Problem set 5, submit solutions by 17.10.2012

The **Problems** below will be discussed in the tutorial on 19.10.2012. (The **Exercises** are additional and will be discussed only if time permits.)

Throughout this problem set, (X, \mathcal{M}, μ) denotes a given measure space.

Problem 1.26 ([7, Chapter 1, Exercise 9]). Let $\alpha \in (0, \infty)$, let $f : X \to [0, \infty]$ be \mathcal{M} -measurable and suppose $\int_X f d\mu \in (0, \infty)$. Find the limit (with $\log \infty := \infty^{\alpha} := \infty$)

$$\lim_{n\to\infty}\int_X n\log\bigl(1+(f/n)^{\alpha}\bigr)d\mu.$$

(Note that $\log(1 + x) \ge 0$ for any $x \in [0, \infty]$. If $\alpha \ge 1$, then $\log(1 + x^{\alpha}) \le \alpha x$ for any $x \in [0, \infty]$. If $\alpha < 1$, then Fatou's lemma (Theorem 1.27) applies.)

Exercise 1.27 (30 points). Let $f : X \to [-\infty, \infty]$. Prove that the following three conditions are equivalent:

(1) f is $\overline{\mathcal{M}}^{\mu}$ -measurable.

(2) There exist \mathcal{M} -measurable functions $f_1, f_2 : X \to [-\infty, \infty]$ such that $f_1 \leq f \leq f_2$ on X and $f_1 = f_2 \mu$ -a.e.

(3) There exists a \mathcal{M} -measurable function $f_0: X \to [-\infty, \infty]$ such that $f_0 = f \mu$ -a.e. ((1) \Rightarrow (2): If f is $\overline{\mathcal{M}}^{\mu}$ -simple, then (2) can be proved by using the definition of $\overline{\mathcal{M}}^{\mu}$. For a general $\overline{\mathcal{M}}^{\mu}$ -measurable f, take non-decreasing sequences $\{s_n^{\pm}\}_{n=1}^{\infty}$ of $\overline{\mathcal{M}}^{\mu}$ -simple functions converging to f^{\pm} , use (2) for s_n^{\pm} and take $\limsup_{n\to\infty}$, $\liminf_{n\to\infty}$.

Problem 1.28. Let $p \in (0, \infty)$ and let $f \in \mathcal{L}^p(\mu)$. Prove that

$$\lim_{n \to \infty} \int_{X} \left| f - f \mathbf{1}_{\{|f| \le n\}} \right|^{p} d\mu = 0.$$
 (1.81)

Problem 1.29. Let $p, q \in (0, \infty)$, p < q, and let $f : X \to [0, \infty]$ be \mathcal{M} -measurable. Prove that

$$\left(\int_X f^p d\mu\right)^{1/p} \le \left(\int_X f^q d\mu\right)^{1/q} \mu(X)^{(q-p)/pq}.$$
(1.82)

By Problem 1.29, if $\mu(X) < \infty$, then $\mathcal{L}^q(X, \mu) \subset \mathcal{L}^p(X, \mu)$ for any $p, q \in (0, \infty)$ with p < q.

Problem 1.30 (Minkowski's inequality). Let $p \in [1, \infty)$ and let $f, g : X \to [0, \infty]$ be \mathcal{M} -measurable. Prove that

$$\left(\int_X (f+g)^p d\mu\right)^{1/p} \le \left(\int_X f^p d\mu\right)^{1/p} + \left(\int_X g^p d\mu\right)^{1/p}.$$
(1.83)

(Assuming p > 1, apply Hölder's inequality to $f(f + g)^{p-1}$ and $g(f + g)^{p-1}$.)

For the next problem, we need the following definition.

Definition. Let $f : X \to \mathbb{R}$ and $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$, be \mathcal{M} -measurable. We say that $\{f_n\}_{n=1}^{\infty}$ converges in μ -measure to f if and only if for any $\varepsilon \in (0, \infty)$,

$$\lim_{n \to \infty} \mu \left(\{ x \in X \mid |f_n(x) - f(x)| \ge \varepsilon \} \right) = 0.$$
(1.84)

Problem 1.31. Let $f : X \to \mathbb{R}$ and $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$, be \mathcal{M} -measurable. (1) Let $p \in (0, \infty)$ and suppose $\lim_{n\to\infty} ||f_n - f||_{L^p(\mu)} = 0$. Prove that $\{f_n\}_{n=1}^{\infty}$ converges in μ -measure to f. (Use Problem 1.20-(2) with $\varphi(x) = x^p$, $x \in [0, \infty]$.) (2) Suppose that $\{f_n\}_{n=1}^{\infty}$ converges in μ -measure to f. Prove that there exists a strictly increasing sequence $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$ such that $\lim_{k\to\infty} f_{n_k}(x) = f(x)$ for μ -a.e. $x \in X$. (Choose $n_k \in \mathbb{N}$ so that $\mu(\{x \in X \mid |f_{n_k}(x) - f(x)| \ge 2^{-k}\}) \le 2^{-k}$ and use Problem 1.11-(2) to show that $\mu(X \setminus \liminf_{k\to\infty} \{x \in X \mid |f_{n_k}(x) - f(x)| < 2^{-k}\}) = 0$.)

Problem 1.32. Let $A \in \mathcal{M}$, and define a measure $\mu|_A$ on $\mathcal{M}|_A = \{B \cap A \mid B \in \mathcal{M}\}$ by $\mu|_A := \mu|_{\mathcal{M}|_A}$ (note that $\mathcal{M}|_A \subset \mathcal{M}$). Let $f : X \to [-\infty, \infty]$ be \mathcal{M} -measurable. Prove that $\int_X f \mathbf{1}_A d\mu$ exists if and only if $\int_A f|_A d(\mu|_A)$ exists, and in this case

$$\left(\int_{A} f d\mu :=\right) \int_{X} f \mathbf{1}_{A} d\mu = \int_{A} f |_{A} d(\mu|_{A}).$$
(1.85)

(Modify the proof of Theorem 1.43. It suffices to prove (1.85) for f^{\pm} and hence when $f \ge 0$. Show first for non-negative \mathcal{M} -simple functions by using Proposition 1.25 and then use Proposition 1.19 and Theorem 1.24 for general non-negative f.)

According to Problem 1.32, $\int_A f d\mu$ could alternatively be defined as the integral of $f|_A$ with respect to $\mu|_A = \mu|_{\mathcal{M}|_A}$, the *restriction of* μ to A.

Exercise 1.33. Let \mathbb{N} be a σ -algebra in X such that $\mathbb{N} \subset \mathbb{M}$, and let $f : X \to [-\infty, \infty]$ be \mathbb{N} -measurable. Prove that $\int_X f d\mu$ exists if and only if $\int_X f d(\mu|_{\mathbb{N}})$ exists (note that $\mu|_{\mathbb{N}}$ is a measure on (X, \mathbb{N})), and in this case

$$\int_X f d\mu = \int_X f d(\mu|_{\mathcal{N}}). \tag{1.86}$$

Exercise 1.34. Let $f : X \to [0, \infty]$ be \mathcal{M} -measurable and μ -integrable. Prove that, for any $\varepsilon \in (0, \infty)$ there exists $\delta \in (0, \infty)$ such that $\int_A f d\mu < \varepsilon$ for any $A \in \mathcal{M}$ with $\mu(A) < \delta$. (Proof by contradiction. Problem 1.11-(2) can be used.)