Problem set 3, submit solutions by **02**.10.2012

The **Problems** below will be discussed in the tutorial on 05.10.2012. (The **Exercise** is additional and will be discussed only if time permits.)

Throughout this problem set, (X, \mathcal{M}, μ) denotes a given measure space.

Problem 1.13. Let *Y* be a set and define $\mathbb{N} := \{A \subset Y \mid \text{either } A \text{ or } A^c \text{ is countable}\}$ and $\mathbb{N}_0 := \{A \subset Y \mid \text{either } A \text{ or } A^c \text{ is finite}\}$. Prove that \mathbb{N} is a σ -algebra in *Y* and that $\sigma(\mathbb{N}_0) = \mathbb{N}$.

Problem 1.14. Assume $\mu(X) < \infty$. Let Λ be a set and let $\{A_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{M}$ be such that $A_{\lambda_1} \cap A_{\lambda_2} = \emptyset$ for any $\lambda_1, \lambda_2 \in \Lambda$ with $\lambda_1 \neq \lambda_2$. Prove that $\{\lambda \in \Lambda \mid \mu(A_{\lambda}) > 0\}$ is a countable set. (Show that $\{\lambda \in \Lambda \mid \mu(A_{\lambda}) \ge 1/n\}$ is finite for any $n \in \mathbb{N}$.)

Problem 1.15. (1) Let $f, g : X \to [-\infty, \infty]$ be \mathcal{M} -measurable. Prove that the following sets belong to \mathcal{M} :

$$\{x \in X \mid f(x) < g(x)\}, \{x \in X \mid f(x) = g(x)\}, \{x \in X \mid f(x) > g(x)\}.$$

(2) Let $f_n : X \to [-\infty, \infty]$ be \mathcal{M} -measurable for each $n \in \mathbb{N}$ and let $h : X \to [-\infty, \infty]$ be \mathcal{M} -measurable. Define $f, g : X \to [-\infty, \infty]$ by

$$f(x) := \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if the limit } \lim_{n \to \infty} f_n(x) \text{ exists in } \mathbb{R}, \\ h(x) & \text{otherwise,} \end{cases}$$
(1.73)
$$g(x) := \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if the limit } \lim_{n \to \infty} f_n(x) \text{ exists in } [-\infty, \infty], \\ h(x) & \text{otherwise.} \end{cases}$$
(1.74)

Prove that the functions f and g are \mathcal{M} -measurable.

We need the following definition for the following two problems.

Definition. Let (S, \mathcal{B}) be a measurable space. A map $\varphi : X \to S$ is called \mathcal{M}/\mathcal{B} -*measurable* if and only if $\varphi^{-1}(A) \in \mathcal{M}$ for any $A \in \mathcal{B}$.

Problem 1.16. Let (S, \mathcal{B}) be a measurable space, let $\varphi : X \to S$ be \mathcal{M}/\mathcal{B} -measurable and let $f : S \to [-\infty, \infty]$ be \mathcal{B} -measurable. Prove that $f \circ \varphi : X \to [-\infty, \infty]$ is \mathcal{M} -measurable.

Problem 1.17. (1) Let S be a set, let $\mathcal{A} \subset 2^S$ and let $f : X \to S$. Prove that f is $\mathcal{M}/\sigma_S(\mathcal{A})$ -measurable if and only if $f^{-1}(\mathcal{A}) \in \mathcal{M}$ for any $\mathcal{A} \in \mathcal{A}$. (As in the proof of Proposition 1.14, show that $\mathcal{A} := \{\mathcal{A} \subset S \mid f^{-1}(\mathcal{A}) \in \mathcal{M}\}$ is a σ -algebra in S.) (2) Let $d \in \mathbb{N}$ and let $f = (f_1, \ldots, f_d) : X \to \mathbb{R}^d$, where $f_i : X \to \mathbb{R}$ for each $i \in \{1, \ldots, d\}$. Prove that f is $\mathcal{M}/\mathcal{B}(\mathbb{R}^d)$ -measurable if and only if f_i is \mathcal{M} -measurable for any $i \in \{1, \ldots, d\}$. **Exercise 1.18.** Let $d \in \mathbb{N}$, let $S \subset \mathbb{R}^d$ and let $f : S \to [-\infty, \infty]$. (1) Let $\varepsilon \in (0, \infty)$ and define $f^{\varepsilon}, f_{\varepsilon} : S \to [-\infty, \infty]$ by

$$f^{\varepsilon}(x) := \sup_{y \in B_S(x,\varepsilon)} f(y)$$
 and $f_{\varepsilon}(x) := \inf_{y \in B_S(x,\varepsilon)} f(y).$ (1.75)

Prove that f^{ε} and f_{ε} are Borel measurable. (Show that $(f^{\varepsilon})^{-1}((a, \infty])$ is open in S.) (2) Prove that the functions $\overline{f}, \underline{f}: S \to [-\infty, \infty]$ defined by

$$\overline{f}(x) := \limsup_{S \ni y \to x} f(y) \text{ and } \underline{f}(x) := \liminf_{S \ni y \to x} f(y)$$
(1.76)

are Borel measurable.

(3) Prove that $\{x \in S \mid \lim_{S \ni y \to x} f(y) = f(x)\}$ is a Borel set of S.

Problem 1.19. Let X be a countable set and let μ be a measure on $(X, 2^X)$.

(1) Prove that any function $f: X \to [-\infty, \infty]$ on X is 2^X -measurable. (2) Let $f: X \to [0, \infty]$. Prove that $\int_X f d\mu = \sum_{x \in X} f(x)\mu(\{x\})$.