解析学 VII 補足ノート・その2

(2017年1月23日配布)

H を (任意の) \mathbb{C} 上の Hilbert 空間とし、 (\cdot,\cdot) を H の内積とする.

定理 (定理 4.18 への補足 1). H は無限次元かつ可分 $\iff H$ は完全正規直交系 $\{u_n\}_{n=1}^\infty$ を持つ.

証明. (\iff) H が完全正規直交系 $\{u_n\}_{n=1}^\infty$ を持つとする. $n\in\mathbb{N}$ を任意に取る. $\{u_k\}_{k=1}^n$ は H における正規直交系であるので, $c_1,\ldots,c_n\in\mathbb{C}$ に対し, $c_1u_1+\cdots+c_nu_n=0$ ならば

$$0 = ||c_1 u_1 + \dots + c_n u_n||^2 = \sum_{k=1}^n \sum_{\ell=1}^n c_k \overline{c_\ell}(u_k, u_\ell) = \sum_{k=1}^n |c_k|^2,$$

従って $c_1 = \cdots = c_n = 0$ となる. すなわち $\{u_k\}_{k=1}^n$ は 1 次独立である. ここで $n \in \mathbb{N}$ は任意であるので、H は無限次元である.

次に H が可分であることを示すために、各 $n \in \mathbb{N}$ に対し

$$P_n := \left\{ \sum_{k=1}^n c_k u_k \mid n \in \mathbb{N}, c_1, \dots, c_n \in \mathbb{C} \right\}, \tag{4.A}$$

$$P_{\mathbb{Q},n} := \left\{ \sum_{k=1}^{n} c_k u_k \mid n \in \mathbb{N}, c_1, \dots, c_n \in \mathbb{Q} + i \mathbb{Q} \right\}$$
 (4.B)

(ただし $\mathbb{Q} + i\mathbb{Q} := \{a + ib \mid a, b \in \mathbb{Q}\}$) とおき,

$$P := \bigcup_{n=1}^{\infty} P_n, \qquad P_{\mathbb{Q}} := \bigcup_{n=1}^{\infty} P_{\mathbb{Q},n}$$

と定める。このとき $\mathbb{Q}+i\mathbb{Q}\ni a+ib\mapsto (a,b)\in\mathbb{Q}^2$ は明らかに全単射であり、 \mathbb{Q} は可算集合であるのでその直積集合 \mathbb{Q}^2 は可算,従って $\mathbb{Q}+i\mathbb{Q}$ も可算である。また各 $n\in\mathbb{N}$ に対し, $\{u_k\}_{k=1}^n$ は H における正規直交系なので特に 1 次独立であり,従って写像

$$P_{\mathbb{Q},n} \ni \sum_{k=1}^{n} c_k u_k \mapsto (c_1, \dots, c_n) \in (\mathbb{Q} + i \mathbb{Q})^n$$

は全単射,かつ可算集合 $\mathbb{Q}+i\mathbb{Q}$ の有限直積 $(\mathbb{Q}+i\mathbb{Q})^n$ は可算なので $P_{\mathbb{Q},n}$ も可算である.すると可算集合の可算和である $P_{\mathbb{Q}}=\bigcup_{n=1}^{\infty}P_{\mathbb{Q},n}$ も可算集合であることになる. $P_{\mathbb{Q}}$ が H において稠密であることを示そう. $x\in H$ と $\varepsilon\in(0,\infty)$ を任意に取る. $\{u_n\}_{n=1}^{\infty}$ は

 $P_{\mathbb{Q}}$ が H において稠密であることを示そう。 $x \in H$ と $\varepsilon \in (0,\infty)$ を任意に取る。 $\{u_n\}_{n=1}^\infty$ は H における完全正規直交系であるので,定理 4.18 の条件 (ii) により P は H において稠密であり,よってある $y \in P$ が存在して $\|x-y\| < \varepsilon/2$ となるが,さらに $y \in P$ よりある $n \in \mathbb{N}$ と $c_1,\ldots,c_n \in \mathbb{C}$ が存在して $y = \sum_{k=1}^n c_k u_k$ となる。ここで明らかに $\mathbb{Q} + i\mathbb{Q}$ は \mathbb{C} において稠密であるので,各 $k \in \{1,\ldots,n\}$ に対し $b_k \in \mathbb{Q} + i\mathbb{Q}$ が存在して $|c_k - b_k| < \varepsilon/(2\sqrt{n})$ となり,このとき $z := \sum_{k=1}^n b_k u_k$ とおくと

