第2回レポート (演習問題3)

締め切り:2019年1月25日(金)10:00

提出先:数学専攻事務室(理学部B棟4階B410号室)

以下の問題 3.1~3.2 に可能な限り多く解答し、レポートとして提出すること. 注意. レポート作成に際しては以下の点に注意すること:

- なるべくきれいな字で丁寧に書くこと. 試験答案やレポートも「他人に読んでもらう文章」 なのだから、自分にしか読めないような雑な字で書くべきではない.
- 数学的に厳密な議論を行うこと. 厳密さを欠いた曖昧な議論は数学では許されない.
- 数学的内容の理解の為に他者と相談をするのは構わないが、レポートの作成にあたっては他 者の解答を写したりせず、自分の言葉で解答すること。

問題 3.1. X,Y を実確率変数とし、 $\{X,Y\}$ は独立、かつ $X \sim \text{Unif}(0,1), Y \sim \text{Unif}(0,1)$ であるとする。このとき次の期待値を求めよ

(1) $\mathbb{E}[\max\{X,Y\}]$ (2) $\mathbb{E}[\min\{X,Y\}]$ (3) $\mathbb{E}[\max\{X,Y\}\cdot\min\{X,Y\}]$ (4) $\mathbb{E}\big[X^2Ye^{-XY^2}\big]$ 問題 3.2. X を実確率変数とし、その特性関数 $\varphi_X:\mathbb{R}\to\mathbb{C}$ を次で定義する:

$$\varphi_X(t) := \mathbb{E}[e^{itX}], \qquad t \in \mathbb{R}$$

(ただし i は虚数単位を表すものとする). このとき任意の $t \in \mathbb{R}$ に対し次が成り立つことを示せ. (1) X の分布が大きさ $n \in \mathbb{N}$, 確率 $p \in [0, 1]$ の二項分布 B(n, p) のとき,

$$\varphi_X(t) = \left(1 + p(e^{it} - 1)\right)^n.$$

(2) X の分布がパラメータ $\lambda \in (0,\infty)$ の Poisson 分布 Po(λ) のとき,

$$\varphi_X(t) = \exp(\lambda(e^{it} - 1)).$$

(3) X の分布がパラメータ $\alpha \in [0,1)$ の幾何分布 $Geom(\alpha)$ のとき,

$$\varphi_X(t) = \frac{1 - \alpha}{1 - \alpha e^{it}}.$$

(4) X の分布が [-a,a] 上の一様分布 Unif(-a,a) のとき $(a \in (0,\infty))$,

$$\varphi_X(t) = \frac{\sin at}{at}$$
 (ただし $\frac{\sin 0}{0} := 1$ と定める).

(5) X の分布が(Lebesgue 測度に関して)密度 $\rho_X(x) = \frac{1}{4}(2-|x|)^+$ を持つとき、

$$\varphi_X(t) = \left(\frac{\sin t}{t}\right)^2$$
 (ただし $\frac{\sin 0}{0} := 1$ と定める).

注意. 問題 3.2 の解答に際しては、複素数値関数の積分に関する次の定義と事実に注意すること (講義ノートの 8.0 節も合わせて参照されたい):

- (1) (X, M) を可測空間, $f: X \to \mathbb{C}$ とする.f の実部 $\mathrm{Re}(f)$ と虚部 $\mathrm{Im}(f)$ が共に(\mathbb{R} -値関数として)M-可測であるとき,f は(\mathbb{C} -値関数として)M-可測であるという.
- (2) (X, \mathcal{M}, μ) を測度空間とし、 $f: X \to \mathbb{C}$ は \mathcal{M} -可測とする。 $\mathrm{Re}(f), \mathrm{Im}(f) \in \mathcal{L}^1(\mu)$ であるとき f は μ -可積分であるといい,そのとき $\int_X f \, d\mu := \int_X \mathrm{Re}(f) \, d\mu + i \int_X \mathrm{Im}(f) \, d\mu$ と定める。
- (3) X を確率空間 $(\Omega, \mathcal{F}, \mathbb{P})$ 上で定義された実確率変数とし、 $f: \mathbb{R} \to \mathbb{C}$ は有界で $\mathcal{B}(\mathbb{R})$ -可測とする。このとき $f(X) := f \circ X: \Omega \to \mathbb{C}$ は \mathcal{F} -可測で、講義中の**定理 2.10-(2) の等式** $\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(x) \mathbb{P}_X(dx)$ が成り立つ。さらに X の分布が定理 2.11-(1) もしくは命題 2.14-(1) の形の測度であるとき、 $\int_{\mathbb{R}} f(x) \mathbb{P}_X(dx)$ に定理 2.11-(2)、命題 2.14-(2) の等式が適用でき、かつ後者の等式中の級数は絶対収束する。そこで $f(x) = e^{itx}$ の場合を考えることで $\varphi_X(t) = \mathbb{E}[e^{itX}]$ が計算できる。