Problem set 11, submit solutions by 28.11.2012

The Problems below will be discussed in the tutorial on 30.11.2012. (The Exercises are additional and will be discussed only if time permits.)

In the problems and the exercises below, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a probability space and all random variables are assumed to be defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Problem 3.17. Let X, Y be independent real random variables with $X \sim \operatorname{Po}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Po}\left(\lambda_{2}\right)$. Prove that $X+Y \sim \operatorname{Po}\left(\lambda_{1}+\lambda_{2}\right)$.

Exercise 3.18. Let $n \in \mathbb{N}$, and let $\left\{X_{i}\right\}_{i=1}^{n}$ be independent real random variables with $X_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$ for any $i \in\{1, \ldots, n\}$. Set $X:=\sum_{i=1}^{n} X_{i}$ and $\lambda:=\sum_{i=1}^{n} \lambda_{i}$. Prove that $X \sim \operatorname{Po}(\lambda)$. (Induction in n. Similarly to Exercise 3.14, use Proposition 3.31 and Problem 3.17.)

Problem 3.19. Let $a, b \in[-\infty, \infty], a<b$ and let μ be a law on \mathbb{R}. Prove that, if the distribution function F_{μ} of μ is C^{1} on $(a, b), \lim _{x \uparrow b} F_{\mu}(x)=1$ and $\lim _{x \downarrow a} F_{\mu}(x)=$ 0 , then $\mu(d x)=F_{\mu}^{\prime}(x) \mathbf{1}_{(a, b)}(x) d x .\left(\operatorname{Show} \int_{-\infty}^{x} F_{\mu}^{\prime}(y) \mathbf{1}_{(a, b)}(y) d y=F_{\mu}(x), x \in \mathbb{R}\right.$.)
Problem 3.20. Let X, Y be independent real random variables with $X \sim \operatorname{Exp}(1)$ and $Y \sim \operatorname{Exp}(1)$. Find a density of the random variable $Z:=X / Y$. (Calculate $F_{Z}(t):=\mathbb{P}[Z \leq t]$ for $t \in(0, \infty)$, differentiate F_{Z} and use Problem 3.19.)

Problem 3.21 (5 points each). Let X, Y be independent real random variables with $X \sim \operatorname{Unif}(0,1)$ and $Y \sim \operatorname{Unif}(0,1)$. Find the following quantities:
(i) a density of $X+Y$
(ii) a density of $X Y$
(iii) a density of X^{2}
(iv) $\mathbb{E}[\max \{X, Y\}]$
(v) $\mathbb{E}[\min \{X, Y\}]$
(vi) $\mathbb{E}[\max \{X, Y\} \cdot \min \{X, Y\}]$
((i): Use Propositions 3.36 and 3.38. (ii), (iii): Calculate $\mathbb{P}[X Y \leq t], \mathbb{P}\left[X^{2} \leq t\right]$ for $t \in(0,1)$ and use Problem 3.19. (iv), (v), (vi): Apply Theorem 3.10 to the random variable (X, Y) and use the independence of X, Y.)

Problem 3.22. Let $X, Y,\left\{X_{n}\right\}_{n=1}^{\infty},\left\{Y_{n}\right\}_{n=1}^{\infty}$ be real random variables such that

$$
\begin{equation*}
X_{n} \xrightarrow{\mathrm{P}} X \quad \text { and } \quad Y_{n} \xrightarrow{\mathrm{P}} Y . \tag{3.82}
\end{equation*}
$$

(1) Prove that $\left(X_{n}, Y_{n}\right) \xrightarrow{\mathrm{P}}(X, Y)$. (Use $\left|\left(X_{n}, Y_{n}\right)-(X, Y)\right| \leq\left|X_{n}-X\right|+\left|Y_{n}-Y\right|$.)
(2) Prove that $X_{n}+Y_{n} \xrightarrow{\mathrm{P}} X+Y$ and that $X_{n} Y_{n} \xrightarrow{\mathrm{P}} X Y$. (By (1), Corollary 3.53-(2) applies to (X, Y) and $\left\{\left(X_{n}, Y_{n}\right)\right\}_{n=1}^{\infty}$.)

Problem 3.23. Let $X, Y,\left\{X_{n}\right\}_{n=1}^{\infty},\left\{Y_{n}\right\}_{n=1}^{\infty}$ be real random variables such that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} X_{k} \xrightarrow{\mathrm{P}} X \quad \text { and } \quad \frac{1}{n} \sum_{k=1}^{n} Y_{k} \xrightarrow{\mathrm{P}} Y . \tag{3.83}
\end{equation*}
$$

Define $\left\{Z_{n}\right\}_{n=1}^{\infty}$ by $Z_{2 n-1}:=X_{n}$ and $Z_{2 n}:=Y_{n}$. Prove that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} Z_{k} \xrightarrow{\mathrm{P}} \frac{X+Y}{2} . \tag{3.84}
\end{equation*}
$$

(Use Problem 3.22-(2).)
Exercise 3.24. Let $d \in \mathbb{N}, x \in \mathbb{R}^{d}$ and let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be d-dimensional random variables with $X_{n} \xrightarrow{\mathcal{L}} x$. Prove that $X_{n} \xrightarrow{\mathrm{P}} x$. (For $\varepsilon \in(0, \infty), \mathbb{P}\left[\left|X_{n}-x\right| \geq \varepsilon\right]=$ $\mathbb{P}\left[\min \left\{2 \varepsilon,\left|X_{n}-x\right|\right\} \geq \varepsilon\right]$. Apply Chebyshev's inequality (Problem 1.20-(2)) with $\varphi(x)=x$ and then use $X_{n} \xrightarrow{\mathcal{L}} x$, noting that $\mathbb{R}^{d} \ni y \mapsto \min \{2 \varepsilon,|y-x|\}$ is a bounded continuous function on \mathbb{R}^{d}.)

