Problem set 3, submit solutions by 02.10.2012

The Problems below will be discussed in the tutorial on 05.10.2012. (The Exercise is additional and will be discussed only if time permits.)

Throughout this problem set, (X, \mathcal{M}, μ) denotes a given measure space.
Problem 1.13. Let Y be a set and define $\mathcal{N}:=\left\{A \subset Y \mid\right.$ either A or A^{c} is countable $\}$ and $\mathcal{N}_{0}:=\left\{A \subset Y \mid\right.$ either A or A^{c} is finite $\}$. Prove that \mathcal{N} is a σ-algebra in Y and that $\sigma\left(\mathcal{N}_{0}\right)=\mathcal{N}$.

Problem 1.14. Assume $\mu(X)<\infty$. Let Λ be a set and let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \mathcal{M}$ be such that $A_{\lambda_{1}} \cap A_{\lambda_{2}}=\emptyset$ for any $\lambda_{1}, \lambda_{2} \in \Lambda$ with $\lambda_{1} \neq \lambda_{2}$. Prove that $\left\{\lambda \in \Lambda \mid \mu\left(A_{\lambda}\right)>0\right\}$ is a countable set. (Show that $\left\{\lambda \in \Lambda \mid \mu\left(A_{\lambda}\right) \geq 1 / n\right\}$ is finite for any $n \in \mathbb{N}$.)

Problem 1.15. (1) Let $f, g: X \rightarrow[-\infty, \infty]$ be \mathcal{M}-measurable. Prove that the following sets belong to \mathcal{M} :

$$
\{x \in X \mid f(x)<g(x)\}, \quad\{x \in X \mid f(x)=g(x)\}, \quad\{x \in X \mid f(x)>g(x)\} .
$$

(2) Let $f_{n}: X \rightarrow[-\infty, \infty]$ be \mathcal{M}-measurable for each $n \in \mathbb{N}$ and let $h: X \rightarrow$ $[-\infty, \infty]$ be \mathcal{M}-measurable. Define $f, g: X \rightarrow[-\infty, \infty]$ by

$$
\begin{align*}
& f(x):= \begin{cases}\lim _{n \rightarrow \infty} f_{n}(x) & \text { if the limit } \lim _{n \rightarrow \infty} f_{n}(x) \text { exists in } \mathbb{R}, \\
h(x) & \text { otherwise },\end{cases} \tag{1.73}\\
& g(x):= \begin{cases}\lim _{n \rightarrow \infty} f_{n}(x) & \text { if the limit } \lim _{n \rightarrow \infty} f_{n}(x) \text { exists in }[-\infty, \infty], \\
h(x) & \text { otherwise }\end{cases} \tag{1.74}
\end{align*}
$$

Prove that the functions f and g are \mathcal{M}-measurable.
We need the following definition for the following two problems.
Definition. Let (S, \mathcal{B}) be a measurable space. A map $\varphi: X \rightarrow S$ is called $\mathcal{M} / \mathcal{B}$ measurable if and only if $\varphi^{-1}(A) \in \mathcal{N}$ for any $A \in \mathcal{B}$.

Problem 1.16. Let (S, \mathcal{B}) be a measurable space, let $\varphi: X \rightarrow S$ be $\mathcal{M} / \mathcal{B}$-measurable and let $f: S \rightarrow[-\infty, \infty]$ be \mathcal{B}-measurable. Prove that $f \circ \varphi: X \rightarrow[-\infty, \infty]$ is \mathcal{M}-measurable.

Problem 1.17. (1) Let S be a set, let $\mathcal{A} \subset 2^{S}$ and let $f: X \rightarrow S$. Prove that f is $\mathcal{M} / \sigma_{S}(\mathcal{A})$-measurable if and only if $f^{-1}(A) \in \mathcal{M}$ for any $A \in \mathcal{A}$. (As in the proof of Proposition 1.14, show that $\mathcal{A}:=\left\{A \subset S \mid f^{-1}(A) \in \mathcal{M}\right\}$ is a σ-algebra in S.)
(2) Let $d \in \mathbb{N}$ and let $f=\left(f_{1}, \ldots, f_{d}\right): X \rightarrow \mathbb{R}^{d}$, where $f_{i}: X \rightarrow \mathbb{R}$ for each $i \in\{1, \ldots, d\}$. Prove that f is $\mathcal{M} / \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable if and only if f_{i} is \mathcal{M} measurable for any $i \in\{1, \ldots, d\}$.

Exercise 1.18. Let $d \in \mathbb{N}$, let $S \subset \mathbb{R}^{d}$ and let $f: S \rightarrow[-\infty, \infty]$.
(1) Let $\varepsilon \in(0, \infty)$ and define $f^{\varepsilon}, f_{\varepsilon}: S \rightarrow[-\infty, \infty]$ by

$$
\begin{equation*}
f^{\varepsilon}(x):=\sup _{y \in B_{S}(x, \varepsilon)} f(y) \quad \text { and } \quad f_{\varepsilon}(x):=\inf _{y \in B_{S}(x, \varepsilon)} f(y) \tag{1.75}
\end{equation*}
$$

Prove that f^{ε} and f_{ε} are Borel measurable. (Show that $\left(f^{\varepsilon}\right)^{-1}((a, \infty])$ is open in S.)
(2) Prove that the functions $\bar{f}, \underline{f}: S \rightarrow[-\infty, \infty]$ defined by

$$
\begin{equation*}
\bar{f}(x):=\limsup _{S \ni y \rightarrow x} f(y) \quad \text { and } \quad \underline{f}(x):=\liminf _{S \ni y \rightarrow x} f(y) \tag{1.76}
\end{equation*}
$$

are Borel measurable.
(3) Prove that $\left\{x \in S \mid \lim _{S \ni y \rightarrow x} f(y)=f(x)\right\}$ is a Borel set of S.

Problem 1.19. Let X be a countable set and let μ be a measure on $\left(X, 2^{X}\right)$.
(1) Prove that any function $f: X \rightarrow[-\infty, \infty]$ on X is 2^{X}-measurable.
(2) Let $f: X \rightarrow[0, \infty]$. Prove that $\int_{X} f d \mu=\sum_{x \in X} f(x) \mu(\{x\})$.

