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Abstract

We introduce a new contraction property, which we call the generalized p-
contraction property, for p-energy forms as generalizations of many well-known in-
equalities, such as p-Clarkson’s inequality, the strong subadditivity and the Markov
property in the theory of nonlinear Dirichlet forms, and show that any p-energy form
satisfying p-Clarkson’s inequality is Fréchet differentiable. We also verify the gener-
alized p-contraction property for p-energy forms on fractals constructed by Kigami
[Mem. Eur. Math. Soc. 5 (2023)] and by Cao–Gu–Qiu [Adv. Math. 405 (2022),
no. 108517]. As a general framework of p-energy forms taking the generalized p-
contraction property into consideration, we introduce the notion of p-resistance form
and investigate fundamental properties of p-harmonic functions with respect to p-
resistance forms. In particular, some new estimates on scaling factors of self-similar
p-energy forms on self-similar sets are obtained by establishing Hölder regularity
estimates for p-harmonic functions, and the p-walk dimensions of any generalized
Sierpiński carpet and the D-dimensional level-l Sierpiński gasket are shown to be
strictly greater than p.
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1 Introduction

In the late 1980s, Goldstein [Gol87] and Kusuoka [Kus87] independently constructed a
Brownian motion (a canonical diffusion process) on the Sierpiński gasket (the left of Figure
1.2) as a scaling limit of the simple random walks on pre-gaskets (approximating graphs),
and Barlow–Perkins [BP88] established detailed estimates called the sub-Gaussian heat
kernel estimates for its transition density. Subsequently, Kigami [Kig89] directly con-
structed the Laplacian on the Sierpiński gasket as a scaling limit of the discrete Lapla-
cians on pre-gaskets, and Fukushima–Shima [FS92] indicated that the theory of Dirichlet
forms was well-applicable to the field of analysis on fractals; more precisely, Fukushima
and Shima gave a direct description of the regular symmetric Dirichlet form (E2,F2) cor-
responding to the Friedrichs extension of Kigami’s Laplacian, which is an analogue of
the pair of the Dirichlet 2-energy

´
|∇u|2 dx =: E2(u) and the associated (1, 2)-Sobolev

space W 1,2 =: F2 on smooth spaces, and used it to investigate the eigenvalue problems
for Kigami’s Laplacian1. Later, Kigami [Kig93] extended the method in [FS92] to post-
critically finite self-similar sets (Definition 5.3), and Kusuoka–Zhou [KZ92] constructed
regular symmetric Dirichlet forms (E2,F2) on a large class of self-similar sets including the
Sierpiński carpet (the right of Figure 1.2) through a subsequential scaling limit of discrete
Dirichlet forms. (The first construction of a Brownian motion on the Sierpiński carpet
was done by Barlow–Bass [BB89] by establishing a subsequential convergence of scaled
Brownian motions on pre-carpets.) See, e.g., [Bar13, Kig01] for further background on the
field of analysis on fractals. As another advantage of the theory of Dirichlet forms, once
we obtain a regular symmetric Dirichlet form (E2,F2), we can capture the associated en-
ergy measure Γ2⟨u⟩ playing the role of |∇u|2 dx although the density “|∇u|” usually does
not make sense on fractals due to the singularity of Γ2⟨u⟩ with respect to the canonical
volume measure (see [Hin05, KM20] for details of this singularity of Γ2⟨u⟩).

The main purpose of this article is to develop a general theory of Lp-analogues of
(E2,F2,Γ2⟨ · ⟩), where p ∈ (1,∞), on the basis of the new contraction property which
we call the generalized p-contraction property. For a large class of triples (K,m, p) of a
self-similar set K, a natural self-similar measure m on K and p ∈ (1,∞), an Lp-analogue
of (E2,F2) on (K,m), namely a p-energy form (Ep,Fp) playing the role of

´
|∇u|p dx and

the associated (1, p)-Sobolev space W 1,p, where Fp is a linear subspace of Lp(K,m) and
Ep : Fp → [0,∞) is such that E1/p

p is a seminorm on Fp, has been constructed in several
works [CGQ22, HPS04, Kig23, KO+, MS25+, Shi24]2, most of which are very recent.
Furthermore, the associated p-energy measure Γp⟨u⟩, which is a finite Borel measure on
K and an analogue of |∇u|p dx, has been introduced in [MS25+, Shi24] with the help of

1The results in [FS92, Kig89] were proved for the D-dimensional level-2 Sierpiński gasket (Framework
9.9), where D ∈ N with D ≥ 2.

2The main difference among these works is the classes of (K,m, p) on which (Ep,Fp) is constructed.
Let us briefly summarize what classes of (K,m, p) is treated in these works (see [KS23+, Introduction]
for details). In [CGQ22, HPS04], K is assumed to be a post-critically finite self-similar set (Definition
5.3) so that the Sierpiński gasket is included while the Sierpiński carpet is excluded. The case where K is
the Sierpiński carpet is allowed in [Kig23, KO+, MS25+, Shi24], but we need to assume that p is strictly
greater than the Ahlfors regular conformal dimension of K (Definition 8.5-(4)) in [Kig23, KO+, Shi24].
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Figure 1.1: The Sierpiński gasket (left) and the Sierpiński carpet (right)

the self-similarity of (Ep,Fp). See Section 5 for details on the self-similarity of a p-energy
form, and Example 4.2 for examples of p-energy measures which do not rely on the self-
similarity. Compared with the case of p = 2, where the theory of symmetric Dirichlet
forms is applicable, very little has been established for p ∈ (1,∞) \ {2} in the direction of
dealing with (Ep,Fp,Γp⟨ · ⟩) in a general framework. In particular, there are two missing
pieces in known results for (Ep,Fp,Γp⟨ · ⟩): first, useful contraction properties of it, and
secondly, the (Fréchet) differentiabilities of Ep and of Γp. In the first half of this paper
(Sections 2–5), we aim at establishing general results filling these missing pieces. We shall
explain more details of the main results of these sections below.

The first missing piece is contraction properties of (Ep,Fp,Γp⟨ · ⟩). Every p-energy
form (Ep,Fp) constructed in the previous studies is known to satisfy the following unit
contractivity:

u+ ∧ 1 ∈ Fp and Ep(u+ ∧ 1) ≤ Ep(u) for any u ∈ Fp. (1.1)

In the case of p = 2, by using some helpful expressions of E2, e.g., [FOT, Lemma 1.3.4
and (3.2.12)], (1.1) can be improved to the following normal contractivity (see [MR,
Theorem I.4.12] for example): if n ∈ N and T : Rn → R satisfy |T (x)| ≤

∑n
k=1 |xk|

and |T (x)− T (y)| ≤
∑n

k=1 |xk − yk| for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then
for any u = (u1, . . . , un) ∈ Fn

2 we have

T (u) ∈ F2 and E2(T (u))
1
2 ≤

n∑
k=1

E2(uk)
1
2 . (1.2)

It is natural to expect that (Ep,Fp) for p ∈ (1,∞) \ {2} also has a similar property to
(1.2) since Ep(u) is an analogue of

´
|∇u|p dx; nevertheless, it is not clear whether (1.1)

can be improved in such a way without going back to the constructions of (Ep,Fp) in the
previous studies. Not only (1.2) but also other useful inequalities like the following strong
subadditivity and p-Clarkson’s inequality, were not mentioned in [CGQ22, HPS04, Kig23,
MS25+, Shi24]:

(Strong subadditivity) For any u, v ∈ Fp, we have u ∨ v, u ∧ v ∈ Fp and

Ep(u ∨ v) + Ep(u ∧ v) ≤ Ep(u) + Ep(v). (1.3)
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(p-Clarkson’s inequality) For any u, v ∈ Fp,{
Ep(u+ v) + Ep(u− v) ≥ 2

(
Ep(u)

1
p−1 + Ep(v)

1
p−1
)p−1 if p ∈ (1, 2],

Ep(u+ v) + Ep(u− v) ≤ 2
(
Ep(u)

1
p−1 + Ep(v)

1
p−1
)p−1 if p ∈ (2,∞).

(Cla)p

These inequalities play significant roles in the nonlinear potential theory with respect to
(Ep,Fp). For example, (1.3) will be important to consider the p-capacity associated with
(Ep,Fp); see [BV05, (H3)]. Also, we will frequently use (Cla)p in this paper; see Theorem
1.3 below for one of the most important consequences of (Cla)p. Since it is not known,
unlike the case of p = 2, whether such desirable inequalities as (1.2), (1.3) and (Cla)p
are implied by the unit contractivity (1.1), one needs to go back to the constructions of
(Ep,Fp) in the preceding works if one wishes to show them. The situation is similar for
p-energy measures. While it is natural to expect that contraction properties of (Ep,Fp)
are inherited by the associated p-energy measures, in order to show them for p-energy
measures, we need to recall how p-energy measures are constructed, partially because no
canonical way to define p-energy measures for a given p-energy form (Ep,Fp) is known
(see [MS25+, Problem 10.4]).

To overcome this situation, in this paper we develop a general theory of p-energy forms
on the basis of the generalized p-contraction property, which is arguably the strongest pos-
sible form of contraction properties of p-energy forms and defined as follows. Throughout
the rest of this section, we fix p ∈ (1,∞), a measure space (X,B,m), and the pair
(Ep,Fp) of a linear subspace Fp of L0(X,m)3 and a functional Ep : Fp → [0,∞) which is
p-homogeneous, i.e., satisfies Ep(au) = |a|p Ep(u) for any u ∈ Fp and any a ∈ R. The pair
(Ep,Fp) is said to be a p-energy form on (X,m) if and only if E1/p

p is a seminorm on Fp.

Definition 1.1 (Generalized p-contraction property; Definition 2.2). We say that (Ep,Fp)
satisfies the generalized p-contraction property, (GC)p for short, if and only if the following
holds: if n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
T (0) = 0 and ∥T (x)− T (y)∥ℓq2 ≤ ∥x− y∥ℓq1 for any x, y ∈ Rn1 , then for any u =
(u1, . . . , un1) ∈ Fn1

p we have

T (u) ∈ Fn2
p and

∥∥∥(Ep(Tl(u)) 1
p
)n2

l=1

∥∥∥
ℓq2

≤
∥∥∥(Ep(uk) 1

p
)n1

k=1

∥∥∥
ℓq1
. (GC)p

Note that the particular case of (GC)p for (p, n1, n2, q1, q2) = (2, n, 1, 1, p) is nothing
but the normal contractivity (1.2). As recorded in the following proposition, (GC)p is
actually a generalization of many useful inequalities like (1.2), (1.3) and (Cla)p.

Proposition 1.2 (Proposition 2.3). Let φ ∈ C(R) satisfy φ(0) = 0 and |φ(t)− φ(s)| ≤
|t− s| for any s, t ∈ R. Assume that (Ep,Fp) satisfies (GC)p. Then the following hold.

(a) (Triangle inequality and strict convexity) E1/p
p is a seminorm on Fp, and for any

λ ∈ (0, 1) and any f, g ∈ Fp with Ep(f) ∧ Ep(g) ∧ Ep(f − g) > 0,

Ep(λf + (1− λ)g) < λEp(f) + (1− λ)Ep(g).
3We set L0(X,m) := {the m-equivalence class of f | f : X → R, f is B-measurable}; see (2.1).
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(b) (Lipschitz contractivity) φ(u) ∈ Fp and Ep(φ(u)) ≤ Ep(u) for any u ∈ Fp.
(c) (Strong subadditivity) Assume that φ is non-decreasing. Then for any f, g ∈ Fp,

Ep
(
f − φ(f − g)

)
+ Ep

(
g + φ(f − g)

)
≤ Ep(f) + Ep(g).

In particular, (1.3) holds.
(d) (Leibniz rule) For any f, g ∈ Fp ∩ L∞(X,m), we have

f · g ∈ Fp and Ep(f · g)
1
p ≤ ∥g∥L∞(K,m) Ep(f)

1
p + ∥f∥L∞(K,m) Ep(g)

1
p .

(e) (p-Clarkson’s inequality) Let f, g ∈ Fp. If p ∈ (1, 2], then

2
(
Ep(f) + Ep(g)

)
≥ Ep(f + g) + Ep(f − g) ≥ 2

(
Ep(f)

1
p−1 + Ep(g)

1
p−1
)p−1

.

If p ∈ [2,∞), then

2
(
Ep(f) + Ep(g)

)
≤ Ep(f + g) + Ep(f − g) ≤ 2

(
Ep(f)

1
p−1 + Ep(g)

1
p−1
)p−1

.

In particular, (Cla)p holds.

Since the generalized p-contraction property is introduced as arguably the strongest
possible formulation of the contraction property of (Ep,Fp), it is highly non-trivial whether
p-energy forms constructed in the previous studies satisfy it. In Section 8, we see that the
existing constructions of p-energy forms in the previous studies do yield ones satisfying
(GC)p. (See also [KS24+] for another approach, which is based on Korevaar–Schoen
p-energy forms, to obtain p-energy forms satisfying (GC)p.)

In the rest of this section, we assume that (Ep,Fp) is a p-energy form on (X,m).
The other missing piece in the previous studies on p-energy forms is their differentia-
bility, which should be useful to study p-harmonic functions with respect to Ep. (See
[KM23, Problem 7.7] and [MS25+, Conjecture 10.8] for some motivations to investigate
p-harmonic functions on fractals.) In [CGQ22, HPS04, Shi24], p-harmonic functions are
defined as functions minimizing Ep under prescribed boundary values. However, it is still
unclear how to give an equivalent definition of p-harmonic function in a weak sense due
to the lack of a “two-variable version” Ep(u;φ) [Kig23, Problem 2 in Section 6.3]. We shall
recall the Euclidean case to explain the importance of this object. Let D ∈ N and let U
be an open subset of RD. A function u ∈ W 1,p(RD) is said to be p-harmonic on U in the
weak sense if and only if

ˆ
RD

|∇u(x)|p−2 ⟨∇u(x),∇φ(x)⟩RD dx = 0 for every φ ∈ C∞
c (U), (1.4)

where ⟨ · , · ⟩RD denotes the inner product of RD. It is well known that (1.4) is equivalent
to the variational equality

ˆ
RD

|∇u(x)|p dx = inf

{ˆ
RD

|∇v(x)|p dx
∣∣∣∣ v ∈ W 1,p(RD), v − u ∈ W 1,p

0 (U)

}
. (1.5)
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The issue in considering an analogue of (1.4) for Ep is that we do not have a satisfac-
tory counterpart, Ep(u;φ), of

´
|∇u|p−2 ⟨∇u,∇φ⟩ dx associated with Ep. As mentioned in

[SW04, (2.1)], the ideal definition of Ep(u;φ)4 is

Ep(u;φ) :=
1

p

d

dt
Ep(u+ tφ)

∣∣∣∣
t=0

, (1.6)

but the existence of this derivative is unclear5 because the constructions of Ep in the pre-
vious studies include many steps such as the operation of taking a subsequential scaling
limit of discrete p-energy forms. Similarly, in respect of p-energy measures, no suit-
able way is known to define a “two-variable version” Γp⟨u;φ⟩ which plays the role of
|∇u|p−2 ⟨∇u,∇φ⟩ dx. The ideal definition of Γp⟨u;φ⟩ is similar to (1.6), i.e., for any Borel
subset A of K,

Γp⟨u;φ⟩(A) :=
1

p

d

dt
Γp⟨u+ tφ⟩(A)

∣∣∣∣
t=0

. (1.7)

Such a signed measure was discussed in [BV05, Section 5], but the existence of the deriva-
tive in (1.7) (in some uniform manner) was an assumption in [BV05]; see [BV05, (H4) and
the beginning of Section 5] for details. Similarly, in [Cap07], the (scale-invariant) elliptic
Harnack inequality for p-harmonic functions on metric fractals ([Cap07, Definition 2.3])
was proved under some assumptions including the existence of Γp⟨u;φ⟩, which was called
the measure-valued p-Lagrangian and denoted by L(p)(u, φ) in [Cap07]. However, for sit-
uations where no explicit expression of the p-energy measure Γp⟨u⟩ is available unlike the
case of the Euclidean spaces, there is no proof of the existence of the derivative in (1.7)
in the literature. (The p-energy form on the Sierpiński gasket constructed in [HPS04] is
discussed in [Cap07, Section 5] as a concrete examples and it is stated in [Cap07, p. 1315]
that “we can define the corresponding Lagrangian L(p)(u, v)”, but we have been unable to
find in the literature a rigorous proof of the existence of the derivatives in [Cap07, p. 1315]
defining Eg(u, v) and in [Cap07, p. 1303, (L5)] defining L(p)(u, v) for the p-energy form on
the Sierpiński gasket obtained in [HPS04].)

As another main contribution of this paper, we make a key observation that p-
Clarkson’s inequality (Cla)p implies the desired differentiability of Ep. In addition to
this result, we record basic properties of Ep(u;φ) given by (1.6) in the following theorem.

Theorem 1.3 (Proposition 3.6 and Theorem 3.7). Assume that (Ep,Fp) satisfies (Cla)p.
Then the function R ∋ t 7→ Ep(f + tg) ∈ [0,∞) is differentiable for any f, g ∈ Fp, and for
any c ∈ (0,∞),

lim
δ↓0

sup
f,g∈Fp; Ep(f)≤c/(p−2)+, Ep(g)≤1

∣∣∣∣Ep(f + δg)− Ep(f)
δ

− d

dt
Ep(f + tg)

∣∣∣∣
t=0

∣∣∣∣ = 0,

where c/0 := ∞. Moreover, define Ep( · ; · ) : Fp×Fp → R by Ep(f ; g) := 1
p
d
dt
Ep(f+ tg)

∣∣
t=0

,
and let a ∈ R, f, f1, f2, g ∈ Fp and h ∈ E−1

p (0). Then the following hold.
4Strichartz and Wong [SW04] proposed an approach based on the subderivative instead of (1.6), i.e.,

they defined Ep(u;φ) as the interval
[
E−
p (u;φ), E+

p (u;φ)
]
, where d±

dt Ep(u+ tφ)
∣∣
t=0

=: E±
p (u;φ).

5The case of p = 2 is special because of the parallelogram law. Indeed, E2 is known to be a quadratic
form and hence E2(u, v) := 1

4 (E2(u+ v)− E2(u− v)) is a symmetric form satisfying (1.6).
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(a) Ep(f ; f) = Ep(f) and Ep(af ; g) = sgn(a) |a|p−1 Ep(f ; g).
(b) The map Ep(f ; · ) : Fp → R is linear.
(c) Ep(f ;h) = 0 and Ep(f + h; g) = Ep(f ; g).
(d) R ∋ t 7→ Ep(f + tg; g) ∈ R is strictly increasing if and only if Ep(g) > 0.

(e) |Ep(f ; g)| ≤ Ep(f)
p−1
p Ep(g)

1
p .

(f) |Ep(f1; g)− Ep(f2; g)| ≤ Cp
(
Ep(f1) ∨ Ep(f2)

) p−1−αp
p Ep(f1 − f2)

αp
p Ep(g)

1
p , where αp :=

1
p
∧ p−1

p
and Cp ∈ (0,∞) is a constant determined solely and explicitly by p.

We also establish a similar result for p-energy measures as follows, which is the first
rigorous result on the existence of the derivative in (1.7) for p-energy measures on fractals.
(Recall that the existence of p-energy measures in a general setting not assuming the self-
similarity of the space and the p-energy form is unknown; see [MS25+, Problem 10.4].)

Theorem 1.4 (Propositions 4.3, 4.8 and Theorem 4.5). Let B0 be a σ-algebra in X, and
assume that {Γp⟨u⟩}u∈Fp is a family of measures on (X,B0) such that Γp⟨f⟩(X) ≤ Ep(f)
for any f ∈ Fp and such that (Γp⟨ · ⟩(A),Fp) is a p-energy form on (X,m) satisfying
(Cla)p for any A ∈ B0. Then R ∋ t 7→ Γp⟨f + tg⟩(A) ∈ [0,∞) is differentiable for any
f, g ∈ Fp and any A ∈ B0, and for any c ∈ (0,∞),

lim
δ↓0

sup
A∈B0, f,g∈Fp; Ep(f)≤c/(p−2)+, Ep(g)≤1

∣∣∣∣Γp⟨f + δg⟩(A)− Γp⟨f⟩(A)
δ

− d

dt
Γp⟨f + tg⟩(A)

∣∣∣∣
t=0

∣∣∣∣ = 0.

Moreover, the set function Γp⟨f ; g⟩ : B0 → R defined by Γp⟨f ; g⟩(A) := 1
p
d
dt
Γp⟨f +

tg⟩(A)
∣∣
t=0

is a signed measure on (X,B0) for any f, g ∈ Fp, and the following hold for
any A ∈ B0, any a ∈ R and any f, f1, f2, g, h ∈ Fp with Γp⟨h⟩(A) = 0:

(a) Γp⟨f ; f⟩(A) = Γp⟨f⟩ and Γp⟨af ; g⟩(A) = sgn(a) |a|p−1 Γp⟨f ; g⟩(A).
(b) The map Γp⟨f ; · ⟩(A) : Fp → R is linear.
(c) Γp⟨f ;h⟩(A) = 0 and Γp⟨f + h; g⟩(A) = Γp⟨f ; g⟩(A).
(d) R ∋ t 7→ Γp⟨f + tg; g⟩(A) ∈ R is strictly increasing if and only if Γp⟨g⟩(A) > 0.
(e) For any B0-measurable functions φ, ψ : X → [0,∞],

ˆ
X

φψ d |Γp⟨f ; g⟩| ≤
(ˆ

X

φ
p

p−1 dΓp⟨f⟩
) p−1

p
(ˆ

X

ψp dΓp⟨g⟩
) 1

p

.

(f) Let αp = 1
p
∧ p−1

p
and Cp be the same constants as in Theorem 1.3-(f). Then

|Γp⟨f1; g⟩(A)− Γp⟨f2; g⟩(A)|

≤ Cp
(
Γp⟨f1⟩(A) ∨ Γp⟨f2⟩(A)

) p−1−αp
p Γp⟨f1 − f2⟩(A)

αp
p Γp⟨g⟩(A)

1
p .

In the second part of this paper (Sections 6 and 7), we aim at developing a general
theory of p-energy forms taking (GC)p into account and focusing on a “low-dimensional”
setting. Namely, we introduce the notion of p-resistance form as defined in Definition 1.5
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below and establish fundamental properties of this class of p-energy forms, as a natural
extension of the theory of resistance forms for p = 2 introduced in [Kig95] and developed
further in [Kig01, Kig12] by Kigami. In the rest of this section, we consider the situation
where (B,m) is the pair of 2X = {A | A ⊆ X} and the counting measure on X, so that
L0(X,m) = RX ; see also Remark 2.1.

Definition 1.5 (p-Resistance form; Definition 6.1). We say that (Ep,Fp) is a p-resistance
form on X if and only if the following conditions hold:

(RF1)p Fp is a linear subspace of RX containing 1X and Ep( · )1/p is a seminorm on Fp

satisfying {u ∈ Fp | Ep(u) = 0} = R1X .
(RF2)p The quotient normed space (Fp/R1X , Ep( · )1/p) is a Banach space.
(RF3)p If x ̸= y ∈ X, then there exists u ∈ Fp such that u(x) ̸= u(y).
(RF4)p For any x, y ∈ X,

REp(x, y) := sup

{
|u(x)− u(y)|p

Ep(u)

∣∣∣∣ u ∈ Fp \ R1X
}
<∞.

(RF5)p (Ep,Fp) satisfies the generalized p-contraction property (GC)p.

We verify that the p-energy forms on p-conductively homogeneous compact metric
spaces (K, d) (Definition 8.11) constructed by Kigami in [Kig23, Theorem 3.21], where p
is assumed to be strictly greater than the Ahlfors regular conformal dimension of (K, d)
(Definition 8.5-(4)), are p-resistance forms. In addition, we prove that the p-energy forms
on post-critically finite self-similar sets constructed by Cao–Gu–Qiu in [CGQ22, Proposi-
tion 5.3] are also p-resistance forms for any p ∈ (1,∞) under the condition (R) in [CGQ22,
p. 18]. See Section 8 for details of the frameworks treated in [CGQ22, Kig23]. Similar to
the case of p = 2, developing a general theory of p-resistance forms allows us to investigate
p-energy forms provided by these broad frameworks in a synthetic manner.

It is immediate that if (Ep,Fp) is a p-resistance form on X, then REp( · , · )1/p is a
metric on X and any function in Fp is a Lipschitz function on K with respect to this
metric. In the theory of resistance forms (p = 2), it is well known that RE2( · , · ) is a
metric, which is called the resistance metric of the resistance form (E2,F2); see [Kig01,
Theorem 2.3.4] for a proof. In view of this fact for p = 2, it is natural to seek the largest
exponent q such that REp( · , · )q is a metric. The following theorem gives the answer.

Theorem 1.6 (Corollary 6.32). If (Ep,Fp) is a p-resistance form on X, then REp( · , · )
1

p−1

is a metric on X.

The power 1/(p−1) in Theorem 1.6 is sharp; see Example 6.34. Let us call REp( · , · )
1

p−1

the p-resistance metric of (Ep,Fp). Theorem 1.6 was proved in [ACFP19, Her10] for the
canonical p-energy forms (i.e., those given by (6.2)) on finite weighted graphs (V, L) and
in [Shi21] for this class of forms on infinite graphs. Theorem 1.6 establishes the same
result for the first time for p-energy forms which are not of the form (6.2) and for ones
on continuous spaces.
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We also investigate p-harmonic functions with respect to p-resistance forms, which
should be considered as part of nonlinear potential theory under the condition that each
point has a positive p-capacity. Let us explain some basic results in this introduction.
The following definition is a natural analogue of (1.4) (or of (1.5)).

Definition 1.7 (Ep-Harmonic function; see Definition 6.12). Let (Ep,Fp) be a p-resistance
form on X and let B be a non-empty subset of X. A function h ∈ Fp is said to be Ep-
harmonic on X \B if and only if

Ep(h;φ) = 0 for any φ ∈ Fp with φ|B = 0,

or equivalently (see Proposition 6.11 for this equivalence),

Ep(h) = inf{Ep(u) | u ∈ Fp, u|B = h|B}.

A standard argument in variational analysis ensures the existence and uniqueness of
Ep-harmonic functions with given boundary values.

Proposition 1.8 (Part of Theorem 6.13). Let (Ep,Fp) be a p-resistance form on X and
let B be a non-empty subset of X. Define Fp|B := {u|B | u ∈ Fp}. Then for any u ∈
Fp|B, there exists a unique function h

Ep
B [u] ∈ Fp satisfying hEpB [u]

∣∣
B
= u and Ep(hEpB [u]) =

inf{Ep(v) | v ∈ Fp, v|B = u}.

Using the (nonlinear) operator hEpB [ · ] : Fp|B → Fp given in Proposition 1.8, we can
introduce a new p-resistance form on the boundary set B, which is called the trace of
(Ep,Fp) to B. This notion is at the core of our theory of p-resistance forms, and turns
out to be a powerful tool especially when we work on post-critically finite self-similar sets;
see Subsection 8.3 for example. Here we just record fundamental results on traces in the
following theorem.

Theorem 1.9 (Trace of p-resistance form; part of Theorem 6.13). Let (Ep,Fp) be a p-
resistance form on X and let B be a non-empty subset of X. Define Ep|B : Fp|B → [0,∞)

by Ep|B(u) := Ep(hEpB [u]) for u ∈ Fp|B. Then (Ep|B,Fp|B) is a p-resistance form on B.
Furthermore, REp|B = REp |B×B and

Ep|B(u; v) = Ep
(
h
Ep
B [u];h

Ep
B [v]

)
for any u, v ∈ Fp|B.

Now let us state results on behavior of Ep-harmonic functions. We start with com-
parison principles for Ep-harmonic functions, namely monotonicity properties of hEpB [u]

with respect to the boundary value u. Because of the nonlinearity of the operator hEpB ,
a maximum principle does not imply a comparison principle unlike the case of p = 2.
Fortunately, by virtue of Proposition 1.8 and the strong subadditivity (1.3), we can prove
the following weak comparison principle for Ep-harmonic functions (Proposition 6.26):

If ∅ ≠ B ⊆ X and u, v ∈ Fp|B satisfy u ≤ v on B, then hEpB [u] ≤ h
Ep
B [v] on X. (1.8)
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We also show a localized version of (1.8) under suitable assumptions (Proposition 6.30).
Furthermore, by employing the approach in [Cap07], we show the following (scale-
invariant) elliptic Harnack inequality for non-negative Ep-harmonic functions under some
extra assumptions including the existence of nice p-energy measures (see Theorem 6.36
for the precise statement): there exists a constant C ∈ (0,∞) such that for any
(x, s) ∈ X × (0,∞) and any non-negative h ∈ Fp that is Ep-harmonic on BR̂p

(x, 2s),

where R̂p := R
1/(p−1)
Ep ,

sup
B

R̂p
(x,s)

h ≤ C inf
B

R̂p
(x,s)

h, (1.9)

which is well known to imply a local Hölder continuity of h. Regarding continuity es-
timates for Ep-harmonic functions, we also obtain the following sharp Hölder regularity
estimate, which in fact implies Theorem 1.6 as an easy corollary.

Theorem 1.10 (Theorem 6.31). Let (Ep,Fp) be a p-resistance form on X and let B be a
non-empty subset of X. Define BFp :=

⋂
u∈Fp;u|B=0 u

−1(0) and, for x ∈ X \BFp,

R̂p(x,B) :=

(
sup

{
|u(x)|p

Ep(u)

∣∣∣∣ u ∈ Fp, u|B = 0, u(x) ̸= 0

}) 1
p−1

.

Let x ∈ X \BFp and y ∈ X. Then

h
Ep
B∪{x}

[
1
B∪{x}
B

]
(y) ≤ R̂p(x, y)

R̂p(x,B)
.

Moreover, for any h ∈ Fp that is Ep-harmonic on X \B and satisfies supB |h| <∞,

|h(x)− h(y)| ≤ R̂p(x, y)

R̂p(x,B)
sup

x′,y′∈B
|h(x′)− h(y′)| .

Next let us move to applications of our general theory of p-resistance forms. In their
forthcoming papers [KS+a, KS+b], the authors will heavily use this theory to make some
essential progress in the setting of post-critically finite self-similar structures; see [KS23+]
for a survey of these results described in the setting of the Sierpiński gasket. In Section
9 of this paper, we shall give another application to strict inequalities for the p-walk
dimensions of two classes of self-similar fractals, the generalized Sierpiński carpets and the
D-dimensional level-l Sierpiński gasket (see Figure 1.2). Let K be a generalized Sierpiński
carpet or the D-dimensional level-l Sierpiński gasket, equip K with the Euclidean metric
d, let p ∈ (1,∞), and assume in the former case that p is strictly greater than the Ahlfors
regular conformal dimension of (K, d). Then by Theorem 8.30 in the former case and by
Theorem 8.51 in the latter case, we can construct a canonical p-resistance form (Ep,Fp)
on K. To be more precise, let {Fi}i∈S, with S a suitable non-empty finite set, be the
family of contractive similitudes defining K, i.e., such that K =

⋃
i∈S Fi(K). Then there

exists a p-resistance form (Ep,Fp) on K which satisfies Fp ⊆ C(K) and the following
self-similarity for some σp ∈ (1,∞)(, which we call the weight of (Ep,Fp)):

Ep(u) = σp
∑
i∈S

Ep(u ◦ Fi), u ∈ Fp. (1.10)
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Figure 1.2: From the left, a non-planar generalized Sierpiński carpet (Menger Sponge)
and the 2-dimensional level-l Sierpiński gaskets (l = 2, 3, 4)

Letting r∗ ∈ (0, 1) denote the common contraction ratio of the similitudes {Fi}i∈S, we
define the p-walk dimension dw,p of K by

dw,p :=
log
(
(#S)σp

)
log(r−1

∗ )
,

which coincides with the walk dimension of K if p = 2. As shown in [MS25+, Theorem
7.1], the value dw,p shows up as a space-scaling exponent in the following manner:

Ep(u) ≍ lim sup
r↓0

ˆ
K

 
|x−y|<r

|u(x)− u(y)|p

rdw,p
µ(dy)µ(dx), u ∈ Fp,

where µ denotes the log(#S)/ log(r−1
∗ )-dimensional Hausdorff measure on (K, d). In the

case of p = 2, the strict inequality dw,2 > 2 has been verified for various self-similar
fractals, and has been shown to imply a number of anomalous features of the diffusion
associated with (E2,F2); see, e.g., [Kaj23] and the references therein for further details.
Compared with the case of p = 2, the class of self-similar fractals for which dw,p > p
has been proved in [Shi24, Theorem 2.27] is limited to the planar generalized Sierpiński
carpets due to the lack of counterparts of many useful tools available in the case of p = 2.
As an application of the differentiability in (1.6), in Section 9, we show dw,p > p for any
generalized Sierpiński carpet and for the D-dimensional level-l Sierpiński gasket with any
D, l ∈ N \ {1}. The proof for the former follows closely the argument in [Kaj23], whereas
for the latter we need a different argument from that in [Kaj23].

We would also like to mention a geometric role of σp appearing in (1.10). As done
in [Kig20, Kig23], the constant σp is obtained by seeking the behavior of conductance
constants ([Kig23, Definition 2.17]) on approximating graphs of K; see Theorem 8.12 for
details. A remarkable fact is that the behavior of σp as a function of p is deeply related
to the Ahlfors regular conformal dimension dimARC(K, d) of (K, d) (see Definition 8.5-
(4) for its definition); indeed, σp > 1 if and only if p > dimARC(K, d) (see, e.g., [Kig20,
Theorem 4.7.6]). Therefore, knowing properties of the function p 7→ σp is very important
to understand the Ahlfors regular conformal dimension and related geometric information.
Nevertheless, we do not know anything other than the following:

(Continuity; [Kig20, Proposition 4.7.5]) σp is continuous in p.
(Simple monotonicity; [Kig20, Proposition 4.7.5]) σp is non-decreasing in p.
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(Hölder-type monotonicity; [Kig20, Lemma 4.7.4]) dw,p/p is non-increasing in p.
(Relation with dimARC; [Kig20, Theorem 4.7.6]) σp > 1 if and only if p > dimARC(K, d).

As yet another application of our theory of p-resistance forms, we prove in Theorems
8.32 and 7.9 the following new monotonicity behavior of σp (in suitably general settings
including any generalized Sierpiński carpet and theD-dimensional level-l Sierpiński gasket
with any D, l ∈ N \ {1}6):

(dimARC(K, d),∞) ∋ p 7→ σ1/(p−1)
p ∈ (0,∞) is non-decreasing, (1.11)

which is good evidence that properties of p 7→ σ
1/(p−1)
p are also important to deepen our

understanding of (Ep,Fp) and, possibly, of dimARC(K, d).
Let us conclude this introduction by mentioning a significant difference between our

theory and some recent results [BBR24, Kuw24] on p-energy forms based on strongly
local regular symmetric Dirichlet forms. (Similar p-energy forms were considered earlier
in [HRT13, Remark 6.1].) In the settings of [BBR24, Kuw24], the associated p-energy
measure ΓDF

p ⟨u⟩ can be explicitly defined by using the “density” which plays the role of
“|∇u|” and is independent of p (see Example 4.2-(3)), whereas it is almost impossible to
find a priori such a density on fractals. Meanwhile, we can naturally define the self-similar
p-energy measure Γp⟨u⟩ of u by using (1.10); see Section 5 for details. (See also [KS24+]
for p-energy measures associated with Korevaar–Schoen p-energy forms.) In [KS+b], the
authors will show that Γp⟨up⟩ and Γq⟨uq⟩ are mutually singular for any p, q ∈ (1,∞) with
p ̸= q and any (up, uq) ∈ Fp×Fq for a certain class of post-critically finite self-similar sets
including the D-dimensional level-l Sierpiński gasket with any D, l ∈ N \ {1}, by proving
that (1,∞) ∋ p 7→ σ

1/(p−1)
p is strictly increasing. This phenomenon on the singularity of

energy measures never happens if we consider the energy measures ΓDF
p ⟨ · ⟩,ΓDF

q ⟨ · ⟩ that
naturally show up in the settings of [BBR24, Kuw24]. This point also motivates us to
develop a general theory of p-energy forms in an abstract setting in order to deal with
fractals.

This paper is organized as follows. In Section 2, we collect basic results on the gen-
eralized p-contraction property (GC)p. In Section 3, we prove the differentiability of
p-energy forms satisfying p-Clarkson’s inequality (Theorem 1.3). Moreover, we see that
the (Fréchet) derivative in (1.6) gives a homeomorphism between Fp/E−1

p (0) and its dual.
We also discuss regular and strong local properties of p-energy forms there. In Section 4,
under the assumption of the existence of p-energy measures, we discuss their fundamen-
tal properties (Theorem 1.4 for example). We also formulate a chain rule for p-energy
measures and observe some consequences of it. In Section 5, we recall standard notions
on self-similar structures, discuss the self-similarity of p-energy forms and see that we can
associate self-similar p-energy measures to a given self-similar p-energy form. Section 6
is devoted to the study of fundamental nonlinear potential theory for p-resistance forms,

6It is essentially known to experts that dimARC(K, d) = 1 for the D-dimensional level-l Sierpiński
gasket K equipped with the Euclidean metric d. In Theorem B.8, we give a new proof of this fact, based
on the existence of self-similar p-resistance forms proved in Theorem 8.50 as an extension of [CGQ22,
Theorem 6.3], for a large class of post-critically finite self-similar sets with good geometric symmetry; see
Subsection B.2 for details and relevant results in the literature.
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most of which are mentioned in the introduction (see Theorems 1.6, 1.9, 1.10, Proposition
1.8, (1.8) and (1.9)). We further investigate the theory of p-resistance forms in the self-
similar case in Section 7. In particular, we establish a Poincaré-type inequality in terms
of self-similar p-energy measures under some geometric assumptions on the p-resistance
metric. In Section 8, the generalized p-contraction property (GC)p is verified for the p-
energy/p-resistance forms constructed in [CGQ22, Kig23]. More precisely, in Subsections
8.1 and 8.2, we recall the notion of p-conductively homogeneous compact metric space and
the construction of p-energy forms due to [Kig23] and prove (GC)p for them. In Subsec-
tion 8.3, we focus on the case of post-critically finite self-similar structures and show that
the eigenforms constructed in [CGQ22] are indeed p-resistance forms. In Subsection 8.4,
we prove the existence of eigenforms for a large class of post-critically finite self-similar
sets with good geometric symmetry (Theorem 8.50), extending [CGQ22, Theorem 6.3] by
following the framework of [Kig01, Theorem 3.8.10]. In Section 9, we prove dw,p > p for
the generalized Sierpiński carpets and the D-dimensional level-l Sierpiński gasket by using
properties of p-harmonic functions established in Section 6. In Appendix A, we show that
(GC)2 holds for any symmetric Dirichlet form, the (2-)energy measures associated with
any regular symmetric Dirichlet form, and their densities. Lastly, in Appendix B we col-
lect some miscellaneous results related to self-similar p-resistance forms on post-critically
finite self-similar structures.

Notation. Throughout this paper, we use the following notation and conventions.

(1) For [0,∞]-valued quantities A and B, we write A ≲ B to mean that there exists an
implicit constant C ∈ (0,∞) depending on some unimportant parameters such that
A ≤ CB. We write A ≍ B if A ≲ B and B ≲ A.

(2) For a set A, we let #A ∈ N ∪ {0,∞} denote the cardinality of A.
(3) We set sup ∅ := 0, inf ∅ := ∞, a/0 := ∞ for a ∈ (0,∞] and 00 := 1. We write

a ∨ b := max{a, b}, a ∧ b := min{a, b} and a+ := a ∨ 0 for a, b ∈ [−∞,∞], and we
use the same notation also for [−∞,∞]-valued functions and equivalence classes of
them. All numerical functions in this paper are assumed to be [−∞,∞]-valued.

(4) We define sgn: R → R by sgn(a) := |a|−1 a for a ∈ R \ {0} and sgn(0) := 0.
(5) Let n ∈ N. For x = (xk)

n
k=1 ∈ Rn, we set ∥x∥ℓpn := ∥x∥ℓp := (

∑n
k=1|xk|p)1/p for

p ∈ (0,∞), ∥x∥ℓ∞n := ∥x∥ℓ∞ := max1≤k≤n |xk| and ∥x∥ := ∥x∥ℓ2 . For Φ: Rn → R
which is differentiable on Rn and for k ∈ {1, . . . , n}, its first-order partial derivative in
the k-th coordinate is denoted by ∂kΦ and its gradient is denoted by ∇Φ := (∂kΦ)

n
k=1.

(6) Let X be a non-empty set. We define idX : X → X by idX(x) := x, 1A = 1XA ∈ RX

for A ⊆ X by 1A(x) := 1XA (x) :=

{
1 if x ∈ A,
0 if x ̸∈ A,

and set ∥u∥sup := ∥u∥sup,X :=

supx∈X |u(x)| for u : X → [−∞,∞]. Also, set oscX [u] := supx,y∈X |u(x)− u(y)| for
u : X → R with ∥u∥sup <∞.

(7) Let X be a topological space. The Borel σ-algebra of X is denoted by B(X), the
closure of A ⊆ X in X by A

X , and we say that A ⊆ X is relatively compact in
X if and only if AX is compact. We set C(X) := {u ∈ RX | u is continuous},
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suppX [u] := X \ u−1(0)
X

for u ∈ C(X), Cb(X) := {u ∈ C(X) | ∥u∥sup < ∞}, and
Cc(X) := {u ∈ C(X) | suppX [u] is compact}.

(8) Let X be a topological space having a countable open base. For a measure m
on a σ-algebra B in X including B(X), we let suppX [m] denote the support of m
in X, i.e., the smallest closed subset F of X such that m(X \ F ) = 0, and set
suppm[f ] := suppX [|f | dm] for a B-measurable function f : X → [−∞,∞] or an
m-equivalence class f of such functions.

(9) Let (X, d) be a metric space. We set Bd(x, r) := {y ∈ X | d(x, y) < r} for (x, r) ∈
X × (0,∞), and diam(A, d) := supx,y∈A d(x, y) and distd(A,B) := inf{d(x, y) | x ∈
A, y ∈ B} for subsets A,B of X.

(10) Let (X,B,m) be a measure space. We set
ffl
A
f dm := 1

m(A)

´
A
f dm for f ∈ L1(X,m)

and A ∈ B with m(A) ∈ (0,∞), and set m|A := m|B|A for A ∈ B, where B|A :=
{B ∩ A | B ∈ B}. For a measure µ on (X,B), we write µ ≪ m to mean that µ is
absolutely continuous with respect to m.

2 The generalized p-contraction property

In this section, we will introduce the generalized p-contraction property and establish
basic results on this property. Throughout this section, we fix p ∈ (1,∞), a measure
space (X,B,m), a linear subspace F of L0(X,m) := L0(X,B,m), where

L0(X,B,m) := {the m-equivalence class of f | f : X → R, f is B-measurable}, (2.1)

and a functional E : F → [0,∞) which is p-homogeneous, i.e., satisfies E(au) = |a|p E(u)
for any (a, u) ∈ R×F .

Remark 2.1. Note that the pair (B,m) is arbitrary. For example, (B,m) could be the pair
of 2X = {A | A ⊆ X} and the counting measure on X, in which case L0(X,B,m) = RX .
We will make this choice of (B,m) later in Section 6.

Definition 2.2 (Generalized p-contraction property). The pair (E ,F) is said to satisfy
the generalized p-contraction property, (GC)p for short, if and only if the following hold:
if n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy

T (0) = 0 and ∥T (x)− T (y)∥ℓq2 ≤ ∥x− y∥ℓq1 for any x, y ∈ Rn1 , (2.2)

then for any u = (u1, . . . , un1) ∈ Fn1 we have

T (u) ∈ Fn2 and
∥∥(E(Tl(u))1/p)n2

l=1

∥∥
ℓq2

≤
∥∥(E(uk)1/p)n1

k=1

∥∥
ℓq1
. (GC)p

The next proposition is a collection of useful inequalities included in (GC)p.

Proposition 2.3. Let φ ∈ C(R) satisfy φ(0) = 0 and |φ(t)− φ(s)| ≤ |t− s| for any
s, t ∈ R.7 Assume that (E ,F) satisfies (GC)p.

7Note that any such φ satisfies |φ ◦ f | ≤ |f | on X for any f : X → R and hence φ ◦ f ∈ Lp(X,m) for
any f ∈ Lp(X,m).
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(a) T (x, y) := x + y, x, y ∈ R, satisfies (2.2) with (q1, q2, n1, n2) = (1, p, 2, 1). In partic-
ular, E1/p is a seminorm on F , and E is strictly convex on F/E−1(0), i.e., for any
λ ∈ (0, 1) and any f, g ∈ F , if E(f) ∧ E(g) ∧ E(f − g) > 0, then

E(λf + (1− λ)g) < λE(f) + (1− λ)E(g). (2.3)

(b) T := φ satisfies (2.2) with (q1, q2, n1, n2) = (1, p, 1, 1). In particular,

for any φ as assumed above, φ(u) ∈ F and E(φ(u)) ≤ E(u) for any u ∈ F . (2.4)

(c) Assume that φ is non-decreasing. Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = x1 − φ(x1 − x2) and T2(x1, x2) = x2 + φ(x1 − x2), (x1, x2) ∈ R2.

Then T satisfies (2.2) with (q1, q2, n1, n2) = (p, p, 2, 2). In particular,

E
(
f − φ(f − g)

)
+ E

(
g + φ(f − g)

)
≤ E(f) + E(g) for any f, g ∈ F . (2.5)

In particular, by considering the case of φ(x) = x+, we have the following strong
subadditivity: for any f, g ∈ F , f ∨ g, f ∧ g ∈ F and

E(f ∨ g) + E(f ∧ g) ≤ E(f) + E(g). (2.6)

(d) For any a1, a2 > 0, define T a1,a2 : R2 → R by

T a1,a2(x1, x2) :=
([
(−a1) ∨ a−1

2 x1
]
∧ a1

)
·
([
(−a2) ∨ a−1

1 x2
]
∧ a2

)
, (x1, x2) ∈ R2.

Then T a1,a2 satisfies (2.2) with (q1, q2, n1, n2) = (1, p, 2, 1). In particular, for any
f, g ∈ F ∩ L∞(X,m) we have

f · g ∈ F and E(f · g)1/p ≤ ∥g∥L∞(X,m) E(f)
1/p + ∥f∥L∞(X,m) E(g)

1/p. (2.7)

(e) Assume that p ∈ (1, 2]. Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = 2−(p−1)/p(x1+x2) and T2(x1, x2) = 2−(p−1)/p(x1−x2), (x1, x2) ∈ R2.

Then T satisfies (2.2) with (q1, q2, n1, n2) = (p/(p− 1), p, 2, 2). In particular, (E ,F)
satisfies the following p-Clarkson’s inequality:

E(f + g) + E(f − g) ≥ 2
(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1 for any f, g ∈ F . (2.8)

(f) Assume that p ∈ [2,∞). Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = 2−1/p(x1 + x2) and T2(x1, x2) = 2−1/p(x1 − x2), (x1, x2) ∈ R2.

Then T satisfies (2.2) with (q1, q2, n1, n2) = (p, p/(p− 1), 2, 2). In particular, (E ,F)
satisfies the following p-Clarkson’s inequality:

E(f + g) + E(f − g) ≤ 2
(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1 for any f, g ∈ F . (2.9)
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Remark 2.4. (1) The property (2.5) is inspired by the nonlinear Dirichlet form theory
due to Cipriani and Grillo [CG03]. See [Cla23, Theorem 4.7] and the reference therein
for further background.

(2) There are two versions of p-Clarkson’s inequality, one of which is stronger than the
other. The inequalities (2.8) and (2.9) above are the stronger one for p ∈ (1, 2] and
for p ∈ [2,∞), respectively; see Remark 3.3 below for the weaker one.

Proof of Proposition 2.3. (a): It is obvious that T (x, y) := x + y satisfies (2.2) with
(q1, q2, n1, n2) = (1, p, 2, 1) and hence the triangle inequality for E1/p holds. Since
(0,∞) ∋ x 7→ xp is strictly convex, for any λ ∈ (0, 1) and any f, g ∈ F with
E(f) ∧ E(g) ∧ E(f − g) > 0,

E(λf + (1− λ)g) ≤
(
λE(f)1/p + (1− λ)E(g)1/p

)p
< λE(f) + (1− λ)E(g),

where we used the triangle inequality for E1/p in the first inequality.
(b): This is obvious.
(c): Let x = (x1, x2), y = (y1, y2) ∈ R2. For ease of notation, set zi := xi − yi and

A := φ(x1 − x2)− φ(y1 − y2). Then ∥T (x)− T (y)∥ℓp ≤ ∥x− y∥ℓp ie equivalent to

|z1 − A|p + |z2 + A|p ≤ |z1|p + |z2|p , (2.10)

so we will show (2.10). Note that |A| ≤ |z1 − z2| since φ is 1-Lipschitz. The desired
estimate (2.10) is evident when z1 = z2, so we consider the case of z1 ̸= z2. Assume that
z1 > z2 because the remaining case z1 < z2 is similar. Then (x1−x2)−(y1−y2) = z1−z2 >
0 and thus 0 ≤ A ≤ z1 − z2. Set ψp(t) := |t|p (t ∈ R) for brevity. If 0 ≤ A < z1−z2

2
, then

z2 ≤ z2 + A < z1 − A ≤ z1 and we see that

|z1 − A|p + |z2 + A|p − |z1|p − |z2|p =
ˆ z2+A

z2

ψ′
p(t) dt−

ˆ z1

z1−A
ψ′
p(t) dt

≤ A
(
ψ′
p(z2 + A)− ψ′

p(z1 − A)
)
≤ 0.

If A ≥ z1−z2
2

, then z2 ≤ z1 − A ≤ z2 + A ≤ z1 and thus

|z1 − A|p + |z2 + A|p − |z1|p − |z2|p =
ˆ z1−A

z2

ψ′
p(t) dt−

ˆ z1

z2+A

ψ′
p(t) dt

≤ (z1 − z2 − A)
(
ψ′
p(z1 − A)− ψ′

p(z2 + A)
)
≤ 0,

which proves (2.10). The case of φ(x) = x+ immediately implies (2.6).
(d): For any a1, a2 > 0 and (x1, x2), (y1, y2) ∈ R2, we see that

|T a1,a2(x1, x2)− T a1,a2(x1, x2)|
≤
∣∣(−a1) ∨ a−1

2 x1 ∧ a1
∣∣ ∣∣((−a2) ∨ a−1

1 x2 ∧ a2
)
−
(
(−a2) ∨ a−1

1 y2 ∧ a2
)∣∣

+
∣∣(−a2) ∨ a−1

1 y2 ∧ a2
∣∣ ∣∣((−a1) ∨ a−1

2 x1 ∧ a1
)
−
(
(−a1) ∨ a−1

2 y1 ∧ a1
)∣∣

≤ a1
∣∣a−1

1 x2 − a−1
1 y2

∣∣+ a2
∣∣a−1

2 x1 − a−1
2 y1

∣∣ = |x1 − y1|+ |x2 − y2| ,
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whence T a1,a2 satisfies (2.2). We get (2.7) by applying (GC)p with u1 = ∥g∥L∞(X,m) f ,
u2 = ∥f∥L∞(X,m) g, a1 = ∥f∥L∞(X,m), a2 = ∥g∥L∞(X,m).

(e),(f): These statements follow from p-Clarkson’s inequality for the ℓp-norm (see, e.g.,
[Cla36, Theorem 2]).

The following corollary is easily implied by Proposition 2.3-(b),(d).

Corollary 2.5. Assume that (E ,F) satisfies (GC)p.

(a) Let u ∈ F ∩ L∞(X,m) and let Φ ∈ C1(R) satisfy Φ(0) = 0. Then

Φ(u) ∈ F and E(Φ(u)) ≤ sup
{
|Φ′(t)|p

∣∣ t ∈ R, |t| ≤ ∥u∥L∞(X,m)

}
E(u). (2.11)

(b) Let δ,M ∈ (0,∞) and let f, g ∈ F satisfy f ≥ 0, g ≥ 0, f ≤M and (f+g)|{f ̸=0} ≥ δ.
Then there exists C ∈ (0,∞) depending only on p, δ,M such that

f

f + g
∈ F and E

(
f

f + g

)
≤ C

(
E(f) + E(g)

)
. (2.12)

(c) Let n ∈ N, q ∈ [1, p], u = (u1, . . . , un) ∈ Fn and v ∈ L0(X,m). If there exist
m-versions of u, v such that |v(x)| ≤ ∥u(x)∥ℓq and |v(x)− v(y)| ≤ ∥u(x)− u(y)∥ℓq
for any x, y ∈ X, then v ∈ F and E(v) ≤

∥∥(E(uk)1/p)nk=1

∥∥
ℓq
.

Proof. (a): This is immediate from Proposition 2.3-(b).
(b): We follow [MS23+, Proposition 6.25(ii)]8. Let φ ∈ C(R) be a Lipschitz map such

that φ(x) = 1
x

for x ≥ δ and supx ̸=y∈R
|φ(x)−φ(y)|

|x−y| ≤ C ′ for some constant C ′ depending
only on δ. Since f · φ(f + g) = f

f+g
, we get (2.12) by using (2.4) and (2.7).

(c): The proof below is similar to [MR, Corollary I.4.13]. Fix m-versions of u, v
satisfying |v(x)| ≤ ∥u(x)∥ℓq and |v(x)− v(y)| ≤ ∥u(x)− u(y)∥ℓq for any x, y ∈ X. We
define T0 : u(X) ∪ {0} → R by setting T0(0) := 0 and T0(z) := v(x) for each z ∈ u(X),
where x ∈ X satisfies z = u(x). This map T0 is well-defined since v(x) = 0 for any
x ∈ X with u(x) = 0 and |v(x)− v(y)| ≤ ∥u(x)− u(y)∥ℓq = 0 for any x, y ∈ X with
u(x) = u(y) ∈ u(X). In addition, we easily see that |T0(z1)− T0(z2)| ≤ ∥z1 − z2∥ℓq for
any z1, z2 ∈ u(X) ∪ {0}, i.e., T0 : (u(X) ∪ {0}, ∥ · ∥ℓq) → R is 1-Lipschitz. Noting that
(Rn, ∥ · ∥ℓq) is a metric space by q ≥ 1, we obtain a 1-Lipschitz map T : (Rn, ∥ · ∥ℓq) → R
satisfying T (z) = T0(z) for any z ∈ u(X) ∪ {0} by applying the McShane–Whitney
extension lemma (see, e.g., [HKST, p. 99]). Since T satisfies (2.2) with (q1, q2, n1, n2) =
(q, p, n, 1) and T (u) = v, the assertions follow from (GC)p.

We also notice that (GC)p implies a new variant of p-Clarkson’s inequality, which we
call improved p-Clarkson’s inequality. This result is not used in the paper, but we record
it for potential future applications.

8The article [MS23+] is a detailed version of [MS25+]. Several statements and proofs have been
removed from the latter, so we still refer to [MS23+] for those omitted results and arguments.
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Proposition 2.6 (Improved p-Clarkson’s inequality). Define ψp : (0,∞) → (0,∞) by

ψp(s) := (1 + s)p−1 + sgn(1− s) |1− s|p−1 , s > 0. (2.13)

(a) Assume that p ∈ (1, 2]. For s ∈ (0,∞), define T s = (T s1 , T
s
2 ) : R2 → R2 by

T s1 (x1, x2) := 2−1ψp(s)
1/p(x1 + x2), T s2 (x1, x2) := 2−1ψp(s

−1)1/p(x1 − x2).

Then T s satisfies (2.2) with (q1, q2, n1, n2) = (p, p, 2, 2) for any s ∈ (0,∞). If (E ,F)
satisfies (GC)p, then

sup
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≤ E(f + g) + E(f − g) for any f, g ∈ F . (2.14)

(b) If E satisfies (2.14), then (2.8) holds.
(c) Assume that p ∈ [2,∞). For s ∈ (0,∞), define T s = (T s1 , T

s
2 ) : R2 → R2 by

T s1 (x1, x2) := ψp(s)
−1/px1+ψp(s

−1)−1/px2, T s2 (x1, x2) := ψp(s)
−1/px1−ψp(s−1)−1/px2.

Then T s satisfies (2.2) with (q1, q2, n1, n2) = (p, p, 2, 2) for any s ∈ (0,∞). If p ∈
[2,∞) and (E ,F) satisfies (GC)p, then

E(f + g) + E(f − g) ≤ inf
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}

for any f, g ∈ F . (2.15)

(d) If E satisfies (2.15), then (2.9) holds.

Proof. We first recall a key result from [BCL94, Lemma 4]: for any x, y ∈ R,

|x+ y|p + |x− y|p =

{
sups>0

{
ψp(s) |x|p + ψp(s

−1) |y|p
}

if p ∈ (1, 2],
infs>0

{
ψp(s) |x|p + ψp(s

−1) |y|p
}

if p ∈ [2,∞).
(2.16)

(a): By considering x+y, x−y in (2.16) instead of x, y, we have that for any s ∈ (0,∞),

2−pψp(s) |x+ y|p + 2−pψp(s
−1) |x− y|p ≤ |x|p + |y|p ,

which means that T s satisfies (2.2) with (q1, q2, n1, n2) = (p, p, 2, 2). Since s ∈ (0,∞) is
arbitrary, we obtain (2.14).

(b): Let f, g ∈ F with E(f)∧E(g) > 0, set a := E(f)1/(p−1) and b := E(g)1/(p−1). Then,

sup
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≥ ψp(b/a)a

p−1 + ψp(a/b)b
p−1 = 2(a+ b)p−1,

which together with (2.14) yields (2.8).
(c): For any s ∈ (0,∞), we immediately see from (2.16) that T s satisfies (2.2). Since

s ∈ (0,∞) is arbitrary, we obtain (2.15).
(d): Let f, g ∈ F with E(f)∧E(g) > 0, set a := E(f)1/(p−1) and b := E(g)1/(p−1). Then,

inf
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≤ ψp(b/a)a

p−1 + ψp(a/b)b
p−1 = 2(a+ b)p−1,

which together with (2.15) yields (2.9).
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The property (GC)p is stable under taking suitable limits and some algebraic oper-
ations like summations. To state precise results, we recall the following definition on
convergences of functionals.

Definition 2.7 ([Dal, Definition 4.1 and Proposition 8.1]). Let X be a topological space,
let F : X → R ∪ {±∞} and let {Fn : X → R ∪ {±∞}}n∈N.

(1) The sequence {Fn}n∈N is said to converge pointwise to F if and only if limn→∞ Fn(x) =
F (x) for any x ∈ X .

(2) Assume that X is a first-countable topological space. The sequence {Fn}n∈N is said
to Γ-converge to F (with respect to the topology of X ) if and only if the following
conditions hold for any x ∈ X :
(i) If xn → x in X , then F (x) ≤ lim infn→∞ Fn(xn).
(ii) There exists a sequence {xn}n∈N in X such that

xn → x in X and lim sup
n→∞

Fn(xn) ≤ F (x). (2.17)

A sequence {xn}n∈N satisfying (2.17) is called a recovery sequence of {Fn}n∈N at x.

We also need the following reverse Minkowski inequality (see, e.g., [AF, Theorem
2.12]).

Proposition 2.8 (Reverse Minkowski inequality). Let (Y,A, µ) be a measure space9 and
let r ∈ (0, 1]. Then for any A-measurable functions f, g : Y → [0,∞],(ˆ

Y

f r dµ

)1/r

+

(ˆ
Y

gr dµ

)1/r

≤
(ˆ

Y

(f + g)r dµ

)1/r

. (2.18)

In the following definition, we introduce the set of p-homogeneous functionals on F
which satisfies (GC)p.

Definition 2.9. Recall that F is a linear subspace of L0(X,m). Define

UGC
p (F) := UGC

p := {E ′ : F → [0,∞) | E ′ is p-homogeneous, (E ′,F) satisfies (GC)p}.

Now we can state the desired stability of (GC)p.

Proposition 2.10. (a) a1E (1) + a2E (2) ∈ UGC
p for any E (1), E (2) ∈ UGC

p and any a1, a2 ∈
[0,∞).

(b) Let
{
E (n)

}
n∈N ⊆ UGC

p and let E (∞) : F → [0,∞). If {E (n)}n∈N converges pointwise to
E (∞), then E (∞) ∈ UGC

p .
(c) Assume that F ⊆ Lp(X,m) and let us regard F as a topological space equipped

with the topology of Lp(X,m). Let
{
E (n) ∈ UGC

p

}
n∈N and let E (∞) : F → [0,∞). If

{E (n)}n∈N Γ-converges to E (∞), then E (∞) ∈ UGC
p .

