Problem set 10, submit solutions by 21.11.2012

The **Problems** below will be discussed in the tutorial on 23.11.2012. (The **Exercises** are additional and will be discussed only if time permits.)

In the problems and the exercise below, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a probability space and all random variables are assumed to be defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Problem 3.9. Let *X*, *Y* be independent geometric random variables of parameter 1/2. Let $k \in \mathbb{N} \cup \{0\}$. Calculate the following probabilities:

(i)
$$\mathbb{P}[\min\{X, Y\} \le k]$$
 (ii) $\mathbb{P}[X < Y]$ (iii) $\mathbb{P}[X = Y]$

Problem 3.10. Let X be a real random variable with $X \sim \text{Unif}(0, \pi/2)$ and set $Y := \sin X$. Find the following quantities:

(i) a density of Y (ii) $\mathbb{E}[Y]$ (iii) $\operatorname{var}(Y)$

Exercise 3.11 (Not difficult – **DO NOT SKIP!**). Define $\rho : \mathbb{R}^2 \to [0, \infty)$ by

$$\rho(x, y) := \frac{1}{2}(x + y)e^{-x - y}\mathbf{1}_{(0,\infty)^2}(x, y).$$
(3.81)

(1) Prove that $\int_{\mathbb{R}^2} \rho(z) dz = 1$, so that $\mu := \rho \cdot m_2$ is a probability law on \mathbb{R}^2 .

(2) Let X, Y be real random variables with $(X, Y) \sim \mu$. Find the following quantities:

(i) a density of X (ii)
$$\mathbb{E}[X]$$
 (iii) $\operatorname{var}(X)$
(iv) $\operatorname{cov}(X, Y)$ (v) a density of $X + Y$

((iv): $\mathbb{E}[XY] = \int_{\mathbb{R}^2} xy\rho(x, y)dm_2(x, y)$ by Theorem 3.14. (v): find a density of (X + Y, X - Y) in the same way as Example 3.30 and then use Proposition 3.17.)

In Exercise 3.11-(2), you will see that $cov(X, Y) \neq 0$, which together with (3.31) in Proposition 3.32 implies that $\{X, Y\}$ is not independent.

Problem 3.12. Let *X* be a real random variable with $X \sim N(m, v)$. Let $\alpha \in \mathbb{R}$. Prove that $\alpha X \sim N(\alpha m, \alpha^2 v)$. (Note that a special treatment is required if v = 0 or $\alpha = 0$.)

Problem 3.13. Let *X*, *Y* be independent real random variables with $X \sim N(m_1, v_1)$ and $Y \sim N(m_2, v_2)$. Prove that $X + Y \sim N(m_1 + m_2, v_1 + v_2)$. (Use Propositions 3.36 and 3.38. Note again that a special treatment is required if $v_1 = 0$ or $v_2 = 0$.)

Exercise 3.14. Let $n \in \mathbb{N}$, and let $\{X_i\}_{i=1}^n$ be independent real random variables with $X_i \sim N(m_i, v_i)$ for any $i \in \{1, \dots, n\}$. Set $X := \sum_{i=1}^n X_i$, $m := \sum_{i=1}^n m_i$ and $v := \sum_{i=1}^n v_i$. Prove that $X \sim N(m, v)$. (Induction in *n*. Use Proposition 3.31 and Problem 3.13.)

Problem 3.15. Let $\{X_n\}_{n=1}^{\infty}$ be real random variables. Prove the following statements: (1) $\{\lim_{n\to\infty} X_n \text{ exists in } \mathbb{R}\}$ is a tail event for $\{X_n\}_{n=1}^{\infty}$. (The results of Example 3.48 can be used.)

(2) If $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ satisfies $\lim_{n\to\infty} a_n = 0$, then $\limsup_{n\to\infty} a_n \sum_{i=1}^n X_i$ and $\lim_{n\to\infty} a_n \sum_{i=1}^n X_i$ are $\sigma_{\infty}(\{X_n\}_{n=1}^{\infty})$ -measurable. (Imitate Example 3.48.)

Exercise 3.16. Let $d \in \mathbb{N}$, and let $\{X_n\}_{n=1}^{\infty}$ be *d*-dimensional random variables. Prove that $\{\lim_{n\to\infty} X_n \text{ exists in } \mathbb{R}^d\}$ is a tail event for $\{X_n\}_{n=1}^{\infty}$. (Problem 3.15-(1) can be used.)