4}, then y; < gj for any
kedl,..., d}, sothat g € J, N Q4 and hence F(x) < F(y) < p(q) < F(x) + &, where

F(x) < F(y) follows by Jy, N Q4 c Jy N Q<. Thus limy.5yx F(y) = F(x). Moreover, if
r=(r1,....,rg) € Jx ﬂ@d and |r — x| < min{g1 — x1,...,94 — x4}, then since ry < gy, for
any k € {1,...,d}, we have Fy(4)(r) < F,(4)(q) for any £ € N and hence

F(x) <p(r) = el_i)n;o Fuy(r) < el_igo Fuy(@) = p(q) < F(x) + &,

proving F(x) = lim JeNQd 5r—x p(r). Therefore (4.27) follows.
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Next we show that F' satisfies the conditions (F1), (F2) and (F3) in Theorem 2.19, so that
F = F, for some 1 € P(RY) by Theorem 2.19. (F2) follows from the latter equality in
(4.27). We set ah := (a1h1,...,aghg) forh = (hy,...,hg) € (0,oo)d,ot = (x1,...,04) €
0,139 Letx e R, g € Jx NQ% h = (hy.....hg) € (0,00)%, and let n = (51,....74) €
(0, 00)4 N Q4 be such that Nk < hy forany k € {1,...,d}. By Proposition 2.18-(1),

4 o
> (—1)Zi=1% p(q —an)
(@1,.-0q)€{0,1}4

d .
= lim Z (—I)Zi=1 i Fuey(g —an) =0,

{—00
(@1,-2q)€{0,1}4

(4.28)

and since ¢ —an € Jy_gp N Q4 for any o € {0, l}d, letting ¢ — x and n — h at the same

time in (4.28) yields Z(al et ) 40,134 (—1)Zl‘d=l % F(x —ah) > 0 by virtue of (4.27). Thus
(F1) follows. Next for (F3), let ¢ € (0,00). By the assumption (1), there exists N € N such
that supgeNan(g)(Rd \ [—N,N]d) <e Letk e{l,....,d}and x = (x1,...,x4) € RY. If
Xj < —N, then we can choose ¢ = (¢1,...,q94) € Jx N Qd so that g < —N, and we have
(—00,¢1] X -+ X (—00,¢4] € RZ \ [-N, N]4 and

0= F(x) < plg) = lim Foe)(q) = lm pn@e)((=00.q1] -+ x (-00.4al) < &.

proving limy, ——co F(x1,...,Xg,...,xg) = 0. On the other hand, if x € [N, oo)d then for
any ¢ = (q1,--..94) € Jx nQ4, [—N,N]d C (—00,g1] X -+ X (—00,¢q4] and

p(g) = lim Fuy(q) = lim ju,(0)((—00.q1] X -+ X (—=00,q4]) = 1 —&.
{—00 {—o00

Taking the infimum over ¢ € J, N Q4 yields F(x) > 1 — e&. In particular, F(x,...,x) >1—¢
for any x € [N, 00), hence limy— o0 F(x,...,x) = 1 and (F3) follows.
Now let x € RY and suppose F is continuous at x. We prove limy_, o, F(¢)(x) = F(x),
L
which and Theorem 4.10 together imply i, () —>  for p € P(RY) satisfying FF = F,. Let
p.q,r € Qd be such that r € Jx, x € J; and ¢ € Jp. Then

r—x
lim sup F, < lim F, = amy T
1( —>olip n@)(x) = Lm n@)(r) = p(r) @27 x)

L. . p—>x
liminf F ¢y (x) = lim Fy(g)(q) = p(q) = F(p) — F(x)
{—o0 {—o0

by the continuity of F at x. Thus F(x) = limsupy_,, Fyg)(x) = liminfy_, o Fy(g)(x) and
hence limy_, o Fpy(g) (X) = F(x). O

4.2 Characteristic Functions

This section is devoted to preparing for the proof of the central limit theorem given in
the next section. The key tool for the proof is characteristic functions of laws on R?,
defined as follows. Recall that (x, y) denotes the usual inner product of x, y € R¥.

Convention. (1) From this section on, the symbol i always denotes the imaginary unit.
(2) For z € C, 7 denotes its complex conjugate, i.e. Z := Re(z) — i Im(z). Note that
|z|? = zZ.

(3) A (C, B(C))-valued random variable is simply called a complex random variable.
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Recall that for any 6 € R, ¢ = cos 6 + i sin 6, hence ei® = ¢, |ei9] = 1and

L oi0 = jelf.
Definition 4.13. (1) For v € P(R%), we define its characteristic function o R —
C by
ou(t) = [ !X (dx)  foreacht € RY, (4.29)
R
where the integral is always defined since x + ¢/{*) is continuous and |e{"-¥)| = 1.

(2) For a d-dimensional random variable X, we define its characteristic function @x :
R? — C by

ox (t) := E[e/ X)) = /Rd e!¥Py(dx)  foreacht € RY, (4.30)

i.e. py is defined as the characteristic function ¢, (x) of the law L(X) = Py of X.

Proposition 4.14. Let u € P(R?). Then its characteristic function @, possesses the
following properties:

(1) ¢.(0) = 1.
(©2) lpu()| < 1 and g (—1) = ¢ () for any 1 € RY.
(¢3) @, is uniformly continuous on R4,

(p4) (Non-negative definiteness) Foranyn € N, {zx}}_, C Cand {ty}}_, C R4,

n
> oulte —t)ziZe = 0. 4.31)
k=1

Proof. (1) ¢, (0) = !l/L(Rd) =1. '
@2) lpu ()] < Ja|e'*!|u(dx) = 1 by Proposition 1.42-(1) and |e'¢*-*)| = 1. The

latter assertion follows by e?(~5X) = ei{t.x),
(¢3) For any {h,}3%, C R? with limy_00 i, = 0, by |ei<h"”‘)| < 1 the dominated
convergence theorem (Theorem 1.32) applies to yield lim, o0 [pa etthnX) | (dx) = 1,
which means limj .o ¢ (h) = limp_¢ [za et hX) (dx) = 1 since {ha}t2, C R is
an arbitrary sequence with lim,_,» h, = 0.

Now let ¢, h € RY. Then since }ei(h”‘) —1 |2 = 2—2Re(e!*)), by using Holder’s
inequality (Theorem 1.48) we obtain

|(pu([ + I’Z) _(p(t)| < / |ei(t+h,X) —ei(”x)‘/x(dx) — / i i(h,x) 1|;L(dx)
R4 R4
i{h,x) 12 dy\1/2
< ([l < 1Puan) pet

1/2
— (/ (2 - 2Re(ei(h’x))>u(dx)) = /2 —2Re(pu(h)),
R4
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which tends to 0 as & — 0, independently of t € R?. Thus ¢, is uniformly continuous.
(¢4) By the definition (4.29) of ¢,

n n
Z Oute —t)ZkZe = /d Z Zkaez(tk—te,x)’u(dx)

k=1 RY ke t=1

n
= / Z Zkei(tk,x)ZZei(tg,x)M(dx)
R4
k=1

n n
— i(tg,x) i{te.x) 1y (d
/Rd sze ZZ(ze /L( x)
k=1 =1
n 2
:/ szei(tk,x)
R4

u(dx) = 0,
k=1
proving (¢4). O

Various properties of laws and random variables are reflected in their characteristic
functions. The integrability of a random variables is closely related with smoothness
of its characteristic function in the following way, which also provides a method of
calculating mean and (co-)variance via characteristic functions.

