Problem set 8, submission of solutions NOT required

The Problems below will be discussed in the tutorial on 06.11.2012.
Problem 8.1. Let (X, \mathcal{M}) be a measurable space and let $f, g: X \rightarrow[-\infty, \infty]$ be \mathcal{N}-measurable. Prove that the following sets belong to \mathcal{N} :

$$
\{x \in X \mid f(x)<g(x)\}, \quad\{x \in X \mid f(x)=g(x)\}, \quad\{x \in X \mid f(x)>g(x)\} .
$$

Problem 8.2. Find the limits as $N \rightarrow \infty$ of the following series:
(1) $\sum_{n=1}^{\infty} 2^{-n}\left(1+\frac{\sin \left(2^{N} n\right)}{N}\right)^{-1}$
(2) $\sum_{n=1}^{\infty} \frac{1}{n(n+N)}$
(3) $\sum_{n=1}^{\infty}\left(1+\frac{n}{N}\right)^{-N}$

Problem 8.3. Find the limits as $n \rightarrow \infty$ of the following integrals:
(1) $\int_{0}^{\infty} \frac{1}{1+x^{n}} d x$
(2) $\int_{0}^{\infty} \frac{\sin e^{x}}{1+n x^{2}} d x$
(3) $\int_{0}^{1} \frac{n \cos x}{1+n^{2} x^{3 / 2}} d x$

Problem 8.4. Let (X, \mathcal{M}, μ) be a measure space.
(1) Let $f_{n}: X \rightarrow[-\infty, \infty]$ be \mathcal{M}-measurable for each $n \in \mathbb{N}$ and suppose that $\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty$. Prove that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for μ-a.e. $x \in X$.
(2) ([1, Section 4.3, Problem 1]) Let $f \in \mathcal{L}^{1}(\mu)$ and $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(\mu)$. Suppose that $f_{n} \geq 0$ on X for any $n \in \mathbb{N}$, that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for any $x \in X$, and that $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$. Prove that $\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| d \mu=0$.

Problem 8.5. Let (X, \mathcal{M}) be a measurable space.
(1) Let S be a set, let $\mathcal{A} \subset 2^{S}$ and let $f: X \rightarrow S$. Prove that f is $\mathcal{M} / \sigma_{S}(\mathcal{A})$ measurable if and only if $f^{-1}(A) \in \mathcal{M}$ for any $A \in \mathcal{A}$.
(2) Let $n \in \mathbb{N}$, and for each $i \in\{1, \ldots, n\}$ let $\left(S_{i}, \mathcal{B}_{i}\right)$ be a measurable space and let $f_{i}: X \rightarrow S_{i}$. Prove that the map $f:=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow S_{1} \times \cdots \times S_{n}$ is $\mathcal{M} / \mathcal{B}_{1} \otimes \cdots \otimes \mathcal{B}_{n}$-measurable if and only if f_{i} is $\mathcal{M} / \mathcal{B}_{i}$-measurable for any $i \in$ $\{1, \ldots, n\}$.
(3) Let $d \in \mathbb{N}$ and let $f=\left(f_{1}, \ldots, f_{d}\right): X \rightarrow \mathbb{R}^{d}$, where $f_{i}: X \rightarrow \mathbb{R}$ for each $i \in\{1, \ldots, d\}$. Prove that f is $\mathcal{M} / \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable if and only if f_{i} is \mathcal{M} measurable for any $i \in\{1, \ldots, d\}$. (Proposition 2.24-(2) may be used.)
Problem 8.6. Let $(X, \mathcal{M}, \mu),(Y, \mathcal{N}, \nu)$ be σ-finite measure spaces, let $f: X \rightarrow \mathbb{R}$ be \mathcal{M}-measurable and let $g: Y \rightarrow \mathbb{R}$ be \mathcal{N}-measurable. Define $f \otimes g: X \times Y \rightarrow \mathbb{R}$ by $(f \otimes g)(x, y):=f(x) g(y)$. Prove the following statements:
(1) $f \otimes g$ is $\mathcal{M} \otimes \mathcal{N}$-measurable.
(2) If f is μ-integrable and g is v-integrable, then $f \otimes g$ is $\mu \times v$-integrable and

$$
\int_{X \times Y} f \otimes g d(\mu \times \nu)=\int_{X} f d \mu \int_{Y} g d \nu
$$

