Problem set 1, submission of solutions NOT required

The Problems below will be discussed in the tutorial on 21.09.2012. (The Exercise is additional and will be discussed only if time permits.)

Problem 0.1. (1) Let $A \subset[-\infty, \infty]$ be non-empty. Prove that $\sup (-A)=-\inf A$, where $-A:=\{-a \mid a \in A\}$.
(2) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset[-\infty, \infty]$. Prove that $\lim \sup _{n \rightarrow \infty}\left(-a_{n}\right)=-\liminf _{n \rightarrow \infty} a_{n}$.

Problem 0.2. Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset[-\infty, \infty]$.
(1) Suppose $a_{n} \leq b_{n}$ for any $n \in \mathbb{N}$. Prove that

$$
\limsup _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} b_{n} \quad \text { and } \quad \liminf _{n \rightarrow \infty} a_{n} \leq \liminf _{n \rightarrow \infty} b_{n}
$$

(2) Suppose that $\left\{\limsup _{n \rightarrow \infty} a_{n}, \lim \sup _{n \rightarrow \infty} b_{n}\right\} \neq\{\infty,-\infty\}$ and that $\left\{a_{n}, b_{n}\right\} \neq$ $\{\infty,-\infty\}$ for any $n \in \mathbb{N}$. Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} \tag{0.14}
\end{equation*}
$$

and that the equality holds in (0.14) if $\lim _{n \rightarrow \infty} a_{n}$ exists in $[-\infty, \infty]$. Give an example of $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset[0,1]$ for which the strict inequality holds in (0.14).

Problem 1.1. Let $X:=\{1,2,3\}$. Provide all σ-algebras in X.
Problem 1.2. For a set X and $A \subset X$, prove that $\left\{\emptyset, A, A^{c}, X\right\}$ is a σ-algebra in X.
The notion of independence is very important in probability theory. The following definitions, problems and exercises provide some basics about independence of events.
Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(1) A pair $\{A, B\}$ of events $A, B \in \mathcal{F}$ is called independent if and only if $\mathbb{P}[A \cap B]=$ $\mathbb{P}[A] \mathbb{P}[B]$.
(2) A (possibly infinite) family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \mathcal{F}$ of events is called independent if and only if it holds that $\mathbb{P}\left[\bigcap_{\lambda \in \Lambda_{0}} A_{\lambda}\right]=\prod_{\lambda \in \Lambda_{0}} \mathbb{P}\left[A_{\lambda}\right]$ for any non-empty finite $\Lambda_{0} \subset \Lambda$.
Problem 1.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(1) Let $A, B \in \mathcal{F}$. Prove that if $\{A, B\}$ is independent then $\left\{A^{c}, B\right\},\left\{A, B^{c}\right\}$ and $\left\{A^{c}, B^{c}\right\}$ are also independent.
(2) Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \mathcal{F}$ be a (possibly infinite) family of events. Prove that $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ is independent if and only if $\mathbb{P}\left[\bigcap_{\lambda \in \Lambda_{0}} B_{\lambda}\right]=\prod_{\lambda \in \Lambda_{0}} \mathbb{P}\left[B_{\lambda}\right]$ for any non-empty finite $\Lambda_{0} \subset \Lambda$ and any $B_{\lambda} \in\left\{\emptyset, A_{\lambda}, A_{\lambda}^{c}, \Omega\right\}, \lambda \in \Lambda_{0}$.
Problem 1.4. Give an example of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and events $A, B, C \in$ \mathcal{F} such that the pairs $\{A, B\},\{B, C\}$ and $\{A, C\}$ are independent but $\mathbb{P}[A \cap B \cap C] \neq$ $\mathbb{P}[A] \mathbb{P}[B] \mathbb{P}[C]$. (Consider $\Omega:=\{1,2,3,4\}$ and $\mathbb{P}[A]:=\# A / 4, A \subset \Omega$.)

Exercise 1.5. Give an example of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and events $A, B, C \in$ \mathcal{F} such that $\{A, B\}$ and $\{B, C\}$ are independent, $\mathbb{P}[A \cap B \cap C]=\mathbb{P}[A] \mathbb{P}[B] \mathbb{P}[C]$ but $\{A, C\}$ is not independent. (Consider $\Omega:=\{1, \ldots, 16\}$ and $\mathbb{P}[A]:=\# A / 16, A \subset \Omega$.)