9In the book [AF], the reverse Minkowski inequality is stated and proved only for the Lr-space over
non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same proof
works for any measure space.



22 N. Kajino and R. Shimizu

Proof. The statement (b) is trivial, so we will show (a) and (c). Throughout this proof,
we fix n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying
(2.2).

(a): Let E (1), E (2) ∈ UGC
p . Then aE (1) ∈ UGC

p is evident for any a ∈ [0,∞). Set
E(f) := E (1)(f) + E (2)(f), f ∈ F , and let u = (u1, . . . , un1) ∈ Fn1 . It suffices to
prove

∥∥(E(Tl(u))1/p)n2

l=1

∥∥
ℓq2

≤
∥∥(E(uk)1/p)n1

k=1

∥∥
ℓq1

. For simplicity, we consider the case of
q2 <∞. (The case of q2 = ∞ is similar.) Then we have

n2∑
l=1

E
(
Tl(u)

)q2/p
=

n2∑
l=1

[
E (1)
(
Tl(u)

)
+ E (2)

(
Tl(u)

)]q2/p

≤

 ∑
i∈{1,2}

[
n2∑
l=1

E (i)
(
Tl(u)

)q2/p]p/q2q2/p

(by the triangle ineq. for ∥ · ∥ℓq2/p)

(GC)p
≤

[ n1∑
k=1

E (1)(uk)
q1/p

]p/q1
+

[
n1∑
k=1

E (2)(uk)
q1/p

]p/q1q2/p

(2.18)
≤

(
n1∑
k=1

[
E (1)(uk) + E (2)(uk)

]q1/p) p
q1

· q2
p

=

(
n1∑
k=1

E(uk)
q1/p

)q2/q1

, (2.19)

which implies E ∈ UGC
p .

(c): Let u = (u1, . . . , un1) ∈ Fn1 , and let {un = (u1,n, . . . , un1,n)}n∈N ⊆ Fn1 be a
recovery sequence of {E (n)}n∈N at u. We first show tnat ∥Tl(u)− Tl(un)∥Lp(X,m) → 0 as
n→ ∞. Indeed, for any v = (v1, . . . , vn1) and any z = (z1, . . . , zn1) ∈ Lp(X,m)n1 , we see
that

max
l∈{1,...,n2}

∥Tl(v)− Tl(z)∥pLp(X,m)

(2.2)
≤

ˆ
X

∥v(x)− z(x)∥pℓq1 m(dx)

=

ˆ
X

(
n1∑
k=1

|vk(x)− zk(x)|p·
q1
p

)p/q1

m(dx)

≤ n
(p−q1)/q1
1

n1∑
k=1

∥vk − zk∥pLp(X,m) , (2.20)

where we used Hölder’s inequality in the last line. Since maxk ∥uk − uk,n∥Lp(X,m) → 0 as
n→ ∞, (2.20) implies the desired convergence ∥Tl(u)− Tl(un)∥Lp(X,m) → 0.

Now we prove (GC)p for the Γ-limit E (∞) of {E (n)}n∈N (with respect to the Lp(X,m)-
topology). It is easy to see that E (∞) is p-homogeneous (see, e.g., [Dal, Proposition 11.6]).
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We assume that q2 <∞ since the case q2 = ∞ is similar. Then,
n2∑
l=1

E (∞)
(
Tl(u)

)q2/p ≤ n2∑
l=1

lim inf
n→∞

E (n)
(
Tl(un)

)q2/p ≤ lim inf
n→∞

n2∑
l=1

E (n)
(
Tl(un)

)q2/p
≤ lim inf

n→∞

(
n1∑
k=1

E (n)(uk,n)
q1/p

) p
q1

· q2
p

=

(
n1∑
k=1

E (∞)(uk)
q1/p

) p
q1

· q2
p

,

which proves E (∞) ∈ UGC
p .

3 Differentiability of p-energy forms and related results

In this section, we show the existence of the derivative in (1.6) for any p-energy form (E ,F)
satisfying p-Clarkson’s inequality, (2.8) or (2.9), and establish fundamental properties of
the “two-variable version” of E defined by (1.6).

Throughout this section, we fix p ∈ (1,∞), a measure space (X,B,m), and a p-energy
form (E ,F) on (X,m) in the following sense:

Definition 3.1 (p-Energy form). Let F be a linear subspace of L0(X,m) and let E : F →
[0,∞). The pair (E ,F) is said to be a p-energy form on (X,m) if and only if E1/p is a
seminorm on F .

Note that the same argument as in the proof of Proposition 2.3-(a) implies that E is
strictly convex on F/E−1(0) (see (2.3)).

3.1 p-Clarkson’s inequality and differentiability

In this section, we mainly deal with p-energy forms satisfying p-Clarkson’s inequality in
the following sense.

Definition 3.2 (p-Clarkson’s inequality). The pair (E ,F) is said to satisfy p-Clarkson’s
inequality, (Cla)p for short, if and only if for any f, g ∈ F ,{

E(f + g) + E(f − g) ≥ 2
(
E(f)

1
p−1 + E(g)

1
p−1
)p−1 if p ∈ (1, 2],

E(f + g) + E(f − g) ≤ 2
(
E(f)

1
p−1 + E(g)

1
p−1
)p−1 if p ∈ [2,∞).

(Cla)p

Remark 3.3. The following weaker version of p-Clarkson’s inequality is also well known:
for any f, g ∈ F ,{

E(f + g) + E(f − g) ≤ 2
(
E(f) + E(g)

)
if p ∈ (1, 2],

E(f + g) + E(f − g) ≥ 2
(
E(f) + E(g)

)
if p ∈ [2,∞).

(Cla)′p

Since, for any a, b ∈ [0,∞), Hölder’s inequality yields
(
a

1
p−1 + b

1
p−1
)p−1 ≥ 2p−2(a + b) if

p ∈ (1, 2] and
(
a

1
p−1 + b

1
p−1
)p−1 ≤ 2p−2(a + b) if p ∈ [2,∞), (Cla)p with f+g

2
, f−g

2
in place

of f, g implies (Cla)′p. In this paper, we will use this implication without further notice.



24 N. Kajino and R. Shimizu

To state a consequence of (Cla)p on the convexity of E1/p, let us recall the notion
of uniform convexity. See, e.g., [Cla36, Definition 1]. (The notion of uniform convexity
is usually defined for normed spaces in the literature. We present the definition for
seminormed spaces because we are mainly interested in (F , E1/p).)

Definition 3.4 (Uniformly convex seminormed spaces). Let (X , | · |) be a seminormed
space. We say that (X , | · |) is uniformly convex if and only if for any ε > 0 there exists
δ > 0 with the property that |f + g| ≤ 2(1 − δ) whenever f, g ∈ X satisfy |f | = |g| = 1
and |f − g| > ε.

It is well known that (Cla)p implies the uniform convexity as follows.

Proposition 3.5. Assume that (E ,F) satisfies (Cla)p. Then (F , E1/p) is uniformly con-
vex.

Proof. The same argument as in [Cla36, Proof of Corollary of Theorem 2] works.

Moreover, (Cla)p provides us the following quantitative estimate for the central differ-
ence, which plays a central role in this section.

Proposition 3.6. Assume that (E ,F) satisfies (Cla)p. Then for any f, g ∈ F ,

E(f + g) + E(f − g)− 2E(f) ≤ 2
(
1 ∨ (p− 1)

)[
E(f)

1
p−1 + E(g)

1
p−1

](p−2)+

E(g)1∧
1

p−1 , (3.1)

and the function R ∋ t 7→ E(f + tg) ∈ [0,∞) is differentiable. Moreover, for any c ∈
(0,∞),

lim
δ↓0

sup
f∈F ; E(f)≤c/(p−2)+

sup
g∈F ; E(g)≤1

∣∣∣∣E(f + δg)− E(f)
δ

− d

dt
E(f + tg)

∣∣∣∣
t=0

∣∣∣∣ = 0. (3.2)

Proof. Let f, g ∈ F . If p ∈ (1, 2], then (3.1) is immediate from (Cla)′p. If p ∈ (2,∞), then
setting a := E(f)1/(p−1) and b := E(g)1/(p−1), we see from (Cla)p that

E(f+g)+E(f−g)−2E(f) ≤ 2((a+b)p−1−ap−1) = 2(p−1)

ˆ a+b

a

sp−2 ds ≤ 2(p−1)(a+b)p−2b,

proving (3.1). For the rest of the proof, we first note that by the convexity of E ,

the limits lim
δ↓0

E(f + δg)− E(f)
δ

and lim
δ↓0

E(f − δg)− E(f)
−δ

exist in R, (3.3)

and for any δ ∈ (0,∞),

Dδ(f ; g) := E(f + δg) + E(f − δg)− 2E(f) ≥ 0, (3.4)∣∣∣∣E(f + δg)− E(f)
δ

− lim
s↓0

E(f + sg)− E(f)
s

∣∣∣∣ ≤ Dδ(f ; g)

δ
. (3.5)
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On the other hand, we see from (3.1) that for any δ ∈ (0,∞),

Dδ(f ; g)

δ
≤

2δp−1E(g) if p ∈ (1, 2],

2(p− 1)δ
1

p−1

[
E(f)

1
p−1 + δ

p
p−1E(g)

1
p−1

]p−2

E(g)
1

p−1 if p ∈ (2,∞).
(3.6)

By (3.4) and (3.6), the limits in (3.3) coincide, so that the function t 7→ E(f + tg) is
differentiable at 0 and thereby at any s ∈ R by replacing f with f + sg, and then we
obtain (3.2) by combining this differentiability at 0 with (3.5) and (3.6).

Proposition 3.6, especially (3.2), implies the Fréchet differentiability of E on F/E−1(0).
We record this fact and basic properties of these derivatives in the following theorem.

Theorem 3.7. Assume that (E ,F) satisfies (Cla)p. Then E : F/E−1(0) → [0,∞) is
Fréchet differentiable on the quotient normed space F/E−1(0). In particular, for any
f, g ∈ F ,

the derivative E(f ; g) := 1

p

d

dt
E(f + tg)

∣∣∣∣
t=0

∈ R exists, (3.7)

the map E(f ; · ) : F → R is linear, E(f ; f) = E(f) and E(f ;h) = 0 for h ∈ E−1(0).
Moreover, for any f, f1, f2, g ∈ F and any a ∈ R, the following hold:

R ∋ t 7→ E(f + tg; g) ∈ R is strictly increasing if and only if E(g) > 0. (3.8)

E(af ; g) = sgn(a) |a|p−1 E(f ; g), E(f + h; g) = E(f ; g) for h ∈ E−1(0). (3.9)

|E(f ; g)| ≤ E(f)(p−1)/pE(g)1/p. (3.10)

|E(f1; g)− E(f2; g)| ≤ Cp
(
E(f1) ∨ E(f2)

)(p−1−αp)/pE(f1 − f2)
αp/pE(g)1/p, (3.11)

where αp := 1
p
∧ p−1

p
and Cp ∈ (0,∞) is a constant determined solely and explicitly by p.

Remark 3.8. The Hölder continuity exponent αp appearing in (3.11) is not opti-
mal because this exponent can be improved to (p − 1) ∧ 1 in the case of E(f ; g) =´
Rn |∇f |p−2 ⟨∇f,∇g⟩ dx. However, whether such an improved Hölder continuity holds

is unclear even for concrete p-energy forms constructed in the previous works [CGQ22,
Kig23, MS25+, Shi24]. We can see the optimal Hölder continuity ((3.11) with (p− 1)∧ 1
in place of αp) for p-energy forms constructed in [KS24+], where a direct construction of
p-energy forms based on the Korevaar–Schoen type p-energy forms is presented.

Proof of Theorem 3.7. The existence of E(f ; g) in (3.7) is already proved in Proposition
3.6. The properties E(f ; ag) = aE(f ; g), E(af ; g) = sgn(a) |a|p−1 E(f ; g) and E(f ; f) =
E(f) are obvious from the definition. The equalities E(f+h; g) = E(f+g) and E(f ;h) = 0
for any h ∈ E−1(0) follow from the triangle inequality for E1/p, so (3.9) holds. The property
(3.8) is a consequence of the strict convexity of E (see (2.3)) and the differentiability in
(3.7).

To show that E(f ; · ) is linear, it suffices to prove E(f ; g1 + g2) = E(f ; g1) + E(f ; g2)
for any g1, g2 ∈ F . For any t > 0, the convexity of E implies that

E
(
f + t(g1 + g2)

)
− E(f)

t
=

E
(
1
2
(f + 2tg1) +

1
2
(f + 2tg2)

)
− E(f)

t
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≤ E(f + 2tg1)− E(f)
2t

+
E(f + 2tg2)− E(f)

2t
. (3.12)

Passing to the limit as t ↓ 0, we get E(f ; g1 + g2) ≤ E(f ; g1) + E(f ; g2). We obtain the
converse inequality by noting that

E(f − tg)− E(f)
t

→ − d

dt
E(f + tg)

∣∣∣∣
t=0

= −pE(f ; g) as t ↓ 0,

and by applying (3.12) with −g1,−g2 in place of g1, g2 respectively.
The Hölder-type estimate (3.10) follows from the following elementary estimate:

|aq − bq| =
∣∣∣∣ˆ a∨b

a∧b
qtq−1 dt

∣∣∣∣ ≤ q(aq−1 ∨ bq−1) |a− b| for q ∈ (0,∞), a, b ∈ [0,∞). (3.13)

Indeed, by (3.13) and the triangle inequality for E1/p, for any t > 0,∣∣∣∣E(f + tg)− E(f)
t

∣∣∣∣ ≤ p
(
E(f + tg)1/p ∨ E(f)1/p

)p−1E(g)1/p. (3.14)

We obtain (3.10) by letting t ↓ 0 in (3.14). We conclude that E(f ; · ) is the Fréchet
derivative of E at f by (3.2), the linearity of E(f ; · ) and (3.10).

In the rest of this proof, we prove (3.11). Our proof is partially inspired by an argument
due to Šmulian in [Smu40]. In this proof, Cp,i, i ∈ {1, . . . , 5}, is a constant depending
only on p. We first show an analogue of (3.1) for E1/p. Using (3.13), we can show that
there exists c∗ ∈ (0, 2−p

3
) depending only on p such that

sup

{
|E(f)− E(f + δg)|

E(f)

∣∣∣∣ f, g ∈ F , δ ∈ (0,∞), δ < c∗E(f)1/p, E(g) = 1

}
≤ 1

10
. (3.15)

Define ψ : R → R by ψ(t) := |t|1/p, and fix f, g ∈ F and δ ∈ (0,∞) with δ < c∗E(f)1/p
and E(g) = 1. Then there exist θ1, θ2, θ ∈ [0, 1] such that

0 ≤ ψ(E(f + δg)) + ψ(E(f − δg))− 2ψ(E(f))
= ψ′(A1,δ)

[
E(f + δg)− E(f)

]
− ψ′(A2,δ)

[
E(f)− E(f − δg)

]
= ψ′(A1(δ))Dδ(f ; g)−

(
ψ′(A1,δ)− ψ′(A2,δ)

)[
E(f)− E(f − δg)

]
= ψ′(A1,δ)Dδ(f ; g)− ψ′′(A1,δ + θ(A2,δ − A1,δ)

)
(A2,δ − A1,δ)

[
E(f)− E(f − δg)

]
, (3.16)

where Dδ(f ; g) is the same as in (3.4) and

A1,δ := E(f) + θ1
[
E(f + δg)− E(f)

]
, A2,δ := E(f − δg) + θ2

[
E(f)− E(f − δg)

]
.

By (3.15), we note that |A1,δ|∧|A1,δ + θ(A2,δ − A1,δ)| ≥ 1
2
E(f), which together with (3.16)

and (3.1) implies that for any (δ, f) ∈ (0,∞)×F with 0 < δ < c∗E(f)1/p,

0 ≤ ψ(E(f + δg)) + ψ(E(f − δg))− 2ψ(E(f))
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≤ Cp,1

(
E(f)

1
p
−1+

(p−2)+

p−1 δp∧
p

p−1 + E(f)
1
p
−2+

2(p−1)
p δ2

)
≤ Cp,1δ · δ(p−1)∧ 1

p−1

(
E(f)

1
p
−1+

(p−2)+

p−1 + E(f)
1
p
−2+

2(p−1)
p

)
.

In particular, if E(f) = 1, then

E(f + δg)1/p + E(f − δg)1/p ≤ 2 + Cp,1δ
(p−1)∧ 1

p−1 δ for any δ ∈ (0, c∗). (3.17)

Next let f1, f2 ∈ F . Then, by (3.10) and (3.13),

|E(f2; f1)− E(f1)| ≤ |E(f2; f1)− E(f2)|+ |E(f2)− E(f1)|

≤
(
E(f2)(p−1)/p + p

(
E(f2)(p−1)/p ∨ E(f1)(p−1)/p

))
E(f1 − f2)

1/p

≤ Cp,2

(
E(f1)(p−1)/p ∨ E(f2)(p−1)/p

)
E(f1 − f2)

1/p. (3.18)

Now, for any f1, f2, g ∈ F with E(f1) = E(g) = 1 and any δ ∈ (0, c∗), we see that

E(f1; δg)− E(f2; δg)
= E(f1; f1 + δg) + E(f2; f1 − δg)− E(f1)− E(f2; f1)
(3.10)
≤
(
E(f1)(p−1)/p ∨ E(f2)(p−1)/p

)(
E(f1 + δg)1/p + E(f1 − δg)1/p

)
− E(f1)− E(f2; f1)

(3.13),(3.17)
≤

(
1 + Cp,3E(f1 − f2)

1/p
)(

2 + Cp,1δ
(p−1)∧ 1

p−1 δ
)
− E(f1)− E(f2; f1).

Similarly, we can show

E(f1; δg)− E(f2; δg)
= −E(f1; f1 − δg)− E(f2; f1 + δg) + E(f1) + E(f2; f1)

≥ −
(
1 + Cp,3E(f1 − f2)

1/p
)(

2 + Cp,1δ
(p−1)∧ 1

p−1 δ
)
+ E(f1) + E(f2; f1).

From these estimates, we have

|E(f1; g)− E(f2; g)| =
|E(f1; δg)− E(f2; δg)|

δ

≤
(
1 + Cp,3E(f1 − f2)

1/p
)(

2δ−1 + Cp,1δ
(p−1)∧ 1

p−1

)
− δ−1E(f1)− δ−1E(f2; f1)

=
(
1 + Cp,3E(f1 − f2)

1/p
)(

2δ−1 + Cp,1δ
(p−1)∧ 1

p−1

)
− 2δ−1E(f1) + δ−1

(
E(f1)− E(f2; f1)

)
(3.18)
≤
(
1 + Cp,3E(f1 − f2)

1/p
)(

2δ−1 + Cp,1δ
(p−1)∧ 1

p−1

)
− 2δ−1 + Cp,2δ

−1E(f1 − f2)
1/p

≤ Cp,4

(
δ(p−1)∧ 1

p−1 + δ−1E(f1 − f2)
1/p
)
.

If E(f1 − f2) < c
−p2/((p−1)∨1)
∗ , then, by choosing δ = E(f1 − f2)

((p−1)∨1)/p2 , we obtain

|E(f1; g)− E(f2; g)| ≤ Cp,5E(f1 − f2)
((p−1)∧1)/p2 . (3.19)
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The same is clearly true if E(f1 − f2) ≥ c
−p2/((p−1)∨1)
∗ since E(f2) ≤ 2p−1

(
1 + E(f1 − f2)

)
.

Finally, for any f1, f2, g ∈ F with E(f1) ∧ E(g) > 0, we have

|E(f1; g)− E(f2; g)| = E(f1)(p−1)/pE(g)1/p
∣∣∣∣E( f1

E(f1)1/p
;

g

E(g)1/p

)
− E

(
f2

E(f1)1/p
;

g

E(g)1/p

)∣∣∣∣
(3.19)
≤ Cp,5E(f1)(p−1)/pE(g)1/pE

(
f1

E(f1)1/p
− f2

E(f1)1/p

)((p−1)∧1)/p2

(3.19)
≤ Cp,5

(
E(f1) ∨ E(f2)

)(p−1−αp)/pE(g)1/pE(f1 − f2)
αp/p.

The same estimate is clearly true if E(f2) ∧ E(g) > 0. Since (3.11) is obvious when
g ∈ E−1(0) or E(f1) ∨ E(f2) = 0, we obtain (3.11).

The following theorem gives a quantitative continuity for the inverse map of f 7→
E(f ; · ).

Theorem 3.9. Assume that (E ,F) satisfies (Cla)p. Then for any f, g ∈ F ,

E(f − g) ≤ C ′
p

[
E(f) ∨ E(g)

] 1+(p−1)(2−p)+

p

(
sup

φ∈F ;E(φ)≤1

|E(f ;φ)− E(g;φ)|
)(p−1)∧1

, (3.20)

where C ′
p ∈ (0,∞) is a constant determined solely and explicitly by p.

Proof. For ease of notation, for any linear functional Φ: F → R, we set ∥Φ∥F ,∗ :=
supu∈F ;E(u)≤1 |Φ(u)|. Clearly, ∥Φ1 + Φ2∥F ,∗ ≤ ∥Φ1∥F ,∗ + ∥Φ2∥F ,∗ for any linear function-
als Φ1,Φ2 : F → R. Note that ∥E(f ; · )∥F ,∗ = E(f)(p−1)/p for any f ∈ F by (3.10). In
particular, for any f, g ∈ F ,∣∣∣E(f) p−1

p − E(g)
p−1
p

∣∣∣ = ∣∣∣∥E(f ; · )∥F ,∗ − ∥E(g; · )∥F ,∗
∣∣∣ ≤ ∥E(f ; · )− E(g; · )∥F ,∗ ,

which together with (3.13) with q = (p− 1)/p implies that

|E(f)− E(g)| ≤ p

p− 1

(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗ . (3.21)

Let us define ψ : R → R by ψ(t) := 1
p
E(f+ t(g−f)). Then ψ ∈ C1(R) by (3.2) and (3.11);

indeed, (3.2) implies that ψ′(t) = E(f + t(g − f); g − f), which is continuous by (3.11).
Now we see that

|ψ′(0)| = |E(f ; g − f)| ≤ |E(f ; g)− E(g)|+ |E(g)− E(f)|
(3.21)
≤ ∥E(f ; · )− E(g; · )∥F ,∗ E(g)

1/p +
p

p− 1

(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗

≤
(
1 +

p

p− 1

)(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗ .
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Similarly,

|ψ′(1)| = |E(g; g − f)| ≤
(
1 +

p

p− 1

)(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗ .

Since ψ is C1-convex, we obtain∣∣∣∣−E(f) + E
(
f + g

2

)∣∣∣∣ = p |ψ(1/2)− ψ(0)| ≤ p

2

(
|ψ′(0)| ∨ |ψ′(1)|

)
≤ cp

(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗ ,

where we put cp := p
2

(
1 + p

p−1

)
. Similarly,∣∣∣∣−E(g) + E

(
f + g

2

)∣∣∣∣ = p |ψ(1/2)− ψ(1)| ≤ cp
(
E(f)1/p ∨E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗ .

Therefore, it follows that

E
(
f + g

2

)
≥
(
E(f) ∨ E(g)− cp

(
E(f)1/p ∨ E(g)1/p

)
∥E(f ; · )− E(g; · )∥F ,∗

)+
. (3.22)

Next we derive an estimate on E(f−g
2
) by using (Cla)p and (3.22). Set a := E(f) ∨ E(g)

for simplicity. If p ∈ [2,∞), then

E
(
f − g

2

)
(Cla)p
≤ 21−p

(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1 − E
(
f + g

2

)
(3.22)
≤ a−

(
a− cpa

1/p ∥E(f ; · )− E(g; · )∥F ,∗
)+

≤ cpa
1/p ∥E(f ; · )− E(g; · )∥F ,∗ .

In the rest of the proof, we assume that p ∈ (1, 2]. We see that

E
(
f − g

2

)1/(p−1) (Cla)p
≤

(
E(f) + E(g)

2

)1/(p−1)

− E
(
f + g

2

)1/(p−1)

(3.22)
≤ a1/(p−1) −

[(
a− cpa

1/p ∥E(f ; · )− E(g; · )∥F ,∗
)+]1/(p−1)

. (3.23)

In the case of a ≤ cpa
1/p ∥E(f ; · )− E(g; · )∥F ,∗, we have

E
(
f − g

2

)
≤ a = a(2−p)+(p−1) ≤ cp−1

p a2−p+
p−1
p ∥E(f ; · )− E(g; · )∥p−1

F ,∗ .

Let us consider the remaining case a > cpa
1/p ∥E(f ; · )− E(g; · )∥F ,∗. Then we have from

(3.13) with q = 1/(p− 1) that

E
(
f − g

2

)1/(p−1)

= a1/(p−1) −
(
a− cpa

1/p ∥E(f ; · )− E(g; · )∥F ,∗
)1/(p−1)

≤ cp
p− 1

a
2−p
p−1

+ 1
p ∥E(f ; · )− E(g; · )∥F ,∗ .

Hence we obtain the desired estimate (3.20).
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The following proposition is a kind of monotonicity on values of p-Laplacian. This
result will play important roles in Subsection 6.4 later and in the subsequent works [KS+a,
KS+b].

Proposition 3.10. Assume that (E ,F) satisfies (Cla)p and the strong subadditivity (2.6).
Let u1, u2, v ∈ F satisfy ((u2−u1)∧v)(x) = 0 for m-a.e. x ∈ X. Then E(u1; v) ≥ E(u2; v).

Proof. Let t > 0. Define f, g ∈ F by f := u1 + tv and g := u2. Then we easily see that
f ∨ g = u2+ tv and f ∧ g = u1. By (2.6), we have E(u2+ tv)+E(u1) ≤ E(u1+ tv)+E(u2),
which implies that

E(u2 + tv)− E(u2)
t

≤ E(u1 + tv)− E(u1)
t

.

Letting t ↓ 0, we get E(u2; v) ≤ E(u1; v).

We conclude this subsection by viewing typical examples of p-energy forms.

Example 3.11. (1) Let D ∈ N, let Ω be an open subset of RD, let B := B(Ω), let m
be the D-dimensional Lebesgue measure on Ω and let F = W 1,p(Ω) be the usual
(1, p)-Sobolev space on Ω (see [AF, p. 60] for example). Define E(f) := ∥∇f∥pLp(Ω,m),
f ∈ F , where the gradient operator ∇ is regarded in the distribution sense. Then,
by following a similar argument as in the proof of Theorem A.19, one can show that
(E ,F) is a p-energy form on (Ω,m) satisfying (GC)p. In this case, we have

E(f ; g) =
ˆ
Ω

|∇f(x)|p−2 ⟨∇f(x),∇g(x)⟩RD dx, f, g ∈ F ,

where ⟨ · , · ⟩RD denotes the inner product on RD.
(2) In the recent work [Kig23, MS25+], a p-energy form (E ,F) on a compact metriz-

able space is constructed via discrete approximations under some analytic and ge-
ometric assumptions. See [CGQ22, HPS04] for constructions of p-energy forms on
post-critically finite self-similar sets. The construction in [CGQ22] can be seen as
a generalization of that in [HPS04]. As will be seen in more detail later in Section
8, we can prove that p-energy forms constructed in [CGQ22, Kig23, MS25+] satisfy
(GC)p while even (Cla)p is not mentioned in [CGQ22, Kig23]. Furthermore, very
recently, Kuwae [Kuw24] introduced a p-energy form (E p, H1,p) based on a strongly
local Dirichlet form (E , D(E )) on L2(X,m). It is shown that (E p, H1,p) satisfies (Cla)p
in [Kuw24, Theorem 1.7]. We can also verify (GC)p for (E p, H1,p) by using some good
estimates due to the bilinearity (Theorem A.19). See Appendix A for details.

(3) There are various ways to define (1, p)-Sobolev spaces in the field of analysis on metric
spaces (see, e.g., [HKST, Chapter 10]). In these definitions, roughly speaking, we find
a counterpart of |∇u|, e.g., the minimal p-weak upper gradient gu ≥ 0 (see, e.g.,
[HKST, Chapter 6] for details), and consider a p-energy form (Ẽ ,F) on (X,m) given
by Ẽ(u) :=

´
X
gpu dm and F := {u ∈ Lp(X,m) | gu ∈ Lp(X,m)}. Unfortunately,

this p-energy form may not satisfy (Cla)p because the map u 7→ gu is not linear in
general (see, e.g., [HKST, (6.3.18)]). However, in a suitable setting, we can construct a



Contraction properties and differentiability of p-energy forms 31

functional which is equivalent to Ẽ and satisfies (Cla)p; see the p-energy form denoted
by (Fp,W

1,p) in [ACD15, Theorem 40]. Moreover, we can verify (GC)p for (Fp,W
1,p)

since (Fδk,p,W
1,p) defined in [ACD15, (7.3)] satisfies (GC)p and Fp is defined as a

Γ-limit point of Fδk,p as k → ∞. (See also the proof of Theorem 8.19.)

3.2 p-Clarkson’s inequality and approximations in p-energy forms

In this subsection, in addition to the setting specified at the beginning of this section, by
considering F ∩ Lp(X,m) instead of F if necessary, we also assume for simplicity that
F ⊆ Lp(X,m).

We introduce a family of natural norms on F in the following definition.

Definition 3.12 ((E , α)-norm). Let α ∈ (0,∞). We define the norm ∥ · ∥E,α on F by

∥f∥E,α :=
(
E(f) + α ∥f∥pLp(X,m)

)1/p
, f ∈ F (3.24)

We call ∥ · ∥E,α the (E , α)-norm on F .

Clearly, for any α, α′ ∈ (0,∞), ∥ · ∥E,α and ∥ · ∥E,α′ are equivalent to each other.
The following proposition states on the convexity of ∥ · ∥E,α.

Proposition 3.13. Let α ∈ (0,∞) and assume that (E ,F) satisfies (Cla)p. Then
(∥ · ∥pE,α ,F) is a p-energy form on (X,m) satisfying (Cla)p, and (F , ∥ · ∥E,α) is uniformly
convex. Moreover, if (F , ∥ · ∥E,α) is a Banach space in addition, then it is reflexive.

Proof. We have (Cla)p for the p-energy form (∥ · ∥pE,α ,F) on (X,m) by applying (2.19) to
T : R2 → R given in Proposition 2.3-(e),(f). The uniform convexity ∥ · ∥E,α follows from
[Cla36, Proof of Corollary of Theorem 2].

Assume that (F , ∥ · ∥E,α) is a Banach space. Then (F , ∥ · ∥E,α) is reflexive by the
Milman–Pettis theorem (see, e.g., [Yos, Theorem 2 in Section V.2]) since (F , ∥ · ∥E,α) is
uniformly convex.

We will frequently use the following Mazur’s lemma, which is an elementary fact in
the theory of Banach spaces.

Lemma 3.14 (Mazur’s lemma; see, e.g., [Yos, Theorem 2 in Section V.1]). Let (vn)n∈N
be a sequence in a normed space V converging weakly to some element v ∈ V . Then there
exist Nk ∈ N with Nk ≥ k and {λk,l}k≤l≤Nk

⊆ [0, 1] with
∑Nk

l=k λk,l = 1 for each k ∈ N
such that limk→∞

∑Nk

l=k λk,lvl = v in norm in V .

We also prepare the following two lemmas.

Lemma 3.15. Assume that (E ,F) satisfies (Cla)p and that F equipped with ∥ · ∥E,1 is a
Banach space. For v ∈ L

p
p−1 (X,m), we define a bounded linear map Ψv : L

p(X,m) → R
by Ψv(u) :=

´
X
uv dm. Then {Ψv|F | v ∈ L

p
p−1 (X,m)} is dense in F∗, and the map

L
p

p−1 (X,m) ∋ v 7→ Ψv|F ∈ F∗ is a bounded linear map with operator norm at most 1.



32 N. Kajino and R. Shimizu

Proof. Set M := {Ψv|F | v ∈ L
p

p−1 (X,m)}. Then M ⊆ F∗ since ∥u∥Lp(X,m) ≤ ∥u∥E,1
for any u ∈ F . Suppose that MF∗

̸= F∗. Let φ ∈ F∗ \MF∗

. By the Hahn–Banach
theorem, there exists Φ ∈ F∗∗ such that Φ(φ) ̸= 0 and Φ|

M
F∗ = 0. Since F is reflexive

by Proposition 3.13, there exists u ∈ F such that Φ(ψ) = ψ(u) for any ψ ∈ F∗. Then
for any ψ ∈ M we have ψ(u) = Φ(ψ) = 0, which implies that u = 0. This contradicts
φ(u) = Φ(φ) ̸= 0 and hence we obtain M

F∗

= F∗. The map L
p

p−1 (X,m) ∋ v 7→ Ψv|F ∈
F∗ is obviously linear, and is easily seen to have operator norm at most 1 by Hölder’s
inequality and the fact that ∥u∥Lp(X,m) ≤ ∥u∥E,1 for any u ∈ F .

Corollary 3.16. Assume that (E ,F) satisfies (Cla)p and that F equipped with ∥ · ∥E,1 is
a Banach space. If Lp(X,m) is separable, then F and F∗ are separable.

Proof. Since L
p

p−1 (X,m) is separable by the separability of L
p

p−1 (X,m)∗ = Lp(X,m) and
[Yos, Lemma in Section V.2], it follows from Lemma 3.15 that F∗ is separable, which in
turn implies by [Yos, Lemma in Section V.2] that F is separable.

Lemma 3.17. Assume that (E ,F) satisfies (Cla)p and that F equipped with ∥ · ∥E,1 is
a Banach space. If {un}n∈N ⊆ F converges in norm in Lp(X,m) to u ∈ Lp(X,m) and
supn∈N E(un) <∞, then u ∈ F and {un}n∈N converges weakly in (F , ∥ · ∥E,1) to u.

Proof. Since F is reflexive and supn∈N ∥un∥E,1 < ∞, some subsequence of {un}n∈N con-
verges weakly in (F , ∥ · ∥E,1) to some f ∈ F by [Yos, Theorem 1 in Section V.2] and hence
weakly in Lp(X,m) to both u and f by the continuity of the inclusion map of F into
Lp(X,m), and thus u = f ∈ F . For any φ ∈ F∗ and any ε > 0, by Lemma 3.15, there
exists v ∈ L

p
p−1 (X,m) such that ∥φ−Ψv|F∥F∗ < ε. Then we easily see that

|φ(u)− φ(un)| ≤ |φ(u)−Ψv(u)|+ |Ψv(u)−Ψv(un)|+ |φ(un)−Ψv(un)|

≤ ε

(
∥u∥E,1 + sup

n∈N
∥un∥E,1

)
+ |Ψv(u)−Ψv(un)| ,

whence lim supn→∞ |φ(u)− φ(un)| ≤ ε
(
∥u∥E,1 + supn∈N ∥un∥E,1

)
. Since ε > 0 is arbitrary,

we obtain limn→∞ φ(un) = φ(u). This completes the proof.

We collect some useful results on convergence in E in the following proposition.

Proposition 3.18. Assume that (E ,F) satisfies (Cla)p and that (F , ∥ · ∥E,1) is a Banach
space.

(a) If {un}n∈N ⊆ Lp(X,m) converges in norm in Lp(X,m) to u ∈ Lp(X,m), then E(u) ≤
lim infn→∞ E(un), where we set E(f) := ∞ for f ∈ Lp(X,m) \ F .

(b) If {un}n∈N ⊆ F converges in norm in Lp(X,m) to u ∈ F and limn→∞ E(un) = E(u),
then limn→∞ ∥u− un∥E,1 = 0.

Proof. (a): If lim infn→∞ E(un) = ∞, then the desired statement clearly holds. So, we as-
sume that lim infn→∞ E(un) <∞. Pick a subsequence {unk

}k∈N such that limk→∞ E(unk
) =

lim infn→∞ E(un). Then {unk
}k∈N is a bounded sequence in (F , ∥ · ∥E,1) converging in norm
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in Lp(X,m) to u and hence Lemma 3.17 implies that u ∈ F and that {unk
}k∈N converges

weakly in F to u. Since ∥ · ∥E,1 is lower semicontinuous with respect to the weak topology
of F , we have from limk→∞ ∥unk

∥Lp(X,m) = ∥u∥Lp(X,m) that E(u)1/p ≤ lim infn→∞ E(un)1/p.
(b): If u ∈ E−1(0), then E(u − un) = E(un) → E(u) = 0. It suffices to consider the

case of E(u) = 1. Since u+ un converges in Lp(X,m) to 2u as n→ ∞, by (a),

2 = E(2u)1/p ≤ lim inf
n→∞

E
(
u+ un

)1/p ≤ lim sup
n→∞

E
(
u+ un

)1/p
≤ lim

n→∞
E(un)1/p + E(u)1/p = 2,

i.e., limn→∞ E(u+ un) = 2p. By (Cla)p, if p ≤ 2, then

lim
n→∞

E(u− un)
1/(p−1) ≤ 2

(
E(u) + lim

n→∞
E(un)

)1/(p−1)

− lim
n→∞

E(u+ un)
1/(p−1)

= 2 · 21/(p−1) − 2p/(p−1) = 0.

If p ≥ 2, then

lim
n→∞

E(u− un) ≤ 2p−1
(
E(u) + lim

n→∞
E(un)

)
− lim

n→∞
E(u+ un) = 2p−1 · 2− 2p = 0.

Since {un}n∈N converges in norm in Lp(X,m) to u, we obtain the desired convergence.

The following convergences in E are also useful. These are analogues of [FOT, Theorem
1.4.2-(iii),(iv),(v)].

Corollary 3.19. Assume that (E ,F) satisfies (2.4) and (Cla)p and that (F , ∥ · ∥E,1) is a
Banach space.

(a) Let {φn}n∈N ⊆ C(R) satisfy limn→∞ φn(t) = t, φn(0) = 0 and |φn(t)− φn(s)| ≤
|t− s| for any n ∈ N, s, t ∈ R. Then {φn(u)}n∈N ⊆ F and limn→∞ E(u−φn(u)) = 0
for any u ∈ F .

(b) Let u ∈ F , {un}n∈N ⊆ F and φ ∈ C(R) satisfy limn→∞ ∥u− un∥E,1 = 0, φ(0) = 0,
|φ(t)− φ(s)| ≤ |t− s| for any s, t ∈ R and φ(u) = u. Then {φ(un)}n∈N ⊆ F and
limn→∞ E(u− φ(un)) = 0.

Remark 3.20. Let us make the same remark as [KS23+, Remark 2.21] for the reader’s
convenience. Typical choices of {φn}n∈N ⊂ C(R) in Corollary 3.19-(a) are φn(t) = (−n)∨
(t ∧ n) and φn(t) = t − (− 1

n
) ∨ (t ∧ 1

n
). A typical use of Corollary 3.19-(b) is to obtain

a sequence of I-valued functions converging to u in (F , ∥ · ∥E,1) when I ⊂ R is a closed
interval and u ∈ F is I-valued, by considering φ ∈ C(R) given by φ(t) := (inf I) ∨ (t ∧
sup I).

Proof of Corollary 3.19. (a): It is immediate from the dominated convergence theorem
that {φn(u)}n∈N converges in norm in Lp(X,m) to u. Since φn(u) ∈ F and E(φn(u)) ≤
E(u) for any n ∈ N by (2.4), we see from Proposition 3.18-(a) that

E(u) ≤ lim inf
n→∞

E(φn(u)) ≤ lim sup
n→∞

E(φn(u)) ≤ E(u).



34 N. Kajino and R. Shimizu

Thus limn→∞ E(φn(u)) = E(u), and limn→∞ E(u− φn(u)) = 0 by Proposition 3.18-(b).
(b): By (2.4) we have φ(un) ∈ F and E(φ(un)) ≤ E(un) for any n ∈ N, and {φ(un)}n∈N

converges in norm in Lp(X,m) to φ(u) = u since |φ(u)− φ(un)| ≤ |u− un| on X. We
therefore see from Proposition 3.18-(a) that

E(u) ≤ lim inf
n→∞

E(φ(un)) ≤ lim sup
n→∞

E(φ(un)) ≤ lim
n→∞

E(un) = E(u).

Thus limn→∞ E(φ(un)) = E(u), and limn→∞ E(u−φ(un)) = 0 by Proposition 3.18-(b).

3.3 Fréchet derivative as a homeomorphism to the dual space

In many practical situations, the quotient normed space F/E−1(0) (equipped with the
norm E1/p) becomes a Banach space (see Subsection 6.2). To state some basic properties
of this Banach space, we recall the notion of uniformly smoothness.

Definition 3.21 (Uniformly smooth normed space). Let (X , ∥ · ∥) be a normed space.
The normed space X is said to be uniformly smooth if and only if

lim
τ→0

τ−1 sup

{
∥u+ v∥+ ∥u− v∥

2
− 1

∣∣∣∣ ∥u∥ = 1, ∥v∥ = τ

}
= 0.

The following duality between uniform convexity and uniform smoothness is well
known. (See also [BCL94, Lemma 5] for a quantitative version of this theorem.)

Theorem 3.22 (Day’s duality theorem; see, e.g., [LT, Proposition 1.e.2]). Let X be a
Banach space. Then X is uniformly convex if and only if its dual space X ∗ is uniformly
smooth.

We also recall the notion of duality mapping and fundamental results on it in the
following proposition (see, e.g., [Miya, Definition 2.1, Lemmas 2.1 and 2.2]).

Proposition 3.23 (Duality mapping). Let X be a Banach space and let X ∗ be the dual
space of X . Let ∥ · ∥W be the norm of W for each W ∈ {X ,X ∗}. For (x, f) ∈ X × X ∗,
we set ⟨x, f⟩ := f(x). For x ∈ X , define F : X → 2X

∗ by

F (x) :=
{
f ∈ X ∗ ∣∣ ⟨x, f⟩ = ∥x∥2X = ∥f∥2X ∗

}
,

which is called the duality mapping of X . Then the following properties hold:

(a) F (x) ̸= ∅ for any x ∈ X .
(b) If X is reflexive, then

⋃
x∈X F (x) = X ∗.

(c) If X is strictly convex, i.e., ∥λx+ (1− λ)y∥X < λ ∥x∥X + (1 − λ) ∥y∥X for any
λ ∈ (0, 1) and any x, y ∈ X \ {0}, then #(F (x)) = 1 for any x ∈ X .

Now we can state a result on the dual space of F/E−1(0).

Theorem 3.24. Assume that (E ,F) satisfies (Cla)p and that F/E−1(0) is a Banach space.
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(a) The Banach space F/E−1(0) is uniformly convex and uniformly smooth. In particu-
lar, it is reflexive and its dual Banach spaces

(
F/E−1(0)

)∗ is also uniformly convex
and uniformly smooth.

(b) The map f 7→ E(f ; ·) is a homeomorphism from F/E−1(0) to
(
F/E−1(0)

)∗. In
particular,

(
F/E−1(0)

)∗
= {E(f ; · ) | f ∈ F}.

Proof. For ease of notation, set X := F/E−1(0) and ∥u∥X := E(u)1/p for any u ∈ X .
(a): The uniform convexity of X is immediate from Proposition 3.5, whence X is re-

flexive by the Milman–Pettis theorem. Also, we easily see from (3.17) that X is uniformly
smooth. The same properties for X ∗ follow from Theorem 3.22.

(b): Let u ∈ X and define A(u) := E(u)
2
p
−1E(u; · ) ∈ X ∗. (We define A(u) = 0 if

E(u) = 0.) We will show that A : X → X ∗ is a bijection. By (3.10), we have

∥A(u)∥X ∗ = E(u)
2
p
−1 ∥E(u; · )∥X ∗ = E(u)

2
p
−1+ p−1

p = ∥u∥X .

Then ⟨u,A(u)⟩ = E(u)
2
p = ∥u∥2X = ∥A(u)∥2X ∗ and hence

A(u) ∈ {f ∈ X ∗ | ⟨u, f⟩ = ∥u∥2X = ∥f∥2X ∗} = F (u),

where F : X → X ∗ is the duality mapping. We see from Proposition 3.23 and (a) that
A : X → X ∗ is a surjection. Note that the mapping F−1 : X ∗ → X ∗∗ = X defined by
F−1(f) = {u ∈ X | ⟨u, f⟩ = ∥u∥2X = ∥f∥2X ∗} for f ∈ X ∗ is the duality mapping from
X ∗ to X . By Proposition 3.23 and (a) again, we conclude that A is injective. The map
f 7→ E(f ; ·) and its inverse are continuous by (3.11) and (3.20), respectively.

We also present a similar statement for (F , ∥ · ∥E,α).

Corollary 3.25. Let α ∈ (0,∞). Assume that F ⊆ Lp(X,m), that (E ,F) satisfies (Cla)p
and that Xα := (F , ∥ · ∥E,α) is a Banach space.

(a) The Banach space Xα is uniformly convex and uniformly smooth. In particular, it is
reflexive and its dual space X ∗

α is also uniformly convex and uniformly smooth.
(b) For each f ∈ F , define a linear map Ψf

p,α : F → R by

Ψf
p,α(g) := E(f ; g) + α

ˆ
X

sgn(f) |f |p−1 g dm, g ∈ F . (3.25)

Then the map f 7→ Ψf
p,α is a homeomorphism from Xα to X ∗

α. In particular, X ∗
α =

{Ψf
p,α | f ∈ F}.

Proof. We define Eα : F × F → R by

Eα(u; v) := E(u; v) + α

ˆ
X

sgn(u) |u|p−1 v dm, u, v ∈ F .

and set Eα(u) := Eα(u;u) = ∥u∥pE,α. Then (Eα,F) is a p-energy form on (X,m) and it
satisfies (Cla)p by Proposition 3.13. We have the desired result by applying Theorem 3.24
to (Eα,F).
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3.4 Regularity and strong locality

In this subsection, in addition to the setting specified at the beginning of this section, we
make the same topological assumptions as [FOT, (1.1.7)], i.e.,

X is a locally compact separable metrizable topological space, (3.26)
m is a (positive) Radon measure on X with suppX [m] = X (3.27)

(it is implicit in (3.27) that the σ-algebra B which X is equipped with is assumed to be
the Borel σ-algebra B(X) of X). Here, as usual, by a (positive) Radon measure on X
we mean a Borel measure on X which is finite on any compact subset of X. Under this
setting, the map from C(X) to L0(X,m) = L0(X,B(X),m) defined by taking u ∈ C(X)
to its m-equivalence class is injective and hence gives a canonical embedding of C(X) into
L0(X,m) as a subalgebra, and we will consider C(X) as a subset of L0(X,m) through
this embedding without further notice.

The following definitions are analogues of the notions in the theory of regular sym-
metric Dirichlet forms (see, e.g., [FOT, p. 6]).

Definition 3.26 (Core). Let C be a subset of F ∩ Cc(X).

(1) C is said to be a core of (E ,F) if and only if C is dense both in (F , ∥ · ∥E,1) and in
(Cc(X), ∥ · ∥sup).

(2) A core C is said to be special if and only if C is a linear subspace of F ∩Cc(X), C is
a dense subalgebra of (Cc(X), ∥ · ∥sup), and for any compact subset K of X and any
relatively compact open subset G of X with K ⊆ G, there exists φ ∈ C such that
φ ≥ 0, φ = 1 on K and φ = 0 on X \G.

Definition 3.27 (Regularity). We say that (E ,F) is regular if and only if there exists a
core C of (E ,F).

We can show the following result on regular p-energy forms, which is an analogue of
[FOT, Exercise 1.4.1].

Proposition 3.28. Assume that (E ,F) is regular and that F has the following properties:

u+ ∧ 1 ∈ F for any u ∈ F , (3.28)

uv ∈ F for any u, v ∈ F ∩ Cb(X). (3.29)

Then F ∩ Cc(X) is a special core of (E ,F).

Proof. It is clear that F ∩Cc(X) is a core of (E ,F). By (3.29), F ∩Cc(X) is a subalgebra
of Cc(X). Let K be a compact subset of X and G be a relatively compact open subset
G of X with K ⊆ G. By Urysohn’s lemma, there exists φ0 ∈ Cc(X) such that φ0 = 2 on
K and φ0 = 0 on X \ G. Let ε ∈ (0, 1/2). Fix ψ ∈ F ∩ Cc(X) satisfying ψ = 1 on G

X ,
which exists by the regularity of (E ,F), the locally compactness of X and (3.28). Since
F ∩Cc(X) is a core of (E ,F), there exists φ̃ ∈ F ∩Cc(X) such that ∥φ0 − φ̃∥sup < ε. Now
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we define φ ∈ Cc(X) by φ := (φ̃− εψ)+ ∧ 1. (Note that suppX [φ] is compact since GX is
compact.) Then φ ∈ F ∩ Cc(X) by (3.28). Clearly, φ = 1 on K and φ = 0 on X \G, so
the proof is completed.

The proposition above ensures when there exist cutoff functions in F . We also intro-
duce the following condition stating the existence of cutoff functions in a weaker sense.

Definition 3.29. We say that a p-energy form (E ,F) on (X,m) satisfies the property
(CF)m if and only if, for any open subset U of X and any compact subset K of U , there
exists φ ∈ F ∩ L∞(X,m) such that φ(x) = 1 for m-a.e. x ∈ K and φ(x) = 0 for m-a.e.
x ∈ X \ U .

We could consider variants of (CF)m such as one requiring φ ∈ F ∩C(K) in addition,
but we do not discuss those in this paper. Note that (CF)m holds if (E ,F) admits a
special core.

Next we introduce two formulations of the notion of strong locality for (E ,F).

Definition 3.30 (Strong locality). (1) We say that (E ,F) has the strong local property
(SL1) if and only if, for any f1, f2, g ∈ F with either suppm[f1−α1] or suppm[f2−α2]
compact and suppm[f1 − α1] ∩ suppm[f2 − α2] = ∅ for some α1, α2 ∈ E−1(0),

E(f1 + f2 + g) + E(g) = E(f1 + g) + E(f2 + g). (3.30)

(2) Assume that (E ,F) satisfies (Cla)p. We say that (E ,F) has the strong local property
(SL2) if and only if, for any f1, f2, g ∈ F with either suppm[f1−f2−α] or suppm[g−β]
compact and suppm[f1 − f2 − α] ∩ suppm[g − β] = ∅ for some α, β ∈ E−1(0),

E(f1; g) = E(f2; g). (3.31)

In the following propositions, we collect basic results about (SL1) and (SL2).

Proposition 3.31. Assume that (E ,F) satisfies (Cla)p.

(a) If (E ,F) satisfies (SL1), then for any f1, f2, g ∈ F with either suppm[f1 − α1] or
suppm[f2 − α2] compact and suppm[f1 − α1] ∩ suppm[f2 − α2] = ∅ for some α1, α2 ∈
E−1(0),

E(f1 + f2; g) = E(f1; g) + E(f2; g). (3.32)

(b) If (E ,F) satisfies (SL2), then for any f1, f2, g ∈ F with either suppm[f1 − f2 − α]
or suppm[g − β] compact and suppm[f1 − f2 − α] ∩ suppm[g − β] = ∅ for some
α, β ∈ E−1(0),

E(g; f1) = E(g; f2). (3.33)

Proof. (a): Note that (3.30) with g = 0 implies that E(f1 + f2) = E(f1) + E(f2). For any
t ∈ (0,∞), we have from (3.30) that

E(f1 + f2 + tg)− E(f1 + f2)

t
+ tp−1E(g) = E(f1 + tg)− E(f1)

t
+

E(f2 + tg)− E(f2)
t

.
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We obtain (3.32) by letting t ↓ 0 in this equality.
(b): Since E(g; · ) is linear by Theorem 3.7, it suffices to prove E(g; f1−f2) = 0, which

follows from (3.31) with g, 0, f1 − f2 in place of f1, f2, g.

Proposition 3.32. Assume that (E ,F) satisfies (Cla)p.

(a) If (E ,F) satisfies (SL1), then (E ,F) also satisfies (SL2).
(b) Assume that (E ,F) satisfies (SL2) and the following three conditions:

uv ∈ F for any u, v ∈ F ∩ L∞(X,m). (3.34)
For any u ∈ F , {(−n) ∨ (u ∧ n)}n∈N ⊆ F and lim

n→∞
E
(
u− (−n) ∨ (u ∧ n)

)
= 0. (3.35)

(E ,F) satisfies (CF)m. (3.36)

Then (E ,F) satisfies (SL1).

Proof. (a): Let f1, f2, g ∈ F , α1, α2 ∈ E−1(0) and t ∈ R \ {0}, and assume that either
suppm[f1−f2−α] or suppm[g−β] is compact and that suppm[f1−f2−α]∩suppm[g−β] = ∅.
By (3.30) with f2 − f1, tg, f1 in place of f1, f2, g we have

E
(
(f2 − f1) + tg + f1

)
+ E(f1) = E

(
(f2 − f1) + f1

)
+ E(tg + f1),

whence

E(f1; g) =
1

p
lim
t→0

E(f1 + tg)− E(f1)
t

=
1

p
lim
t→0

E(f2 + tg)− E(f2)
t

= E(f2; g),

proving (SL2).
(b): We first consider the case g ∈ F ∩L∞(X,m). Let f1, f2 ∈ F and α1, α2 ∈ E−1(0),

and assume that suppm[f1−α1] is compact and that suppm[f1−α1]∩ suppm[f2−α2] = ∅.
Let U be an open neighborhood of suppm[f1 − α1] such that U ⊆ X \ suppm[f2 − α2].
By (3.36) and the locally compactness of K, there exists φ ∈ F ∈ L∞(X,m) such that
φ(x) = 1 for m-a.e. x ∈ U , suppm[φ] is compact and suppm[φ]∩ suppm[f2−α2] = ∅. Note
that φg ∈ F by (3.34). Then we see from (SL2) that

E(f1 + f2 + g) + E(g) = E(f1 + f2 + g; f1) + E(f1 + f2 + g; f2) + E(f1 + f2 + g; g) + E(g)
(SL2)
= E(f1 + g; f1) + E(f2 + g; f2) + E(f1 + f2 + g; g) + E(g)
= E(f1 + g; f1) + E(f2 + g; f2)

+ E(f1 + f2 + g; (1− φ)g) + E(f1 + f2 + g;φg) + E(g). (3.37)

Since suppm[φg] and suppm[f1 − α1] are compact, suppm[f1 − α1] ∩ suppm[(1− φ)g] = ∅
and suppm[f2 − α2] ∩ suppm[φg] = ∅, we have the following equalities by (SL2):

E(f1 + f2 + g; (1− φ)g) = E(f2 + g; (1− φ)g).

E(f1 + f2 + g;φg) = E(f1 + g;φg).

E(g) = E(g; (1− φ)g) + E(g;φg) = E(f1 + g; (1− φ)g) + E(f2 + g;φg).
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By combining these equalities and (3.37), we obtain

E(f1 + f2 + g) + E(g) = E(f1 + g; f1) + E(f2 + g; f2) + E(f1 + g; g) + E(f2 + g; g)

= E(f1 + g) + E(f2 + g).

The proof for the case where suppm[f2−α2] instead of suppm[f1−α1] is compact is similar,
so (SL1) holds if g ∈ F ∩ L∞(X,m).

Lastly, we prove (SL1) without assuming the boundedness of g. Let g ∈ F and set
gn := (−n) ∨ (g ∧ n), n ∈ N. Then gn ∈ F by (3.35), and the statement proved in the
previous paragraph yields that

E(f1 + f2 + gn) + E(gn) = E(f1 + gn) + E(f2 + gn)

for any n ∈ N. Thanks to (3.35) and the triangle inequality for E1/p, we obtain the desired
equality (3.31) by letting n→ ∞ in the equality above.

4 p-Energy measures and their basic properties

In this section, we discuss p-energy measures dominated by a p-energy form. Similar to
the case of p-energy forms, we introduce the two-variable version of p-energy measures
and prove their basic properties.

As in the previous section, throughout this section we fix p ∈ (1,∞), a measure space
(X,B,m) and a p-energy form (E ,F) on (X,m).

4.1 p-Energy measures and p-Clarkson’s inequality

The following definition specifies the class of families of measures which we call p-energy
measures and consider in this section.
Definition 4.1 (p-Energy measures dominated by a p-energy form). Let B0 be a σ-algebra
in X,10 and let {Γ⟨f⟩}f∈F be a family of measures on (X,B0). We say that {Γ⟨f⟩}f∈F is
a family of p-energy measures on (X,B0) dominated by (E ,F) if and only if the following
hold:

(EM1)p Γ⟨f⟩(X) ≤ E(f) for any f ∈ F .
(EM2)p Γ⟨ · ⟩(A)1/p is a seminorm on F for any A ∈ B0.

We then see that (Γ⟨ · ⟩(A),F) is a p-energy form on (X,m) for each A ∈ B0 by (EM2)p.
We say that {Γ⟨f⟩}f∈F satisfies p-Clarkson’s inequality, (Cla)p for short, if and only

if (Γ⟨ · ⟩(A),F) satisfies (Cla)p for any A ∈ B0, i.e., for any f, g ∈ F ,{
Γ⟨f + g⟩(A) + Γ⟨f − g⟩(A) ≥ 2

(
Γ⟨f⟩(A)

1
p−1 + Γ⟨g⟩(A)

1
p−1
)p−1 if p ∈ (1, 2],

Γ⟨f + g⟩(A) + Γ⟨f − g⟩(A) ≤ 2
(
Γ⟨f⟩(A)

1
p−1 + Γ⟨g⟩(A)

1
p−1
)p−1 if p ∈ [2,∞).

(Cla)p

10While we typically take B0 = B = B(X) for a prescribed topology on X, we allow B0 ̸= B here. This
formulation is suitable in the setting of a p-resistance form on X considered in Section 6 and later, where
we choose (B,m) to be the pair of 2X and the counting measure on X as mentioned in Remark 2.1 but
may take B0 = B(X) for the topology on X induced by the associated p-resistance metric.
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We also say that {Γ⟨f⟩}f∈F satisfies the generalized p-contraction property, (GC)p for
short, if and only if (Γ⟨ · ⟩(A),F) satisfies (GC)p for any A ∈ B0.

Example 4.2. (1) Consider the same setting as in Example 3.11-(1). Then the family
{Γ⟨f⟩}f∈W 1,p(Ω) of Borel measures on Ω given by

Γ⟨f⟩(A) :=
ˆ
A

|∇f(x)|p dx for f ∈ W 1,p(Ω) and A ∈ B(Ω),

is easily seen to be a family of p-energy measures on (Ω,B(Ω)) dominated by the p-
energy form (E ,W 1,p(Ω)) given by E(f) :=

´
Ω
|∇f(x)|p dx. Similar to Example 3.11-

(1), one can show (GC)p for {Γ⟨f⟩}f∈W 1,p(Ω) by following an argument in the proof of
Theorem A.19. Recall that E(f ; g) =

´
Ω
|∇f(x)|p−2 ⟨∇f(x),∇g(x)⟩RD dx. Then we

can see that, by the Leibniz and the chain rule for ∇, for any u, φ ∈ W 1,p(Ω)∩C1(Ω),

ˆ
Ω

φdΓ⟨u⟩ = E(u;uφ)−
(
p− 1

p

)p−1

E
(
|u|

p
p−1 ;φ

)
. (4.1)

(2) Although p-energy forms have been constructed on compact metric spaces [Kig23,
MS25+], we do not know how to construct the associated p-energy measures because
of the lack of the density “|∇u(x)|p”. (As described in (3) below, the theory of Dirich-
let forms gives 2-energy measures {µ⟨u⟩}u∈F2 associated with a given nice Dirichlet
form (E2,F2). On a large class of self-similar sets, however, it is known that µ⟨u⟩
is singular with respect to the natural Hausdorff measure on the underlying fractal
[Hin05, KM20].) In the case of self-similar sets, under suitable assumptions, self-
similar p-energy forms are constructed in [CGQ22, Kig23, MS25+, Shi24], and we
can introduce p-energy measures satisfying (EM1)p, (EM2)p and (GC)p by using the
self-similarity of p-energy forms. See Section 5 for details.
In [KS24+], under the assumption called the weak monotonicity condition, the authors
construct a good p-energy form EKS

p , which is called a Korevaar–Shoen p-energy form,
on a locally compact separable metric space (X, d) equipped with a σ-finite Borel
measure m with full topological support. As an advantage of EKS

p , the right-hand side
of (4.1) with EKS

p in place of E can be extended to a bounded positive linear functional
in φ ∈ Cc(X) and the p-energy measure ΓKS

p ⟨u⟩ associated with EKS
p is constructed

as the unique Radon measure corresponding to this functional through the Riesz–
Markov–Kakutani representation theorem. A notable fact is that this approach does
not rely on the self-similarity of the underlying space or of the p-energy form. In
[KS24+, Sections 3 and 4], basic properties for ΓKS

p ⟨ · ⟩ like (EM1)p, (EM2)p and
(GC)p are also shown.

