Problem set 12, submit solutions by 05.12.2012

The Problems below will be discussed in the tutorial on 10.12.2012.
(The Exercises are additional and will be discussed only if time permits.)
In the problems and the exercises below, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a probability space and all random variables are assumed to be defined on $(\Omega, \mathcal{F}, \mathbb{P})$.
Exercise 3.25. Let $X,\left\{X_{n}\right\}_{n=1}^{\infty}$ be real random variables with $X_{n} \xrightarrow{\mathrm{P}} X$ and suppose $X \neq 0$ a.s. Prove that $X_{n}^{-1} \mathbf{1}_{\left\{X_{n} \neq 0\right\}} \xrightarrow{\mathrm{P}} X^{-1}$. (Use Theorem 3.52, similarly to the proof of Corollary 3.53-(2).)
Problem 3.26. Let (S, \mathcal{B}) be a measurable space and let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be i.i.d. (S, \mathcal{B}) valued random variables. Let (E, \mathcal{E}) be a measurable space and let $f: S \rightarrow E$ be $\mathcal{B} / \mathcal{E}$-measurable. Prove that $\left\{f\left(X_{n}\right)\right\}_{n=1}^{\infty}$ is i.i.d. (E, \mathcal{E})-valued random variables.
Problem 3.27. Let $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(\mathbb{P})$ be i.i.d. and set $Y_{n}:=e^{X_{n}}$ for each $n \in \mathbb{N}$. Prove that

$$
\begin{equation*}
\left(Y_{1} \cdots Y_{n}\right)^{1 / n} \xrightarrow{\text { a.s. }} \exp \left(\mathbb{E}\left[X_{1}\right]\right) . \tag{3.85}
\end{equation*}
$$

$\left(\left(Y_{1} \cdots Y_{n}\right)^{1 / n}=\exp \left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)\right.$, to which Theorem 3.61 applies.)
Problem 3.28. Let $N \in \mathbb{N}$ and let $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{N}(\mathbb{P})$ be i.i.d. Prove that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} X_{k}^{N} \xrightarrow{\text { a.s. }} \mathbb{E}\left[X_{1}^{N}\right] . \tag{3.86}
\end{equation*}
$$

(Apply Theorem 3.61 to $\left\{X_{n}^{N}\right\}_{n=1}^{\infty}$, which is i.i.d. by Problem 3.26.)
Problem 3.29. Let $m \in \mathbb{R}, v \in(0, \infty)$ and let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be i.i.d. with $X_{1} \sim N(m, v)$.
Prove that

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} X_{k}}{\sum_{k=1}^{n} X_{k}^{2}} \xrightarrow{\text { a.s. }} \frac{m}{m^{2}+v} . \tag{3.87}
\end{equation*}
$$

(Divide both the numerator and the denominator by n and apply Theorem 3.61.)
Problem 3.30. Let $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{2}(\mathbb{P})$ be i.i.d. Prove that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\mathbb{E}\left[X_{1}\right]\right)^{2} \xrightarrow{\text { a.s. }} \operatorname{var}\left(X_{1}\right) . \tag{3.88}
\end{equation*}
$$

Problem 4.1. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be i.i.d. real random variables with $X_{1} \sim \operatorname{Po}(1)$, and set $S_{n}:=\sum_{k=1}^{n} X_{k}$ for each $n \in \mathbb{N}$. Prove the following statements:
(1) $\mathcal{L}\left(\frac{S_{n}-n}{\sqrt{n}}\right) \xrightarrow{\mathcal{L}} N(0,1) . \quad$ (Simply apply Theorem 4.4-(1).)
(2) $\mathbb{P}\left[S_{n} \leq n\right]=e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!} \quad$ for any $n \in \mathbb{N}$. (Use Exercise 3.18.)
(3) $\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}$. (Theorem 4.4-(2) applies by (2) above.)