Theorem 4.15. Let X = (Xy,..., Xg) be a d-dimensional random variable and let
@x be its characteristic function. Let n € N and suppose E[| X |*] < oo. Then for any
k e {l,...,n} and {jg}]lf:l C {1,...,d}, the partial derivative 3k<px/8tjl ... 0t
exists on ]Rd, is continuous and

k

9 .
T (1) = i*E[X), - X;,e 0] foranyt = (t1.....t5) € RY. (432)
al‘jl...al‘jk

In particular, for any k € {1,...,n} and {jz}’e‘=1 c{l,....d},

*ox

E[Xj, - X ] = (—i)km
L0t

(0). (4.33)

Proof. Since |X;, --+ X e!"X)| < |X|F and E[|X|F]'/% < E[X|"]'/" < oo by
Proposition 3.6-(2), the mean E[ X, --- X, e’ “X] in (4.32) is defined for any ¢ € RY.
Moreover, the dominated convergence theorem (Theorem 1.32) implies that for any
t € RY and {t,}2, C R? with limy—oo tn = £, limy—so0 E[ X, -+ X e X)] =
E[le - Xy ei<t’X)], that is, the right-hand side of (4.32) is continuous in ¢ € RY.
The proof of (4.32) is by induction in k. Let k € {0,...,n — 1} and suppose that
the assertion is valid for k (we suppose nothing if k = 0). Let {jg}lgill c{l,...,d}.
Since E[| X [**!] < oo and for any € R? we have |Xj, --- X;, e/ X)| < |x[FH1
and 3

—(X; oH1X),
31]'1( J2

X, N0 =X X
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the induction hypothesis and Theorem 1.47 together imply that for any ¢ € R?,

9 ak</’x d [k
— | —= o) = —(i*E[Xx;, --- X;, .. ' OX) (¢
015, (3lj2...8ljk+l)() ), (l [ J2 Jk+1€ ])()
= l-kHIE[le ...Xjkﬂei(t,X)],
which is (4.32). Finally, setting ¢ := 0 in (4.32) yields (4.33). 0

The following proposition is a partial converse of Theorem 4.15.

Theorem 4.16. Let X be a real random variable and let n € N. If the characteristic

Sfunction ¢x of X has the 2n— 1) th derivative <p§(2"71 on (—a,a) for some a € (0, 00)

and has the 2n-th derivative ¢y ")(O) at 0, then E[X?"] < oc.

We need the following easy fact from calculus for the proof of Theorem 4.16. Re-

call that “ f(x) = g(x) + O(h(x)) as x — a” means limy_s4 f(xh)(xg;(x) —

Lemma 4.17. Let a € (0,00) and let f : (—a,a) — C be differentiable. If " (0)
exists, then

f(h) = £0)+ f'(0)h + % F"(0)h* +o(h®)  ash — 0, (4.34)
" f (h) + f(=h) —2£(0)
FrO) =1l m 2 : (4.35)

Proof. Define g : (—a,a) — R by g(x) := f(x)— f(0) — f'(0)x — f"(0)x2/2, so
that g’(x) = f'(x) — f/(0) — f”(0)x and g”(0) = 0. Let ¢ € (0, 00). Since g’'(0) =
g"(0) = 0, there exists § € (0, a) such that |g’(h)/h| < & for any h € (—6§,6) \ {0}. If
h € (—38,6)\ {0}, then by g(0) = 0 and the mean value theorem there exists 6 € (0, 1)
such that g(h) = g(h) — g(0) = hg’(6,h), and hence

1 h "(Oph Onh
which shows (4.34). Then f(h) + f(—=h) —2f(0) = f"(0)h? + o(h?) as h — 0 by
(4.34) and hence (4.35) follows. O

Proof of Theorem 4.16. Let k € {0,...,n — 1} and suppose E[X?*] < oco. Then
0@ (1) = (~1)FE[X%*¢/"X] for ¢ € R by Theorem 4.15, and hence by (4.35),

oV /) + PP (—1/)) — 208 (0)

Ck+2) | 1
|‘/’X (0)| = j]l>oo

1/j2
= lim E|:X2k (w)z} > E[X2k+2],
j=oo J7/2

where the inequality follows by Fatou’s lemma (Theorem 1.27) and hmh 10 sin X h — x.

Thus E[X?¥] < oo implies E[X2**2] < oo foreach k € {0,...,n — 1}, and hence
E[X2"] < oo by induction in k. O
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Multiplication of characteristic functions corresponds to sum of independent ran-
dom variables in the following sense.

Proposition 4.18. Let n € N and let { Xy }}_, be independent d-dimensional random
variables. Then

OXy ot X, (1) = @x, (1) - @x, (1) foranyt € R?, (4.36)

In particular, if & € P(R?) and { Xk} isiid with X1 ~ p, then

X, +1+%, @) = @O foranyt € RY. (4.37)

Proof. Lett € R4, By Theorem 3.10, the independence of { X }%—, and Problem 2.11
(for C-valued measurable functions, which can be verified in exactly the same way by
using Fubini’s theorem (Theorem 2.29)), we obtain

Ox, 1ot x, (1) = E[ei(t,X1+...+Xn)] — /Rd,, ei(f,xl+-..+x;1>]P)(X1

xy(dx1...dxy)

.....

= /d et tx1) ---e"(t”‘")E"Xl X -+ X Py, (dxq ...dxp)
R n

= [ e [ R ) = 0,00, 0
R4 R4
proving (4.36). (4.37) is immediate from (4.36) and ¢x, = @u,k € {1,...,n}. O

Proposition 4.19. Let X be a d-dimensional random variable. Letk € N, letm € Rk,
let T : R? — R¥ be linear and let T* : RK — R4 be the adjoint (i.e. transpose) of T.
Then

Orx4m (@) = Moy (T*t)  foranyt € R*. (4.38)

Proof. Lett € R¥. Recalling that (t, Tx) = (T*t, x) for x € R¢, we see that
(PTX+m(l) — E[ei(t,TX+m)] — ei(t,m)E[ei(T*t,X)] — €i<t’m)§0X(T*t),
proving (4.38). O

Next we present concrete examples of the characteristic functions Recall Section
3.2 for the definitions of probability distributions on R mentioned below.

Example 4.20. Let X be a real random variable and let ¢ € R.
(1) If X has the binomial distribution B(n, p),n € N, p € [0, 1], then

ex(t) = (1+ p(e" = 1)". (4.39)
(2) If X has the Poisson distribution Po(1), A € (0, 00), then
ox (1) = exp(A(e” — 1)). (4.40)

(3) If X has the geometric distribution Geom(w), « € [0, 1), then

l—«a
ex (1) = — 4.41)
1 —oae
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(4) If X has the uniform distribution Unif(—a, @) on (—a, a), a € (0, 00), then

sinat
at

ex (1) = (4.42)

It is left to the reader as an exercise to verify these equalities (Exercise 4.5).

