Problem set 9, submit solutions by 14.11.2012

The **Problems** below will be discussed in the tutorial on 16.11.2012. (The **Exercise** is additional and will be discussed only if time permits.)

In the problems and the exercise below, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a probability space and all random variables are assumed to be defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Problem 3.1. Let $d \in \mathbb{N}$ and let $x \in \mathbb{R}^d$. Prove that the unit mass δ_x at x defined by $\delta_x(A) := \mathbf{1}_A(x), A \in \mathcal{B}(\mathbb{R}^d)$ (recall Example 1.5-(2)), does not have a density.

Problem 3.2. Calculate $\mathbb{E}[X]$ and var(X) for a real random variable X with

(1) the binomial distribution $B(n, p), n \in \mathbb{N}, p \in [0, 1]$.

(2) the Poisson distribution $Po(\lambda), \lambda \in (0, \infty)$.

(3) the geometric distribution $\text{Geom}(\alpha), \alpha \in [0, 1)$.

Problem 3.3. Calculate $\mathbb{E}[X]$ and var(X) for a real random variable X with

(1) the uniform distribution $\text{Unif}(a, b), a, b \in \mathbb{R}, a < b$.

(2) the exponential distribution $\text{Exp}(\alpha), \alpha \in (0, \infty)$.

(3) the gamma distribution $\text{Gamma}(\alpha, \beta), \alpha, \beta \in (0, \infty)$.

Problem 3.4. Let *X* be an exponential random variable. Prove that

$$\mathbb{P}[X > s + t \mid X > s] = \mathbb{P}[X > t] \quad \text{for any } s, t \in [0, \infty) \tag{3.79}$$

(recall (1.66) for the definition of conditional probabilities).

(3.79) is known as the "memoryless property" of exponential random variables. Due to this property, exponential random variables are often used as "*random alarm clocks with no memory*".

Exercise 3.5. Let *X* be a real random variable such that $\mathbb{P}[X > 0] > 0$, and suppose $\mathbb{P}[X > s + t \mid X > s] = \mathbb{P}[X > t]$ for any $s, t \in (0, \infty)$ with $\mathbb{P}[X > s] > 0$. Define $h : \mathbb{R} \to [0, 1]$ by $h(t) := \mathbb{P}[X > t]$. Prove the following statements:

(1) *h* is right-continuous and h(s + t) = h(s)h(t) for any $s, t \in [0, \infty)$.

(2) There exists $\alpha \in (0, \infty)$ such that $h(t) = e^{-\alpha t}$ for any $t \in [0, \infty)$.

(3) *X* is an exponential random variable of parameter α .

Problem 3.6. Let X be a normal random variable with mean m and variance $v \in (0, \infty)$. Prove that the real random variable $Y := e^X$ has a density ρ_Y given by

$$\rho_Y(x) = \frac{1}{x\sqrt{2\pi\nu}} \exp\left(-\frac{(\log x - m)^2}{2\nu}\right) \mathbf{1}_{(0,\infty)}(y).$$
(3.80)

The law of Y is called the *lognormal distribution with parameters m*, v.

Problem 3.7. Let X be a normal random variable with mean 0 and variance 1. Prove that the real random variable $Z := X^2$ has a density ρ_Z given by

$$\rho_Z(x) = \frac{1}{\sqrt{2\pi x}} e^{-x/2} \mathbf{1}_{(0,\infty)}(x).$$
(3.81)

The law of Z is called the *chi square distribution with one degree of freedom* and denoted as χ_1^2 . (In fact, (3.81) and (3.21) easily imply that $\chi_1^2 = \text{Gamma}(1/2, 1/2)$.)

Problem 3.8. Let $m \in \mathbb{R}$, $\alpha \in (0, \infty)$ and let X be a Cauchy random variable with parameters m, α . Prove that X does not admit the mean, i.e. $\mathbb{E}[X^+] = \mathbb{E}[X^-] = \infty$.