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Preface

This is a lecture note for the lecture course “Probability Theory” in the University of
Bielefeld (240111, WS 2012/2013).

Several theorems and exercises are adopted from an unpublished lecture note [6]
on measure theory by Professor Jun Kigami in Kyoto University, and some other prob-
lems are borrowed from an unpublished lecture note by Professor Grigor’yan in the
University of Bielefeld. The author would like to express his deepest gratitude toward
Professor Kigami and Professor Grigor’yan for their permission to quote their unpub-
lished notes in this lecture note.
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Chapter 0

Prologue

It is assumed that the reader is already familiar with elementary probability theory,
e.g. calculation of probabilities of events resulting from coin flipping or dice. The
purpose of this course is to provide a rigorous mathematical background of probability
theory. Modern probability theory, as a part of mathematics, is developed on the basis
of measure theory, which will be treated in the first half of this course.

0.1 Introduction
Let us consider the situation where we throw a dice and see the outcome X . X is a
“random variable” taking values in ¹1; 2; 3; 4; 5; 6º, and each side of the dice appears
with “probability” 1=6; PŒX D k� D 1=6 for k 2 ¹1; 2; 3; 4; 5; 6º.1 Of course we
can consider the “probabilities” of other “events”; for example, PŒX is odd� D 1=2,
PŒX is divisible by 3� D 1=3, PŒX is a prime number� D 1=2.

We have used the terms “probability”, “random variable” and “event”, which are
fundamental notions in probability theory. These phrases, however, are used only in
very naive manners and their mathematical meanings are still unclear. We would like to
give a rigorous mathematical formulation to these notions, in order to treat probability
theory as a part of mathematics.

Next, let us throw this dice infinitely many times and let Xn be the n-th outcome.
From our intuition we naturally expect that

lim
n!1

X1 C � � � C Xn

n
D EŒX�; (0.1)

where EŒX� is the “expectation” (“expected value”) or “mean” of the outcome of a
trial, given by

EŒX� D

6X
kD1

k � PŒX D k� D
1 C � � � C 6

6
D

7

2
: (0.2)

1It is implicitly assumed that all sides of the dice are equally likely to appear.
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The convergence as in (0.1) is called the law of large numbers. This “law” is usually
taken for granted, but why should it be true at all? At this moment this fact is just an ex-
perimental observation, but with a mathematically rigorous formulation of the notions
of “probability” and “random variable” we can in fact prove (0.1) as a mathematical
theorem!

The purpose of this lecture course is to give such a rigorous formulation of “proba-
bility” and prove various probabilistic phenomena like (0.1) as mathematical theorems.

How to formulate “probability” rigorously?

Here is an idea of how to formulate “probability” mathematically: let � be the collec-
tion of all possible “cases”. Suppose that there is a function P, which assigns to each
subset �0 of � a real number PŒ�0� 2 Œ0; 1�, interpreted as the “probability” of �0. A
“random variable” X should tell us a number X.!/ 2 R for each “case” ! 2 �, and
such X is nothing but a function X W � ! R on �. For example, in the above situation
of a dice,

� � D ¹1; 2; 3; 4; 5; 6º,

� PŒA� D #A=6 for A � �, where #A denotes the number of elements of A.

� The outcome X of the dice is the function X W � ! R given by X.k/ D k.

Let A be an “event”. In each “case” ! 2 �, either the “event” A occurs or it does
not occur, and the set �A WD ¹! 2 � j A occurs in the “case” !º represents precisely
when A occurs. Then the “probability of A” should be PŒ�A�. In this way, each “event”
A is represented by the corresponding set �A of “cases” where it occurs, and then it
seems natural to identify �A with the “event” A. In other words, an “event” should be a
subset of �. In the above example of a dice, the three events “X is odd”, “X is divisible
by 3” and “X is a prime number” correspond to ¹! 2 � j X.!/ is oddº D ¹1; 3; 5º,
¹! 2 � j X.!/ is divisible by 3º D ¹3; 6º and ¹! 2 � j X.!/ is a prime numberº D

¹2; 3; 5º, respectively.
In summary, a rigorous mathematical formulation of “probability” will require

� a set �, called the sample space, and

� a Œ0; 1�-valued function P, whose argument is an event (a subset of �) and whose
values are the probabilities of events,

and then the outcome of a random trial is represented by

� a random variable X , which is a function X W � ! R on �.

Required properties of a “probability” and its domain

In order for the above Œ0; 1�-valued function P to be considered as a “probability”, of
course it has to possess certain properties. First, we need to specify the conditions to
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be satisfied by the domain F of P, which is a subset of 2�2 and is the collection of sets
whose probabilities are defined. Here is a list of properties which F is desired to have:3

� ;; � 2 F, where ; denotes the empty set.

� If A 2 F then Ac WD � n A 2 F. If A; B 2 F then A n B 2 F.

� If n 2 N and ¹Ai º
n
iD1 � F4 then A1 [ � � � [ An 2 F and A1 \ � � � \ An 2 F.

In fact, the third condition is still too weak for theoretical purposes, and instead F will
be required to satisfy the following stronger condition:

� If ¹Anº1
nD1 � F then

S1

nD1 An 2 F and
T1

nD1 An 2 F.

Such a subset F � 2� is called a �-algebra in �, and each A 2 F is called an event.
At this point one might wonder why we have to consider not 2� but a subset F

of 2�. In fact, when we consider the probabilities of events involving infinitely many
random trials, we need to choose an uncountable set as the sample space �5 and then
2� is too large to be the domain of a natural “probability” P. Why 2� is “too large”
will become clear during the first half of this course.

As explained above, a “probability” P is required to be defined on a � -algebra F

in �. Then what properties should P have? Here are conditions to be satisfied by a
“probability” P:

� PŒ�� D 1.

� PŒ;� D 0.

� If n 2 N, ¹Ai º
n
iD1 � F and Ai \ Aj D ; for any i; j 2 ¹1; : : : ; nº with i 6D j ,

then PŒA1 [ � � � [ An� D PŒA1� C � � � C PŒAn�.

The third property is called the finite additivity, which is still insufficient for theoretical
purposes and has to be replaced by the following countable additivity:

� If ¹Anº1
nD1 � F and Ai \ Aj D ; for any i; j 2 N with i 6D j , then

P
�S1

nD1 An

�
D
P1

nD1 PŒAn�.

Countable additivity plays significant roles in the proofs of various limit theorems like
(0.1) where an infinite sequence of random variables should be inevitably involved. A
function P W F ! Œ0; 1� which is defined on a � -algebra F and satisfies the above
conditions is called a probability measure, and the triple .�; F; P/ of a set �, a �-
algebra F in � and a probability measure P on F is called a probability space. This is
the correct mathematical formulation of the notion of probability.

22� denotes the power set of �: 2� WD ¹A j A � �º, i.e. the set consisting of all subsets of �.
3A subset F � 2� satisfying these three conditions is called an algebra in �.
4¹Ai ºn

iD1
� F means that ¹Ai ºn

iD1
is a family of elements of F indexed by i 2 ¹1; : : : ; nº, or in other

words, Ai 2 F for each i 2 ¹1; : : : ; nº. The notation “�” is used here since ¹Ai ºn
iD1

can be considered
as a subfamily of F, although it may happen that Ai D Aj for some i 6D j .

5For example, a natural choice of � for the trial of throwing a dice infinitely many times is to take
� WD ¹1; 2; 3; 4; 5; 6ºN, which is an uncountable set.
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Note that the “volume” functions, e.g. the “length” of subsets of R, the “area” of
subsets of R2 and the “volume” of subsets of R3, are also desired to satisfy these condi-
tions except PŒ�� D 1. Such a function (i.e. a countably additive non-negative function
on a � -algebra) is called a measure, which is the correct mathematical formulation of
the notion of volume.

Random variables and expectation
Let .�; F; P/ be a probability space. As described above, the outcome of a random
trial is represented by a random variable, which is a function X W � ! R. Once a
random variable X is given, it is natural to consider its expectation (or mean) EŒX�.
Mathematically, it is a synonym for the integral of X with respect to P:

EŒX� D

Z
�

XdP: (0.3)

In order for EŒX� to be defined, X has to be suitably related with F. For example, if X

takes its values in the set N of positive integers, then EŒX� should be given by

EŒX� D

1X
nD1

n � PŒX D n�;

where ¹X D nº D ¹! 2 � j X.!/ D nº D X�1.n/ is required to belong to F.
Such a function X is called F-measurable, and only F-measurable functions on � are
(and deserve to be) called random variables. The precise definition of F-measurable
functions is given in Section 1.2, and integration with respect to a measure will be
defined in Section 1.3.

The role of the countable additivity of P becomes clear when we consider a se-
quence ¹Xnº1

nD1 of random variables. Suppose that ¹Xn.!/º1
nD1 converges to X.!/ 2

R for any ! 2 �. Then since F is a �-algebra, X W � ! R is shown to be F-
measurable (and hence it is also a random variable), and the countable additivity of P
assures that, under certain reasonable conditions on ¹Xnº1

nD1,

lim
n!1

EŒXn� D EŒX�; that is, lim
n!1

EŒXn� D E
h

lim
n!1

Xn

i
: (0.4)

(0.4) asserts the possibility of interchange of the order of limit and integral, which
often plays fundamental roles in analysis! In measure theory, this type of assertions
are called convergence theorems. The properties of �-algebras and measures make
the conditions for convergence theorems much simpler than those in classical calculus,
where one usually assumes the uniform convergence of the sequence of functions. The
precise statements of convergence theorems will be presented in Section 1.3 below.

0.2 Some Basic Facts and Notations
Here we collect some basic facts and notations which the reader is assumed to be
familiar with. By an equation of the form

A WD B
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we mean that A is defined by B .
As usual, N, Z, Q, R and C denote the set of natural numbers, integers, rational

numbers, real numbers and complex numbers, respectively. Here our convention is that
N does NOT contain 0, so that N D ¹1; 2; 3; : : : º.

Let X be a set. 2X denotes the power set of X , i.e. 2X WD ¹A j A � Xº, as noted
before. By ¹x�º�2ƒ � X , where ƒ is another set, we mean that ¹x�º�2ƒ is a family
of elements of X indexed by � 2 ƒ, or in other words, x� 2 X for each � 2 ƒ. X

is called countably infinite if and only if there exists a bijection ' W N ! X , and X

is called countable if and only if it is either finite or countably infinite. A set which is
not countable is called uncountable. Clearly N, Z and Q are countable, and it is easy
to verify the following facts:

If n 2 N and ¹Xi º
n
iD1 are countable sets, then X1 � � � � � Xn is countable. (0.5)

If An is a countable set for each n 2 N, then
S1

nD1 An is countable. (0.6)

On the other hand, R, C and AN, where A is any set with at least 2 elements, are shown
to be uncountable.

Let X; Y be sets, let f W X ! Y be a map and let A � X . Then the map
f jA W A ! Y defined by f jA.x/ WD f .x/ is called the restriction of f to A.

0.3 The Extended Real Line Œ�1; 1�

In measure theory, it is essential to consider functions with values in the extended real
line. Here we collect basic definitions and facts concerning the extended real line.

Definition 0.1. (1) Let 1 and �1 be two distinct elements which are also distinct
from real numbers. The extended real line is defined as the set Œ�1; 1� WD ¹�1º [

R [ ¹1º. The canonical order relation � on R is naturally extended to Œ�1; 1� by
defining a � 1 and �1 � a for any a 2 Œ�1; 1�. For a; b 2 Œ�1; 1�, we write
a < b if and only if a � b and a 6D b, as usual. For a; b 2 Œ�1; 1�, we set

.a; b/ WD ¹x 2 Œ�1; 1� j a < x < bº; Œa; b� WD ¹x 2 Œ�1; 1� j a � x � bº;

.a; b� WD ¹x 2 Œ�1; 1� j a < x � bº; Œa; b/ WD ¹x 2 Œ�1; 1� j a � x < bº:

(2) We say that a sequence ¹anº1
nD1 � Œ�1; 1� converges to 1 (resp. to �1)6, and

write limn!1 an D 1 (resp. limn!1 an D �1), if and only if for any b 2 R there
exists N 2 N such that an > b (resp. an < b) for any n � N .

The convergence of ¹anº1
nD1 to a real number a 2 R is defined in the usual manner:

we write limn!1 an D a if and only if for any " 2 .0; 1/ there exists N 2 N such
that an 2 .a � "; a C "/ for any n � N .

Below we state basic definitions and facts concerning Œ�1; 1�.

6“resp.” is an abbreviation for “respectively”.
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Proposition 0.2. Let A � Œ�1; 1� be non-empty. Then the supremum (least upper
bound) sup A and the infimum (greatest lower bound) inf A of A in Œ�1; 1� exist.7

Proposition 0.3. Let ¹anº1
nD1 � Œ�1; 1�.

(1) If an � anC1 for any n 2 N, then limn!1 an D supn�1 an.
(2) If an � anC1 for any n 2 N, then limn!1 an D infn�1 an.

Definition 0.4. For ¹anº1
nD1 � Œ�1; 1�, we define its upper limit lim supn!1 an and

its lower limit lim infn!1 an by

lim sup
n!1

an WD inf
n�1

�
sup
k�n

ak

�
; lim inf

n!1
an WD sup

n�1

�
inf
k�n

ak

�
: (0.7)

Since the set ¹ak j k � nº is decreasing in n, supk�n ak is non-increasing in n and
infk�n ak is non-decreasing in n, so that by Proposition 0.3,

lim
n!1

�
sup
k�n

ak

�
D lim sup

n!1

an; lim
n!1

�
inf
k�n

ak

�
D lim inf

n!1
an: (0.8)

It also holds that
lim inf
n!1

an � lim sup
n!1

an: (0.9)

Indeed, infk�m ak � amax¹m;nº � supk�n ak for any m; n 2 N, and taking the infimum
of the right-hand side in n shows that infk�m ak � lim supn!1 an for any m 2 N.
Then taking the supremum of the left-hand side in m shows (0.9).

Proposition 0.5. Let ¹anº1
nD1 � Œ�1; 1�. Then limn!1 an exists in Œ�1; 1� (i.e.

limn!1 an D a for some a 2 Œ�1; 1�) if and only if

lim sup
n!1

an D lim inf
n!1

an:

Moreover, if limn!1 an exists in Œ�1; 1� then lim supn!1 an D limn!1 an.