(3) The case of p = 2 is very special thanks to the theory of symmetric Dirichlet forms. If
(E , D(E )) is a strongly local regular symmetric Dirichlet form on L2(X,m), where X
and m are as specified in (3.26) and (3.27), then E (u) := E (u, u) is a 2-energy form
on (X,m) and satisfies (GC)2 (see Proposition A.2). In addition, the Dirichlet form
theory provides us with a Borel measure µ⟨u⟩ on X, called the E -energy measure of
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u ∈ D(E ) associated with (E , D(E )), through the following formula11:ˆ
X

φdµ⟨u⟩ = E (u, uφ)− 1

2
E (u2, φ) for any φ ∈ D(E ) ∩ Cc(X) (4.2)

(recall (4.1), and see [FOT, Section 3.2] for details on energy measures associated
with regular symmetric Dirichlet forms). We easily see that {µ⟨u⟩}u∈D(E ) satisfies
(EM1)2 and the parallelogram law, which implies (EM2)2 and (Cla)2. We can also
verify (GC)2 for {µ⟨u⟩}u∈D(E ) (Proposition A.14). As discussed in [Kuw24], under
the additional assumption of a suitable closability in Lp(X,m) formulated as (A.21)
in Definition A.17, we can introduce a family of p-energy measures on (X,B(X))
satisfying (EM1)p, (EM2)p and (GC)p by setting Γ⟨u⟩(A) :=

´
A
Γµ(u)

p
2 dµ, where µ

is an E -dominant measure (i.e., µ⟨u⟩ ≪ µ for any u ∈ D(E )) and Γµ(u) := dµ⟨u⟩/dµ;
see Theorem A.19 for the details of this family of p-energy measures.

(4) Let (X, d) be a separable metric space and m a Borel measure on X such that m(X) >
0 and m(Bd(x, r)) < ∞ for some r ∈ (0,∞) for any x ∈ X. Let gu be the minimal
p-weak upper gradient of u ∈ N1,p(X,m), where N1,p(X,m) := {u ∈ Lp(X,m) | gu ∈
Lp(X,m)} is the Newton-Sobolev space (see [HKST, Section 7.1]). Then Γ⟨u⟩(A) :=´
A
gpu dm defines p-energy measures satisfying (EM1)p and (EM2)p. Indeed, we have

(EM2)p by [HKST, (6.3.18)]. However, (Cla)p for these measures is unclear because
the map u 7→ gu is not linear in general.

In the rest of this subsection, we assume that B0 is a σ-algebra inX and that {Γ⟨f⟩}f∈F
is a family of p-energy measures on (X,B0) dominated by (E ,F). The same argument as
in the proof of Proposition 3.6 yields the following result.

Proposition 4.3. Assume that {Γ⟨f⟩}f∈F satisfies (Cla)p. Then for any f, g ∈ F and
any A ∈ B0,

Γ⟨f + g⟩(A) + Γ⟨f − g⟩(A)− 2Γ⟨f⟩(A)

≤ 2
(
1 ∨ (p− 1)

)[
Γ⟨f⟩(A)

1
p−1 + Γ⟨g⟩(A)

1
p−1

](p−2)+

Γ⟨f⟩(A)1∧
1

p−1 , (4.3)

and the function R ∋ t 7→ Γ⟨f + tg⟩(A) ∈ [0,∞) is differentiable. Moreover, for any
c ∈ (0,∞),

lim
δ↓0

sup
A∈B0, f,g∈F ; E(f)≤c/(p−2)+, E(g)≤1

∣∣∣∣Γ⟨f + δg⟩(A)− Γ⟨f⟩(A)
δ

− d

dt
Γ⟨f + tg⟩(A)

∣∣∣∣
t=0

∣∣∣∣ = 0.

(4.4)

Definition 4.4. Assume that {Γ⟨f⟩}f∈F satisfies (Cla)p. For each f, g ∈ F , we define
Γ⟨f ; g⟩ : B0 → R by

Γ⟨f ; g⟩(A) := 1

p

d

dt
Γ⟨f + tg⟩(A)

∣∣∣∣
t=0

, A ∈ B0, (4.5)

which exists by Proposition 4.3.
11To be precise, the definition of µ⟨u⟩ through (4.2) is valid only for u ∈ D(E ) ∩ L∞(X,m). We can

still define µ⟨u⟩ for any u ∈ D(E ) by considering the limit of µ⟨(−n)∨(u∧n)⟩ as n → ∞.
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The following properties of Γ⟨f ; g⟩ can be shown in a similar way as Theorem 3.7.

Theorem 4.5. Assume that {Γ⟨f⟩}f∈F satisfies (Cla)p. Let A ∈ B0. Then Γ⟨f ; · ⟩(A) is
the Fréchet derivative of Γ⟨ · ⟩(A) : F/E−1(0) → [0,∞) at f ∈ F . In particular, the map
Γ⟨f ; · ⟩(A) : F → R is linear, Γ⟨f ; f⟩(A) = Γ⟨f⟩(A) and Γ⟨f ;h⟩(A) = 0 if h ∈ F satisfies
Γ⟨h⟩(A) = 0. Moreover, for any f, f1, f2, g ∈ F and any a ∈ R, the following hold:

R ∋ t 7→ Γ⟨f + tg; g⟩(A) ∈ R is strictly increasing if and only if Γ⟨g⟩(A) > 0. (4.6)

Γ⟨af ; g⟩(A) = sgn(a) |a|p−1 Γ⟨f ; g⟩(A), Γ⟨f + h; g⟩(A) = Γ⟨f ; g⟩(A) if Γ⟨h⟩(A) = 0.
(4.7)

|Γ⟨f ; g⟩(A)| ≤ Γ⟨f⟩(A)(p−1)/pΓ⟨g⟩(A)1/p. (4.8)

|Γ⟨f1; g⟩(A)− Γ⟨f2; g⟩(A)| ≤ Cp
(
Γ⟨f1⟩(A) ∨ Γ⟨f2⟩(A)

) p−1−αp
p Γ⟨f1 − f2⟩(A)

αp
p Γ⟨g⟩(A)

1
p ,

(4.9)

where αp, Cp are the same as in Theorem 3.7.

The set function Γ⟨f ; g⟩ is a signed measure as shown in the following theorem.

Theorem 4.6. Assume that {Γ⟨f⟩}f∈F satisfies (Cla)p. Then for any f, g ∈ F , the set
function Γ⟨f ; g⟩ is a signed measure on (X,B0). Moreover, for any B0-measurable function
φ : X → [0,∞) with ∥φ∥sup < ∞,

´
X
φdΓ⟨ · ⟩ : F/E−1(0) → R is Fréchet differentiable

and has the same properties as those of Γ⟨ · ⟩(A) in Theorem 4.5 with “Γ⟨g⟩(A) > 0” in
(4.6) replaced by “

´
X
φdΓ⟨g⟩ > 0”, and for any f, g ∈ F ,
ˆ
X

φdΓ⟨f ; g⟩ = 1

p

d

dt

ˆ
X

φdΓ⟨f + tg⟩
∣∣∣∣
t=0

. (4.10)

Proof. The equalities Γ⟨f ; g⟩(∅) = 0 and |Γ⟨f ; g⟩(X)| = |E(f ; g)| < ∞ are clear from
the definition. We will show the countable additivity of Γ⟨f ; g⟩ . The finite additivity
of Γ⟨f ; g⟩ is obvious. Let {An}n∈N ⊆ B0 be a family of disjoint measurable sets. Set
BN :=

⋃∞
n=N+1An for each N ∈ N. Then we see that∣∣∣∣∣Γ⟨f ; g⟩

(⋃
n∈N

An

)
−

N∑
n=1

Γ⟨f ; g⟩(An)

∣∣∣∣∣ = |Γ⟨f ; g⟩(BN)|

(4.8)
≤ Γ⟨f⟩(BN)

(p−1)/pΓ⟨g⟩(BN)
1/p −−−→

N→∞
0,

which shows that Γ⟨f ; g⟩ is a signed measure on (X,B0).
The other properties except for (4.10) can be proved by following the arguments in the

proof of Theorem 3.7, so we shall prove (4.10). By the finite additivity of
´
X
φdΓ⟨f ; g⟩ and

1
p

d
dt

´
X
φdΓ⟨f + tg⟩

∣∣
t=0

in φ, we can assume that φ ≥ 0. Let sn =
∑ln

k=1 ak1Ak
with ak ≥ 0

and Ak ∈ B0 be a sequence of simple functions so that sn ↑ φ m-a.e. as n → ∞. Then
we immediately have (4.10) with φ = sn. Since limn→∞

´
X
sn dΓ⟨f ; g⟩ =

´
X
φdΓ⟨f ; g⟩ by

the dominated convergence theorem, it suffices to prove

lim
n→∞

d

dt

ˆ
X

sn dΓ⟨f + tg⟩
∣∣∣∣
t=0

=
d

dt

ˆ
X

φdΓ⟨f + tg⟩
∣∣∣∣
t=0

. (4.11)
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Since (3.14) with
´
X
φdΓ⟨ · ⟩ in place of E holds by the fact that (

´
X
φdΓ⟨ · ⟩,F) is a

p-energy form on (X,m), we know that for any B0-measurable function ψ : X → [0,∞)
with ∥ψ∥sup <∞,∣∣∣∣ ddt

ˆ
X

ψ dΓ⟨f + tg⟩
∣∣∣∣
t=0

∣∣∣∣ ≤ (ˆ
X

ψ dΓ⟨f⟩
)(p−1)/p(ˆ

X

ψ dΓ⟨g⟩
)1/p

. (4.12)

By (4.12) with ψ = φ−sn and the dominated convergence theorem, we obtain (4.11).

Remark 4.7. As mentioned in the introduction, a signed measure corresponding to
Γ⟨f ; g⟩ is discussed in [BV05, Section 5] under some non-trivial assumptions, which have
not been verified for fractals like the Sierpiński gasket and the Sierpiński carpet in the
literature.

The following proposition gives a natural Hölder-type inequality for the total variation
measure |Γ⟨f ; g⟩| of Γ⟨f ; g⟩.

Proposition 4.8. Assume that {Γ⟨f⟩}f∈F satisfies (Cla)p. Then for any f, g ∈ F and
any B0-measurable functions φ, ψ : X → [0,∞],

ˆ
X

φψ d |Γ⟨f ; g⟩| ≤
(ˆ

X

φ
p

p−1 dΓ⟨f⟩
)(p−1)/p(ˆ

X

ψp dΓ⟨g⟩
)1/p

. (4.13)

Proof. Let X = P⊔N be the Hahn decomposition with respect to Γ⟨f ; g⟩, i.e., P ,N ∈ B0,
Γ⟨f ; g⟩(A ∩ P) ≥ 0 and Γ⟨f ; g⟩(A ∩ N ) ≤ 0 for any A ∈ B0. Then the total variation
measure |Γ⟨f ; g⟩| is given by

|Γ⟨f ; g⟩| (A) = Γ⟨f ; g⟩(P ∩ A)− Γ⟨f ; g⟩(N ∩ A), A ∈ B0.

Therefore, by (4.8),

|Γ⟨f ; g⟩| (A) ≤ Γ⟨f⟩(P ∩ A)(p−1)/pΓ⟨g⟩(P ∩ A)1/p + Γ⟨f⟩(N ∩ A)(p−1)/pΓ⟨g⟩(N ∩ A)1/p

≤
(
Γ⟨f⟩(P ∩ A) + Γ⟨f⟩(N ∩ A)

)(p−1)/p(
Γ⟨g⟩(P ∩ A) + Γ⟨g⟩(N ∩ A)

)1/p
= Γ⟨f⟩(A)(p−1)/pΓ⟨g⟩(A)1/p, (4.14)

where we used Hölder’s inequality in the second inequality.
Now we prove (4.13). First, we consider the case where φ and ψ are given by

φ =

N1∑
k=1

ãk1Ak
, ψ =

N2∑
k=1

b̃k1Bk
, where ãk, b̃k ∈ [0,∞) and Ak, Bk ∈ B0.

Then we can assume that there exist N ∈ N, {ak}Nk=1, {bk}Nk=1 ⊆ [0,∞) and a disjoint
family of measurable sets {Ek}Nk=1 ⊆ B0 such that φ =

∑N
k=1 ak1Ek

and ψ =
∑N

k=1 bk1Ek
.

Since φψ =
∑N

k=1 akbk1Ek
, combining (4.14) and Hölder’s inequality yields

ˆ
X

φψ d |Γ⟨f ; g⟩| =
N∑
k=1

akbk |Γ⟨f ; g⟩(Ek)|
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≤

(
N∑
k=1

a
p/(p−1)
k Γ⟨f⟩(Ek)

)(p−1)/p( N∑
k=1

bpk Γ⟨g⟩(Ek)

)1/p

=

(ˆ
X

φp/(p−1) dΓ⟨f⟩
)(p−1)/p(ˆ

X

ψp dΓ⟨g⟩
)1/p

. (4.15)

Next, assume that φ and ψ are [0,∞]-valued B0-measurable functions, and for each w ∈
{φ, ψ} let {sn,w}n∈N be a non-decreasing sequence of non-negative B0-measurable simple
functions such that limn→∞ sn,w(x) = w(x) for any x ∈ X. Then by (4.15) we have (4.13)
with sn,φ, sn,ψ in place of φ, ψ for any n ∈ N, and letting n → ∞ yields (4.13) by the
monotone convergence theorem.

In the following proposition, we show that integrals of non-negative bounded B0-
measurable functions with respect to p-energy measures satisfying (GC)p give p-energy
forms on (X,m) that satisfy (GC)p.

Proposition 4.9. Assume that {Γ⟨f⟩}f∈F satisfies (GC)p. Then for any B0-measurable
function φ : X → [0,∞) with ∥φ∥sup <∞, (

´
X
φdΓ⟨ · ⟩,F) is a p-energy form on (X,m)

satisfying (GC)p.

Proof. Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
(2.2), and let u = (u1, . . . , un1) ∈ Fn1 . Similar to (2.19), by using the triangle inequality
for the ℓq2/p-norm and the reverse Minkowski inequality (Proposition 2.8) for the ℓq1/p-
norm, we see that for any non-negative B0-measurable simple function φ on X,∥∥∥∥∥

((ˆ
X

φdΓ⟨Tl(u)⟩
)1/p

)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((ˆ

X

φdΓ⟨uk⟩
)1/p

)n1

k=1

∥∥∥∥∥
ℓq1

. (4.16)

We can extend (4.16) to any B0-measurable function φ : X → [0,∞] by taking a non-
decreasing sequence of non-negative B0-measurable simple functions converging pointwise
to φ and applying the monotone convergence theorem, which completes the proof.

The following Fatou type result is useful.

Proposition 4.10. Assume that F ⊆ Lp(X,m). Let φ : X → [0,∞) be B0-measurable
and satisfy ∥φ∥sup <∞. If {un}n∈N ⊆ F converges weakly in (F , ∥ · ∥E,1) to u ∈ F , thenˆ

X

φdΓ⟨u⟩ ≤ lim inf
n→∞

ˆ
X

φdΓ⟨un⟩. (4.17)

Proof. Let {unk
}k be a subsequence with limk→∞

´
X
φdΓ⟨unk

⟩ = lim infn→∞
´
X
φdΓ⟨un⟩.

By Mazur’s lemma (Lemma 3.14), there exist N(l) ∈ N and {αl,k}N(l)
k=l ⊆ [0, 1] such that

N(l) > l,
∑N(l)

k=l αl,k = 1 and vl :=
∑N(l)

k=l αl,kunk
converges to u in F as l → ∞. We see

from the triangle inequality for
(´

X
φdΓ⟨ · ⟩

)1/p that(ˆ
X

φdΓ⟨vl⟩
)1/p

≤
N(l)∑
k=l

αl,k

(ˆ
X

φdΓ⟨unk
⟩
)1/p

,

which implies (4.17) by letting l → ∞.
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4.2 Extensions of p-energy measures

Throughout this subsection, we fix a linear subspace D of F and assume that B0 is a σ-
algebra in X and that {Γ⟨f⟩}f∈D is a family of p-energy measures on (X,B0) dominated
by (E ,D). In the following proposition, we extend {Γ⟨f⟩}f∈D to f ∈ D#, where D# is a
linear subspace of F defined as

D# :=
{
u ∈ F

∣∣∣ lim
n→∞

E(u− un) = 0 for some {un}n∈N ⊆ D
}
; (4.18)

note that, if F ⊆ Lp(X,m) and F is equipped with the norm ∥ · ∥E,1, then DF ⊆ D#,
where the inclusion can be strict in general.

Proposition 4.11. For any u ∈ D#, there exists a unique measure Γ⟨u⟩ on (X,B0) such
that for any {un}n∈N ⊆ D with limn→∞ E(u − un) = 0 and any B0-measurable function
φ : X → [0,∞) with ∥φ∥sup <∞,

ˆ
X

φdΓ⟨u⟩ = lim
n→∞

ˆ
X

φdΓ⟨un⟩, (4.19)

and Γ⟨u⟩ further satisfies Γ⟨u⟩(X) ≤ E(u). Moreover, for each such φ, (
´
X
φdΓ⟨ · ⟩,D#)

is a p-energy form on (X,m).

Proof. By (EM2)p and the monotone convergence theorem, for any B0-measurable func-
tion φ : X → [0,∞] and any u, v ∈ D,(ˆ

X

φdΓ⟨u+ v⟩
)1/p

≤
(ˆ

X

φdΓ⟨u⟩
)1/p

+

(ˆ
X

φdΓ⟨v⟩
)1/p

. (4.20)

In the rest of this proof, let φ : X → [0,∞) be B0-measurable and satisfy ∥φ∥sup < ∞.
Let u ∈ D# and {un}n∈N ⊆ D satisfy limn→∞ E(u−un) = 0. By (4.20),

{´
X
φdΓ⟨un⟩

}
n∈N

is a Cauchy sequence in [0,∞) and limn→∞
´
X
φdΓ⟨un⟩ =: Iu(φ) is independent of the

choice of {un}n. In addition, we have that∣∣∣∣∣
(ˆ

X

φdΓ⟨un⟩
)1/p

− Iu(φ)
1/p

∣∣∣∣∣ ≤ ∥φ∥1/psup E(un − u)1/p, (4.21)

that 0 ≤ Iu(φ) ≤ ∥φ∥sup E(u) and that In is linear in the sense that Iu
(∑N

k=1 akφk
)
=∑N

k=1 akIu(φk) for any N ∈ N, (ak)Nk=1 ⊆ [0,∞) and B0-measurable functions φk : X →
[0,∞) with ∥φk∥sup < ∞, k ∈ {1, . . . , N}. Now we define Γ⟨u⟩(A) := Iu(1A) ∈ [0,∞)
for A ∈ B0, and show that Γ⟨u⟩ is a finite measure on (X,B0). Clearly, Γ⟨u⟩ is finitely
additive and Γ⟨u⟩(X) ≤ E(u) < ∞. Let us show the countable additivity of Γ⟨u⟩. By
(4.21), for any ε > 0 there existsN0 ∈ N such that supA∈B0

∣∣Γ⟨u⟩(A)1/p − Γ⟨un⟩(A)1/p
∣∣ < ε

for any n ≥ N0. Let {Ak}k∈N ⊆ B0 be a sequence of disjoint measurable sets, and set
BN :=

⋃∞
k=N+1Ak for each N ∈ N. Then we see that for any N ∈ N and any n ≥ N0,∣∣∣∣∣Γ⟨u⟩

(⋃
k∈N

Ak

)
−

N∑
k=1

Γ⟨u⟩(Ak)

∣∣∣∣∣
1/p

= Γ⟨u⟩(BN)
1/p ≤ ε+ Γ⟨un⟩(BN)

1/p,
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whence limN→∞

∣∣∣Γ⟨u⟩ (⋃k∈NAk
)
−
∑N

k=1 Γ⟨u⟩(Ak)
∣∣∣ = 0, proving the desired countable

additivity.
Note that Iu+v(φ)1/p ≤ Iu(φ)

1/p + Iv(φ)
1/p for any u, v ∈ D# by (4.20) and the

definition of I•(φ). This together with the monotone convergence theorem implies the
triangle inequality for

(´
X
φdΓ⟨ · ⟩

)1/p on D#; in particular, (
´
X
φdΓ⟨ · ⟩,D#) is a p-

energy form on (X,m). Next we show (4.19). Let {un}n∈N ⊆ D be a sequence satisfying
limn→∞ E(u− un) = 0. By the triangle inequality for (

´
X
φdΓ⟨ · ⟩,D#),∣∣∣∣∣

(ˆ
X

φdΓ⟨u⟩
)1/p

−
(ˆ

X

φdΓ⟨un⟩
)1/p

∣∣∣∣∣ ≤
(ˆ

X

φdΓ⟨u− un⟩
)1/p

≤ ∥φ∥1/psup E(u− un)
1/p,

which together with (4.21) implies (4.19); indeed,∣∣∣∣∣Iu(φ)1/p −
(ˆ

X

φdΓ⟨u⟩
)1/p

∣∣∣∣∣
≤

∣∣∣∣∣Iu(φ)1/p −
(ˆ

X

φdΓ⟨un⟩
)1/p

∣∣∣∣∣+
∣∣∣∣∣
(ˆ

X

φdΓ⟨un⟩
)1/p

−
(ˆ

X

φdΓ⟨u⟩
)1/p

∣∣∣∣∣
≤ 2 ∥φ∥1/psup E(u− un)

1/p −−−→
n→∞

0.

If, in addition, {Γ⟨f⟩}f∈D satisfies (Cla)p, then we can easily see that {Γ⟨f⟩}f∈D# also
satisfies (Cla)p. We record this fact in the following proposition.

Proposition 4.12. If {Γ⟨f⟩}f∈D satisfies (Cla)p, then so does {Γ⟨f⟩}f∈D#.

Proof. This is immediate from (4.19).

If F ⊆ Lp(X,m) and F equipped with ∥ · ∥E,1 is a Banach space, then DF ⊆ D# as
remarked after (4.18), and (GC)p for {Γ⟨f⟩}f∈D also extends to {Γ⟨f⟩}

f∈DF as follows.

Proposition 4.13. Assume that F ⊆ Lp(X,m), that F equipped with ∥ · ∥E,1 is a Banach
space, and that both (E ,D) and {Γ⟨f⟩}f∈D satisfy (GC)p. Then for any B0-measurable
function φ : X → [0,∞) with ∥φ∥sup <∞,

(´
X
φdΓ⟨ · ⟩,DF) is a p-energy form on (X,m)

satisfying (GC)p.

Proof. Since (E ,D) satisfies (Cla)p by (GC)p for (E ,D) and Proposition 2.3-(e),(f), so does(
E ,DF), which together with the completeness of

(
DF

, ∥ · ∥E,1
)

guarantees that Lemma

3.17 is applicable to
(
E ,DF).

Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
(2.2). Let u = (u1, . . . , un1) ∈

(
DF)n1 . For each k ∈ {1, . . . , n1}, choose {uk,n}n∈N ⊆ D

so that limn→∞ ∥uk − uk,n∥F ,1 = 0, set un := (u1,n, . . . , un1,n), and let l ∈ {1, . . . , n2}.
Then by (GC)p for (E ,D) and (2.2) we have {Tl(un)}n∈N ⊆ D, supn∈N E(Tl(un)) < ∞
and limn→∞ ∥Tl(un)− Tl(u)∥Lp(X,m) = 0, and therefore Lemma 3.17 applied to

(
E ,DF)
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implies that Tl(u) ∈ DF and that {Tl(un)}n∈N converges weakly in
(
DF

, ∥ · ∥E,1
)

to Tl(u).
If q2 < ∞, then we see from Proposition 4.10, which is applicable to {Γ⟨f⟩}

f∈DF by
Proposition 4.11, and (GC)p for {Γ⟨f⟩}f∈D that∥∥∥∥∥

((ˆ
X

φdΓ⟨Tl(u)⟩
)1/p

)n2

l=1

∥∥∥∥∥
ℓq2

(4.17)
≤

(
n2∑
l=1

lim inf
n→∞

(ˆ
X

φdΓ⟨Tl(un)⟩
)q2/p)1/q2

≤ lim inf
n→∞

(
n2∑
l=1

(ˆ
X

φdΓ⟨Tl(un)⟩
)q2/p)1/q2

(GC)p
≤ lim inf

n→∞

(
n1∑
k=1

(ˆ
X

φdΓ⟨uk,n⟩
)q1/p)1/q1

(4.19)
=

∥∥∥∥∥
((ˆ

X

φdΓ⟨uk⟩
)1/p

)n1

k=1

∥∥∥∥∥
ℓq1

. (4.22)

The case of q2 = ∞ is similar, so
(´

X
φdΓ⟨ · ⟩,DF) satisfies (GC)p.

4.3 Chain rule and strong locality of p-energy measures

In this subsection, we see that strong local properties for p-energy measures hold if p-
energy measures satisfy a chain rule (see Definition 4.14 below). In this subsection, we
assume that (X,m) satisfies (3.26) and (3.27), that D is a linear subspace of F ∩ C(X),
that {Γ⟨f⟩}f∈D is a family of p-energy measures on (X,B(X)) dominated by (E ,D), and
that F ⊆ Lp(X,m), and we equip F with the norm ∥ · ∥E,1.

Definition 4.14 (Chain rules for p-energy measures). (1) We say that {Γ⟨f⟩}f∈D satis-
fies the chain rule (CL1) if and only if for any u ∈ D and any Φ ∈ C1(R), we have
Φ(u) ∈ D and

dΓ⟨Φ(u)⟩ = |Φ′(u)|p dΓ⟨u⟩. (4.23)

(2) Assume that {Γ⟨f⟩}f∈D satisfies (Cla)p. We say that {Γ⟨f⟩}f∈D satisfies the chain
rule (CL2) if and only if for any n ∈ N, u ∈ D, v = (v1, . . . , vn) ∈ Dn, Φ ∈ C1(R)
and Ψ ∈ C1(Rn), we have Φ(u),Ψ(v) ∈ D and

dΓ⟨Φ(u); Ψ(v)⟩ =
n∑
k=1

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

∂kΨ(v) dΓ⟨u; vk⟩. (4.24)

Theorem 4.15. Assume that {Γ⟨f⟩}f∈D satisfies (Cla)p and (CL2).

(a) {Γ⟨f⟩}f∈D satisfies (CL1).
(b) (Leibniz rule) For any u, v, w ∈ D, we have vw ∈ D and

dΓ⟨u; vw⟩ = v dΓ⟨u;w⟩+ w dΓ⟨u; v⟩. (4.25)



48 N. Kajino and R. Shimizu

(c) ((GC)p for R-valued T ) Let n ∈ N, q ∈ (0, p] and T : Rn → R satisfy T (0) = 0
and |T (x)− T (y)| ≤ ∥x− y∥ℓq for any x, y ∈ Rn, and let φ : X → [0,∞] be Borel
measurable.
(1) If T ∈ C1(Rn), then for any u = (u1, . . . , un) ∈ Dn, (T (u) ∈ D by (CL2), and)(ˆ

X

φdΓ⟨T (u)⟩
)1/p

≤

∥∥∥∥∥
(ˆ

X

φdΓ⟨uk⟩
)1/p

∥∥∥∥∥
ℓq

. (4.26)

(2) If Γ⟨u⟩(X) = E(u) for any u ∈ D, and if F equipped with ∥ · ∥E,1 is a Banach

space, then for any u = (u1, . . . , un) ∈
(
DF)n, T (u) ∈ DF and (4.26) holds.

(d) Let ψ : R → R satisfy ψ(0) = 0 and 0 ≤ ψ(t) − ψ(s) ≤ t − s for any s, t ∈ R with
s ≤ t, and let φ : X → [0,∞] be Borel measurable.
(1) If ψ ∈ C1(R), then for any u, v ∈ D, (ψ(u− v) ∈ D by (CL1) from (a), and)

ˆ
X

φdΓ⟨u−ψ(u−v)⟩+
ˆ
X

φdΓ⟨v+ψ(u−v)⟩ ≤
ˆ
X

φdΓ⟨u⟩+
ˆ
X

φdΓ⟨v⟩. (4.27)

(2) If Γ⟨u⟩(X) = E(u) for any u ∈ D, and if F equipped with ∥ · ∥E,1 is a Banach

space, then for any u, v ∈ DF , ψ(u− v) ∈ DF and (4.27) holds.

Proof. (a),(b): These are immediate from (CL2).
(c)-(1): Assume T ∈ C1(Rn), and let u = (u1, . . . , un) ∈ Dn. It suffices to prove that

Γ⟨T (u)⟩(A)1/p ≤
∥∥(Γ⟨uk⟩(A)1/p)nk=1

∥∥
ℓq

for any A ∈ B(X); (4.28)

indeed, it is routine to extend (4.28) to (4.26) (see the proof of Proposition 4.9). To
show (4.28), we first construct a good µ-version of Υ⟨v1; v2⟩ := dΓ⟨v1;v2⟩

dµ
for each v1, v2 ∈

{T (u), u1, . . . , un}, where µ := Γ⟨T (u)⟩+
∑n

k=1 Γ⟨uk⟩. Let {Ak}k∈N be a countable open
base for the topology of X. Set A0

k := X \ Ak and A1
k := Ak for each k ∈ N, and define

Ak :=

{⋃
α∈I

Aαk

∣∣∣∣∣ I ⊆ {0, 1}k
}
, k ∈ N, (4.29)

where Aαk :=
⋂k
i=1A

αi
k for α = (αi)

k
i=1 ∈ {0, 1}k. Note that

⋃
α∈I A

α
k = ∅ if I = ∅. Then

{Ak}k∈N is a non-decreasing sequence of σ-algebras on X with
⋃
k∈N Ak generating B(X).

Note that
⋃
α∈{0,1}k A

α
k = X and that Aαk ∩ Aβk = ∅ for α, β ∈ {0, 1}k with α ̸= β. For

v1, v2 ∈ {T (u), u1, . . . , un}, k ∈ N, α ∈ {0, 1}k, define Υk⟨v1; v2⟩ : X → [0,∞) by, for
x ∈ Aαk ,

Υk⟨v1; v2⟩(x) := µ(Aαk )
−1Γ⟨v1; v2⟩(Aαk ). (4.30)

Then Eµ[Υ⟨v1; v2⟩ | Ak] = Υk⟨v1; v2⟩ µ-a.e. on X and hence limk→∞Υk⟨v1; v2⟩ = Υ⟨v1; v2⟩
µ-a.e. on X by the martingale convergence theorem (see, e.g., [Dud, Theorem 10.5.1]) and
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the fact that
⋃
k∈N Ak generates B(X). From this convergence together with (4.30) and

(4.8), we obtain ∣∣∣∣dΓ⟨v1; v2⟩dµ

∣∣∣∣ ≤ (dΓ⟨v1⟩dµ

) p−1
p
(
dΓ⟨v2⟩
dµ

) 1
p

µ-a.e. on X. (4.31)

Now we prove (4.28) on the basis of (CL2) and (4.31). Recalling that we have assumed
T ∈ C1(Rn), we see from the assumption on T that for any x, y = (y1, . . . , yn) ∈ Rn,∣∣∣∣∣

n∑
k=1

∂kT (x)yk

∣∣∣∣∣ = lim
ε↓0

ε−1 |T (x)− T (x+ εy)| ≤ ∥y∥ℓq . (4.32)

Then for any A ∈ B(X), from (CL2), (4.31), (4.32), Hölder’s inequality, and the triangle
inequality for the Lp/q(A, µ|A)-norm, we obtain

Γ⟨T (u)⟩(A) (CL2)
=

ˆ
A

n∑
k=1

∂kT (u(x))
Γ⟨T (u);uk⟩

dµ
(x)µ(dx)

(4.31)
≤

ˆ
A

n∑
k=1

|∂kT (u(x))|
(
dΓ⟨T (u)⟩

dµ
(x)

) p−1
p
(
dΓ⟨uk⟩
dµ

(x)

) 1
p

µ(dx)

(4.32)
≤

ˆ
A

(
dΓ⟨T (u)⟩

dµ
(x)

) p−1
p

∥∥∥∥∥
(
sgn(∂kT (u(x)))

(
dΓ⟨uk⟩
dµ

(x)

) 1
p
)n
k=1

∥∥∥∥∥
ℓq

µ(dx)

≤
(ˆ

A

dΓ⟨T (u)⟩
dµ

dµ

) p−1
p

(ˆ
A

[
n∑
k=1

(
dΓ⟨uk⟩
dµ

) q
p

] p
q

dµ

) 1
p

≤ Γ⟨T (u)⟩(A)
p−1
p

[
n∑
k=1

(ˆ
A

dΓ⟨uk⟩
dµ

dµ

) q
p

] 1
q

= Γ⟨T (u)⟩(A)
p−1
p

∥∥(Γ⟨uk⟩(A)1/p)nk=1

∥∥
ℓq
,

proving (4.28) and thereby (c)-(1).
(c)-(2): Recall that {Γ⟨f⟩}

f∈DF is uniquely defined through (4.19) by Proposition 4.11,

and note that the equality Γ⟨u⟩(X) = E(u) extends from u ∈ D to u ∈ DF by (4.19) and
the triangle inequality for E1/p, and hence that {Γ⟨f⟩}

f∈DF and
(
E ,DF) satisfy (Cla)p by

Proposition 4.12. In particular, in view of the completeness of
(
DF

, ∥ · ∥E,1
)
, Lemma 3.17

is applicable to
(
E ,DF). Now, to see T (u) ∈ DF and (4.28) for u = (u1, . . . , un) ∈ Dn,

define j : Rn → R by j(x) := exp
(
− 1

1−∥x∥2
)

for ∥x∥ ≤ 1 and j(x) := 0 for ∥x∥ > 1,
and set jl(x) := lnj(lx) for each l ∈ N (see [Kuw24, p. 10]). We further define Tl(x) :=´
Rn(jl(x−y)−jl(y))T (y) dy =

´
Rn jl(y)(T (x−y)−T (y)) dy so that Tl ∈ C∞(Rn), Tl(0) = 0

and liml→∞ Tl(x) = T (x) for any x ∈ Rn. Moreover, for any x, y ∈ Rn,

|Tl(x)− Tl(y)| =
∣∣∣∣ˆ

Rn

jl(z)(T (x− z)− T (y − z)) dz

∣∣∣∣ ≤ ∥x− y∥ℓq . (4.33)
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Therefore, letting u = (u1, . . . , un) ∈ Dn, by (c)-(1) we have (4.28) with Tl in place
of T , which together with E(Tl(u)) = Γ⟨Tl(u)⟩(X) implies that supl∈N E(Tl(u)) < ∞.
Since {Tl(u)}l∈N converges in Lp(X,m) to T (u) as l → ∞ by Tl(0) = 0, (4.33) and the
dominated convergence theorem, we conclude from Lemma 3.17 that T (u) ∈ DF and that
{Tl(u)}l∈N converges weakly in

(
DF

, ∥ · ∥E,1
)

to T (u). Now we obtain (4.28) by combining
Proposition 4.10 applied to {Γ⟨f⟩}

f∈DF and (4.28) with Tl in place of T .

Lastly, let u = (u1, . . . , un) ∈
(
DF)n, and choose

{
u(l) =

(
u
(l)
1 , . . . , u

(l)
n

)}
l∈N ⊆ Dn so

that
{
u
(l)
k

}
l∈N converges in norm in F to uk for any k ∈ {1, . . . , n}. Then by the result

of the previous paragraph we have {T (u(l))}l∈N ⊆ DF and (4.28) with u(l) in place of u,
which together with E(T (u(l))) = Γ⟨T (u(l))⟩(X) and the assumption on T implies that
{T (u(l))}l∈N is a bounded sequence in

(
DF

, ∥ · ∥E,1
)

converging in norm in Lp(X,m) to

T (u). Thus T (u) ∈ DF and {T (u(l))}l∈N converges weakly in
(
DF

, ∥ · ∥E,1
)

to T (u) by
Lemma 3.17, and hence combining Proposition 4.10 applied to {Γ⟨f⟩}

f∈DF and (4.28)

with u(l) in place of u yields (4.28) for u = (u1, . . . , un) ∈
(
DF)n, proving (c)-(2).

(d)-(1): Assume ψ ∈ C1(R), and let u, v ∈ D. Again, in view of the proof of Proposi-
tion 4.9 it suffices to show that

Γ⟨u−ψ(u−v)⟩(A)+Γ⟨v+ψ(u−v)⟩(A) ≤ Γ⟨u⟩(A)+Γ⟨v⟩(A) for any A ∈ B(X). (4.34)

Indeed, since
´
X
φdΓ⟨f ; · ⟩ is linear for any f ∈ D by Theorem 4.6 if ∥φ∥sup < ∞, we

see from (CL2), Proposition 4.8, 0 ≤ ψ′ ≤ 1 on R, and Hölder’s inequality that for any
A ∈ B(X),

Γ⟨u− ψ(u− v)⟩(A) + Γ⟨v + ψ(u− v)⟩(A)
(CL2)
= Γ⟨u− ψ(u− v);u⟩(A)−

ˆ
A

ψ′(u− v) dΓ⟨u− ψ(u− v);u− v⟩

+ Γ⟨v + ψ(u− v); v⟩(A) +
ˆ
A

ψ′(u− v) dΓ⟨v + ψ(u− v);u− v⟩

=

ˆ
A

(1− ψ′(u− v)) dΓ⟨u− ψ(u− v);u⟩+
ˆ
A

ψ′(u− v) dΓ⟨u− ψ(u− v); v⟩

+

ˆ
A

(1− ψ′(u− v)) dΓ⟨v + ψ(u− v); v⟩+
ˆ
A

ψ′(u− v) dΓ⟨v + ψ(u− v);u⟩

(4.13)
≤
(ˆ

A

(1− ψ′(u− v)) dΓ⟨u− ψ(u− v)⟩
) p−1

p
(ˆ

A

(1− ψ′(u− v)) dΓ⟨u⟩
) 1

p

+

(ˆ
A

ψ′(u− v) dΓ⟨u− ψ(u− v)⟩
) p−1

p
(ˆ

A

ψ′(u− v) dΓ⟨v⟩
) 1

p

+

(ˆ
A

(1− ψ′(u− v)) dΓ⟨v + ψ(u− v)⟩
) p−1

p
(ˆ

A

(1− ψ′(u− v)) dΓ⟨v⟩
) 1

p

+

(ˆ
A

ψ′(u− v) dΓ⟨v + ψ(u− v)⟩
) p−1

p
(ˆ

A

ψ′(u− v) dΓ⟨u⟩
) 1

p
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Hölder
≤

(
Γ⟨u− ψ(u− v)⟩(A) + Γ⟨v + ψ(u− v)⟩(A)

) p−1
p
(
Γ⟨u⟩(A) + Γ⟨v⟩(A)

) 1
p ,

proving (4.34) and thereby (d)-(1).
(d)-(2): This is proved by following closely the above proof of (c)-(2) on the basis of

(d)-(1) and arguing as in (4.22) upon applying Proposition 4.10 to conclude (4.34).

We also have the following representation formula (see also [Cap03, Theorem 4.1]).

Proposition 4.16 (Representation formula). Assume that {Γ⟨f⟩}f∈D satisfies (Cla)p and
(CL2) and that Γ⟨f⟩(X) = E(f) for any f ∈ D. Then for any u, φ ∈ D,

ˆ
X

φdΓ⟨u⟩ = E(u;uφ)−
(
p− 1

p

)p−1

E
(
|u|

p
p−1 ;φ

)
. (4.35)

Proof. Note that (E ,D) satisfies (Cla)p by Γ⟨f⟩(X) = E(f). Define Φ ∈ C1(R) by Φ(x) :=

|x|
p

p−1 . Note that Φ′(x) = p
p−1

sgn(x) |x|
1

p−1 . By (4.25) and (CL2), we see that

E(u;uφ)−
(
p− 1

p

)p−1

E(Φ(u);φ)

=

ˆ
X

u dΓ⟨u;φ⟩+
ˆ
X

φdΓ⟨u⟩ −
(
p− 1

p

)p−1 ˆ
X

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

dΓ⟨u;φ⟩

=

ˆ
X

u dΓ⟨u;φ⟩+
ˆ
X

φdΓ⟨u⟩ −
(
p− 1

p

)p−1(
p

p− 1

)p−1 ˆ
X

sgn(u) |u| dΓ⟨u;φ⟩

=

ˆ
X

φdΓ⟨u⟩, (4.36)

proving (4.35).

We have the following theorem as a consequence of (CL1).

Theorem 4.17 (Image density property). Assume that (E ,D) satisfies (2.4) and (Cla)p,
that (F , ∥ · ∥E,1) is a Banach space, and that {Γ⟨f⟩}f∈D satisfies (CL1). Then for any
u ∈ D, the Borel measure Γ⟨u⟩ ◦ u−1 on R defined by (Γ⟨u⟩ ◦ u−1)(A) := Γ⟨u⟩(u−1(A)),
A ∈ B(R), is absolutely continuous with respect to the Lebesgue measure on R.

Proof. This is proved, on the basis of (4.23), in exactly the same way as [Shi24, Proposition
7.6], which is a simple adaptation of [CF, Theorem 4.3.8], but we present the details
because in [Shi24] the underlying topological space X is assumed to be a generalized
Sierpiński carpet. It suffices to prove that (Γ⟨u⟩ ◦ u−1)(F ) = 0 for any u ∈ D and
any compact subset F of R such that L 1(F ) = 0, where L 1 denotes the 1-dimensional
Lebesgue measure on R. Let {φn}n∈N ⊆ Cc(R) satisfy |φn| ≤ 1, limn→∞ φn(x) = 1F (x)
for any x ∈ R and

ˆ ∞

0

φn(t) dt =

ˆ 0

−∞
φn(t) dt = 0 for any n ∈ N.
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We define Φn(x) :=
´ x
0
φn(t) dt, x ∈ R, and un := Φn ◦ u for any n ∈ N. Then we easily

see that Φn ∈ C1(R) ∩ Cc(R), Φn(0) = 0, and Φ′
n = φn for any n ∈ N. Also, {un}n∈N

converges in norm in Lp(X,m) to 0 by the dominated convergence theorem, and by (2.4)
for (E ,D) we have {un}n∈N ⊆ D and supn∈N E(un) < ∞. Since (Cla)p for (E ,D) yields
(Cla)p for

(
E ,DF) and

(
DF

, ∥ · ∥E,1
)

is complete, Lemma 3.17 is applicable to
(
E ,DF) and

implies that {un}n∈N converges weakly in
(
DF

, ∥ · ∥E,1
)

to 0. By Mazur’s lemma (Lemma
3.14), there exist N(l) ∈ N and {al,k}N(l)

k=l ⊆ [0, 1] such that N(l) > l,
∑N(l)

k=l al,k = 1

and
∑N(l)

k=l al,kunk
converges in norm in F to 0 as l → ∞. Let us define Ψl ∈ C1(R)

by Ψl :=
∑N(l)

k=l al,kΦnk
. Then Ψl(0) = 0 and liml→∞ Ψ′

l(x) = 1F (x) for any x ∈ R.
Furthermore, by Fatou’s lemma, (4.23) and (EM1)p,

(Γ⟨u⟩ ◦ u−1)(F ) =

ˆ
R
lim
l→∞

|Ψ′
l(t)|

p
(Γ⟨u⟩ ◦ u−1)(dt)

≤ lim inf
l→∞

ˆ
X

|Ψ′
l(u(x))|

p
Γ⟨u⟩(dx)

= lim inf
l→∞

Γ⟨Ψl(u)⟩(X) ≤ lim inf
l→∞

E(Ψl(u)) = 0,

which completes the proof.

The following theorem gives arguably the strongest possible forms of the strong locality
of p-energy measures.

Theorem 4.18 (Strong locality of energy measures). Assume that (E ,D) satisfies (2.4)
and (Cla)p, that (F , ∥ · ∥E,1) is a Banach space, and that {Γ⟨f⟩}f∈D satisfies (CL1). Let
u, u1, u2, v ∈ D, a, a1, a2, b ∈ R and A ∈ B(X).

(a) If A ⊆ u−1(a), then Γ⟨u⟩(A) = 0.
(b) If A ⊆ (u− v)−1(a), then Γ⟨u⟩(A) = Γ⟨v⟩(A).
(c) If A ⊆ u−1

1 (a1) ∪ u−1
2 (a2), then

ΓE⟨u1 + u2 + v⟩(A) + ΓE⟨v⟩(A) = ΓE⟨u1 + v⟩(A) + ΓE⟨u2 + v⟩(A). (4.37)

If {Γ⟨f⟩}f∈D satisfies (Cla)p and A ⊆ u−1
1 (a1) ∪ u−1

2 (a2), then

ΓE⟨u1 + u2; v⟩(A) = ΓE⟨u1; v⟩(A) + ΓE⟨u2; v⟩(A). (4.38)

(d) If {Γ⟨f⟩}f∈D satisfies (Cla)p and A ⊆ (u1 − u2)
−1(a) ∪ v−1(b), then

ΓE⟨u1; v⟩(A) = ΓE⟨u2; v⟩(A) and ΓE⟨v;u1⟩(A) = ΓE⟨v;u2⟩(A). (4.39)

Proof. (a): This is immediate from Theorem 4.17.
(b): This follows from (a) and the triangle inequality for ΓE⟨ · ⟩(A)1/p.
(c): Set Ai := A ∩ u−1

i (ai), i ∈ {1, 2}. We see from (b) that

ΓE⟨u1 + u2 + v⟩(A) + ΓE⟨v⟩(A)
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= ΓE⟨u2 + v⟩(A1) + ΓE⟨u1 + v⟩(A2) + ΓE⟨v⟩(A)
= ΓE⟨u2 + v⟩(A1) + ΓE⟨u1 + v⟩(A2) + ΓE⟨u1 + v⟩(A1) + ΓE⟨u2 + v⟩(A2)

= ΓE⟨u1 + v⟩(A) + ΓE⟨u2 + v⟩(A),

which proves (4.37). Note that ΓE⟨u1 + u2⟩(A) = ΓE⟨u1⟩(A) + ΓE⟨u2⟩(A) by (4.37) in
the case v = 0. Next assume that {Γ⟨f⟩}f∈D satisfies (Cla)p. By using this equality and
applying (4.37) with v replaced by tv for t ∈ (0,∞), we have

ΓE⟨u1 + u2 + tv⟩(A)− ΓE⟨u1 + u2⟩(A)
t

+ tp−1ΓE⟨v⟩(A)

=
ΓE⟨u1 + tv⟩(A)− ΓE⟨u1⟩(A)

t
+

ΓE⟨u2 + tv⟩(A)− ΓE⟨u2⟩(A)
t

,

which implies (4.38) by letting t ↓ 0.
(d): The proof will be very similar to that of Proposition 3.32-(a). By applying (4.37)

with u2 − u1, tv, u1 for t ∈ (0,∞) in place of u1, u2, v, we have

ΓE⟨u1 + tv⟩(A)− ΓE⟨u1⟩(A)
t

=
ΓE⟨u2 + tv⟩(A)− ΓE⟨u2⟩(A)

t
,

which implies the former equality in (4.39) by letting t ↓ 0. This equality in turn with
v, 0, u1 − u2 in place of u1, u2, v yields the latter equality in (4.39) by the linearity of
ΓE⟨v; · ⟩(A).

5 p-Energy measures associated with self-similar p-energy
forms

In this section, we focus on the self-similar case. We will introduce the self-similarity
of p-energy forms and construct p-energy measures with respect to self-similar p-energy
forms. Some fundamental properties of p-energy measures will be shown.

5.1 Self-similar structure and related notions

We first recall standard notation and terminology on self-similar structures (see [Kig01,
Chapter 1] for example). Throughout this section, we fix a compact metrizable space K,
a finite set S with #S ≥ 2 and a continuous injective map Fi : K → K for each i ∈ S.
We set L := (K,S, {Fi}i∈S).

Definition 5.1. (1) Let W0 := {∅}, where ∅ is an element called the empty word, let
Wn := Sn = {w1 . . . wn | wi ∈ S for i ∈ {1, . . . , n}} for n ∈ N and let W∗ :=⋃
n∈N∪{0}Wn. For w ∈ W∗, the unique n ∈ N ∪ {0} with w ∈ Wn is denoted by |w|

and called the length of w. For w, v ∈ W∗, w = w1 . . . wn1 , v = v1 . . . vn2 , we define
wv ∈ W∗ by wv := w1 . . . wn1v1 . . . vn2 (w∅ := w, ∅v := v).
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(2) We set Σ := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, which is always equipped with the
product topology of the discrete topology on S, and define the shift map σ : Σ → Σ
by σ(ω1ω2ω3 . . . ) := ω2ω3ω4 . . . . For i ∈ S we define σi : Σ → Σ by σi(ω1ω2ω3 . . . ) :=
iω1ω2ω3 . . . . For ω = ω1ω2ω3 . . . ∈ Σ and n ∈ N∪{0}, we write [ω]n := ω1 . . . ωn ∈ Wn.

(3) For w = w1 . . . wn ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwn (F∅ := idK), Kw := Fw(K),
σw := σw1 ◦ · · · ◦ σwn (σ∅ := idΣ) and Σw := σw(Σ).

(4) A finite subset Λ of W∗ is called a partition of Σ if and only if Σw ∩ Σv = ∅ for any
w, v ∈ Λ with w ̸= v and Σ =

⋃
w∈ΛΣw.

Definition 5.2. L = (K,S, {Fi}i∈S) is called a self-similar structure if and only if there
exists a continuous surjective map χ : Σ → K such that Fi ◦ χ = χ ◦ σi for any i ∈ S.
Note that such χ, if it exists, is unique and satisfies {χ(ω)} =

⋂
n∈NK[ω]n for any ω ∈ Σ.

In the following definition, we recall the definition of post-critically finite self-similar
structures introduced by Kigami in [Kig93], which is mainly dealt with in Subsection 8.3.

Definition 5.3. Let L = (K,S, {Fi}i∈S) be a self-similar structure.

(1) We define the critical set CL and the post-critical set PL of L by

CL := χ−1
(⋃

i,j∈S, i ̸=jKi ∩Kj

)
and PL :=

⋃
n∈N σ

n(CL). (5.1)

L is called post-critically finite, or p.-c.f. for short, if and only if PL is a finite set.
(2) We set V0 := χ(PL), Vn :=

⋃
w∈Wn

Fw(V0) for n ∈ N and V∗ :=
⋃
n∈N∪{0} Vn.

The set V0 should be considered as the “boundary" of the self-similar set K; indeed,
by [Kig01, Proposition 1.3.5-(2)], we have

Kw ∩Kv = Fw(V0) ∩ Fv(V0) for any w, v ∈ W∗ with Σw ∩ Σv = ∅. (5.2)

According to [Kig01, Lemma 1.3.11], Vn−1 ⊆ Vn for any n ∈ N, and V∗ is dense in K if
V0 ̸= ∅.

The family of cells {Kw}w∈W∗ describes the local topology of a self-similar structure.
Indeed, {Kn,x}n≥0, where Kn,x :=

⋃
w∈Wn;x∈Kw

Kw, forms a fundamental system of neigh-
borhoods of x ∈ K [Kig01, Proposition 1.3.6]. Moreover, the proof of [Kig01, Proposition
1.3.6] implies that any metric d on K giving the original topology of K satisfies

lim
n→∞

max
w∈Wn

diam(Kw, d) = 0. (5.3)

Let us recall the notion of self-similar measure.

Definition 5.4 (Self-similar measures). Let L = (K,S, {Fi}i∈S) be a self-similar structure
and let (θi)i∈S ∈ (0, 1)S satisfy

∑
i∈S θi = 1. A Borel probability measure m on K is said

to be a self-similar measure on L with weight (θi)i∈S if and only if the following equality
(of Borel measures on K) holds:

m =
∑
i∈S

θi(m ◦ F−1
i ), (5.4)

where m ◦ F−1
i denotes the image measure of m by Fi, i.e., (m ◦ F−1

i )(A) := m(F−1
i (A))

for A ∈ B(K).
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Remark 5.5. Let L = (K,S, {Fi}i∈S) be a self-similar structure, m a self-similar measure
on L, and w ∈ W∗. We then easily see from (5.4) that u◦Fw = v ◦Fw m-a.e. on K for any
Borel measurable functions u, v : K → [−∞,∞] satisfying u = v m-a.e. on K, thereby
that we can define a map F ∗

w : L
0(K,m) → L0(K,m) by setting F ∗

wu := u◦Fw, and further
that F ∗

w : L
p(K,m) → Lp(K,m) is a bounded linear operator for any p ∈ [1,∞].

Proposition 5.6 ([Kig01, Section 1.4], [Kig09, Theorem 1.2.7]). Let L = (K,S, {Fi}i∈S)
be a self-similar structure and let (θi)i∈S ∈ (0, 1)S satisfy

∑
i∈S θi = 1. Then there exists

a self-similar measure m on L with weight (θi)i∈S. Moreover, if K ̸= V0
K, then such

m is unique and satisfies m(Kw) = θw and m(Fw(V0
K
)) = 0 for any w ∈ W∗, where

θw := θw1 · · · θwn for w = w1 . . . wn ∈ W∗ (θ∅ := 1).

5.2 Self-similar p-energy forms and p-energy measures

In this subsection, we introduce the notion of self-similar p-energy form and define the
p-energy measures associated with a given self-similar p-energy form. Throughout this
subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S) with K connected, a σ-
algebra B in K including B(K), a measure m on (K,B) with suppK [m] = K, p ∈ (1,∞),
and a p-energy form (E ,F) on (K,m).

Definition 5.7 (Self-similar p-energy form). Let ρ = (ρi)i∈S ∈ (0,∞)S. A p-energy form
(E ,F) on (K,m) is said to be self-similar on (L,m) with weight ρ if and only if the
following hold:

F ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ F for any i ∈ S}, (5.5)

E(f) =
∑
i∈S

ρiE(f ◦ Fi) for any f ∈ F ∩ C(K). (5.6)

Note that for any partition Λ of Σ, (5.6) implies

E(f) =
∑
w∈Λ

ρwE(f ◦ Fw), f ∈ F ∩ C(K), (5.7)

where ρw := ρw1 · · · ρwn for w = w1 . . . wn ∈ W∗. Indeed, (5.7) follows from an induction
with respect to maxw∈Λ |w|.

In the rest of this subsection, we assume that (E ,F) is a self-similar p-energy form on
L with weight ρ = (ρi)i∈S. We can see that the two-variable version E(f ; g) also has the
following self-similarity.

Proposition 5.8. Assume that (E ,F ∩ C(K)) satisfies (Cla)p. Then

E(f ; g) =
∑
i∈S

ρiE(f ◦ Fi; g ◦ Fi) for any f, g ∈ F ∩ C(K). (5.8)
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Proof. For any f, g ∈ F ∩ C(K) and any t > 0, we have

E(f + tg)− E(f)
t

=
∑
i∈S

ρi
E
(
f ◦ Fi + t(g ◦ Fi)

)
− E(f ◦ Fi)

t
.

Letting t ↓ 0 yields (5.8).

Next we see that p-energy measures are naturally introduced by virtue of the self-
similarity of (E ,F) (see also [Hin05, MS25+]). For f ∈ F ∩ C(K), we define a finite
measure m

(n)
E ⟨f⟩ on Wn = Sn by putting m

(n)
E ⟨f⟩({w}) := ρwE(f ◦ Fw) for each w ∈ Wn.

Then {m(n)
E ⟨f⟩}n≥0 satisfies the consistency condition by (5.7), and hence Kolmogorov’s

extension theorem (see, e.g., [Dud, Theorem 12.1.2]) guarantees that there exists a unique
Borel measure mE⟨f⟩ on Σ = SN such that mE⟨f⟩(Σw) = ρwE(f ◦ Fw) for any w ∈ W∗.
In particular, mE⟨f⟩(Σ) = E(f). Basic properties of mE⟨ · ⟩ are collected in the following
proposition.

Proposition 5.9. (a) Assume that (E ,F ∩ C(K)) satisfies (GC)p. Then for any A ∈
B(Σ), (mE⟨ · ⟩(A),F ∩ C(K)) is a p-energy form on (K,m) satisfying (GC)p.

(b) Assume that (E ,F∩C(K)) satisfies (Cla)p. Then for any A ∈ B(Σ), (mE⟨ · ⟩(A),F∩
C(K)) is a p-energy form on (K,m) satisfying (Cla)p, and in particular, for any
f, g ∈ F ∩ C(K), the following derivative exists in R:

mE⟨f ; g⟩(A) :=
1

p

d

dt
mE⟨f + tg⟩(A)

∣∣∣∣
t=0

, (5.9)

Moreover, mE⟨f ; g⟩ is a signed Borel measure on Σ.

Proof. (a): Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfy (2.2), and let u = (u1, . . . , un1) ∈
(
F ∩ C(K)

)n1 . We are to show that∥∥(mE⟨Tl(u)⟩(A)1/p
)n2

l=1

∥∥
ℓq2

≤
∥∥(mE⟨uk⟩(A)1/p

)n1

k=1

∥∥
ℓq1
, A ∈ B(Σ). (5.10)

If A = Σw for some w ∈ W∗, then (5.10) is clearly true by (GC)p for (E ,F). By a similar
argument using the reverse Minkowski inequality on ℓq1/p and the Minkowski inequality
on ℓq2/p as in (2.19), we obtain (5.10) for any A belonging to the algebra in Σ generated by
{Σw}w∈W∗ . Hence the monotone class theorem (see, e.g., [Dud, Theorem 4.4.2]) implies
that (5.10) holds for any A ∈ B(Σ).

(b): Note that a special case of (5.10) proves (Cla)p for (mE⟨ · ⟩(A),F ∩ C(K)); see
also Proposition 2.3-(e),(f). Then the derivative in (5.9) exists by Proposition 3.6 and
(5.10). In addition, mE⟨f ; g⟩ turns out to be a signed Borel measure on Σ by Theorem 4.6.
(Even if (E ,F) does not satisfy (GC)p, the above proof of (a) together with the triangle
inequality for E1/p shows (5.10) with (n1, n2, q1, q2) = (2, 1, p, p) and T1(x, y) = x + y,
namely the triangle inequality on F ∩ C(K) for mE⟨ · ⟩(A)1/p.)
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We now define a family {ΓE⟨f⟩}f∈F∩C(K) of finite Borel measures on K by

ΓE⟨f⟩(A) := (mE⟨f⟩ ◦ χ−1)(A) := mE⟨f⟩(χ−1(A)), A ∈ B(K) (5.11)

for f ∈ F ∩ C(K), where χ : Σ → K is the same map as in Definition 5.2. The following
proposition states basic properties and the self-similarity of {ΓE⟨f⟩}f∈F∩C(K).

Proposition 5.10. (a) {ΓE⟨f⟩}f∈F∩C(K) satisfies ΓE⟨f⟩(K) = E(f) for any f ∈ F ∩
C(K), in particular (EM1)p, and (EM2)p.

(b) For any f ∈ F ∩ C(K), any w ∈ W∗ and any n ∈ N ∪ {0},

ρwE(f ◦ Fw) ≤ ΓE⟨f⟩(Kw) ≤
∑

v∈Wn;Kv∩Kw ̸=∅

ρvE(f ◦ Fv). (5.12)

(c) Assume that (E ,F ∩ C(K)) satisfies (GC)p, let φ : K → [0,∞] be Borel measurable,
and let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
(2.2). Then for any u = (u1, . . . , un1) ∈

(
F ∩ C(K)

)n1,∥∥∥∥∥
((ˆ

K

φdΓE⟨Tl(u)⟩
)1/p

)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((ˆ

K

φdΓE⟨uk⟩
)1/p

)n1

k=1

∥∥∥∥∥
ℓq1

. (5.13)

In particular Proposition 2.3 with (
´
K
φdΓE⟨ · ⟩,F ∩ C(K)) in place of (E ,F) holds

provided ∥φ∥sup <∞.
(d) The following equality (of Borel measures on K) holds:

ΓE⟨f⟩ =
∑
i∈S

ρi(ΓE⟨f ◦ Fi⟩ ◦ F−1
i ) for any f ∈ F ∩ C(K). (5.14)

(e) Assume that (E ,F ∩ C(K)) satisfies (Cla)p. Then {ΓE⟨f⟩}f∈F∩C(K) also satisfies
(Cla)p, and the following equality (of signed Borel measures on K) holds:

ΓE⟨f ; g⟩ =
∑
i∈S

ρi(ΓE⟨f ◦ Fi; g ◦ Fi⟩ ◦ F−1
i ) for any f, g ∈ F ∩ C(K). (5.15)

(f) Assume that (E ,F ∩C(K)) satisfies (Cla)p. Then mE⟨f ; g⟩ ◦ χ−1 = ΓE⟨f ; g⟩ for any
f, g ∈ F ∩ C(K).

Proof. (a): We easily have ΓE(K) = mE⟨f⟩(χ−1(K)) = mE⟨f⟩(Σ) = E(f). The proof of
(EM2)p is included in the proof of (c) below.