Example 4.21. Let o € (0, 00) and let X be a real random variable with X ~ Exp(«).
Then for any ¢ € R,

ex (1) = (4.43)

oa—it
Indeed, since ]ae(_“H’)x‘ = ae™™, [[Cae ™ dx =1 < oo, and (e(_"‘“’)x)/ =
(—a + it)e™*HiD* by using the dominated convergence theorem (Theorem 1.32) we
see that

ox(t) = E[¢"X] = /

00
ettxae—axdx — / ae(—(x+tt)xdx
0 0

n

n
= lim aeTeTIDx gy — Jim | —— ety | — ¢ .
n—oo J n—oo| —o¢ + it 0 o —it

Example 4.22. Let m € R, v € [0,00) and let X be a real random variable with
X ~ N(m,v). Then for any ¢ € R,

ox (t) = exp(itm — t?v/2). (4.44)
Indeed, if v = 0 then X ~ §,, and hence @x (1) = [ €'™*8u(dx) = €''™ for any

t € R. Next assume v > 0 and let # € R. Since sin(—x) = —sin x for x € R, by using
Corollary 2.40 we have

© 1 (x —m)2 ” 00 it v e—y2/2
ox(t) = / e't* exp(——)dx = m[ [ A ——
oo _ Y

A 2mv 2v oo 27
. 00 5 e~ V22 o0 N V212
=" / cos(t+/v dy + i/ sin(7 /v d
—00 ( y) v27T Y —00 ( y) \/27'[ Y
it \/— o0 e_x2/2
= 't vt), where t) = / cos(tx) dx. (4.45)
#lv) Y= L
Thus it suffices to calculate ¢(t) defined in (4.45). Since
9 e—x2/2 . e—x2/2 e—x2/2
— tx)—— |(t)| = 1x)——| < |x|——
‘3t (cos( X) T )( ) X sin(£x) | = [x| T

and ff;o |x|e_x2/ 2dx < oo, by using Theorem 1.47 and the dominated convergence
theorem (Theorem 1.32) twice, we obtain

[ele] e—x2/2 n _xe—x2/2
"t = — x sin(zx dx = lim sin(tx) ———dx
o0 == [ xsinen*—dx = fim [ sinen=—
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e_xz/z n n e—x2/2
= lim | | sin(zx —/ tcos(tx dx
i ([smen | = [ reosin

00 e—x2/2d
= —t cos(tx X = —t 7).
/_ eon() = o (1)

Therefore %(e’z/zgo(t)) = etz/z((p’(t)-l-t(p(t)) = 0 and hence ¢'”/2¢(t) = %¢(0) =
1 forany t € R. Thus ¢(¢) = e~"°/2, so that gx (1) = e'mo(Jut) = eitm=12v/2,

Example 4.23. Let o, € (0,00) and let X be a real random variable with X ~
Gamma(c, 8). Then for any ¢ € R,
IBO(
)= —, 4.46
ox (7) B i (4.46)
where z7 1= e?!°¢Z fory € Cand z € C \ (—o0, 0], with (—o00, 0] C R regarded as a
subset of C and log : C \ (—00,0] — {|Im(z)| < 7} denoting the inverse map of the
C!-embedding exp : {|Im(z)| < 7} — C\ (=00, 0].
The proof of (4.46) is similar to the case of normal distributions in Example 4.22. Recalling
Example 3.23, we have

r r

B oo | B 00 .

ox (1) = @ / el Bx gy = @ / @ L= (B=inx gy (4.47)
a) Jo @) Jo

Since |%(x°‘_le_(ﬂ_”)x)| = x%eP¥ and 1o x%e P*dx < 0o, by using Theorem 1.47 and

the dominated convergence theorem (Theorem 1.32) we obtain

/ iﬁa o o —(B—it)x iﬁa " o —(B—it)x
= —_——— - -l = 1. - -
oy () r@ Jo x%e dx r@) im A x%e dx

= ip* lim Ll x¥e—(B—it)x ”_’_705 /n 1= (B—in)x gy
I'(a) n—>oo\ | B —it o B—itJo

B* ia /oo a—1 _,—(B—it)x io
_ dx = .
T B—it)ye = ¢ X= g x®

Therefore %((ﬁ —in)%x (1)) = (B — it)“_l((,B — i)y (1) — iagx (1)) = 0 and hence
B—it)%px () = (B—i0)%px (0) = B for any ¢ € (0, c0), which shows (4.47).

Example 4.24. Let m € R, « € (0,00) and let X be a real random variable with
X ~ Cauchy(m,«). Then for any ¢ € R,

ox (t) = exp(itm — alt]). (4.48)
Recalling Example 3.25 and using Corollary 2.40 with x := m + oy, we have
1 [* o i 1 1
1) = — itx dx = ztm_/ i(at)y d i
ex (1) n/;ooe a? + (x —m)? rEey ,ooe 1+ y2 Y

and hence it suffices to show (4.48) for m = 0 and o = 1, that is, for any ¢ € R,

& 1

1 .
¢Cauchy(0,1)(l) = ;/ el

Tl = el (4.49)
—00
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(4.49) could be proved in a similar way to Examples 4.22 and 4.23 but the calculation
would be rather involved. We give a proof of (4.49) later as an application of the Fourier
inversion formula (Theorem 4.29).

In fact, a law on R? is uniquely determined by its characteristic function, as stated
in the following theorem. In the rest of this section, we closely follow [1, Sections 9.5
and 9.8].

Theorem 4.25 (Uniqueness theorem). If i1, v € P(R?) and Oy = @y, then . = v.
We need to prepare two lemmas. Let /; denote the d x d identity matrix.

Lemma 4.26. Let i € P(R?), let v € (0,00) and set N(0,vly) := N(0,v)¢ :=
N(0,v) x---x N(0,v) (d-fold product). Then u x N(0,vly) has a density p,(f) which
is [0, 27 v)~/?)-valued and given by

pl(f)(x) = /]Rd @u(t)exp(—i(t, x) —|t]*v/2)dt. (4.50)

(2n)4

Proof. If { X} }Zzl are i.i.d. real random variables with X; ~ N(0, v), which exist by
Theorem 3.28, then the law of (X1, ..., Xg) is N(0, vl;) and, by Theorem 3.29, has a
density p, given by

e~ X1/(2v) e—xf,/(zu)( e—|x|2/(2v))

) = e e @ @D

e—tlzv/2 oo it e—t‘%v/z
ettt ——(dt,

1 .
= 7/ e ——dty -+
Qrv)d2 | V21 /v —00 V2 /v

1 )
= —(2 W / el(t,x)—lt\2u/2dt foreach x = (x1,...,xq) € RY.
T R4

Here the second equality is due to e/ = (27 /v)~1/2 1% ei*1=1?v/2qt which

follows by (4.44) with m = 0 and 1/v in place of v, and for the third equality we used

Problem 2.11-(2). Therefore by Proposition 3.38, p % N(0,vl;) has a density p,(f)

given by p,(f)(x) = Jga pv(x — y)u(dy), so that p,(f)(x) e [0, (2mv)~?/2] for any

x € Rby (4.51), and
o0 = [ o= yntay)

- / poly — X)pe(dy)
Rd

1 1 —X)— v

— A;d (—(2n)d /Rd eH(ty—x)-lii? /Zdt)u(dy)
1 i —x)—|t|7v

= o7 A ) ( /R elltri-l? /Zu(dy))dt

1 . 2 .
= o7 /Rd (e o) lPo/2 /Rd e’<t’y>u(dy))dt
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_ 1
- (@n)d

i —_1£12
/Rd iR 2 (1 ay,

where the second equality is due to p,(—x) = py(x) and we used Fubini’s theorem
(Theorem 2.29-(2)) for the fourth equality. Thus the proof is complete. O

Lemma 4.27. For each v € (0, 00) let N(0,vl;) := N(0,v)?, as in Lemma 4.26. If
w € P(RY), then pu+ N(O,n"21y) £ M.