Definition 0.6. The addition C and the product � in R are extended to Œ�1; 1� by
setting

a C 1 D 1 C a WD 1 for a 2 .�1; 1�,
a C .�1/ D �1 C a WD �1 for a 2 Œ�1; 1/,

a � 1 D 1 � a WD

8̂<̂
:

1 if a 2 .0; 1�,
0 if a D 0,
�1 if a 2 Œ�1; 0/,

a � .�1/ D .�1/ � a WD

8̂<̂
:

�1 if a 2 .0; 1�,
0 if a D 0,
1 if a 2 Œ�1; 0/.

We also set �.1/ WD �1, �.�1/ WD 1, j1j WD 1 and j � 1j WD 1.
7The supremum and infimum in Œ�1; 1� are defined in the same way as those in R. To be precise, the

supremum of A � Œ�1; 1� is a number M 2 Œ�1; 1� such that a � M for any a 2 A and M � b
whenever b 2 Œ�1; 1� satisfies a � b for any a 2 A. Such M , if exists, is clearly unique. The infimum
of A is similarly defined and, if exists, unique. Proposition 0.2 asserts that they always exist.
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Note that 1C .�1/ and �1C1 are NOT defined. It may look strange to define
0 � 1 WD 0, but with this convention we have the following useful proposition.

Proposition 0.7 (Arithmetic in Œ0; 1�). (1) Let a; b; c 2 Œ0; 1�. Then

a C 0 D 0 C a D a; a C b D b C a; .a C b/ C c D a C .b C c/;

a � 1 D 1 � a D a; ab D ba; .ab/c D a.bc/;

a.b C c/ D ab C ac; .a C b/c D ac C bc:

(2) If ¹anº1
nD1; ¹bnº1

nD1 � Œ0; 1� satisfy an � anC1 and bn � bnC1 for any n 2 N,
then

lim
n!1

.an C bn/ D lim
n!1

an C lim
n!1

bn; (0.10)

lim
n!1

anbn D

�
lim

n!1
an

��
lim

n!1
bn

�
: (0.11)

Remark 0.8. It also holds that a � 1 D 1 � a D a, ab D ba and .ab/c D a.bc/ for any
a; b; c 2 Œ�1; 1�. Indeed, these equalities are all immediate from Definition 0.6.

Definition 0.9. The sum
P1

nD1 an of a non-negative sequence ¹anº1
nD1 � Œ0; 1� is

defined as
1X

nD1

an WD lim
n!1

nX
iD1

ai D sup
n2N

nX
iD1

ai D sup
A � N: finite

X
n2A

an:8 (0.12)

The equality limn!1

Pn
iD1 ai D supn2N

Pn
iD1 ai follows by Proposition 0.3-(1).

For the third equality of (0.12),
Pk

iD1 ai D
P

i2¹1;:::;kº ai � supA � N: finite
P

n2A an

for any k 2 N and hence supn2N
Pn

iD1 ai � supA � N: finite
P

n2A an. For the converse
inequality, let A � N be non-empty finite and set k WD max A. Then

P
n2A an �Pk

iD1 ai � supn2N
Pn

iD1 ai , and hence supA � N: finite
P

n2A an � supn2N
Pn

iD1 ai .
Thus the equalities in (0.12) follows.

Note that, by the last equality in (0.12), the sum
P1

nD1 an of ¹anº1
nD1 � Œ0; 1�

remains the same even if the order of ¹anº1
nD1 is changed.

Proposition 0.10. Let ¹an;kº1
n;kD1

� Œ0; 1�, and let N 3 ` 7! .n`; k`/ 2 N � N be a
bijection. Then

1X
nD1

1X
kD1

an;k D

1X
kD1

1X
nD1

an;k D

1X
`D1

an`;k`
D sup

A�N�NW
finite

X
.n;k/2A

an;k DW

1X
n;kD1

an;k :

(0.13)

0.4 Topology of Subsets of Rd

We assume the reader to be familiar with the notions of open and closed subsets of the
Euclidean spaces and that of continuity of maps between those sets, but it is sometimes

8The sum
P

n2A an for A D ; is set to be 0.
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useful to present the same notions in a slightly more general setting. Here we restate
those topological notions for a general subset of the Euclidean spaces.

Let d 2 N. The Euclidean inner product and norm on Rd are denoted by h�; �i and
j � j, respectively: for x; y 2 Rd , x D .x1; : : : ; xd /, y D .y1; : : : ; yd /,

hx; yi WD x1y1 C � � � C xd yd ; jxj WD
p

hx; xi D

q
x2

1 C � � � C x2
d

:

Also for x 2 Rd and r 2 .0; 1/ we set Bd .x; r/ WD ¹y 2 Rd j jy � xj < rº.
A � Rd is called bounded if and only if A � Bd .0; r/ for some r 2 .0; 1/. Recall
that U � Rd is called an open subset of Rd or simply open in Rd if and only if every
x 2 U admits " 2 .0; 1/ such that Bd .x; "/ � U , and that F � Rd is called a closed
subset of Rd or simply closed in Rd if and only if Rd n F is open in Rd .

We would like to generalize these notions to the case where the whole space is not
Rd but a subset S � Rd . This is done in the following manner. Let us fix a subset
S of Rd in the rest of this section. For x 2 S and r 2 .0; 1/, we set BS .x; r/ WD

Bd .x; r/ \ S D ¹y 2 S j jy � xj < rº.

Definition 0.11. (1) U � S is called an open subset of S or simply open in S if and
only if every x 2 U admits " 2 .0; 1/ such that BS .x; "/ � U .
(2) F � S is called a closed subset of S or simply closed in S if and only if S n F is
open in S .

In this definition, the set BS .x; "/ D ¹y 2 S j jy � xj < "º plays the role of the
"-neighborhood of x. Note that these notions depend heavily on the whole space S .
For example, Œ0; 1/ is open in Œ0; 1� but not in R.

We have the following simple description of open and closed subsets of S .

Proposition 0.12. Let A � S .
(1) A is open in S if and only if A D U \ S for some open subset U of Rd .
(2) A is closed in S if and only if A D F \ S for some closed subset F of Rd .

The continuity of a map is also defined in the usual way.

Definition 0.13. Let k 2 N. A map f W S ! Rk is called continuous if and only if for
any x 2 S and any " 2 .0; 1/ there exists ı 2 .0; 1/ such that jf .y/ � f .x/j < " for
any y 2 BS .x; ı/.

There are several equivalent ways of stating the continuity of a map, as follows.

Proposition 0.14. Let k 2 N and let f W S ! Rk . Then f is continuous if and only if
any one of the following conditions are satisfied.
(1) f �1.U / is open in S for any open subset U of Rk .
(2) f �1.F / is closed in S for any closed subset F of Rk .

At the last of this section, we recall a basic result from multivariable calculus, which
concerns the compactness of subsets of Rd .

Definition 0.15. S is called compact if and only if for any family ¹U�º�2ƒ of open
subsets of Rd with S �

S
�2ƒ U�, there exists a finite subset ƒ0 of ƒ such that

S �
S

�2ƒ0
U�.

Theorem 0.16. S is compact if and only if it is closed in Rd and bounded.
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Exercises
Problem 0.1. (1) Let A � Œ�1; 1� be non-empty. Prove that sup.�A/ D � inf A,
where �A WD ¹�a j a 2 Aº.
(2) Let ¹anº1

nD1 � Œ�1; 1�. Prove that lim supn!1.�an/ D � lim infn!1 an.

Problem 0.2. Let ¹anº1
nD1; ¹bnº1

nD1 � Œ�1; 1�.
(1) Suppose an � bn for any n 2 N. Prove that

lim sup
n!1

an � lim sup
n!1

bn and lim inf
n!1

an � lim inf
n!1

bn:

(2) Suppose that ¹lim supn!1 an; lim supn!1 bnº 6D ¹1; �1º and that ¹an; bnº 6D

¹1; �1º for any n 2 N. Prove that

lim sup
n!1

.an C bn/ � lim sup
n!1

an C lim sup
n!1

bn (0.14)

and that the equality holds in (0.14) if limn!1 an exists in Œ�1; 1�. Give an example
of ¹anº1

nD1; ¹bnº1
nD1 � Œ0; 1� for which the strict inequality holds in (0.14).
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Chapter 1

Measure and Integration

In this chapter, we introduce the notion of (countably additive) measures and develop
the theory of integration with respect to measures. We follow the presentation of [7,
Chapter 1] for the most part of this chapter.

1.1 � -Algebras and Measures
We start with the definition of �-algebras.

Definition 1.1 (�-algebras). (1) Let X be a set and let M � 2X . M is called a � -
algebra in X (or a � -field in X ) if and only if it possesses the following properties:

(�1) ; 2 M.

(�2) If A 2 M then Ac 2 M, where Ac WD X n A.

(�3) If ¹Anº1
nD1 � M then

S1

nD1 An 2 M.

(2) The pair .X; M/ of a set X and a � -algebra M in X is called a measurable space,
and then a set A 2 M is often called a measurable set in X .

Proposition 1.2. Let .X; M/ be a measurable space. Then
(1) X 2 M.
(2) If ¹Anº1

nD1 � M then
T1

nD1 An 2 M.
(3) If n 2 N and ¹Ai º

n
iD1 � M then A1 [ � � � [ An 2 M and A1 \ � � � \ An 2 M.

(4) If A; B 2 M then A n B 2 M.

Definition 1.3 (Measures). (1) Let .X; M/ be a measurable space. A function � W

M ! Œ0; 1� is called a measure on M (or on .X; M/) if and only if �.;/ D 0 and �

is countably additive, that is,

�

 
1[

nD1

An

!
D

1X
nD1

�.An/ (1.1)

13



14 CHAPTER 1. MEASURE AND INTEGRATION

whenever ¹Anº1
nD1 � M and Ai \ Aj D ; for any i; j 2 N with i 6D j . If �.X/ D 1

in addition, then � is called a probability measure.
(2) The triple .X; M; �/ of a set X , a � -algebra M in X and a measure � on M is
called a measure space. If � is a probability measure in addition, then .X; M; �/ is
called a probability space.

Proposition 1.4. Let .X; M; �/ be a measure space.
(1) If n 2 N, ¹Ai º

n
iD1 � M and Ai \ Aj D ; for any i; j 2 ¹1; : : : ; nº with i 6D j ,

then �.A1 [ � � � [ An/ D �.A1/ C � � � C �.An/.
(2) If A; B 2 M and A � B then �.A/ � �.B/.
(3) If ¹Anº1

nD1 � M satisfies An � AnC1 for any n 2 N, then limn!1 �.An/ D

�
�S1

nD1 An

�
.

(4) If ¹Anº1
nD1 � M satisfies An � AnC1 for any n 2 N and �.A1/ < 1, then

limn!1 �.An/ D �
�T1

nD1 An

�
.

Here are some simple examples of measures.

Example 1.5. Let X be a set. Note that 2X is clearly a �-algebra in X .
(1) For A � X , let #A denote its cardinality, i.e. #A is the number of the elements of
A if A is a finite set and otherwise #A WD 1. The function # W 2X ! Œ0; 1� is easily
seen to be a measure on .X; 2X / and called the counting measure on X .
(2) Fix x 2 X , and define ıx W 2X ! Œ0; 1� by ıx.A/ D 1 if x 2 A and ıx.A/ D 0 if
x 62 A. Then ıx is a probability measure on .X; 2X / and called the unit mass at x.

For measures on countable sets, we have the following clear picture.

Example 1.6. Let X be a countable (i.e. either finite or countably infinite) set. Then
any Œ0; 1�-valued function ' W X ! Œ0; 1� defines a measure �' on .X; 2X / given by

�'.A/ WD
X
x2A

'.x/: (1.2)

Conversely, for any measure � on .X; 2X /, there exists a unique ' W X ! Œ0; 1�

such that � D �' ; it suffices to set '.x/ WD �.¹xº/. In other words, a measure on a
countable set is completely characterized by its values on one-point sets.1

The construction of interesting measures requires some (heavy) task and will be
treated in Chapter 2. Here we present two fundamental examples, for which we need
the following proposition.

Proposition 1.7. Let X be a set.
(1) Let ƒ be a non-empty set and suppose that M� is a �-algebra in X for each � 2 ƒ.
Then

T
�2ƒ M� is a �-algebra in X .

(2) Let A � 2X and set

�X .A/ WD
\

M : � -algebra in X , A � M

M: (1.3)

Then �X .A/ is the smallest � -algebra in X that includes A.
1Here we could consider a �-algebra M in X which differs from 2X , but then for some x 2 X we

would have ¹xº 62 M (the one-point set ¹xº is not measurable), which looks very weird for a countable set
X . This is why we considered measures on 2X only.
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�X .A/ in (1.3) is called the � -algebra in X generated by A, and it is simply denoted as
�.A/ when no confusion can occur.

Example 1.8 (Borel � -algebra and Lebesgue measure on Rd ). Let d 2 N. We define
the Borel � -algebra B.Rd / of Rd to be the � -algebra in Rd generated by its open
subsets, i.e.

B.Rd / WD �
�
¹U � Rd

j U is open in Rd
º
�
: (1.4)

Then each A 2 B.Rd / is called a Borel set of Rd . In fact, as stated in the following
proposition, B.Rd / is generated by d -dimensional intervals. As we will see in the
course of this lecture, B.Rd / is the right �-algebra to be considered when dealing with
measures on Rd and Rd -valued functions.

Later we will see many examples of measures defined on .Rd ; B.Rd //, but here we
present only the most standard and most important one: there exists a unique measure
md on B.Rd / such that for any d -dimensional interval Œa1; b1� � � � � � Œad ; bd �,

md

�
Œa1; b1� � � � � � Œad ; bd �

�
D .b1 � a1/ � � � .bd � ad /: (1.5)

md is called the Lebesgue measure on Rd .2 This is the mathematically correct formu-
lation of the notion of “d -dimensional volume”; m1, m2 and m3 represent length, area
and volume, respectively.

We need rather long preparations for the proof of the existence and uniqueness,
especially existence, of such a measure and we will treat it in the next chapter.