(b): This statement is the same as [MS23+, Lemma 9.15], which is easily proved by
noting that Σw ⊆ χ−1(Kw) ⊆

⋃
v∈Wn;Kv∩Kw ̸=∅Σv.

(c): Assume that (E ,F) satisfies (GC)p. Let us fix T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfying (2.2) and u = (u1, . . . , un1) ∈
(
F ∩ C(K)

)n1 . For any B ∈ B(K), by (GC)p for
(mE⟨ · ⟩(χ−1(B)),F ∩ C(K)) (see Proposition 5.9-(a)), we obtain∥∥(ΓE⟨Tl(u)⟩(B)1/p

)n2

l=1

∥∥
ℓq2

≤
∥∥(ΓE⟨uk⟩(B)1/p

)n1

k=1

∥∥
ℓq1
. (5.16)
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Again by a similar argument as in (2.19), we see that (5.13) holds for any non-negative
Borel measurable simple function φ on K. We get the desired extension, (5.13) for any
Borel measurable function φ : K → [0,∞], by the monotone convergence theorem.

(d): The proof is very similar to [Shi24, Proof of Theorem 7.5]. Let k ∈ N, w =
w1 . . . wk ∈ Wk and n ∈ N. We see that∑

i∈S

ρimE⟨f ◦ Fi⟩(σ−1
i (Σw)) = ρw1mE⟨f ◦ Fw1⟩(σ−1

w1
(Σw)) = ρw1mE⟨f ◦ Fw1⟩(Σw2...wk

)

= ρw1ρw2...wk
E((f ◦ Fw1) ◦ Fw2...wk

) = mE⟨f⟩(Σw)

Since w ∈ W∗ is arbitrary, by Dynkin’s π-λ theorem, we deduce that

mE⟨f⟩(A) =
∑
i∈S

ρi(mE⟨f ◦ Fi⟩ ◦ σ−1
i )(A), A ∈ B(Σ).

We obtain (5.14) by χ ◦ σi = Fi ◦ χ.
(e): Assume that (E ,F) satisfies (Cla)p. Then {ΓE⟨f⟩}f∈F∩C(K) satisfies (Cla)p by

(5.16) (see also Proposition 2.3-(e),(f)). Now we obtain (5.15) by letting t ↓ 0 in

ΓE⟨f + tg⟩(A) =
∑
i∈S

ρiΓE⟨f ◦ Fi + t(g ◦ Fi)⟩
(
F−1
i (A)

)
.

(f): This is immediate from (5.11), (4.5) and (5.9).

We next prove the chain rules (CL1) and (CL2) for ΓE⟨ · ⟩. Such chain rules have been
obtained also in [BV05], but we provide here self-contained proofs because our present
framework is different from that of [BV05] and our version (CL2) is stronger than the
chain rule proved in [BV05].

Theorem 5.11. Assume that R1K ⊆ E−1(0) and that (E ,F∩C(K)) satisfies (2.4). Then
{ΓE⟨f⟩}f∈F∩C(K) satisfies (CL1), i.e., for any u ∈ F ∩C(K) and any Φ ∈ C1(R), we have
Φ(u) ∈ F ∩ C(K) and

dΓE⟨Φ(u)⟩ = |Φ′(u)|p dΓE⟨u⟩. (5.17)

Proof. First, let us observe a few consequences of (2.4). The proof of Corollary 2.5-(a)
works even if we assume (2.4) instead of (GC)p, so we have (2.11). We then obtain
Φ(u) ∈ F ∩ C(K) by (2.11) and R1K ⊆ E−1(0). Also, by (2.11), the identity ab =
1
4

[
(a + b)2 − (a − b)2

]
for a, b ∈ R, and the triangle inequality for E1/p, there exists a

constant cp ∈ (0,∞) depending only on p such that for any u, v ∈ F ∩ C(K),

uv ∈ F ∩ C(K) and E(uv) ≤ cp
(
∥v∥psup E(u) + ∥u∥psup E(v)

)
; (5.18)

indeed, (5.18) for u, v ∈ F ∩ C(K) with ∥u∥sup = ∥v∥sup = 1 is easily verified, and this
special case applied to ∥u∥−1

sup u, ∥v∥
−1
sup v yields (5.18) for general u, v ∈ F ∩ C(K).

Next we will prove that

lim
l→∞

∣∣∣ρwE(Φ(u ◦ Fw))− S(1)
l (w)

∣∣∣ = 0 for any w ∈ W∗, (5.19)
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where for w ∈ W∗ and l ∈ N ∪ {0} we set, with an arbitrarily fixed x0 ∈ K,

S(1)
l (w) :=

∑
τ∈Wl

ρwτE
(
Φ′(u(Fwτ (x0))) · (u ◦ Fwτ )).

We need some preparations to prove (5.19). Note that, for any z ∈ W∗ and any x ∈ K,

Φ
(
u(Fz(x))

)
− Φ

(
u(Fz(x0))

)
=
[
u(Fz(x))− u(Fz(x0))

](
Φ′(u(Fz(x0)))

+

ˆ 1

0

[
Φ′(u(Fz(x0)) + t

(
u(Fz(x))− u(Fz(x0))

))
− Φ′(u(Fz(x0)))

]
dt

)
.

In particular,

Φ(u ◦ Fz)− ûz = Φ
(
u(Fz(x0)

)
− Φ′(u(Fz(x0)))u(Fz(x0)) +DzIz, (5.20)

where ûz, Dz, Iz ∈ C(K) are given by

ûz(x) := Φ′(u(Fz(x0))) · (u ◦ Fz)(x),
Dz(x) := u(Fz(x))− u(Fz(x0)),

Iz(x) :=

ˆ 1

0

[
Φ′(u(Fz(x0)) + tDz(x)

)
− Φ′(u(Fz(x0)))] dt, x ∈ K.

Note that ûz ∈ F by (5.5). By (2.11), we have that Iz ∈ F and that there exists
a constant Cu,Φ ∈ (0,∞) depending only on p, ∥u∥sup , ∥Φ′∥sup,[−2∥u∥sup,2∥u∥sup]

such that
E(Iz) ≤ Cu,ΦE(u ◦ Fz) and E

(
Φ(u ◦ Fz)

)
≤ Cu,ΦE(u ◦ Fz). Therefore, for any l ∈ N ∪ {0},∑

τ∈Wl

ρwτE
(
Φ(u ◦ Fwτ )− ûwτ

)
(5.20)
=

∑
τ∈Wl

ρwτE(DwτIwτ )

(5.18)
≤ cp

∑
τ∈Wl

ρwτ
(
∥Iwτ∥psup E(Dwτ ) + ∥Dwτ∥psup E(Iwτ )

)
≤ cp

(
max
τ ′∈Wl

∥Iwτ ′∥sup + max
τ ′∈Wl

∥Dwτ ′∥sup
)p ∑

τ∈Wl

ρwτ

(
E(Dwτ ) + Cu,ΦE(u ◦ Fwτ )

)
≤ cp(1 + Cu,Φ)E(u)

(
max
τ ′∈Wl

∥Iwτ ′∥sup + max
τ ′∈Wl

∥Dwτ ′∥sup
)p
. (5.21)

Since u and Φ′ are uniformly continuous onK, it follows from (5.3) that maxτ ′∈Wl
∥Iwτ ′∥sup

and maxτ ′∈Wl
∥Dwτ ′∥sup converge to 0 as l → ∞, and hence

lim
l→∞

∑
τ∈Wl

ρwτE
(
Φ(u ◦ Fwτ )− ûwτ

)
= 0, (5.22)
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which implies (5.19).
By the uniform continuity of Φ′ and the fact that mE⟨f⟩(Σw) = ρwE(f ◦ Fw) for any

f ∈ F ∩ C(K) and any w ∈ W∗, we easily observe that

lim
l→∞

∣∣∣∣∣
n∑
k=1

ˆ
Σw

|Φ′(u ◦ χ)|p dmE⟨u⟩ − S(1)
l (w)

∣∣∣∣∣ = 0.

Hence, by (5.19) and Dynkin’s π-λ theorem,

dmE⟨Φ(u)⟩ =
n∑
k=1

|Φ′(u ◦ χ)|p dmE⟨u⟩. (5.23)

Then we obtain the desired equality (5.17) by (5.23) and Proposition 5.10-(f).

To prove (CL2), in addition to (Cla)p, we need to assume the closedness of (E ,F ∩
Lp(K,m)) in Lp(K,m). Recall the definition (3.24) of the norm ∥ · ∥E,1, which we here
define on F ∩ Lp(K,m) without assuming that F ⊆ Lp(K,m).

Theorem 5.12 (Chain rule). Assume that R1K ⊆ E−1(0), that (E ,F ∩ C(K)) sat-
isfies (2.4) and (Cla)p, and that (F ∩ Lp(K,m), ∥ · ∥E,1) is a Banach space. Then
{ΓE⟨f⟩}f∈F∩C(K) satisfies (CL2), i.e., for any n ∈ N, u ∈ F ∩ C(K), v = (v1, . . . , vn) ∈
(F ∩ C(K))n, Φ ∈ C1(R) and Ψ ∈ C1(Rn), we have Φ(u),Ψ(v) ∈ F ∩ C(K) and

dΓE⟨Φ(u); Ψ(v)⟩ =
n∑
k=1

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

∂kΨ(v) dΓE⟨u; vk⟩. (5.24)

Proof. Let n ∈ N, u ∈ F ∩ C(K), v = (v1, . . . , vn) ∈ (F ∩ C(K))n, Φ ∈ C1(R) and
Ψ ∈ C1(Rn), so that Φ(u) ∈ F ∩ C(K) as observed at the beginning of the proof of
Theorem 5.11. We fix these n, u,v = (v1, . . . , vn),Φ,Ψ throughout this proof, and first,
under the additional assumption that Ψ(v) ∈ F ∩ C(K), we will prove that

lim
l→∞

∣∣∣ρwE(Φ(u ◦ Fw); Ψ(v ◦ Fw)
)
− S(2)

l (w)
∣∣∣ = 0 for any w ∈ W∗, (5.25)

where for w ∈ W∗ and l ∈ N ∪ {0} we set, with an arbitrarily fixed x0 ∈ K,

S(2)
l (w) :=

∑
τ∈Wl

ρwτE
(
Φ′(u ◦ Fwτ (x0)) · (u ◦ Fwτ );

n∑
k=1

∂kΨ(v ◦ Fwτ (x0)) · (vk ◦ Fwτ )
)
.

To prove (5.25), we observe that
∣∣∣ρwE(Φ(u ◦ Fw); Ψ(v ◦ Fw)

)
− S(2)

l (w)
∣∣∣ ≤ A1,l + A2,l,

where

ûz(x) := Φ′(u(Fz(x0))) · (u ◦ Fz)(x),
v̂z(x) :=

n∑
k=1

∂kΨ
(
v(Fz(x0))

)
· (vk ◦ Fz)(x) for z ∈ W∗, x ∈ K,
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A1,l :=
∑
τ∈Wl

ρwτ
∣∣E(Φ(u ◦ Fwτ ); Ψ(v ◦ Fwτ )

)
− E

(
Φ(u ◦ Fwτ ); v̂wτ

)∣∣ ,
A2,l :=

∑
τ∈Wl

ρwτ
∣∣E(Φ(u ◦ Fwτ ); v̂wτ)− E

(
ûwτ ; v̂wτ

)∣∣ .
Similar to (5.22), we can show that

lim
l→∞

∑
τ∈Wl

ρwτE
(
Ψ(v ◦ Fwτ )− v̂wτ

)
= 0. (5.26)

By (3.10), (3.11) and Hölder’s inequality, we have

A1,l ≲ E(u ◦ Fw)(p−1)/p

(∑
τ∈Wl

ρwτE(Ψ(v ◦ Fwτ )− v̂wτ )

)1/p

,

and

A2,l ≲
∑
τ∈Wl

ρwτE(u ◦ Fwτ )(p−1−αp)/pE
(
Φ(u ◦ Fwτ )− ûwτ

)αp/pE
(
v̂wτ
)1/p

≤ E(u ◦ Fw)(p−1−αp)/p

(∑
τ∈Wl

ρwτE(Φ(u ◦ Fwτ )− ûwτ )

)αp/p(∑
τ∈Wl

ρwτE
(
v̂wτ
))1/p

≲ E(u ◦ Fw)(p−1−αp)/p

(∑
τ∈Wl

ρwτE(Φ(u ◦ Fwτ )− ûwτ )

)αp/p

max
k∈{1,...,n}

E(vk ◦ Fw)1/p.

Combining these estimates with (5.22) and (5.26), we obtain liml→∞Ai,l = 0 and thus
(5.25) holds.

Continuing to assume that Ψ(v) ∈ F ∩ C(K), by the uniform continuities of Φ′, ∂Ψk

and the fact that mE⟨f ; g⟩(Σw) = ρwE(f ◦ Fw; g ◦ Fw) for any f, g ∈ F ∩ C(K) and any
w ∈ W∗, we easily observe that

lim
l→∞

∣∣∣∣∣
n∑
k=1

ˆ
Σw

sgn
(
Φ′(u ◦ χ)

)
|Φ′(u ◦ χ)|p−1

∂kΨ(v ◦ χ) dmE⟨u; vk⟩ − S(2)
l (w)

∣∣∣∣∣ = 0.

Hence, by (5.25) and Dynkin’s π-λ theorem,

dmE⟨Φ(u); Ψ(v)⟩ =
n∑
k=1

sgn
(
Φ′(u ◦ χ)

)
|Φ′(u ◦ χ)|p−1

∂kΨ(v ◦ χ) dmE⟨u; vk⟩. (5.27)

Then by (5.27) and Proposition 5.10-(f), we obtain the desired equality (5.24) under the
additional assumption that Ψ(v) ∈ F ∩ C(K). We stress here that the arguments in this
and the last paragraphs do NOT require the assumption that (F ∩ Lp(K,m), ∥ · ∥E,1) is a
Banach space. (Note also that u ∈ F ∩ C(K) and Φ ∈ C1(R) are arbitrary here, and
hence can be chosen to be u = Ψ(v) and Φ = idR as long as Ψ(v) ∈ F ∩ C(K).)
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Thus it remains to prove that Ψ(v) ∈ F ∩C(K). We can assume that Ψ(0) = 0 since
R1K ⊆ E−1(0). Define Q(v) ⊆ Rn by

Q(v) :=
[
−∥v1∥sup , ∥v1∥sup

]
×
[
−∥v2∥sup , ∥v2∥sup

]
× · · · ×

[
−∥vn∥sup , ∥vn∥sup

]
.

Then there exists a sequence {Ψl}l∈N of polynomials in n variables with real coefficients
such that Ψl(0) = 0, ∥Ψ−Ψl∥sup,Q(v) → 0 and ∥∂kΨ− ∂kΨl∥sup,Q(v) → 0 for each k ∈
{1, . . . , n} as l → ∞ (see [CH, Chapter II.4.3]). Let l ∈ N. By the mean value theorem,
for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Q(v),

|Ψl(x)−Ψl(y)| ≤
n∑
k=1

∥∂kΨl∥sup,Q(v) |xk − yk| . (5.28)

Noting that Ψl(v) ∈ F ∩ C(K) by (5.18) and hence that (5.24) with Ψl in place of Ψ
holds by the result of the previous paragraph, we see from Propositions 5.10-(a) and 4.8
that

E(Ψl(v)) = ΓE⟨Ψl(v)⟩(K) (by Proposition 5.10-(a))

=

ˆ
K

n∑
k=1

∂kΨl(v(x)) ΓE⟨Ψl(v); vk⟩(dx) (by (5.24) with Ψl in place of Ψ)

≤
n∑
k=1

∥∂kΨl∥sup,Q(v) ΓE⟨Ψl(v)⟩(K)
p−1
p ΓE⟨vk⟩(K)

1
p (by Proposition 4.8)

= E(Ψl(v))
p−1
p

n∑
k=1

∥∂kΨl∥sup,Q(v) E(vk)
1/p (by Proposition 5.10-(a)),

which implies that supl∈N E(Ψl(v)) < ∞. Also, by Ψl(0) = 0, (5.28) and the dominated
convergence theorem, {Ψl(v)}l∈N converges in Lp(K,m) to Ψ(v) as l → ∞. Now we
conclude from Lemma 3.17 applied to

(
E ,F ∩ C(K)

F∩Lp(K,m))
, which clearly satisfies

(Cla)p, that Ψ(v) ∈ F ∩ C(K)
F∩Lp(K,m)

∩ C(K) = F ∩ C(K), completing the proof.

In the following corollaries, we recall useful consequences of the chain rule in Theorem
5.12, which are immediate from Proposition 4.16 (or more precisely, (4.36)), Theorems
4.17 and 4.18.

Corollary 5.13. Assume that R1K ⊆ E−1(0) and that (E ,F ∩ C(K)) satisfies (2.4) and
(Cla)p. Then for any u, φ ∈ F ∩ C(K),

ˆ
K

φdΓE⟨u⟩ = E(u;uφ)−
(
p− 1

p

)p−1

E
(
|u|

p
p−1 ;φ

)
. (5.29)

Proof. For any u, φ ∈ F ∩ C(K), since uφ ∈ F ∩ C(K) by (5.18), we have (5.24) with
either of (u, uφ) and

(
|u|

p
p−1 , φ

)
in place of (Φ(u),Ψ(v)) by the second paragraph of the

above proof of Theorem 5.12, and therefore (5.29) follows from Proposition 5.10-(a) and
the argument in (4.36).
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Corollary 5.14. Assume that R1K ⊆ E−1(0), that (E ,F ∩ C(K)) satisfies (2.4) and
(Cla)p, and that (F ∩Lp(K,m), ∥ · ∥E,1) is a Banach space. Then, for any u ∈ F ∩C(K),
the Borel measure ΓE⟨u⟩ ◦ u−1 on R defined by (ΓE⟨u⟩ ◦ u−1)(A) := ΓE⟨u⟩(u−1(A)), A ∈
B(R), is absolutely continuous with respect to the Lebesgue measure on R.

Corollary 5.15. Assume that R1K ⊆ E−1(0), that (E ,F ∩ C(K)) satisfies (2.4) and
(Cla)p, and that (F ∩ Lp(K,m), ∥ · ∥E,1) is a Banach space. Let u, u1, u2, v ∈ F ∩ C(K),
a, a1, a2, b ∈ R and A ∈ B(K).

(a) If A ⊆ u−1(a), then ΓE⟨u⟩(A) = 0.
(b) If A ⊆ (u− v)−1(a), then ΓE⟨u⟩(A) = ΓE⟨v⟩(A).
(c) If A ⊆ u−1

1 (a1) ∪ u−1
2 (a2), then

ΓE⟨u1 + u2 + v⟩(A) + ΓE⟨v⟩(A) = ΓE⟨u1 + v⟩(A) + ΓE⟨u2 + v⟩(A), (5.30)
ΓE⟨u1 + u2; v⟩(A) = ΓE⟨u1; v⟩(A) + ΓE⟨u2; v⟩(A). (5.31)

(d) If A ⊆ (u1 − u2)
−1(a) ∪ v−1(b), then

ΓE⟨u1; v⟩(A) = ΓE⟨u2; v⟩(A) and ΓE⟨v;u1⟩(A) = ΓE⟨v;u2⟩(A). (5.32)

5.3 Extensions of self-similar p-energy measures

In this subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S) with K connected, a
self-similar measure m on L, p ∈ (1,∞), and a self-similar p-energy form (E ,F) on (L,m)
with weight (ρi)i∈S ∈ (0,∞)S, and further assume that F ⊆ Lp(K,m). In this setting, we
first discuss the extension of self-similar p-energy measures to F ∩ C(K)

F
=: F0. Recall

the feature noted in Remark 5.5 of m as a self-similar measure on L.

Lemma 5.16. Assume that (F , ∥ · ∥E,1) is a Banach space. Let u ∈ F and {un}n∈N ⊆
F ∩ C(K). If {un}n∈N converges in F to u, then {un ◦ Fw}n∈N converges in F to u ◦ Fw
for any w ∈ W∗. In particular,

u ◦ Fw ∈ F0 for any u ∈ F0 and any w ∈ W∗. (5.33)

E(u) =
∑
i∈S

ρiE(u ◦ Fi) for any u ∈ F0. (5.34)

Proof. Let {un}n∈N satisfy limn→∞ ∥u− un∥E,1 = 0. Then we easily see from the self-
similarity of m that {un ◦Fw}n∈N converges in Lp(K,m) to u ◦Fw for any w ∈ W∗. Since
E(un ◦Fw− uk ◦Fw) ≤ ρ−1

w E(un− uk) for any n, k ∈ N by (5.6), {un ◦Fw}n∈N is a Cauchy
sequence in F . Therefore, it has to converge to u ◦ Fw in F , which shows (5.33). By
letting n→ ∞ in (5.6) for un, we obtain (5.34).

Now that we have obtained the identity (5.34), in a similar way using Kolmogorov’s
extension theorem as in the previous subsection, for each u ∈ F0 we get a unique Borel
measure mE⟨u⟩ on Σ such that mE⟨u⟩(Σw) = ρwE(u ◦ Fw) for any w ∈ W∗. The following
lemma states the triangle inequality for mE⟨ · ⟩(A)1/p on F0.
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Lemma 5.17. Assume that (F , ∥ · ∥E,1) is a Banach space. Then for any u, v ∈ F0 and
any A ∈ B(Σ),

mE⟨u+ v⟩(A)1/p ≤ mE⟨u⟩(A)1/p +mE⟨v⟩(A)1/p.

Proof. This follows from the triangle inequality for E1/p and the argument in the proof of
Proposition 5.9-(a).

Now we identify the p-energy measures {ΓE⟨u⟩}u∈F0 , obtained by applying Proposition
4.11 to the measures defined in (5.11), as {mE⟨u⟩ ◦ χ−1}u∈F0 .

Proposition 5.18. Assume that (F , ∥ · ∥E,1) is a Banach space. Then for any u ∈ F0,

ΓE⟨u⟩ = mE⟨u⟩ ◦ χ−1 (as Borel measures on K). (5.35)

Proof. The equality (5.35) for u ∈ F ∩ C(K) is obvious from the definition of ΓE⟨u⟩
in (5.11). Then the desired assertion immediately follows from (4.19), Lemma 5.17 and
supA∈B(Σ)mE⟨u⟩(A) ≤ E(u).

We conclude this subsection by seeing that self-similar p-energy measures can be ex-
tended to functions belonging locally to F0 in Definition 5.20 below. To this end, we need
the following lemma.

Lemma 5.19 (Weak locality of self-similar p-energy measures; [MS23+, Lemma 9.6]).
Assume that (F , ∥ · ∥E,1) is a Banach space. Let U be an open subset of K. If u, v ∈ F0

satisfy u = v m-a.e. on U , then ΓE⟨u⟩(U) = ΓE⟨v⟩(U).

Proof. The proof is exactly the same as [MS23+, Lemma 9.6], but we recall the details
here for the reader’s convenience. By the inner regularity of ΓE⟨u⟩ and ΓE⟨v⟩ (see, e.g.,
[Dud, Theorem 7.1.3]), it suffices to show ΓE⟨u⟩(A) = ΓE⟨v⟩(A) for any closed subset A
of U . Let d be a metric on K giving the original topology of K. By (5.3), we can choose
δ ∈ (0, distd(A,K \U)) and N ∈ N so that maxw∈Wn diam(Kw, d) < δ for any n ≥ N . For
n ∈ N, define Cn := {w ∈ Wn | Σw ∩ χ−1(A) ̸= ∅}. Since u ◦ Fw = v ◦ Fw (m-a.e. on K)
for any n ≥ N and any w ∈ Cn, we have

mE⟨u⟩(ΣCn) =
∑
w∈Cn

ρwE(u ◦ Fw) =
∑
w∈Cn

ρwE(v ◦ Fw) = mE⟨v⟩(ΣCn).

Since {ΣCn}n∈N is a decreasing sequence satisfying
⋂
n∈N ΣCn = χ−1(A) (see [Hin05, Proof

of Lemma 4.1] or [MS23+, Proof of Proposition 9.3]), we obtain ΓE⟨u⟩(A) = ΓE⟨v⟩(A) by
letting n→ ∞ in the equality above.

Definition 5.20. Let U be a non-empty open subset of K.

(1) For each linear subspace D of F , we define a linear subspace Dloc(U) of L0(U,m|U)
by

Dloc(U) :=

{
f ∈ L0(U,m|U)

∣∣∣∣ f = f# m-a.e. on V for some f# ∈ D for
each relatively compact open subset V of U

}
. (5.36)
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(2) Assume that (F , ∥ · ∥E,1) is a Banach space. In this setting, for each f ∈ (F0)loc(U) =:

F0
loc(U), we further define a Radon measure ΓE⟨f⟩ on U as follows. We first define

ΓE⟨f⟩(E) := ΓE⟨f#⟩(E) for each relatively compact Borel subset E of U , with A ⊆ U
and f# ∈ F0 as in (5.36) chosen so that E ⊆ A; this definition of ΓE⟨f⟩(E) is
independent of a particular choice of such A and f# by Lemma 5.19. We then define
ΓE⟨f⟩(E) := limn→∞ ΓE⟨f⟩(E ∩ An) for each E ∈ B|U , where {An}n∈N is a non-
decreasing sequence of relatively compact open subsets of U such that

⋃
n∈NAn = U ;

it is clear that this definition of ΓE⟨f⟩(E) is independent of a particular choice of
{An}n∈N, coincides with the previous one when E is relatively compact in U , and
gives a Radon measure on U .

5.4 Self-similar p-energy form as a fixed point

This subsection is devoted to presenting a standard method to construct a self-similar
p-energy form. The main result of this subsection (Theorem 5.22) is essentially the same
as the fixed point theorem in [Kig00, Theorem 1.5], but we present the details to show a
useful version of this fixed point theorem where a fixed point is explicitly given as a limit.

In this subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S) withK connected,
a self-similar measure m on L, p ∈ (1,∞), and a linear subspace F of Lp(K,m) with the
following property:

u ◦ Fw ∈ F for any u ∈ F and any w ∈ W∗ (5.37)

(recall Remark 5.5). We define

Ep(F) := {E : F → [0,∞) | (E ,F) is a p-energy form on (K,m)}.

Definition 5.21. Let ρ = (ρi)i∈S. For n ∈ N ∪ {0}, we define Sρ,n : Ep(F) → Ep(F) by

Sρ,n(E)(u) :=
∑
w∈Wn

ρwE(u ◦ Fw) for E ∈ Ep(F) and u ∈ F . (5.38)

(Note that the triangle inequality for Sρ,n(E)
1/p can be shown easily.) Set Sρ := Sρ,1 and

Sρ,0 := idEp(F) for simplicity. Clearly, Sρ,n = Snρ := Sρ ◦ Sρ ◦ · · · ◦ Sρ︸ ︷︷ ︸
n

.

The desired self-similar p-energy form with weight ρ will be constructed as a non-
trivial fixed point of Sρ. The following theorem, which can be regarded as a version of
[Kig00, Theorem 1.5] in a specific situation, describes when we can find such a fixed point
and how it is obtained.

Theorem 5.22. Let ρ = (ρi)i∈S and let E0 ∈ Ep(F). Assume that the quotient normed
space F/(E0)−1(0) (equipped with the norm E0( · )1/p) is separable and that there exists a
constant C ∈ [1,∞) such that

C−1E0(u) ≤ Sρ,n(E0)(u) ≤ CE0(u) for any u ∈ F and any n ∈ N. (5.39)
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Then there exists {nk}k∈N ⊆ N with nk < nk+1 for any k ∈ N such that the following limit
exists in [0,∞) for any u ∈ F :

E(u) := lim
k→∞

1

nk

nk−1∑
j=0

Sρ,j(E0)(u). (5.40)

Furthermore, (E ,F) is a p-energy form on (K,m) satisfying

C−1E0(u) ≤ E(u) ≤ CE0(u) for any u ∈ F and any n ∈ N ∪ {0}, (5.41)

where C is the constant in (5.39), and

E(u) =
∑
w∈Wn

ρwE(u ◦ Fw) for any u ∈ F and any n ∈ N ∪ {0}. (5.42)

Proof. Set En := 1
n

∑n−1
j=0 Sρ,j(E0) for n ∈ N for ease of notation. Then it is clear that

En ∈ Ep(F). Let C be a countable dense subset of F/(E0)−1(0). Since {En(u)}n∈N is
bounded in [0,∞) for any u ∈ F by (5.39), by a standard diagonal procedure, there exists
{nk}k∈N ⊆ N with nk < nk+1 for any k ∈ N such that {Enk(u′)}k∈N is convergent in [0,∞)
for any u′ ∈ C . Let u ∈ F , ε > 0 and u∗ ∈ C satisfy E0(u − u∗)

1/p < ε. Then for any
k, l ∈ N, by the triangle inequality for En( · )1/p and (5.39),∣∣Enk(u)1/p − Enl(u)1/p

∣∣
≤
∣∣Enk(u)1/p − Enk(u∗)

1/p
∣∣+ ∣∣Enk(u∗)

1/p − Enl(u∗)
1/p
∣∣+ ∣∣Enl(u)1/p − Enl(u∗)

1/p
∣∣

≤ 2C1/pε+
∣∣Enk(u)1/p − Enl(u)1/p

∣∣ ,
whence lim supk∧l→∞

∣∣Enk(u)1/p − Enl(u)1/p
∣∣ ≤ 2C1/pε. Therefore {Enk(u)}k∈N is conver-

gent in [0,∞) for any u ∈ F , so the limit in (5.40) exists. It is clear that (E ,F) is a
p-energy form on (K,m) satisfying (5.41).

Let us show (5.42). For any n ∈ N and any u ∈ F , we easily see that

1

n
E0(u) + Sρ(En)(u) =

1

n
E0(u) +

1

n

n−1∑
l=0

Sρ,l+1(E0)(u) = En(u) + 1

n
Sρ,n(E0)(u). (5.43)

Since limk→∞ Sρ(Enk)(u) = Sρ(E)(u) and limk→∞ n−1
k Sρ,nk

(E0)(u) = 0 by (5.39), we obtain
Sρ(E) = E by letting n→ ∞ along {nk}k∈N in (5.43). Hence (5.42) holds.

By virtue of the explicit representation (5.42), the resulting p-energy form (E ,F)
inherits some nice properties of (E0,F). In the following proposition, we see that (GC)p
and the invariance under good transformations are examples of such properties.

Proposition 5.23. Assume the same conditions as in Theorem 5.22 and let E be given
by (5.40).

(a) If (E0,F) satisfies (GC)p, then (E ,F) also satisfies (GC)p.
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(b) Let T be a family of Borel measurable maps from K to K. Assume that u ◦ T ∈ F
and E0(u ◦T ) = E0(u) for any u ∈ F and any T ∈ T . Furthermore, we assume that
for any T ∈ T , there exists a bijection τT : W∗ → W∗ such that

τT |Wn is a bijection from Wn to itself for each n ∈ N ∪ {0}, (5.44)

T (Kw) ⊆ KτT (w) and F−1
τT (w) ◦ T ◦ Fw ∈ T for any w ∈ W∗, (5.45)

and
ρw = ρτT (w) for any w ∈ W∗. (5.46)

Then E(u ◦ T ) = E(u) for any u ∈ F and any T ∈ T .

Proof. (a): Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfy (2.2). Let u = (u1, . . . , un1) ∈ F . Then Tl(uk ◦ Fw) = Tl(uk) ◦ Fw ∈ F for any
k ∈ {1, . . . , n1} and any w ∈ W∗ by (GC)p for (E0,F) and Lemma 5.39. If q2 < ∞, then
by a similar estimate as (2.19),

n2∑
l=1

Sρ(E0)
(
Tl(u)

)q2/p = n2∑
l=1

[∑
i∈S

ρiE0(Tl(u) ◦ Fi)

]q2/p

≤

∑
i∈S

ρi

[
n2∑
l=1

E0
(
Tl(u) ◦ Fi

)q2/p]p/q2q2/p

(by the triangle ineq. for ∥ · ∥ℓq2/p)

(GC)p
≤

∑
i∈S

ρi

[
n1∑
k=1

E0(uk ◦ Fi)q1/p
]p/q1q2/p

(2.18)
≤

 n1∑
k=1

[∑
i∈S

ρiE0(uk ◦ Fi)

]q1/p
p
q1

· q2
p

=

(
n1∑
k=1

Sρ(E0)(uk)
q1/p

)q2/q1

,

whence
∥∥(Sρ(E0)(Tl(u))

1/p
)n2

l=1

∥∥
ℓq2

≤
∥∥(Sρ(E0)(uk)

1/p
)n1

k=1

∥∥
ℓq1

. The case of q2 = ∞ is
similar, so (Sρ(E0),F) satisfies (GC)p. Similarly, one can easily show that (Sρ,n(E0),F)
satisfies (GC)p for any n ∈ N. Hence (GC)p for (E ,F) holds by (5.42) and Proposition
2.10-(b).

(b): By (5.42), it suffices to prove Sρ,n(E0)(u ◦ T ) = Sρ,n(E0)(u) for any u ∈ F , any
n ∈ N ∪ {0} and any T ∈ T . We immediately see that

Sρ,n(E0)(u ◦ T ) =
∑
w∈Wn

ρwE0((u ◦ T ) ◦ Fw)

=
∑
w∈Wn

ρwE0
(
(u ◦ FτT (w)) ◦ F−1

τT (w) ◦ T ◦ Fw
)

(5.45)
=

∑
w∈Wn

ρwE0(u ◦ FτT (w))
(5.44),(5.46)

= Sρ,n(E0)(u),

which completes the proof.
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Also, (E ,F) in Theorem 5.22 turns out to be strongly local under a mild condition.

Proposition 5.24. Assume the same conditions as in Theorem 5.22 and let E be given
by (5.42). If {u ∈ F | E0(u) = 0} = R1K, then {u ∈ F | E(u) = 0} = R1K and (E ,F)
satisfies the strong local property (SL1).

Proof. It is immediate from (5.41) that {u ∈ F | E(u) = 0} = R1K . We will show (SL1)
for (E ,F). Let u1, u2, v ∈ F and a1, a2 ∈ R. Set Ai := suppm[ui − ai1K ] for i ∈ {1, 2}
and assume that A1 ∩ A2 = ∅. By (5.3), there exists n ∈ N such that (

⋃
w∈Wn[A1]

Kw) ∩
(
⋃
w∈Wn[A2]

Kw) = ∅, where Wn[Ai] := {w ∈ Wn | Kw ∩Ai ̸= ∅}. Note that ui ◦Fw = ai1K
for w ∈ Wn \Wn[Ai]. This together with E(1K) = 0 and (5.42) yields that

E(u1 + u2 + v)

=
∑

w∈Wn[A1]

ρwE(u1 ◦ Fw + v ◦ Fw) +
∑

w∈Wn[A2]

ρwE(u2 ◦ Fw + v ◦ Fw)

+
∑

w∈Wn\(Wn[A1]∪Wn[A2])

ρwE(v ◦ Fw)

= E(u1 + v) + E(u2 + v)−
∑

w∈Wn\Wn[A1]

ρwE(v ◦ Fw)−
∑

w∈Wn\Wn[A2]

ρwE(v ◦ Fw)

+
∑

w∈Wn\(Wn[A1]∪Wn[A2])

ρwE(v ◦ Fw)

= E(u1 + v) + E(u2 + v)− E(v),

which shows (SL1).

6 p-Resistance forms and nonlinear potential theory

In this section, we will introduce the notion of p-resistance form as a special class of p-
energy forms, and investigate harmonic functions with respect to a p-resistance form. In
particular, we prove fundamental results on taking the operation of traces of p-resistance
forms, weak comparison principle and Hölder continuity estimates for harmonic functions.
We also show the elliptic Harnack inequality for non-negative harmonic functions under
some assumptions, and introduce the notion of p-resistance metric with respect to a given
p-resistance form.

Throughout this section, we fix p ∈ (1,∞), a non-empty set X, a linear subspace F
of RX and E : F → [0,∞). (This setting corresponds to choosing as (B,m) the pair of 2X
and the counting measure on X in the previous sections; recall Remark 2.1.)

6.1 Basics of p-resistance forms

The next definition is an Lp-analogue of the notion of resistance form introduced by
Kigami in [Kig95]; see [Kig01, Kig03, Kig12] for details on resistance forms.



Contraction properties and differentiability of p-energy forms 69

Definition 6.1 (p-Resistance form). The pair (E ,F) of F ⊆ RX and E : F → [0,∞)
is said to be a p-resistance form on X if and only if it satisfies the following conditions
(RF1)p-(RF5)p:

(RF1)p F is a linear subspace of RX containing R1X and E( · )1/p is a seminorm on F
satisfying {u ∈ F | E(u) = 0} = R1X .

(RF2)p The quotient normed space (F/R1X , E1/p) is a Banach space.
(RF3)p If x ̸= y ∈ X, then there exists u ∈ F such that u(x) ̸= u(y).
(RF4)p For any x, y ∈ X,

RE(x, y) := R(E,F)(x, y) := sup

{
|u(x)− u(y)|p

E(u)

∣∣∣∣ u ∈ F \ R1X
}
<∞. (6.1)

(RF5)p (E ,F) satisfies (GC)p.

Remark 6.2. (1) The notion of 2-resistance form coincides with the original notion of
resistance form ([Kig01, Definition 2.3.1]) although the condition (RF5)2 is stronger
than (RF5) in [Kig01, Definition 2.3.1]. Indeed, we can obtain (RF5)2 by [Kig12,
Theorem 3.14] and the explicit definition of ELm in [Kig12, Proposition 3.8].

(2) Let (E ,F) be a p-resistance form on a finite set V . Then F = RV by (RF1)p, (RF3)p
and (RF5)p (see also [Kig12, Proposition 3.2]), so we say simply that E is a p-resistance
form on V if V is a finite set.

Example 6.3. (1) Consider the same setting as in Example 3.11-(1) and assume that Ω is
a bounded domain satisfying the strong local Lipschitz condition (see [AF, Paragraph
4.9]). Then the p-energy form (

´
Ω
|∇f |p dx,W 1,p(Ω)) is a p-resistance form on Ω if

and only if p > D. Indeed, (RF1)p and (RF5)p are clear from the definition (we
used the boundedness of Ω to ensure R1Ω ⊆ Lp(Ω)), (RF2)p and (RF3)p follow from
[AF, Theorem 3.3 and Corollary 3.4] for any p ∈ (1,∞). If p > D, then we can
use the Morrey-type inequality [AF, Lemma 4.28] to verify (RF4)p. Conversely, the
supremum in (6.1) is not finite when p ≤ D. To see it, we can assume that x = 0 ∈ Ω.
Let δ ∈ (0,∞) be small enough so that B(0, δ) ⊆ Ω and y ̸∈ B(0, δ). For all large
n ∈ N so that n−1 < δ, define un ∈ C(Ω) by

un(z) :=

(
log |z|−1 − log δ−1

log n− log δ−1

)+

∧ 1, z ∈ Ω.

Then we easily see that un(0) = 1, un(y) = 1 and un ∈ W 1,p(Ω) with
ˆ
Ω

|∇un|p dz ≤
∣∣∣∣ 1

log (nδ)

∣∣∣∣p ˆ
B(0,δ)\B(0,n−1)

|z|−p dz = |SD−1|
∣∣∣∣ 1

log (nδ)

∣∣∣∣p ˆ δ

1
n

r−p+D−1 dr

=

{
|SD−1| |log (nδ)|−(p−1) if p = D,
|SD−1|
D−p |log (nδ)|−p

(
δD−p − n−(D−p)

)
if p < D,

where |SD−1| is the volume of the (D − 1)-dimensional unit sphere. In particular,
|un(x)−un(y)|p
∥|∇un|∥pLp(Ω)

→ ∞ as n→ ∞, so (RF4)p does not hold.
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(2) The construction of a regular p-energy form on a p-conductively homogeneous com-
pact metric space (K, d) in [Kig23, Theorem 3.21] requires the assumption p >
dimARC(K, d), where dimARC(K, d) is the Ahlfors regular conformal dimension of
(K, d). (See Definition 8.5-(4) for the definition of dimARC(K, d). The same condition
p > dimARC(K, d) is also assumed in [Shi24].) This condition p > dimARC(K, d) plays
the same role as p > D in (1) above (see also [CCK24, Theorem 1.1]). In Theorem
8.19, we will see that p-energy forms constructed in [Kig23, Theorem 3.21] are indeed
p-resistance forms. We also show that p-energy forms on p.-c.f. self-similar sets in
[CGQ22, Theorem 5.1] under the condition (R) in [CGQ22, p. 18] are p-resistance
forms in Theorem 8.43.

(3) Here we recall typical p-resistance forms on finite sets given in [KS23+, Example 2.2-
(1)] because these examples are important to construct self-similar p-resistance forms
on p.-c.f. self-similar structures in Subsection 8.3. Let V be a non-empty finite set.
Note that in this case E is a p-resistance form on V if and only if E : RV → [0,∞)
satisfies (RF1)p and (RF5)p; indeed, (RF3)p is obvious for F = RV , (RF2)p and
(RF4)p are easily implied by (RF1)p and dim(F/R1V ) < ∞. Now, consider any
functional E : RV → [0,∞) of the form

E(u) = 1

2

∑
x,y∈V

Lxy |u(x)− u(y)|p (6.2)

for some L = (Lxy)x,y∈V ∈ [0,∞)V×V such that Lxy = Lyx for any x, y ∈ V . It is
obvious that E satisfies (RF1)p if and only if the graph (V,EL) is connected, where
EL := {{x, y} | x, y ∈ V , x ̸= y, Lxy > 0}. It is also easy to see that E satisfies (RF5)p.
It thus follows that E is a p-resistance form on V if and only if (V,EL) is connected.
Note that, while any 2-resistance form on V is of the form (6.2) with p = 2, the
counterpart of this fact for p ̸= 2 is NOT true unless #V ≤ 2.

In the rest of this section, we assume that (E ,F) is a p-resistance form on X. Then
the following proposition is immediate from the definition (6.1) of RE and Theorem 3.24.

Proposition 6.4. (1) For any u ∈ F and any x, y ∈ X,

|u(x)− u(y)|p ≤ RE(x, y)E(u). (6.3)

(2) R1/p
E is a metric on X.

(3) (F/R1X , E1/p) is a uniformly convex Banach space, and thus it is reflexive.

In particular, the metric R1/p
E induces a topology on X. Throughout the rest of this

section, we consider X as a topological space with the topology induced by R
1/p
E . Note

that then F ⊆ C(X) by (6.3).
We introduce the regularity of p-resistance forms as follows.

Definition 6.5 (Regularity). Assume that X is locally compact. We say that (E ,F) is
regular if and only if F ∩ Cc(X) is dense in (Cc(X), ∥ · ∥sup).
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The regularity ensures the existence of cutoff functions.

Proposition 6.6. Assume that X is locally compact and that (E ,F) is regular. Then for
any open subset U of X and any compact subset K of U , there exists ψ ∈ F ∩Cc(X) such
that 0 ≤ ψ ≤ 1, ψ = 1 on an open neighborhood of K and suppX [ψ] ⊆ U . In particular,
F ∩ Cc(X) is a special core.

Proof. Since X is locally compact, we can pick an open subset Ω of X such that K ⊆ Ω,
Ω
X ⊆ U and Ω

X is compact. By Urysohn’s lemma, there exists ψ0 ∈ Cc(X) such that
0 ≤ ψ0 ≤ 1, ψ0 = 1 on Ω and suppX [ψ0] ⊆ U . Since (E ,F) is regular, for any ε ∈ (0, 1/2)
there exists ψε ∈ F ∩ Cc(X) such that ∥ψ0 − ψε∥sup < ε, and then the function ψ :=[
(1 − 2ε)−1(ψε − ε)+

]
∧ 1 belongs to F ∩ Cc(X) by (RF1)p and Proposition 2.3-(b) and

has the desired properties.

We need the following notation to define traces of a p-resistance form later.

Definition 6.7. Let B be a non-empty subset of X. Define a linear subspace F|B of F
by F|B :=

{
u|B

∣∣ u ∈ F
}
.

The following proposition is useful to discuss boundary conditions on finite sets.

Proposition 6.8. Let B be a non-empty finite subset of X. Then F|B = RB.

Proof. By virtue of (RF1)p, it suffices to show that 1Bx ∈ F|B for any x ∈ B under the
assumption that #B ≥ 2. Let x ∈ B. For each y ∈ B \ {x}, by (RF1)p and (RF2)p,
there exists uy ∈ F satisfying uy(x) = 1 and uy(y) = 0. Let f :=

∑
y∈B\{x}(u

+
y ∧ 1) and

g :=
∑

y∈B\{x}
(
(1−uy)+∧1

)
. Then f, g ∈ F by (RF1)p and (RF5)p. Since f(x) = #B−1,

f |B\{x} ≤ #B − 2, g(x) = 0 and g|B\{x} ≥ 1, the function h ∈ F given by

h :=
(
f − (#B − 2)(g+ ∧ 1)

)+ ∧ 1

satisfies h|B = 1Bx and hence 1Bx ∈ F|B.

The next definition is introduced to deal with Dirichlet-type boundary conditions.

Definition 6.9. For a non-empty subset B ⊆ X, define

F0(B) := {u ∈ F | u(x) = 0 for any x ∈ X \B}, BF :=
⋂

u∈F0(X\B)

u−1(0).

For basic properties of BF , see [Kig12, Chapters 2, 5 and 6]. Here we only recall the
following results, which will be used later.

Proposition 6.10 ([Kig12, Theorems 2.5 and 6.3]). Let B be a non-empty subset of X.

(a) CF :=
{
B
∣∣ B ⊆ X,B = BF} satisfies the axiom of closed sets and it defines a

topology on X. Moreover, {x} ∈ CF for any x ∈ X.
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(b) For any B ⊆ X and x ̸∈ BF , there exists u ∈ F such that u ∈ F0(X \ B), u(x) = 1
and 0 ≤ u ≤ 1.

(c) Assume that X is locally compact and that (E ,F) is regular. Then B = BF for any
closed set B of X.

Proof. The statements (a) and (b) follow from [Kig12, Theorem 2.4 and Lemma 2.5]. The
argument showing (R1) ⇒ (R2) in [Kig12, Proof of Theorem 6.3] proves (c).

For B ⊆ X and x ̸∈ BF , we define

RE(x,B) := R(E,F)(x,B) := sup

{
|u(x)|p

E(u)

∣∣∣∣ u ∈ F0(X \B), u(x) ̸= 0

}
<∞. (6.4)

Note that RE(x, {y}) = RE(x, y) for y ∈ X \ {x} by Proposition 6.10-(a).

6.2 Harmonic functions and traces of p-resistance forms

In this subsection, we consider harmonic functions with respect to p-resistance forms and
traces of p-resistance forms to subsets of the original domains.

The following proposition states that the variational and distributional formulations
of harmonic functions coincide for p-resistance forms.

Proposition 6.11. Let h ∈ F and B ⊆ X. Then the following conditions are equivalent:

(1) E(h) = inf{E(u) | u ∈ F , u|B = h|B}.
(2) E(h;φ) = 0 for any φ ∈ F0(X \B).

Proof. For φ ∈ F , define Eφ : R → R by Eφ(t) := E(h + tφ), so that Eφ is differentiable
by Proposition 3.6. If E(h) = inf{E(u) | u ∈ F , u|B = h|B} and φ ∈ F0(X \B), then Eφ
takes its minimum at t = 0, and thus E(h;φ) = 1

p
d
dt
Eφ(t)

∣∣
t=0

= 0, proving (1) ⇒ (2).

Conversely, assume that E(h;φ) = 0 for any φ ∈ F0(X \ B), and let u ∈ F satisfy
u|B = h|B. Then by u− h ∈ F0(X \B) we have d

dt

∣∣
t=0
Eu−h(t) = pE(h;u− h) = 0, which

together with the convexity of Eu−h implies that E(u) = Eu−h(1) ≥ Eu−h(0) = E(h),
proving (2) ⇒ (1).

Definition 6.12 (E-(sub,super)harmonic function). Let B ⊆ X and h ∈ F . We say that
h is E-subharmonic on X \B if and only if

E(h;φ) ≤ 0 for any φ ∈ F0(X \B) with φ ≥ 0. (6.5)

We say that h is E-superharmonic on X \ B if and only if −h is E-subharmonic on
X \ B, and say that h is E-harmonic on X \ B if and only if h is both E-subharmonic
and E-superharmonic on X \ B, i.e., h satisfies either (and hence both) of (1) and (2) in
Proposition 6.11. We set HE,B := {h ∈ F | h is E-harmonic on X \B}.
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E-harmonic functions with given boundary values uniquely exist, and their energies
under E define a new p-resistance form on the boundary set, as follows. This new p-
resistance form is called the trace of (E ,F) on the boundary set.

Theorem 6.13. Let B ⊆ X be non-empty, and define E|B : F|B → [0,∞) by

E|B(u) := inf{E(v) | v ∈ F , v|B = u}, u ∈ F|B. (6.6)

Then (E|B,F|B) is a p-resistance form on B and RE|B = RE |B×B. Moreover, for any
u ∈ F|B there exists a unique hEB[u] ∈ F such that hEB[u]

∣∣
B
= u and E

(
hEB[u]

)
= E|B(u),

so that hEB(F|B) = HE,B, and

hEB[au+ b1B] = ahEB[u] + b1X for any u ∈ F|B and any a, b ∈ R, (6.7)
E|B(u; v) = E

(
hEB[u];h

E
B[v]

)
for any u, v ∈ F|B, (6.8)

E|B(f |B; g|B) = E(f ; g) for any f ∈ HE,B and any g ∈ F , (6.9)

where E|B(u; v) := 1
p

d
dt
E|B(u+ tv)

∣∣
t=0

for u, v ∈ F|B (recall (3.7)).

Remark 6.14. The map hEB[ · ] does not satisfy either hEB[u+ v] ≤ hEB[u] + hEB[u] for any
u, v ∈ F|B or hEB[u + v] ≥ hEB[u] + hEB[u] for any u, v ∈ F|B in general, unless p = 2 or
#B ≤ 2.

Proof of Theorem 6.13. We first show the desired existence of hEB[u] for any u ∈ F|B. Let
us fix y∗ ∈ B and let α := inf

{
E(v)

∣∣ v ∈ F with v|B = u
}
∈ [0,∞). Then there exists

{vn}n∈N such that vn ∈ F , vn|B = u and E(vn) ≤ α + n−1 for any n ∈ N. Note that
vk+vl

2
∈ F also satisfies

(
vk+vl

2

)∣∣
B
= u for any k, l ∈ N. In the case of p ∈ (1, 2], we see

that

E(vk − vl)
1/(p−1)

(2.8)
≤ 2

(
E(vk) + E(vl)

)1/(p−1) − E(vk + vl)
1/(p−1)

≤ 2
(
2α + k−1 + l−1

)1/(p−1) − 2p/(p−1)α1/(p−1)

−−−−→
k∧l→∞

2(2α)1/(p−1) − 2p/(p−1)α1/(p−1) = 0. (6.10)

Similarly, in the case of p ∈ [2,∞), we have

E(vk − vl)
(2.9)
≤ 2

(
E(vk)1/(p−1) + E(vl)1/(p−1)

)p−1 − E(vk + vl)

≤ 2
(
(α + k−1)1/(p−1) + (α + l−1)1/(p−1)

)p−1 − 2pα

−−−−→
k∧l→∞

2
(
2α1/(p−1)

)p−1 − 2pα = 0. (6.11)

Consequently, {vn}n∈N is a Cauchy sequence in (F/R1X , E1/p). By (RF2)p, there exists
h ∈ F such that h(y∗) = u(y∗) and limn→∞ E(h− vn) = 0. For any y ∈ B, by (RF4)p,

|h(y)− u(y)|p = |h(y)− vn(y)|p = |(h− vn)(y)− (h− vn)(y∗)|p ≤ RE(y, y∗)E(h− vn) → 0
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as n → ∞, and hence h|B = u. In particular, h is a minimizer of α. Assume that g ∈ F
also satisfies g|B = u and E(g) = α. Then a similar estimate to (6.10) or to (6.11) imply
that E(h − g) = 0. Since h − g ∈ F0(X \ B) and B ̸= ∅, we have h = g =: hEB[u] by
(RF1)p. The property (6.7) immediately follows from (RF1)p for (E ,F).

Next we prove that (E|B,F|B) is a p-resistance form on B. It is clear that E|B(au) =
|a|p E|B(u) for any u ∈ F|B. Let us show the triangle inequality for E|B( · )1/p, Since
(hEB[u] + hEB[v])

∣∣
B
= u+ v for any u, v ∈ F|B, we see that

E|B(u+ v)1/p = E
(
hEB[u+ v]

)1/p ≤ E
(
hEB[u] + hEB[v]

)1/p
≤ E

(
hEB[u]

)1/p
+ E

(
hEB[v]

)1/p
= E|B(u)1/p + E|B(v)1/p.

By (6.7), we easily see that F|B contains R1B. If u ∈ F|B satisfies E|B(u) = 0, then
hEB[u] ∈ R1X and hence hEB[u]

∣∣
B
= u ∈ R1B. Thus (RF1)p for (E|B,F|B) holds. To prove

(RF2)p for (E|B,F|B), let {un} ⊆ F|B satisfy limn∧m→∞ E|B(un − um) = 0. Then, by the
triangle inequality for E|B( · )1/p, we easily see that {E|B(un)}n∈N is a Cauchy sequence
in [0,∞). By (Cla)p for (E ,F) and a similar argument to (6.10) (or to (6.11)), we have
limn∧m→∞ E

(
hEB[un] − hEB[um]

)
= 0. Hence there exists h ∈ F such that limn→∞ E(h −

hEB[un]) = 0 by (RF2)p for (E ,F). Then E|B(h|B−un) ≤ E(h−hEB[un]) → 0, which proves
the completeness of

(
F|B/R1B, E|B( · )1/p

)
. The condition (RF3)p for F|B is clear from

that of F . The inequality RE|B ≤ RE |B×B (and hence (RF4)p for (E|B,F|B)) follows from
the following estimate:

|u(x)− u(y)|p

E|B(u)
=

∣∣hEB[u](x)− hEB[u](y)
∣∣p

E(hEB[u])
≤ RE(x, y) for any x, y ∈ B, u ∈ F|B.

To show the converse inequality RE|B ≥ RE |B×B, let x, y ∈ B and let u ∈ F \ R1X be
such that u(x) ̸= u(y). Then u|B ∈ F|B \ R1B and E(u) ≥ E|B(u|B) > 0. Therefore,

|u(x)− u(y)|p

E(u)
≤ |u|B(x)− u|B(y)|p

E|B(u|B)
≤ RE|B(x, y).

The same estimate is clear if u(x) = u(y), so taking the supremum over u ∈ F \ R1X
yields RE(x, y) ≤ RE|B(x, y). Lastly, we prove (RF5)p for (E|B,F|B). Let n1, n2 ∈ N,
q1 ∈ (0, p], q2 ∈ [p,∞], and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2), and let u =
(u1, . . . , un1) ∈

(
F|B

)n1 . Note that Tl(u) = Tl
(
hEB[u1], . . . , h

E
B[un1 ]

)∣∣
B
∈ F|B. Therefore,

if q2 <∞, then(
n2∑
l=1

E|B
(
Tl(u)

)q2/p)1/q2

≤

(
n2∑
l=1

E
(
Tl
(
hEB[u1], . . . , h

E
B[un1 ]

))q2/p)1/q2

≤

(
n1∑
k=1

E
(
hEB[uk]

)q1/p)1/q1

=

(
n1∑
k=1

E|B(uk)q1/p
)1/q1

.

The case q2 = ∞ is similar, so (E|B,F|B) satisfies (GC)p.
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We conclude the proof by showing (6.8) and (6.9). By Proposition 3.6, we know that

lim
t↓0

E|B(u± tv)− E|B(u)
±t

=
d

dt
E|B(u+ tv)

∣∣∣∣
t=0

,

and

lim
t↓0

E
(
hEB[u]± thEB[v]

)
− E

(
hEB[u]

)
±t

= pE
(
hEB[u];h

E
B[v]

)
.

For any t > 0, we have

E
(
hEB[u]− thEB[v]

)
− E

(
hEB[u]

)
−t

≤ E|B(u− tv)− E|B(u)
−t

≤ E|B(u+ tv)− E|B(u)
t

≤
E
(
hEB[u] + thEB[v]

)
− E

(
hEB[u]

)
t

,

and hence we obtain (6.8) by letting t ↓ 0. If f ∈ HE,B, i.e., hEB[f |B] = f , then E(f ; g) =
E(f ;hEB[g]) = E|B(f |B; g|B) since g − hEB[g|B] ∈ F0(X \ B) for any g ∈ F . This proves
(6.9).

The following proposition states a compatibility of the operation taking traces.

Proposition 6.15. Let A,B be subsets of X such that ∅ ≠ A ⊆ B. Then (E|B|A,F|B|A) =
(E|A,F|A) and hEB ◦ hE|BA = hEA. In particular, hE|BA [u] = hEA[u]

∣∣
B

for any u ∈ F|A.

Proof. Clearly, we have F|B|A = F|A. For any u ∈ F|A, we see that

E|A(u) = E
(
hEA[u]

)
≥ min

{
E(v)

∣∣ v ∈ F such that v|B = hEA[u]
∣∣
B

}
= E|B

(
hEA[u]

∣∣
B

)
≥ min

{
E|B(w)

∣∣ w ∈ F|B such that w|A = hEA[u]
∣∣
A
= u

}
= E|B|A(u) = E|B

(
h
E|B
A [u]

)
= E

(
hEB
[
h
E|B
A [u]

])
≥ min

{
E(v)

∣∣∣ v ∈ F such that v|A =
(
hEB ◦ hE|BA

)
[u]
∣∣
A
= u

}
= E|A(u),

which implies E|A(u) = E|B|A(u) and E
(
hEA[u]

)
= E

(
(hEB ◦ hE|BA )[u]

)
. Since the restrictions

to A of both functions hEA[u] and (hEB ◦ hE|BA )[u] are u, the uniqueness in Theorem 6.13
implies hEA[u] =

(
hEB ◦h

E|B
A

)
[u]. Taking their restrictions to B yields hE|BA [u] = hEA[u]

∣∣
B
.

The following theorem presents an expression of (E ,F) as the “inductive limit” of its
traces {E|V }V⊆X,1≤#V <∞ to finite subsets, which is a straightforward generalization of the
counterpart for resistance forms given in [Kaj, Corollary 2.37]. This expression can be
applied to get a few useful results on convergences of the seminorm E1/p.

Theorem 6.16. It holds that

F =

{
u ∈ RX

∣∣∣∣ sup
V⊆X;1≤#V <∞

E|V (u|V ) <∞
}
, (6.12)

E(u) = sup
V⊆X;1≤#V <∞

E|V (u|V ) for any u ∈ F . (6.13)
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Proof. Define (E∗,F∗) by

E∗(u) := sup
V⊆X;1≤#V <∞

E|V (u|V ), u ∈ RX ,

and F∗ := {u ∈ RX | E∗(u) < ∞}. Then E1/p
∗ is clearly a seminorm on F∗ and {u ∈ F∗ |

E∗(u) = 0} = R1X . We first show that, for any V ⊆ X with 1 ≤ #V < ∞ and any
u ∈ RV ,

hEV [u] ∈ F∗ and E|V (u) = min{E∗(v) | v ∈ F , v|V = u} = E∗
(
hEV [u]

)
, (6.14)

both of which are obtained by seeing that, for any U ⊆ X with 1 ≤ #U <∞,

E|U
(
hEV [u]

∣∣
U

)
≤ E

(
hEV [u]

)
= E|V (u).

Indeed, taking the supremum over U , we get E∗
(
hEV [u]

)
≤ E|V (u) and hence (6.14) holds.

(The converse E|V (u) ≤ E∗
(
hEV [u]

)
is clear from the definition.) We also note that E∗

satisfies (Cla)p since (E|Y ,F|Y ) is a p-resistance form for each Y ⊆ X and E|V (u|V ) ≤
E|U(u|U) for any U, V ⊆ X with ∅ ≠ V ⊆ U and u ∈ RU .

The inclusion F ⊆ F∗ and the estimate E∗ ≤ E (on F) easily follow from the following
estimate:

E|V (u|V ) = E
(
hEV [u|V ]

)
≤ E(u) for any u ∈ F and any V ⊆ X with 1 ≤ #V <∞.

To show F∗ ⊆ F and E ≤ E∗, let u ∈ F∗, let us choose a subset Vn ⊆ X for each n ∈ N
such that 1 ≤ #Vn <∞ and E|Vn(u|Vn) ≥ E∗(u)− n−1, and set un := hEVn [u|Vn ]. Then

E∗(u)− n−1 ≤ E|Vn(u|Vn)
(6.14)
= E∗(un)

(6.14)
≤ E∗(u),

which implies that limn→∞ E∗(un) = limn→∞ E(un) = E∗(u). Using (Cla)p for E∗ and
E∗
(
u+un

2

)
≥ E∗(un), we easily obtain limn→∞ E∗(u− un) = 0 similarly as (6.10) or (6.11).