Proof. Let X,Y be independent d-dimensional random variables with X ~ u and
Y ~ N(0,1;), which exist by Theorem 3.28. Then for each n € N, {X,n71Y}

is independent by Proposition 3.31-(2), and Theorem 3.16 and (4.51) easily imply
n~'Y ~ N(0,n21;). Therefore X + n~'Y ~ u % N(0,n"21;) by Proposition

a.s. L
3.36, and since X +n~'Y 2% X we have X +n71'Y = X by (3.47) of Theorem
c
3.51, thatis, u * N(0,n721;) = L(X +n~ 1Y) —= L(X) = u. L]

Proof of Theorem 4.25. If u,v € P(R?) and ®u = ¢y, then p *x N(0,n21;) =
v * N(,n"21;) (=: A,) for any n € N since they have the same density by Lemma

c c
4.26,and A, — pand A, —> v by Lemma 4.27. Hence 4 = v by Corollary 4.7. [

Corollary 4.28. Letn € N, and let di, € N and let Xy be a dy-dimensional random
variable for each k € {1,...,n}. Then {Xy}}_, is independent if and only if for any
t € R¥% ke{l,....n)

Py X)) T1s - ) = @x, (1) -~ @, (1) (4.52)

Proof. Set u := Px, x---xPyx,. By Problem 2.11 (for C-valued measurable functions),
for any 3, € R k € {1,...,n}, we have

‘/’u(tl’ coty) = /Z” u et (s ln):x)]P)Xl x - x Py, (dx)
k=1

— / ei(t"xl)PXI (dxl).../ ei(tn,Xn)[p:Xn(dxn)
R41 Rdn
= ox, (11) -+ ox, (1n)-
Thus (4.52) holds for any #; € R% .,k €{1,...,n},ifand onlyif ocx,,... x,) = ¢u- On
the other hand, Theorem 4.25 implies that ¢(x, ... x,,) = ¢ ifandonly if Py, . x,) =
u = Px, x---xPyx,, thatis, { Xz }} _, is independent. Hence the assertion follows. [J

By using Lemmas 4.26 and 4.27, we can also prove the following theorem.

Theorem 4.29 (Fourier inversion formula). If u € P(R?) and Jra lop@)]dt < oo,
then | has a density p which is [0, 00)-valued, continuous and given by

1 .
p(x) == o fRd ou(t)e X dr, (4.53)
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Proof. Since |¢M(t)e_i("x)| = | ()| and [pa |9 (t)|dt < oo, the continuity of p
given by (4.53) easily follows by the dominated convergence theorem (Theorem 1.32)
in exactly the same way as the proof of (¢3) in Proposition 4.14. Set p, := pl(Ln R for
n € N, where ,o,(f) is as in (4.50) of Lemma 4.26. Then for n € N and for any x € R4,

1 ) -
lp(x) — pu(x)| = ‘(Zn—)d fRd (/)M(t)e_’(z’x)(l _eltPn /z)dt
[ 10— ey =
R

Since limy o0 @y = 0 by [pa | (t)|dt < 0o and the dominated convergence theorem
(Theorem 1.32), (4.54) yields p(x) = lim, o0 pn(x) > 0 for any x € R¢. Moreover,
if f : RY — R is continuous and satisfies f |ra\[—n,Nj¢ = O for some N € N,
then noting that fp is mg-integrable by sup,.cga |p(x)| < (27)~¢ Jra l@u(t)ldt, from
Lemmas 4.27, 4.26 and (4.54) we see that

(4.54)

<
T (@n)?

‘ / FC)p@)dx — / FE)u(dx)

= hm ‘/ f(x)p(x)dx —/ f(x) ,u * N (0, n_zld))(dx)

= hm ‘/ f(x)p(x)dx —/ f(x)pn(x)dx| < hmsupan/ | f(x)|dx =0,

so that [pq f(x)p(x)dx = [pa f(X)p(dx). In particular, for any k € N we have
Jpa (min{k — |x[, 1)) p(x)dx = [pq (min{k — x|, 1})T u(dx), and letting k — oo
yields fRd p(x)dx = uw(R%) = 1 by the monotone convergence theorem (Theorem
1.24). It follows that ;1 and v(dx) := p(x)dx are laws on R¥ satisfying the assumption
of Proposition 4.6, and hence u = v, i.e. u(dx) = p(x)dx. O

Example 4.30. As an application of the Fourier inversion formula (Theorem 4.29), we
show that the characteristic function of Cauchy(0, 1) is given by

*° 1

1 itx
‘pCauchy(O,l)(t) = ; /;ooe 1+ 2

dx = el (4.49)

for any t+ € R, which completes the proof of (4.48) in Example 4.24. Indeed, Let
€ P(R) be the Laplace distribution (or double exponential distribution), defined by

1
w(dx) = ze_lxldx. (4.55)
The reader will see in Problem 4.6 that for any ¢ € R,
(1) = : (4.56)
=T '

Then f_ozo l¢,(t)|dt = m < oo and hence Theorem 4.29 applies to u to imply that

1 has a [0, c0)-valued density given by ﬁ ff(‘;o 1-:1‘2 e™i1%d¢, which is nothing but
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@Cauchy(0,1)(—X)/2. Since 1 has another density e~ *1/2, Proposition 3.13 shows that
eIl = @Cauchy(0,1)(—x) for my-a.e. x € R, but if |e_|x| — ¢Cauchy(0,1)(—x)\ were
not 0 at some point xo € R then by its continuity it would be strictly positive on
(xo — 8,x0 + &) for some § € (0, 00), contradicting the fact that it is 0 my-a.e. Thus
e 17X = o7l = @Cauchy(0,1) (—x) for any x € R, proving (4.49).

At the last of this section, we study the relation between convergence of laws and
pointwise convergence of characteristic functions. First, the definition of convergence
of laws easily implies the following lemma.

c
Lemma 4.31. Let i € P(R?), let {1,}°, C P(R?) and suppose pn —> . Then

n=1

limy, 00 @u, (1) = @u(2) forany t € R4,

Proof. Foreacht € R4, R? 5 x > cos(t,x) and R? 5 x ~ sin(z, x) are bounded

. . L .
continuous functions on R? and hence p, —> p yields

0 ) = [ costexhuatan) i [ sine.x)atan

n—o0

—_— cos{t, x)u(dx) + i/ sin(t, x) u(dx) = @, (1),
R4 R4

completing the proof. O

An important feature of characteristic functions is that the converse implication of
Lemma 4.31 is also true. In fact, we can prove an even stronger assertion, as follows.

Theorem 4.32 (Lévy’s continuity theorem). Let {j1,}5>, C P(R?) and suppose that
the limit lim, o0 @u, (t) =: @(t) exists for any t € R?. If ¢ is continuous at 0 along
each coordinate axis, i.e. lim;—g ¢(tex) = @(0) forany k € {1,...,d}, where e} :=

(l{k}(ﬁ))jzl € RY, then there exists . € P(R?) such that ¢ = @, and [y, N .

In Theorem 4.32, the assumption of the continuity of ¢ at 0 can NOT be dropped,
as shown in the following example.

Example 4.33. For each n € N, let u, be the uniform distribution Unif(—n,n) on
[—n, n]. Then by (4.42) of Example 4.20, we see that for any ¢ € R,

sinnt n—oo
—_— 1{0}(1).

u, (1) =

Thus the limit lim, o0 ¢y, (¢) exists for any ¢ € R but the limit function 1oy is not
continuous at 0 and hence cannot be the characteristic function of a law on R.

The proof of Theorem 4.32 requires the following lemma.
Lemma 4.34 (Truncation inequality). Let i € P(R). Then for any € € (0, 00),

&

p({x eR||x| > 1/g}) < 2/0 (1 - Re(%(z)))dt. (4.57)



126 CHAPTER 4. CONVERGENCE OF LAWS AND CENTRAL LIMIT THEOREM

Proof. Recall that |(sint)/t| < 1 for any ¢ € R, where (sin0)/0 := 1. Note that
(sint)/t < 7/8 if |t| > 1; indeed, it suffices to verify this for ¢t € [l,00) since
(sin(—t))/(—t) = (sint)/t, and (sin?)/t < 1/t < 2/m < 7/8 fort € [7/2,00).
For [1,7/2) we have %((sinl)/t) = cost(t —tant)/t? < 0 and hence (sin?)/t <
sinl < sin(7/3) = v/3/2 < 7/8.