Proposition 1.9. Let d 2 N and define

Fd WD
®
Œa1; b1� � � � � � Œad ; bd �

ˇ̌
ak ; bk 2 R, ak � bk for 1 � k � d

¯
[ ¹;º; (1.6)

F
Q
d

WD
®
Œa1; b1� � � � � � Œad ; bd �

ˇ̌
ak ; bk 2 Q, ak � bk for 1 � k � d

¯
[ ¹;º: (1.7)

Then B.Rd / D �.Fd / D �
�
F

Q
d

�
.

The following lemma is sometimes useful.

Lemma 1.10. Let X be a set and let Y � X . For A � 2X , define AjY � 2Y by

AjY WD ¹A \ Y j A 2 Aº: (1.8)

(1) If A is a � -algebra in X , then AjY is a � -algebra in Y .
(2) If A � 2X , then �Y .AjY / D �X .A/jY .

Example 1.11 (Borel � -algebra in subsets of Rd ). Let d 2 N and S � Rd . Then the
Borel � -algebra B.S/ of S is defined in the same way as that of Rd , i.e.

B.S/ WD �S

�
¹U � S j U is open in Sº

�
; (1.9)

and each A 2 B.S/ is called a Borel set of S . Since Proposition 0.12 means that

¹U � S j U is open in Sº D ¹U � Rd
j U is open in Rd

ºjS ;

2More precisely, the completion of md , which is an extension of md to a certain larger �-algebra, is
usually called the Lebesgue measure on Rd ; see Theorem 1.37 below for the notion of completion.
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an application of Lemma 1.10 shows that

B.S/ D B.Rd /jS D ¹A \ S j A 2 B.Rd /º: (1.10)

In particular, if S 2 B.Rd /, then B.S/ D ¹A 2 B.Rd / j A � Sº � B.Rd /.

Example 1.12 (Bernoulli measures). Let � WD ¹0; 1ºN D
®
.!n/1

nD1 j !n 2 ¹0; 1º
¯
. If

we write 0 for tails of a coin flip and 1 for heads, then the outcome of infinitely many
coin flips is represented by a sequence ! D .!n/1

nD1 2 �, where !n corresponds to
the n-th outcome, and therefore � is a natural choice of the sample space for infinitely
many coin flips.

Which � -algebra should we equip � with? An obvious requirement is that any
“event” determined only by the outcomes of finitely many flips, i.e. any subset of the
form An � ¹0; 1ºNn¹1;:::;nº with An � ¹0; 1ºn, should be measurable. Therefore an easy
choice is to consider the following � -algebra F:

F WD �
�®

An � ¹0; 1º
Nn¹1;:::;nº

ˇ̌
n 2 N; An � ¹0; 1º

n
¯�

: (1.11)

F is actually the right �-algebra in � to be considered, and we can construct a natural
probability measure on F which represents the randomness of infinitely many flips of a
coin: for any p 2 Œ0; 1�,3 there exists a unique probability measure Pp on F such that4

Pp

�
¹.!i /

n
iD1º � ¹0; 1º

Nn¹1;:::;nº
�

D

nY
iD1

p!i .1 � p/1�!i (1.12)

for any n 2 N and any .!i /
n
iD1 2 ¹0; 1ºn. Pp is called the Bernoulli measure on �

of probability p. The proof of its existence and uniqueness is postponed until later
chapters.

1.2 Measurable and Simple Functions
In this section, we define measurable functions and present their basic properties.
Throughout this section, we fix a measurable space .X; M/.

Definition 1.13 (Measurable functions). A function f W X ! Œ�1; 1� is called M-
measurable if and only if f �1.A/ 2 M for any A 2 B.R/ and for A D ¹1º; ¹�1º.

Proposition 1.14. A function f W X ! Œ�1; 1� is M-measurable if and only if
f �1

�
.a; 1�

�
2 M for any a 2 Q (or equivalently, for any a 2 R).

Proposition 1.15. Let f; g W X ! Œ�1; 1� be M-measurable.
(1) The function f C g W X ! Œ�1; 1�, .f C g/.x/ WD f .x/ C g.x/, is M-
measurable, provided ¹f .x/; g.x/º 6D ¹1; �1º for any x 2 X5.
(2) The function fg W X ! Œ�1; 1�, .fg/.x/ WD f .x/g.x/, is M-measurable.

3The number p corresponds to the probability of heads at each flip.
4Here 00 WD 1.
5that is, provided neither “1 C .�1/” nor “�1 C 1” appears in the sum f .x/ C g.x/
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For a sequence ¹fnº1
nD1 of Œ�1; 1�-valued functions on X , we define Œ�1; 1�-

valued functions supn�1 fn, infn�1 fn, lim supn!1 fn and lim infn!1 fn on X by�
sup
n�1

fn

�
.x/ WD sup

n�1

�
fn.x/

�
;

�
lim sup

n!1

fn

�
.x/ WD lim sup

n!1

�
fn.x/

�
;�

inf
n�1

fn

�
.x/ WD inf

n�1

�
fn.x/

�
;

�
lim inf
n!1

fn

�
.x/ WD lim inf

n!1

�
fn.x/

�
:

Proposition 1.16. Let fn W X ! Œ�1; 1� be M-measurable for each n 2 N. Then
supn�1 fn, infn�1 fn, lim supn!1 fn and lim infn!1 fn are all M-measurable.

The following lemma is useful in verifying measurability of basic functions.

Lemma 1.17. Let d 2 N and let S � Rd . If f W S ! R is continuous, then f is
B.S/-measurable.

A B.S/-measurable function on S is also referred to as a Borel measurable func-
tion. Lemma 1.17 asserts that every R-valued continuous function is Borel measurable.
For E � X , we define 1E W X ! R by

1E .x/ WD

´
1 if x 2 E,
0 if x 62 E.

(1.13)

1E is called the indicator function6 of E. It is easy to see that 1E is M-measurable if
and only if E 2 M.

Definition 1.18 (Simple functions). s W X ! R is called M-simple if and only if it is
M-measurable and its range s.X/ is a finite set.

Note that 1 and �1 are explicitly excluded from the values of simple functions.
Since an M-simple function s is written as s D

P
a2s.X/ a1s�1.a/ with s�1.a/ 2 M,

we easily see from Proposition 1.15 that s W X ! R is M-simple if and only if

s D

nX
iD1

ai 1Ai
for some n 2 N, ¹ai º

n
iD1 � R and ¹Ai º

n
iD1 � M. (1.14)

Proposition 1.19. Let f W X ! Œ0; 1� be M-measurable. Then there exists a se-
quence ¹snº1

nD1 of M-simple functions on X such that for each x 2 X ,

(S1) 0 � sn.x/ � snC1.x/ for any n 2 N,

(S2) limn!1 sn.x/ D f .x/.

1.3 Integration and Convergence Theorems
In this section, we define integration with respect to measures and prove fundamental
convergence theorems. Throughout this section, we fix a measure space .X; M; �/.

61E is usually called the characteristic function of E , but in the context of probability theory, this phrase
is reserved for the Fourier transform of probability measures on Rd . See Chapter 4 for details.
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1.3.1 Integration of non-negative functions
First we define integration of non-negative simple functions. Recall our convention
that 0 � 1 D 1 � 0 WD 0.

Definition 1.20 (Integration of non-negative simple functions). Let s W X ! Œ0; 1/

be M-simple. We define its �-integral
R
X sd� on X byZ

X

sd� WD
X

a2s.X/

a�
�
s�1.a/

�
: (1.15)

Lemma 1.21. Let s; t W X ! Œ0; 1/ be M-simple and let ˛; ˇ 2 Œ0; 1/. ThenZ
X

.˛s C ˇt/d� D ˛

Z
X

sd� C ˇ

Z
X

td�: (1.16)

Note that 1E is M-simple and
R
X 1E d� D �.E/ for any E 2 M. Therefore

Lemma 1.21 in particular implies that for n 2 N, ¹ai º
n
iD1 � Œ0; 1/ and ¹Ai º

n
iD1 � M,Z

X

 
nX

iD1

ai 1Ai

!
d� D

nX
iD1

ai �.Ai /: (1.17)

Definition 1.22 (Integration of non-negative functions). Let f W X ! Œ0; 1� be M-
measurable. We define its �-integral

R
X fd� on X byZ

X

fd� WD sup
²Z

X

sd�

ˇ̌̌̌
s W X ! R, s is M-simple and 0 � s � f on X

³
: (1.18)

Note that (1.18) is consistent with (1.15) for non-negative M-simple functions;
indeed, the supremum in (1.18) is attained by f if f W X ! Œ0; 1� is itself M-simple,
since we see from Lemma 1.21 that

R
X sd� �

R
X sd� C

R
X .t � s/d� D

R
X td� for

M-simple functions s; t W X ! Œ0; 1/ with s � t on X .
The following lemma is immediate from (1.18).

Lemma 1.23. If f; g W X ! Œ0; 1� are M-measurable and f � g on X , thenR
X fd� �

R
X gd�.

Now we are in the stage of presenting the first fundamental convergence theorem.

Theorem 1.24 (Monotone convergence theorem, MCT). Let fn W X ! Œ0; 1� be M-
measurable for each n 2 N and suppose fn.x/ � fnC1.x/ for any n 2 N, x 2 X .
Then f W X ! Œ0; 1� defined by f .x/ WD limn!1 fn.x/ is M-measurable, and

lim
n!1

Z
X

fnd� D

Z
X

fd�: (1.19)

Proposition 1.25. Let f; g W X ! Œ0; 1� be M-measurable and let ˛; ˇ 2 Œ0; 1�.
Then Z

X

. f̨ C ˇg/d� D ˛

Z
X

fd� C ˇ

Z
X

gd�: (1.20)
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Proposition 1.26. Let fn W X ! Œ0; 1� be M-measurable for each n 2 N. ThenZ
X

 
1X

nD1

fn

!
d� D

1X
nD1

Z
X

fnd�: (1.21)

Here is another important limit theorem for integrals of non-negative functions.

Theorem 1.27 (Fatou’s lemma). Let fn W X ! Œ0; 1� be M-measurable for each
n 2 N. Then Z

X

�
lim inf
n!1

fn

�
d� � lim inf

n!1

Z
X

fnd�: (1.22)

1.3.2 Integration of Œ�1; 1�-valued functions

Definition 1.28. For f W X ! Œ�1; 1�, we define f C; f � W X ! Œ0; 1� by

f C.x/ WD max¹f .x/; 0º and f �.x/ WD � min¹f .x/; 0º; (1.23)

so that f D f C � f � and jf j D f C C f � (recall that we set j1j D j � 1j WD 1).
By Propositions 1.15 and 1.16, if f is M-measurable then so are f C, f � and jf j.

Definition 1.29 (Integration of Œ�1; 1�-valued functions). (1) For an M-measurable
function f W X ! Œ�1; 1�, we say that f admits the �-integral or the �-integral of
f exists (or simply

R
X fd� exists) if and only if

min
²Z

X

f Cd�;

Z
X

f �d�

³
< 1; (1.24)

and in this case its �-integral
R
X

fd� is defined byZ
X

fd� WD

Z
X

f Cd� �

Z
X

f �d�: (1.25)

Moreover, f is called �-integrable if and only if
R
X

jf jd� < 1. Finally, we set

L1.X; M; �/ WD ¹f W X ! R j f is M-measurable and �-integrableº; (1.26)

which will be simply written as L1.X; �/ or L1.�/ when no confusion can occur.
(2) Let A 2 M. For an M-measurable function f W X ! Œ�1; 1�, we say that f

admits the �-integral on A or the �-integral of f on A exists (or simply
R
A fd� exists)

if and only if
R
X f 1Ad� exists, and in this case its �-integral

R
X fd� on A is defined

by
R
A

fd� WD
R
X

f 1Ad�. Moreover, f is called �-integrable on A if and only if f 1A

is �-integrable.

Note that (1.25) is consistent with (1.18) for non-negative functions, since f C D f

and f � D 0 for M-measurable f W X ! Œ0; 1�. Note also that for A 2 M, f is �-
integrable on A if and only if

R
A fd� exists and

R
A fd� 2 R.
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Notation. The integral
R
A fd� is often written in slightly different notations, e.g.Z

A

f .x/d�.x/ WD

Z
A

f .x/�.dx/ WD

Z
A

fd�: (1.27)

These alternative notations are used especially when it should be made clear in which
variable the integral is taken.7

Proposition 1.30. Let f W X ! Œ�1; 1� be M-measurable.
(1) Let A 2 M satisfy �.A/ D 0. Then f is �-integrable on A and

R
A fd� D 0.

(2) If f is �-integrable, then �
�
f �1.1/ [ f �1.�1/

�
D 0.

Proof. (1) It suffices to show
R
X jf j1Ad� D 0. Let s W X ! R be M-simple and

satisfy 0 � s � jf j1A on X . Then for any a 2 s.X/ n ¹0º, s�1.a/ � A and hence
�
�
s�1.a/

�
D 0. Thus

R
X sd� D 0 for any such s and therefore

R
X jf j1Ad� D 0.

(2) Set A WD f �1.1/ [ f �1.�1/ and let n 2 N. Then jf j � jf j1A � n1A on X

and hence n�.A/ D
R
X n1Ad� �

R
X jf jd� < 1. Thus 0 � �.A/ � n�1

R
X jf jd�,

and letting n ! 1 yields �.A/ D 0.

Proposition 1.31. (1) If f; g W X ! Œ�1; 1� are M-measurable, f � g on X andR
X fd�;

R
X gd� exist, then Z

X

fd� �

Z
X

gd�: (1.28)

In particular, if f W X ! Œ�1; 1� is M-measurable and
R
X fd� exists, thenˇ̌̌̌Z

X

fd�

ˇ̌̌̌
�

Z
X

jf jd�: (1.29)

(2) If f; g 2 L1.�/ and ˛; ˇ 2 R, then f̨ C ˇg 2 L1.�/ andZ
X

. f̨ C ˇg/d� D ˛

Z
X

fd� C ˇ

Z
X

gd�: (1.30)

The following proposition says that sets of �-measure zero are in fact negligible as
long as �-integrals are concerned. Note that we have ¹x 2 X j f .x/ 6D g.x/º 2 M for
M-measurable functions f; g W X ! Œ�1; 1�; see Problem 1.15-(1).