We next show that {un}n∈N is a Cauchy sequence in (F/R1X , E1/p). From (Cla)p for E ,
limn→∞ E(un) = limn→∞ E∗(un) = E∗(u) and

E(uk + ul) ≥ E
(
hEVk∪Vl [(uk + ul)|Vk∪Vl ]

)
≥ 2pE|Vk∪Vl(u|Vk∪Vl)

(6.14)
= 2pE∗(uk+l),

we can obtain limk∧l→∞ E(uk−ul) = 0 similarly as (6.10) or (6.11). Hence, by (RF1)p for
(E ,F), there exists v ∈ F such that limn→∞ E(v−un) = 0. By E∗ ≤ E on F , we conclude
that limn→∞ E∗(v − un) = 0, which together with the triangle inequality for E1/p

∗ and
limn→∞ E∗(u− un) = 0 implies that E∗(u− v) = 0 and thus u− v ∈ R1X . In particular,
u = (u− v) + v ∈ F∗ and E(u) = limn→∞ E(un) = E∗(u), completing the proof.

Corollary 6.17. Let u ∈ F and let {un}n∈N ⊆ F .

(a) Assume that limn→∞(un(x) − un(y)) = u(x) − u(y) for any x, y ∈ X. Then E(u) ≤
lim infn→∞ E(un).
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(b) limn→∞ E(u− un) = 0 if and only if lim supn→∞ E(un) ≤ E(u) and limn→∞(un(x)−
un(y)) = u(x)− u(y) for any x, y ∈ X.

Proof. Assume that u, un ∈ F , n ∈ N, satisfy limn→∞(un(x) − un(y)) = u(x) − u(y) for
any x, y ∈ X. For any ε > 0, by Theorem 6.16, there exists V ⊆ X with 1 ≤ #V < ∞
such that E|V (u|V ) > E(u)− ε. Then we have

lim
n→∞

E|V (un|V ) = E|V (u|V ) > E(u)− ε,

since RV is a finite-dimensional vector space, E|V ( · )1/p is a seminorm on RV and
limn→∞maxx,y∈V |(un(x)− un(y))− (u(x)− u(y))| = 0. In particular, there exists N1 ∈
N (depending on ε) such that E(un) ≥ E|V (un|V ) > E(u) − ε for any n ≥ N1

and hence lim infn→∞ E(un) ≥ E(u), proving (a). Next, in addition, we assume that
lim supn→∞ E(un) ≤ E(u). Then limn→∞ E(un) = E(u). Since {u+un

2
}n∈N satisfies the

same conditions as {un}n∈N, we obtain limn→∞ E
(
u+un

2

)
= E(u). Similar to (6.10) or

(6.11), we have from (Cla)p for E that limn→∞ E(u− un) = 0. The converse part of (b) is
clear from (6.3).

Corollary 6.18. (a) Let {φn}n∈N ⊆ C(R) satisfy limn→∞ φn(t) = t for any t ∈ R and
|φn(t)− φn(s)| ≤ |t− s| for any n ∈ N and any s, t ∈ R. Then {φn(u)}n∈N ⊆ F and
limn→∞ E(u− φn(u)) = 0 for any u ∈ F .

(b) Let u ∈ F , {un}n∈N ⊆ F and φ ∈ C(R) satisfy limn→∞ E(u−un) = 0, limn→∞ un(x) =
u(x) for some x ∈ X, |φ(t)− φ(s)| ≤ |t− s| for any s, t ∈ R and φ(u) = u. Then
{φ(un)}n∈N ⊆ F and limn→∞ E(u− φ(un)) = 0.

Proof. (a): This is immediate from Corollary 6.17 and (RF5)p.
(b): For any y ∈ X, we have

|u(y)− un(y)| ≤ RE(x, y)
1/pE(u− un)

1/p + |u(x)− un(x)|
n→∞−−−→ 0,

and hence limn→∞ φ(un(y)) = φ(u(y)) = u(y). By (RF5)p we also have {φ(un)}n∈N ⊆ F
and lim supn→∞ E(φ(un)) ≤ limn→∞ E(un) = E(u). Thus limn→∞ E(u − φ(un)) = 0 by
Corollary 6.17-(b).

In the following proposition, we record a useful variant of Theorem 6.16.

Proposition 6.19. Let {Vn}n∈N∪{0} be a non-decreasing sequence of non-empty finite
subsets of X, and set V∗ :=

⋃
n∈N∪{0} Vn. If

the map F ∋ u 7→ u|V∗ ∈ F|V∗ is injective (and hence a linear isomorphism), (6.15)

then (note that {E|Vn(u|Vn)}n∈N∪{0} is non-decreasing since {Vn}n∈N∪{0} is non-decreasing),

F|V∗ =
{
u ∈ RV∗

∣∣∣ lim
n→∞

E|Vn(u|Vn) <∞
}
, (6.16)

E(u; v) = lim
n→∞

E|Vn(u|Vn ; v|Vn) for any u, v ∈ F , (6.17)
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lim
n→∞

E
(
u− hEVn

[u|Vn ]
)
= 0 for any u ∈ F . (6.18)

In particular, if V∗
X
= X, then (6.16), (6.17) and (6.18) hold, and

F =
{
u ∈ C(X)

∣∣∣ lim
n→∞

E|Vn(u|Vn) <∞
}
. (6.19)

Proof. Assume (6.15). By Theorem 6.16, we have F|V∗ ⊆
{
u ∈ RV∗

∣∣ limn→∞ E|Vn(u|Vn) <
∞
}

and E(u) ≥ limn→∞ E|Vn(u|Vn) for any u ∈ F . To show the converse, let u ∈ RV∗

satisfy limn→∞ E|Vn(u|Vn) < ∞, set un := hEVn
(u|Vn) ∈ F for each n ∈ N ∪ {0} and fix

x0 ∈ V0. We can assume that u(x0) = 0 by considering u− u(x0) instead of u. A similar
estimate to (6.10) or (6.11) for E and (RF2)p together imply that limn→∞ E(v − un) = 0
for some v ∈ F with v(x0) = 0. Since |v(x)− u(x)|p ≤ RE(x, x0)E(v − un) for any x ∈ V∗
and any n ∈ N with x ∈ Vn by (6.3), we get u = v|V∗ ∈ F|V∗ , proving F|V∗ ⊇

{
u ∈

RV∗
∣∣ limn→∞ E|Vn(u|Vn) < ∞

}
and thereby (6.16). We then have (6.18) by (6.15) and

limn→∞ E(v − un) = 0, and obtain (6.17) from (6.18), (3.10), (3.11) and (6.8).

Lastly, if V∗
X
= X, then since F ⊆ C(X) by (6.3) we have (6.15), hence (6.16), (6.17)

and (6.18) hold, and (6.19) follows from (6.16) and F ⊆ C(X).

Based on Proposition 6.19, standard machinery for constructing the “inductive limit”
of p-energy forms on p.-c.f. self-similar structures can be stated in Theorems 6.21 and 6.22
below, which are extensions of the counterpart for resistance forms given in [Kaj, Lemma
2.24, Theorem 2.25 and Corollary 2.43] to p-resistance forms. This approach will be used
in Subsection 8.3, where the construction of p-energy forms due to [CGQ22] is reviewed.
See also [Kig01, Sections 2.2, 2.3 and 3.3] for the details in the case of p = 2.

Definition 6.20 (Compatible sequence of p-resistance forms on finite sets). Let Vn be
a non-empty finite set and let E (n) be a p-resistance form on Vn for each n ∈ N ∪ {0}.
We say that the sequence S := {(Vn, E (n))}n∈N∪{0} is a compatible sequence of p-resistance
forms if and only if Vn ⊆ Vn+1 and E (n+1)|Vn = E (n) for any n ∈ N ∪ {0}.

Theorem 6.21. Let S = {(Vn, E (n))}n∈N∪{0} be a compatible sequence of p-resistance
forms. We define V∗ :=

⋃
n∈N∪{0} Vn,

FS :=
{
u ∈ RV∗

∣∣∣ lim
n→∞

E (n)(u|Vn) <∞
}
, and (6.20)

ES(u) := lim
n→∞

E (n)(u|Vn), u ∈ FS . (6.21)

Then (ES ,FS) is a p-resistance form on V∗ and ES |Vn = E (n) for any n ∈ N ∪ {0}.

Proof. Noting that {E (n)(u|Vn)}n∈N∪{0} is non-decreasing for any u ∈ RV∗ , we easily obtain
(RF1)p for (ES ,FS). To see (RF5)p for (ES ,FS), let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞]
and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2), and let u = (u1, . . . , un1) ∈ Fn1

S . Then,
for any l ∈ {1, . . . , n2}, (GC)p for E (n) implies that

E (n)(Tl(u)|Vn)
1/p ≤

∥∥(E (n)(Tl(u|Vn))
1/p
)n2

l=1

∥∥
ℓq2
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≤
∥∥(E (n)(uk|Vn)

1/p
)n1

k=1

∥∥
ℓq1

≤
∥∥(ES,∗(uk)1/p)n1

k=1

∥∥
ℓq1

<∞.

By letting n → ∞, we obtain (GC)p for (ES ,FS), i.e., (RF5)p for (ES ,FS) holds. Before
proving (RF2)p–(RF4)p for (ES ,FS), we shall show the following claim:

For any n ∈ N ∪ {0} and any u ∈ RVn , there exists a unique hSVn
[u] ∈ FS such

that hSVn
[u]
∣∣
Vn

= u and ES
(
hSVn

[u]
)
= min{ES(v) | v ∈ FS , v|Vn = u} = E (n)(u). (6.22)

To prove (6.22), by (RF1)p and (RF5)p for (ES ,FS), we first note that #{v ∈ FS | ES(v) =
α} ≤ 1, where α := min{ES(v) | v ∈ FS , v|Vn = u}. (Recall the arguments in (6.10) and
(6.11).) Hence it suffices to show the existence of the minimizer realizing α. For any
k2 ≥ k1 ≥ n, we have hE(k2)

Vn
[u]
∣∣
Vk1

= hE
(k1)

Vn
[u] by E (k2)|Vk1

= E (k1) and Proposition 6.15,

which implies that u∗(x) := hE
(k)

Vn
[u](x) for x ∈ Vk with k ≥ n is well-defined. Clearly,

u∗|Vn = u. For any k ≥ n, we have E (k)(u∗|Vk
) = E (k+1)(u∗|Vk+1

) by Proposition 6.15
again, whence u∗ ∈ FS and ES(u∗) = E (n)(u). Since E (n)(u) ≤ ES(v) for any v ∈ FS with
v|Vn = u, we also get ES(u∗) = α, so hSVn

[u] := u∗ is the desired function.
Now let us go back to the proof of (RF2)p–(RF4)p.

(RF3)p: This is immediate since FS |Vn = RVn for any n ∈ N ∪ {0} by (6.22).
(RF4)p: Let x, y ∈ V∗ with x ̸= y and let n ∈ N ∪ {0} satisfy x, y ∈ Vn. Let u :=

hE
n

{x,y}
[
1
{x,y}
x

]
∈ RVn . Then for any v ∈ FS with v|{x,y} = 1

{x,y}
x ,

ES(v)
(6.22)
≥ E (n)(v|Vn) ≥ REn(x, y)−1 = E (n)(u)

(6.22)
= ES

(
hSVn

[u]
)
.

Therefore, we have

RES (x, y) = ES
(
hSVn

[u]
)−1

= RE(n)(x, y) <∞. (6.23)

(RF2)p: Fix x∗ ∈ V∗, and let {uk}k∈N ⊆ FS satisfy uk(x∗) = 0 for any k ∈ N and
limk∧l→∞ ES(uk − ul) = 0. From (RF4)p, {uk(x)}k∈N is a Cauchy sequence in
R for any x ∈ V∗, so we can define u ∈ RV∗ by u(x) := limk→∞ uk(x). Let
ε ∈ (0,∞). Then there exists N0 ∈ N such that supk,l≥N0

ES(uk − ul) ≤ ε. Since
E (n)( · )1/p is a norm on the finite-dimensional vector space RVn/R1Vn , we obtain

E (n)(u|Vn−ul|Vn) ≤ lim inf
k→∞

ES(uk−ul) ≤ ε for any l ≥ N0 and any n ∈ N ∪ {0}.

Letting n → ∞ here, for any l ≥ N0 we obtain u − ul ∈ FS , therefore u =
(u − ul) + ul ∈ FS , also ES(u − ul) ≤ ε, and thus liml→∞ ES(u − ul) = 0, which
proves that (FS/R1V∗ , E

1/p
S ) is a Banach space.

Now we know that (ES ,FS) is a p-resistance form on V∗. Then (6.22) means that
hSVn

= hESVn
[u] for any u ∈ RVn , whence ES |Vn = E (n) by (6.22) again.

The following theorem yields a p-resistance form on the completion of (X,R1/p
E ).
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Theorem 6.22. Let (X̂, d̂) be the completion of the metric space (X,R
1/p
E ). Define F̂ ⊆

RX̂ and Ê : F̂ → [0,∞) by

F̂ :=
{
u ∈ C(X̂)

∣∣ u|X ∈ F
}
, (6.24)

Ê(u) := E(u|X), u ∈ F̂ . (6.25)

Then (Ê , F̂) is a p-resistance form on X̂, R1/p

Ê
= d̂, and the map F̂ ∋ u 7→ u|X ∈ F is a

linear isomorphism.

Proof. Set R̂(x, y) := d̂(x, y)p for ease of notation, then R̂
∣∣
X×X = RE . For any u ∈ F ,

we know that u is uniformly continuous with respect to d̂ by (6.3) for (E ,F), so there
exists a unique û ∈ C(X̂) satisfying û|X = u and then û ∈ F̂ . This implies that the map
F̂ ∋ u 7→ u|X ∈ F is a bijection and thus it is a linear isomorphism. Also, for u ∈ F̂ , we
define the continuous function ηu : X̂×X̂ → R by ηu(x, y) := |u(x)− u(y)|p−R̂(x, y)Ê(u).
Since ηu|X×X ≤ 0 by (6.3) for RE , the continuity of ηu yields

|u(x)− u(y)|p ≤ R̂(x, y)Ê(u), x, y ∈ X̂. (6.26)

Now we show (RF1)p-(RF5)p for (Ê , F̂).

(RF1)p: Clearly, F̂ is a linear subspace of RX̂ containing R1X̂ and Ê( · )1/p is a semi-
norm on F̂ . By 1X̂ |X = 1X and (RF1)p for (E ,F), it holds that {u ∈ F̂ | Ê(u) = 0} =
R1X̂ .

(RF2)p: This is immediate from (RF2)p for (E ,F) since F̂ ∋ u 7→ u|X ∈ F is a linear
isomorphism.

(RF5)p: This is immediate from (RF5)p for (E ,F).
(RF3)p and (RF4)p: Let x, y ∈ X̂ with x ̸= y and let {xn}n≥0, {yn}n≥0 ⊆ X satisfy

limn→∞ R̂(x, xn) = limn→∞ R̂(y, yn) = 0. We can assume that xn ̸= yn for any n ≥ 0.
Let un ∈ F̂ be the unique function satisfying un|X = hE{xn,yn}

[
1
{xn,yn}
xn

]
. Then {Ê(un)}n≥0

is bounded in [0,∞) since Ê(un) = RE(xn, yn)
−1 = R̂(xn, yn)

−1 → R̂(x, y)−1 as n → ∞.
Also, it is easy to see that 0 ≤ un ≤ 1. From (6.26) and the Arzelá–Ascoli theorem,
there exist a subsequence {unk

}k and u∗ ∈ C(X̂) such that limk→∞ ∥u∗ − unk
∥sup,X̂ = 0.

A similar argument as in the proof of (RF2)p for (ES ,FS) in Theorem 6.21 implies that
u∗ ∈ F̂ and limk→∞ Ê(u∗ − unk

) = 0. Now we define u ∈ F̂ by u := u∗ − u∗(y) so that
u(y) = 0. Then we have from (6.26) that

|u(xnk
)− u(ynk

)− 1|p ≤ R̂(xnk
, ynk

)Ê(u− unk
) −−−→
k→∞

0,

whence u(x) = 1, in particular, (RF3)p holds. By (6.26) again, we obtain RÊ(x, y) ≤
R̂(x, y) < ∞, so (RF4)p holds. Moreover, this also shows RÊ(x, y) = R̂(x, y) = Ê(u)−1.

Corollary 6.23. Let S = {(Vn, E (n))}n∈N∪{0} be a compatible sequence of p-resistance
forms and let (K, d) be the completion of (V∗, R

1/p
ES ), where (ES ,FS) is the p-resistance
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form on V∗ =
⋃
n∈N∪{0} Vn given in Theorem 6.21. Define F̂S ⊆ RK and ÊS : F̂S → [0,∞)

by

F̂S :=
{
u ∈ C(K)

∣∣ u|V∗ ∈ FS
}
=
{
u ∈ C(K)

∣∣∣ lim
n→∞

E (n)(u|Vn) <∞
}
, (6.27)

ÊS(u) := ES(u|V∗) = lim
n→∞

E (n)(u|Vn), u ∈ F̂S . (6.28)

Then (ÊS , F̂S) is a p-resistance form on K, R1/p

ÊS
= d, and the map F̂S ∋ u 7→ u|V∗ ∈ FS

is a linear isomorphism. In particular, ÊS
∣∣
Vn

= E (n) for any n ∈ N ∪ {0}.

Proof. We obtain the desired assertions by applying Theorem 6.22 with V∗, (ES ,FS)
in place of X, (E ,F). Also, by ES |Vn = E (n) (see Theorem 6.21) and the fact that
F̂S ∋ u 7→ u|V∗ ∈ FS is a linear isomorphism, we have ÊS

∣∣
Vn

= E (n).

We conclude this subsection with a discussion of strong locality of p-resistance forms.

Definition 6.24 (Strong locality of p-resistance form). (1) We say that (E ,F) has the
strong local property (SL1)s if and only if

E(u1 + u2 + v) + E(v) = E(u1 + v) + E(u2 + v). (6.29)

for any u1, u2, v ∈ F with either suppX [u1 − a11X ] or suppX [u2 − a21X ] compact and
(u1(x)− a1)(u2(x)− a2) = 0 for any x ∈ X for some a1, a2 ∈ R.

(2) We say that (E ,F) has the strong local property (SL2)s, or (E ,F) is strongly local, if
and only if

E(u1; v) = E(u2; v) (6.30)

for any u1, u2, v ∈ F with either suppX [u1 − u2 − a1X ] or suppX [v − b1X ] compact
and (u1(x)− u2(x)− a)(v(x)− b) = 0 for any x ∈ X for some a, b ∈ R.

(3) We say that (E ,F) has the strong local property (SL1)w if and only if (SL1)s with
“(u1(x) − a1)(u2(x) − a2) = 0 for any x ∈ X” replaced by “suppX [u1 − a11X ] ∩
suppX [u2 − a21X ] = ∅” holds.

(4) We say that (E ,F) has the strong local property (SL2)w if and only if (SL2)s with
“(u1(x)−u2(x)−a)(v(x)−b) = 0 for any x ∈ X” replaced by “suppX [u1−u2−a1X ]∩
suppX [v − b1X ] = ∅” holds.

Note that (SL1)w and (SL2)w are exactly (SL1) and (SL2), respectively, in Definition
3.30 with “suppm” replaced by “suppX”. In the following proposition, we discuss rela-
tions among the strong local properties (SL1)s, (SL2)s, (SL1)w and (SL2)w introduced in
Definition 6.24.

Proposition 6.25. (a) If X is locally compact and (E ,F) is regular and satisfies (SL2)w,
then (E ,F) satisfies (SL1)w.

(b) If (E ,F) satisfies (SL1)w, then (E ,F) satisfies (SL2)w.
(c) (E ,F) satisfies (SL1)s if and only if (E ,F) satisfies (SL1)w.
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(d) (E ,F) satisfies (SL2)s if and only if (E ,F) satisfies (SL2)w.
In particular, if X is locally compact and (E ,F) is regular, then (SL1)s, (SL2)s, (SL1)w

and (SL2)w are equivalent to each other.

Proof. (a): Since (E ,F) satisfies (3.34), (3.35) and (3.36) with m the counting measure
on X by Proposition 2.3-(d), Corollary 6.18-(a) and Proposition 6.6, the implication from
(SL2)w to (SL1)w is proved in exactly the same way as the proof of Proposition 3.32-(b)
(note that the separability of X is used there only to define suppm[ · ]).

(b): This is proved in exactly the same way as the proof of Proposition 3.32-(a).
(c): The implication from (SL1)s to (SL1)w is obvious. Conversely, assume (SL1)w, let

u1, u2, v ∈ F , a1, a2 ∈ R and assume that either suppX [u1 − a11X ] or suppX [u2 − a21X ]
is compact and (u1(x) − a1)(u2(x) − a2) = 0 for any x ∈ X. For n ∈ N, let φn ∈ C(R)
be given by φn(t) := t − (− 1

n
) ∨ (t ∧ 1

n
) and set u1,n := φn(u1 − a11X) and u2,n :=

φn(u2 − a21X), so that ui,n ∈ F and limn→∞ E(ui − ui,n) = 0 for i ∈ {1, 2} by Corollary
6.18-(a) and (RF1)p. Then for each n ∈ N, since suppX [u1,n] ∩ suppX [u2,n] = ∅ and
either suppX [u1,n] or suppX [u2,n] is compact by the assumptions on u1, u2, it follows
from (SL1)w that E(u1,n + u2,n + v) + E(v) = E(u1,n + v) + E(u2,n + v), and we obtain
E(u1 + u2 + v) + E(v) = E(u1 + v) + E(u2 + v) by letting n→ ∞, proving (SL1)s.

(d): The implication from (SL2)s to (SL2)w is obvious. Conversely, assume (SL2)w,
let u1, u2, v ∈ F , a, b ∈ R and assume that either suppX [u1−u2−a1X ] or suppX [v− b1X ]
is compact and (u1(x) − u2(x) − a)(v(x) − b) = 0 for any x ∈ X. For n ∈ N, set
vn := φn(v − b1X) , where φn is the same as in the proof of (c), so that vn ∈ F and
limn→∞ E(v − vn) = 0 by Corollary 6.18-(a) and (RF1)p. Then for each n ∈ N, since
suppX [u1 − u2 − a1X ] ∩ suppX [vn] = ∅ and either suppX [u1 − u2 − a1X ] or suppX [vn] is
compact by the assumptions on u1, u2, v, it follows from (SL2)w that E(u1; vn) = E(u2; vn),
and we obtain E(u1; v) = E(u2; v) by letting n→ ∞, proving (SL2)s.

6.3 Weak comparison principles

In this subsection, we show some weak comparison principles in this context. The first
one is obtained as an application of the strong subadditivity.

Proposition 6.26 (Weak comparison principle I). Let B be a non-empty subset of X.
Then, for any u, v ∈ F|B satisfying u(y) ≤ v(y) for any y ∈ B, it holds that

hEB[u](x) ≤ hEB[v](x) for any x ∈ X. (6.31)

In particular,
inf
B
u ≤ hEB[u](x) ≤ sup

B
u for any x ∈ X. (6.32)

Proof. Let f := hEB[u] and g := hEB[v]. We will prove f ∧g = f , which immediately implies
(6.31). Since (f ∧ g)|B = u and (f ∨ g)|B = v, we have

E(f) ≤ E(f ∧ g) and E(g) ≤ E(f ∨ g).
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By the strong subadditivity in (2.6), we obtain E(f ∧ g) = E(f) (and E(f ∨ g) = E(g)),
which together with the uniqueness in Theorem 6.13, we have f ∧ g = f .

We can extend the weak comparison principle above to arbitrary open subsets if X
is locally compact and (E ,F) is regular and strongly local. See Proposition 6.30 below.
This version of weak comparison principle will be used to prove the strong comparison
principle on p.-c.f. self-similar structures in a forthcoming paper [KS+a]. We begin with
some preparations.

Definition 6.27. Let U be a non-empty open subset of X.

(1) We define

Floc(U) :=

{
f ∈ RU

∣∣∣∣ f1V = f#1V for some f# ∈ F for each
relatively compact open subset V of U

}
.

(2) Assume that (E ,F) is strongly local. Let V ⊆ U be an open subset. A function
h ∈ Floc(U) is said to be E-harmonic on V if E(h#;φ) = 0 for any φ ∈ F0(V ) with
supp[φ] compact (with respect to the metric topology of R1/p

E ), where h# ∈ F satisfies
h1supp[φ] = h#1supp[φ].

Remark 6.28. (1) If X =: K comes from a self-similar structure and the topology in-
duced by R1/p

E coincides with the original topology of K, then the definition of Floc(U)
above is the same as (5.36) by virtue of F ⊆ C(K).

(2) By the strong locality of (E ,F), the value E(h#;φ) is independent of a particular
choice of h#.

We need the following proposition to achieve the desired weak comparison principle.

Proposition 6.29. Assume that X is locally compact and that (E ,F) is regular and
strongly local. Let U be a non-empty open subset of X and let u ∈ F satisfy u(x) = 0 for
any x ∈ ∂XU = U

X \ U . Then u1U ∈ F .

Proof. Define φn ∈ C(R) by φn(t) := t−
(
1
n

)
∨
(
t∧ 1

n

)
and set An := U ∩ suppX [φn(u)] for

each n ∈ N. Since u|∂U = 0, An = U
X ∩ suppX [φn(u)] and thus An is a compact subset

of U . By Proposition 6.6, there exists vn ∈ F such that 1An ≤ vn ≤ 1U . Then we easily
obtain φn(u)1U = φn(u)vn, hence by Corollary 6.18-(a) and Proposition 2.3-(d) we have
φn(u)1U ∈ F . By the strong locality and Corollary 6.18-(a), {φn(u)1U}n∈N is a Cauchy
sequence in (F/R1X , E1/p). Thus, by (RF2)p and (6.3), {φn(u)1U}n∈N converges in norm
in (F/R1X , E1/p) to its pointwise limit u1U , whence u1U ∈ F .

Now we can state the desired version of the weak comparison principle.

Proposition 6.30 (Weak comparison principle II). Assume that X is locally compact
and that (E ,F) is regular and strongly local. Let U be non-empty open subset of X such
that UX is compact and U ̸= X. If u, v ∈ C(U

X
) ∩ Floc(U) are E-harmonic on U and

u(x) ≤ v(x) for any x ∈ ∂XU = U
X \ U , then u(x) ≤ v(x) for any x ∈ U

X .
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Proof. We first observe that ∂XO ̸= ∅ for any non-empty open subset of X such that OX

is compact and O ̸= X. To this end, suppose that ∂XO = ∅ and then show O = X.
We see from Proposition 3.28 that there exists φ ∈ F ∩ Cc(X) such that φ|O = 1 and
φ|X\O = 0 since O = O

X is compact. By the strong locality of (E ,F) and (RF1)p, we
have E(φ) = 0 and hence φ ∈ R1X . Therefore, X \O = ∅ since O is non-empty.

Let us go back to the proof. Since u and v are uniformly continuous on U
X and

∂XU ̸= ∅, for any ε > 0 there exists δ > 0 such that

V :=
{
x ∈ U

∣∣∣ dist
R

1/p
E

(x, ∂XU) > δ
}
̸= ∅,

and u(x) ≤ v(x) + ε for any x ∈ U
X \ V . Then V is a relatively compact open subset

of U and hence there exist u#, v# ∈ F such that u1V = u#1V and v1V = v#1V . Define
f := u# − (u# − v#)+1X\V , g := v# +(u# − v#)+1X\V . Then f, g ∈ F by u#(x) ≤ v#(x)
for any x ∈ ∂XV ̸= ∅, Propositions 2.3-(b) and 6.29. We also have f, g ∈ HE,X\V by
the strong locality of (E ,F). Since f(x) = (u# ∧ v#)(x) ≤ (u# ∨ v#)(x) = g(x) for any
x ∈ X \ V , Proposition 6.26 implies that u(x) = u#(x) = f(x) ≤ g(x) = v#(x) = v(x)

for any x ∈ V . Therefore, we conclude that u(x) ≤ v(x) + ε for any x ∈ U
X . Since ε > 0

is arbitrary, we complete the proof.

6.4 Sharp Hölder regularity of harmonic functions

In this subsection, we present a sharp Hölder regularity estimate on E-harmonic functions
and prove that R1/(p−1)

E is a metric on X.
As an application of Proposition 3.10, we can show the following Hölder continuity

estimate for E-harmonic functions.

Theorem 6.31. Let B be a non-empty subset of X, x ∈ X \BF and y ∈ X. Then

hEB∪{x}
[
1
B∪{x}
B

]
(y) ≤ RE(x, y)

1/(p−1)

RE(x,B)1/(p−1)
. (6.33)

Moreover, for any h ∈ HE,B with supB |h| <∞,

|h(x)− h(y)| ≤ RE(x, y)
1/(p−1)

RE(x,B)1/(p−1)
osc
B
[h]. (6.34)

Proof. Since (6.33) and (6.34) are obvious if x = y, we may and do assume that x ̸= y.
To show (6.33), on one hand, we see that

−E|B∪{x}(1B;1x) = E|B∪{x}(1B;1B∪{x})− E|B∪{x}(1B;1x)

= E|B∪{x}(1B;1B) = RE(x,B)−1. (6.35)

On the other hand,

− E|B∪{x}(1B;1x)
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= −E
(
hEB∪{x}[1B];h

E
B∪{x,y}[1x]

)
(by (6.9))

= −E|B∪{x,y}

(
hEB∪{x}[1B]

∣∣
B∪{x,y};1x

)
(by Proposition 6.15 and (6.9))

≥ −E|B∪{x,y}

((
hEB∪{x}[1B](y) · hE{x,y}[1y]

)∣∣
B∪{x,y};1x

)
(by Proposition 3.10)

= −hEB∪{x}[1B](y)
p−1E|B∪{x,y}

(
hE{x,y}[1y]

∣∣
B∪{x,y};1x

)
= −hEB∪{x}[1B](y)

p−1E|{x,y}(1y;1{x,y} − 1y) (by Proposition 6.15 and (6.9))

= hEB∪{x}[1B](y)
p−1RE(x, y)

−1. (6.36)

We obtain (6.33) by combining (6.35) and (6.36).
Next we prove (6.34). Let h ∈ HE,B satisfy supB |h| <∞. Then we see that

h− h(x) ≤ hEB∪{x}

[
(h− h(x))+

∣∣
B∪{x}

]
(by Propositions 6.26 and 6.15)

≤ hEB∪{x}

[
osc
B
[h] · 1B∪{x}

B

]
(by Proposition 6.26 and (h− h(x))+(x) = 0)

= osc
B
[h] · hEB∪{x}

[
1
B∪{x}
B

]
.

Similarly, we have

h− h(x) ≥ −hEB∪{x}

[
(h− h(x))−

∣∣
B∪{x}

]
≥ − osc

B
[h] · hEB∪{x}

[
1
B∪{x}
B

]
.

Hence, by combining these estimates with (6.33), we get (6.34).

Using Theorem 6.31, we can show the triangle inequality for R1/(p−1)
E .

Corollary 6.32. R1/(p−1)
E : X ×X → [0,∞) is a metric on X.

Definition 6.33 (p-Resistance metric). We define R̂p,E := R
1/(p−1)
E and call R̂p,E the

p-resistance metric of (E ,F).

Proof of Corollary 6.32. It suffices to prove the triangle inequality RE(x, z)
1/(p−1) ≤

RE(x, y)
1/(p−1) + RE(y, z)

1/(p−1) for any x, y, z ∈ X with #{x, y, z} = 3. By (6.33) with
B = {z}, we have hE{x,z}

[
1
{x,z}
x

]
(y) ≤ RE(x,y)

1/(p−1)

RE(x,z)1/(p−1) . By exchanging the roles of x and z, we

get hE{x,z}
[
1
{x,z}
z

]
(y) ≤ RE(y,z)

1/(p−1)

RE(x,z)1/(p−1) . Since 1X = hE{x,z}
[
1
{x,z}
x

]
+ hE{x,z}

[
1
{x,z}
z

]
, we have

1 ≤ RE(x, y)
1/(p−1)

RE(x, z)1/(p−1)
+
RE(y, z)

1/(p−1)

RE(x, z)1/(p−1)
,

which proves the desired triangle inequality for R1/(p−1)
E .

Example 6.34. Let p ∈ (1,∞) and (E ,F) be a p-resistance form on the unit open interval
(0, 1) given by

F := W 1,p(0, 1) and E(u) :=
ˆ 1

0

|∇u|p dx.
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(Recall Example 6.3-(1).) For any x, y ∈ (0, 1) with 0 < x < y < 1, we easily see that
u ∈ W 1,p(0, 1) defined by u(t) := (y − x)−1(t − x)1[x,y](t), t ∈ (0, 1), is E-harmonic on
(0, 1) \ {x, y}. Therefore we have RE(x, y) = (y − x)p−1 and the p-resistance metric R̂p,E
coincides with the Euclidean metric on (0, 1). In particular, the Hölder regularity estimate
(6.34) is sharp. This example also shows that exponent 1/(p−1) in the p-resistance metric
is sharp, that is, Rα

E is not a metric for α > 1/(p− 1) in general.

6.5 Elliptic Harnack inequality for non-negative harmonic func-
tions

Throughout this subsection, we assume that {Γ⟨u⟩}u∈F is a family of p-energy measures
on (X,B(X)) dominated by (E ,F) and satisfies (Cla)p. For ease of the notation, we set
R̂p := R̂p,E = R

1/(p−1)
E .

In this subsection, we establish the elliptic Harnack inequality for non-negative E-
superharmonic functions under some extra analytic conditions (Theorem 6.36). We mainly
follow the argument in [Cap07], but we assume the two-point estimate (6.39) instead of the
Poincaré inequality [Cap07, (2.4)] (see also Remark 7.13). Let us start with the following
log-Caccioppoli inequality under the assumption of the chain rule (CL2).

Lemma 6.35 (Log-Caccioppoli type inequality). Assume that {Γ⟨u⟩}u∈F satisfies the
chain rule (CL2). Then there exists C ∈ (0,∞) (depending only on p) such that for any
A, ε ∈ (0,∞) with A > 1, any (x, s) ∈ X × (0,∞) and any u ∈ F such that u ≥ 0 on X,
u is E-superharmonic on BR̂p

(x,As) and Γ⟨u⟩(X) = E(u), it holds that

ˆ
B

R̂p
(x,s)

dΓ⟨Φε(u)⟩ ≤ C inf
{
E(φ)

∣∣ φ ∈ F , φ|B
R̂p

(x,s) = 1, suppX [φ] ⊆ BR̂p
(x,As)

}
,

(6.37)
where Φε ∈ C1(R) is any function satisfying Φε(x) = log (x+ ε)−log ε for any x ∈ [0,∞).

Proof. Let φ ∈ F satisfy φ|B
R̂p

(x,s) = 1, suppX [φ] ⊆ BR̂p
(x,As) and

E(φ) = inf
{
E(φ)

∣∣ φ ∈ F , φ|B
R̂p

(x,s) = 1, suppX [φ] ⊆ BR̂p
(x,As)

}
,

which exists by Theorem 6.13. Let ε > 0 and set uε := u + ε. Note that φpu1−pε ∈ F by
Proposition 2.3-(d) and Corollary 2.5-(a). We see that
ˆ
B

R̂p
(x,s)

dΓ⟨Φε(u)⟩ ≤
ˆ
B

R̂p
(x,As)

φp dΓ⟨Φε(u)⟩

(CL2)
=

1

p− 1

ˆ
B

R̂p
(x,As)

φp dΓ⟨uε;u1−pε ⟩

(CL2)
=

1

1− p

(ˆ
B

R̂p
(x,As)

dΓ⟨uε;φpu1−pε ⟩ −
ˆ
B

R̂p
(x,As)

u1−pε dΓ⟨uε;φp⟩
)
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(∗)
≤ 1

1− p

(
E(uε;φpu1−pε )−

ˆ
B

R̂p
(x,As)

u1−pε dΓ⟨uε;φp⟩
)

(∗∗)
≤ −1

1− p

ˆ
B

R̂p
(x,As)

u1−pε dΓ⟨uε;φp⟩

(CL2)
=

p

p− 1

ˆ
B

R̂p
(x,As)

φp−1 dΓ⟨Φε(u);φ⟩

(4.13)
≤ p

p− 1

(
1

2

ˆ
B

R̂p
(x,As)

φp dΓ⟨Φε(u)⟩
) p−1

p
(
2p−1

ˆ
B

R̂p
(x,As)

dΓ⟨φ⟩
) 1

p

≤ p

p− 1

(
p− 1

2p

ˆ
B

R̂p
(x,As)

φp dΓ⟨Φε(u)⟩+
2p−1

p

ˆ
B

R̂p
(x,As)

dΓ⟨φ⟩
)
,

where we used Theorem 4.18 and Γ⟨uε⟩(X) = E(uε) in (∗), the fact that uε is E-
superharmonic on BR̂p

(x,As) in (∗∗), and Young’s inequality in the last inequality. Hence
we obtain

´
B

R̂p
(x,s)

dΓ⟨Φε(u)⟩ ≤ p−12pE(φ).

Now we can prove the desired elliptic Harnack inequality as in the following theorem.
We will see later in Theorem 7.15 that Theorem 6.36 is applicable to p.-c.f. self-similar
structures equipped with good self-similar p-resistance forms (see Subsection 7.2 for the
precise setting).

Theorem 6.36 (Elliptic Harnack inequality). Assume that there exist Υ: X × (0,∞) →
(0,∞) and A1, A2, C ∈ (0,∞) with A1 ≥ 1 and A2 > 1 such that the following hold:

(i) For any (x, s) ∈ X × (0,∞),

Υ(x, 2s) ≤ CΥ(x, s). (6.38)

(ii) For any (x, s) ∈ X × (0,∞) and any u ∈ F ,

sup
y,z∈B

R̂p
(x,s)

|u(y)− u(z)|p ≤ CΥ(x, s)−1Γ⟨u⟩
(
BR̂p

(x,A1s)
)
. (6.39)

(iii) For any (x, s) ∈ X × (0,∞) with BR̂p
(x,A2s) ̸= X,

inf
{
E(φ)

∣∣ φ ∈ F , φ|B
R̂p

(x,s) = 1, suppX [φ] ⊆ BR̂p
(x,A2s)

}
≤ CΥ(x, s). (6.40)

(iv) {Γ⟨u⟩}u∈F satisfies the chain rule (CL2).

Then there exist CH ∈ (0,∞) and δH ∈ (0, 1) such that for any (x, s) ∈ X × (0,∞)
with BR̂p

(x, δ−1
H s) ̸= X and any u ∈ F such that u ≥ 0 on X, u is E-superharmonic on

BR̂p
(x, δ−1

H s) and Γ⟨u⟩(X) = E(u), it holds that

sup
B

R̂p
(x,s)

u ≤ CH inf
B

R̂p
(x,s)

u. (6.41)



88 N. Kajino and R. Shimizu

Proof. Let ε ∈ (0,∞) and set δH := (A1A2)
−1. Let (x, s) ∈ X × (0,∞) satisfy

BR̂p
(x, δ−1

H s) ̸= X, and let u ∈ F be such that u ≥ 0 on X, u is E-superharmonic
on BR̂p

(x, δ−1
H s) and Γ⟨u⟩(X) = E(u). Set uε := u + ε, Mε := supB

R̂p
(x,s) uε and

mε := infB
R̂p

(x,s) uε. From (RF1)p, (3.9), (EM1)p and (EM2)p, uε is E-superharmonic
on BR̂p

(x, δ−1
H s) and Γ⟨uε⟩(X) = E(uε). By (6.38), (6.39), (6.37) and (6.40), there exists

C0 ∈ (0,∞) independent of x, s, u, ε such that

sup
B

R̂p
(x,s)

log uε − inf
B

R̂p
(x,s)

log uε ≤ C0,

whence log
(
Mε

mε

)
≤ C0. In particular, Mε/mε ≤ eC0 . We obtain (6.41) by letting ε ↓ 0.

7 Self-similar p-resistance forms and p-energy measures

In this section, we investigate p-resistance forms by focusing on the self-similar case as
in Section 5. Throughout this section, we fix p ∈ (1,∞) and a self-similar structure
L = (K,S, {Fi}i∈S) with #S ≥ 2 and K connected.

7.1 Self-similar p-resistance forms

We first introduce the notion of self-similar p-resistance form.

Definition 7.1 (Self-similar p-resistance form). Let ρ = (ρi)i∈S ∈ (0,∞)S and let (E ,F)
be a p-resistance form on K. We say that (E ,F) is a self-similar p-resistance form on
L with weight ρ if and only if F ⊆ C(K) and (E ,F) satisfies (5.5) and (5.6) (under the
original topology of K implicit in L = (K,S, {Fi}i∈S) being a self-similar structure).

Throughout the rest of this section except Proposition 7.8 and Theorem 7.9, we fix a
self-similar p-resistance form (E ,F) on L with weight ρ = (ρi)i∈S ∈ (0,∞)S. Note that
the topology induced by the p-resistance metric R̂p,E of (E ,F) may be different from the
original topology of K implicit in L = (K,S, {Fi}i∈S) being a self-similar structure. Under
the present setting, in referring to a topology ofK we always consider its original topology.
Note also that then F is dense in (C(K), ∥ · ∥sup) by the compactness of K, (2.7), (RF1)p,
(RF3)p and the Stone–Weierstrass theorem (see, e.g., [Dud, Theorem 2.4.11]).

The following properties of the p-resistance metric are elementary.

Proposition 7.2. (1) For any x, y ∈ K,

RE(Fw(x), Fw(y)) ≤ ρ−1
w RE(x, y). (7.1)

(2) If mini∈S ρi > 1 and if either diam(K, R̂p,E) < ∞ or L is a p.-c.f. self-similar struc-
ture, then R̂p,E is compatible with the original topology of K, and in particular, V∗ is
dense in (K, R̂p,E).
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Remark 7.3. It is known that, if p = 2, mini∈S ρi > 1 and L is a p.-c.f. self-similar
structure, then there exists c ∈ (0,∞) such that for any x, y ∈ K and any w ∈ W∗,

RE(Fw(x), Fw(y)) ≥ cρ−1
w RE(x, y); (7.2)

see [Kig03, Theorem A.1]. We extend this result to the case of p ∈ (1,∞) \ {2} in
Subsection B.3; see Theorem B.9.

Proof of Proposition 7.2. (1): This is immediate from (5.6). (See [Kig01, Lemma 3.3.5]
for the case of p = 2.)

(2): We can show that R̂p,E is compatible with the original topology of K, by following
[Kig09, Proof of Proposition B.1] if diam(K, R̂p,E) <∞, and by following [Kig01, Proof of
Theorem 3.3.4] if L is a p.-c.f. self-similar structure (see also Lemma 8.42 below). Then
V∗ is dense in (K, R̂p,E) since V∗

K
= K by [Kig01, Lemma 1.3.11].

The following proposition presents compatible sequences of p-resistance forms having
a self-similarity.

Proposition 7.4. Let n ∈ N∪{0}, let Λ be a partition of Σ and set Vn,Λ :=
⋃
w∈Λ Fw(Vn).

Then for any u ∈ F|Vn,Λ
,

E|Vn,Λ
(u) =

∑
w∈Λ

ρwE|Vn(u ◦ Fw), (7.3)

hEVn,Λ
(u) ◦ Fw = hEVn(u ◦ Fw) for any w ∈ Λ. (7.4)

In particular, for any m ∈ N ∪ {0} and any u ∈ F|Vn+m,

E|Vn+m(u) =
∑
w∈Wm

ρwE|Vn(u ◦ Fw). (7.5)

Proof. Note that (7.5) follows from (7.3) by choosing Λ = Wm and that the sequence
S :=

{
(Vn,Λ, EVn,Λ

)
}
n∈N∪{0} is a compatible sequence of p-resistance forms by Proposition

6.15. Let u ∈ F|Vn,Λ
. Then we see that

E|Vn,Λ
(u) = min

{
E(v)

∣∣ v ∈ F with v|Vn,Λ
= u

}
(5.7)
= min

{∑
w∈Λ

ρwE(v ◦ Fw)

∣∣∣∣∣ v ∈ F with v|Vn,Λ
= u

}
≥
∑
w∈Λ

ρwmin
{
E(v)

∣∣ v ∈ F with v|Vn = u ◦ Fw
}
=
∑
w∈Λ

ρwE|Vn(u ◦ Fw).

To prove the converse, define v ∈ C(K) so that v ◦ Fw = hEVn [u ◦ Fw] for any w ∈ Λ; note
that such v is well-defined by (5.2). Then v|Vn,Λ

= u and v ∈ FS by (5.5). Since

E|Vn,Λ
(u) ≤ E(v) (5.7)

=
∑
w∈Λ

ρwE(v ◦ Fw) =
∑
w∈Λ

ρwE
(
hEVn [u ◦ Fw]

)
=
∑
w∈Λ

ρwE|Vn(u ◦ Fw),
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we have (7.3). Next we prove (7.4). We have E
(
hEVn,Λ

[u] ◦ Fw
)
≥ E

(
hEVn [u ◦ Fw]

)
for any

w ∈ Λ. Since

E|Vn,Λ
(u) = E

(
hEVn,Λ

[u]
)
=
∑
w∈Λ

ρwE
(
hEVn,Λ

[u] ◦ Fw
)

≥
∑
w∈Λ

ρwE
(
hEVn [u ◦ Fw]

)
=
∑
w∈Λ

ρwE|Vn(u ◦ Fw) = E|Vn,Λ
(u),

we obtain E
(
hEVn,Λ

[u] ◦ Fw
)
= E

(
hEVn [u ◦ Fw]

)
for any w ∈ Λ. The uniqueness in Theorem

6.13 implies hEVn,Λ
[u] ◦ Fw = hEVn [u ◦ Fw].

The following corollary is an immediate consequence of Proposition 6.19.

Corollary 7.5. Assume that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure. Then

F =
{
u ∈ C(K)

∣∣∣ lim
n→∞

E|Vn(u|Vn) <∞
}
, (7.6)

E(u; v) = lim
n→∞

E|Vn(u|Vn ; v|Vn) for any u, v ∈ F , (7.7)

lim
n→∞

E
(
u− hEVn [u|Vn ]

)
= 0 for any u ∈ F . (7.8)

Proof. By F ⊆ C(K) and V∗
K

= K we have (6.15), and therefore (7.6) follows from
(6.16), F ⊆ C(K) and V∗

K
= K, (7.7) from (6.17), and (7.8) from (6.18). (Note that

(6.19) may not be applicable to the present situation because the topology considered in
(6.19) is that induced by R1/p

E and may be different from the original topology of K.)

The following proposition gives characterizations of E-harmonic functions on K \ Vn.

Proposition 7.6. Let n ∈ N∪{0} and h ∈ C(K). Then the following two conditions are
equivalent to each other:

(1) h ∈ HE,Vn.

(2) h ◦ Fw ∈ HE,V0 for any w ∈ Wn.

If in addition L is a p.-c.f. self-similar structure, then each of (1) and (2) above is equiv-
alent also to the following condition:

(3) For any m ∈ N with m > n and any x ∈ Vm \ Vn,∑
w∈Wm;x∈Fw(V0)

ρwE|V0
(
h ◦ Fw|V0 ;1V0F−1

w (x)

)
= 0. (7.9)

Proof. To see (1) ⇒ (2), let w ∈ Wn, φ ∈ F0(K \ V0) and define (Fw)∗φ : K → R by

(Fw)∗φ :=

{
φ ◦ F−1

w on Kw,
0 on K \Kw.
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Then since (Fw)∗φ ∈ C(K) by φ|V0 = 0 and (5.2), it follows from (5.5) that (Fw)∗φ ∈
F0(K \Vn), and then from (1) and (5.6) that 0 = E(h; (Fw)∗φ) = ρwE(h ◦Fw;φ), proving
h ◦ Fw ∈ HE,V0 , namely (2). The converse implication (2) ⇒ (1) is obvious from (5.6).

Next we prove the equivalence between (1) and (3) for a p.-c.f. self-similar structure
L. We first show (1) ⇒ (3). For any m > n and any φ ∈ F0(K \ Vn), we note that
hEVm [φ|Vm ]

∣∣
Vn

= 0. Then, for any h ∈ HE,Vn , we have from (7.5) that

0 = E|Vm(h|Vm ;φ|Vm) =
∑
w∈Wm

ρwE|V0
(
h ◦ Fw|V0 ;φ ◦ Fw|V0

)
for any φ ∈ F0(K \ V0).

By choosing φ ∈ F0(K \ Vn) so that φ|Vm = 1Vmx for x ∈ Vm \ Vn, we obtain (3). We
next assume that h ∈ C(K) satisfies (7.9) and fix φ ∈ F0(K \ Vn) in order to show the
converse implication (3) ⇒ (1). For m > n, we see from (7.5), φ|Vn = 0 and (7.9) that

E|Vm(h|Vm ;φ|Vm) =
∑
w∈Wm

ρwE|V0
(
h ◦ Fw|V0 ;φ ◦ Fw|V0

)
=
∑
w∈Wm

∑
y∈V0

φ(Fw(y))ρwE|V0
(
h ◦ Fw|V0 ;1V0y

)
=

∑
x∈Vm\Vn

φ(x)
∑

w∈Wm;x∈Fw(V0)

ρwE|V0
(
h ◦ Fw|V0 ;1V0F−1

w (x)

)
= 0.

Lettingm→ ∞ here on the basis of (7.7), we obtain E(h;φ) = 0, and hence h ∈ HE,Vn .

Thanks to the self-similarity, we can get the following localized version of the weak
comparison principle (recall Proposition 6.26).

Proposition 7.7 (A localized weak comparison principle). Let n ∈ N ∪ {0}, w ∈ Wn,
and let u, v ∈ HE,Vn satisfy u(x) ≤ v(x) for any x ∈ Fw(V0). Then u(x) ≤ v(x) for any
x ∈ Kw.

Proof. Since h ◦ Fw ∈ HE,V0 by the implication from (1) to (2) in Proposition 7.6, the
assertion follows by applying Proposition 6.26 to h ◦ Fw.

Next we show the monotonicity in p of the 1
p−1

-th power of the weight of a self-similar
p-resistance form with constant weight on a p.-c.f. self-similar structure (Theorem 7.9
below); see also Theorem 8.32 for a similar result in another framework including the
generalized Sierpiński carpets. The proof of Theorem 7.9 requires the following basic
result, which is immediate from (5.2) and Proposition 2.10-(a).

Proposition 7.8. Assume that L is a p.-c.f. self-similar structure. Let k, n ∈ N∪{0} and
let E be a p-resistance form on Vk. Let ρ = (ρi)i∈S ∈ (0,∞)S and define Λnρ(E) : RVk+n →
[0,∞) by

Λnρ(E)(u) :=
∑
w∈Wn

ρwE(u ◦ Fw|Vk), u ∈ RVk+n . (7.10)

Then Λnρ(E) is a p-resistance form on Vk+n.
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Theorem 7.9. Assume that L is a p.-c.f. self-similar structure. Let p1, p2 ∈ (1,∞)
satisfy p1 ≤ p2, and for each s ∈ {1, 2}, let ρs ∈ (1,∞) and let (Es,Fs) be a self-similar
ps-resistance form on L with weight (ρs)i∈S. Then

ρ
1/(p1−1)
1 ≤ ρ

1/(p2−1)
2 . (7.11)

Proof. Let s ∈ {1, 2}, n ∈ N ∪ {0}, and let Es,n be the ps-resistance form on Vn given by

Es,n(u) := ρns
∑
v∈Wn

∑
x,y∈V0

|u(Fv(x))− u(Fv(y))|ps , u ∈ RVn ,

so that Λn(ρs)i∈S
(Es,0) = Es,n. Since both Es,0( · )1/ps and Es|V0( · )1/ps are norms on the

finite-dimensional vector space RV0/R1V0 , there exists Cs ∈ [1,∞) such that

C−1
s Es,0(u) ≤ Es|V0(u) ≤ CsEs,0(u) for any u ∈ RV0 . (7.12)

Since Λn(ρs)i∈S
(Es|V0) = Es|Vn by (7.5), we see from (7.12) that

C−1
s Es,n(u) ≤ Es|Vn(u) ≤ CsEs,n(u) for any n ∈ N ∪ {0} and any u ∈ RVn . (7.13)

Now we move to the proof of (7.11). Let us fix x0, y0 ∈ V0 with x0 ̸= y0 and set
B := {x0, y0}. Then we can find w ∈ W∗ so that B ∩Kw = ∅ and h1,w := h1 ◦ Fw ̸∈ R1K ,
where h1 := hE1B [1x0 ]. (Supposing that h1◦Fw ∈ R1K for any w ∈ W∗ with B∩Kw = ∅, we
would easily get a contradiction by using the connectedness of K, [Kig01, Theorem 1.6.2],
(6.3) and h1(x0) ̸= h1(y0).) Noting that c := infx∈Kw RE1(x,B) ≥ E1

(
hE1V|w|

[1B]
)−1

> 0 by
Proposition 7.7 and (6.4) and that 0 ≤ h1 ≤ 1 by (6.32), for any n ∈ N ∪ {0} we obtain

E2|V0(h1,w|V0) ≤ E2|Vn(h1,w|Vn) (by Proposition 6.15 and (6.6))
(7.13)
≤ C2E2,n(h1,w|Vn)

= C2ρ
n
2

∑
v∈Wn

∑
x,y∈V0

|h1(Fwv(x))− h1(Fwv(y))|p2−p1 · |h1,w(Fv(x))− h1,w(Fv(y))|p1

(6.34)
≤ C2ρ

n
2

∑
v∈Wn

∑
x,y∈V0

(
RE1(Fwv(x), Fwv(y))

RE1(Fwv(x), B)

) p2−p1
p1−1

· |h1,w(Fv(x))− h1,w(Fv(y))|p1

(7.1)
≤ C2

(
c−1 sup

x,y∈K
RE1(x, y)

)(p2−p1)/(p1−1)(
ρ2ρ

−(p2−1)/(p1−1)
1

)n
E1,n(h1,w|Vn)

(7.13)
≤ C1C2

(
c−1 sup

x,y∈K
RE1(x, y)

)(p2−p1)/(p1−1)(
ρ2ρ

−(p2−1)/(p1−1)
1

)nE1(h1,w). (7.14)

Since supx,y∈K RE1(x, y) <∞ by Proposition 7.2-(2) and E2|V0(h1,w|V0), E1(h1,w) ∈ (0,∞),
we conclude by letting n→ ∞ in (7.14) that ρ2ρ

−(p2−1)/(p1−1)
1 ≥ 1, proving (7.11).
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7.2 Two-point estimate and capacity upper estimate

This subsection is devoted to proving the two-point estimate and the (p, p)-Poincaré in-
equality in terms of self-similar p-energy measures, and showing also the capacity upper
estimate under the additional assumption that L is a p.-c.f. self-similar structure.

Recall that we fix a self-similar p-resistance form (E ,F) on L with weight ρ = (ρi)i∈S ∈
(0,∞)S. In this subsection, we further assume that mini∈S ρi > 1 and that the p-resistance
metric R̂p := R̂p,E of (E ,F) is compatible with the original topology of K, which is,
in view of Propositions 6.4-(1) and 7.2-(2), equivalent to assuming mini∈S ρi > 1 and
diam(K, R̂p) < ∞. (Also by Proposition 7.2-(2), the assumption of diam(K, R̂p) < ∞
can be dropped when L is a p.-c.f. self-similar structure.) We also let {ΓE⟨u⟩}u∈F be the
associated p-energy measures defined in (5.11). In the following definition, we introduce
natural scales {Λs}s∈(0,1] with respect to R̂p. See [Kig09, Kig20] for further details on
scales.

Definition 7.10. (1) We define Λ
R̂p

1 := {∅},

ΛR̂p
s :=

{
w
∣∣∣ w = w1 . . . wn ∈ W∗ \ {∅}, (ρw1...wn−1)

−1/(p−1) > s ≥ ρ−1/(p−1)
w

}
for each s ∈ (0, 1). (Note that {ΛR̂p

s }s∈(0,1] is the scale associated with the weight
function g(w) := ρ

−1/(p−1)
w ; see [Kig20, Definition 2.3.1].)

(2) For each (s, x) ∈ (0, 1] × K, we define Λ
R̂p

s,0(x) := {w ∈ Λ
R̂p
s | x ∈ Kw} and

U
R̂p

0 (x, s) :=
⋃
w∈ΛR̂p

s,0(x)
Kw. Inductively, for M ∈ N, define Λ

R̂p

s,M(x) := {w ∈ Λ
R̂p
s |

Kw ∩ U R̂p

M−1(x, s) ̸= ∅} and U R̂p

M (x, s) :=
⋃
w∈ΛR̂p

s,M (x)
Kw.

It is easy to see that lims↓0min{|w| | w ∈ Λ
R̂p
s } = ∞, that Λ

R̂p
s is a partition of

Σ for any s ∈ (0, 1], and that Λ
R̂p
s1 ≤ Λ

R̂p
s2 for any s1, s2 ∈ (0, 1] with s1 ≤ s2. By

[Kig20, Proposition 2.3.7], for any x ∈ K and any M ∈ N ∪ {0},
{
U
R̂p

M (x, s)
}
s∈(0,1] is

non-decreasing in s and forms a fundamental system of neighborhoods of x in K.

If
{
U
R̂p

M∗
(x, s)

}
(x,s)∈K×(0,1]

is comparable to the metric balls with respect to R̂p (in the
sense of (7.15) below) for some M∗ ∈ N, then we have the following two-point estimate.

Proposition 7.11 (Two-point estimate). Assume that there exist α1, α2 ∈ (0,∞) such
that for any (x, s) ∈ K × (0, 1],

BR̂p
(x, α1s) ⊆ U

R̂p

M∗
(x, s) ⊆ BR̂p

(x, α2s). (7.15)

Then there exist C,A ∈ (0,∞) with A ≥ 1 such that for any (x, s) ∈ K × (0,∞) and any
u ∈ Floc

(
BR̂p

(x,As)
)
,

sup
y,z∈B

R̂p
(x,s)

|u(y)− u(z)|p ≤ Csp−1ΓE⟨u⟩
(
BR̂p

(x,As)
)
. (7.16)
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Proof. We can assume that α1 ≤ α2 and α1 ≤ 1 without loss of generality. Throughout
this proof, we fix x ∈ K and set A := α−1

1 (α2 ∨ diam(K, R̂p)). We first consider the case
of s ∈ (α1,∞). Note that BR̂p

(x,As) = K. By (6.3) and Proposition 5.10-(a), for any
y, z ∈ BR̂p

(x, s) and any u ∈ F ,

|u(y)− u(z)|p ≤ diam(K, R̂p)
p−1E(u) = C1α

p−1
1 ΓE⟨u⟩(K),

where C1 := α
−(p−1)
1 diam(K, R̂p)

p−1. This shows (7.16) in the case of s ∈ (α1,∞).
Next let s ∈ (0, α1]. Let U be a relatively compact open subset of K such that

U ⊇ U
R̂p

M∗
(x, α−1

1 s) and let u# ∈ F satisfy u = u# on U . For any y, z ∈ BR̂p
(x, s), there

exists {v(i)}2M∗+1
i=1 ⊆ Λ

R̂p

α−1
1 s,M∗

(x) such that y ∈ Kv(1), z ∈ Kv(2M∗+1) andKv(i)∩Kv(i+1) ̸= ∅
for each i ∈ {1, 2, . . . , 2M∗}. Let us fix xi ∈ Kv(i) ∩ Kv(i+1) and qi ∈ V0 that satisfy
xi = Fv(i)(qi). We note that, for any y′, z′ ∈ Kv(i),

|u(y′)− u(z′)|p =
∣∣∣u(Fv(i)(F−1

v(i)(y
′)))− u(Fv(i)(F

−1
v(i)(z

′)))
∣∣∣p

≤ RE(F
−1
v(i)(y

′), F−1
v(i)(z

′))E(u# ◦ Fv(i))
(5.12)
≤ diam(K, R̂p)

p−1ρ−1
v(i)ΓE⟨u#⟩(Kv(i)) = diam(K, R̂p)

p−1ρ−1
v(i)ΓE⟨u⟩(Kv(i)).