Problem 4.2. Let $y \in \mathbb{R}$ and let $X,\left\{X_{n}\right\}_{n=1}^{\infty},\left\{Y_{n}\right\}_{n=1}^{\infty}$ be real random variables such that

$$
\begin{equation*}
X_{n} \xrightarrow{\mathcal{L}} X \quad \text { and } \quad Y_{n} \xrightarrow{\mathrm{P}} y . \tag{4.78}
\end{equation*}
$$

(1) Prove that $X_{n}+Y_{n} \xrightarrow{\mathcal{L}} X+y$ and that $X_{n} Y_{n} \xrightarrow{\mathcal{L}} y X$. (Since $\left(X_{n}, Y_{n}\right) \xrightarrow{\mathcal{L}}(X, y)$ by Proposition 4.11, Corollary 3.53-(3) applies to (X, y) and $\left\{\left(X_{n}, Y_{n}\right)\right\}_{n=1}^{\infty}$.)
(2) Suppose $y \neq 0$. Prove that

$$
\begin{equation*}
\frac{X_{n}}{Y_{n}} \mathbf{1}_{\left\{Y_{n} \neq 0\right\}} \xrightarrow{\mathcal{L}} \frac{X}{y} . \tag{4.79}
\end{equation*}
$$

(Use Exercise 3.25 to apply the latter assertion of (1).)
Remark. Note that in the statements of Problem 4.2, the random variable X is involved only in terms of its law $\mathcal{L}(X)$ since the laws of $X+y, y X, X / y$ are determined solely by $\mathcal{L}(X)$ and y. In particular, the statements of Problem 4.2 are valid even if X is replaced by another real random variable X_{0} with $\mathcal{L}\left(X_{0}\right)=\mathcal{L}(X)$ which is defined on a different probability space.

Exercise 4.3 ([2, Exercise 3.4.4]). Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be i.i.d. [0, ∞)-valued random variables with $\mathbb{E}\left[X_{1}\right]=1$ and $v:=\operatorname{var}\left(X_{1}\right)<\infty$. Set $S_{n}:=\sum_{k=1}^{n} X_{k}$ for each $n \in \mathbb{N}$.
(1) Prove that for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\sqrt{S_{n}}-\sqrt{n}=\frac{S_{n}-n}{\sqrt{n}} \frac{1}{1+\sqrt{S_{n} / n}} . \tag{4.80}
\end{equation*}
$$

(2) Prove that

$$
\begin{equation*}
\mathcal{L}\left(\sqrt{S_{n}}-\sqrt{n}\right) \xrightarrow{\mathcal{L}} N(0, v / 4) . \tag{4.81}
\end{equation*}
$$

((4.81) can be rephrased as " $\sqrt{S_{n}}-\sqrt{n} \xrightarrow{\mathcal{L}} Z / 2$ " for a real random variable Z with $Z \sim N(0, v)$, and Theorem 4.4-(1) can be also rephrased in the same way. Apply this version of Theorem 4.4-(1) to $\left(S_{n}-n\right) / \sqrt{n}$ and then use (4.80) and the latter part of Problem 4.2-(1), noting that it is irrelevant on which probability space Z is defined.)

Problem 4.4 ([2, Exercise 3.4.5]). Let $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{2}(\mathbb{P})$ be i.i.d. with $\mathbb{E}\left[X_{1}\right]=0$ and $v:=\operatorname{var}\left(X_{1}\right)>0$. Prove that

$$
\begin{gather*}
\mathcal{L}\left(\frac{\sum_{k=1}^{n} X_{k}}{\sqrt{\sum_{k=1}^{n} X_{k}^{2}}} \mathbf{1}_{\left\{\sum_{k=1}^{n} X_{k}^{2} \neq 0\right\}}\right) \stackrel{\mathcal{L}}{\rightarrow} N(0,1) \tag{4.82}\\
\left(\left(\sum_{k=1}^{n} X_{k}\right) / \sqrt{\sum_{k=1}^{n} X_{k}^{2}}=\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_{k}\right) / \sqrt{\frac{1}{n} \sum_{k=1}^{n} X_{k}^{2}} \text { on }\left\{\sum_{k=1}^{n} X_{k}^{2} \neq 0\right\} .\right.
\end{gather*}
$$

Similarly to Exercise 4.3-(2), use Theorem 4.4-(1) and Problem 4.2-(2).)