Proposition 1.32. Let f; g W X ! Œ�1; 1� be M-measurable and suppose that
�
�
¹x 2 X j f .x/ 6D g.x/º

�
D 0. Then for any A 2 M,

R
A fd� exists if and only ifR

A
gd� exists, and in this case Z

A

fd� D

Z
A

gd�: (1.31)

The following convergence theorem often plays fundamental roles in analysis.

7The first and second notations in (1.27) have exactly the same meaning, but for certain reasons the
second notation is often preferred in the context of probability theory.
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Theorem 1.33 (Lebesgue’s dominated convergence theorem, DCT). Let fn W X !

Œ�1; 1� be M-measurable for each n 2 N. Suppose the following two conditions:

(L1) The limit f .x/ WD limn!1 fn.x/ exists in Œ�1; 1� for any x 2 X .

(L2) There exists an M-measurable, �-integrable function g W X ! Œ0; 1� such that
jfn.x/j � g.x/ for any x 2 X and any n 2 N.

Then f W X ! Œ�1; 1� is M-measurable and �-integrable, and

lim
n!1

Z
X

fnd� D

Z
X

fd�: (1.32)

Note that
P1

nD1 an D
R

N and#.n/ for any ¹anº1
nD1 � Œ0; 1� by Problem 1.19,

where # denotes the counting measure on N defined in Example 1.5-(1), so that all the
results established so far in this section are applicable to such series

P1

nD1 an.

Example 1.34. As an application of the dominated convergence theorem (Theorem
1.33), for ˛; ˇ 2 R with ˛ C ˇ > 2 let us verify the limit

lim
N !1

1X
nD1

N

n˛ C N 2nˇ
D 0: (1.33)

For any n 2 N, we have

N

n˛ C N 2nˇ
D

1

N

1

n˛N �2 C nˇ

N !1
����! 0 �

1

nˇ
D 0; (1.34)

0 <
N

n˛ C N 2nˇ
D

�
n˛

N
C Nnˇ

��1

�
1

2n.˛Cˇ/=2
; (1.35)

where we used a C b � 2
p

ab, a; b 2 Œ0; 1/8, for the inequality in (1.35). Now since�Z
N

1

2n.˛Cˇ/=2
d#.n/ D

� 1X
nD1

1

2n.˛Cˇ/=2
< 1 (1.36)

by ˛ C ˇ > 2, the dominated convergence theorem (Theorem 1.33) together with
(1.34), (1.35) and (1.36) implies that

lim
N !1

1X
nD1

N

n˛ C N 2nˇ
D

1X
nD1

0 D 0

(in other words, limN !1

R
N

N

n˛CN 2nˇ d#.n/ D
R

N 0d#.n/ D 0), proving (1.33).
Note that (1.33) also holds if ˇ > 1 instead of ˛ C ˇ > 2, since

P1

nD1 n�ˇ < 1

and hence

0 <

1X
nD1

N

n˛ C N 2nˇ
<

1

N

1X
nD1

1

nˇ

N !1
����! 0 �

1X
nD1

1

nˇ
D 0:

8This inequality is valid since a C b � 2
p

ab D .
p

a �
p

b/2 � 0.
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1.3.3 Sets of measure zero and completion of measure spaces
In the above proof of Theorem 1.33, we already utilized the fact that the set g�1.1/

is “negligible” since it is of �-measure zero. There are a lot of situations in measure
theory where it is necessary to neglect sets of measure zero appropriately, and here is
an important definition used in those situations.

Definition 1.35 (Almost everywhere, a.e.). Let P.x/ be a statement on x for each
x 2 X , and let A 2 M. Then we say that P holds �-almost everywhere on A, or P
holds �-a.e. on A for short, if and only if there exists N 2 M with �.N / D 0 such
that P.x/ holds for any x 2 A n N . For A D X , we simply say P holds �-a.e. instead
of saying P holds �-a.e. on X .

For example, P.x/ can be “f .x/ D 0” or “f .x/ D g.x/” for given functions
f; g W X ! Œ�1; 1�, or can be “the limit limn!1 fn.x/ exists in R” for a given
sequence ¹fnº1

nD1 of functions on X .
Measure theoretic assumptions naturally imply �-a.e. assertions, as illustrated by

the following proposition.

Proposition 1.36. (1) If f W X ! Œ0; 1� is M-measurable and
R
X fd� D 0, then

f D 0 �-a.e.
(2) If f; g W X ! Œ�1; 1� are M-measurable, �-integrable and satisfy

R
A fd� DR

A
gd� for any A 2 M, then f D g �-a.e.

Recall Proposition 1.32, which asserts that for any two M-measurable functions
f; g with f D g �-a.e., the �-integrals

R
A fd� and

R
A gd� are always the same. In

other words, sets of zero �-measure can be neglected as long as �-integrals are con-
cerned. By taking this fact into consideration, we can slightly weaken the assumptions
of the results in this section by allowing exceptional sets of �-measure zero.

For example, Theorem 1.33 is still valid if “for any x 2 X” in the conditions (L1)
and (L2) are replaced by “for �-a.e. x 2 X”; indeed, if Nn 2 M with �.Nn/ D 0,
n 2 N [ ¹0º, are chosen so that

(L1)0 the limit f .x/ WD limn!1 fn.x/ exists in Œ�1; 1� for any x 2 X n N0, and

(L2)0 jfn.x/j � g.x/ for any x 2 X n Nn for each n 2 N,

then since N WD
S1

nD0 Nn satisfies �.N / D 0 by Problem 1.10, we obtain (1.32) by
applying the original Theorem 1.33 to ¹gnº1

nD1 defined by

gn.x/ WD

´
fn.x/ if x 2 X n N ,
0 if x 2 N .

Note here that the limit function f is defined only �-almost everywhere, only on the
set A WD ¹x 2 X j lim supn!1 fn.x/ D lim infn!1 fn.x/º (recall that A 2 M by
Problem 1.15-(1)), but still its �-integral

R
X fd� is uniquely defined. Indeed, since

f D lim supn!1 fn on A and lim supn!1 fn is M-measurable, if we extend f out-
side A by defining f WD h on Ac , where h W X ! Œ�1; 1� is an arbitrary M-
measurable function, then f is M-measurable (see Problem 1.15-(2)) and

R
X

fd� is
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defined. Furthermore Proposition 1.32 together with �.Ac/ D 0 assures that this inte-
gral

R
X fd� is independent of a particular choice of the extension hjAc of f to Ac .

Such a situation is quite common in measure theory and probability theory: once an
MjXnN -measurable function f W X n N ! Œ�1; 1� is defined outside a set N 2 M

with �.N / D 0, we define
R
X

fd� as the �-integral of any M-measurable extension
of f to X , and we often do NOT specify the values on N .

Since we may neglect sets of �-measure zero as long as �-integrals are concerned,
it sounds quite natural that any subset of a set N 2 M of �-measure zero should also
be of �-measure zero. As a matter of fact, this is not always the case for a general
measure space .X; M; �/ since such N may include non-measurable sets, but we can
still define the �-measure of any subset of such N to be 0, so that � is extended to a
measure defined on a larger �-algebra, as follows.

Theorem 1.37 (Completion of a measure space). We define

M
�

WD ¹A � X j B � A � C for some B; C 2 M with �.C n B/ D 0º: (1.37)

Then M
�

is a �-algebra in X satisfying M � M
�

, and � is uniquely extended to a
measure � on M

�
.

M
�

is called the �-completion of M, and � is called the completion of �. Note
that, as shown in the proof of this theorem below, if A 2 M

�
and B; C 2 M satisfy

B � A � C and �.C n B/ D 0, then �.A/ D �.B/ D �.C /.

Definition 1.38. We call �, or .X; M; �/, complete if and only if A 2 M whenever
A � N for some N 2 M with �.N / D 0.

By the construction, the completion � of � is actually complete, which and (1.37)
easily imply that .X; M; �/ is complete if and only if M

�
D M. On the other hand,

it is known that the Lebesgue measure md on
�
Rd ; B.Rd /

�
(Example 1.8) and the

Bernoulli measure Pp on F (Example 1.12) are not complete.

1.3.4 Integration of complex functions
In this course, we usually consider R-valued or Œ�1; 1�-valued functions, but we will
need integration of complex functions later in Chapter 4. Here we collect some basic
definitions and facts concerning integration of complex functions.

Let i denote the imaginary unit. As usual, C D ¹x C iy j x; y 2 Rº is naturally
identified with R2, so that C is equipped with the metric structure inherited from R2.

Definition 1.39. f W X ! C is called M-measurable if and only if f �1.A/ 2 M for
any A 2 B.C/.

Proposition 1.40. f W X ! C is M-measurable if and only if its real part Re.f / and
imaginary part Im.f / are both R-valued M-measurable functions.

Since the function C 3 ´ 7! j´j 2 R is continuous and hence B.C/-measurable by
Lemma 1.17, if f W X ! C is M-measurable then jf j is M-measurable by virtue of
Problem 1.16.
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Definition 1.41 (Integration of complex functions). (1) An M-measurable function
f W X ! C is called �-integrable if and only if

R
X jf jd� < 1, or equivalently,

Re.f / and Im.f / are �-integrable, and in this case its �-integral
R
X fd� is defined

by Z
X

fd� WD

Z
X

Re.f /d� C i

Z
X

Im.f /d�: (1.38)

We also set

L1.X; M; �; C/ WD ¹f W X ! C j f is M-measurable and �-integrableº; (1.39)

which will be simply written as L1.X; �; C/ or L1.�; C/ when no confusion can occur.
(2) Let A 2 M. An M-measurable function f W X ! C is called �-integrable on A if
and only if f 1A is �-integrable, and in this case its �-integral

R
A

fd� on A is defined
by
R
A fd� WD

R
X f 1Ad�.

Proposition 1.42. (1) If f 2 L1.�; C/, thenˇ̌̌̌Z
X

fd�

ˇ̌̌̌
�

Z
X

jf jd�: (1.40)

(2) If f; g 2 L1.�; C/ and ˛; ˇ 2 C, then f̨ C ˇg 2 L1.�; C/ andZ
X

. f̨ C ˇg/d� D ˛

Z
X

fd� C ˇ

Z
X

gd�: (1.41)

1.4 Some Basic Consequences
In this section, we present some consequences of the integration theory developed so
far in this chapter. In the proofs of the first two theorems, we will utilize monotone
approximation of a measurable function by simple functions (Proposition 1.19) and the
monotone convergence theorem (Theorem 1.24) in a typical way.

Throughout this section, .X; M; �/ denotes a given measure space.

Theorem 1.43. Let f W X ! Œ0; 1� be M-measurable and define � W M ! Œ0; 1� by

�.A/ WD

Z
A

fd�: (1.42)

Then � is a measure on .X; M/. Moreover, if g W X ! Œ�1; 1� is M-measurable,
then

R
X gd� exists if and only if

R
X gfd� exists, and in this caseZ
X

gd� D

Z
X

gfd�: (1.43)

The measure � is denoted by f � �, and (1.43) is often abbreviated as d� D fd�.

Remark 1.44. Note that the measure � D f � � satisfies �.A/ D 0 for any A 2 M with
�.A/ D 0 by Proposition 1.30-(1). A measure on .X; M/ with this property is called
absolutely continuous with respect to �, and it is known that this property completely
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characterizes a measure � on .X; M/ of this form under certain mild assumptions on
� and �. This fact is very fundamental in measure theory and probability theory and
known as the Radon-Nikodym theorem, but we do not treat this theorem in this course.
See [7, Chapter 6] and [1, Sections 5.5 and 5.6] for details of the Radon-Nikodym
theorem.

Definition 1.45. Let .S; B/ be a measurable space. A map ' W X ! S is called
M=B-measurable if and only if '�1.A/ 2 M for any A 2 B.

The following result is a fundamental tool in probability theory.

Theorem 1.46 (Image measure theorem). Let .S; B/ be a measurable space and let
' W X ! S be M=B-measurable. Then the function � ı '�1 W B ! Œ0; 1� defined by
.� ı '�1/.A/ WD �

�
'�1.A/

�
is a measure on .S; B/. Moreover, if f W S ! Œ�1; 1�

is B-measurable, then
R

S
fd.� ı '�1/ exists if and only if

R
X

.f ı '/d� exists, and in
this case Z

S

fd.� ı '�1/ D

Z
X

.f ı '/d�: (1.44)

The measure � ı '�1 is called the image measure of � by '. An application of the
dominated convergence theorem (Theorem 1.33) gives rise to the following theorem.

Theorem 1.47. Let a; b 2 Œ�1; 1�, a < b and let f W X � .a; b/ ! R be such that
f .�; t / 2 L1.�/ for any t 2 .a; b/ and f .x; �/ W .a; b/ ! R is differentiable for any
x 2 X . Suppose there exists an M-measurable �-integrable function g W X ! Œ0; 1�

such that j.@f =@t/.x; t/j � g.x/ for any .x; t/ 2 X � .a; b/. Then
R
X f .x; �/d�.x/ W

.a; b/ ! R is differentiable, and for any t 2 .a; b/, .@f =@t/.�; t / 2 L1.�/ and

d

dt

Z
X

f .x; t/d�.x/ D

Z
X

@f

@t
.x; t/d�.x/: (1.45)

Next we present two frequently used inequalities. For p 2 .0; 1/, we naturally
extend the power function Œ0; 1/ 3 x 7! xp to Œ0; 1� by setting 1p WD 1. Note
that by Problem 1.20-(1), if f W X ! Œ0; 1� is M-measurable then so is f p for any
p 2 .0; 1/.

Theorem 1.48 (Hölder’s inequality). Let p 2 .1; 1/ and set q WD p=.p � 1/, so that
p�1 C q�1 D 1. (q is called the conjugate exponent of p.) Let f; g W X ! Œ0; 1� be
M-measurable. ThenZ

X

fgd� �

�Z
X

f pd�

�1=p�Z
X

gqd�

�1=q

: (1.46)

Definition 1.49. Let p 2 .0; 1/. For an M-measurable function f W X ! Œ�1; 1�,
we define

kf kLp.X;�/ WD

�Z
X

jf j
pd�

�1=p

; (1.47)

which will be simply denoted as kf kLp.�/ or kf kLp when no confusion can occur.
Moreover, we also define

Lp.X; M; �/ WD ¹f W X ! R j f is M-measurable and kf kLp.X;�/ < 1º; (1.48)

which will be simply written as Lp.X; �/ or Lp.�/ when no confusion can occur.
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Note that (1.48) is consistent with (1.26). We easily see that Lp.�/ is a R-vector
space9 for each p 2 .0; 1/, since .aCb/p � .2 max¹a; bº/p � 2p.apCbp/ for a; b 2

Œ0; 1�. According to Theorem 1.48, for p 2 .1; 1/, q D p=.p � 1/, f 2 Lp.�/ and
g 2 Lq.�/ we have fg 2 L1.�/ and kfgkL1 � kf kLp kgkLq . See Problems 1.29,
1.30 and 1.31 and Exercise 1.35 below for other important facts concerning Lp.�/.