Hence

|u(y)− u(z)|p

≤ (2M∗ + 1)p−1

(
|u(y)− u(x1)|p +

2M∗−1∑
i=1

|u(xi)− u(xi+1)|p + |u(x2M∗)− u(z)|p
)

(6.3)
≤
(
(2M∗ + 1) diam(K, R̂p)

)p−1
2M∗+1∑
i=1

ρ−1
v(i)ΓE⟨u⟩(Kv(i))

≤ C2s
p−1ΓE⟨u⟩

(
2M∗+1⋃
i=1

Kv(i)

)
≤ C2s

p−1ΓEp⟨u⟩(BR̂(x, α
−1
1 α2s)),

where C2 :=
(
(2M∗ + 1)α−1

1 diam(K, R̂p)
)p−1. This proves (7.16) for s ∈ (0, α1].

From (7.16), we easily obtain the following (p, p)-Poincaré inequality.

Proposition 7.12 ((p, p)-Poincaré inequality). Assume that there exist α1, α2 ∈ (0,∞)
such that (7.15) holds for any (x, s) ∈ K × (0, 1]. Let µ be a Radon measure on K
with suppK [µ] = K. Then there exist C,A ∈ (0,∞) with A ≥ 1 such that for any
(x, s) ∈ K × (0,∞) and any u ∈ Floc

(
BR̂p

(x,As)
)
,

 
B

R̂p
(x,s)

∣∣∣∣∣u−
 
B

R̂p
(x,s)

u dµ

∣∣∣∣∣
p

dµ ≤ Csp−1ΓE⟨u⟩
(
BR̂p

(x,As)
)
. (7.17)
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Proof. This is immediate from (7.16) and the obvious inequality

 
B

R̂p
(x,s)

∣∣∣∣∣u−
 
B

R̂p
(x,s)

u dµ

∣∣∣∣∣
p

dµ ≤ sup
y,z∈B

R̂p
(x,s)

|u(y)− u(z)|p .

Remark 7.13. In [Cap07, Theorem 2.4], Capitanelli obtained an oscillation estimate like
(7.16) from the (p, p)-Poincaré inequality [Cap07, (2.4)] under a suitable volume growth
condition for the measure µ. This implication can be seen by a well-known telescopic sum
argument (see, e.g., [HK98, Proof of Lemma 5.17]).

As shown in [KS24+, Lemma 6.7 and Proposition 6.9], if L is a p.-c.f. self-similar
structure, then the condition (7.15) and the capacity upper estimate hold. Furthermore
by [KS24+, Lemma 6.8], there exists a self-similar measure on L which is Ahlfors regular
with respect to R̂p (see Definition 8.5-(2)). We record these results in the following
proposition.

Proposition 7.14. Assume that L is a p.-c.f. self-similar structure.

(a) There exist α1, α2 ∈ (0,∞) such that for any (s, x) ∈ (0, 1]×K,

BR̂p
(x, α1s) ⊆ U

R̂p

1 (x, s) ⊆ BR̂p
(x, α2s). (7.18)

(Equivalently, R̂p is 1-adapted to the weight function g(w) := ρ
−1/(p−1)
w ; see [Kig20,

Definition 2.4.1].)
(b) Let df(ρ) ∈ (0,∞) be such that

∑
i∈S ρ

−df(ρ)/(p−1)
i = 1, and let m be the self-similar

measure on L with weight
(
ρ
−df(ρ)/(p−1)
i )i∈S. Then there exist c1, c2 ∈ (0,∞) such

that for any (x, s) ∈ K × (0, 2 diam(K, R̂p)),

c1s
df(ρ) ≤ m

(
BR̂p

(x, s)
)
≤ c2s

df(ρ). (7.19)

In particular, R̂p is metric doubling. (Recall that a metric space (X, d) is said to be
metric doubling if and only if there exists N ∈ N such that any (x, r) ∈ X × (0,∞)
satisfies Bd(x, r) ⊆

⋃N
i=1Bd(xi, r/2) for some {xi}Ni=1 ⊆ X.)

(c) There exists C ∈ (0,∞) such that for any (x, s) ∈ K × (0,∞),

inf
{
E(u)

∣∣ u ∈ F , u|B
R̂p

(x,α1s) = 1, supp[u] ⊆ BR̂p
(x, 2α2s)

}
≤ Cs−(p−1), (7.20)

where α1, α2 are the constants in (7.18).

Proof. Although the proof is the same as [KS24+, Lemmas 6.7, 6.8 and Proposition 6.9],
we recall the proof below for the reader’s convenience. Throughout this proof, we set
Λs := Λ

R̂p
s for ease of notation. Note that K ̸= V0

K since #V0 <∞ and K is connected.
(a): By (7.1), we have diam(Kw, R̂p) ≤ ρ

−1/(p−1)
w diam(K, R̂p) for any w ∈ W∗, which

implies the latter inclusion in (7.18) with α2 ∈ (2 diam(K, R̂p),∞) arbitrary. (In particu-
lar, diam(Kw, R̂p) < α2s for any w ∈ Λs.) We will show the former inclusion in (7.18). It
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suffices to prove that there exists α1 ∈ (0,∞) such that R̂p(x, y) ≥ α1s for any s ∈ (0, 1],
any w, v ∈ Λs with Kw ∩Kv = ∅ and any (x, y) ∈ Kw ×Kv. Let ψq := hEV0

[
1V0q
]

for any
q ∈ V0. Fix w ∈ Λs and let uw ∈ C(K) be such that, for τ ∈ Λs,

uw ◦ Fτ =


1 if τ = w,∑

q∈V0;Fτ (q)∈Fw(V0)
ψq if τ ̸= w and Kτ ∩Kw ̸= ∅,

0 if Kτ ∩Kw = ∅.
(7.21)

By the self-similarity of (E ,F), we have uw ∈ F and

E(uw) =
∑
τ∈Λs

ρτE(uw ◦ Fτ ) =
∑

τ∈Λs\{w};Kτ∩Kw ̸=∅

ρτE

 ∑
q∈V0;Fτ (q)∈Fw(V0)

ψq

 . (7.22)

(Note that Λs is a partition of Σ.) Set ρ := maxi∈S ρi ∈ (1,∞) and c1 := maxq∈V0 E(ψq) ∈
(0,∞). Then ρ−1

τ ≥ ρ−1sp−1 for any τ ∈ Λs. Since #{τ ∈ Λs | Kτ ∩ Kw ̸= ∅} ≤
(#CL)(#V0) by [Kig01, Lemma 4.2.3], (7.22) together with Hölder’s inequality implies
that

E(uw) ≤ (#CL)(#V0)ρs−p+1(#V0)
p−1c1 =: (α1s)

−(p−1). (7.23)

For any v ∈ Λs with Kw ∩Kv = ∅ and any (x, y) ∈ Kw ×Kv, we clearly have uw(x) = 1
and uw(y) = 0. Hence

R̂p(x, y) ≥ E(u)−1/(p−1) ≥ α1s,

which proves the desired result.
(b): This is immediate from (7.18), #{τ ∈ Λs | Kτ ∩Kw ̸= ∅} ≤ (#CL)(#V0) ([Kig01,

Lemma 4.2.3]) and m(Kw) = ρ
−df(ρ)/(p−1)
w (Proposition 5.6).

(c): It suffices to consider the case of s ∈ (0, 1] since BR̂p
(x, 2α2s) = K for any

(x, s) ∈ K × (1,∞) and E−1(0) = R1K by (RF1)p. Let uw ∈ F be the same function as
in the proof of (a) for each w ∈ Λs. Then φ := maxw∈Λs,1(x) uw satisfies φ|

U
R̂p
1 (x,s)

= 1.

Since diam(Kw, R̂p) < α2s, we see from (7.18) that supp[φ] ⊆ BR̂p
(x, 2α2s). By (2.6) for

(E ,F), (7.23) and [Kig01, Lemma 4.2.3], we have φ ∈ F and

E(φ) ≤
∑

w∈Λs,1(x)

E(uw) ≤ (α1s)
−(p−1)(#CL)(#V0) =: Cs−(p−1).

Combining Propositions 7.11, 7.14 and Theorem 6.36, we obtain the elliptic Harnack
inequality for self-similar p-resistance forms on p.-c.f. self-similar structures.

Theorem 7.15. Assume that L is a p.-c.f. self-similar structure. Then there exist CH ∈
(0,∞) and δH ∈ (0, 1) such that for any (x, s) ∈ K × (0,∞) with BR̂p

(x, δ−1
H s) ̸= K and

any u ∈ F such that u ≥ 0 on K and u is E-superharmonic on BR̂p
(x, δ−1

H s), it holds that

sup
B

R̂p
(x,s)

u ≤ CH inf
B

R̂p
(x,s)

u. (7.24)
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Proof. We have Theorem 6.36-(i),(ii),(iii) with Υ(x, s) := s−(p−1) by Propositions 7.11 and
7.14, and Theorem 6.36-(iv) holds by F ⊆ C(K) and Theorem 5.12. Since ΓE⟨u⟩(K) =
E(u) for any u ∈ F by Proposition 5.10-(a), the desired estimate (7.24) follows from
Theorem 6.36.

Remark 7.16. The results in this subsection, Propositions 7.11, 7.12, 7.14 and Theo-
rem 7.15, are applicable to a large class of p.-c.f. self-similar structures. Indeed, their
assumptions are all satisfied in the situation of Theorem 8.43, which summarizes the
construction of regular self-similar p-resistance forms on p.-c.f. self-similar structures due
to [CGQ22], and the assumptions of Theorem 8.43 in turn hold for strongly symmetric
p.-c.f. self-similar sets (see Framework 8.46 and Definition 8.47) as proved in Theorem
8.50 below.

8 Constructions of p-energy forms satisfying the gener-
alized p-contraction property

In the preceding sections, we have established fundamental results on p-energy forms sat-
isfying the generalized p-contraction property (GC)p, in particular p-Clarkson’s inequality
(Cla)p. In this section, we would like to describe how to get a good p-energy form satisfy-
ing these properties in a few settings inspired by [Kig23] and [CGQ22]. (See also [KS24+]
for another approach toward such a construction.)

8.1 p-Energy forms on p-conductively homogeneous compact met-
ric spaces

In this subsection, we verify that p-energy forms on p-conductively homogeneous compact
metric spaces constructed in [Kig23] satisfy (GC)p. We mainly follow the notation and
terminology of [Kig23] in this and the next subsections. We refer to [Kig23, Chapter 2]
and [Kig20, Chapters 2 and 3] for further details.

Throughout this subsection, we fix a locally finite, non-directed infinite tree (T,ET )
in the usual sense (see [Kig23, Definition 2.1] for example), and fix a root ϕ ∈ T of T .
(Here T is the set of vertices and ET is the set of edges.) For any w ∈ T \ {ϕ}, we use
ϕw to denote the unique simple path in (T,ET ) from ϕ to w.

Definition 8.1 ([Kig23, Definition 2.2]). (1) For w ∈ T , define π : T → T by

π(w) :=

{
wn−1 if w ̸= ϕ and ϕw = (w0, . . . , wn),
ϕ if w = ϕ.

Set S(w) := {v ∈ T | π(v) = w} \ {w}. Moreover, for k ∈ N, we define Sk(w)
inductively as

Sk+1(w) =
⋃

v∈S(w)

Sk(v).
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For A ⊆ T , define Sk(A) :=
⋃
w∈A S

k(A).
(2) For w ∈ T and n ∈ N ∪ {0}, define |w| := min{n ≥ 0 | πn(w) = ϕ} and Tn := {w ∈

T | |w| = n}.
(3) Define Σ := {(ωn)n≥0 | ωn ∈ Tn and ωn = π(ωn+1) for all n ∈ N ∪ {0}}. For ω =

(ωn)n≥0 ∈ Σ, we write [ω]n for ωn ∈ Tn. Define Σw := {(ωn)n≥0 ∈ Σ | ω|w| = w} for
w ∈ T , and ΣA :=

⋃
w∈AΣw for A ⊆ T .

Let us recall the definition of a partition parametrized by a rooted tree.

Definition 8.2 (Partition parametrized by a tree; [Kig20, Definition 2.2.1] and [Sas23,
Lemma 3.6]). Let K be a compact metrizable topological space without isolated points. A
family of non-empty compact subsets {Kw}w∈T ofK is called a partition of K parametrized
by the rooted tree (T,ET , ϕ) if and only if it satisfies the following conditions:

(P1) Kϕ = K and for any w ∈ T , #Kw ≥ 2 and Kw =
⋃
v∈S(w)Kv.

(P2) For any w ∈ Σ,
⋂
n≥0K[ω]n is a single point.

In the rest of this subsection, we fix a compact metrizable topological space without
isolated points K, a locally finite rooted tree (T,ET , ϕ) satisfying #{v ∈ T | {v, w} ∈
ET} ≥ 2 for any w ∈ T , a partition {Kw}w∈T parametrized by (T,ET , ϕ), a metric d on
K with diam(K, d) = 1, and a Borel probability measure m on K. Now we introduce a
graph approximation {(Tn, E∗

n)}n∈N∪{0} of K.

Definition 8.3 ([Kig23, Proposition 2.8 and Definition 2.5-(3)]). For n ∈ N ∪ {0} and
A ⊆ Tn, define

E∗
n :=

{
{v, w}

∣∣ v, w ∈ Tn, v ̸= w,Kv ∩Kw ̸= ∅
}
,

and E∗
n(A) =

{
{v, w} ∈ E∗

n

∣∣ v, w ∈ A
}
. Let dn be the graph distance of (Tn, E∗

n). For
M ∈ N ∪ {0} and w ∈ Tn, define

ΓM(w) := {v ∈ Tn | dn(v, w) ≤M} and UM(x;n) :=
⋃

w∈Tn;x∈Kw

⋃
v∈ΓM (w)

Kv.

To state geometric assumptions in [Kig23], we need the following definition.

Definition 8.4 ([Kig20, Definitions 2.2.1 and 3.1.15]). (1) The partition {Kw}w∈T is said
to be minimal if and only if Kw \

⋃
v∈T|w|\{w} ̸= ∅ for any w ∈ T .

(2) The partition {Kw}w∈T is said to be uniformly finite if and only if supw∈T #Γ1(w) <
∞. We set L∗ := supw∈T #Γ1(w).

We also recall the following standard notion on metric measure spaces; see, e.g., [Hei,
Kig20, MT] for further background.

Definition 8.5. (1) The measure m is said to be volume doubling with respect to the
metric d if and only if there exists CD ∈ (0,∞) such that

m(Bd(x, 2r)) ≤ CDm(Bd(x, r)) for any (x, r) ∈ K × (0,∞). (8.1)

The constant CD is called the doubling constant of m.
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(2) Let Q ∈ (0,∞). The measure m is said to be Q-Ahlfors regular with respect to the
metric d if and only if there exists CAR ∈ [1,∞) such that

C−1
AR r

Q ≤ m(Bd(x, r)) ≤ CAR r
Q for any (x, r) ∈ K × (0, 2 diam(K, d)). (8.2)

The measure m is simply said to be Ahlfors regular (with respect to d) if there exists
Q ∈ (0,∞) such that m is Q-Ahlfors regular. Also, the metric d is said to be Q-
Ahlfors regular if there exists a Borel measure µ on K which is Q-Ahlfors regular
with respect to d.

(3) A metric ρ on K is said to be quasisymmetric to d, ρ ∼
QS

d for short, if and only if

there exists a homeomorphism η : [0,∞) → [0,∞) such that

ρ(x, b)

ρ(x, a)
≤ η

(
d(x, b)

d(x, a)

)
for any x, a, b ∈ K with x ̸= a.

(4) The Ahlfors regular conformal dimension of (K, d) is the value dimARC(K, d) defined
as

dimARC(K, d) := inf

{
Q > 0

∣∣∣∣ there exists a metric ρ on K such that
ρ ∼

QS
d and ρ is Q-Ahlfors regular

}
.

If m is Ahlfors regular, then it is clearly volume doubling. It is well known that the
existence of a Q-Ahlfors regular m on (K, d) implies that the Hausdorff dimension of
(K, d) is Q.

Now we recall basic geometric conditions in [Kig23]. The conditions (1), (2) and (3)
below are important to follow the rest of this paper.

Assumption 8.6 ([Kig23, Assumption 2.15]). Let (K,O) be a connected compact metriz-
able space, {Kw}w∈T a partition parametrized by the rooted tree (T, ϕ), let d be a metric
on K that is compatible with the topology O and diam(K, d) = 1 and let m be a Borel
probability measure on K. There exist M∗ ∈ N and r∗ ∈ (0, 1) such that the following
conditions (1)–(5) hold.

(1) Kw is connected for any w ∈ T , {Kw}w∈T is minimal and uniformly finite, and
infm≥0minw∈Tm #S(w) ≥ 2.

(2) There exist ci ∈ (0,∞), i ∈ {1, . . . , 5}, such that the following conditions (2A)-(2C)
are true.

(2A) For any w ∈ T ,
c1 r

|w|
∗ ≤ diam(Kw, d) ≤ c2 r

|w|
∗ . (8.3)

(2B) For any n ∈ N and any x ∈ K,

Bd(x, c3 r
n
∗ ) ⊆ UM∗(x;n) ⊆ Bd(x, c4 r

n
∗ ). (8.4)

(In [Kig20], the metric d is called M∗-adapted if the condition (8.4) holds.)
(2C) For any n ∈ N and w ∈ Tn, there exists xw ∈ Kw satisfying

Kw ⊇ Bd(xw, c5 r
n
∗ ). (8.5)
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(3) There exist m1 ∈ N, γ1 ∈ (0, 1) and γ ∈ (0, 1) such that

m(Kw) ≥ γ m(Kπ(w)) for any w ∈ T , (8.6)

and
m(Kv) ≤ γ1m(Kw) for any w ∈ T and any v ∈ Sm1(w). (8.7)

Furthermore, m is volume doubling with respect to d and

m(Kw) =
∑

v∈S(w)

m(Kv) for any w ∈ T . (8.8)

(4) There exists M0 ≥M∗ such that for any w ∈ T , any k ≥ 1 and any v ∈ Sk(w),

ΓM∗(v) ∩ Sk(w) ⊆
{
v′ ∈ T|v|

∣∣∣∣ there exist l ≤ M0 and (v0, . . . , vl) ∈ Sk(w)l+1

such that (vj−1, vj) ∈ E∗
|v| for any j ∈ {1, . . . , l}

}
.

(5) For any w ∈ T , π(ΓM∗+1(w)) ⊆ ΓM∗(π(w)).

We record a simple consequence of (8.8) in the next proposition.

Proposition 8.7. Assume that the Borel probability measure m satisfies (8.8). Then
m(Kv ∩Kw) = 0 for any v, w ∈ T with v ̸= w and |v| = |w|.

Proof. Let n ∈ N∪{0} and v, w ∈ Tn satisfy v ̸= w. Enumerate Tn as {z(1), z(2), . . . , z(ln)}
such that z(1) = v and z(2) = w, where ln = #Tn. Inductively, define K̃z(j) by

K̃z(1) = Kz(1)

and

K̃z(j+1) = Kz(j+1) \

(
k⋃
i=1

K̃z(i)

)
.

Then
{
K̃z(j)

}ln
j=1

is a disjoint family of Borel sets and
⋃ln
j=1 K̃z(j) = K. Therefore,

1 = m(K) =
ln∑
j=1

m
(
K̃z(j)

)
.

On the other hand,(8.8) implies that

1 = m(Kϕ) =
ln∑
j=1

m
(
Kz(j)

)
.

Therefore, we conclude that m
(
Kz(j) \ K̃z(j)

)
= 0 for any j ∈ {1, . . . , ln}. In particular,

0 = m
(
Kz(2) \ K̃z(2)

)
= m

(
Kw \

(
Kw \ (Kv ∩Kw)

))
= m(Kv ∩Kw),

which completes the proof.
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Next we introduce conductance, neighbor disparity constants and the notion of p-
conductive homogeneity in Definitions 8.10, 8.8 and 8.11, following [Kig23, Sections 2.2,
2.3 and 3.3]. We will state some definitions and statements below for any p ∈ (0,∞) or
p ∈ [1,∞), but on each such occasion we will explicitly declare that we let p ∈ (0,∞) or
p ∈ [1,∞). Our main interest lies in the case p ∈ (1,∞).

Definition 8.8 ([Kig23, Definitions 2.17 and 3.4]). Let p ∈ (0,∞), n ∈ N ∪ {0} and
A ⊆ Tn.

(1) Define Enp,A : RA → [0,∞) by

Enp,A(f) :=
∑

{u,v}∈E∗
n(A)

|f(u)− f(v)|p , f ∈ RA.

We write Enp (f) for Enp,Tn(f).
(2) For A0, A1 ⊆ A, define capnp (A0, A1;A) by

capnp (A0, A1;A) := inf
{
Enp,A(f)

∣∣ f ∈ RA, f |Ai
= i for i ∈ {0, 1}

}
.

(3) (Conductance constant) For A1, A2 ⊆ A and k ∈ N ∪ {0}, define

Ep,k(A1, A2, A) := capn+kp

(
Sk(A1), S

k(A2);S
k(A)

)
.

For M ∈ N, define EM,p,k := supw∈T Ep,k({w}, T|w| \ ΓM(w), T|w|).

Let us recall the notion of covering system, which will be used to define neighbor
disparity constants and the notion of conductive homogeneity.

Definition 8.9 ([Kig23, Definitions 2.26-(3) and 2.29]). Let NT , NE ∈ N.

(1) Let n ∈ N∪{0} and A ⊆ Tn. A collection {Gi}ki=1 with Gi ⊆ Tn is called a covering of
(A,E∗

n(A)) with covering numbers (NT , NE) if and only if A =
⋃k
i=1Gk, maxx∈A#{i |

x ∈ Gi} ≤ NT and for any (u, v) ∈ E∗
n(A), there exists l ≤ NE and {w(1), . . . , w(l +

1)} ⊆ A such that w(1) = u, w(l+1) = v and (w(i), w(i+1)) ∈
⋃k
j=1E

∗
n(Gj) for any

i ∈ {1, . . . , l}.
(2) Let J ⊆

⋃
n∈N∪{0}{A | A ⊆ Tn}. The collection J is called a covering system with

covering number (NT , NE) if and only if the following conditions are satisfied:
(i) supA∈J #A <∞.
(ii) For any w ∈ T and any k ∈ N, there exists a finite subset N ⊆ J ∩ T|w|+k

such that N is a covering of
(
Sk(w), E∗

|w|+k(S
k(w))

)
with covering numbers

(NT , NE).
(iii) For any G ∈ J and any k ∈ N ∪ {0}, if G ⊆ Tn, then there exists a finite

subset N ⊆ J ∩ Tn+k such that N is a covering of
(
Sk(G), E∗

n+k(S
k(G))

)
with covering numbers (NT , NE).

The collection J is simply said to be a covering system if and only if there exist
(NT , NE) ∈ N2 such that J is a covering system with covering number (NT , NE).
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Definition 8.10 ([Kig23, Definitions 2.26-(1),(2) and 2.29]). Let p ∈ (0,∞), n ∈ N and
A ⊆ Tn.

(1) For k ∈ N ∪ {0} and f : Tn+k → R, define Pn,kf : Tn → R by

(Pn,kf)(w) :=
1∑

v∈Sk(w)m(Kv)

∑
v∈Sk(w)

f(v)m(Kv), w ∈ Tn.

(Note that Pn,kf depends on the measure m.)
(2) (Neighbor disparity constant) For k ∈ N ∪ {0}, define

σp,k(A) := sup
f : Sk(A)→R

Enp,A(Pn,kf)
En+k
p,Sk(A)

(f)
.

(3) Let J ⊆
⋃
n≥0{A | A ⊆ Tn} be a covering system. Define

σ
J
p,k,n := max{σp,k(A) | A ∈ J , A ⊆ Tn} and σ

J
p,k := sup

n∈N∪{0}
σ

J
p,k,n.

Definition 8.11 ([Kig23, Definition 3.4]). Let p ∈ [1,∞). The compact metric space K
(with a partition {Kw}w∈T and a measure m) is said to be p-conductively homogeneous if
and only if there exists a covering system J such that

sup
k∈N∪{0}

σ
J
p,kEM∗,p,k <∞. (8.9)

When we would like to clarify which partition is considered, we also say that K is p-
conductively homogeneous with respect to {Kw}w∈T .

For our purposes, the next consequence of (8.9) is more important than the original
definition of the p-conductive homogeneity.

Theorem 8.12 (Part of [Kig23, Theorem 3.30]). Let p ∈ [1,∞) and assume that As-
sumption 8.6 holds. If K is p-conductively homogeneous, then there exist α0, α1 ∈ (0,∞),
σp ∈ (0,∞) and a covering system J such that for any k ∈ N ∪ {0},

α0σ
−k
p ≤ EM∗,p,k ≤ α1σ

−k
p and α0σ

k
p ≤ σ

J
p,k ≤ α1σ

k
p . (8.10)

In particular, the constant σp is determined by the following limit:

σp = lim
k→∞

(
EM∗,p,k

)−1/k
. (8.11)

Remark 8.13. The existence of the limit in (8.11) is true without the p-conductive homo-
geneity. Indeed, if (K, d, {Kw}w∈T ) satisfies the conditions Assumption 8.6-(1),(2),(4),(5),
then [Kig23, Theorem 2.23] together with Fekete’s lemma implies the existence of the
limit in (8.11) for any p ∈ (0,∞). For convenience, we call σp the p-scaling factor of
(K, d, {Kw}w∈T ).
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We also recall the “Sobolev space” Wp introduced in [Kig23, Lemma 3.13].

Definition 8.14. Let p ∈ [1,∞). Assume that Assumption 8.6-(1),(2),(4),(5) hold and
let σp be the constant in (8.11).

(1) For n ∈ N ∪ {0}, define Pn : L1(K,m) → R by Pnf(w) :=
ffl
Kw

f dm, w ∈ Tn.
(2) Define Np : L

p(K,m) → [0,∞] and a linear subspace Wp of Lp(K,m) by

Np(f) :=

(
sup

n∈N∪{0}
σnpEnp (Pnf)

)1/p

, f ∈ Lp(K,m),

Wp :=
{
f ∈ Lp(K,m)

∣∣ Np(f) <∞
}
,

and we equip Wp the norm ∥ · ∥Wp defined by

∥f∥Wp :=
(
∥f∥pLp(K,m) +Np(f)

p
)1/p

, f ∈ Wp.

(3) For a linear subspace D of Wp, we define

Up(D) :=

{
E : D → [0,∞)

∣∣∣∣ E 1/p is a seminorm on D, there exist α0, α1 ∈ (0,∞)
such that α0Np(f) ≤ E (f)1/p ≤ α1Np(f) for any f ∈ D

}
.

For ease of notation, set Up := Up(Wp).
(4) For n ∈ N ∪ {0} and A ⊆ Tn, we define Ẽnp,A : Lp(K,m) → [0,∞) by

Ẽnp,A(f) := σnpEnp,A(Pnf), f ∈ Lp(K,m).

We also set Ẽnp (f) := Ẽnp,Tn(f).

We have the following property on Np thanks to the connectedness of K and Assump-
tion 8.6-(3).

Proposition 8.15. Let p ∈ [1,∞). Assume that Assumption 8.6 holds. Then Np(f) = 0
if and only if there exists c ∈ R such that f(x) = c for m-a.e. x ∈ K.

Proof. It is clear that Np(f) = 0 if f is constant. Assume that Np(f) = 0. Note that
(Tn, E

∗
n) is a connected graph for each n ∈ N ∪ {0} ([Kig23, Proposition 2.8]). Therefore,

Np(f) = 0 implies that for each n ∈ N ∪ {0} there exists cn ∈ R such that Pnf(w) = cn
for any w ∈ Tn. By (8.8), we have cn = cn+1 and hence there exists c ∈ R such that cn = c
for any n ∈ N ∪ {0}. Now we let Lf ⊆ K denote the set of Lebesgue points of f , i.e.,

Lf :=

{
x ∈ K

∣∣∣∣ limr↓0
 
Bd(x,r)

|f(x)− f(y)| m(dy) = 0

}
. (8.12)

Then, by the volume doubling property of m and the Lebesgue differentiation theorem
(see, e.g., [Hei, Theorem 1.8]), we have Lf ∈ B(K) and m(K \Lf ) = 0. For any x ∈ Lf

and any n ∈ N ∪ {0}, by Proposition 8.7 and Assumption 8.6-(2),(3),

|f(x)− c| =

∣∣∣∣∣f(x)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣ ≤ 1

m(UM∗(x;n))

ˆ
Bd(x,c4rn∗ )

|f(x)− f(y)| m(dy)



104 N. Kajino and R. Shimizu

≤ C

 
Bd(x,c4rn∗ )

|f(x)− f(y)| m(dy),

where we used (8.4) and the volume doubling property of m in the last inequality. Here
C ∈ (0,∞) is a constant that is independent of x, f and n. By letting n → ∞ in the
estimate above, we obtain f(x) = c for any x ∈ Lf , which completes the proof.

As shown in [Shi24, Kig23], Wp is a nice Banach space embedded in C(K) if K is
p-conductively homogeneous and p > dimARC(K, d). More generally, we can show the
following theorem.

Theorem 8.16. Let p ∈ [1,∞). Assume that (K, d, {Kw}w∈T ,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then Wp is a Banach space and Wp is
dense in Lp(K,m). If p ∈ (1,∞), then Wp is reflexive and separable. Moreover, if in
addition p > dimARC(K, d), then Wp is a dense linear subspace of (C(K), ∥ · ∥sup).

Remark 8.17. By [Kig20, Theorem 4.6.9], the condition p > dimARC(K, d) is equivalent
to σp > 1.

Proof of Theorem 8.16. Note that Wp is a Banach space by [Kig23, Lemma 3.24] and
that Wp is dense in Lp(K,m) by [Kig23, Lemma 3.28].

In the rest of this proof, we assume that p ∈ (1,∞). Let us show that Wp is reflexive.
Theorem 8.12 and [Kig23, Lemma 2.27] together imply that there exists a constant C ∈
(0,∞) such that for any k, l ∈ N, any A ⊆ Tk and any f ∈ RSl(A),

Ẽkp,A(Pk,lf) ≤ CẼk+l
p,Sl(A)

(f). (8.13)

The rest of the proof is very similar to [MS25+, Proof of Theorem 6.17(ii)], so we give only
a sketch (see also [Shi24, Theorem 5.9] and the proof of Theorem 8.19-(a) below). Define

∥ · ∥p,n :=
(
∥ · ∥pLp(K,m) + Ẽnp ( · )

)1/p
, which can be regarded as the Lp-norm on K ⊔ E∗

n.

Also, we consider Ẽnp as a [0,∞]-valued functional on Lp(K,m). From [Dal, Theorem 8.5
and Proposition 11.6], by extracting a subsequence of {Ẽnp }n∈N if necessary, we can assume
that {Ẽnp }n∈N Γ-converges to some p-homogeneous functional Ep : Lp(K,m) → [0,∞] as
n → ∞. Then {∥ · ∥p,n}n∈N Γ-converges to ||| · ||| :=

(
∥ · ∥pLp(K,m) + Ep

)1/p as n → ∞,
and hence (||| · |||p,Wp) is a p-energy form on (K,m) satisfying (Cla)p. By using (8.13)
and noting that limk→∞ Pnfk(w) = Pnf(w) for any n ∈ N ∪ {0}, any w ∈ Tn and any
f, fk ∈ Lp(K,m) with limk→∞ ∥f − fk∥Lp(K,m) = 0, we can show that ||| · ||| is a norm
on Wp that is equivalent to ∥ · ∥Wp . Thus, Wp is reflexive by Proposition 3.5 and the
Milman–Pettis theorem. The separability of Wp immediately follows from Corollary 3.16
(see also [AHM23, Proposition 4.1]).

In the case of p > dimARC(K, d), Wp can be identified with a subspace of C(K) and
is dense in (C(K), ∥ · ∥sup) by [Kig23, Lemmas 3.15, 3.16 and 3.19].

Let us introduce an important value, p-walk dimension, which will be a main topic in
Section 9.
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Definition 8.18 (p-Walk dimension). Let p ∈ (0,∞). Assume that (K, d, {Kw}w∈T )
satisfies Assumption 8.6-(1),(2),(4),(5). Let r∗ ∈ (0, 1) be the constant in (8.4), let σp be
the p-scaling factor of (K, d, {Kw}w∈T ) (see (8.11) and Remark 8.13). We define τp ∈ R
by

τp :=
log σp

log r−1
∗
. (8.14)

If in addition m is Ahlfors regular with respect to d, then we define dw,p ∈ R by

dw,p := df + τp, (8.15)

where df denotes the Hausdorff dimension of (K, d). We call dw,p the p-walk dimension of
(K, d, {Kw}w∈T ).

Now we prove the main result in this subsection, which is an improvement of [Kig23,
Theorem 3.21].

Theorem 8.19. Let p ∈ (1,∞). Assume that (K, d, {Kw}w∈T ,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then there exist Êp : Wp → [0,∞) and
c ∈ (0,∞) such that the following hold:

(a) (Êp)1/p is a seminorm on Wp and

cNp(f) ≤ Êp(f)1/p ≤ Np(f) for any f ∈ Wp. (8.16)

(b) (Êp,Wp) is a p-energy form on (K,m) satisfying (GC)p.
(c) (Invariance) Let T : (K,B(K),m) → (K,B(K),m) be Borel measurable and satisfy

Ẽnp (f ◦ T) = Ẽnp (f) for any n ∈ N and any f ∈ Lp(K,m). Then f ◦ T ∈ Wp and
Êp(f ◦ T) = Êp(f) for any f ∈ Wp.

(d) If in addition p > dimARC(K, d), then (Êp,Wp) is a regular p-resistance form on K
and there exist C ∈ [1,∞) such that

C−1d(x, y)τp ≤ RÊp(x, y) ≤ Cd(x, y)τp for any x, y ∈ K. (8.17)

Proof. The most part of the proof will be very similar to that in [Kig23, Theorem 3.21],
but we present the details because we do not assume p > dimARC(K, d) unlike [Kig23,
Theorem 3.21]. Let Êp be a subsequential Γ-limit of {Ẽnp }n with respect to the topology
of Lp(K,m) as in [Kig23, Proof of Theorem 3.21], i.e., there exists a subsequence {Ẽn′

p }n′

Γ-converging to Êp with respect to Lp(K,m) as n′ → ∞. (Note that such a subsequential
Γ-limit exists by [Dal, Theorem 8.5].)

(a): Êp is p-homogeneous by [Dal, Proposition 11.6]. The triangle inequality for
Êp( · )1/p will be included in the proof of (b), so we shall prove (8.16). From the defi-
nition of the Γ-convergence, it is immediate that Êp(f) ≤ lim infn→∞ Ẽnp (f) ≤ Np(f)

p.
Let us show the former inequality in (8.16). Let f ∈ Wp and let {fn′}n′ be a recovery
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sequence of {Ẽnp }n′ at f , i.e., limn′→∞ ∥f − fn′∥Lp(K,m) = 0 and Êp(f) = limn′→∞ Ẽn′
p (fn′).

Since limn′→∞ Pkfn′(w) = Pkf(w) for any k ∈ N and any w ∈ Tk, by (8.13),

Ẽkp (f) = lim
n′→∞

Ẽkp (fn′) ≤ C lim
n′→∞

Ẽn′

p (fn′) = CÊp(f),

where C ∈ (0,∞) is the constant in (8.13). We obtain the desired estimate by taking the
supremum over k ∈ N ∪ {0}.

(b): Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
(2.2). Define Qn : L

1(K,m) → L1(K,m) by

Qnf :=
∑
w∈Tn

Pnf(w)1Kw for f ∈ L1(K,m). (8.18)

Note that ∥Qn∥Lp(K,m)→Lp(K,m) ≤ 1 by (8.8) and Hölder’s inequality. Let us show
∥f −Qnf∥Lp(K,m) → 0 as n → ∞ for any f ∈ Lp(K,m). Define the Hardy–Littlewood
maximal operator M : Lp(K,m) → L0(K,m) by

M f(x) = sup
r>0

 
Bd(x,r)

|f(y)| m(dy), x ∈ K.

Since m is volume doubling with respect to d by Assumption 8.6-(3), by [HKST, Theorem
3.5.6], there exists a constant C ∈ (0,∞) such that ∥M f∥Lp(K,m) ≤ C ∥f∥Lp(K,m) for any
f ∈ Lp(K,m). We also easily see that for any f ∈ Lp(K,m) and any x ∈ K,

|Qnf(x)| ≤
∑

w∈Tn;x∈Kw

|Pnf(w)| ≤
∑

w∈Tn;x∈Kw

m(Bd(x, 2c2r
n
∗ ))

m(Kw)

 
Bd(x,2c2rn∗ )

|f | dm

≤
∑

w∈Tn;x∈Kw

m(Bd(x, 2c2r
n
∗ ))

m(Bd(xw, c5rn∗ ))
M f(x) ≤ C1M f(x),

where xw ∈ Kw and c2, c5 are the same as in Assumption 8.6-(2) and we used the volume
doubling property in the last inequality, and C1 ∈ (0,∞) is a constant depending only on
supw∈T #Γ1(w), c2, c5 and the doubling constant of m. Let f ∈ Lp(K,m) and let Lf ⊆ K
denote the set of Lebesgue points of f as in (8.12). Then Lf ∈ B(K) and m(K \Lf ) = 0
by the Lebesgue differentiation theorem for a volume doubling metric measure space (see,
e.g., [Hei, Theorem 1.8]). Since

|f(x)−Qnf(x)| ≤
∑

w∈Tn;x∈Kw

 
Kw

|f(x)− f(y)| m(dy)

≤ C1

 
Bd(x,2c2rn∗ )

|f(x)− f(y)| m(dy),

we have |f(x)−Qnf(x)| → 0 as n→ ∞ for any x ∈ Lf . Now the dominated convergence
theorem implies ∥f −Qnf∥Lp(K,m) → 0.
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Let u = (u1, . . . , un1) ∈ (Wp)n1 and choose a recovery sequence {uk,n′}n′ of {Ẽn′
p }n′ at

uk for each k ∈ {1, . . . , n1}. For brevity, we write un′ = (u1,n′ , . . . , un1,n′) and

Pn′un′(v) =
(
Pn′u1,n′(v), . . . , Pn′un1,n′(v)

)
∈ Rn1 , v ∈ Tn′ ,

Qn′un′(v) =
(
Qn′u1,n′(v), . . . , Qn′un1,n′(v)

)
∈ Rn1 , v ∈ Tn′ .

Note that ∥un′ −Qn′uk,n′∥Lp(K,m) → 0 as n′ → ∞ by the fact proved in the previous
paragraph. Similar to an argument in [Kig23, p. 46], by using ∥Qn∥Lp(K,m)→Lp(K,m) ≤ 1
and the estimate (2.20), we have

∥Tl(u)− Tl(Qn′un′)∥Lp(K,m) −−−→
n′→∞

0 for any l ∈ {1, . . . , n2}. (8.19)

Also, by Proposition 8.7, we note that

Pn′
(
Tl(Qn′un′)

)
= Tl(Pn′un′) ∈ RTn′ for any l ∈ {1, . . . , n2}. (8.20)

With these preparations, we prove (GC)p for (Êp,Wp). We consider the case of q2 < ∞
since the case of q2 = ∞ is similar. By (8.19) and (8.20), we see that

n2∑
l=1

Êp
(
Tl(u)

)q2/p (8.19)
≤

n2∑
l=1

lim inf
n′→∞

Ẽn′

p

(
Tl(Qn′un′)

)q2/p
(8.20)
≤ lim inf

n′→∞

n2∑
l=1

[
σn

′
p

2

∑
(v,w)∈E∗

n′

|Tl(Pn′un′(v))− Tl(Pn′un′(w))|q2·
p
q2

]q2/p

(2.18)
≤ lim inf

n′→∞

σn′
p

2

∑
(v,w)∈E∗

n′

∥T (Pn′un′(v))− T (Pn′un′(v))∥pℓq2

q2/p

(2.2)
≤ lim inf

n′→∞

σn′
p

2

∑
(v,w)∈E∗

n′

∥Pn′u(v)− Pn′u(v)∥pℓq1

q2/p

≤ lim inf
n′→∞

σn′
p

2

∑
(v,w)∈E∗

n′

[
n1∑
k=1

|Pn′uk,n′(v)− Pn′uk,n′(w)|p·
q1
p

]p/q1q2/p

(∗)
≤ lim inf

n′→∞

 n1∑
k=1

[
σn

′
p

2

∑
(v,w)∈E∗

n′

|Pn′uk,n′(v)− Pn′uk,n′(w)|p
]q1/p

p
q1

· q2
p

≤

(
n1∑
k=1

lim sup
n′→∞

Ẽn′

p (uk,n′)q1/p

) p
q1

· q2
p

≤

(
n1∑
k=1

Êp(uk)q1/p
) p

q1
· q2
p

, (8.21)

where we used the triangle inequality for the ℓp/q1-norm on E∗
n in (∗). Hence (Êp,Wp)

satisfies (GC)p.
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(c): This is clear from the definitions of Wp and of Êp.
(d): In the case of p > dimARC(K, d), a combination of (b), [Kig23, Lemmas 3.13, 3.16,

3.19 and Theorem 3.21] and Theorem 8.16 implies that (Êp,Wp) is a regular p-resistance
form on K. Then the estimate (8.17) is exactly the same as [Kig23, (3.21) in Lemma
3.34], so we complete the proof.

Remark 8.20. The construction of EΓ
p in [MS25+, Theorem 6.22] is very similar to that

of Êp in the proof above although the setting and assumption on a partition in [MS25+] is
slightly different from ours. Thanks to Proposition 8.7, the operators Mn and Jn defined
in [MS25+, (6.8) and (6.9)] correspond to Pn and Qn respectively. In particular, (8.19)
and (8.20) for Mn and Jn are also true. Hence we can easily see that the p-energy form
(EΓ
p ,Fp) in [MS25+, Theorem 6.22] also satisfies (GC)p.

Before concluding this subsection, we deal with the capacity upper estimate and a
Poincaré-type inequality under the additional assumption on the Ahlfors regularity of m.
In addition to the density of Wp in C(K), we can obtain the following capacity upper
bound under the p-conductive homogeneity of K if p > dimARC(K, d) and m is Ahlfors
regular.

Proposition 8.21 (Capacity upper estimate). Let p ∈ (1,∞) and λ ∈ (1,∞). Assume
that Assumption 8.6 holds, that K is p-conductively homogeneous, that p > dimARC(K, d)
and that m is Ahlfors regular. Then there exists C ∈ (0,∞) such that for any (x, r) ∈
K × (0, 1],

inf
{
Np(u)

p
∣∣ u ∈ Wp, u|Bd(x,r) = 1, suppK [u] ⊆ Bd(x, λr)

}
≤ C

m(Bd(x, r))

rdw,p
. (8.22)

Proof. Let r∗ ∈ (0, 1) and M∗ ∈ N be the constants in Assumption 8.6. For r ∈ (0, 1],
choose n ∈ N as the minimal positive integer such that c2(M∗+1)rn∗ < (λ− 1)r, where c2
is the constant in (8.3). Let x ∈ K and set Tn(x, r) := Tn[Bd(x, r)] for ease of notation.
Then, by the metric doubling property of (K, d), there exists N ∈ N which is independent
of x and r such that #Tn(x, r) ≤ N . By [Kig23, Lemma 3.18] and its proof, for any
w ∈ Tn(x, r) there exists hM∗,w ∈ Wp such that hM∗,w|Kw = 1, suppK [hM∗,w] ⊆ UM∗(w) and
Np(hM∗,w)

p ≲ σnp . Now we define ψx,r :=
∑

w∈Tn(x,r) hM∗,w ∈ Wp. Then ψx,r|Bd(x,r) ≥ 1,
suppK [ψx,r] ⊆ Bd(x, λr) and

Np(ψx,r)
p ≤ Np−1 max

w∈Tn(x,r)
Np(hM∗,w)

p ≲ σnp = rn(df−dw,p)
∗ ≲ rdf−dw,p .

Since m is Ahlfors regular and Np(ψx,r ∧ 1) ≲ Np(ψx,r) by [Kig23, Theorem 3,21], we
obtain (8.22).

The following Poincaré-type inequality for cells is easy.

Lemma 8.22. Let p ∈ (1,∞). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors regular. Then there exists a constant
C ∈ (0,∞) such that for any f ∈ Lp(K,m) and any w ∈ T ,ˆ

Kw

∣∣∣∣f(x)−  
Kw

f dm

∣∣∣∣p m(dx) ≤ Cr|w|dw,p
∗ lim inf

n→∞
Ẽn+|w|
p,Sn(w)(f). (8.23)
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Proof. Set k := |w|. Recall that limn→∞ ∥Qnf − f∥Lp(K,m) = 0 as shown in the proof of
Theorem 8.19-(b). Hence, for any n ∈ N, we see that

1

m(Kw)

∑
v∈Sn(w)

|Pn+kf(v)− Pkf(w)|pm(Kv)

=
1

m(Kw)

∑
v∈Sn(w)

ˆ
Kv

|Qn+kf(x)− Pkf(w)|p m(dx)

=

 
Kw

|Qn+kf(x)− Pkf(w)|p m(dx) −−−→
n→∞

 
Kw

|f(x)− Pkf(w)|p m(dx), (8.24)

where we used Proposition 8.7 in the second equality. By [Kig23, (5.11) in Theorem 5.11]
and (8.10), there exists C ∈ (0,∞) which is independent of f and n such that

1

m(Kw)

∑
v∈Sn(w)

|Pn+kf(v)− Pkf(w)|pm(Kv) ≤ Crk(dw,p−df)
∗ Ẽn+kp,Sn(w)(f). (8.25)

We obtain (8.23) by combining (8.24), (8.25), (8.5) and the Ahlfors regularity of m.

To upgrade (8.23) to a Poincaré inequality for metric balls in K, we need the following
standard fact.

Lemma 8.23 ([BB, Lemma 4.17]). Let q ∈ [1,∞) and let (Y,A, µ) be a measure space.
For any f ∈ L1(Y, µ) and any E ∈ A with µ(E) ∈ (0,∞),

 
E

∣∣∣∣f −
 
E

f dµ

∣∣∣∣q dµ ≤ 2q inf
a∈R

 
E

|f − a|q dµ. (8.26)

Now we prove a Poincaré-type inequality in terms of discrete p-energy forms.

Proposition 8.24. Let p ∈ (1,∞). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors regular. Then there exist C, α ∈ (0,∞)
such that for any (x, r) ∈ K × (0, 1] and any f ∈ Lp(K,m),

ˆ
Bd(x,r)

∣∣∣∣f −
 
Bd(x,r)

f dm

∣∣∣∣p dm ≤ Crdw,p lim inf
k→∞

Ẽkp,Tk[Bd(x,αr)]
(f). (8.27)

Proof. Throughout this proof, M∗ ∈ N and r∗ ∈ (0, 1) are the same constants as in
Assumption 8.6. Let (x, r) ∈ K × (0, 1]. We first consider the case of r ∈ (c3r∗, 1], where
c3 is the constant in (8.4). By Lemma 8.22 with w = ϕ,

ˆ
Bd(x,r)

∣∣∣∣f −
 
Bd(x,r)

f dm

∣∣∣∣p dm (8.26)
≤ 2p

ˆ
Bd(x,r)

∣∣∣∣f −
 
K

f dm

∣∣∣∣p dm
≤
ˆ
K

∣∣∣∣f −
 
K

f dm

∣∣∣∣p dm ≤ C lim inf
n→∞

Ẽnp (f),
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where C ∈ (0,∞) is the constant in (8.23). Since diam(K, d) = 1, this shows (8.27)
for any A ≥ (c3r∗)

−1. Hence it suffices to consider the remaining case, i.e., the case
of r ∈ (0, c3r∗]. Let n ∈ N satisfy c3r

n
∗ ≥ r > c3r

n+1
∗ . Set ΓM∗(x;n) := {v ∈ T |

v ∈ ΓM∗(w) for some w ∈ Tn such that x ∈ Kw}. Then we see that
ˆ
UM∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)

≤ 2p−1
∑

w∈ΓM∗ (x;n)

(ˆ
Kw

|f(y)− Pnf(w)|p m(dy) +m(Kw)

∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p)

≲
∑

w∈ΓM∗ (x;n)

(
rdw,p lim inf

k→∞
Ẽn+k
p,Sk(w)

(f) + rdf

∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p)

. (8.28)

Note that, by Proposition 8.7,

Pnf(w)−
 
UM∗ (x;n)

f dm =
1

m(UM∗(x;n))

∑
v∈ΓM∗ (x;n)

(Pnf(w)− Pnf(v))m(Kv). (8.29)

For any w ∈ ΓM∗(x;n), by choosing w′ ∈ ΓM∗(x;n) \ {w} so that Pnf(w) − Pnf(w
′) =

maxv∈ΓM∗ (x;n)
|Pnf(w)− Pnf(v)|, we have from (8.29) and Proposition 8.7 that∣∣∣∣∣Pnf(w)−

 
UM∗ (x;n)

f dm

∣∣∣∣∣ ≤ |Pnf(w)− Pnf(w
′)| .

Hence, by Hölder’s inequality, (8.10) and [Kig23, (2.17)],∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

≤ (2M∗ + 1)p−1Enp,ΓM∗ (x;n)
(f)

≲ rdw,p−df lim inf
k→∞

Ẽn+k
p,Sk(ΓM∗ (x;n))

(f). (8.30)

Note that #ΓM∗(x;n) ≤ LM∗+2
∗ by Assumption 8.6-(1) and that Sk(ΓM∗(x;n)) ⊆

Tn+k[Bd(x, c4r
n
∗ )] ⊆ Tn+k[Bd(x, c

−1
3 r−1

∗ c4r)] by Assumption 8.6-(2), where c4 is the same
as in (8.4). Now we set A := (1 ∨ c4)c−1

3 r−1
∗ . Then, by (8.28) and (8.30),

ˆ
UM∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)

(8.30)
≲ rdw,p lim inf

k→∞

∑
w∈ΓM∗ (x;n)

Ẽn+k
p,Sk(ΓM∗ (x;n))

(f) ≤ LM∗+2
∗ rdw,p lim inf

k→∞
Ẽkp,Tk[Bd(x,Ar)]

(f).

Since
ˆ
Bd(z,s)

∣∣∣∣f(y)−  
Bd(x,r)

f dm

∣∣∣∣p m(dy)
(8.26)
≤ 2p

ˆ
Bd(z,s)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)
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(8.4)
≤ 2p

ˆ
UM∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy),

we obtain (8.27).

8.2 Self-similar p-energy forms on p-conductively homogeneous
self-similar structures

In this subsection, we construct a self-similar p-resistance form on self-similar structures
under suitable assumptions. Our main result in this subsection, Theorem 8.30, implies
that self-similar p-energy forms constructed in [Kig23, Theorem 4.6] satisfy (GC)p.

We start with some preparations before constructing self-similar p-resistance forms.
In the following definition, we introduce a good partition parametrized by a rooted tree.

Definition 8.25 ([Kig23, Definition 4.2]). Let L = (K,S, {Fi}i∈S) be a self-similar struc-
ture, let r ∈ (0, 1) and let (js)s∈S ∈ NS. Define

j(w) :=
n∑
i=1

jwi
and g(w) := rj(w) for w = w1 . . . wn ∈ Wn.

Define π̃(w1 · · ·wn) := w1 · · ·wn−1 for w = w1 . . . wn ∈ Wn and

Λg
rk

:= {w = w1 · · ·wn ∈ W∗ | g(π̃(w)) > rk ≥ g(w)}.

Set T (r)
k := {(k, w) | w ∈ Λg

rk
}, T (r) :=

⋃
k∈N∪{0} T

(r)
k and define ι : T (r) → W∗ as ι(k, w) =

w. Moreover, define ET (r) ⊆ T (r) × T (r) by

ET (r) :=
{
((k, v), (k + 1, w)) ∈ T

(r)
k × T

(r)
k+1

∣∣∣ k ∈ N ∪ {0}, v = w or v = π̃(w)
}
,

so that (T (r), ET (r)) is a rooted tree ([Kig23, Proposition 4.3]).

In the rest of this subsection, we presume the following assumption on the geometry
of our self-similar structure.

Assumption 8.26. Let L = (K,S, {Fi}i∈S) be a self-similar structure with #S ≥ 2

and K connected. Set Kw := Kι(w) for w ∈ T
(r∗)
∗ for simplicity. There exist r∗ ∈

(0, 1) and a metric d giving the original topology of K with diam(K, d) = 1 such that
(K, d, {Kw}w∈T (r∗) ,m) satisfies Assumption 8.6, where m is the self-similar measure on K
with weight (rjsdf∗ )s∈S and df is the unique number satisfying

∑
s∈S r

jsdf
∗ = 1.

Under Assumption 8.26, we have the df-Ahlfors regularity of m as follows.

Proposition 8.27 ([Kig23, Proposition 4.5]). The value df coincides with the Hausdorff
dimension of (K, d) and m is df-Ahlfors regular with respect to d.
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To obtain a self-similar p-energy form on L, we first discuss the self-similarity of
Wp (recall (5.5)). The following lemma can be shown in exactly the same way as [Kig23,
Theorem 4.6-(1)] although the condition p > dimARC(K, d) is assumed in [Kig23, Theorem
4.6].

Lemma 8.28. For any u ∈ Lp(K,m), any k ∈ N ∪ {0} and any n ∈ N ∪ {0} with
n ≥ maxw∈Wk

j(w), ∑
w∈Wk

En−j(w)p (Pn−j(w)(u ◦ Fw)) ≤ Enp (Pnu). (8.31)

In particular, if in addition K is p-conductively homogeneous (with respect to {Kw}w∈T (r∗)),
then u ◦ Fw ∈ Wp for any u ∈ Wp and any w ∈ W∗, and hence

Wp ∩ C(K) ⊆ {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}. (8.32)

Similar to the case of p = 2 (see, e.g., [Kig00, KZ92]), we will obtain a self-similar
p-energy form on (L,m) with weight σp := (σjsp )s∈S as a fixed point obtained by applying
Theorem 5.22. To this end, we need the converse inclusion of (8.32) and uniform estimates
on Sσp,n(E) for any/some E ∈ Up(Wp ∩C(K)); recall the definition of Sσp,n in Definition
5.21. These conditions are true if K is p-conductively homogeneous and p > dimARC(K, d)
as described in the following proposition. (This result is essentially proved in [Kig23, Proof
of Theorem 4.6].)

Proposition 8.29. Let p ∈ (1,∞) and assume that K is p-conductively homogeneous
(with respect to {Kw}w∈T (r∗)). If p > dimARC(K, d), then

Wp = {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}, (8.33)

and there exists C ∈ [1,∞) such that for any E ∈ Up, any u ∈ Wp and any n ∈ N,

C−1Np(u)
p ≤ Sσp,n(E)(u) ≤ CNp(u)

p. (8.34)

Proof. The uniform estimate (8.34) follows from [Kig23, (4.6) and (4.8)]. (In the proof of
[Kig23], the assumption p > dimARC(K, d) is used to obtain [Kig23, (4.8)].) In the rest of
the proof, we prove

Wp ⊇ {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S} =: Wp
S.

(The converse inclusion is proved in Lemma 8.28.) We note that the following estimate
in [Kig23, lines 8-9 in p. 61] is true for every u ∈ Wp

S: there exists a constant C ′ ∈ (0,∞)
such that

Ẽnp (u) ≤ C ′
∑
w∈Wn

σj(w)p Np(u ◦ Fw)p = C ′Sσp,n(N p
p )(u) for any n ∈ N, u ∈ Wp

S. (8.35)

(We need p > dimARC(K, d) to obtain (8.35) by following the argument in [Kig23, p. 61].)
Taking the supremum over n ∈ N in the left-hand side of (8.35), we have Wp

S ⊆ Wp.
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Now we can obtain a desired self-similar p-energy form. The following theorem is a
generalization of [Kig23, Theorem 4.6] taking into account the case of p ≤ dimARC(K, d).

Theorem 8.30. Let p ∈ (1,∞). Assume that Assumption 8.26 holds, that K is p-
conductively homogeneous (with respect to {Kw}w∈T (r∗)) and that the following pre-self-
similarity conditions hold:

Wp ∩ C(K) = {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}. (8.36)
There exists C ∈ [1,∞) such that (8.34) holds for any u ∈ Wp ∩ C(K), n ∈ N. (8.37)

Let σp be the constant in (8.11), set σp := (σjsp )s∈S, let (Êp,Wp) be any p-energy form on

(K,m) given in Theorem 8.19 and set Fp := Wp ∩ C(K)
Wp

. Then there exists {nk}k∈N ⊆
N with nk < nk+1 for any k ∈ N such that the following limit exists in [0,∞) for any
u ∈ Fp:

Ep(u) := lim
k→∞

1

nk

nk−1∑
j=0

Sσp,j(Êp)(u). (8.38)

Moreover, the following properties hold:

(a) (Ep,Fp) is a self-similar p-energy form on (L,m) with weight σp, and there exist
α0, α1 ∈ (0,∞) such that α0Np(u)

p ≤ Ep(u) ≤ α1Np(u)
p for any u ∈ Fp.

(b) (Ep,Fp) satisfies (GC)p.
(c) (Ep,Fp) satisfies the strong local property (SL1).
(d) If in addition p > dimARC(K, d), then Fp = Wp and (Ep,Fp) is a regular self-similar

p-resistance form on L with weight σp and there exist α0, α1 ∈ (0,∞) such that

α0 d(x, y)
τp ≤ REp(x, y) ≤ α1 d(x, y)

τp for any x, y ∈ K. (8.39)

Remark 8.31. (1) In the case of p > dimARC(K, d), the pre-self-similarity conditions,
(8.36) and (8.37), can be dropped by virtue of Proposition 8.29.

(2) On p.-c.f. self-similar structures, self-similar p-energy forms have been constructed
also in [CGQ22]; we show in Subsection 8.3 below that the self-similar p-energy forms
considered in [CGQ22] are all p-resistance forms (on V∗, and ones on K if the weight
ρ = (ρi)i∈S of the form satisfies mini∈S ρi > 1). Note that any p ∈ (1,∞) is allowed in
the framework of [CGQ22] unlike that of [Kig23] (see (d) above). While it is extremely
hard to determine the value dimARC(K, d) in general, for a p.-c.f. self-similar set K
typically dimARC(K, d) = 1 (see [CP14, Theorem 1.2] for a sufficient condition for
dimARC(K, d) = 1). In Appendix B.2, we prove that the Ahlfors regular conformal
dimension of any strongly symmetric p.-c.f. self-similar set (see Framework 8.46 and
Definition 8.47 below) is one when it is equipped with the p-resistance metric of a
nice self-similar p-resistance form; the proof is based on the existence of self-similar
p-resistance forms on strongly symmetric p.-c.f. self-similar sets proved in Theorem
8.50 as an extension of [CGQ22, Theorem 6.3].

Proof of Theorem 8.30. The existence of the limit in (8.38) and its properties (a), (b) and
(c) are immediate from (8.36), (8.34), Lemma 5.16, Theorem 5.22, Propositions 5.23-(a)
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and 5.24. Let us verify (d). Recall that Wp ⊆ C(K) by p > dimARC(K, d) (Theorem
8.16), whence Fp = Wp. A similar argument as in the proof of Theorem 8.19-(d) shows
that (Ep,Wp) is a regular p-resistance form on K satisfying (8.39). This completes the
proof.

Similar to Theorem 7.9, we can obtain the monotonicity of σ1/(p−1)
p in p > dimARC(K, d).

Note that the following result is not restricted to p.-c.f. self-similar structures.

Theorem 8.32. Assume that Assumption 8.26 holds. Let p, q ∈ (dimARC(K, d),∞) sat-
isfy p ≤ q, and assume that K is s-conductively homogeneous (with respect to {Kw}w∈T (r∗))
for each s ∈ {p, q}. Then

σ1/(p−1)
p ≤ σ1/(q−1)

q . (8.40)

Proof. The proof is very similar to that of Theorem 7.9. By Proposition 8.29, (8.36) and
(8.34) with s ∈ {p, q} in place of p hold. Let (Es,Ws) be a self-similar s-resistance form
on L given in Theorem 8.30 for each s ∈ {p, q}. Fix two distinct points x0, y0 ∈ K,
set B := {x0, y0} and define hp := h

Ep
B

[
1Bx0

]
∈ Wp. Then 0 ≤ hp ≤ 1 by the weak

comparison principle (Proposition 6.26) and we can find w ∈ W∗ satisfying Kw ∩ B = ∅
and hp,w := hp ◦Fw ̸∈ R1K . Similar to (7.14), by using (6.34) and (7.1), we can show that
for any {u, v} ∈ E∗

n,

|Pnhq,w(u)− Pnhq,w(v)|q−p ≤ Cr
n(dw,p−df) q−p

p−1
∗ ,

where C ∈ (0,∞) is independent of n. Hence we have

Enq (hp,w) =
∑

{u,v}∈E∗
n

|Pnhq,w(u)− Pnhq,w(v)|q ≤ Cr
n(dw,p−df) q−p

p−1
∗ Enp (hp,w),

which implies that(
σ−1
q σ(q−1)/(p−1)

p

)n
Ẽnq (hp,w) ≤ CẼnp (hp,w) ≤ CNp(hp,w)

p. (8.41)

By (8.13), there exists Cq ∈ (0,∞) such that Nq(f)
q ≤ Cq lim infn→∞ Ẽnq (f) for any

f ∈ Lq(K,m). This together with (8.41) implies that

Nq(hp,w)
q lim sup

n→∞

(
σ−1
q σ(q−1)/(p−1)

p

)n
≤ C ′Np(hp,w)

p <∞.