Now for any ¢ € (0, 00), by using Fubini’s theorem (Theorem 2.29-(1)) we see that

1 [¢ 1 [¢
E/(; (1 —Re((pu(t)))dt = ;/0 (A(l —cos(tx)),u(dx))dt
_ éA(A (l—cos(tx))dt)u(dx) - /R(1 . sm;jx))u(dx)

= [ (1= uan = gultr < R |13l = 1/2)),
{Ix|=1/e} 8

EX

proving (4.57). O
Proof of Theorem 4.32. We first prove that {j, }52; is tight (recall Theorem 4.12), i.e.

im sup i, (R? \ [N, N]?) = 0. (4.58)

1
N —o0 neN

Letk € {l,...,d} and define X; : R? — R by Xx(x1,...,Xxq) := xg. Then for any
v € P(R?), Xi can be considered as a real random variable on (Rd, B(RY), v), and

then ¢, (tey) = fRd e'"Xk (¥ (dx) is its characteristic function and hence Lemma 4.34
implies that for any ¢ € (0, o),

V(| X | > 1/e) < %fo (1 —Re(wv(tek)))dt. (4.59)

Let ¢ € (0,00). By lim;—¢ ¢(tex) = ¢(0) and ¢(0) = lim, o0 ¢y, (0) = 1, we can
choose § € (0, 00) so that |1 — @(teg)| < ¢/(9d) for any t € [—6, §]. Then by (4.59),
0<1-—Re (go,m (t ek)) < 2 and the dominated convergence theorem (Theorem 1.32),

8

8
Xl = 1/0) = 5 [ (1= Re(p, Ge) ) as

n—oo 8

8 §
8 8¢ e
—_ g A (1 —Re((p(tek)))dt < E/O |1 —<p(tek)|dt < @ < E,

and therefore we can choose £ € N so that for any n € N withn > £,
8 9 g
un(1Xel 2 1/8) < < | (1= Re(pp, (ter)) )dt < = (4.60)
0

Foreachn € {1,...,£ — 1}, limj_ oo un(|Xk| = j) = 0 and hence w, (| Xg| > jn) <
e/d for some j, € N, which and (4.60) imply that u, (| Xx| > My) < &/d for any
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n € N, where My := max{1/§, ji1,..., je—1}. Now choosing such M} € (0, co) for
eachk € {1,...,d},for N € Nwith N > max{M;, ..., M} we see that

d d
n(RY\ [N, N}) = un(U{|Xk| > N}) <3 a1 Xel = My) <6
k=1

k=1
for any n € N, so that sup, ey in (R? \ [-N, N]¢) < e, proving (4.58).
Now since {un 52 is tight, by Theorem 4.12 there exist ;t € P(R?) and a strictly

c
increasing sequence {m(j)}j?";1 C N such that pup,y — W, and then @, () =

limj 00 P, (1) = @(2) for any 1 € R? by Lemma 4.31. Moreover, for any
strictly increasing sequence {n(k)}72.,; C N, Theorem 4.12 also implies that there exist

c
v € P(R?) and a strictly increasing sequence tk(D)}72, C Nsuch that py k@) — v,
but then ¢, (1) = limy—00 Ppu,y iy (1) = () = @u() for any ¢ € R? by Lemma
c
4.31 and hence v = p by Theorem 4.25, so that (i, g)) —> . Thus @ and {u, 15,

L
satisfy the condition of Proposition 4.8 and hence u, — u. O

c
Corollary 4.35. Let n € P(R?) and {1, 2. C P(R?). Then i, —>  if and only
iflimy o0 @p, (1) = @uu(2) forany t € R4,
Proof. “only if” part has been already verified in Lemma 4.31. Conversely suppose
limy, 00 @u, (1) = @y (2) forany t € R4 Since @, is continuous, by Lévy’s continuity
L
theorem (Theorem 4.32) there exists v € P(R?) such that ¢ = @y and @, — V.
L

Then w = v by Theorem 4.25 and hence u, — . O

As an application of Lévy’s continuity theorem (Theorem 4.32), at the last of this

section we prove the following theorem, which asserts that the properties (¢1), (¢3)
and (@4) in Proposition 4.14 characterize characteristic functions of laws on R?.

Theorem 4.36 (Bochner’s theorem). Let ¢ : R — C be continuous and satisfy
®(0) = 1. Suppose that ¢ is non-negative definite, that is, foranyn € N, {zx}; _, C C
and {te}!_, C R,

n

Z @t —t)zxZ¢ = 0. (4.61)
Ki=1

Then there exists i € P(R?) such that ¢ = Ou-
We need the following lemma for the proof of Theorem 4.36.

Lemma 4.37. Let ¢ : RY — C be non-negative definite. Then ¢(0) € [0, 00), and
lo()| < ¢(0) and g(—t) = (1) for any t € RY.

Proof. (4.61)withn = 1,z1 = 1 and ;7 = 0 shows ¢(0) > 0. Let¢ € R? and z € C. Then
settingn = 2,z1 = —z,22 = 1,11 =t and r = 0 in (4.61), we obtain

(1+ 12*)p(0) — p(t)z — p(—1)Z > 0. (4.62)
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Setu := ¢(t) + ¢(—t) and v := —ip(t) + i@p(—t), so that u,v € R by (4.62) with z = 1,i.
Solving these equalities in ¢(t), ¢(—t) yields ¢(t) = (u + iv)/2 and ¢(—t) = (u —iv)/2 and
therefore ¢(—1) = ¢(z). Finally, if ¢(t) = 0 then |¢(¢)| < ©(0), and otherwise (4.62) with
72 :=¢(t)/]|¢(t)| and p(—t) = ¢(t) together show that

pt)  — o)
FORRSRIT0]

proving |p(¢)| < ¢(0). O

29(0) = ¢(1) =2[p@)],

Proof of Theorem 4.36. Let g : R4 — C be continuous and satisfy [pa |g(x)|dx < co. Then
R24 > (t,5) = @ — s)g(t)g(s) is continuous and therefore for each N € N, Theorem 2.35
and (4.61) imply that

/[‘7N NJ2d o(t —s)g(t)g(s)dtds

S IR o OO e

a,BeNdN(—nN,n N4

Lemma 4.37 and ¢(0) = 1 imply |g0(t - s)g(t)g(s)| < |g(®)||g(s)|, and by Problem 2.11-(2)

we have [pog [g(1)||g(s)|dtds = (.[Rd |g(t)|dt)2 < 0o. Therefore the dominated convergence
theorem (Theorem 1.32) applies to the left-hand side of (4.63) and yields

/ ot —5)g(t)g(s)dtds = lim / ot —5)g(t)g(s)dtds = 0. (4.64)
R2d N—oo J[-N,N12d

In particular, for n € N and x € R9, by setting g () := (713n)_d/4 exp(—i(t, x) — 2|t|2/n) in
(4.64) and using Corollary 2.40 and Fubini’s theorem (Theorem 2.29-(2)), we obtain

0< /de ot —5)g()g(s)dtds = /de o()g(t + $)g(s)dtds

/]Rd (w(t)/Rd gt + s)ﬁds)dr
_ /Rd (w(t)(n3n)—d/ze—i<t,x> /Rd exp(_%(“ LR |S|2))ds)dt

2
= / (w([)(n3n)—d/ze—i(t,x)—t|2/n/ exp(—i )ds)dt
R4 R4 n

B /d (p(t)(”3”)_d/29_i(t’x)_ltlz/n(nn/4)d/2dl
R
- ﬁ /d p)e AT gy = p, (x), (4.65)
)4 Jr

!
s+ =
2

Note that, similarly to (¢3) in Proposition 4.14, the function py, : RY — [0, 00) defined by (4.65)
is continuous by virtue of the dominated convergence theorem (Theorem 1.32).
Next we prove that fRd pn(x)dx = 1. Using Fubini’s theorem (Theorem 2.29-(2)), we see

that for any (s1,...,54) € (0, oo)d,

hn(S1,...,8g) == / on(x)dx (4.66)

[=s1,51]%x[=54,54]
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1 2 j
= (t)e ! /"/ e_’(”x>dx)dt
@2n)d /l;d (("J [=s1.81]1%x[=54,54]

1 _ 2,,8in(s1#1)  sin(sgtg)
= 7/ o(t1, ... 1g)e” |t E/n (i1, ... .1q).
s R4 11 tq

Note that &, : (0, oo)d — [0, 00) defined by (4.66) is again continuous by the dominated conver-
gence theorem (Theorem 1.32). For any s € (0, 00), {hyn(Ns)}57_; is clearly non-decreasing,
and fRd pn(x)dx = limy _ oo hy (N s) by the monotone convergence theorem (Theorem 1.24).
Hence by using the monotone convergence theorem, Fubini’s theorem (Theorem 2.29), Corollary
2.40 and the dominated convergence theorem (Theorem 1.32), we obtain

/]Rd pn(x)dx = Nlinoo 0.1y hy(Ns)ds

_ N@wnid/w o1, 1g)e "t P/n L _C]zjsz“) . _C;S%Ntd)d(zl,. t7)
- Nli_r)noonid/w w(%,...,%)f"fh-wfd)‘z/("fvz) ! _lclz"s’l L] —tc;Sfd d(tr, ... 1q)
- H%Ad w(O)] _:1205’1 L] _lcg”dd(tl,,..,zd) = nid(/_z l_tz(mdt)d =1,

where the last equality is due to Problem 2.14-(2).
Let n(dx) := pp(x)dx, so that u, € fP(]Rd) by the previous paragraph. We claim that for
d
any t € R4,

O (1) = /Rd pn()e M dx = p(r)e /M, (4.67)

Indeed, let u = (uy1,...,ug) € R4, Similarly to (4.66), using Fubini’s theorem (Theorem
2.29-(2)), for (s1,...,54) € (0, oo)d we have

Ta(s1, ..., 84) = /[. on (x)et %) g x (4.68)

51,51 ]Xx[=54,54]

! / ( —|z|2/nf i (u—t,) )
=— (t)e e Xdx |dt
@m)d Jga v [=s1.51]1%X[=54,54]

1 / t tg)e=E1 et/ li[ sin(sg (ug _lk))d(t )
= — 1.....tg)e ——=d(11, ..., Ig).
74 Jga ¢ d faliet U — I a

By virtue of the dominated convergence theorem (Theorem 1.32), f5 : (0, 00)4 — C defined
by (4.68) is continuous, and for any s € (0, 00)%, | fu(s)| < Jra pn(x)dx = 1and @, (u) =
Jra Pn (x)ei("’x)dx = limy o0 fn(Ns). Then again by the dominated convergence theorem
and by using Fubini’s theorem (Theorem 2.29) and Corollary 2.40, we obtain

a0 = Jim [ paNads

d
1 _ 2 1 — cos(N(ug — 1))
= lim — f.ootg)e Ot/ T d(ty,. ...t

NI—IELO nd Ad vl a)e Pallet N(ug —t3)? 1 a)

d
) 1 n tg —( N)2/n 1 —cosityg
= lim — —, . = uktte/NYn 2k gyt
i [ e ) 1 P10
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d
= idw(u)e*\ulz/n (/oo ! _lzowdz) = p(uye P/,
/4 —0o0

proving (4.67), where the last equality is due to Problem 2.14-(2).
Now by (4.67), we have limy, 0o ¢, (1) = ¢(t) for any ¢t € R?, and @ is continuous by
the assumption. Hence it follows by Lévy’s continuity theorem (Theorem 4.32) that ¢ = ¢, for

some [ € ?(Rd)‘ O

4.3 Central Limit Theorem

Based on the properties of characteristic functions established in the previous section,
now we prove the central limit theorem (Theorem 4.4).

Lemma 4.38. Let z € Cand {z,};>, C C. Iflim,o0 2 = 2, then
lim (1 + z,/n)" = €. (4.69)
n—00

Proof. Since lim,_,» 2, = z, we can choose N € N so that |z — z,| < 1 for any
n € Nwithn > N. Letn € Nsatisfyn > N. Then

k
n

. " (n) 2k “ n! z

k=0 k=0

| /2 ()| < |zal¥/ k! < (2] + 1)F/k!, and (4.70) means (1 + z2/n)" = [yy0y Snd#,
where # denotes the counting measure on N U {0}. Since fNu{o}(|Z| + Dk /kld#(k) =
elZ*1 < oo, the dominated convergence theorem (Theorem 1.32) applied to { f;, Fol N
yields
(1+2a/n)" = / fod# 5 id#(k) = %,
NU{0} NUfo} k!
proving (4.69). O

Lemma 4.39. Let {X,}5°, C L2(P) be i.i.d. Set m := E[X;], v := var(X,) and
Sy = ZZ:I X for each n € N. Then for any t € R,

. S, —nm . 2
nll)n;oE[exp(ltT)} = exp( t v/2). 4.71)

Proof. Set f := @x,—m. By Theorem 4.15, f’ and f” are continuous on R, f(0) = 1,
f'(0) =iE[X; —m] = 0and f"(0) = —E[(X; —m)?] = —v. (4.71)is clearif t = 0.
Lett € R\ {0}. Since {X, —m};2, is ii.d., by using Proposition 4.18 and (4.34) of
Lemma 4.17 we see that

Bl exp(it ™72 )| = 05,0 (0 V) = 0312 0/ V) - 1,0/
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_ n_ vi? 2\\" _ 1( t?v o2/m\\
= f(t//n) —(I—E;—FO(;)) —<1+;(—7+t2 Z/n ))

—t2v/2

as n — oo, and therefore it converges to e as n — oo by Lemma 4.38. [

Proof of Theorem 4.4. (1) By Lemma 4.39, for any ¢ € R, the characteristic function
E[e!!Sn=nm/Vn] of E(M#) converges to e ~~%/2, which is the characteristic func-

tion of N (0, v) by Example 4.22. Thus £(S”_#) £ N(0, v) by Corollary 4.35.
(2) Set py = E(S"_#) for each n € N and let x € R. Since (—o0, x) is open in

R, (=00, x] is closed in R and v > 0, from E(S”_#) i> N(0,v) and Theorem
4.10-(2),(3) we see that

)

oo V2TV

_ limsup, o pn((—00,x)) or
= liminf,—c0 ftn ((—00, x])
x —yz/(2v)

< limsup j, ((—00, x]) < «/_

n—oo —00

dy < hmlnfu,, (( 00, x))

which is valid for either choice of the third term. Thus we get lim;, oo itn (( 00, x]) =
limy 00 fn ((—00, X)) = 2mv) V2 [* e ?/2vdy. which was to be proved. O

In fact, Theorem 4.4-(1) is generalized to i.i.d. d-dimensional random variables.
We need some preparations to state and prove that generalization.

Definition 4.40 (Covariance matrix). Let X = (X1,..., X4) be a d-dimensional ran-
dom variable with E[| X |?] < oco. Then the real d x d matrix V = (vjk);?k:l given by
vjk 1= cov(X;, Xy) is called the covariance matrix of X .