To state and prove another inequality, we need the following definition and lemma.

Definition 1.50 (Convex functions). Let a; b 2 Œ�1; 1�, a < b and let ' W .a; b/ !

R. Then ' is called convex if and only if for any x; y 2 .a; b/ and any t 2 Œ0; 1�,

'
�
.1 � t /x C ty

�
� .1 � t /'.x/ C t'.y/; (1.49)

or equivalently, for any x; y; ´ 2 .a; b/ with x < ´ < y,

'.´/ � '.x/

´ � x
�

'.y/ � '.´/

y � ´
: (1.50)

For example, ' is convex if ' is differentiable on .a; b/ and '0 is non-decreasing,
by virtue of the mean value theorem in one-dimensional calculus.

Lemma 1.51. Let a; b 2 Œ�1; 1�, a < b. If ' W .a; b/ ! R is convex, then it is
continuous.

Remark 1.52. Note that Lemma 1.51 is based on the assumption that the domain of '

is an open interval. In fact, if we define ' W Œ0; 1� ! R by '.x/ WD 0 for x 2 Œ0; 1/ and
'.1/ WD 1, then ' satisfies (1.49) for any x; y; t 2 Œ0; 1� but it is not continuous.

Theorem 1.53 (Jensen’s inequality). Assume that � is a probability measure, that is,
�.X/ D 1. Let a; b 2 Œ�1; 1�, a < b and let ' W .a; b/ ! R be convex. If
f W X ! .a; b/ and f 2 L1.�/, then

R
X fd� 2 .a; b/,

R
X .' ı f /�d� < 1 and

'

�Z
X

fd�

�
�

Z
X

.' ı f /d�: (1.51)

Exercises
Problem 1.1. Let X WD ¹1; 2; 3º. Provide all � -algebras in X .

Problem 1.2. For a set X and A � X , prove that ¹;; A; Ac ; Xº is a �-algebra in X .

The notion of independence is very important in probability theory. The following
definitions, problems and exercises provide some basics about independence of events.

Definition. Let .�; F; P/ be a probability space.
(1) A pair ¹A; Bº of events A; B 2 F is called independent if and only if PŒA \ B� D

PŒA�PŒB�.
(2) A (possibly infinite) family ¹A�º�2ƒ � F of events is called independent if and
only if it holds that P

�T
�2ƒ0

A�

�
D
Q

�2ƒ0
PŒA�� for any non-empty finite ƒ0 � ƒ.

9That is, f̨ C ˇg 2 Lp.�/ for any f; g 2 Lp.�/ and any ˛; ˇ 2 R.
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Problem 1.3. Let .�; F; P/ be a probability space.
(1) Let A; B 2 F. Prove that if ¹A; Bº is independent then ¹Ac ; Bº, ¹A; Bcº and
¹Ac ; Bcº are also independent.
(2) Let ¹A�º�2ƒ � F be a (possibly infinite) family of events. Prove that ¹A�º�2ƒ

is independent if and only if P
�T

�2ƒ0
B�

�
D
Q

�2ƒ0
PŒB�� for any non-empty finite

ƒ0 � ƒ and any B� 2 ¹;; A�; Ac
�
; �º, � 2 ƒ0.

Problem 1.4. Give an example of a probability space .�; F; P/ and events A; B; C 2

F such that the pairs ¹A; Bº, ¹B; C º and ¹A; C º are independent but PŒA \ B \ C � 6D

PŒA�PŒB�PŒC �.

Exercise 1.5. Give an example of a probability space .�; F; P/ and events A; B; C 2

F such that ¹A; Bº and ¹B; C º are independent, PŒA \ B \ C � D PŒA�PŒB�PŒC � but
¹A; C º is not independent.

Definition. Let .�; F; P/ be a probability space and let B 2 F satisfy PŒB� > 0. For
each A 2 F, We define the conditional probability PŒA j B� of A given B by

PŒA j B� WD
PŒA \ B�

PŒB�
: (1.52)

Problem 1.6. Let .�; F; P/ be a probability space and let B 2 F satisfy PŒB� > 0.
(1) Let A 2 F. Prove that ¹A; Bº is independent if and only if PŒA j B� D PŒA�.
(2) Prove that the set function F 3 A 7! PŒA j B� is a probability measure on .�; F/.
This probability measure is called the conditional probability measure given B .

Problem 1.7. Let .�; F; P/ be a probability space and let ¹�nºN
nD1 � F, where N 2

N [ ¹1º, satisfy PŒ�n� > 0 for any n, �i \ �j D ; for any i; j with i 6D j andSN
nD1 �n D �. Also let A 2 F. Prove the following statements:

(1) PŒA� D
PN

nD1 PŒA j �n�PŒ�n�.
(2) (Bayes’ theorem) If PŒA� > 0, then for each n,

PŒ�n j A� D
PŒA j �n�PŒ�n�PN

kD1 PŒA j �k �PŒ�k �
: (1.53)

Exercise 1.8. Suppose people have a certain disease with probability 0:001. Doctors
use a test to detect the disease, and suppose that the test gives a positive result on a pa-
tient with the disease with probability 0:99 and on a patient without it with probability
0:004. Evaluate the probability that one has this disease under the condition that
(1) the result of the test was positive.
(2) the result of the test was negative.

In the problems and the exercises below, .X; M; �/ denotes a given measure space.

Problem 1.9. Let n 2 N and let ¹Ai º
n
iD1 � M satisfy �

�Sn
iD1 Ai

�
< 1. Prove the

following inclusion-exclusion formula:

�

 
n[

iD1

Ai

!
D

nX
kD1

X
1�i1<���<ik�n

.�1/k�1�

 
k\

`D1

Ai`

!
: (1.54)
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Problem 1.10. Prove the following countable subadditivity of �: for ¹Anº1
nD1 � M,

�

 
1[

nD1

An

!
�

1X
nD1

�.An/: (1.55)

Problem 1.11. Let ¹Anº1
nD1 � 2X and define lim supn!1 An and lim infn!1 An by

lim sup
n!1

An WD

1\
nD1

1[
kDn

Ak ; lim inf
n!1

An WD

1[
nD1

1\
kDn

Ak ; (1.56)

so that they belong to M if ¹Anº1
nD1 � M. Prove the following assertions.

(1)
�
lim supn!1 An

�c
D lim infn!1 Ac

n and

lim sup
n!1

An D ¹x 2 X j x 2 An for infinitely many n 2 Nº;

lim inf
n!1

An D ¹x 2 X j x 2 An for sufficiently large n 2 Nº:
(1.57)

(2) (First Borel-Cantelli lemma) If ¹Anº1
nD1 � M and

P1

nD1 �.An/ < 1, then

�

�
lim sup

n!1

An

�
D �

��
lim inf
n!1

Ac
n

�c
�

D 0: (1.58)

Problem 1.12. Let # be the counting measure on N (recall Example 1.5-(1)). Provide
an example of ¹Anº1

nD1 � 2N such that An � AnC1 for any n 2 N but limn!1 #An 6D

#
�T1

nD1 An

�
.

Problem 1.12 shows that the conclusion of Proposition 1.4-(4) is not necessarily
valid if the assumption “�.A1/ < 1” is dropped.

Problem 1.13. Let Y be a set and define N WD ¹A � Y j either A or Ac is countableº

and N0 WD ¹A � Y j either A or Ac is finiteº. Prove that N is a � -algebra in Y and
that �.N0/ D N.

Problem 1.14. Assume �.X/ < 1. Let ƒ be a set and let ¹A�º�2ƒ � M be such that
A�1

\ A�2
D ; for any �1; �2 2 ƒ with �1 6D �2. Prove that ¹� 2 ƒ j �.A�/ > 0º is

a countable set.

Problem 1.15. (1) Let f; g W X ! Œ�1; 1� be M-measurable. Prove that the follow-
ing sets belong to M:

¹x 2 X j f .x/ < g.x/º; ¹x 2 X j f .x/ D g.x/º; ¹x 2 X j f .x/ > g.x/º:

(2) Let fn W X ! Œ�1; 1� be M-measurable for each n 2 N and let h W X !

Œ�1; 1� be M-measurable. Define f; g W X ! Œ�1; 1� by

f .x/ WD

´
limn!1 fn.x/ if the limit limn!1 fn.x/ exists in R,
h.x/ otherwise,

(1.59)

g.x/ WD

´
limn!1 fn.x/ if the limit limn!1 fn.x/ exists in Œ�1; 1�,
h.x/ otherwise.

(1.60)

Prove that the functions f and g are M-measurable.
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Problem 1.16. Let .S; B/ be a measurable space, let ' W X ! S be M=B-measurable
(see Definition 1.45) and let f W S ! Œ�1; 1� be B-measurable. Prove that f ı ' W

X ! Œ�1; 1� is M-measurable.

Problem 1.17. (1) Let S be a set, let A � 2S and let f W X ! S . Prove that f is
M=�S .A/-measurable (see Definition 1.45) if and only if f �1.A/ 2 M for any A 2 A.
(2) Let d 2 N and let f D .f1; : : : ; fd / W X ! Rd , where fi W X ! R for
each i 2 ¹1; : : : ; dº. Prove that f is M=B.Rd /-measurable if and only if fi is M-
measurable for any i 2 ¹1; : : : ; dº.

Exercise 1.18. Let d 2 N, let S � Rd and let f W S ! Œ�1; 1�.
(1) Let " 2 .0; 1/ and define f "; f" W S ! Œ�1; 1� by

f ".x/ WD sup
y2BS .x;"/

f .y/ and f".x/ WD inf
y2BS .x;"/

f .y/: (1.61)

Prove that f " and f" are Borel measurable.
(2) Prove that the functions f ; f W S ! Œ�1; 1� defined by

f .x/ WD lim sup
S3y!x

f .y/ and f .x/ WD lim inf
S3y!x

f .y/ (1.62)

are Borel measurable.
(3) Prove that ¹x 2 S j limS3y!x f .y/ D f .x/º is a Borel set of S .

Problem 1.19. Let X be a countable set and let � be a measure on .X; 2X /.
(1) Prove that any function f W X ! Œ�1; 1� on X is 2X -measurable.
(2) Let f W X ! Œ0; 1�. Prove that

R
X fd� D

P
x2X f .x/�.¹xº/.

Problem 1.20. Let ' W Œ0; 1� ! Œ0; 1� be non-decreasing and let f W X ! Œ0; 1� be
M-measurable. Prove the following assertions.
(1) ' ı f is M-measurable.
(2) (Chebyshev’s inequality) For any a 2 Œ0; 1� with '.a/ 2 .0; 1/,

�
�
¹x 2 X j f .x/ � aº

�
�

1

'.a/

Z
X

.' ı f /d�: (1.63)

Problem 1.21. Let fn W X ! Œ�1; 1� be M-measurable for each n 2 N and suppose
that

P1

nD1

R
X

jfnjd� < 1. Prove that limn!1 fn.x/ D 0 for �-a.e. x 2 X .

Problem 1.22. Find the limits as N ! 1 of the following series:

(1)
1X

nD1

2�n

�
1 C

sin.2N n/

N

��1

(2)
1X

nD1

1

n.n C N /
(3)

1X
nD1

�
1 C

n

N

��N

Problem 1.23. Let m1 be the Lebesgue measure on B.R/ introduced in Example 1.8.
(1) Prove that m1.¹aº/ D 0 for any a 2 R.
(2) Let a; b 2 R, a < b, and let f W Œa; b� ! R be continuous. For each n 2 N, define
fn W Œa; b� ! R by

fn WD

nX
kD1

f

�
a C

k

n
.b � a/

�
1.aC k�1

n .b�a/; aC k
n .b�a/� C f .a/1¹aº: (1.64)
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(i) Prove that limn!1 fn.x/ D f .x/ for any x 2 Œa; b�.
(ii) By considering limn!1

R
Œa;b�

fndm1, prove thatZ
Œa;b�

fdm1 D

Z b

a

f .x/dx; (1.65)

where the integral in the right-hand side denotes the Riemann integral on Œa; b�.
(3) Let a 2 R and let f W Œa; 1/ ! R be continuous. Prove that f is m1-integrable
on Œa; 1/ if and only if limb!1

R b

a jf .x/jdx < 1,10 and in that caseZ
Œa;1/

fdm1 D lim
b!1

Z b

a

f .x/dx: (1.66)

By Problem 1.23-(2), for a continuous function on a bounded closed interval, its
integral with respect to the Lebesgue measure m1 coincides with its Riemann integral.
In fact, this fact can be generalized to any Riemann integrable function f on a bounded
closed interval of any dimension. See Section 2.6 below for details.

On the other hand, Problem 1.23-(3) says that the same is true also for a con-
tinuous function on an unbounded interval provided the improper Riemann integral
limb!1

R b

a f .x/dx is absolutely convergent. Here the assumption of the absolute
convergence is necessary; see Problem 2.14 in this connection.

Problem 1.24. Find the limits as n ! 1 of the following integrals:

(1)
Z 1

0

1

1 C xn
dx (2)

Z 1

0

sin ex

1 C nx2
dx (3)

Z 1

0

n cos x

1 C n2x3=2
dx

Exercise 1.25 ([1, Section 4.3, Problem 1]). Let f 2 L1.�/ and ¹fnº1
nD1 � L1.�/.

Suppose that fn � 0 on X for any n 2 N, that limn!1 fn.x/ D f .x/ for any x 2 X ,
and that limn!1

R
X

fnd� D
R
X

fd�. Prove that limn!1

R
X

jf � fnjd� D 0.