Since Nq(hp,w) > 0, we obtain σ−1
q σ

(q−1)/(p−1)
p ≤ 1, which means (8.40).

We conclude this subsection by applying Theorem 6.36 (elliptic Harnack inequality)
to the p-energy form (Ep,Fp) in Theorem 8.30 in the case of p > dimARC(K, d). We
immediately obtain the following corollary by combining Propositions 5.10, 7.11, 8.21,
8.27, (8.4), (8.39) and Theorem 6.36.

Corollary 8.33 (Elliptic Harnack inequality for self-similar p-resistance form). Let p ∈
(1,∞). Assume that Assumption 8.26 holds, that K is p-conductively homogeneous (with
respect to {Kw}w∈T (r∗)) and that p > dimARC(K, d). Then (Ep,Wp) and {ΓEp⟨u⟩}u∈Wp

given in Theorem 8.30 and in (5.11) respectively satisfy the assumptions, and thereby the
property in the conclusion, of Theorem 6.36 with K,m, m(Bd(x,s))

sdw,p in place of X,µ,Υ(x, s).
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8.3 Self-similar p-resistance forms on p.-c.f. self-similar structures

In this subsection, under the condition (R) in [CGQ22, p. 18], we see that the construction
of p-energy forms on p.-c.f. self-similar structures constructed due to [CGQ22] yields p-
resistance forms. The framework in [CGQ22] focuses only on p.-c.f. self-similar structures,
but allows any p ∈ (1,∞) throughout, and also the choice of the weights of self-similar p-
resistance forms is flexible there so that non-arithmetic weights can arise unlike Theorem
8.30; see Subsection B.1 for a proof that non-arithmetic weights do arise in the framework
of Subsection 8.4 under a mild condition on the p.-c.f. self-similar structure L.

In the following definitions, we recall some classes of p-energy forms on finite sets
considered in [CGQ22].

Definition 8.34 ([CGQ22, Definition 2.1]). Let A be a finite set with #A ≥ 2. Let
E : RA → [0,∞) and consider the following conditions.

(i) E(tf + (1− t)g) ≤ tE(f) + (1− t)E(g) for any f, g ∈ RA and any t ∈ [0, 1].
(ii) E(tf) = |t|pE(f) for any f ∈ RA and any t ∈ R.
(iii) E(f + t1A) = E(f) for any f ∈ RA and any t ∈ R.
(iv) E(f+ ∧ 1) ≤ E(f) for any f ∈ RA.
(v) {f ∈ RA | E(f) = 0} = R1A.

We define Mp(A) and M̃p(A) by

Mp(A) := {E : RA → [0,∞) | E satisfies (i)-(v)}, (8.42)

M̃p(A) := {E : RA → [0,∞) | E satisfies (i)-(iv)}. (8.43)

Definition 8.35 ([CGQ22, Definition 2.8]). Let A be a finite set with #A ≥ 2. For
E1, E2 ∈ M̃p(A), define a metric dM̃p(A)

on M̃p(A) by

dM̃p(A)
(E1, E2) := sup

{
|E1(u)− E2(u)|

∣∣∣ u ∈ RA \ R1A, osc
A
[u] = 1

}
= sup

{
|E1(u)− E2(u)|

∣∣∣ u ∈ RA, osc
A
[u] ≤ 1

}
. (8.44)

For ease of notation, we set |E|M̃p(A)
:= dM̃p(A)

(E, 0) for E ∈ M̃p(A).

(1) We define Sp(A) ⊆ Mp(A) by

Sp(A) :=
{
E ∈ Mp(A)

∣∣∣∣ there exists (cxy)x,y∈A ⊆ [0,∞) such that
E(f) =

∑
x,y∈A |f(x)− f(y)|p cxy for f ∈ RA

}
. (8.45)

Note that any functional in Sp(A) is a p-resistance form on A (see Example 6.3-(3)).
(2) We define Q′

p(A) ⊆ Mp(A) by

Q′
p(A) :=

{
E ∈ Mp(A)

∣∣∣∣ there exist B ⊇ A and Ẽ ∈ Sp(B) such that
Ẽ
∣∣
A
= E, where Ẽ

∣∣
A

is the trace of Ẽ on A

}
. (8.46)
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Let Qp(A) be the closure of Q′
p(A) in (Mp(A), dM̃p(A)

), i.e.,

Qp(A) :=

{
E ∈ Mp(A)

∣∣∣∣ there exists {En}n∈N ⊆ Q′
p(A) such

that limn→∞ dM̃p(A)
(E,En) = 0

}
. (8.47)

Then we can show that any functional in Qp(A) is a p-resistance form on A.

Proposition 8.36. Let A be a finite set with #A ≥ 2 and let E ∈ Qp(A). Then E is a
p-resistance form on A.

Proof. Note that (RF1)p-(RF4)p for E ∈ Qp(A) are clear, so we shall prove (RF5)p, i.e.,
(GC)p. Let {En}n∈N ⊆ Q′

p(A) satisfy limn→∞ dM̃p(A)
(E,En) = 0. Then it is easy to see

that limn→∞En(u) = E(u) for any u ∈ RA (see also [CGQ22, Lemma A.1]). Since En
satisfies (GC)p for any n ∈ N, we have (GC)p for E by Proposition 2.10-(b).

Next we introduce renormalization operators playing central roles in the construction
of p-energy forms on p.-c.f. self-similar structures. In the rest of this subsection, we
always assume that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure with #S ≥ 2 and
K connected.

Definition 8.37 (Renormalization operator; [CGQ22, Definition 3.1]). Let ρp = (ρp,i)i∈S ∈
(0,∞)S and k ∈ N ∪ {0}. For a p-resistance form E on Vk, define p-resistance forms
Λρp(E) : RVk+1 → [0,∞) and Rρp(E) : RVk → [0,∞) by12

Λρp(E)(u) :=
∑
i∈S

ρp,iE(u ◦ Fi), u ∈ RVk+1 , and Rρp(E) := Λρp(E)
∣∣
Vk

(8.48)

(recall Proposition 7.8 and Theorem 6.13). To be precise, Λρp ,Rρp depend on k, but
we omit it for ease of the notation. By [CGQ22, Lemma 3.2-(b)], we have Λnρp

(E)
∣∣
Vk

=

Rn
ρp
(E) for any n ∈ N ∪ {0}, i.e.,

Rn
ρp
(E)(u) = inf

{∑
w∈Wn

ρp,w E(v ◦ Fw)

∣∣∣∣∣ v ∈ RVn+k , v|Vk = u

}
, u ∈ RVk .

The following theorem, which is an adaptation of [CGQ22, Theorem 4.2], gives a
necessary and sufficient condition for the existence of an eigenform with respect to Rρp .
This theorem can be shown by combining [CGQ22, Lemma 4.4 and Proof of Theorem
4.2] with Proposition 8.36, so we omit the proof.

Theorem 8.38 (Condition for the existence of an eigenform; cf. [CGQ22, Theorem 4.2]).
Let ρp = (ρp,i)i∈S ∈ (0,∞)S. Let us consider the following condition (A): there exist
c ∈ (0,∞) and a p-resistance form E on V0 such that

min
x,y∈V0;x ̸=y

RRn
ρp

(E)(x, y) ≥ c max
x,y∈V0;x ̸=y

RRn
ρp

(E)(x, y) for any n ∈ N ∪ {0}. (A)

12We use different symbols from [CGQ22].



Contraction properties and differentiability of p-energy forms 117

(a) Assume that (A) holds. Then there exists a unique number λ = λ(ρp) ∈ (0,∞) such
that the following hold: for any E ′ ∈ Mp(V0), there exists C ∈ [1,∞) such that

C−1λnE ′(u) ≤ Rn
ρp
(E ′)(u) ≤ CλnE ′(u) for any n ∈ N ∪ {0} and any u ∈ RV0.

(8.49)
(b) Assume that (A) holds. Let E0 ∈ Sp(V0). For n ∈ N, define En ∈ Q′

p(V0) by

En(u) := inf

{
1

n+ 1

n∑
j=0

λ−jΛjρp
(E0)(v|Vj)

∣∣∣∣ v ∈ RVn , v|V0 = u

}
, u ∈ RV0 , (8.50)

where λ is the number given in (a). Then there exists a subsequence {Enk
}k∈N such

that it converges in the topology induced by dM̃p
. In particular, there exists E∗ ∈

Qp(V0) such that
E∗(u) = lim

k→∞
Enk

(u), u ∈ RV0 . (8.51)

(c) Assume that (A) holds. Let E0 ∈ Sp(V0), let E∗ ∈ Qp(V0) be given by (8.51) and
let λ be the number given in (a). Then {λ−lRl

ρp
(E∗)(u)}l∈N∪{0} is non-decreasing for

any u ∈ RV0 and Rρp(E
(0)
p ) = λE (0)

p , where E (0)
p ∈ Qp(V0) is given by

E (0)
p (u) := lim

l→∞
λ−lRl

ρp
(E∗)(u), u ∈ RV0 . (8.52)

(d) Assume that there exist λ ∈ (0,∞) and a p-resistance form E on V0 such that
Rρp(E) = λE. Then (A) holds.

Remark 8.39. (1) If ρp satisfies (A) for some p-resistance form E on V0, then by
[CGQ22, Lemma 4.4-(a)], for any p-resistance form Ẽ on V0 there exists c̃ ∈ (0,∞)

such that (A) with Ẽ, c̃ in place of E, c holds. Hence (A) is a condition relying only
on ρp.

(2) The assertion E (0)
p ∈ Qp(V0) follows from (8.52). Indeed, for any n, l ∈ N ∪ {0}, by

(5.2) and Proposition 6.15, one can see that

Rl
ρp
(En) =

(
1

n+ 1

n∑
j=0

λ−jΛl+jρp
(E0)

)∣∣∣∣∣
V0

∈ Q′
p(V0).

Let ε > 0. Then for all large enough k ∈ N, we have

|E ′(u)− Enk
(u)| ≤ ε whenever u ∈ RV0 satisfies osc

V0
[u] ≤ 1.

For such k ∈ N and u ∈ RV0 , since (6.32) implies

osc
Vl

[
h
Λl
ρp

(E′)

V0
[u]
]
≤ osc

V0
[u], osc

Vl

[
h
Λl
ρp

(Enk
)

V0
[u]
]
≤ osc

V0
[u],

we have∣∣∣Rl
ρp
(E ′)(u)−Rl

ρp
(Enk

)(u)
∣∣∣ ≤ ε

∑
w∈Wl

ρp,w whenever u ∈ RV0 satisfies osc
V0

[u] ≤ 1.

This shows that dM̃p(V0)
(Rl

ρp
(E ′),Rl

ρp
(Enk

)) → 0 as k → ∞, whence it follows that

Rl
ρp
(E ′) ∈ Qp(V0). Therefore, E (0)

p ∈ Qp(V0).
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In the rest of this subsection, we fix ρp = (ρp,i)i∈S ∈ (0,∞)S. Let us introduce two
important conditions on ρp, following [CGQ22, Section 5]:

(A’) There exists a p-resistance form E (0)
p on V0 such that Rρp(E

(0)
p ) = E (0)

p .
(R) ((A’) holds and) mini∈S ρp,i > 1.

Note that by Theorem 8.38, (A’) implies (A), and (A) implies that λ−1ρp satisfies (A’)
for some λ ∈ (0,∞).

The following proposition is important to construct a self-similar p-resistance form as
an “inductive limit” of discrete p-resistance forms as presented in [CGQ22, Proposition
5.3], which is an adaptation of the relevant pieces of the theory of resistance forms due to
[Kig01, Sections 2.2, 2.3 and 3.3].

Proposition 8.40. Assume that (A’) holds. Define E (n)
p := Λnρp

(E (0)
p ), i.e.,

E (n)
p (u) :=

∑
w∈Wn

ρp,wE (0)
p (u ◦ Fw), u ∈ RVn . (8.53)

Then E (n)
p is a p-resistance form on Vn and E (n+m)

p

∣∣
Vn

= E (n)
p for any n,m ∈ N∪{0}, i.e.,{

(Vn, E (n)
p )
}
n≥0

is a compatible sequence of p-resistance forms.

Proof. We will show E (n+m)
p

∣∣
Vn

= E (n)
p . (See [Kig01, Proposition 3.1.3] for the case of

p = 2.) It suffices to prove E (n+1)
p

∣∣
Vn

= E (n)
p for any n ∈ N ∪ {0} by virtue of Proposition

6.15. Note that the case of n = 0 is true by Rρp(E
(0)
p ) = E (0)

p , and that

E (n+1)
p (u) =

∑
i∈S

ρp,i E (n)
p (u ◦ Fi), for any n ∈ N ∪ {0} and u ∈ RVn+1 . (8.54)

Assume that E (m)
p

∣∣
Vm−1

= E (m−1)
p for some m ∈ N. Then for any u ∈ RVm ,

E (m)
p (u)

(8.54)
=
∑
i∈S

ρp,i E (m−1)
p (u ◦ Fi)

=
∑
i∈S

ρp,imin
{
E (m)
p (v ◦ Fi)

∣∣∣ v ∈ RKi∩Vm+1 , v|Ki∩Vm = u|Ki

}
(5.2)
= min

{∑
i∈S

ρp,i E (m)
p (v ◦ Fi)

∣∣∣∣∣ v ∈ RVm+1 , v|Vm = u

}
(8.54)
= min

{
E (m+1)
p (v)

∣∣∣ v ∈ RVm+1 , v|Vm = u
}
= E (m+1)

p

∣∣
Vm

(u),

which completes the proof.

We can naturally construct a p-resistance form as an inductive limit on the countable
set V∗ as described in the following proposition.
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Proposition 8.41. Assume that (A’) holds and let
{
(Vn, E (n)

p )
}
n≥0

be the compatible
sequence of p-resistance forms given in Proposition 8.40. Define a linear subspace Fp,∗ of
RV∗ and Ep,∗ : Fp,∗ → [0,∞) by

Fp,∗ :=
{
u ∈ RV∗

∣∣∣ lim
n→∞

E (n)
p (u|Vn) <∞

}
, and (8.55)

Ep,∗(u) := lim
n→∞

E (n)
p (u|Vn), u ∈ Fp,∗. (8.56)

Then (Ep,∗,Fp,∗) is a p-resistance form on V∗ satisfying Ep,∗|Vn = E (n)
p for any n ∈ N∪{0}.

Moreover, the following self-similarity properties hold:

Fp,∗ =
{
u ∈ RV∗

∣∣ u ◦ Fi ∈ Fp,∗ for any i ∈ S
}
, (8.57)

Ep,∗(u) =
∑
i∈S

ρp,i Ep,∗(u ◦ Fi) for any u ∈ Fp,∗. (8.58)

If in addition (R) holds, then for any u ∈ Fp,∗ there exists a unique û ∈ C(K) such that
û|V∗ = u, and {û | u ∈ Fp,∗} is dense in C(K).

Proof. It is immediate from Theorem 6.21 that (Ep,∗,Fp,∗) is a p-resistance form on V∗
with Ep,∗|Vn = E (n)

p . By the definition in (8.53), it is easy to see that for any n, k ∈ N∪{0}
and any u ∈ RV∗ ,

E (n+k)
p (u|Vn+k

) =
∑
w∈Wk

ρp,w E (n)
p (u ◦ Fw|Vn).

This immediately implies (8.57) and (8.58). The existence of unique continuous exten-
sions of functions in Fp,∗ under (R) is proved in [CGQ22, Theorem 5.1-(b)]. A standard
argument using the Stone–Weierstrass theorem shows that C := {û | u ∈ Fp,∗} is dense
in C(K). Indeed, C is an algebra since Fp,∗ is also an algebra by Proposition 2.3-(d).
For any x, y ∈ K with x ̸= y, choose n ∈ N and v, w ∈ Wn so that x ∈ Kv, y ∈ Kw and
Kv∩Kw = ∅. (Such n, v, w exist by (5.3).) Then, by setting v := h

Ep,∗
Vn

[1Fv(V0)], we see that
φxy := v̂ ∈ C satisfies φxy(x) = 1 and φxy(y) = 0, so we can use the Stone–Weierstrass
theorem to conclude that C is dense in C(K).

To extend (Ep,∗,Fp,∗) to a p-energy form defined on K, we need to specify how to
regard functions in Fp,∗ as functions defined on K, which is indeed a delicate problem and
discussed in [CGQ22, Theorems 5.1 and 5.2]. In this paper, we are mainly interested in
the case where Fp,∗ can be embedded into C(K). In other words, we always assume that
(R) holds. (See [CGQ22, Theorem 5.2] and [KS+a, Appendix] for details on a situation
when we can identify a function u ∈ RV∗ satisfying limn→∞ E (n)

p (u|Vn) <∞ with a function
on K without (R).) To state a construction of self-similar p-resistance forms under (R),
we need the following lemma.

Lemma 8.42. Assume that (A’) and (R) hold. Let (Ep,∗,Fp,∗) be the p-resistance form
on V∗ given in Proposition 8.41. Then idV∗ : (V∗, R

1/p
Ep,∗) → K is uniquely extended to the

completion, which gives a homeomorphism.
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Proof. The proof is very similar to arguments in [Kig01, Proposition 3.3.2, Lemma 3.3.5
and Theorem 3.3.4]. Let (K̂, d̂ ) be the completion of (V∗, R

1/p
p,Ep,∗) and let (Êp,∗, F̂p,∗)

be the p-resistance form on K̂ defined by (6.27) and (6.28), where we choose S ={
(Vn, E (n)

p )
}
n∈N∪{0}. Also, we fix a metric d on K which gives the original topology of

K. Recall that R1/p

Êp,∗
= d̂ by Corollary 6.23. For n ∈ N, we define

δn := min
v,w∈Wn;Kv∩Kw=∅

(
inf

x∈Fv(V∗),y∈Fw(V∗)
REp,∗(x, y)

)
.

Then δn > 0 since REp,∗(x, y) ≥ Ep,∗
(
h
Ep,∗
Vn

[1Fw(V0)]
)−1 for any (x, y) ∈ Fv(V∗)×Fw(V∗). Let

{xn}n≥0 be a Cauchy sequence in (V∗, R
1/p
Ep,∗). For each n ∈ N, choose N(n) ∈ N so that

sup
k,l≥N(n)

REp,∗(xk, xl) < δn.

Then there exists w ∈ Wn such that {xk}k≥N(n) ⊆
⋃
v∈Wn;Kv∩Kw ̸=∅ Fv(V∗) =: An,w.

Since limn→∞maxw∈Wn diam(An,w, d) = 0 by (5.3), we conclude that idV∗ : (V∗, R
1/p
Ep,∗) →

(V∗, d|V∗×V∗) is uniformly continuous. Now we define θ : (K̂, d̂) → (K, d) as the unique con-
tinuous map satisfying θ|V∗ = idV∗ . Let us show that θ is injective. Assume that x, y ∈ K̂

satisfy θ(x) = θ(y). Let {xn}n≥0, {yn}n≥0 be Cauchy sequences in (V∗, R
1/p
Ep,∗) satisfying

limn→∞ d̂(x, xn) = limn→∞ d̂(y, yn) = 0. Then limn→∞ d(θ(x), xn) = limn→∞ d(θ(y), yn) =

0 since θ is continuous. For any u ∈ F̂p,∗, let ûn ∈ C(K) be the unique function satisfying
ûn|V∗ = h

Ep,∗
Vn

[u|Vn ], which exists by Proposition 8.41. Also, let vn ∈ C(K̂) be the unique
function satisfying vn|V∗ = h

Ep,∗
Vn

[u|Vn ]; recall the proof of Theorem 6.22. Then we see that

vn(x) = lim
k→∞

h
Ep,∗
Vn

[u](xk) = ûn(θ(x)) = ûn(θ(y)) = lim
k→∞

h
Ep,∗
Vn

[u](yk) = vn(y). (8.59)

Let us fix o ∈ V0 ⊆ Vn. By (6.3) for (Êp,∗, F̂p,∗),

|u(x)− vn(x)|p ≤ RÊp,∗(x, o)Êp,∗(u− ŭn) = RÊp,∗(x, o)Ep,∗
(
u|V∗ − h

Ep,∗
Vn

[u|Vn ]
)
,

which together with (6.18) and (8.59) implies that

u(x) = lim
n→∞

vn(x) = lim
n→∞

vn(y) = u(y).

Since u ∈ F̂p,∗ is arbitrary, we conclude that RÊp,∗(x, y) = 0 and hence x = y. This means
that θ is injective.

Next we see that {Fi}i∈S yields a family of contractions on the complete (non-empty)
metric space (K̂, d̂ ). By virtue of (8.58), similarly to the proof of (7.1), one can show
that for any w ∈ W∗ and any x, y ∈ V∗,

d̂(Fw(x), Fw(y))
p = RÊp,∗(Fw(x), Fw(y)) ≤ ρ−1

p,wRÊp,∗(x, y) = ρ−1
p,wd̂(x, y)

p.
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In particular, Fw|V∗ : (V∗, d̂ ) → (V∗, d̂ ) is uniformly continuous, and hence there exists a
unique continuous map F K̂

w : K̂ → K̂ such that F K̂
w

∣∣
V∗

= Fw|V∗ . Then it is clear that

d̂
(
F K̂
w (x), F K̂

w (y)
)
≤ ρ−1/p

p,w d̂(x, y) for any x, y ∈ K̂, (8.60)

and that θ◦F K̂
w = Fw ◦θ. Now, by (R) and (8.60),

{
F K̂
i

}
i∈S is a family of contractions on

(K̂, d̂ ). By [Kig01, Theorem 1.1.4], there exists a unique non-empty compact subset K̂0

of K̂ such that K̂0 =
⋃
i∈S F

K̂
i (K̂0). Let us fix o ∈ K̂0 and set A :=

⋃
w∈W∗

F K̂
w (o) ⊆ K̂0.

Then θ(A) =
⋃
w∈W∗

Fw(θ(o)) is dense in (K, d) by (5.3). Since θ(A) ⊆ θ(K̂0) ⊆ K and
θ(K̂0) is compact by the continuity of θ, we have θ(K̂0) = K and thus θ(K̂) = K. Then
K̂ turns out to be compact since K̂ = K̂0 by the injectivity of θ. Now θ turns out to be a
homeomorphism between K̂ and K. From the uniqueness of θ, we conclude that K̂ = K
and θ = idK . We complete the proof.

The following theorem describes a construction of a self-similar p-resistance form as
the inductive limit of {E (n)

p }n≥0 under the condition (R).

Theorem 8.43. Assume that (A’) and (R) hold. Let
{
(Vn, E (n)

p )
}
n≥0

be the compatible
sequence of p-resistance forms given in Proposition 8.40, and define

Fp :=
{
u ∈ C(K)

∣∣∣ lim
n→∞

E (n)
p (u|Vn) <∞

}
, (8.61)

Ep(u) := lim
n→∞

E (n)
p (u), u ∈ Fp. (8.62)

Then (Ep,Fp) is a regular self-similar p-resistance form on L with weight ρp, Ep|Vn = E (n)
p

for any n ∈ N ∪ {0}, and REp is compatible with the original topology of K.

Remark 8.44. Similar to Proposition 5.23, by choosing a suitable E0 ∈ Sp(V0) in Theo-
rem 8.38, we can verify nice properties like the symmetry-invariance (see (9.7) for details)
of E∗ in (8.51), E (0)

p in (8.52) and Ep. See also Theorem 8.51.

Proof of Theorem 8.43. By Lemma 8.42 and Corollary 6.23, (Ep,Fp) is a p-resistance form
on K. The self-similarity conditions, (5.5) and (5.6), for (Ep,Fp) are obvious from Propo-
sition 8.40. By Lemma 8.42 and Proposition 8.41, REp is compatible with the original
topology of K and (Ep,Fp) is regular (recall Definition 6.5).

Let us recall the following proposition, which is useful to verify (R) for concrete
examples.

Proposition 8.45 ([CGQ22, Lemma 5.4]). Assume that (A’) holds. If w ∈ W∗ \ {∅}
satisfies w∞ := www . . . ∈ PL, then ρp,w > 1.
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8.4 Existence of eigenforms on strongly symmetric p.-c.f. self-
similar sets

Let us conclude this section by showing (A) for a special class of p.-c.f. self-similar sets
called affine nested fractals, which was introduced in [FHK94] as a generalization of the
class called nested fractals introduced by Liondstrøm [Lin90]. More precisely, we will
work in a wider class called strongly symmetric p.-c.f. self-similar sets. The proof of
(A) for affine nested fractals was given in [CGQ22, Theorem 6.3], but their description
on the group of symmetries in the paper [CGQ22] is not sophisticated13, so we provide
the details of the proof for (A) and improve the assumptions in [CGQ22, Theorem 6.3]
simultaneously in Theorem 8.50.

We start with recalling the definitions of a group of symmetries, affine nested fractals
and strongly symmetric p.-c.f. self-similar sets. See, e.g., [Kig01, Section 3.8] for details.

Framework 8.46. Let D ∈ N and let S be a non-empty finite set with #S ≥ 2. Let
{ci}i∈S ⊆ (0, 1), {ai}i∈S ⊆ RD and {Ui}i∈S ⊆ O(D), where O(D) is the collection of
orthogonal transformations of RD. Define fi : RD → RD by fi(x) := ciUix + ai for each
i ∈ S. Let K be the self-similar set associated with {fi}i∈S, set Fi := fi|K for each i ∈ S
and assume that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure. We also assume
that K is connected, M := #(V0) < ∞ and

∑M
i=1 qi = 0, where qi ∈ RD is defined so

that V0 = {qi}Mi=1. Let d : K × K → [0,∞) be the Euclidean metric on K given by
d(x, y) := |x− y|.

Definition 8.47 ([Kig01, Definitions 3.8.3 and 3.8.4]). (1) We define

Gsym(L) := Gsym :=

{
g|K

∣∣∣∣∣ g ∈ O(D), for any n ∈ N ∪ {0} and any
w ∈ Wn there exists w′ ∈ Wn such that
g(Kw) = Kw′ and g(Fw(V0)) = Fw′(V0)

}
,

where O(D) denotes the orthogonal group in dimension D. Note that for any g ∈ Gsym

and any w ∈ W∗, a word w′ ∈ W∗ satisfying |w| = |w′| and g(Kw) = Kw′ is uniquely
determined. In particular, the map τg : W∗ → W∗ defined by τg(w) := w′ gives a
bijection such that |τg(w)| = |w| for any w ∈ W∗.

(2) For x, y ∈ RD with x ̸= y, let gxy : RD → RD be the reflection in the hyperplane{
z ∈ RD

∣∣ |x− z| = |y − z|
}
.

(3) Let m∗ := #{|x− y| | x, y ∈ V0, x ̸= y} and l0 := min{|x− y| | x, y ∈ V0, x ̸= y}. We
define {li}m∗−1

i=0 inductively by li+1 := min{|x− y| | x, y ∈ V0, |x− y| > li}.
(4) Let m ∈ N ∪ {0} and (xi)

n
i=1 ∈ (Vm)

n. Then (xi)
n
i=1 is called an m-walk (between x1

and xn) if and only if there exist w1, . . . , wn ∈ Wm such that {xi, xi+1} ⊆ Fwi(V0) for
all i ∈ {1, 2, . . . , n−1}. A 0-walk (xi)

n
i=1 is called a strict 0-walk (between x1 and xn)

if and only if |xi − xi+1| = l0 for any i ∈ {1, 2, . . . , n− 1}.

13For a group of symmetries, say G, one of the essential properties that is needed to prove the G-
invariance of the resulting self-similar p-energy form is Proposition 8.49-(2). We have to be careful
whether this property holds for G, but this point is not taken care of in [CGQ22].
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(5) L is called a strongly symmetric p.-c.f. self-similar set if and only if it satisfies the
following four conditions:
(SS1) For any x, y ∈ V0 with x ̸= y, there exists a strict 0-walk between x and y.
(SS2) If x, y, z ∈ V0 and |x− y| = |x− z|, then there exists g ∈ Gsym such that

g(x) = x and g(y) = z.
(SS3) For any i ∈ {0, . . . ,m∗ − 2}, there exist x, y, z ∈ V0 such that |x− y| = li,

|x− z| = li+1 and gyz|K ∈ Gsym.
(SS4) V0 is Gsym-transitive, i.e., for any x, y ∈ V0 with x ̸= y, there exists g ∈ Gsym

such that g(x) = y.
(6) L is called an affine nested fractal if gxy|K ∈ Gsym(L) for any x, y ∈ V0 with x ̸= y.

Remark 8.48. In [Kig01, Definitions 3.8.3 and 3.8.4], the following group of symmetries
Gs is used instead of Gsym:

Gs :=
{
g|K

∣∣∣∣ g ∈ O(D), for any n ∈ N ∪ {0} and any w ∈ Wn

there exists w′ ∈ Wn such that g(Fw(V0)) = Fw′(V0)

}
;

note that Gsym ⊆ Gs. Under the assumption that

#(Fi(V0) ∩ Fj(V0)) ≤ 1 for any i, j ∈ S with i ̸= j, (8.63)

we know that Gsym = Gs by [Kig01, Proposition 3.8.19]. The difference between Gsym and
Gs does not affect the arguments in the parts of [CGQ22, Kig01] (Proposition 8.49 and
Theorem 8.50 below) that we need.

Let us recall a few properties of Gsym and of affine nested fractals in the following
proposition, which can be shown in the same ways as in [Kig01, Section 3.8]. (Let us
emphasize that we do not assume (8.63) unlike [Kig01, Section 3.8].)

Proposition 8.49 ([Kig01, Propositions 3.8.7, 3.8.20 and Lemma 3.8.23]). (1) If L is an
affine nested fractal, then it is a strongly symmetric self-similar set.

(2) Let w ∈ W∗, g ∈ Gsym and set

Ug,w := F−1
w′ ◦ g ◦ Fw,

where w′ ∈ W∗ is the unique word satisfying Fw′(V0) = g(Fw(V0)). Then Ug,w ∈ Gsym.
(3) Let a, b ∈ V0 and assume that gab|K ∈ Gsym. If x, y ∈ Fw(V0) for some w ∈ W∗,

|x− b| < |x− a| and |y − b| > |y − a|, then gab(Kw) = Kw.

Now we can present the following theorem proving the existence of an eigenform on
V0 for strongly symmetric self-similar sets and improving [CGQ22, Theorem 6.3]. Note
that the case p = 2 corresponds to the existence of a harmonic structure on L in [Kig01,
Theorem 3.8.10].

Theorem 8.50. Assume that L is strongly symmetric. If

ρp,i = ρp,i′ for any i ∈ S and any g ∈ Gsym, (8.64)
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where i′ ∈ S is the unique element satisfying Fi′(V0) = g(Fi(V0)), then ρp satisfies (A).
In particular, if there exists ρp ∈ (0,∞) such that ρp,i = ρp for any i ∈ S, then (A’) and
(R) with

(
λ(ρp)

−1ρp
)
i∈S in place of ρp hold, where λ(ρp) is the number given in Theorem

8.38-(a).

Proof. The proof is essentially the same as [CGQ22, Proof of Theorem 6.3], but we give the
details of it since we weaken the assumption of [CGQ22, Theorem 6.3]. For n ∈ N ∪ {0},
define Ep,n ∈ Sp(Vn) by

Ep,n(y) :=
∑
w∈Wn

ρp,w
∑

x,y∈V0;|x−y|=l0

|u(Fw(x))− u(Fw(y))|p , u ∈ RVn .

Note that, by Proposition 8.49-(2) and (8.64), Ep,n is Gsym-invariant, i.e., Ep,n(u ◦ g|Vn) =
Ep,n(u) for any u ∈ RVn and any g ∈ Gsym. We fix a1, a2 ∈ V0 that satisfy |a1 − a2| = l0
and claim that for any n ∈ N and any x, y ∈ V0 with x ̸= y,

1

2
REp,n(a1, a2) ≤ REp,n(x, y) ≤ (#V0)

pREp,n(a1, a2), (8.65)

which implies (A) for ρp with c = 2(#V0)
−p.

We first show the upper estimate in (8.65). Let (xi)
k
i=0 ∈ (V0)

k+1 be a strict 0-
walk between x and y. Then, by (SS2), (SS4) and the Gsym-invariance of Ep,n, we have
REp,n(xi, xi+1) = REp,n(a1, a2) for any i ∈ {0, . . . , k − 1}. Hence we see that

REp,n(x, y)
1/p ≤

k−1∑
i=0

REp,n(xi, xi+1)
1/p = kREp,n(a1, a2)

1/p ≤ (#V0)REp,n(a1, a2)
1/p,

which shows the desired estimate.
Next we prove the lower estimate in (8.65). The case of |x− y| = l0 is clear by (SS2),

(SS4) and the Gsym-invariance of Ep,n, so we assume that |x− y| > l0. By (SS1), there
exists z ∈ V0 such that |x− z| = l0. Define u ∈ RVn by

u(a) :=

{
h
Ep,n

{x,z}[1x](a) if a ∈ Vn satisfies |a− z| ≤ |a− y|,
h
Ep,n

{x,z}[1x](gyz(a)) if a ∈ Vn satisfies |a− z| ≥ |a− y|,

which is well-defined since Theorem 6.13 implies hEp,n

{x,z}[1x](a) = 1/2 whenever |a− z| =
|a− y|. Since |x− z| = l0 < |x− y|, we have u(x) = h

Ep,n

{x,z}[1x](x) = 1. Also, u(y) =

h
Ep,n

{x,z}[1x](gyz(y)) = 0. Hence REp,n(x, y) ≥ Ep,n(u)
−1. Now we define H1,n := {a ∈ Vn |

|a− z| ≤ |a− y|}, H2,n := {a ∈ Vn | |a− z| ≥ |a− y|} and we see that

Ep,n(u) =

 ∑
w∈Wn;

Fw(V0)⊆H1,n

+
∑
w∈Wn;

Fw(V0)⊆H2,n

+
∑
w∈Wn;

Fw(V0 )̸⊆Hi,n

 ρp,wEp,0(u ◦ Fw|V0)
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= 2
∑
w∈Wn;

Fw(V0)⊆H1,n

ρp,wEp,0

(
h
Ep,n

{x,z}[1x] ◦ Fw|V0
)
+

∑
w∈Wn;

Fw(V0) ̸⊆Hi,n

ρp,wEp,0(u ◦ Fw|V0).

To estimate the second term in the right-hand side in the above equality, let a, b ∈ V0
satisfy |a− b| = l0, |Fw(a)− z| < |Fw(a)− y| and |Fw(b)− z| > |Fw(b)− y|. Then we
have gyz(Fw(V0)) = Fw(V0) by Proposition 8.49-(3). This along with the minimality of l0
implies that gyz(Fw(a)) = Fw(b), whence it follows that u(Fw(a)) = u(Fw(b)). Hence∑

w∈Wn;
Fw(V0) ̸⊆Hi,n

ρp,wEp,0(u ◦ Fw|V0) =
∑
w∈Wn;

Fw(V0 )̸⊆Hi,n

ρp,w
∑

a,b∈V0;|a−b|=l0,
{Fw(a),Fw(b)}⊆H1,n

or{Fw(a),Fw(b)}⊆H2,n

|u(Fw(a))− u(Fw(b))|p

≤ 2
∑
w∈Wn;

Fw(V0 )̸⊆Hi,n

ρp,wEp,0

(
h
Ep,n

{x,z}[1x] ◦ Fw|V0
)
,

and we deduce that

REp,n(x, y) ≥ Ep,n(u)
−1 ≥ 1

2
Ep,n

(
h
Ep,n

{x,z}[1x]
)−1

=
1

2
REp,n(a1, a2),

completing the proof.

The following theorem gives symmetry-invariant self-similar p-resistance forms on
strongly symmetric self-similar sets.

Theorem 8.51. Assume that L is a strongly symmetric p.-c.f. self-similar set and that
(A’), (R) and (8.64) hold. Then there exists a self-similar p-resistance form (Ep,Fp) on
L with weight ρp such that u ◦ g ∈ Fp and Ep(u ◦ g) = Ep(u) for any u ∈ Fp and any
g ∈ Gsym.

Proof. Define E0 ∈ Sp(V0) by E0(u) :=
∑

x,y∈V0 |u(x)− u(y)|p for u ∈ RV0 . Then E0(u) =

E0(u ◦ g) for any u ∈ RV0 and g ∈ Gsym. By Theorem 8.50 and explicit expressions (8.50),
(8.51) and (8.52), there exists a p-resistance form E (0)

p on V0 such that Rρp(E
(0)
p ) = E (0)

p and
E (0)
p (u) = E (0)

p (u ◦ g) for any u ∈ RV0 and any g ∈ Gsym. The desired symmetry-invariance
for (Ep,Fp) is immediate from (8.64), Proposition 8.49-(2), the fact that τg|Wn : Wn → Wn

is a bijection for any n ∈ N ∪ {0}, and the expressions (8.61), (8.62).

9 p-Walk dimension of Sierpiński carpets/gaskets

In this section, we prove the strict inequality dw,p > p for the generalized Sierpiński
carpets and the D-dimensional level-l Sierpiński gasket as an application of the nonlinear
potential theory developed in Sections 6 and 7. In particular, we remove the planarity in
the hypothesis of the previous result [Shi24, Theorem 2.27].
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9.1 Generalized Sierpiński carpets

Following [Kaj23, Section 2], we recall the definition of the generalized Sierpiński carpets.

Framework 9.1. Let D, l ∈ N, D ≥ 2, l ≥ 3 and set Q0 := [0, 1]D. Let S ⊊ {0, 1, . . . , l−
1}D be non-empty, define fi : RD → RD by fi(x) := l−1i + l−1x for each i ∈ S and set
Q1 :=

⋃
i∈S fi(Q0), so that Q1 ⊊ Q0. Let K be the self-similar set associated with {fi}i∈S.

Note that K ⊊ Q0. Set Fi := fi|K for each i ∈ S and GSC(D, l, S) := (K,S, {Fi}i∈S). Let
d : K × K → [0,∞) be the Euclidean metric on K normalized so that diam(K, d) = 1,
set df := logl(#S), and let m be the self-similar measure on GSC(D, l, S) with uniform
weight (1/#S)i∈S.

Recall that df is the Hausdorff dimension of (K, d) and that m is a constant multiple
of the df-dimensional Hausdorff measure on (K, d); see, e.g., [Kig01, Proposition 1.5.8 and
Theorem 1.5.7]. Note that df < D by S ⊊ {0, 1, . . . , l − 1}D.

The following definition is due to Barlow and Bass [BB99, Section 2], except that
the non-diagonality condition in [BB99, Hypotheses 2.1] has been strengthened later in
[BBKT] to fill a gap in [BB99, Proof of Theorem 3.19]; see [BBKT, Remark 2.10-1.] for
some more details of this correction.

Definition 9.2 (Generalized Sierpiński carpet). GSC(D, l, S) is called a generalized Sier-
piński carpet if and only if the following four conditions are satisfied:

(GSC1) (Symmetry) f(Q1) = Q1 for any isometry f of RD with f(Q0) = Q0.
(GSC2) (Connectedness) Q1 is connected.
(GSC3) (Non-diagonality) intRD

(
Q1 ∩

∏D
k=1[(ik − εk)l

−1, (ik + 1)l−1]
)

is either empty or
connected for any (ik)

D
k=1 ∈ ZD and any (εk)

D
k=1 ∈ {0, 1}D.

(GSC4) (Borders included) [0, 1]× {0}D−1 ⊆ Q1.

See [BB99, Remark 2.2] for a description of the meaning of each of the four conditions
(GSC1), (GSC2), (GSC3) and (GSC4) in Definition 9.2. To be precise, (GSC3) is slightly
different from the formulation of the non-diagonality condition in [BBKT, Subsection 2.2],
but they have been proved to be equivalent to each other in [Kaj10, Theorem 2.4]; see
[Kaj10, Section 2] for some other equivalent formulations of the non-diagonality condition.

In this subsection, we assume that GSC(D, l, S) = (K,S, {Fi}i∈S) as introduced in
Framework 9.1 is a generalized Sierpiński carpet as defined in Definition 9.2.

We next ensure the existence of a symmetry-invariant p-resistance form on GSC(D, l, S)
for p > dimARC(K, d) by applying Theorem 8.30.

Definition 9.3. We define

G0 := {f |K | f is an isometry of RD, f(Q0) = Q0}, (9.1)

which forms a finite subgroup of the group of homeomorphisms of K by virtue of (GSC1).

Corollary 9.4. Let p ∈ (dimARC(K, d),∞). Then Assumption 8.26 holds with r∗ = l−1,
K is p-conductively homogeneous, and there exists a regular self-similar p-resistance form
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(Ep,Wp) on GSC(D, l, S) with weight (σp)i∈S such that it satisfies the conditions (a)-(d)
of Theorem 8.30. Moreover, (Ep,Wp) has the following property:

If u ∈ Wp and g ∈ G0 then u ◦ g ∈ Wp and Ep(u ◦ g) = Ep(u). (9.2)

Proof. Assumption 8.26 and the p-conductive homogeneity for the generalized Sierpiński
carpets in the case p ∈ (dARC,∞) follow from [Kig23, Theorem 4.13] or [Shi24, Proposition
4.5 and Theorem 4.14]. Let (Ep,Wp) be a self-similar p-resistance form given in Theorem
8.30. Then the desired properties except for (9.2) are already proved. We can easily
see that Ẽnp (f ◦ g) = Ẽnp (f) for any f ∈ Lp(K,m), any g ∈ G0 and any n ∈ N ∪ {0},
and that the conditions (5.44)-(5.46) with G0 in place of T hold. Hence the desired
symmetry-invariance (9.2) follows Theorem 8.19-(c), (8.38) and Proposition 5.23-(b).

Recall that σp and dw,p are defined for any p ∈ (0,∞) (under Assumption 8.26). We
know the following monotonicity on dw,p/p in p ∈ (0,∞).

Proposition 9.5. dw,p/p ≥ dw,q/q for any p, q ∈ (0,∞) with p ≤ q.

Proof. This follows from [Kig20, Lemma 4.7.4] and the fact that df = logl(#S).

The following definition is exactly the same as part of [Kaj23, Definition 3.6].

Definition 9.6. (1) We set V ε
0 := K ∩ ({ε} × RD−1) for each ε ∈ {0, 1} and U0 :=

K \ (V 0
0 ∪ V 1

0 ).
(2) We define gε ∈ G0 by gε := τε|K for each ε = (εk)

D
k=1 ∈ {0, 1}D, where τε : RD → RD

is given by τε((xk)Dk=1) := (εk + (1− 2εk)xk)
D
k=1, and define a subgroup G1 of G0 by

G1 := {gε | ε ∈ {0} × {0, 1}D−1}. (9.3)

In the rest of this subsection, we fix p ∈ (dARC,∞) and a self-similar p-resistance
form (Ep,Wp) in Corollary 9.4. Recall Theorem 6.13 and let h0 := h

Ep
V 0
0 ∪V 1

0

[
1V 1

0

]
∈ Wp.

The strategy to prove dw,p > p is very similar to [Kaj23], that is, we will prove the non-
Ep-harmonicity on U0 of h2 :=

∑
w∈W2

(Fw)∗(l
−2h0 + qw1 1K) ∈ Wp, which also satisfies

h2|V i
0
= i (i = 0, 1). (See [Kaj23, Figures 2 and 3] for illustrations of h0 and of h2.) Then

the strict estimate dw,p > p will follow from Ep(h0) < Ep(h2) and the self-similarity of Ep.
Our arguments will be easier than that of [Kaj23] by virtue of Wp ⊆ C(K).

The next proposition is a key ingredient. Note that it requires our standing assumption
that S ̸= {0, 1, . . . , l − 1}D, which excludes the case of K = [0, 1]D from the present
framework.

Proposition 9.7. Let h2 :=
∑

w∈W2
(Fw)∗(l

−2h0 + qw1 1K) ∈ Wp. Then h2 is not Ep-
harmonic on U0 and h2|V i

0
= i for each i ∈ {0, 1}.

Proof. The proof is a straightforward modification of [Kaj23, Proposition 3.11] thanks to
Theorem 6.13. We present here a self-contained proof for the reader’s convenience.
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We claim that, if h2 were Ep-harmonic on U0, then h0 ∈ Wp would turn out to be
Ep-harmonic on K \ V 0

0 , which would imply by combining with Proposition 6.11 that
Ep(h0) = Ep(h0;h0) = 0, which would be a contradiction by (RF1)p and Wp ⊆ C(K).

For each ε = (εk)
D
k=1 ∈ {1} × {0, 1}D−1, set U ε := K ∩

∏D
k=1(εk − 1, εk + 1) and

Kε := K ∩
∏D

k=1[εk − 1/2, εk + 1/2]. Fix φε ∈ Wp ∩ Cc(U
ε) so that φε|Kε = 1Kε ,

which exists by (8.17), (RF1)p and (RF5)p. Let v ∈ Wp ∩ Cc(K \ V 0
0 ) and, taking an

enumeration {ε(k)}2D−1

k=1 of {1} × {0, 1}D−1 and recalling Proposition 2.3-(d), define vε ∈
Wp ∩Cc(U ε) for ε ∈ {1}× {0, 1}D−1 by vε(1) := vφε(1) and vε(k) := vφε(k)

∏k−1
j=1(1K −φε(j))

for k ∈ {2, . . . , 2D−1}. Then v −
∑

ε∈{1}×{0,1}D−1 vε = v
∏

ε∈{1}×{0,1}D−1(1K − φε) ∈ Wp ∩
Cc(U0), hence Ep(h0; v) =

∑
ε∈{1}×{0,1}D−1 Ep(h0; vε) by Proposition 6.11 (with Y = K\U0).

Therefore the desired Ep-harmonicity of h0 on K \V 0
0 would be obtained by deducing that

E(h0; vε) = 0 for any ε ∈ {1} × {0, 1}D−1.
To this end, set ε(0) := (1{1}(k))

D
k=1, take i = (ik)

D
k=1 ∈ S with i1 < l − 1 and

i+ ε(0) ̸∈ S, which exists by ∅ ≠ S ⊊ {0, 1, . . . , l− 1}D and (GSC1), and let ε = (εk)
D
k=1 ∈

{1} × {0, 1}D−1. We will choose iε ∈ S with Fiiε(ε) ∈ Fi(K ∩ ({1} × (0, 1)D−1)) and
assemble vε◦gw◦F−1

w with a suitable gw ∈ G1 for w ∈ W2 with Fiiε(ε) ∈ Kw into a function
vε,2 ∈ Wp ∩ Cc(U0). Specifically, set iε,η :=

(
(l − 1)(1{1}(k) + 1 − εk) + (2εk − 1)ηk

)D
k=1

for each η = (ηk)
D
k=1 ∈ {0} × {0, 1}D−1 and Iε := {η ∈ {0} × {0, 1}d−1 | iε,η ∈ S}, so that

iε := iε,0D ∈ S by (GSC4) and (GSC1) and hence 0D ∈ Iε. Thanks to vε ∈ Wp ∩ Cc(U ε)
and i+ ε(0) ̸∈ S we can define vε,2 ∈ C(K) by setting

vε,2|Kw
:=

{
vε ◦ gη ◦ F−1

w if η ∈ Iε and w = iiε,η

0 if w ̸∈ {iiε,η | η ∈ Iε}
for each w ∈ W2. (9.4)

Then suppK [vε,2] ⊆ Ki \ V 0
0 ⊆ U0 by (9.4) and i1 < l − 1. In addition, vε,2 ◦ Fw ∈ Wp

for any w ∈ W2 by (9.4), vε ∈ Wp and (9.2). Thus vε,2 ∈ Fp by (5.5) and therefore
vε,2 ∈ Wp ∩ Cc(U0). Recall that h2 ◦ Fw = l−2h0 + qw1 1K for any w ∈ W2 and note that,
by the uniqueness in Theorem 6.13, h0 ◦ gη = h0 for any η ∈ Iε. Then we have

Ep(h2; vε,2) =
∑
η∈Iε

σ2
pl

−2(p−1)Ep(h0; vε ◦ gη)

=
∑
η∈Iε

σ2
pl

−2(p−1)Ep(h0 ◦ gη; vε) = (#Iε)σ2
pl

−2(p−1)Ep(h0; vε). (9.5)

Now, supposing that h2 were Ep-harmonic on U0, from (9.5), #Iε > 0, vε,2 ∈ Fp ∩ Cc(U0)
and Proposition 6.11, we would obtain Ep(h0; vε) = σ−2

p l2(p−1)(#Iε)−1Ep(h2; vε,2) = 0,
which would imply a contradiction as explained in the last two paragraphs.

Theorem 9.8. dw,p > p for any p ∈ (0,∞).

Proof. It suffices to prove the case of p ∈ (dARC,∞) by Proposition 9.5. Let h0, h2 ∈ Wp

be as in Proposition 9.7. By Proposition 9.7, we have Ep(h0) < Ep(h2). This strict
inequality combined with (5.6) shows that

Ep(h0) < Ep(h2) =
(
σp(#S)l

−p)2Ep(h0),
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whence lp < σp(#S). Since σp = ldw,p−df and df = log (#S)/ log l, we get dw,p =
log
(
σp(#S)

)
/ log l > p.

9.2 D-dimensional level-l Sierpiński gasket

Following [Kaj13, Example 5.1], we introduce the D-dimensional level-l Sierpiński gasket.

Framework 9.9 (D-dimensional level-l Sierpiński gasket). Let D, l ∈ N, D ≥ 2, l ≥ 2
and let {qk}Dk=0 ⊆ RD be the set of the vertices of a regular D-dimensional simplex so
that q0, . . . , qD−1 ∈ {(x1, . . . , xD) ∈ RD | x1 = 0} and qD ∈ {(x1, . . . , xD) ∈ RD | x1 ≥ 0}.
Further let S :=

{
(ik)

D
k=1

∣∣ ik ∈ N ∪ {0},
∑D

k=1 ik ≤ l − 1
}
, and for each i = (ik)

D
k=1 ∈ S

we set qi := q0 +
∑D

k=1 l
−1ik(qk − q0) and define fi : RD → RD by fi(x) := qi+ l−1(x− q0).

Let K be the self-similar set associated with {fi}i∈S and set Fi := fi|K . Let SG(D, l, S) =
(K,S, {Fi}i∈S), which is a self-similar structure. Let d : K×K → [0,∞) be the Euclidean
metric on K normalized so that diam(K, d) = 1, set df := logl(#S), and let m be the
self-similar measure on SG(D, l, S) with uniform weight (1/#S)i∈S.

SG(D, l, S) is clearly an affine nested fractal (recall Framework 8.46 and Definition
8.47), and called theD-dimensional level-l Sierpiński gasket. In the rest of this subsection,
we fix the Sierpiński gasket SG(D, l, S) and the self-similar measure m as in Framework
9.9. We can easily verify [Kig23, Assumption 2.15] for SG(D, l, S). In addition, it is well
known that m is df-Ahlfors regular (see [Kig23, Proposition E.7] for example). Similar
to Corollary 9.4, we have a symmetry-invariant p-resistance form on SG(D, l, S) for any
p ∈ (1,∞). (The Ahlfors regular conformal dimension of (K, d) is 1; see Theorem B.8.)

Definition 9.10. We define

G0 := {f |K | f is an isometry of RD, f(V0) = V0}, (9.6)

which forms a finite subgroup of the group of homeomorphisms of K.

Corollary 9.11. Let p ∈ (1,∞). Then Assumption 8.26 holds with r∗ = l−1, K
is p-conductively homogeneous, and there exists a regular self-similar p-resistance form
(Ep,Wp) on SG(D, l, S) with weight (σp)i∈S such that it satisfies the conditions (a)-(d) in
Theorem 8.30. Moreover, (Ep,Wp) has the following property:

If u ∈ Wp and g ∈ G0 then u ◦ g ∈ Wp and Ep(u ◦ g) = Ep(u). (9.7)

Similar to Proposition 9.5, we have the following monotonicity of dw,p/p in p.

Proposition 9.12. dw,p/p ≥ dw,q/q for any p, q ∈ (0,∞) with p ≤ q.

We can prove the following main result by using compatible sequences.

Theorem 9.13. dw,p > p for any p ∈ (0,∞).
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Proof. Let p ∈ (1,∞) and let (Ep,Wp) be a self-similar p-resistance form on SG(D, l, S)
as given in Corollary 9.11. Define u ∈ C(K) by u(x1, . . . , xD) := x1 for any (x1, . . . , xD) ∈
K ⊆ RD. Then u|Vn ∈ Wp|Vn for any n ∈ N ∪ {0} by Proposition 6.8. We claim that if
u|V1 were Ep|V1-harmonic on V1 \V0, then Ep|V0(u|V0) = 0, which would contradict (RF1)p.

Suppose that Ep|V1(u|V1 ;φ) = 0 for every φ ∈ RV1 with φ|V0 = 0. Noting that (u|V1 ◦
Fi)|V0 = l−1u|V0 + ci1V0 for some constant ci ∈ R and using (7.5), we have

Ep|V1(u|V1 ;φ) = σp
∑
i∈S

Ep|V0(u|V1 ◦ Fi;φ ◦ Fi) = l−(p−1)σp
∑
i∈S

Ep|V0(u|V0 ;φ ◦ Fi). (9.8)

It is easy to see that (V1 \ V0) ∩ {(x1, . . . , xD) ∈ RD | x1 = 0} ≠ ∅. Let z ∈ V1 \ V0
with z ∈ {x1 = 0} and let φ := 1V1{z} ∈ RV1 . Since u ◦ g = u for any g ∈ G0 with
g({x1 = 0} ∩ K) = {x1 = 0} ∩ K, the G0-invariance (9.7) implies Ep|V0

(
u|V0 ;1V0{qi}

)
=

Ep|V0
(
u|V0 ;1V0{qj}

)
for any i, j ∈ {0, . . . , D − 1}. Since φ ◦ Fj = 0 ∈ RV0 for any j ∈ S with

z ̸∈ Kj, we have from (9.8) that

0 = Ep|V1(u|V1 ;φ) = l−(p−1)σp
∑

i∈S;z∈Ki

Ep|V0(u|V0 ;φ ◦ Fi)

= l−(p−1)σp ·
(
#{i ∈ S | z ∈ Ki}

)
Ep|V0

(
u|V0 ;1V0{q0}

)
.

Hence we get Ep|V0
(
u|V0 ;1V0{qj}

)
= 0 for every j ∈ {0, . . . , D − 1}. Therefore,

Ep|V0
(
u|V0 ;1V0{qD}

)
= Ep|V0

(
u|V0 ;1V0

)
=

D−1∑
j=0

Ep|V0
(
u|V0 ;1V0{qj}

)
= 0,

which yields Ep|V0(u|V0 ; v) = 0 for every v ∈ RV0 . In particular, Ep|V0(u|V0) = 0, which is a
contradiction and hence we conclude that u|V1 is not Ep|V1-harmonic on V1\V0. Combining
with Proposition 6.15, we see that

Ep|V0(u|V0) = Ep|V1|V0(u|V0) = Ep|V1
(
h
Ep|V1
V0

[u|V 0]
)
< Ep|V1(u|V1). (9.9)

Similar to (9.8), we have Ep|V1(u|V1) = l−pσp(#S)Ep|V0(u|V0). Hence the strict inequality
(9.9) yields 1 < l−pldw,p−df (#S) = ldw,p−p, which proves dw,p > p for any p ∈ (1,∞). By
Proposition 9.12, we complete the proof.
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A Symmetric Dirichlet forms and the generalized 2-
contraction property

In this section, we verify the generalized contraction properties for various energy forms
resulting from symmetric Dirichlet forms.

A.1 Symmetric Dirichlet forms satisfy the generalized 2-contraction
property

In this subsection, we show that any symmetric Dirichlet form satisfies (GC)2. Through-
out this subsection, we fix a measure space (X,B,m).

Let us recall the definition of the notion of symmetric Dirichlet form. See, e.g., [CF,
FOT, MR] for details of the theory of Dirichlet forms.

Definition A.1 (Symmetric Dirichlet form). Let F be a dense linear subspace of
L2(X,m) and let E : F × F → R be a non-negative definite symmetric bilinear form
on F . The pair (E ,F) is said to be a symmetric Dirichlet form on L2(X,m) if and only
if F equipped with the inner product E + ⟨ · , · ⟩L2(X,m) is a Hilbert space, u+ ∧ 1 ∈ F and
E(u+ ∧ 1, , u+ ∧ 1) ≤ E(u, u) for any u ∈ F .

We can show that a symmetric Dirichlet form (E ,F) satisfies (GC)2 by modifying the
proof of [MR, Theorem I.4.12].

Proposition A.2. Let (E ,F) be a symmetric Dirichlet form on L2(X,m). Then (E2,F)
given by E2(u) := E(u, u) is a 2-energy form on (X,m) satisfying (GC)2.

Proof. It is clear that E1/2
2 is a seminorm on F , so we shall prove (GC)2 for (E2,F).

Let n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2).
We consider the case of q2 < ∞ (the case of q2 = ∞ is similar). Let {Gα}α>0 be the
strongly continuous resolvent on L2(X,m) associated with (E ,F); see, e.g., [MR, Theorem
I.2.8]. By [MR, Theorem I.2.13-(ii)], it suffices to prove that for any u = (u1, . . . , un1) ∈
L2(X,m)n1 and any α ∈ (0,∞),(

n2∑
l=1

⟨(1− αGα)Tl(u), Tl(u)⟩q2/2L2(X,m)

)1/q2

≤

(
n1∑
k=1

⟨(1− αGα)uk, uk⟩q1/2L2(X,m)

)1/q1

. (A.1)

By the linearity of Gα and (2.2), it is enough to prove (A.1) in the case where uk is a
simple function for each k ∈ {1, . . . , n1}, so we assume that

uk =
N∑
i=1

αki1Ai
, k ∈ {1, . . . , n1}, (A.2)

where N ∈ N, (αki)Ni=1 ⊆ R, {Ai}Ni=1 ⊆ B(X) with m(Ai) <∞ and Ai ∩Aj = ∅ for i ̸= j.
Fix α ∈ (0,∞) and, for i, j ∈ {1, . . . , N}, we define

bi,j := ⟨(1− αGα)1Ai
,1Aj

⟩L2(X,m), λi := m(Ai) and aij := ⟨αGα1Ai
,1Aj

⟩L2(X,m).
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Then bij = λiδij − aij by a simple calculation, and aij = aji since Gα is a symmetric
operator on L2(X,m) (see, e.g., [MR, Theorem I.2.8]). Hence for any (z1, . . . , zN) ∈ RN ,

N∑
i,j=1

zizjbij =
∑
i<j

aij(zi − zj)
2 +

N∑
j=1

mjz
2
j , (A.3)

where mj := λj −
∑N

i=1 aij. Note that aij ≥ 0 for any i, j ∈ {1, . . . , N} since αGα1Ai
≥ 0

by [MR, Theorem I.4.4]. We set A :=
⋃N
i=1Ai, and then we have αGα(1A) ≤ 1 by [MR,

Theorem I.4.4] and
N∑
u=1

aij = α

ˆ
X

1AGα(1Aj
) dm = α

ˆ
X

Gα(1A)1Aj
dm ≤

ˆ
X

1Aj
dm = λj,

whence mj ≥ 0. With these preparations, we show (A.1) for u defined in (A.2). Set
Tl,i := Tl(α1i, . . . , αu1i) for each l ∈ {1, . . . , n2}. We see that

n2∑
l=1

⟨(1− αGα)Tl(u), Tl(u)⟩q2/2L2(X,m) =

n2∑
l=1

(
N∑

i,j=1

Tl,iTl,jbij

)q2/2

(A.3)
=

n2∑
l=1

(∑
i<j

aij(Tl,i − Tl,j)
q2· 2

q2 +
N∑
j=1

mjT
q2· 2

q2
l,j

)q2/2

(2.18)
≤

∑
i<j

(
a
q2/2
ij

n2∑
l=1

(Tl,i − Tl,j)
q2

)2/q2

+
N∑
j=1

(
m
q2/2
j

n2∑
l=1

T q2l,j

)2/q2
q2/2

(2.2)
≤

∑
i<j

aq2/2ij

(
n1∑
k=1

(αki − αkj)
q1

)q2/q1
2/q2

+
N∑
j=1

mq2/2
j

(
n1∑
k=1

αq1kj

)q2/q1
2/q2


q2/2

=

∑
i<j

(
n1∑
k=1

(
aij(αki − αkj)

2
)q1/2)2/q1

+
N∑
j=1

(
n1∑
k=1

(
mjα

2
kj

)q1/2)2/q1


q1
2
· q2
q1

(∗)
≤


 n1∑

k=1

(∑
i<j

aij(αki − αkj)
2 +

N∑
j=1

mjα
2
kj

)q1/2
2/q1


q1
2
· q2
q1

=

 n1∑
k=1

(∑
i<j

aij(αki − αkj)
2 +

N∑
j=1

mjα
2
kj

)q1/2
q2/q1

(A.3)
=

 n1∑
k=1

(
N∑
i,=1

αkiαkjbij

)q1/2
q2/q1

=

(
n1∑
k=1

⟨(1− αGα)uk, uk⟩q1/2L2(X,m)

) 2
q1

· q2
2

,

where we used the triangle inequality for ℓ2/q1-norm in (∗). The proof is completed.
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Next we will extend (GC)2 to (E2,Fe), where Fe is the extended Dirichlet space; see
Definition A.4 below. (See, e.g., [FOT, Section 1.5] or [CF, Section 1.1] for details on the
extended Dirichlet space.) We need to recall the following result.