The covariance matrix V = (vjk);.i x—; Of such a d-dimensional random variable
= (X1,...,Xy) is clearly symmetric, i.e. vjy = vg; forany j k € {1,...,d}.
Moreover, it is non-negative definite, i.e.

d
(a,Va) = Z vjkajar >0 foranya = (ai,...,aq) € Rd, 4.72)
jk=1

where Va € R? is the matrix product of V and a with a regarded as a column vector.
Indeed,

d d
(a.Vay =" cov(X;. Xp)ajar = [ (X; —E[X;]) (Xx — E[Xk])ajak:|
J.k=1 J.k=1
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Theorem 4.41 (Normal distribution on R9). Let m € R? and let V be a non-negative
definite real symmetric d x d matrix. Then there exists a unique j1 € P(R?) such that

ou(t) = exp(i{t,m) — (t,Vt)/2)  foranyt e RY. (4.73)

Moreover, if X is a d-dimensional random variable with X ~ 1, then E[| X |?] < oo,
E[X] = m, and the covariance matrix of X is V.

The law p in Theorem 4.41 is denoted by N(m, V') and called the d-dimensional
normal (or Gaussian) distribution with mean m and covariance matrix V. Note that the
notation N(m, V) is consistent with N(0,vI;) = N(0,v)? introduced for v € [0, c0)
in Lemma 4.26 since, by Corollary 4.28, for any t = (¢1,...,14) € RY we have

2 2 _
PN (1) = @x, (11) -+ gx, (1g) = eTTV2 . eTla?/2 = emllat/2 474y
where { X }gzl are i.i.d. d-dimensional random variables with X; ~ N(0, v).

Proof of Theorem 4.41. Recall the following basic fact from linear algebra: since V' is
areal symmetric d x d matrix, there exist a real orthogonal d x d matrix U (i.e. a real
d x d matrix satisfying U*U = UU* = I;) and (A1, ..., Aq) € R? such that

A1 0 - 0
0 XAy «- 0

U*VU = o =:D(A1,...,\a). (4.75)
0 0 - Mg

Then for each k € {1,...,d}, Ay = (ex,U*VUe) = (Uer,VUe;) > 0, where
ey 1= (l{k}(ﬂ))zzl € R?, and hence we can define W := UD(v/41,...,v/A2)U*,
sothat W* = W and W2 = UD(Ay, ..., Aq)U* = UU*VUU* = V.

Now let Y be a d-dimensional random variable with Y ~ N(0, ;). Then by using
Proposition 4.19 and (4.74) we see that for any t € R?,

We,Wt)/2 _ ilt,m)—(1,V1)/2

owy m(1) = Mgy (W*r) = M
and therefore y := L(WY + m) satisfies (4.73). Moreover, if v € P(R?) also satisfies
(4.73), then ¢, = ¢, and hence u = v by Theorem 4.25, proving the uniqueness of 4.

Finally, for the latter assertion let X = (X1,..., Xg) be a d-dimensional random
variable with X ~ . Fork € {1,...,d}, since R 5 ¢t — @, (ter) is the characteristic
function of Xj and has continuous second derivative, E[X ,f] < oo by Theorem 4.16, so

that E[| X |?] = Z?:l E[XZZ] < 0o. Writing m = (my,...,mg) and V = (vjk);"kzl,
forany j,k € {1,...,d}andt = (t1,...,13) € Rd,by (4.33) of Theorem 4.15 we get

e

d

dou . om

—() = - t 1), E[Xi]=—-i—2(0) =
5, (zmk ;vku)m), [Xe] = —i 5, =(0) = my.
32(/’u
8Zj3tk

cov(Xj, Xg) = E[X; Xi] — E[X;]E[Xy] = — (0) —mjmy = vj,

completing the proof. O
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Proposition 4.42. Let m € R? and let V be a non-negative definite real symmetric
d x d matrix. Then N(m,V) has a density if and only if V is invertible, and in this
case

N(m,V)(dx) =

from V- m)>)dx. (4.76)

1
0 expl=
2m)4/2/detV p( 2

Proof. Let W be as in the above proof of Theorem 4.41, so that W* = W and W? =
V. Let Y be a d-dimensional random variable with Y ~ N(0, 1), so that N(m, V) =
L(WY + m) by above proof of Theorem 4.41. Recall that Y has a density p; given by
p1(x) = 27)~9/2¢=1x7/2 ((4.51) with v = 1).

Define f : R? — R? by f(y) := Wy + m. Note that (det W)? = det(W?) =
det V. If V is invertible, then det W # 0, so that W is invertible and f is a C 1
embedding with f~!(x) = W~!(x — m). Therefore by Theorem 3.16, N(m,V) =
L(f(Y)) has a density p given by

1 wl(x —m)|?
p(x) = p1 (f7H(x))|det £ (x)| = We}(p(—%) |det(W )|
I B (_(W*(x—mx W =)
= @2 [dew| P 2
S S (_(x—m,v—l(x—m»)
T Qn)d/2/detV P 2 ’

proving (4.76), where we used det(W ') = (det W)~! for the equality in the second
line and (W~1)* = W~! for the equality in the third line. (W~')* = W~! holds
since W*(W~hH)* = (W IW)* = 1; = I, and hence WhH*=w*l=w"1)

Finally, suppose V is not invertible, so that W is not invertible by W2 = V.
Then we have my(W(R9)) = 0 by Remark 2.39-(2) and therefore my ( f(R%)) =
mg (WR?Y) + m) = my(W(R?)) = 0 by Theorem 2.38-(1).2 Hence if N(m,V) =
L(f(Y)) has a density p, then L(f(Y))(f(R?)) = ff(Rd) p(x)dx = 0, which con-
tradicts L(f(Y)(f(R?)) = P[f(Y) € f(R?)] = 1. Thus N(m, V) does not have a
density, and the proof is complete. O

Now we establish the central limit theorem for i.i.d. d-dimensional random vari-
ables.

Theorem 4.43 (Central limit theorem). Let {X,}52, be i.i.d. d-dimensional random
variables with E[| X1)?] < co. Set m := E[X ](€ R?), let V be the covariance matrix
of X1 and set Sy := Y j_; Xk for eachn € N. Then

S, —nm\ ¢

2Note that W(R9) and f(RY) = W(R?) + m are closed (and hence Borel) subsets of R¥, since
W(R?) is a linear subspace of R .
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Proof. Lett € RY. Then |(r, X1)|? < |¢]?|X1|?, so that {{t, X,)}°%, C L2(P), and
they are clearly i.i.d., where the independence follows by Proposition 3.31-(2). Some
easy calculations show E[(¢, X1)] = (¢,m) and Var((t, Xl)) = (t, V't), and therefore

by Lemma 4.39,

R IR R e ]

nmee exp(—(t, V1)/2) = oneo,v)(1).

Thus the characteristic function E[e!(:(Se=nm/~/n)] of E(S"_%) converges to the

characteristic function ¢y,1)(t) of N(0, V) for any ¢ € R?, and it follows from
Sn— £

Corollary 4.35 that E(%) — N(0, V). O

Exercises
In the problems and the exercises below, (€2, F, P) denotes a probability space and all
random variables are assumed to be defined on (2, &, P).

Problem 4.1. Let {X,}5°; be i.i.d. real random variables with X; ~ Po(1), and set
Sn := Y r_; Xk for each n € N. Prove the following statements:

Sp—n c .
(1) E( ) — N(0,1). (Simply apply Theorem 4.4-(1).)

Jn
n nk
2) P[S,<n]=¢e™" a forany n € N. (Use Exercise 3.18.)
k=0
= nk 1
3) lim e Z — = —. (Theorem 4.4-(2) applies by (2) above.)
n—>00 = k! 2

Problem 4.2. Let y € Rand let X, {X,,}72,{Y,}5>, be real random variables such
that

X, > X and Y, —> y. (4.78)

(1) Prove that X, + Y, —> X +y and that X,,Y, —> yX. (Since (X», ¥,) —> (X, y)
by Proposition 4.11, Corollary 3.53-(3) applies to (X, y) and {(X,, Y,)}72;.)
(2) Suppose y # 0. Prove that

X

1 i>
Y, {¥, #0}

X
— (4.79)

(Use Exercise 3.25 to apply the latter assertion of (1).)