Problem 1.26 ([7, Chapter 1, Exercise 9]). Let ˛ 2 .0; 1/, let f W X ! Œ0; 1� be M-
measurable and suppose

R
X

fd� 2 .0; 1/. Find the limit (with log 1 WD 1˛ WD 1)

lim
n!1

Z
X

n log
�
1 C .f =n/˛

�
d�:

Exercise 1.27. Let f W X ! Œ�1; 1�. Prove that the following three conditions are
equivalent:
(1) f is M

�
-measurable.

(2) There exist M-measurable functions f1; f2 W X ! Œ�1; 1� such that f1 � f �

f2 on X and f1 D f2 �-a.e.
(3) There exists a M-measurable function f0 W X ! Œ�1; 1� such that f0 D f �-a.e.

10Note that the limit limb!1

R b
a jf .x/jdx always exists in Œ0; 1�, since

R b
a jf .x/jdx is non-

decreasing in b 2 .a; 1/.
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Problem 1.28. Let p 2 .0; 1/ and let f 2 Lp.�/. Prove that

lim
n!1

Z
X

ˇ̌
f � f 1¹jf j�nº

ˇ̌p
d� D 0: (1.67)

Problem 1.29. Let p; q 2 .0; 1/, p < q, and let f W X ! Œ0; 1� be M-measurable.
Prove that �Z

X

f pd�

�1=p

�

�Z
X

f qd�

�1=q

�.X/.q�p/=pq : (1.68)

By Problem 1.29, if �.X/ < 1, then Lq.X; �/ � Lp.X; �/ for any p; q 2 .0; 1/

with p < q.

Problem 1.30 (Minkowski’s inequality). Let p 2 Œ1; 1/ and let f; g W X ! Œ0; 1� be
M-measurable. Prove that�Z

X

.f C g/pd�

�1=p

�

�Z
X

f pd�

�1=p

C

�Z
X

gpd�

�1=p

: (1.69)

For the next problem, we need the following definition.

Definition. Let f W X ! R and fn W X ! R, n 2 N, be M-measurable. We say that
¹fnº1

nD1 converges in �-measure to f if and only if for any " 2 .0; 1/,

lim
n!1

�
�
¹x 2 X j jfn.x/ � f .x/j � "º

�
D 0: (1.70)

Problem 1.31. Let f W X ! R and fn W X ! R, n 2 N, be M-measurable.
(1) Let p 2 .0; 1/ and suppose limn!1 kfn � f kLp.�/ D 0. Prove that ¹fnº1

nD1

converges in �-measure to f .
(2) Suppose that ¹fnº1

nD1 converges in �-measure to f . Prove that there exists a strictly
increasing sequence ¹nkº1

kD1
� N such that limk!1 fnk

.x/ D f .x/ for �-a.e. x 2 X .

Problem 1.32. Let A 2 M, and define a measure �jA on MjA D ¹B \ A j B 2 Mº

by �jA WD �jM jA (note that MjA � M). Let f W X ! Œ�1; 1� be M-measurable.
Prove that

R
X f 1Ad� exists if and only if

R
A f jAd.�jA/ exists, and in this case�Z

A

fd� WD

�Z
X

f 1Ad� D

Z
A

f jA d.�jA/: (1.71)

According to Problem 1.32,
R
A fd� could alternatively be defined as the integral

of f jA with respect to �jA D �jM jA , the restriction of � to A.

Exercise 1.33. Let N be a � -algebra in X such that N � M, and let f W X !

Œ�1; 1� be N-measurable. Prove that
R
X fd� exists if and only if

R
X fd.�jN / exists

(note that �jN is a measure on .X; N/), and in this caseZ
X

fd� D

Z
X

fd.�jN /: (1.72)
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Exercise 1.34. Let f W X ! Œ0; 1� be M-measurable and �-integrable. Prove that,
for any " 2 .0; 1/ there exists ı 2 .0; 1/ such that

R
A fd� < " for any A 2 M with

�.A/ < ı.

Exercise 1.35. Assume that .X; M; �/ is �-finite (see Definition 2.25). Let p 2

.1; 1/, q WD p=.p � 1/, and let f W X ! Œ0; 1� be M-measurable. Prove that

kf kLp D sup
²Z

X

fgd�

ˇ̌̌̌
g W X ! Œ0; 1�, g is M-measurable and kgkLq � 1

³
:

(1.73)



Chapter 2

Construction and Uniqueness of
Measures

In this chapter, we provide general criteria for existence and uniqueness of measures
and apply them to some important examples. In the latter part of this chapter, we will
also discuss products of measures and integration of functions in two variables.

2.1 Uniqueness of Measures: Dynkin System Theorem
The purpose of this section is to state and prove the Dynkin system theorem, which is
a fundamental tool in probability theory. This theorem enables us to establish various
equalities and measurability properties among measures and integrals. As an easy ap-
plication, some uniqueness theorems for measures are also proved at the last of this
section.

Definition 2.1 (�-systems and Dynkin systems). Let X be a set and let A; D � 2X .
(1) A is called a �-system if and only if A \ B 2 A for any A; B 2 A.
(2) D is called a Dynkin system in X if and only if the following conditions are satisfied:

(D1) X 2 D.

(D2) If A; B 2 D and A � B , then B n A 2 D.

(D3) If ¹Anº1
nD1 � D and An � AnC1 for any n 2 N, then

S1

nD1 An 2 D.

Proposition 2.2. Let X be a set.
(1) Let ƒ be a non-empty set and suppose that D� is a Dynkin system in X for each
� 2 ƒ. Then

T
�2ƒ D� is a Dynkin system in X .

(2) Let A � 2X and set

ıX .A/ WD
\

D : Dynkin system in X , A � D

D: (2.1)

Then ıX .A/ is the smallest Dynkin system in X that includes A, and ıX .A/ � �X .A/.

33
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ıX .A/ in (2.1) is called the Dynkin system in X generated by A, and it is simply
denoted as ı.A/ when no confusion can occur.

Here is the statement of the Dynkin system theorem.

Theorem 2.3 (Dynkin system theorem). Let X be a set and let A � 2X be a �-system.
Then

ı.A/ D �.A/: (2.2)

We need the following lemma.

Lemma 2.4. Let X be a set and let D � 2X be a Dynkin system in X . If D is a
�-system, then it is a � -algebra in X .

Now we present a uniqueness theorem for probability measures, whose proof illus-
trates when and how to use the Dynkin system theorem (Theorem 2.3).

Theorem 2.5 (Uniqueness of probability measures). Let X be a set, let A � 2X be
a �-system and let � W A ! Œ0; 1�. Then a probability measure � on �.A/ with
�jA D �, if exists, is unique, i.e. if �1; �2 are probability measures on �.A/ with
�1jA D �2jA D �, then �1 D �2.

For instance, Theorem 2.5 can be used to prove the uniqueness of the Bernoulli
measure Pp of probability p stated in Example 1.12; see Problem 2.2.

With exactly the same idea and a more complicated calculation using the inclusion-
exclusion formula (Problem 1.9), we can also prove the following more general unique-
ness theorem applicable to non-probability measures.

Theorem 2.6 (Uniqueness of measures). Let X be a set, let A � 2X be a �-system
and let � W A ! Œ0; 1�. Suppose that there exists ¹Xnº1

nD1 � A such that

X D

1[
nD1

Xn and �.Xn/ < 1 for any n 2 N. (2.3)

Then a measure � on �.A/ with �jA D �, if exists, is unique, i.e. if �1; �2 are mea-
sures on �.A/ with �1jA D �2jA D �, then �1 D �2.

Example 2.7. Let d 2 N, let Fd be as in (1.6), and define � W Fd ! Œ0; 1/ by

�
�
Œa1; b1� � � � � � Œad ; bd �

�
WD .b1 � a1/ � � � .bd � ad /; �.;/ WD 0:

Then Fd is clearly a �-system and (2.3) is satisfied with Xn WD Œ�n; n�d . Thus by
Theorem 2.6, a measure on �.Fd / D B.Rd / extending � is unique. This is nothing
but the uniqueness of the Lebesgue measure on .Rd ; B.Rd // stated in Example 1.8.

2.2 Construction of Measures
The following theorem is our criterion for construction of measures, which is due to Jun
Kigami in Kyoto University and has been borrowed from his unpublished lecture note
[6]. We use this theorem in the next section to construct measures on .Rd ; B.Rd //.
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Theorem 2.8 (Kigami [6, Theorem 1.4.3]). Let X be a set, let A � 2X be a �-system
and let � W A ! Œ0; 1�. Suppose that the following three conditions are satisfied:

(C1) ; 2 A and �.;/ D 0.

(C2) If A 2 A, ¹Anº1
nD1 � A and A �

S1

nD1 An, then �.A/ �
P1

nD1 �.An/.

(C3) For any A; B 2 A, there exist n 2 N and ¹Ai º
n
iD1 � A such that A n B �Sn

iD1 Ai and �.A/ � �.A \ B/ C
Pn

iD1 �.Ai /.

Then the set function � W �.A/ ! Œ0; 1� defined by

�.A/ WD inf

´
1X

nD1

�.An/

ˇ̌̌̌
ˇ ¹Anº

1
nD1 � A, A �

1[
nD1

An

µ
(inf ; WD 1) (2.4)

is a measure on �.A/ such that �jA D �.

The rest of this section is devoted to the proof of Theorem 2.8. We need the fol-
lowing definition and theorem, which are also fundamental in measure theory.

Definition 2.9 (Outer measures). Let X be a set. A set function � W 2X ! Œ0; 1� is
called an outer measure on X if and only if it has the following properties:

(O1) �.;/ D 0.

(O2) If A � B � X , then �.A/ � �.B/.

(O3) If ¹Anº1
nD1 � 2X , then �

�S1

nD1 An

�
�
P1

nD1 �.An/. (countable subadditivity)

Moreover, for an outer measure � on X , we define M.�/ � 2X by

M.�/ WD ¹A � X j �.E/ D �.E \ A/ C �.E n A/ for any E � Xº: (2.5)

Each A 2 M.�/ is called �-measurable.

Note that an outer measure � on a set X satisfies �.E/ � �.E \ A/ C �.E n A/ for
any A; E � X by (O1), (O3) and E D .E \A/[ .E nA/[;[;[ : : : , and hence that
A � X belongs to M.�/ if and only if �.E/ � �.E \ A/ C �.E n A/ for any E � X .

Theorem 2.10 (Carathéodory’s theorem). Let X be a set and let � be an outer measure
on X . Then M.�/ is a � -algebra in X and �jM.�/ is a complete measure on M.�/.

We also need the following easy lemma.

Lemma 2.11. Let X be a set, let A � 2X and let � W A ! Œ0; 1�. Suppose ; 2 A and
�.;/ D 0. Then the set function �� W 2X ! Œ0; 1� defined by

��.A/ WD inf

´
1X

nD1

�.An/

ˇ̌̌̌
ˇ ¹Anº

1
nD1 � A, A �

1[
nD1

An

µ
(inf ; WD 1) (2.6)

is an outer measure on X .

The proof of Lemma 2.11 is left to the reader as an exercise (Problem 2.4).
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2.3 Borel Measures on Rd and Distribution Functions
In this section, we construct Borel measures on Rd (i.e. measures on .Rd ; B.Rd //)
by using Theorem 2.8. At the last of this section, we will also present a useful result
concerning approximation of measures by open sets and compact sets.

2.3.1 Borel measures on R: Lebesgue-Stieltjes measures
This subsection is devoted to the construction of Borel measures on R from right-
continuous non-decreasing functions on R. In particular, we prove the existence of the
Lebesgue measure on .R; B.R// stated in Example 1.8.

Definition 2.12. A function F W R ! R is called right-continuous if and only if1

lim
y#x

F.y/ D F.x/ for any x 2 R. (2.7)

Proposition 2.13. Let � be a Borel measure on R such that �
�
.�n; n�

�
< 1 for any

n 2 N. Define F W R ! R by

F.x/ WD

8̂<̂
:

�
�
.0; x�

�
if x 2 .0; 1/,

0 if x D 0,
��

�
.x; 0�

�
if x 2 .�1; 0�.

(2.8)

Then F is right-continuous, non-decreasing and satisfies �
�
.a; b�

�
D F.b/�F.a/ for

any a; b 2 R with a < b.

Conversely, any right-continuous non-decreasing function on R gives rise to exactly
one Borel measure on R, as follows.

Theorem 2.14. Let F W R ! R be right-continuous and non-decreasing. Then there
exists a unique Borel measure �F on R such that �F

�
.a; b�

�
D F.b/ � F.a/ for any

a; b 2 R with a < b.

�F is called the Lebesgue-Stieltjes measure associated with F .

Corollary 2.15 (Lebesgue measure on B.R/). There exists a unique Borel measure m1

on R such that m1

�
Œa; b�

�
D b � a for any a; b 2 R with a � b.

As already mentioned in Example 1.8, m1 is called the Lebesgue measure on R.
The case of probability measures is of particular importance.

Definition 2.16 (Distribution functions). Let � be a Borel probability measure on R
(i.e. a probability measure on B.R/). Then the function F� W R ! Œ0; 1� defined by
F�.x/ WD �

�
.�1; x�

�
is called the distribution function of �.

1For a 2 R, limy#x F .y/ D a (resp. limy"x F .y/ D a) means that for any " 2 .0; 1/ there exists
ı 2 .0; 1/ such that jF .y/ � aj < " for any y 2 .x; x C ı/ (resp. for any y 2 .x � ı; x/).
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Similarly to Proposition 2.13, F� is right-continuous, non-decreasing and satisfies
�
�
.a; b�

�
D F�.b/ � F�.a/ for any a; b 2 R with a < b. By Theorem 2.14, � is

equal to �F�
, the Lebesgue-Stieltjes measure associated with F�, and in particular �

is uniquely determined by its distribution function F�.2

Corollary 2.17. A function F W R ! R is the distribution function of a (unique)
Borel probability measure on R if and only if F is right-continuous, non-decreasing
and satisfies limx!1 F.x/ D 1 and limx!�1 F.x/ D 0.

According to Corollary 2.17 and the argument after Definition 2.16, � 7! F� gives
a bijection from the set of Borel probability measures on R to the set²

F W R ! R
ˇ̌̌̌

F is right continuous, non-decreasing and satisfies
limx!1 F.x/ D 1 and limx!�1 F.x/ D 0

³
;

and its inverse map is given by F 7! �F . Through this bijection, a Borel probability
measure on R is often identified with its distribution function.

2.3.2 Borel probability measures on Rd and distribution functions
Corollary 2.17 can be generalized to Borel probability measures on Rd , as described
below in this subsection.

Definition 2.18 (Distribution functions on Rd ). Let d 2 N and let � be a Borel prob-
ability measure on Rd . Then the function F� W Rd ! Œ0; 1� defined by

F�.x1; : : : ; xd / WD �
�
.�1; x1� � � � � � .�1; xd �

�
(2.9)

is called the distribution function of �.

Proposition 2.19. Let d 2 N, let � be a Borel probability measure on Rd and let F�

be the distribution function of �.
(1) For any .x1; : : : ; xd / 2 Rd and any .h1; : : : ; hd / 2 Œ0; 1/d ,

�
�
.x1 � h1; x1� � � � � � .xd � hd ; xd �

�
D

X
.˛1;:::;˛d /2¹0;1ºd

.�1/
Pd

iD1 ˛i F�.x1 � ˛1h1; : : : ; xd � ˛d hd / � 0; (2.10)

where .a; a� WD ; for a 2 R.
(2) For any x D .x1; : : : ; xd / 2 Rd ,

lim
.y1;:::;yd /!x

yi �xi ; i2¹1;:::;dº

F�.y1; : : : ; yd / D F�.x/: (2.11)

(3) limx!1 F�.x; : : : ; x/ D 1, and limxi !�1 F�.x1; : : : ; xi ; : : : ; xd / D 0 for any
i 2 ¹1; : : : ; dº and any xj 2 R, j 2 ¹1; : : : ; dº n ¹iº.
(4) � is uniquely determined by its distribution function F�.3

2That is, if � is a Borel probability measure on R whose distribution function is F�, then � D �.
3That is, if � is a Borel probability measure on Rd whose distribution function is F�, then � D �.
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The proof of Proposition 2.19 is left to the reader as an exercise (Problem 2.8).

Theorem 2.20. Let d 2 N, and let F W Rd ! R satisfy the following conditions:

(F1) For any .x1; : : : ; xd / 2 Rd and any .h1; : : : ; hd / 2 .0; 1/d ,X
.˛1;:::;˛d /2¹0;1ºd

.�1/
Pd

iD1 ˛i F.x1 � ˛1h1; : : : ; xd � ˛d hd / � 0: (2.12)

(F2) limh#0 F.x1 C h; : : : ; xd C h/ D F.x1; : : : ; xd / for any .x1; : : : ; xd / 2 Rd .

(F3) limx!1 F.x; : : : ; x/ D 1, and limxi !�1 F.x1; : : : ; xi ; : : : ; xd / D 0 for any
i 2 ¹1; : : : ; dº and any xj 2 R, j 2 ¹1; : : : ; dº n ¹iº.

Then F is the distribution function of a unique Borel probability measure � on Rd .

2.3.3 Topology and Borel measures on Rd

The purpose of this subsection is to prove the following theorem, which asserts that the
measure of a Borel set can be approximated from above by open sets and from below
by compact sets.

Theorem 2.21. Let d 2 N, and let � be a Borel measure on Rd with �
�
Œ�n; n�d

�
< 1

for any n 2 N. Then for any A 2 B.Rd /,

�.A/ D inf¹�.U / j A � U � Rd , U is open in Rd
º (2.13)

D sup¹�.K/ j K � A, K is compactº: (2.14)

Note that Theorem 2.21 is applicable to the Lebesgue measure md on Rd , since
md satisfies md

�
Œ�n; n�d

�
D .2n/d < 1 for any n 2 N.

2.4 Product Measures and Fubini’s Theorem
Recall the following basic fact for Riemann integrals: Let f W Œ0; 1�2 ! R be bounded
and Riemann integrable on Œ0; 1�2. If f .x; �/ and f .�; y/ are Riemann integrable on
Œ0; 1� for any x; y 2 Œ0; 1�, then so are

R 1

0 f .�; y/dy and
R 1

0 f .x; �/dx, andZ
Œ0;1�2

f .´/d´ D

Z 1

0

�Z 1

0

f .x; y/dx

�
dy D

Z 1

0

�Z 1

0

f .x; y/dy

�
dx: (2.15)

The aim of this section is to establish the counterpart of this fact in the framework
of measure theory, for which we need the notions of the product of � -algebras and that
of measures. We start with the definition of the product of � -algebras.

Definition 2.22 (Product � -algebras). Let n 2 N, and for each i 2 ¹1; : : : ; nº let
.Xi ; Mi / be a measurable space. We define M1 � � � � � Mn � 2X1�����Xn and a � -
algebra M1 ˝ � � � ˝ Mn in X1 � � � � � Xn by

M1 � � � � � Mn WD
®
A1 � � � � � An

ˇ̌
Ai 2 Mi for i 2 ¹1; : : : ; nº

¯
; (2.16)
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M1 ˝ � � � ˝ Mn WD �X1�����Xn
.M1 � � � � � Mn/ (D M1 if n D 1): (2.17)

M1 ˝ � � � ˝ Mn is called the product � -algebra of ¹Mi º
n
iD1.

Proposition 2.23. Let n; k 2 N, and for each i 2 ¹1; : : : ; n C kº let .Xi ; Mi / be a
measurable space. Then

.M1 ˝ � � � ˝ Mn/ ˝ .MnC1 ˝ � � � ˝ MnCk/ D M1 ˝ � � � ˝ MnCk : (2.18)

The following proposition provides an important example of product �-algebras.

Proposition 2.24. (1) Let n; k 2 N. Then B.RnCk/ D B.Rn/ ˝ B.Rk/.
(2) Let d 2 N. Then B.Rd / D B.R/˝d WD B.R/ ˝ � � � ˝ B.R/ (d -fold product).

Next we prove the existence and the uniqueness of the product of measures. We
need the following definition for the uniqueness statement.

Definition 2.25. Let .X; M; �/ be a measure space. Then � (or .X; M; �/) is called
� -finite if and only if there exists ¹Xnº1

nD1 � M such that

X D

1[
nD1

Xn and �.Xn/ < 1 for any n 2 N. (2.19)

Note that, by considering
®Sn

iD1 Xi

¯1

nD1
instead of ¹Xnº1

nD1, in (2.19) we may assume
without loss of generality that Xn � XnC1 for any n 2 N.

Theorem 2.26 (Product measures). Let n 2 N, n � 2, and for each i 2 ¹1; : : : ; nº let
.Xi ; Mi ; �i / be a measure space. Then there exists a measure � on M1 ˝ � � � ˝ Mn

such that for any Ai 2 Mi , i 2 ¹1; : : : ; nº,

�.A1 � � � � � An/ D �1.A1/ � � � �n.An/: (2.20)

If .Xi ; Mi ; �i / is �-finite for each i 2 ¹1; : : : ; nº in addition, then such a measure �

on M1 ˝ � � � ˝ Mn is unique and �-finite, and it is denoted as �1 � � � � � �n.

In the latter case, �1 � � � � � �n is called the product measure of ¹�i º
n
iD1.

Corollary 2.27. Let n; k 2 N, and for each i 2 ¹1; : : : ; n C kº let .Xi ; Mi ; �i / be a
� -finite measure space. Then

.�1 � � � � � �n/ � .�nC1 � � � � � �nCk/ D �1 � � � � � �nCk : (2.21)

Theorem 2.26 gives rise to the existence of the Lebesgue measure on Rd , d � 2.
Note that the Lebesgue measure m1 on R constructed in Corollary 2.15 is � -finite and
hence that its product m1 � � � � � m1 (d -fold product) is defined and �-finite.

Corollary 2.28 (Lebesgue measure on B.Rd /). Let d 2 N and define md WD md
1 WD

m1 � � � � � m1 (d -fold product). Then md is the unique Borel measure on Rd such that
for any ai ; bi 2 R with ai � bi , i 2 ¹1; : : : ; dº,

md

�
Œa1; b1� � � � � � Œad ; bd �

�
D .b1 � a1/ � � � .bd � ad /: (2.22)

Moreover, mnCk D mn � mk for any n; k 2 N.
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As already mentioned in Example 1.8, md is called the Lebesgue measure on Rd .
We would like to write down integrals with respect to �1 �� � ���n as iterated integrals
with respect to �i , i 2 ¹1; : : : ; nº. This is established in Theorem 2.30 below, which
requires some preparations concerning measurability of functions. Note that, in view
of Proposition 2.23 and Corollary 2.27, it suffices to consider the case of n D 2.

Proposition 2.29. Let .X; M/; .Y; N/ be measurable spaces and let f W X � Y !

Œ�1; 1� be M ˝ N-measurable. Then f .�; y/ W X ! Œ�1; 1� is M-measurable for
any y 2 Y , and f .x; �/ W Y ! Œ�1; 1� is N-measurable for any x 2 X .

Theorem 2.30 (Fubini’s theorem). Let .X; M; �/; .Y; N; �/ be �-finite measure spaces
and let f W X � Y ! Œ�1; 1� be M ˝ N-measurable.
(1) If f � 0 on X � Y , then

R
Y f .�; y/d�.y/ W X ! Œ0; 1� is M-measurable,R

X f .x; �/d�.x/ W Y ! Œ0; 1� is N-measurable, andZ
X�Y

fd.� � �/ D

Z
X

�Z
Y

f .x; y/d�.y/

�
d�.x/ D

Z
Y

�Z
X

f .x; y/d�.x/

�
d�.y/:

(2.23)
(2) Suppose that any one of

R
X�Y jf jd.� � �/,

R
X

�R
Y jf .x; y/jd�.y/

�
d�.x/ andR

Y

�R
X jf .x; y/jd�.x/

�
d�.y/ is finite. Then f .x; �/ is �-integrable for �-a.e. x 2

X with
R

Y f .�; y/d�.y/ M-measurable and �-integrable, f .�; y/ is �-integrable for
�-a.e. y 2 Y with

R
X

f .x; �/d�.x/ N-measurable and �-integrable, f is � � �-
integrable, and (2.23) holds.

Remark 2.31. (1) In the situation of Theorem 2.30-(2), the function
R

Y f .�; y/d�.y/

is defined only off M WD ¹x 2 X j
R

Y
jf .x; y/jd�.y/ D 1º, which belongs to M by

Theorem 2.30-(1). The first assertion of Theorem 2.30-(2) means that �.M/ D 0 and
that the function

R
Y

f .�; y/d�.y/ on X n M is MjXnM -measurable and �-integrable.
The same remark of course applies to

R
X f .x; �/d�.x/ as well.

(2) Theorem 2.30-(2) is easily verified also for C-valued M ˝ N-measurable f .

The assumption of �-finiteness of � and � and the integrability assumption in (2)
are indeed necessary in Theorem 2.30; see Exercise 2.13 for concrete counterexamples.
The assumption of M ˝ N-measurability of f is much more subtle and there is no
easy counterexample that shows its necessity, but the reader should always keep this
measurability assumption in mind when using Theorem 2.30.

2.5 Fubini’s Theorem for Completed Product Measures
In the last section we have proved Fubini’s theorem (Theorem 2.30). In fact, however,
it is still insufficient when we consider complete measures, e.g. the completion md of
the Lebesgue measure on B.Rd /. A simple reason for this is that the product measure
� � � of two �-finite measures � on .X; M/ and � on .Y; N/ is usually not complete
even if � and � are complete; indeed, if N 2 N, N 6D ;, �.N / D 0 and A � X ,
A 62 M, then A�N � X �N 2 M˝N and .���/.X �N / D 0, but A�N 62 M˝N

since 1A�N .�; y/ D 1N .y/1A is not M-measurable for y 2 N (recall Proposition
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2.29). As a consequence, we cannot apply Theorem 2.30 directly to md -integrals of
B.Rd /

md

-measurable functions.
The purpose of this section is to overcome this difficulty by extending Fubini’s

theorem to the case of the completion of the product measure. We first prove a theorem
which asserts a certain uniqueness of the completion of a product measure.

Theorem 2.32. Let n 2 N, n � 2, and for each i 2 ¹1; : : : ; nº let .Xi ; Mi ; �i / be a
� -finite measure space. Then it holds that

�1 � � � � � �n D �1 � � � � � �n: (2.24)

Corollary 2.33. Let n; k 2 N. Then mnCk D mn � mk .

Now we state and prove Fubini’s theorem for the completion of a product measure.

Theorem 2.34 (Fubini’s theorem for completion). Let .X; M; �/; .Y; N; �/ be com-
plete � -finite measure spaces and f W X � Y ! Œ�1; 1� be M ˝ N

���
-measurable.

(0) f .�; y/ W X ! Œ�1; 1� is M-measurable for �-a.e. y 2 Y and f .x; �/ W Y !

Œ�1; 1� is N-measurable for �-a.e. x 2 X .
(1) If f � 0 on X �Y , then

R
Y f .�; y/d�.y/ is defined �-a.e. on X and M-measurable,R

X f .x; �/d�.x/ is defined �-a.e. on Y and N-measurable, andZ
X�Y

fd.� � �/ D

Z
X

�Z
Y

f .x; y/d�.y/

�
d�.x/ D

Z
Y

�Z
X

f .x; y/d�.x/

�
d�.y/:

(2.25)
(2) Suppose that any one of

R
X�Y jf jd.� � �/,

R
X

�R
Y jf .x; y/jd�.y/

�
d�.x/ andR

Y

�R
X jf .x; y/jd�.x/

�
d�.y/ is finite. Then f .x; �/ is �-integrable for �-a.e. x 2

X with
R

Y f .�; y/d�.y/ M-measurable and �-integrable, f .�; y/ is �-integrable for
�-a.e. y 2 Y with

R
X f .x; �/d�.x/ N-measurable and �-integrable, f is � � �-

integrable, and (2.25) holds.

Remark 2.35. (1) In the situation of Theorem 2.34-(1),
R

Y f .�; y/d�.y/ is defined only
off M WD ¹x 2 X j f .x; �/ is not N-measurableº, which belongs to M by Theorem
2.34-(0) and the completeness of .X; M; �/. Similarly to Remark 2.31-(1), the first
assertion of Theorem 2.34-(1) means that the function

R
Y f .�; y/d�.y/ on X n M is

MjXnM -measurable. The same remark of course applies to
R
X f .x; �/d�.x/ as well.

(2) The same remarks as those in Remark 2.31 apply to Theorem 2.34-(2).

2.6 Riemann Integrals and Lebesgue Integrals

The purpose of this section is to prove the following theorem, which asserts that Rie-
mann integrals on bounded closed intervals are just special cases of integrals with re-
spect to (the completion of) the Lebesgue measure. Recall that a function f W X ! C
on a set X is called bounded if and only if supx2X jf .x/j < 1.
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Theorem 2.36. Let d 2 N, let ai ; bi 2 R, ai < bi for each i 2 ¹1; : : : ; dº and set
I WD Œa1; b1� � � � � � Œad ; bd �. Let f W I ! R be bounded and Riemann integrable on
I . Then f 2 L1

�
I; B.I /

md
; md

�
andZ

I

fdmd D

Z
I

f .x/dx; (2.26)

where the integral in the right-hand side denotes the Riemann integral on I .

Remark 2.37. In Theorem 2.36, we cannot conclude that f is Borel measurable. In
fact, there exists a Riemann integrable function on I which is NOT Borel measurable.

Notation. In view of Theorem 2.36, an integral
R
A fdmd with respect to (the comple-

tion of) the Lebesgue measure md is also denoted as
R
A fdx or

R
A f .x/dx:Z

A

fdx WD

Z
A

f .x/dx WD

Z
A

fdmd : (2.27)

If d D 1 and A D .a; b/, a; b 2 Œ�1; 1�, a < b, then we writeZ b

a

fdx WD

Z b

a

f .x/dx WD

Z
.a;b/

fdm1: (2.28)

In short, an integral on a subset A of Rd written as
R
A fdx or

R
A f .x/dx will always

mean one with respect to (the completion of) the Lebesgue measure md .

Remark 2.38. Let d 2 N. Elements of B.Rd /
md

are called Lebesgue measurable sets
of Rd and B.Rd /

md

-measurable functions are called Lebesgue measurable. B.Rd /
md

is called the Lebesgue � -algebra of Rd or the � -algebra of Lebesgue measurable sets
of Rd .

2.7 Change-of-Variables Formula
At the last of this chapter, we prove the invariance of the Lebesgue measure md under
parallel translations and invertible linear transformations and present the change-of-
variables formulas for md .

Theorem 2.39. Let d 2 N.
(1) If ˛ 2 Rd , then

md .A C ˛/ D md .A/ (2.29)

for any A 2 B.Rd /, where A C ˛ WD ¹x C ˛ j x 2 Aº.
(2) If T W Rd ! Rd is linear and invertible, then for any A 2 B.Rd /,

md .T .A// D j det T jmd .A/: (2.30)

Remark 2.40. (1) Note that A C ˛; T .A/ 2 B.Rd / in the situation of Theorem 2.39;
indeed, since T �1 is continuous, it is B.Rd /=B.Rd /-measurable by Lemma 1.17 and



2.7. CHANGE-OF-VARIABLES FORMULA 43

Problem 1.17-(2) and hence T .A/ D .T �1/�1.A/ 2 B.Rd /. The same argument
works for A C ˛ as well.
(2) If T W Rd ! Rd is linear and NOT invertible, then T .A/ 2 B.Rd /

md

and
md .T .A// D 0 for any A 2 B.Rd /. Indeed, T .Rd / is contained in a .d � 1/-
dimensional subspace H , which can be written as

H D
®
.x1; : : : ; xd / 2 Rd

ˇ̌
x` D

P
1�k�d; k 6D` akxk

¯
for some ` 2 ¹1; : : : ; dº and ak 2 R, k 6D `. Therefore H 2 B.Rd / and md .H/ D 0

by Corollary 2.28 and Fubini’s theorem (Theorem 2.30-(1)), which implies the claim.

In view of the image measure theorem (Theorem 1.46), Theorem 2.39 yields the
following change-of-variables formula.

Corollary 2.41 (Change-of-variables formula: linear version). Let d 2 N, ˛ 2 Rd and
let T W Rd ! Rd be linear and invertible. Let f W Rd ! Œ�1; 1� be Borel measur-
able (i.e. B.Rd /-measurable). Then

R
Rd f .y/dy exists if and only if

R
Rd f .T xC˛/dx

exists, and in this caseZ
Rd

f .y/dy D

Z
Rd

f .T x C ˛/j det T jdx: (2.31)

In fact, we have a much more general change-of-variables formula for the Lebesgue
measure. Recall the following notions from multivariable calculus.

Definition 2.42. Let d 2 N, let U be an open subset of Rd and let ' W U ! Rd ,
' D .'1; : : : ; 'd /.
(1) ' is called continuously differentiable, or simply C 1, if and only if ' is continuous,
all its partial derivatives @'i =@xj , i; j 2 ¹1; : : : ; dº, exist at any point of U and they
are continuous on U . If ' is C 1, then for x 2 U , its derivative (or Jacobian matrix) at
x is defined as the matrix D'.x/ WD

�
.@'i =@xj /.x/

�d
i;j D1

.
(2) ' is called a C 1-embedding if and only if ' is C 1 and injective and D'.x/ is
invertible for any x 2 U .

Note also the following fact, which follows by the inverse mapping theorem: if
' W U ! Rd is a C 1-embedding defined on an open subset U of Rd , then its image
'.U / is open in Rd and the inverse '�1 W '.U / ! U is also a C 1-embedding.

Theorem 2.43 (Change-of-variables formula: general version). Let d 2 N, let U be
an open subset of Rd and let ' W U ! Rd be a C 1-embedding. Let f W '.U / !

Œ�1; 1� be Borel measurable (i.e. B.'.U //-measurable). Then
R

'.U / f .y/dy exists
if and only if

R
U f .'.x//j det D'.x/jdx exists, and in this caseZ

'.U /

f .y/dy D

Z
U

f .'.x//j det D'.x/jdx: (2.32)

The proof of Theorem 2.43 requires various preparations and is too long to be given
here. We refer the interested readers to the proof in Rudin’s book [7, Definition 7.22
– Theorem 7.26]. (In fact, the change-of-variables formula [7, Theorem 7.26] in his
book is proved under much weaker assumptions than those of Theorem 2.43 above.)
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Exercises
Problem 2.1. Let X be a set and let D � 2X . Prove that D is a Dynkin system in
X if and only if D satisfies the conditions (D1) and (D2) of Definition 2.1-(2) and the
following condition (D3)0:

(D3)0 If ¹Anº1
nD1 � D and Ai \Aj D ; for any i; j 2 N with i 6D j , then

S1

nD1 An 2

D.

Problem 2.2. Let � WD ¹0; 1ºN D
®
.!n/1

nD1 j !n 2 ¹0; 1º
¯
, let F be the �-algebra in

� defined by (1.11) and let p 2 Œ0; 1�. Prove the uniqueness of the Bernoulli measure
Pp on .�; F/ of probability p stated in Example 1.12.

The next exercise requires the following definition.

Definition. Let X be a set and let A; M � 2X .
(1) A is called an algebra in X if and only if it possesses the following properties:

(A1) ; 2 A.

(A2) If A 2 A then Ac 2 A, where Ac WD X n A.

(A3) If n 2 N and ¹Ai º
n
iD1 � A then

Sn
iD1 Ai 2 A.

(2) M is called a monotone class in X if and only if it satisfies the following conditions:

(M1) If ¹Anº1
nD1 � M and An � AnC1 for any n 2 N, then

S1

nD1 An 2 M.

(M2) If ¹Anº1
nD1 � M and An � AnC1 for any n 2 N, then

T1

nD1 An 2 M.

Exercise 2.3. Let X be a set and let A � 2X .
(1) Prove that

M.A/ WD MX .A/ WD
\

M : monotone class in X , A � M

M (2.33)

is the smallest monotone class in X that includes A, and that M.A/ � �.A/.
(2) (Monotone class theorem) Suppose A is an algebra in X . Prove that

M.A/ D �.A/: (2.34)

Problem 2.4. Prove Lemma 2.11.

Problem 2.5 ([4, Corollary 7.1]). Let � be a Borel probability measure on R and let F

be its distribution function. Recalling that F is non-decreasing, we define F.x�/ WD

limy"x F.y/ for each x 2 R. Let a; b 2 R, a < b. Prove the following equalities:
(1) �

�
Œa; b�

�
D F.b/ � F.a�/.

(2) �
�
Œa; b/

�
D F.b�/ � F.a�/.

(3) �
�
.a; b/

�
D F.b�/ � F.a/.

(4) �.¹aº/ D F.a/ � F.a�/. (Thus �.¹aº/ D 0 if and only if F is continuous at a.)
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Problem 2.6. Let F be the distribution function of a Borel probability measure on
R. Prove that the set ¹x 2 R j F.x/ 6D F.x�/º is countable, where F.x�/ is as in
Problem 2.5.

Problem 2.7 ([4, Exercise 7.18]). Define F W R ! R by

F WD

1X
nD1

1

2n
1Œn�1;1/: (2.35)

(1) Prove that F is the distribution function of a Borel probability measure � on R.
(2) Let � be as in (1). Calculate the following values (i)–(vi):

(i) �
�
Œ1; 1/

�
(ii) �

�
Œ1=10; 1/

�
(iii) �.¹0º/

(iv) �
�
Œ0; 1=2/

�
(v) �

�
.�1; 0/

�
(vi) �

�
.0; 1/

�
Problem 2.8. Prove Proposition 2.19.

Exercise 2.9. Let d 2 N and let � be a Borel probability measure on Rd . Define

C�;i WD
®
a 2 R

ˇ̌
�
�
Hi .a/

�
D 0

¯
; where Hi .a/ WD ¹.x1; : : : ; xd / 2 Rd

j xi D aº;

(2.36)
for each i 2 ¹1; : : : ; dº and C� WD C�;1 � � � � � C�;d . Prove the following statements:
(1) R n C�;i is a countable set for any i 2 ¹1; : : : ; dº.
(2) The distribution function F� W Rd ! Œ0; 1� of � is continuous at x for any x 2 C�.

Problem 2.10. Let .X; M/ be a measurable space. Let n 2 N, and for each i 2

¹1; : : : ; nº, let .Si ; Bi / be a measurable space and let fi W X ! Si . Prove that the map
f D .f1; : : : ; fd / W X ! S1 � � � � � Sn is M=B1 ˝ � � � ˝ Bn-measurable if and only
if fi is M=Bi -measurable for any i 2 ¹1; : : : ; nº.

Problem 2.11. Let n 2 N. For each i 2 ¹1; : : : ; nº, let .Xi ; Mi ; �i / be a �-finite
measure space and let fi W Xi ! Œ�1; 1� be Mi -measurable. For each i 2 ¹1; : : : ; nº

define Fi W X1 � � � � � Xn ! Œ�1; 1� by Fi .x1; : : : ; xn/ WD fi .xi /, and define
F W X1 � � � � � Xn ! Œ�1; 1� by F.x1; : : : ; xn/ WD f1.x1/ � � � fn.xn/. Prove the
following statements:
(1) Fi is M1 ˝ � � � ˝ Mn-measurable for any i 2 ¹1; : : : ; nº.
(2) F is M1 ˝ � � � ˝ Mn-measurable.
(3) If fi is �i -integrable for any i 2 ¹1; : : : ; nº, then F is �1 � � � � � �n-integrable andZ

X1�����Xn

Fd.�1 � � � � � �n/ D

Z
X1

f1d�1 � � �

Z
Xn

fnd�n: (2.37)

Problem 2.12. Let .X; M; �/ be a � -finite measure space, let f W X ! Œ0; 1� be
M-measurable and set Sf WD ¹.x; t/ 2 X � R j 0 � t < f .x/º.
(1) Prove that Sf 2 M˝B.R/ and that Œ0; 1/ 3 t 7! �

�
¹x 2 X j f .x/ > tº

�
2 Œ0; 1�

is Borel measurable.
(2) Prove that

R
X fd� D � � m1.Sf / and that for any p 2 .0; 1/,Z

X

f pd� D p

Z 1

0

tp�1�
�
¹x 2 X j f .x/ > tº

�
dt: (2.38)

(3) Prove that m2

�
¹x 2 R2 j jxj < rº

�
D �r2 for any r 2 .0; 1/.
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Exercise 2.13 ([7, Counterexamples 8.9]). (1) Let # denote the counting measure on
Œ0; 1� and set �Œ0;1� WD ¹.x; y/ 2 Œ0; 1�2 j x D yº, which is closed in R2. Prove thatZ 1

0

�Z
Œ0;1�

1�Œ0;1�
.x; y/d#.y/

�
dx D 1 6D 0 D

Z
Œ0;1�

�Z 1

0

1�Œ0;1�
.x; y/dx

�
d#.y/:

(2.39)
(2) Let ¹ınº1

nD0 � Œ0; 1/ be such that ı0 D 0, ın�1 < ın for any n 2 N and
limn!1 ın D 1. Also for each n 2 N, let gn W Œ0; 1/ ! R be a continuous func-
tion such that gnjŒ0;1/n.ın�1;ın/ D 0 and

R 1

0 gn.x/dx D 1. Define f W Œ0; 1/2 ! R
by

f .x; y/ WD

1X
nD1

�
gn.x/ � gnC1.x/

�
gn.y/: (2.40)

Prove the following statements:
(i) f is continuous and

R 1

0

�R 1

0 jf .x; y/jdx
�
dy D 1.

(ii) For any x; y 2 Œ0; 1/, f .x; �/; f .�; y/ 2 L1
�
Œ0; 1/; m1

�
,
R 1

0 f .x; ´/d´ D g1.x/ andR 1

0 f .´; y/d´ D 0. In particular,Z 1

0

�Z 1

0

f .x; y/dy

�
dx D 1 6D 0 D

Z 1

0

�Z 1

0

f .x; y/dx

�
dy: (2.41)

Problem 2.14. (1) Prove that Z 1

0

ˇ̌̌̌
sin x

x

ˇ̌̌̌
dx D 1: (2.42)

(2) Use x�1 D
R1

0
e�xt dt , x 2 .0; 1/, to prove that

lim
A!1

Z A

0

sin x

x
dx D

Z 1

0

1 � cos x

x2
dx D

Z 1

0

�
sin x

x

�2

dx D
�

2
: (2.43)