Proposition A.3 ([Sch99b, Proposition 2] and [Sch99a, Lemma 1]14). Let (E ,F) be a
symmetric Dirichlet form on L2(X,m). If {un}n∈N ⊆ F converges m-a.e. to 0 as n→ ∞
and limk∧l→∞ E(uk − ul, uk − ul) = 0, then limn→∞ E(un, un) = 0.

Now we define the extended Dirichlet form (E ,Fe).

Definition A.4 (Extended Dirichlet form). Let (E ,F) be a symmetric Dirichlet form on
L2(X,m). We define the extended Dirichlet form (E ,Fe) of (E ,F) by

Fe :=

{
f ∈ L0(X,m)

∣∣∣∣ limn→∞ fn = f m-a.e. for some {fn}n∈N ⊆ F
with limk∧l→∞ E(fk − fl, fk − fl) = 0

}
, (A.4)

E(f, f) := lim
n→∞

E(fn, fn), f ∈ Fe, where {fn}n∈N is a sequence as in (A.4). (A.5)

Each such {fn}n∈N as in (A.4) is called an approximating sequence for f . By Proposition
A.3, the limit limn→∞ E(fn, fn) in (A.5) does not depend on a particular choice of {fn}n∈N,
and we have F = Fe∩L2(X,m) by [Sch99b, Proposition 2]; see also [CF, Theorem 1.1.5].

We also need the following proposition, which is proved by utilizing a version [CF,
Theorem A.4.1-(ii)] of the Banach–Saks theorem.

Proposition A.5 ([Sch99a, Lemma 2]15). Let (E ,F) be a symmetric Dirichlet form on
L2(X,m), and let {un}n∈N ⊆ F . If lim infn→∞ E(un, un) < ∞ and {un}n∈N converges
m-a.e. to u ∈ L0(X,m) as n→ ∞, then u ∈ Fe and E(u, u) ≤ lim infn→∞ E(un, un).

Now we can show that the extended Dirichlet form (E ,Fe) satisfies (GC)2.

Proposition A.6. Let (E ,F) be a symmetric Dirichlet form on L2(X,m). Then (E2,Fe)
given by E2(u) := E(u, u) is a 2-energy form on (X,m) satisfying (GC)2.

Proof. It is clear that E1/2
2 is a seminorm on Fe. Let us show (GC)2 for (E2,Fe).

As in the proof of Proposition A.2, let n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and
T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2). Let u = (u1, . . . , un1) ∈ Fn1

e . For
each k ∈ {1, . . . , n1}, let {uk,n}n∈N ⊆ F be an approximating sequence for uk. Set
un := (u1,n, . . . , un1,n). Since Tl ∈ C(Rn1) and (E2,F) satisfies (GC)2 (Proposition A.2),

14In [Sch99a, Lemma 1], Proposition A.3 is stated and proved for a much wider class of (E ,F). The
assumptions made in [Sch99a, Lemma 1] are that (X,B,m) is an arbitrary measure space, that F is a
linear subspace of L0(X,m) and that E : F×F → R is a non-negative definite bilinear form satisfying the
strong sector condition (see [Sch99a, Definition 1]) and the Fatou property (see [Sch99a, Definition 2]),
both of which are satisfied if (E ,F) is a symmetric Dirichlet form. Indeed, the strong sector condition is
immediate from the Cauchy–Schwarz inequality for E and the Fatou property for (E ,F) holds by [Sch99b,
Proposition 2].

15In [Sch99a, Lemma 2], Proposition A.5 is stated and proved for the same class of bilinear forms (E ,F)
as Proposition A.3 is in [Sch99a, Lemma 1].
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limn→∞ Tl(un) = Tl(u) m-a.e. and {E2(Tl(un))}n∈N is bounded. Then we have Tl(u) ∈ Fe

and E2(Tl(u)) ≤ lim infn→∞ E2(Tl(un)) by Proposition A.5, and see by (GC)2 for (E2,F)
from Proposition A.2 that∥∥(E2(Tl(u))1/2)n2

l=1

∥∥
ℓq2

≤
∥∥∥(lim inf

n→∞
E2(Tl(un))1/2

)n2

l=1

∥∥∥
ℓq2

≤ lim inf
n→∞

∥∥(E2(Tl(un))1/2)n2

l=1

∥∥
ℓq2

≤ lim inf
n→∞

∥∥(E2(uk,n)1/2)n1

k=1

∥∥
ℓq1

=
∥∥(E2(uk)1/2)n1

k=1

∥∥
ℓq1
,

proving that (E2,Fe) satisfies (GC)2.

A.2 The generalized 2-contraction property for energy measures

In this subsection, under the standard topological assumptions on (X,m), we verify (GC)2
for the (2-)energy measures associated with a regular symmetric Dirichlet form.

Throughout this subsection, we assume that X and m are as specified in (3.26)
and (3.27), which are precisely the topological assumption [FOT, (1.1.7)] made almost
throughout the book [FOT], and that (E ,F) is a symmetric Dirichlet form on L2(X,m)
which is regular, i.e., possesses a core in the sense of Definition 3.26-(1).

A regular symmetric Dirichlet form is known to satisfy the following representation.

Theorem A.7 (Beurling–Deny expression; see, e.g., [FOT, Theorem 3.2.1]). There exist
a symmetric bilinear form E (c) on F ∩ Cc(X) satisfying E (c)(u, v) = 0 for any u, v ∈
F ∩ Cc(X) with v constant on a neighborhood of suppX [u], a symmetric Radon measure
J on X ×X \ {(x, x) | x ∈ X} and a Radon measure k on X such that

E(u, v) = E (c)(u, v) + E (j)(u, v) + E (k)(u, v) for any u, v ∈ F ∩ Cc(X), (A.6)

where

E (j)(u, v) :=

ˆ
X×X

(u(x)− u(y))(v(x)− v(y)) J(dxdy), E (k)(u, v) :=

ˆ
X

u(x)v(x) k(dx).

Moreover, such E (c), J and k are uniquely determined by E. We call E (c) the local part of
E, J the jumping measure associated with E and k the killing measure associated with E.

In the next two propositions, we extend each of E (c), E (j), E (k) in (A.6) to Fe and
associate energy measures to each of them; see [FOT, Section 3.2] for their proofs.

Proposition A.8. Let u ∈ Fe and {un}n∈N ⊆ F be an approximating sequence for u.
Then, for any E# ∈ {E (c), E (j), E (k)}, {E#(un, un)}n∈N is a Cauchy sequence in [0,∞)
and the limit limn→∞ E#(un, un) ∈ [0,∞) does not depend on a particular choice of an
approximating sequence {un}n∈N for u.
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Proposition A.9. Let E# ∈ {E , E (c), E (j), E (k)}. For any u ∈ F ∩ Cc(X), there exists a
unique Radon measure µ#

⟨u⟩ on X such that
ˆ
X

φdµ#
⟨u⟩ = E#(u, uφ)− 1

2
E#(u2, φ) for any φ ∈ F ∩ Cc(X). (A.7)

Moreover, for any Borel measurable function φ : X → [0,∞) with ∥φ∥sup < ∞, any
u ∈ Fe and any approximating sequence {un}n∈N ⊆ F ∩Cc(X) for u,

{´
X
φdµ#

⟨un⟩
}
n∈N is

a Cauchy sequence in [0,∞), limn→∞
´
X
φdµ#

⟨un⟩ does not depend on the choice of {un}n,
and

´
X
φdµ#

⟨u⟩ = limn→∞
´
X
φdµ#

⟨un⟩, where µ#
⟨un⟩ is the Radon measure on X defined by

µ#
⟨u⟩(A) := limn→∞ µ#

⟨un⟩(A) for A ∈ B(X).

Definition A.10 (Energy measures). Let u ∈ Fe. Let µ⟨u⟩ denote the measure in the
above proposition in the case E# = E . We call µ⟨u⟩ the energy measure of u. For each w ∈
{c, j, k}, let µw⟨u⟩ denote the measure in the above proposition in the case E# = E (w). For
u, v ∈ Fe, we also define µ#

⟨u,v⟩ :=
1
4

(
µ#
⟨u+v⟩ − µ#

⟨u−v⟩
)
, where µ#

⟨ · ⟩ ∈
{
µ⟨ · ⟩, µ

c
⟨ · ⟩, µ

j
⟨ · ⟩, µ

k
⟨ · ⟩
}
.

The following lemma is a Fatou-type property for energy measures.

Lemma A.11. Let φ : X → [0,∞) be a Borel measurable function with ∥φ∥sup < ∞
and let µ#

⟨ · ⟩ ∈
{
µ⟨ · ⟩, µ

c
⟨ · ⟩, µ

j
⟨ · ⟩, µ

k
⟨ · ⟩
}
. If {un}n∈N ⊆ F and u ∈ Fe satisfy limn→∞ un = u

m-a.e. and supn∈N E(un, un) <∞, then
ˆ
X

φdµ#
⟨u⟩ ≤ lim inf

n→∞

ˆ
X

φdµ#
⟨un⟩. (A.8)

Proof. By extracting a subsequence of {un}n if necessary, we can assume that the limit
limn→∞

´
X
φdµ#

⟨un⟩ exists. By using a version [CF, Theorem A.4.1-(ii)] of the Banach–
Saks theorem, we can find a subsequence {unk

}k∈N such that {vl}l∈N ⊆ F defined by vl :=
l−1
∑l

k=1 unk
satisfies limk∧l→∞ E(vk−vl, vk−vl) = 0. Noting that liml→∞ vl = u m-a.e. and

using Proposition A.3, we have liml→∞ E(u− vl, u− vl) = 0. Hence liml→∞
´
X
φdµ#

⟨vl⟩ =´
X
φdµ#

⟨u⟩ by Proposition A.9. By the triangle inequality for
(´

X
φdµ#

⟨ · ⟩

)1/2
,

(ˆ
X

φdµ#
⟨vl⟩

)1/2

≤ 1

l

l∑
k=1

(ˆ
X

φdµ#
⟨unk

⟩

)1/2

,

which implies (A.8) by letting l → ∞.

Now we can show that the integrals of non-negative bounded Borel measurable func-
tions with respect to energy measures give 2-energy forms satisfying (GC)2.

Proposition A.12. Let φ : X → [0,∞) be a Borel measurable function with ∥φ∥sup <∞
and let µ#

⟨ · ⟩ ∈
{
µ⟨ · ⟩, µ

c
⟨ · ⟩, µ

j
⟨ · ⟩, µ

k
⟨ · ⟩
}
. Then (

´
X
φdµ#

⟨ · ⟩,Fe) is a 2-energy form on (X,m)

satisfying (GC)2.
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Proof. Let n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy
(2.2). It suffices to prove that for any u = (u1, . . . , un1) ∈ (F ∩ Cc(X))n1 and any
φ ∈ F ∩ Cc(X),∥∥∥∥∥

((ˆ
X

φdµ#
⟨Tl(u)⟩

)1/2
)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((ˆ

X

φdµ#
⟨uk⟩

)1/2
)n1

k=1

∥∥∥∥∥
ℓq1

. (A.9)

Indeed, we can extend (A.9) to any u ∈ Fn1
e and any Borel measurable function φ : X →

[0,∞] as follows. Let us start with the case of φ = 1A, where A ∈ B(X). By [Rud,
Theorem 2.18], there exist sequences {Kn}n∈N and {Un}n∈N such that Kn ⊆ A ⊆ Un, Kn

is compact, Un is open and limn→∞maxv∈{Tl(u)}l∪{uk}k µ
#
⟨v⟩(Un \ Kn) = 0. By Urysohn’s

lemma, we can pick φn ∈ Cc(X) so that 0 ≤ φn ≤ 1, φn|Kn = 1 and suppX [φn] ⊆ Un. By
(A.9) with φn in place of φ, we obtain

∥∥∥(µ#
⟨Tl(u)⟩(Kn)

1/2
)n2

l=1

∥∥∥
ℓq2

≤
∥∥∥(µ#

⟨uk⟩(Un)
1/2
)n1

k=1

∥∥∥
ℓq1

.
By letting n→ ∞, we get (A.9) with φ = 1A, i.e.,∥∥∥(µ#

⟨Tl(u)⟩(A)
1/2
)n2

l=1

∥∥∥
ℓq2

≤
∥∥∥(µ#

⟨uk⟩(A)
1/2
)n1

k=1

∥∥∥
ℓq1
. (A.10)

By the reverse Minkowski inequality on ℓq1/2 and the Minkowski inequality on ℓq2/2

(see also (2.19)), we can extend (A.10) to (A.9) for any non-negative Borel measur-
able simple function φ on X, By the monotone convergence theorem, (A.9) holds
for any Borel measurable function φ : X → [0,∞]. Next we will extend (A.9) to
u = (u1, . . . , un1) ∈ Fn1

e . Since F ∩ Cc(X) is dense in (F , ∥ · ∥E,1), there exists an
approximating sequence {uk,n}n∈N ⊆ F ∩ Cc(X) for uk for each k ∈ {1, . . . , n1}. Set
un := (u1,n, . . . , un1,n). Then, for each l ∈ {1, . . . , n2}, limn→∞ Tl(un) = Tl(u) m-a.e.,
Tl(un) ∈ F and supn∈N E(Tl(un), Tl(un)) < ∞ by Proposition A.2. Hence Tl(u) ∈ Fe by
Proposition A.5, and∥∥∥∥∥

((ˆ
X

φdµ#
⟨Tl(u)⟩

)1/2
)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((

lim inf
n→∞

ˆ
X

φdµ#
⟨Tl(un)⟩

)1/2
)n2

l=1

∥∥∥∥∥
ℓq2

≤ lim inf
n→∞

∥∥∥∥∥
((ˆ

X

φdµ#
⟨Tl(un)⟩

)1/2
)n2

l=1

∥∥∥∥∥
ℓq2

(A.9)
≤ lim inf

n→∞

∥∥∥∥∥
((ˆ

X

φdµ#
⟨uk,n⟩

)1/2
)n1

k=1

∥∥∥∥∥
ℓq1

=

∥∥∥∥∥
((ˆ

X

φdµ#
⟨uk⟩

)1/2
)n1

k=1

∥∥∥∥∥
ℓq1

,

where we used Lemma A.11 in the first inequality and Proposition A.9 in the last equality.
This implies that (

´
X
φdµ#

⟨ · ⟩,Fe) is a 2-energy form on (X,m) satisfying (GC)2.
Let us go back to the proof of (A.9) in the case where u = (u1, . . . , un1) ∈ (F∩Cc(X))n1

and φ ∈ F ∩ Cc(X). Fix a metric d on X which is compatible with the given topology
of X, an increasing sequence of relatively open sets {Gl}l∈N with

⋃
l∈NGl = X and a
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sequence of positive numbers {δl}l∈N with δl ↓ 0 as l → ∞. Then there exist a sequence of
positive numbers {βn}n∈N with βn ↑ ∞ as n → ∞, a family of Radon measures {σβ}β>0

on X × X and a family of Radon measures {mβ}β>0 on X with mβ ≪ m such that for
any v ∈ F ∩ Cc(X),ˆ
X

φdµ⟨v⟩ = lim
β→∞

(
β

2

ˆ
X×X

|v(x)− v(y)|2 φ(x)σβ(dx, dy) +
β

2

ˆ
X

|v(x)|2 φ(x)mβ(dx)

)
,

(A.11)
andˆ

X

φdµc⟨v⟩ = lim
l→∞

lim
n→∞

βn
2

ˆ
{(x,y)∈Gl×Gl|d(x,y)<δl}

|v(x)− v(y)|2 φ(x)σβn(dx, dy). (A.12)

See [FOT, the equations just before (3.2.13) and (3.2.19)] for details. Note that Tl(u) ∈
F ∩Cc(X) for each l ∈ {1, . . . , n2} by Proposition A.2 and Tl(0) = 0. If q2 <∞, then we
have from (A.11) that
n2∑
l=1

(ˆ
X

φdµ⟨Tl(u)⟩

)q2/2
(2.18)
≤ lim

β→∞

(
β

2

ˆ
X×X

∥T (u(x))− T (u(y))∥2ℓq2 φ(x)σβ(dx, dy)

+
β

2

ˆ
X

∥T (u(x))∥2ℓq2 φ(x)mβ(dx)

)q2/2
(2.2)
≤ lim

β→∞

(
β

2

ˆ
X×X

∥u(x)− u(y)∥2ℓq1 φ(x)σβ(dx, dy) +
β

2

ˆ
X

∥u(x)∥2ℓq1 φ(x)mβ(dx)

)q2/2
(∗)
≤ lim

β→∞

(
n1∑
k=1

[
β

2

ˆ
X×X

|uk(x)− uk(y)|2 φ(x)σβ(dx, dy)

+
β

2

ˆ
X

|uk(x)|2 φ(x)mβ(dx)

]q1/2) 2
q1

· q2
2

=

(
n1∑
k=1

(ˆ
X

φdµ⟨uk⟩

)q1/2)q2/q1

,

where we used the triangle inequality for a suitable L2/q1-norm on (X×X)⊔X in (∗) (here
⊔ denotes the disjoint union). The case of q2 = ∞ is similar, so we obtain the desired
estimate (A.9) for µ#

⟨ · ⟩ = µ⟨ · ⟩. The other case µ#
⟨ · ⟩ ∈ {µc⟨ · ⟩, µ

j
⟨ · ⟩, µ

k
⟨ · ⟩} can be shown in a

similar way by virtue of the expression in [FOT, (3.2.23)].

Next we see that “|∇u|” also satisfies a similar contraction property. To present the
precise definition of the density, we recall the notion of minimal energy dominant measure.

Definition A.13 (Minimal energy dominant measure; [Hin10, Definition 2.1]). A σ-finite
Borel measure µ on X is called a minimal energy-dominant measure of (E ,F) if and only
if the following two conditions hold.
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(i) For any f ∈ F , we have µ⟨f⟩ ≪ µ.
(ii) If another σ-finite Borel measure µ′ on X satisfies (i) with µ in place of µ′, then

µ≪ µ′.

The existence of a minimal energy-dominant measure is proved in [Nak85, Lemma 2.2]
(see also [Hin10, Lemma 2.3]). For any minimal energy-dominant measure µ of (E ,F),
the same argument as in [Hin10, Proof of Lemma 2.2] implies that µ⟨f⟩ ≪ µ for any
f ∈ Fe. In addition, for µ#

⟨ · ⟩ ∈ {µ⟨ · ⟩, µ
c
⟨ · ⟩, µ

j
⟨ · ⟩, µ

k
⟨ · ⟩}, we easily see that µ#

⟨f,g⟩ ≪ µ for any

f, g ∈ Fe. We define Γ#
µ (u, v) :=

dµ#⟨u,v⟩
dµ

and Γ#
µ (u) := Γ#

µ (u, u) for u, v ∈ Fe.

Proposition A.14. Let µ be a minimal energy-dominant measure of (E ,F) and for each
f ∈ Fe, let Γµ(f) := dµ⟨f⟩/dµ and Γwµ (f) := dµw⟨f⟩/dµ for each w ∈ {c, j, k}. Let Γ#

µ ( · ) ∈
{Γµ( · ),Γcµ( · ),Γjµ( · ),Γkµ( · )}. Then for any n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and
T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.2) and any u = (u1, . . . , un1) ∈ Fn1

e ,∥∥(Γ#
µ (Tl(u))(x)

1/2
)n2

l=1

∥∥
ℓq2

≤
∥∥(Γ#

µ (uk)(x)
1/2
)n1

k=1

∥∥
ℓq1

for µ-a.e. x ∈ X, (A.13)

and in particular, for any p ∈ [q1, q2]∩ (0,∞) and any Borel measurable function φ : X →
[0,∞],∥∥∥∥∥

((ˆ
X

φΓ#
µ (Tl(u))

p
2 dµ

)1/p
)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((ˆ

X

φΓ#
µ (uk)

p
2 dµ

)1/p
)n1

k=1

∥∥∥∥∥
ℓq1

. (A.14)

Proof. We first construct a good µ-version of Γ#
µ (v) for each v ∈ Fe. Fix {Xn}n∈N ⊆ B(X)

such that Xn ⊆ Xn+1, X =
⋃
n∈NXn and µ(Xn) ∈ (0,∞) for each n ∈ N. Let {Ak}k∈N

be a countable open base for the topology of X. Set A0
k := X \Ak and A1

k := Ak for each
k ∈ N, and define a non-decreasing sequence {Ak}k∈N of σ-algebras in X in the same way
as (4.29). For v ∈ Fe, n, k ∈ N, α ∈ {0, 1}k, define Γ#

µ (v)n,k : X → [0,∞) by, for x ∈ Aαk ,

Γ#
µ (v)n,k(x) :=

{
µ(Aαk ∩Xn)

−1µ#
⟨v⟩(A

α
k ∩Xn) if µ(Aαk ∩Xn) > 0,

0 if µ(Aαk ∩Xn) = 0.
(A.15)

We also set µn := µ(Xn)
−1µ((·) ∩ Xn) and v#n :=

dµ#⟨v⟩((·)∩Xn)

µ((·)∩Xn)
. Then we easily see that

Eµn [v#n | Ak] = Γ#
µ (v)n,k µ-a.e. on Xn and hence limk→∞ Γ#

µ (v)n,k = v#n µ-a.e. on Xn by
the martingale convergence theorem (see, e.g., [Dud, Theorem 10.5.1]) and the fact that⋃
k∈N Ak generates B(X). Now we define Γ̃#

µ (v) : X → [0,∞) by Γ̃#
µ (v)(x) := v#n (x) for

n ∈ N and x ∈ Xn \Xn−1, where X0 := ∅. Then Γ̃#
µ (v) = Γ#

µ (v) µ-a.e. on X.
Next we show (A.13). Let n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞], u = (u1, . . . , un1) ∈ Fn1

e

and let T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2) with 2 in place of p. By Proposition
A.12 and (A.15), for any n,m ∈ N and any x ∈ X,∥∥(Γ#

µ (Tl(u))n,m(x)
1/2
)n2

l=1

∥∥
ℓq2

≤
∥∥(Γ#

µ (uk)n,m(x)
1/2
)n1

k=1

∥∥
ℓq1
.
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By letting m→ ∞, we obtain∥∥∥(Γ̃#
µ (Tl(u))(x)

1/2
)n2

l=1

∥∥∥
ℓq2

≤
∥∥∥(Γ̃#

µ (uk)(x)
1/2
)n1

k=1

∥∥∥
ℓq1

for µ-a.e. x ∈ X,

whence (A.13) holds. Lastly, if p ∈ [q1, q2] ∩ (0,∞) and q2 <∞, then we see that for any
Borel measurable function φ : X → [0,∞],

n2∑
l=1

(ˆ
X

φΓ#
µ (Tl(u))

p
2 dµ

)q2/p (2.18)
≤
( ˆ

X

φ
∥∥(Γ#

µ (Tl(u))(x)
1/2
)n2

l=1

∥∥p
ℓq2

µ(dx)

)q2/p
(A.13)
≤
( ˆ

X

φ
∥∥(Γ#

µ (uk)(x)
1/2
)n1

k=1

∥∥p
ℓq1

µ(dx)

)q2/p
(∗)
≤

(
n1∑
k=1

(ˆ
X

φΓ#
µ (uk)

p
2 dµ

)q1/p)q2/q1

, (A.16)

where we used the triangle inequality for the norm of Lp/q1(X,φ dµ) in (∗). The case of
q2 = ∞ is similar, so we obtain (A.14).

If (E ,F) is strongly local, then we can show (GC)p for (Γµ( · )p/2,Fe). To prove it, we
need some preparations. The following proposition is the standard Minkowski integral
inequality (see, e.g., [DF, Appendix B5]).

Proposition A.15. Let (Xi,Bi,mi) be a σ-finite measure space for each i ∈ {1, 2}. Let
q ∈ [1,∞) and let f : X1 × X2 → [−∞,∞] be measurable with respect to the product
σ-algebra of B1 and B2. Then(ˆ

X1

(ˆ
X2

|f(x1, x2)| m2(dx2)

)q
m1(dx1)

) 1
q

≤
ˆ
X2

(ˆ
X1

|f(x1, x2)|q m1(dx1)

) 1
q

m2(dx2).

(A.17)

Next we show a tensor-type inequality for non-negative definite symmetric bilinear
forms.

Proposition A.16. Let V be a finite-dimensional vector space over R, let E : V ×
V → R be a non-negative definite symmetric bilinear form, let n1, n2 ∈ N and let
A = (Alk)1≤l≤n2,1≤k≤n1 be a real matrix. If (u1, . . . , un1) ∈ V n1, q1 ∈ (0,∞), q2 ∈ (0,∞]
and q1 ≤ q2, then∥∥∥∥∥

(
E

( n1∑
k=1

Alkuk

)1/2
)n2

l=1

∥∥∥∥∥
ℓq2

≤ ∥A∥ℓq1n1
→ℓ

q2
n2

∥∥(E(uk)1/2)n1

k=1

∥∥
ℓq1
, (A.18)

where we set E(u) := E(u, u) for u ∈ V and ∥A∥ℓq1n1
→ℓ

q2
n2

:= supx∈Rn1 , ∥x∥ℓq1≤1 ∥Ax∥ℓq2 .
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Proof. The desired inequality follows from a Beckner-like result in [DF, 7.9.] (see also
[Bec75, Lemma 2]). We present a complete proof for convenience. Let γn be the Gaussian
measure on Rn, i.e., γn(dx) := (2π)−n/2 exp

(
−∥x∥2 /2

)
dx, for each n ∈ N and set n :=

dim(V/E−1(0)) ∈ N ∪ {0}. If n = 0, i.e., E(u) = 0 for any u ∈ V , then (A.18) is clear.
Hence we assume that n ≥ 1 in the rest of the proof. Let πj : Rn → R be the projection
map to the j-th coordinate for each j ∈ {1, . . . , n}. Then we have from [DF, Proposition
in 8.7.] that for any (αj)

n
j=1 ∈ Rn,

∥π1∥−1
Lq1 (R,γ1)

(ˆ
Rn

∣∣∣∣∣
n∑
j=1

αjπj(x)

∣∣∣∣∣
q1

dγn(dx)

)1/q1

=
∥∥(αj)nj=1

∥∥
ℓ2
. (A.19)

Indeed, (A.19) is obviously true in the case of (αj)j = (δ1j)j and this together with the
invariance of γn under ℓ2n-isometries implies the desired equality (A.19).

Let us fix a basis {ej}nj=1 ⊆ V of V satisfying E(ej, ej′) = δjj′ for each j, j′ ∈ {1, . . . , n},
which exists by the Gram–Schmidt orthonormalization. Now we define ι : V → Lq1(Rn, γn)
by

ι(u) := ∥π1∥−1
Lq1 (R,γ1)

n∑
j=1

E(u, ej)
1/2πj, u ∈ V. (A.20)

Then ∥ι(u)∥Lq1 (Rn,γn)
=
(∑n

j=1E(u, ej)
)1/2

= E(u, u)1/2 by (A.19). If q2 <∞, then∥∥∥∥∥∥
E( n1∑

k=1

Alkuk

)1/2
n2

l=1

∥∥∥∥∥∥
ℓq2

=

 n2∑
l=1

(ˆ
Rn

∣∣∣∣∣
n1∑
k=1

Alkι(uk)

∣∣∣∣∣
q1

dγn

)q2/q1


q1
q2

· 1
q1

(∗)
≤

ˆ
Rn

(
n2∑
l=1

∣∣∣∣∣
n1∑
k=1

Alkι(uk)

∣∣∣∣∣
q2)q1/q2

dγn

1/q1

≤ ∥A∥ℓq1n1
→ℓ

q2
n2

(ˆ
Rn

n1∑
k=1

|ι(uk)|q1 dγn

)1/q1

= ∥A∥ℓq1n1
→ℓ

q2
n2

(
n1∑
k=1

E(uk)
q1/2

)1/q1

,

where we used (A.17) with q = q1/q2 in (∗). Since the case of q2 = ∞ is similar, so we
obtain (A.18).

Let us recall the definition of p-energy forms introduced by Kuwae in [Kuw24]

Definition A.17 ([Kuw24, Definition 1.4]). Let µ be a minimal energy-dominant measure
of (E ,F), p ∈ (1,∞) and D ⊆ {u ∈ F ∩Lp(X,m) | Γµ(u)

1
2 ∈ Lp(X,µ)} a linear subspace.

Assume that (E ,F) is strongly local and that

limn→∞
´
X
Γµ(un)

p
2 dµ = 0 for any {un}n∈N ⊆ D satisfying

limn∧k→∞
´
X
Γµ(un − uk)

p
2 dµ = 0 and limn→∞ ∥un∥Lp(X,m) = 0. (A.21)
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We define the norm ∥ · ∥H1,p on D by ∥u∥H1,p :=
(
∥u∥pLp(X,m) +

´
X
Γµ(u)

p
2 dµ

)1/p, and
let (H1,p(X), ∥ · ∥H1,p) denote the completion of (D , ∥ · ∥H1,p), so that we may and do
consider H1,p(X) as a linear subspace of Lp(X,m) since the canonical bounded linear map
from H1,p(X) to Lp(X,m) extending idD is injective by (A.21). Then we can uniquely
extend Γµ to H1,p(X) by defining Γµ(u)

1
2 ∈ Lp(X,µ) for u ∈ H1,p(X) as the Lp(X,µ)-

limit of Γµ(un)
1
2 , where {un}n∈N ⊆ D satisfies limn∧k→∞

´
X
Γµ(un − uk)

p
2 dµ = 0 and

limn→∞ ∥u− un∥Lp(X,m) = 0.

Remark A.18. The condition (A.21) always holds if p ≥ 2 and µ(Fn) <∞ for any n ∈ N
for some E-nest {Fn}n∈N16 as proved in [Kuw24, Proposition 1.1]; the latter condition17

on µ is not assumed there, but is necessary for [Kuw24, Proof of Proposition 1.1] to make
sense.

Now we can show the main result in this subsection.

Theorem A.19. Let µ be a minimal energy-dominant measure of (E ,F), p ∈ (1,∞) and
D ⊆ {u ∈ F ∩ Lp(X,m) | Γµ(u)

1
2 ∈ Lp(X,µ)} a linear subspace. Assume that (E ,F) is

strongly local and that (A.21) holds. In addition, we assume that

T̂ (u) ∈ D for any u ∈ Dn and any T̂ ∈ C∞(Rn) satisfying

supx,y∈Rn;x ̸=y
|T̂ (x)−T̂ (y)|

∥x−y∥ <∞ and T̂ (0) = 0.
(A.22)

If n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.2) and
u = (u1, . . . , un1) ∈ H1,p(X)n1, then T (u) ∈ H1,p(X)n2 and∥∥(Γµ(Tl(u))(x)1/2)n2

l=1

∥∥
ℓq2

≤
∥∥(Γµ(uk)(x)1/2)n1

k=1

∥∥
ℓq1

for µ-a.e. x ∈ X. (A.23)

In particular,
{
Γµ(u)

p
2 dµ

}
u∈H1,p(X)

is a family of p-energy measures on (X,B(X)) domi-
nated by

(´
X
Γµ( · )

p
2 dµ,H1,p(X)

)
and satisfies (GC)p.

Proof. Let us consider the same mollifiers as in [Kuw24, the last paragraph in p. 10], i.e.,
define j : Rn1 → R by j(x) := exp

(
− 1

1−∥x∥2
)

for ∥x∥ ≤ 1 and j(x) := 0 for ∥x∥ > 1, set
jm(x) := mn1j(mx) for each m ∈ N. We define Tl,n(x) :=

´
Rn1

(jn(x−y)−jn(y))Tl(y) dy =´
Rn1

jn(y)(Tl,n(x−y)−Tl,n(y)) dy so that Tl,n ∈ C∞(Rn1), Tl,n(0) = 0 and limn→∞ Tl,n(x) =

16Namely, a non-decreasing sequence {Fn}n∈N of closed subsets of X such that
⋃

n∈N FFn
is dense in

(F , ∥ · ∥E,1), where FFn := {u ∈ F | u = 0 m-a.e. on X \ Fn}; see, e.g., [CF, Definition 1.2.12-(i) and
Theorem 1.3.14-(ii)].

17Note that a minimal energy-dominant measure µ of (E ,F) does not satisfy this condition in general.
Indeed, consider the case where X = R, m is the Lebesgue measure on R and (E ,F) is the Dirichlet form
of the Brownian motion on R, and let µ be a Borel measure on R. Then it is easy to see from [Kig12,
Theorem 9.9] that µ satisfies the condition in Remark A.18 if and only if µ is a Radon measure on R.
On the other hand, since F = W 1,2(R) and dµ⟨u⟩ = |u′|2 dm for any u ∈ W 1,2(R), it is clear that µ is a
minimal energy-dominant measure of (E ,F) if and only if µ is σ-finite and satisfies µ ≪ m and m ≪ µ.
Of course, the latter class of µ contains plenty of measures which are not Radon measures on R and
thereby are minimal energy-dominant measures of (E ,F) failing to satisfy the condition in Remark A.18.
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Tl(x) for any x ∈ Rn1 . Then (2.2) with T (n) := (T1,n, . . . , Tn2,n) in place of T holds; indeed,
for any x, y ∈ Rn1 ,∥∥T (n)(x)− T (n)(y)

∥∥
ℓq2

=

∥∥∥∥(ˆ
Rn1

jn(z)(Tl(x− z)− Tl(y − z)) dz

)n2

l=1

∥∥∥∥
ℓq2

(∗)
≤

ˆ
Rn1

jn(z) ∥T (x− z)− T (y − z)∥ℓq2 dz

(2.2)
≤ ∥x− y∥ℓq1

ˆ
Rn1

jn(z) dz = ∥x− y∥ℓq1 , (A.24)

where we used (A.17) with q = q2 in (∗). Moreover,∥∥∥∥∥
(

n1∑
k=1

∂kTl,n(x)yk

)n2

l=1

∥∥∥∥∥
ℓq2

= lim
ε↓0

ε−1
∥∥T (n)(x)− T (n)(x+ εy)

∥∥
ℓq2

(A.24)
≤ ∥y∥ℓq1 , (A.25)

whence ∥(∂kTl,n(x))∥ℓq1n1
→ℓ

q2
n2

≤ 1 for any x ∈ Rn1 .

We first prove (A.23) with T (n) in place of T under the assumption that u =
(u1, . . . , un1) ∈ Dn1 . Set ũ = (ũ1, . . . , ũn1) where ũk is a E-quasicontinuous m-version
of uk (see [FOT, p. 69 and Theorem 2.1.3]). We have Tl,n(u) ∈ D by (A.22) and

Γµ(Tl,n(u))(x) =

n1∑
i,j=1

∂iTl,n(ũ(x))∂jTl,n(ũ(x))Γµ(ui, uj)(x) for µ-a.e. x ∈ X (A.26)

by the chain rule in [Kuw24, (7) in p. 2]. Let {fλ}λ∈Λ ⊆ F be an algebraic basis of F over
R. Then there exist n ∈ N, {αk,j}nj=1 ⊆ R, k ∈ {1, . . . , n1}, and {gj}nj=1 ⊆ {fλ}λ∈Λ such
that uk =

∑n
j=1 αk,jgj for each k ∈ {1, . . . , n1}. Let R be the finitely generated algebra

over Q generated by {αk,j}1≤j≤n,1≤k≤n1 ∪ {1} so that Q ⊆ R and R is countable. We set

U :=

{
n∑
j=1

ajgj

∣∣∣∣∣ aj ∈ R for each j ∈ {1, . . . , n}

}

so that {uk}n1
k=1 ⊆ U and U is countable. Since R is dense in R, for any x ∈ X, N ∈ N, k ∈

{1, . . . , n1} and l ∈ {1, . . . , n2}, there exists Ax,Nlk,n ∈ R such that
∣∣∣∂kTl,n(ũ(x))− Ax,Nlk,n

∣∣∣ ≤
N−1. Note that Γµ( · , · )(x) : U × U → R is a non-negative definite symmetric bilinear
form for µ-a.e. x ∈ X since U is countable. By Proposition A.16, for µ-a.e. x ∈ X,∥∥∥∥∥∥

( n1∑
i,j=1

Ax,Nli,nA
x,N
lj,nΓµ(ui, uj)(x)

)1/2
n2

l=1

∥∥∥∥∥∥
ℓq2

=

∥∥∥∥∥
(
Γµ

(
n1∑
k=1

Ax,Nlk,nuk

)
(x)1/2

)n2

l=1

∥∥∥∥∥
ℓq2

≤
(
1 +

∥∥∥(∂kTl,n(ũ(x)))l,k − (Ax,Nlk,n)l,k

∥∥∥
ℓ
q1
n1

→ℓ
q2
n2

)∥∥(Γµ(uk)(x)1/2)n1

k=1

∥∥
ℓq1
.
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Letting N → ∞ in the estimate above and recalling (A.26), we obtain∥∥(Γµ(Tl,n(u))(x)1/2)n2

l=1

∥∥
ℓq2

≤
∥∥(Γµ(uk)(x)1/2)n1

k=1

∥∥
ℓq1

for µ-a.e. x ∈ X, (A.27)

under the assumption that u ∈ Dn1 .
Next let u = (u1, . . . , un1) ∈ H1,p(X)n1 and fix {u(n) = (u1,n, . . . , un1,n)}n∈N ⊆ Dn1

so that limn→∞ maxk∈{1,...,n1} ∥uk − uk,n∥H1,p = 0. Then (A.27) together with the same
argument as in (A.16) implies that∥∥∥∥∥

((ˆ
X

Γµ(Tl,n(u
(n)))

p
2 dµ

)1/p
)n2

l=1

∥∥∥∥∥
ℓq2

≤

∥∥∥∥∥
((ˆ

X

Γµ(uk,n)
p
2 dµ

)1/p
)n1

k=1

∥∥∥∥∥
ℓq1

.

In particular, {Tl,n(u(n))}n∈N is bounded in H1,p(X). Noting that H1,p(X) is reflexive
([Kuw24, Theorem 1.7]) and that limn→∞

´
X
Γµ(uk − uk,n)

p
2 dµ = 0, we find {nj}j∈N ⊆ N

with infj∈N(nj+1−nj) ≥ 1 such that T (nj)(u(nj)) converges weakly in H1,p(X)⊕n2 to some
v = (v1, . . . , vn2) ∈ H1,p(X)⊕n2 and maxk∈{1,...,n1} Γµ(uk − uk,nj

)(x) → 0 for µ-a.e. x ∈ X

as j → ∞.18 Since limn→∞
∥∥Tl,n(u(n))− Tl(u)

∥∥
Lp(X,m)

= 0 by (A.24) and the dominated
convergence theorem, we have vl = Tl(u). By Mazur’s lemma (Lemma 3.14), there exist
{N(i)}i∈N ⊆ N and {αj} ⊆ [0, 1] with infi∈N(N(i) − i) ≥ 1 and

∑N(i)
j=i αi,j = 1 such that

v̂l,i :=
∑N(i)

j=i αi,jTl,nj
(u(nj)) converges strongly in H1,p(X) to Tl(u) for any l ∈ {1, . . . , n2}

as i→ ∞. Then we easily see that for µ-a.e. x ∈ X and any i ∈ N,

∥∥(Γµ(v̂l,i)(x)1/2)n2

l=1

∥∥
ℓq2

≤

∥∥∥∥∥∥
N(i)∑

j=i

αi,jΓµ(Tl,nj
(u(nj)))(x)1/2

n2

l=1

∥∥∥∥∥∥
ℓq2

≤
N(i)∑
j=i

αi,j
∥∥(Γµ(Tl,nj

(u(nj)))(x)1/2
)n2

l=1

∥∥
ℓq2

(A.27)
≤

N(i)∑
j=i

αi,j
∥∥(Γµ(uk,nj

)(x)1/2
)n1

k=1

∥∥
ℓq1
, (A.28)

where we used the triangle inequality for the norm of ℓq2 in the second inequality. Note
that for µ-a.e. x ∈ X,

lim
i→∞

N(i)∑
j=i

αi,j
∥∥(Γµ(uk,nj

)(x)1/2
)n1

k=1

∥∥
ℓq1

=
∥∥(Γµ(uk)(x)1/2)n1

k=1

∥∥
ℓq1
.

Since limi→∞
´
X
Γµ(v̂l,i − Tl(u))

p
2 dµ = 0, there exists {mi}i∈N ⊆ N with infi∈N(mi+1 −

mi) ≥ 1 such that limi→∞ Γµ(v̂l,mi
−Tl(u))(x) = 0 for µ-a.e. x ∈ X and any l ∈ {1, . . . , n2}.

In view of the triangle inequality for Γµ( · )
1
2 (see [Kuw24, (3) in p. 2]), we have

18The direct sum H1,p(X)⊕n2 is equipped with the norm ∥f∥H1,p(X)⊕n2
:=
∑n2

l=1 ∥fj∥H1,p(X) for any
f = (f1, . . . , fn2

) ∈ H1,p(X)⊕n2 .
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limi→∞maxl∈{1,...,n2} |Γµ(v̂l,mi
)(x)− Γµ(Tl(u))(x)| = 0 for µ-a.e. x ∈ X. Hence we ob-

tain (A.23) by (A.28). Once we get (A.23), we easily see by the same argument as in
(A.16) that

{
Γµ(u)

p
2 dµ

}
u∈H1,p(X)

, which is obviously a family of p-energy measures on
(X,B(X)) dominated by

(´
X
Γµ( · )

p
2 dµ,H1,p(X)

)
, satisfies (GC)p.

B Some results for p-resistance forms on p.-c.f. self-
similar structures

B.1 Existence of p-resistance forms with non-arithmetic weights

In this subsection, we discuss a gap between the frameworks in Subsection 8.2 and in
Subsection 8.3 for p.-c.f. self-similar structures. As in Subsection 8.3, we fix p ∈ (1,∞)
and a p.-c.f. self-similar structure L = (K,S, {Fi}i∈S) with #S ≥ 2 and K connected.

The following proposition about the “eigenvalue” λ(ρp) in Theorem 8.38 is a key result.

Proposition B.1. Let ρp = (ρp,i)i∈S ∈ (0,∞)S. Assume that ρp satisfies (A) (recall
Remark 8.39).

(a) For any a ∈ (0,∞), aρp := (aρp,i)i∈S satisfies (A) and λ(aρp) = aλ(ρp).
(b) Let ρ̃p = (ρ̃p,i)i∈S ∈ (0,∞)S. If ρ̃p satisfies (A) and ρp,i ≤ ρ̃p,i for any i ∈ S, then

λ(ρp) ≤ λ(ρ̃p).

Proof. Throughout this proof, we fix a p-resistance form E0 on V0.
(a): Since Rn

aρp
(E0) = aRn

ρp
(E0) for any n ∈ N ∪ {0}, we easily see that aρp satisfies

(A). Recall from Theorem 8.38-(a) that λ(aρp) ∈ (0,∞) is the unique number satisfying
the following: there exists C ∈ [1,∞) such that

C−1λ(aρp)
nE0(u) ≤ Rn

aρp
(E0)(u) ≤ Cλ(aρp)

nE0(u) for any n ∈ N ∪ {0}, u ∈ RV0 .
(B.1)

Therefore, λ(aρp) = aλ(ρp).
(b): Since Rn

ρp
(E0)(u) ≤ Rn

ρ̃p
(E0)(u) for any u ∈ RV0 , by (B.1), there exists C ∈ [1,∞)

such that for any n ∈ N ∪ {0} and any u ∈ RV0 ,

C−1λ(ρp)
nE0(u) ≤ Rn

ρp
(E0)(u) ≤ Rn

ρ̃p
(E0)(u) ≤ Cλ(ρ̃p)

nE0(u).

Since n ∈ N ∪ {0} is arbitrary and E0(u) > 0 for u ∈ RV0 \ R1V0 , we conclude that
λ(ρp) ≤ λ(ρ̃p).

Now we can show the existence of p-resistance forms with non-arithmetic weights on
a class of strongly symmetric p.-c.f. self-similar sets as follows. (Recall the notation in
Subsection 8.4.)
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Proposition B.2. Let L be a strongly symmetric p.-c.f. self-similar set. Assume that
there exists i ∈ S such that ⋃

g∈G

τg(i) ̸= S. (B.2)

Then there exists ρp = (ρp,i)i∈S ∈ (0,∞)S such that λ(ρp) = 1, ρp,i > 1 for any i ∈ S, ρp
satisfies (8.64) and

log ρp,i
log ρp,j

̸∈ Q for some i, j ∈ S. (B.3)

In particular, there exists a self-similar p-resistance form (Ep,Fp) on L with weight ρp.

Remark B.3. (1) Any weight ρp = (ρp,i)i∈S of a p-energy form constructed in Theorem
8.30 must satisfy ρp,i = σni

p for some ni ∈ N, where σp ∈ (0,∞) is the p-scaling factor.
Hence constructions of self-similar p-energy forms with weight ρp which satisfies (B.3)
are not covered by Theorem 8.30 (or by [Kig23, Theorem 4.6]).

(2) The condition (B.2) is not very restrictive. See Figure B.2 for examples of self-similar
sets satisfying this condition. In Figure B.1, we present examples of self-similar sets
that do not satisfy (B.2).

Proof of Proposition B.2. Fix i ∈ S and set S1 :=
⋃
g∈G τg(i) and S2 := S \ S1, which is

non-empty by (B.2). For t ∈ R, we define ρp(t) := (ρp,s(t))s∈S by

ρp,s(t) := 1 + t1S2(s) for s ∈ S.

It is easy to see that ρp(t) satisfies (8.64). Set λp(t) := λ(ρp(t)) for simplicity. By
Proposition B.1, for any t ∈ R, any δ ∈ (0,∞) and any s ∈ S,

(1− t− δ)λp(0) ≤ λp(t− δ) ≤ λp(t) ≤ λp(t+ δ) ≤ (1 + t+ δ)λp(0),

whence λp(t) is continuous in t.
Fix j ∈ S2 and define

ri,j(t) :=
log (ρp,i(t)/λp(t))

log (ρp,j(t)/λp(t))
=

− log (λp(t))

log (1 + t)− log (λp(t))
, t ∈ R.

Since ri,j(0) = 1 and ri,j(t) is continuous in t, there exists t∗ ∈ R\{0} such that ri,j(t∗) ̸∈ Q.
The existence of a self-similar p-resistance form on L with weight ρp follows from Theorems
8.50 and 8.51, so we complete the proof.

B.2 Ahlfors regular conformal dimension of affine nested fractals

In this subsection, we prove that the Ahlfors regular conformal dimension of any strongly
symmetric self-similar set equipped with the p-resistance metric for any p ∈ (1,∞) is
equal to one (Theorem B.5). We also show that the Ahlfors regular conformal dimension
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Figure B.1: Examples of affine nested fractals that do NOT satisfy (B.2). From the left,
D-dimensional level-2 Sierpiński gasket (D = 2, 3), pentakun and hexagasket.

Figure B.2: Examples of affine nested fractals that satisfy (B.2). From the left, 2-
dimensional level-l Sierpiński gasket (l = 3, 4), snowflake and a Sierpiński gasket-type
fractal.

with respect to the Euclidean metric is also equal to one under some geometric condition
(Theorem B.8).

Very similar results are already known in the literature. Indeed, Tyson and Wu [TW06,
Theorems 1.3–1.5] showed that the (quasi)conformal dimensions (as defined in [TW06,
p. 206]) of the D-dimensional level-2 Sierpiński gasket and of the N -polygasket with
N/4 /∈ Z are equal to one19. (The values of the conformal dimension and the Ahlfors
regular conformal dimension coincide if the underlying metric space is compact, quasiself-
similar [EB24, Definition 2.4], connected and locally connected [EB24, Theorem 1.6].)
Also, Carrasco Piaggio [CP14, Theorem 1.2] provided a general criterion for a compact
and metric doubling metric space to have Ahlfors regular conformal dimension one. This
subsection is aimed at giving a new proof of a variant of these results in [TW06, CP14]
based on the existence of self-similar p-resistance forms proved in Theorem 8.50.

Throughout this section, we assume that L = (K,S, {Fi}i∈S) is a strongly symmetric
p.-c.f. self-similar set (recall Framework 8.46 and Definition 8.47). Let ci ∈ (0, 1) be the
contraction ratio of Fi for each i ∈ S. Note that (ci)i∈S ∈ (0, 1)S must satisfy

ci = cτg(i) for any i ∈ S and any g ∈ Gsym, (B.4)

because of the symmetry of L. For each p ∈ (1,∞), we also fix a self-similar p-resistance
form (E#

p ,F#
p ) on L with weight (ρ#,p)i∈S for some ρ#,p ∈ (1,∞), i.e., a p-resistance form

19According to [TW06, the paragraph after Theorem 1.3], T. J. Laakso had shown before the work
[TW06] that the conformal dimension of the 2-dimensional level-2 Sierpiński gasket (equipped with the
Euclidean metric) is equal to one.
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(E#
p ,F#

p ) on K such that

F#
p = {u ∈ C(K) | u ◦ Fi ∈ F#

p for any i ∈ S},

E#
p (u) = ρ#,p

∑
i∈S

E#
p (u ◦ Fi) for any u ∈ F#

p .

By Theorem 8.50, such a self-similar p-resistance form on L exists and the number ρ#,p
is uniquely determined. Let R̂#

p denote the p-resistance metric associated with (E#
p ,F#

p ).

The next proposition ensures that R̂#
p is quasisymmetric to the q-resistance metric

with respect to any self-similar q-resistance form arising from Theorem 8.50. (Recall
Definition 8.5-(3).)

Proposition B.4. Let p, q ∈ (1,∞) and assume that ρq = (ρq,i)i∈S ∈ (0,∞)S satisfies
(8.64), ρq,i > 1 for any i ∈ S and λ(ρq) = 1, where λ(ρq) ∈ (0,∞) is the unique number
given in Theorem 8.50. Let (Eq,Fq) be a self-similar q-resistance form on L with weight
ρq, which exists by Theorems 8.50, and let R̂q be the q-resistance metric associated with
(Eq,Fq). Then R̂q,Eq is quasisymmetric to R̂#

p .

Proof. We will use [Kig20, Corollary 3.6.7] to show the desired statement. We first show
that there exist α1, α2 ∈ (0,∞) such that

α1ρ
−1/(p−1)
q,w ≤ diam(Kw, R̂q) ≤ α2ρ

−1/(p−1)
q,w for any w ∈ W∗. (B.5)

The upper estimate in (B.5) is immediate from (7.1). To prove the lower estimate in
(B.5), note that we can easily find m0 ∈ N such that for any w ∈ W∗ there exist
v1, v2 ∈ W|w|+m0 with vi ≤ w, i = 1, 2, and Kv1 ∩ Kv2 = ∅. (It is enough to choose
m0 satisfying 2(maxi∈S ci)

m0 < 1.) Then, by the proof of Proposition 7.14-(a) and
ρp,vi ≤ ρq,w(maxi∈S ρq,i)

m0 , there exists α1 ∈ (0,∞) that is independent of w ∈ W∗
such that

inf
(x,y)∈Kv1×Kv2

R̂q(x, y) ≥ α1ρ
−1/(p−1)
q,w ,

which implies the desired lower estimate in (B.5).
Next we note that L is a rationally ramified self-similar structure by [Kig09, Propo-

sition 1.6.12]; moreover, by combining [Kig09, Proposition 1.6.12], Kv ∩ Kw = Fv(V0) ∩
Fw(V0) for any v, w ∈ W∗ with Σv ∩ Σw = ∅ (see [Kig01, Proposition 1.3.5-(2)]) and the
fact that each element of V0 is a fixed point of Fi for some i ∈ Sfix := {i ∈ S | Ki∩V0 ̸= ∅},
L is rationally ramified with a relation set

R =
{
{({w(j)}, {v(j)}, φj, x(j), y(j)) | w(j), v(j), x(j), y(j) ∈ W∗ \ {∅}}

}k
j=1

(B.6)

satisfying w(j), v(j) ∈ Sfix. (See [Kig09, Sections 1.5 and 1.6 and Chapter 8] for details
about rationally ramified self-similar structures.)

With these preparations, we will apply [Kig20, Corollary 3.6.7] to R̂q,Eq and R̂#
p . By

Proposition 7.14-(a) and (B.5), R̂q,Eq is 1-adapted and exponential (see [Kig20, Definition
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2.4.7 and 3.1.15-(2)] for these definitions; see also Remark in [Kig20, p. 108]). Similarly,
R̂#
p is also 1-adapted and exponential. Hence, by [Kig20, Corollary 3.6.7], R̂q,Eq is qua-

sisymmetric to R̂#
p if and only if R̂q,Eq is gentle with respect to R̂#

p (see [Kig20, Definition
3.3.1] for the definition of the gentleness). Define gq(w) := ρ

−1/(q−1)
q,w and g#,p(w) := ρ

−|w|
#,p

for w ∈ W∗. Since gq and g#,p satisfy the condition (R1) in [Kig09, Theorem 1.6.6] by
(8.64) and (B.6), we obtain the desired gentleness by [Kig09, Theorem 1.6.6] and (B.5).
This completes the proof.

Now we can determine the Ahlfors regular conformal dimension of (K, R̂#
p ) by using

the discrete characterization of the Ahlfors regular conformal dimension due to Keith and
Kleiner (see [CP13, the paragraph before Corollary 1.4]).

Theorem B.5. dimARC(K, R̂
#
p ) = 1.

Proof. We will use a version of the characterization of dimARC(K, R̂
#
p ) in [Kig20, Theorem

4.6.9]. Note that (K, R̂#
p ) satisfies (BF1) and (BF2) in [Kig20, Section 4.3] by Proposition

7.14-(a), (B.5), [Kig09, Proposition 1.6.12, Lemmas 1.3.6 and 1.3.12]. We define a graph
Gn = (Vn, En) and q-energy EGn

p , q ∈ (1,∞), on Gn by

En := {(x, y) | x, y ∈ Fw(V0) for some w ∈ Wn},

and
EGn
q (f) :=

1

2

∑
(x,y)∈En

|f(x)− f(y)|q , f ∈ RVn .

Note that {Gn}n≥0 is a proper system of horizontal networks with indices (1, 2(#V0 −
1)#V0, 1, 1) in the sense of [Kig20, Definition 4.6.5]. Therefore by [Kig20, Theorem 4.6.9],
dimARC(K, R̂

#
p ) = 1 if and only if the following holds: for any q ∈ (1,∞),

lim inf
k→∞

sup
w∈W∗

inf
{
EG|w|+k
q (f)

∣∣∣ f ∈ RV|w|+k , f |Fw(Vk) = 1, f |Zw,k
= 0
}
= 0, (B.7)

where Zw,k := {x ∈ V|w|+n | x ∈ Fv(Vk) for some v ∈ W|w| with Kv ∩Kw = ∅}. Since both
E#
q

∣∣
V0
( · )1/q and EG0

q ( · )1/q are norms on the finite-dimensional vector space RV0/R1V0 ,
there exists C ≥ 1 such that C−1E#

q

∣∣
V0
(u) ≤ EG0

q (u) ≤ CE#
q

∣∣
V0
(u) for any u ∈ RV0 . Hence,

by Propositions 7.2-(2) and 7.4, we obtain C−1E#
q

∣∣
Vn
(u) ≤ ρn#,qEGn

q (u) ≤ CE#
q

∣∣
Vn
(u) for

any n ∈ N ∪ {0} and any u ∈ RVn . Recall that Γ1(w) = {v ∈ W|w| | Kv ∩ Kw ̸= ∅} for
w ∈ W∗ (Definition 8.3). Let hq,w ∈ F#

q be the unique function satisfying hq,w|Kw = 1,
hq,w|Kv = 0 for any v ∈ W|w| \ Γ1(w) and

E#
q (hq,w) = inf

{
E#
q (u)

∣∣∣ u|Kw = 1, u|Kv = 0 for any v ∈ W|w| \ Γ1(w)
}
.

Then we see from (7.20), (7.18) and (B.5) that

sup
w∈W∗

inf
{
EG|w|+k
q (f)

∣∣∣ f ∈ RV|w|+k , f |Fw(Vk) = 1, f |Zw,k
= 0
}
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≤ Cρ
−(|w|+k)
#,q sup

w∈W∗

E#
q

∣∣
V|w|+k

(hq,w|V|w|+k
) ≤ Cρ

−(|w|+k)
#,q sup

w∈W∗

E#
q (hq,w) ≲ ρ−k#,q.

Since ρ#,q ∈ (1,∞) for any q ∈ (0, 1), we obtain (B.7). The proof is completed.

To discuss the Ahlfors regular conformal dimension of K with respect to the Euclidean
metric, we need the following assumption.

Assumption B.6. We define Λd1 := {∅},

Λds := {w | w = w1 . . . wn ∈ W∗ \ {∅}, diam(Kw1...wn−1 , d) > s ≥ diam(Kw, d)}

for each s ∈ (0, 1). For s ∈ (0, 1], M ∈ N ∪ {0} and x ∈ K, define

Λds,M(x) :=

{
v

∣∣∣∣∣ v ∈ Λds, there exists w ∈ Λds with x ∈ Kw and
{z(j)}kj=1 ⊆ Λds with k ≤ M + 1, z(1) = w, z(k) = v
such that Kz(j) ∩Kz(j+1) ̸= ∅ for any j ∈ {1, . . . , k− 1}

}
,

and Ud
M(x, s) :=

⋃
w∈Λd

s,M (x)Kw. Then there exist M∗ ∈ N, α0, α1 ∈ (0,∞) such that

Ud
M∗(x, α0s) ⊆ Bd(x, s) ⊆ Ud

M∗(x, α1s) for any (x, s) ∈ K × (0, 1].

(Equivalently, d is M∗-adapted; see [Kig20, Definition 2.4.1].)

Remark B.7. We do not know whether Assumption B.6 is true for any strongly symmet-
ric self-similar set. Even for nested fractals, being 1-adapted with respect to the Euclidean
metric is required as an additional assumption in [Kig23, Assumption 4.41].

Now we can show the main result in this section under Assumption B.6.

Theorem B.8. Assume that Assumption B.6 holds. Then dimARC(K, d) = 1.

Proof. Thanks to Theorem B.5, it suffices to prove that R̂#
p is quasisymmetric to d. Obvi-

ously, d is exponential since diam(Kw, d) = cw diam(K, d). By (B.4), a similar argument
as in the proof of Proposition B.4 implies that R̂#

p is gentle with respect to d. Hence
[Kig20, Corollary 3.6.7] together with Assumption B.6 implies that R̂#

p is quasisymmetric
to d.

B.3 An estimate on self-similar regular p-resistance forms on p.-
c.f. self-similar structures

This subsection is devoted to proving the following theorem, which is a generalization of
[Kig03, Theorem A.1].

Theorem B.9. Let p ∈ (1,∞), let L = (K,S, {Fi}i∈S) be a p.-c.f. self-similar structure
with #S ≥ 2 and K connected, and let (E ,F) be a self-similar p-resistance form on L
with weight ρ = (ρi)i∈S ∈ (1,∞)S. Then there exists c ∈ (0, 1) such that for any x, y ∈ K
and any w ∈ W∗,

cρ−1
w RE(x, y) ≤ RE(Fw(x), Fw(y)) ≤ ρ−1

w RE(x, y). (B.8)
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Since the upper estimate in (B.8) is obtained in (7.1), what matters is the lower
estimate in (B.8). To prove it, we need the following lemma.

Lemma B.10. Assume the same conditions as in Theorem B.9. Let x, y ∈ K and
w ∈ W∗. Set Λ := {τ = τ1 . . . τn ∈ W∗ | (ρτ1···τn−1)

−1 > ρw ≥ ρ−1
τ }, U := V0 ∪ {x, y},

VