Problem set 7, submit solutions by **12:00** on **02**.11.2012

The **Problem**s below will be discussed in the tutorial on **05**.11.2012. (The **Exercise**s are additional and will be discussed only if time permits.)

Problem 2.8 (5 points each). Let $d \in \mathbb{N}$, let μ be a Borel probability measure on \mathbb{R}^d and let F_{μ} be the distribution function of μ . Prove the following statements: (1) For any $(x_1, \ldots, x_d) \in \mathbb{R}^d$ and any $(h_1, \ldots, h_d) \in [0, \infty)^d$,

$$\mu((x_1 - h_1, x_1] \times \dots \times (x_d - h_d, x_d])$$

$$= \sum_{(\alpha_1, \dots, \alpha_d) \in \{0, 1\}^d} (-1)^{\sum_{i=1}^d \alpha_i} F_{\mu}(x_1 - \alpha_1 h_1, \dots, x_d - \alpha_d h_d) \ge 0, \quad (2.17)$$

where $(a, a] := \emptyset$ for $a \in \mathbb{R}$. (Use the inclusion-exclusion formula (1.68).) (2) For any $x = (x_1, ..., x_d) \in \mathbb{R}^d$,

$$\lim_{\substack{(y_1, \dots, y_d) \to x \\ y_i \ge x_i, i \in \{1, \dots, d\}}} F_{\mu}(y_1, \dots, y_d) = F_{\mu}(x). \tag{2.18}$$

(3) $\lim_{x\to\infty} F_{\mu}(x,\ldots,x) = 1$, and $\lim_{x_i\to-\infty} F_{\mu}(x_1,\ldots,x_i,\ldots,x_d) = 0$ for any $i \in \{1, \ldots, d\}$ and any $x_j \in \mathbb{R}, j \in \{1, \ldots, d\} \setminus \{i\}$

(4) μ is uniquely determined by its distribution function F_{μ} . (Show that $\mathcal{A} := \{\emptyset\} \cup$ $\{(a_1, b_1] \times \cdots \times (a_d, b_d] \mid a_i, b_i \in \mathbb{R}, a_i < b_i, i \in \{1, \dots, d\}\}$ is a π -system and that $\sigma(A) = \mathcal{B}(\mathbb{R}^d)$ by using Proposition 1.9, and then use (1) to apply Theorem 2.5.)

Exercise 2.9. Let $d \in \mathbb{N}$ and let μ be a Borel probability measure on \mathbb{R}^d . Define

$$C_{\mu,i} := \{ a \in \mathbb{R} \mid \mu(H_i(a)) = 0 \}, \text{ where } H_i(a) := \{ (x_1, \dots, x_d) \in \mathbb{R}^d \mid x_i = a \},$$
(2.58)

for each $i \in \{1, ..., d\}$ and $C_{\mu} := C_{\mu,1} \times \cdots \times C_{\mu,d}$. Prove the following statements:

(1) $\mathbb{R} \setminus C_{\mu,i}$ is a countable set for any $i \in \{1, \dots, d\}$. (Use Problem 1.14.) (2) The distribution function $F_{\mu} : \mathbb{R}^d \to [0, 1]$ of μ is continuous at x for any $x \in C_{\mu}$.

Problem 2.10. Let (X, \mathcal{M}) be a measurable space. Let $n \in \mathbb{N}$, and for each $i \in \mathbb{N}$ $\{1,\ldots,n\}$, let (S_i,\mathcal{B}_i) be a measurable space and let $f_i:X\to S_i$. Prove that the map $f = (f_1, \dots, f_d) : X \to S_1 \times \dots \times S_n$ is $\mathcal{M}/\mathcal{B}_1 \otimes \dots \otimes \mathcal{B}_n$ -measurable if and only if f_i is M/B_i -measurable for any $i \in \{1, ..., n\}$. (For "if" part, use Problem 1.17-(1) with $S = S_1 \times \cdots \times S_n$ and $A = B_1 \times \cdots \times B_n$.)

Problem 2.11. Let $n \in \mathbb{N}$. For each $i \in \{1, ..., n\}$, let $(X_i, \mathcal{M}_i, \mu_i)$ be a σ -finite measure space and let $f_i: X_i \to [-\infty, \infty]$ be \mathcal{M}_i -measurable. For each $i \in \{1, \dots, n\}$ define $F_i: X_1 \times \cdots \times X_n \to [-\infty, \infty]$ by $F_i(x_1, \dots, x_n) := f_i(x_i)$, and define $F: X_1 \times \cdots \times X_n \to [-\infty, \infty]$ by $F(x_1, \dots, x_n) := f_1(x_1) \cdots f_n(x_n)$. Prove the following statements:

(1) F_i is $\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n$ -measurable for any $i \in \{1, \ldots, n\}$.

- (2) F is $\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n$ -measurable. ($F = F_1 \cdots F_n$. Proposition 1.15-(2) applies.)
- (3) If f_i is μ_i -integrable for any $i \in \{1, \dots, n\}$, then F is $\mu_1 \times \dots \times \mu_n$ -integrable and

$$\int_{X_1 \times \dots \times X_n} Fd(\mu_1 \times \dots \times \mu_n) = \int_{X_1} f_1 d\mu_1 \dots \int_{X_n} f_n d\mu_n. \tag{2.59}$$

(Induction in n. Use Proposition 2.23 and Corollary 2.27 to apply Theorem 2.30-(2).)

Problem 2.12. Let (X, \mathcal{M}, μ) be a σ -finite measure space, let $f: X \to [0, \infty]$ be \mathcal{M} -measurable and set $S_f := \{(x, t) \in X \times \mathbb{R} \mid 0 \le t < f(x)\}.$

(1) Prove that $S_f \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R})$ and that $[0, \infty) \ni t \mapsto \mu(\{x \in X \mid f(x) > t\}) \in [0, \infty]$ is Borel measurable. (To show $S_f \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R})$, apply Problem 2.11-(1) to $X \times \mathbb{R} \ni (x, t) \mapsto f(x)$ and $X \times \mathbb{R} \ni (x, t) \mapsto t$ and then use Problem 1.15-(1).)

(2) Prove that $\int_X f d\mu = \mu \times m_1(S_f)$ and that for any $p \in (0, \infty)$,

$$\int_{X} f^{p} d\mu = p \int_{0}^{\infty} t^{p-1} \mu (\{x \in X \mid f(x) > t\}) dt.$$
 (2.60)

(3) Prove that $m_2(\lbrace x \in \mathbb{R}^2 \mid |x| < r \rbrace) = \pi r^2$ for any $r \in (0, \infty)$.

Exercise 2.13 ([7, Counterexamples 8.9]). (1) Let # denote the counting measure on [0, 1] and set $\Delta_{[0,1]} := \{(x,y) \in [0,1]^2 \mid x=y\}$, which is closed in \mathbb{R}^2 . Prove that

$$\int_{0}^{1} \left(\int_{[0,1]} \mathbf{1}_{\Delta_{[0,1]}}(x,y) d\#(y) \right) dx = 1 \neq 0 = \int_{[0,1]} \left(\int_{0}^{1} \mathbf{1}_{\Delta_{[0,1]}}(x,y) dx \right) d\#(y).$$
(2.61)

(2) Let $\{\delta_n\}_{n=0}^{\infty}\subset [0,1)$ be such that $\delta_0=0,\,\delta_{n-1}<\delta_n$ for any $n\in\mathbb{N}$ and $\lim_{n\to\infty}\delta_n=1$. Also for each $n\in\mathbb{N}$, let $g_n:[0,1)\to\mathbb{R}$ be a continuous function such that $g_n|_{[0,1)\setminus(\delta_{n-1},\delta_n)}=0$ and $\int_0^1g_n(x)dx=1$. Define $f:[0,1)^2\to\mathbb{R}$ by

$$f(x,y) := \sum_{n=1}^{\infty} (g_n(x) - g_{n+1}(x))g_n(y).$$
 (2.62)

Prove the following statements:

- (i) f is continuous and $\int_0^1 \left(\int_0^1 |f(x,y)| dx \right) dy = \infty$.
- (ii) For any $x, y \in [0, 1)$, $f(x, \cdot)$, $f(\cdot, y) \in \mathcal{L}^1([0, 1), m_1)$, $\int_0^1 f(x, z) dz = g_1(x)$ and $\int_0^1 f(z, y) dz = 0$. In particular,

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) dy \right) dx = 1 \neq 0 = \int_{0}^{1} \left(\int_{0}^{1} f(x, y) dx \right) dy.$$
 (2.63)

Problem 2.14. (1) Prove that

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = \infty. \tag{2.64}$$

(Estimate $\int_{n-1}^{n} \left| \frac{\sin x}{x} \right| dx$ from below for each $n \in \mathbb{N}$.)
(2) Use $x^{-1} = \int_{0}^{\infty} e^{-xt} dt$, $x \in (0, \infty)$, to prove that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} dx = \int_0^\infty \frac{1 - \cos x}{x^2} dx = \int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}.$$
 (2.65)