Remark. Note that in the statements of Problem 4.2, the random variable X is involved
only in terms of its law L(X) since the laws of X + y, yX, X/y are determined solely
by £(X) and y. In particular, the statements of Problem 4.2 are valid even if X is
replaced by another real random variable Xy with £(Xo) = £(X) which is defined on
a different probability space.
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Exercise 4.3 ([2, Exercise 3.4.4]). Let {X,}52, be i.i.d. [0, 00)-valued random vari-
ables with E[X;] = 1 and v := var(X;) < oo. Set S, := > j_; Xk foreachn € N.
(1) Prove that for any n € N,

Sp—n 1
VS, —/n = . 4.80
Vi Vo1 4+ /S, /n (450

(2) Prove that
L
L(v/Sn — /) = N(0,v/4). (4.81)
((4.81) can be rephrased as “/S, — \/n i) Z /2” for a real random variable Z with
Z ~ N(0,v), and Theorem 4.4-(1) can be also rephrased in the same way. Apply this

version of Theorem 4.4-(1) to (S, — n)/+/n and then use (4.80) and the latter part of
Problem 4.2-(1), noting that it is irrelevant on which probability space Z is defined.)

Problem 4.4 ([2, Exercise 3.4.5]). Let {X,}32, C £*(P) be i.i.d. with E[X;] = 0 and
v := var(X;) > 0. Prove that

ZZ:l Xk
£<—T” o Lisn_, xz0)
k=1 k

(S X it X = (2 0, Xe)/ 2 S XF on (S5, X2 # 0}
Similarly to Exercise 4.3-(2), use Theorem 4.4-(1) and Problem 4.2-(2).)

Exercise 4.5. Verify the assertions (1), (2), (3) and (4) of Example 4.20.

) £, N, 1), (4.82)

Problem 4.6. Let u € P(R) be the Laplace distribution, that is, the law on R given by
1
u(dx) := Ee_lxldx. (4.55)
(u is also called the double exponential distribution.) Prove that for any ¢ € R,

() = (4.56)

1412
(The result for Exp(«) in Example 4.21 can be used with o = 1.)

For Problem 4.7 and Exercises 4.8, 4.9 and 4.10 below, recall Proposition 4.18 and
Examples 4.20, 4.22, 4.23 and 4.24. Note also the following immediate corollary of
Theorem 4.25:

Corollary. Letd € N, 1 € P(R?) and let X be a d-dimensional random variable. If
Yx = @y then X ~ L.

Problem 4.7. (1) (Problem 3.13) Let X, Y be independent real random variables with
X ~N(mq,vi)and Y ~ N(my,v;). Provethat X +Y ~ N(my+m3, vy +v3). (Use
Proposition 4.18 and (4.44) of Example 4.22 to show that x +y = ONGn|+mz,0;+v2)-)
(2) (Exercise 3.14) Let n € N, and let { Xy }} _, be independent real random variables
with Xy ~ N(mg,vg) forany k € {1,....,n}. Set X := >y _; Xe,m := Y p_ mk
andv := ) ;_, vg. Prove that X ~ N(m,v). (Similarly to (1), verify ¢x = @n(m.v)-)
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Recall that Problem 4.7 already appeared as Problem 3.13 and Exercise 3.14, where
some tedious calculations on density functions were necessary. Here the same asser-
tions can be verified rather easily by virtue of Proposition 4.18 and Theorem 4.25. The
same argument applies to Poisson, gamma and Cauchy random variables, as follows.

Exercise 4.8 (Exercise 3.18). Letn € N, and let { X }7_, be independent real random
variables with X ~ Po(Ax) forany k € {1,...,n}. Set X := Y ;_, Xx and A :=
> %1 Ak- Prove that X ~ Po(1).

Exercise 4.9. Letn € N, B € (0,00) and let {X};_, be independent real random
variables with X ~ Gamma(ag, 8) forany k € {1,...,n}. Set X := Y ;_; Xy and
o =Y p_; a. Prove that X ~ Gamma(c, f8).

Exercise 4.10. Letn € N, and let { Xy }} _, be independent real random variables with
Xy ~ Cauchy(mg,ox) forany k € {1,...,n}. Set X := >y Xe,m 1=y p_q Mmi
and o := Y} _; a. Prove that X ~ Cauchy(m,a).

Problem 4.11. Let X be a real random variable with X ~ N(0, 1). Calculate E[X"]
for any n € N. (Use the Taylor series expansion of gy (f) = e’ 22 (o apply (4.33) of
Theorem 4.15.)

Exercise 4.12. Let m € R, v € [0,00) and let X be a real random variable with
X ~ N(m,v). Prove that E[¢5X | = exp(sm + s?v/2) for any s € R.

Remark. Formally, replacing s by it in Exercise 4.12 yields the characteristic function
(4.44) of N(m, v) in Example 4.22, but some task is required to justify this reasoning.

Problem 4.13. Let d € N and let X be a d-dimensional random variable.

(1) Prove that ¢_x () = ¢x (¢) for any t € R?.

(2) Prove that @y is real-valued (i.e. px (t) € R forany ¢ € R) if and only if £(—X) =
L(X). (Use (1) and Theorem 4.25. Recall that for z € C, z € Rif and only if 7 = z.)
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Appendix: Examples of Probability Distributions

Name of distribution

Density or weights

Characteristic function

binomial B(n, p)
(neN, pel0,1])

uamﬁ:G)Ma—pr*

ou() = (14 p(e' —1))"

Poisson Po(A o l_
A e oo§>) n(n}) = et u(t) = exp(A(e’ — 1))
Geometric Geom(« ~

(@ € [0. 1)) @t = (1 - ou(t) = 72
Uniform Unif(a, b Jitb_gita

(a.b eR.a <(b) D ) = s (dx ou() = G
Exponential Exp(« o

(oepe (0. 00) p(c) w(dx) = ae™ 1 00)(x)dx out) = 7%

Gamma Gamma(«, ) ,U«(adx) = 0=

(a, p € (0,00)) %IXI“‘Ie‘ﬂxl(o,w)(x)dx bull) = G-

Normal N(m, v)
(m e R, v € [0, 00))

W = 8y if v = 0, otherwise
_ 2
w(dx) = leTvexP(_ (x ") dx

o, t) = exp(itm — t2v/2)

Cauchy Cauchy(m, «)
(m e R, o € (0,00))

u(dx) = L & dx

7 a2+ (x—m)?

9. (t) = exp(itm — alt])




138CHAPTER 4. CONVERGENCE OF LAWS AND CENTRAL LIMIT THEOREM



Bibliography

[1] R. M. Dudley, Real Analysis and Probability, Cambridge studies in advanced
math. 74, Cambridge University Press, Cambridge, 2002.

[2] R. Durrett, Probability: Theory and Examples, 4th ed., Cambridge University
Press, Cambridge, 2010.

[3]1 A. Grigor’yan, Probability Theory, an unpublished lecture note in Universitit
Bielefeld, 2010.

[4] J.Jacod and P. Protter, Probability Essentials, 2nd ed. (corrected second printing),
Universitext, Springer-Verlag, New York - Berlin - Heidelberg, 2004.

[5] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed.,
Graduate Texts in Math. 113, Springer-Verlag, New York - Berlin - Heidelberg,
1991.

[6] J. Kigami, Analysis I, an unpublished lecture note in Kyoto University, July 3,
2009 (in Japanese).

[7] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

139