$$\|y - z\|^2 = \left\| \sum_{k=1}^n (c_k - b_k) u_k \right\|^2 = \sum_{k=1}^n |c_k - b_k|^2 < \frac{\varepsilon^2}{4}, \quad \text{fixth } \|y - z\| < \frac{\varepsilon}{2}$$

であるので

$$||x-z|| \le ||x-y|| + ||y-z|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

であり、また $z=\sum_{k=1}^n b_k u_k \in P_{\mathbb{Q}}$. よって $P_{\mathbb{Q}}$ は H において稠密であり、 $P_{\mathbb{Q}}$ は可算集合であるので、H は可分である.

(美) H が無限次元かつ可分と仮定する。H が可分であるとの仮定から,H の(高々)可算な部分集合 A で H において稠密なものが存在する。まず A が可算無限集合であることに注意する。実際,A が有限と仮定すると,A は $A = \bigcup_{x \in A} \{x\}$ と 1 点集合の有限和で表せ,H は距離空間なので各 $x \in A$ に対し 1 点集合 $\{x\}$ は H の閉集合,従ってその有限和 $A = \bigcup_{x \in A} \{x\}$ も H の閉集合であるので $H = \overline{A} = A$,すなわち H は有限集合ということになり,H が \mathbb{C} 上の(0 以外の元を持つ)ベクトル空間,従って無限集合であることに矛盾する。よって A は可算無限集合である.

 $B:=A\setminus\{0\}$ とおく、このとき B は H において稠密である。実際, $x\in H\setminus\{0\}$ と $\varepsilon\in(0,\infty)$ を任意に取るとき,A が H において稠密であることから $y\in A$ で $\|x-y\|<\min\{\varepsilon,\|x\|/2\}$ を満たすものが存在し,このとき $\|y\|\geq\|x\|-\|x-y\|>\|x\|-\|x\|/2=\|x\|/2>0$,従って $y\neq 0$ なので $y\in A\setminus\{0\}=B$ であり,かつ $\|x-y\|<\varepsilon$ である。よって $x\in \overline{B}$. またこのとき $\|y\|\leq\|y-x\|+\|x\|<\|x\|/2+\|x\|=3\|x\|/2$ も成り立つので,特に x として最初から $\|x\|=2\varepsilon/3$ であるようなものを取っておく($z\in H\setminus\{0\}$ を 1 つ取り $x:=(2\varepsilon/3)\|z\|^{-1}z$ とおけばよい)ことにより, $y\in B$ かつ $\|0-y\|=\|y\|<3\|x\|/2=\varepsilon$ を満たす $y\in B$ が存在することも分かり,よって $0\in \overline{B}$. ゆえに B は H において稠密である。

A は可算無限なので $B=A\setminus\{0\}$ も可算無限であり、そこで \mathbb{N} から B への全単射 \mathbb{N} \ni $n\mapsto x_n\in B$ を 1 つ取ることにより B の元全体を点列 $\{x_n\}_{n=1}^\infty$ の形に表しておく、 $n\in\mathbb{N}$ とし、 $\{u_k\}_{k=1}^n\subset H$ が次を満たすと仮定する:

 $\{u_k\}_{k=1}^n$ は H における正規直交系であり, P_n を (4.A) で定めると $x_1,\ldots,x_n\in P_n$. $(GS)_n$ このとき, $u_{n+1}\in H$ を適切に取ることで, $\{u_k\}_{k=1}^{n+1}$ が $(GS)_{n+1}$ を満たすようにできることを示そう.このために,線型代数学でも学習した Gram—Schmidt の正規直交化法を用いる.まず,任意の $k\in\mathbb{N}$ に対し $x_k\in P_n$ (すなわち $B\subset P_n$) と仮定すると,定理 4.14 への注意で述べたように P_n は H の閉部分空間であるので $H=\overline{B}\subset P_n$, つまり $H=P_n$ となり,特に H は n 次元ベクトル空間であることになり H が無限次元であることに矛盾する.よってある $k\in\mathbb{N}$ が存在して $x_k\not\in P_n$ であり,そこで $\ell_n\in\mathbb{N}$ を $\ell_n:=\min\{k\in\mathbb{N}\mid x_k\not\in P_n\}$ により定めることができる. $(GS)_n$ より $x_1,\ldots,x_n\in P_n$ であったので, $\ell_n\geq n+1$ である.さて, $v_{n+1},u_{n+1}\in H$ を次で定めよう:

