Problem set 12, submit solutions by 05.12.2012

The **Problems** below will be discussed in the tutorial on **10**.12.2012. (The **Exercises** are additional and will be discussed only if time permits.)

In the problems and the exercises below, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a probability space and all random variables are assumed to be defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercise 3.25. Let $X, \{X_n\}_{n=1}^{\infty}$ be real random variables with $X_n \xrightarrow{P} X$ and suppose $X \neq 0$ a.s. Prove that $X_n^{-1} \mathbf{1}_{\{X_n \neq 0\}} \xrightarrow{P} X^{-1}$. (Use Theorem 3.52, similarly to the proof of Corollary 3.53-(2).)

Problem 3.26. Let (S, \mathcal{B}) be a measurable space and let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. (S, \mathcal{B}) -valued random variables. Let (E, \mathcal{E}) be a measurable space and let $f : S \to E$ be \mathcal{B}/\mathcal{E} -measurable. Prove that $\{f(X_n)\}_{n=1}^{\infty}$ is i.i.d. (E, \mathcal{E}) -valued random variables.

Problem 3.27. Let $\{X_n\}_{n=1}^{\infty} \subset \mathcal{L}^1(\mathbb{P})$ be i.i.d. and set $Y_n := e^{X_n}$ for each $n \in \mathbb{N}$. Prove that

$$(Y_1 \cdots Y_n)^{1/n} \xrightarrow{\text{a.s.}} \exp(\mathbb{E}[X_1]).$$
 (3.85)

 $((Y_1 \cdots Y_n)^{1/n} = \exp(\frac{1}{n} \sum_{k=1}^n X_k)$, to which Theorem 3.61 applies.)

Problem 3.28. Let $N \in \mathbb{N}$ and let $\{X_n\}_{n=1}^{\infty} \subset \mathcal{L}^N(\mathbb{P})$ be i.i.d. Prove that

$$\frac{1}{n} \sum_{k=1}^{n} X_k^N \xrightarrow{\text{a.s.}} \mathbb{E}[X_1^N].$$
(3.86)

(Apply Theorem 3.61 to $\{X_n^N\}_{n=1}^{\infty}$, which is i.i.d. by Problem 3.26.)

Problem 3.29. Let $m \in \mathbb{R}$, $v \in (0, \infty)$ and let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $X_1 \sim N(m, v)$. Prove that

$$\frac{\sum_{k=1}^{n} X_k}{\sum_{k=1}^{n} X_k^2} \xrightarrow{\text{a.s.}} \frac{m}{m^2 + v}.$$
(3.87)

(Divide both the numerator and the denominator by n and apply Theorem 3.61.)

Problem 3.30. Let $\{X_n\}_{n=1}^{\infty} \subset \mathcal{L}^2(\mathbb{P})$ be i.i.d. Prove that

$$\frac{1}{n}\sum_{k=1}^{n} (X_k - \mathbb{E}[X_1])^2 \xrightarrow{\text{a.s.}} \operatorname{var}(X_1).$$
(3.88)

Problem 4.1. Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. real random variables with $X_1 \sim Po(1)$, and set $S_n := \sum_{k=1}^n X_k$ for each $n \in \mathbb{N}$. Prove the following statements:

(1) $\mathcal{L}\left(\frac{S_n - n}{\sqrt{n}}\right) \xrightarrow{\mathcal{L}} N(0, 1).$ (Simply apply Theorem 4.4-(1).)

(2)
$$\mathbb{P}[S_n \le n] = e^{-n} \sum_{k=0}^{n} \frac{n}{k!}$$
 for any $n \in \mathbb{N}$. (Use Exercise 3.18.)

(3)
$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{\infty} \frac{n^k}{k!} = \frac{1}{2}$$
. (Theorem 4.4-(2) applies by (2) above.)

Problem 4.2. Let $y \in \mathbb{R}$ and let $X, \{X_n\}_{n=1}^{\infty}, \{Y_n\}_{n=1}^{\infty}$ be real random variables such that

$$X_n \xrightarrow{\mathcal{L}} X$$
 and $Y_n \xrightarrow{P} y.$ (4.78)

(1) Prove that $X_n + Y_n \xrightarrow{\mathcal{L}} X + y$ and that $X_n Y_n \xrightarrow{\mathcal{L}} yX$. (Since $(X_n, Y_n) \xrightarrow{\mathcal{L}} (X, y)$ by Proposition 4.11, Corollary 3.53-(3) applies to (X, y) and $\{(X_n, Y_n)\}_{n=1}^{\infty}$.) (2) Suppose $y \neq 0$. Prove that

$$\frac{X_n}{Y_n} \mathbf{1}_{\{Y_n \neq 0\}} \xrightarrow{\mathcal{L}} \frac{X}{y}.$$
(4.79)

(Use Exercise 3.25 to apply the latter assertion of (1).)

Remark. Note that in the statements of Problem 4.2, the random variable X is involved only in terms of its law $\mathcal{L}(X)$ since the laws of X + y, yX, X/y are determined solely by $\mathcal{L}(X)$ and y. In particular, the statements of Problem 4.2 are valid even if X is replaced by another real random variable X_0 with $\mathcal{L}(X_0) = \mathcal{L}(X)$ which is defined on a *different* probability space.

Exercise 4.3 ([2, Exercise 3.4.4]). Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. $[0, \infty)$ -valued random variables with $\mathbb{E}[X_1] = 1$ and $v := \operatorname{var}(X_1) < \infty$. Set $S_n := \sum_{k=1}^n X_k$ for each $n \in \mathbb{N}$. (1) Prove that for any $n \in \mathbb{N}$,

$$\sqrt{S_n} - \sqrt{n} = \frac{S_n - n}{\sqrt{n}} \frac{1}{1 + \sqrt{S_n/n}}.$$
 (4.80)

(2) Prove that

$$\mathcal{L}(\sqrt{S_n} - \sqrt{n}) \xrightarrow{\mathcal{L}} N(0, v/4).$$
 (4.81)

((4.81) can be rephrased as " $\sqrt{S_n} - \sqrt{n} \xrightarrow{\mathcal{L}} Z/2$ " for a real random variable Z with $Z \sim N(0, v)$, and Theorem 4.4-(1) can be also rephrased in the same way. Apply this version of Theorem 4.4-(1) to $(S_n - n)/\sqrt{n}$ and then use (4.80) and the latter part of Problem 4.2-(1), noting that it is irrelevant on which probability space Z is defined.)

Problem 4.4 ([2, Exercise 3.4.5]). Let $\{X_n\}_{n=1}^{\infty} \subset \mathcal{L}^2(\mathbb{P})$ be i.i.d. with $\mathbb{E}[X_1] = 0$ and $v := \operatorname{var}(X_1) > 0$. Prove that

$$\mathcal{L}\left(\frac{\sum_{k=1}^{n} X_{k}}{\sqrt{\sum_{k=1}^{n} X_{k}^{2}}} \mathbf{1}_{\{\sum_{k=1}^{n} X_{k}^{2} \neq 0\}}\right) \xrightarrow{\mathcal{L}} N(0, 1).$$
(4.82)

 $((\sum_{k=1}^{n} X_k) / \sqrt{\sum_{k=1}^{n} X_k^2} = (\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k) / \sqrt{\frac{1}{n} \sum_{k=1}^{n} X_k^2} \text{ on } \{\sum_{k=1}^{n} X_k^2 \neq 0\}.$ Similarly to Exercise 4.3-(2), use Theorem 4.4-(1) and Problem 4.2-(2).)