Problem set 2, submit solutions by 26.09.2012

The **Problems** below will be discussed in the tutorial on 28.09.2012. (The **Exercise** is additional and will be discussed only if time permits.)

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $B \in \mathcal{F}$ satisfy $\mathbb{P}[B] > 0$. For each $A \in \mathcal{F}$, We define the *conditional probability* $\mathbb{P}[A \mid B]$ *of* A *given* B by

$$\mathbb{P}[A \mid B] := \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$
(1.60)

Problem 1.6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $B \in \mathcal{F}$ satisfy $\mathbb{P}[B] > 0$. (1) Let $A \in \mathcal{F}$. Prove that $\{A, B\}$ is independent if and only if $\mathbb{P}[A | B] = \mathbb{P}[A]$. (2) Prove that the set function $\mathcal{F} \ni A \mapsto \mathbb{P}[A | B]$ is a probability measure on (Ω, \mathcal{F}) . This probability measure is called the *conditional probability measure given B*.

Problem 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{\Omega_n\}_{n=1}^N \subset \mathcal{F}$, where $N \in \mathbb{N} \cup \{\infty\}$, satisfy $\mathbb{P}[\Omega_n] > 0$ for any $n, \Omega_i \cap \Omega_j = \emptyset$ for any i, j with $i \neq j$ and $\bigcup_{n=1}^N \Omega_n = \Omega$. Also let $A \in \mathcal{F}$. Prove the following statements: (1) $\mathbb{P}[A] = \sum_{n=1}^N \mathbb{P}[A \mid \Omega_n] \mathbb{P}[\Omega_n]$.

(2) (Bayes' theorem) If $\mathbb{P}[A] > 0$, then for each *n*,

$$\mathbb{P}[\Omega_n \mid A] = \frac{\mathbb{P}[A \mid \Omega_n] \mathbb{P}[\Omega_n]}{\sum_{k=1}^N \mathbb{P}[A \mid \Omega_k] \mathbb{P}[\Omega_k]}.$$
(1.61)

Exercise 1.8. Suppose people have a certain disease with probability 0.001. Doctors use a test to detect the disease, and suppose that the test gives a positive result on a patient with the disease with probability 0.99 and on a patient without it with probability 0.004. Evaluate the probability that one has this disease under the condition that

- (1) the result of the test was positive.
- (2) the result of the test was negative.

In the rest of this problem set, (X, \mathcal{M}, μ) denotes a given measure space.

Problem 1.9. Let $n \in \mathbb{N}$ and let $\{A_i\}_{i=1}^n \subset \mathcal{M}$ satisfy $\mu(\bigcup_{i=1}^n A_i) < \infty$. Prove the following *inclusion-exclusion formula*:

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \le i_{1} < \dots < i_{k} \le n} (-1)^{k-1} \mu\left(\bigcap_{\ell=1}^{k} A_{i_{\ell}}\right).$$
(1.62)

(Conduct an induction in *n*.)

Problem 1.10. Prove the following *countable subadditivity* of μ : for $\{A_n\}_{n=1}^{\infty} \subset \mathcal{M}$,

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$
(1.63)

(Set $B_1 := A_1$ and $B_n := A_n \setminus \bigcup_{i=1}^{n-1} A_i, n \ge 2$, and show that $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$.)

Problem 1.11. Let $\{A_n\}_{n=1}^{\infty} \subset 2^X$ and define $\limsup_{n \to \infty} A_n$ and $\liminf_{n \to \infty} A_n$ by

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k, \tag{1.64}$$

so that they belong to \mathcal{M} if $\{A_n\}_{n=1}^{\infty} \subset \mathcal{M}$. Prove the following assertions. (1) $(\limsup_{n\to\infty} A_n)^c = \liminf_{n\to\infty} A_n^c$ and

 $\limsup_{n \to \infty} A_n = \{ x \in X \mid x \in A_n \text{ for infinitely many } n \in \mathbb{N} \},\$ $\liminf_{n \to \infty} A_n = \{ x \in X \mid x \in A_n \text{ for sufficiently large } n \in \mathbb{N} \}.$ (1.65)

(2) (First Borel-Cantelli lemma) If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{M}$ and $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then

$$\mu\left(\limsup_{n \to \infty} A_n\right) = \mu\left(\left(\liminf_{n \to \infty} A_n^c\right)^c\right) = 0.$$
(1.66)

(Noting $\limsup_{n\to\infty} A_n \subset \bigcup_{n=k}^{\infty} A_n$, use the countable subadditivity (1.63) of μ .)

Problem 1.12. Let # be the counting measure on \mathbb{N} (recall Example 1.5-(1)). Provide an example of $\{A_n\}_{n=1}^{\infty} \subset 2^{\mathbb{N}}$ such that $A_n \supset A_{n+1}$ for any $n \in \mathbb{N}$ but $\lim_{n\to\infty} #A_n \neq #(\bigcap_{n=1}^{\infty} A_n)$.

Problem 1.12 shows that the conclusion of Proposition 1.4-(4) is not necessarily valid if the assumption " $\mu(A_1) < \infty$ " is dropped.