$$v_{n+1} := x_{\ell_n} - \sum_{k=1}^n (x_{\ell_n}, u_k) u_k, \qquad u_{n+1} := \|v_{n+1}\|^{-1} v_{n+1}. \tag{4.C}$$

ここで ℓ_n の定め方より $x_{\ell_n} \not\in P_n$, 従って $v_{n+1} \neq 0$ であり、特に $\|v_{n+1}\| \neq 0$ である(ので、 $u_{n+1} := \|v_{n+1}\|^{-1}v_{n+1}$ により $u_{n+1} \in H$ を定めることができる)ことに注意する。すると $\{u_k\}_{k=1}^n$ が H における正規直交系であることから任意の $\ell \in \{1,\ldots,n\}$ に対し

$$(u_{n+1}, u_{\ell}) = \|v_{n+1}\|^{-1}(v_{n+1}, u_{\ell}) = \|v_{n+1}\|^{-1} \left((x_{\ell_n}, u_{\ell}) - \sum_{k=1}^n (x_{\ell_n}, u_k) \cdot (u_k, u_{\ell}) \right)$$
$$= \|v_{n+1}\|^{-1} \left((x_{\ell_n}, u_{\ell}) - (x_{\ell_n}, u_{\ell}) \cdot 1 \right) = 0$$

であり、また $\|u_{n+1}\| = \|v_{n+1}\|^{-1}\|v_{n+1}\| = 1$ であるので、これらと $\{u_k\}_{k=1}^n$ が H における正規直交系であることを合わせると、 $\{u_k\}_{k=1}^{n+1}$ も H における正規直交系であることになる。そしてこの $\{u_k\}_{k=1}^{n+1}$ を用いて P_{n+1} を (4.A) で定めると、明らかに $P_n \subset P_{n+1}$ なのでこれと $(GS)_n$ より $x_1,\ldots,x_n \in P_{n+1}$ である。 x_{n+1} については、 $\ell_n \neq n+1$ ならば ℓ_n の定義により $x_{n+1} \in P_n \subset P_{n+1}$ であり、他方 $\ell_n = n+1$ ならば (4.C) により $x_{n+1} = \|v_{n+1}\|u_{n+1} + \sum_{k=1}^n (x_{n+1},u_k)u_k \in P_{n+1}$ である。以上で、 $\{u_k\}_{k=1}^{n+1}$ が $(GS)_{n+1}$ を満たすように $u_{n+1} \in H$ を構成できることが分かった。

さて、 $B=A\setminus\{0\}$ より $x_1\neq 0$ であることに注意すると、 $(GS)_1$ を満たすような $\{u_k\}_{k=1}^1$ を $u_1:=\|x_1\|^{-1}x_1$ により定めることができる。そこであとは前段落の議論を帰納的に順次適用することにより、H における正規直交系 $\{u_n\}_{n=1}^\infty$ で、任意の $n\in\mathbb{N}$ に対し $\{u_k\}_{k=1}^n$ が $(GS)_n$ を満たすものが得られる。すると $P:=\bigcup_{n=1}^\infty P_n$ は任意の $n\in\mathbb{N}$ に対し $x_n\in P_n\subset P$ を満たすので、 $B\subset P$,従って $H=\overline{B}\subset \overline{P}\subset H$ となり、ゆえに $\overline{P}=H$,すなわち P は H において稠密である。これは $\{u_n\}_{n=1}^\infty$ が定理 4.18 の条件 (ii) を満たすことを意味するので、 $\{u_n\}_{n=1}^\infty$ は H における完全正規直交系である。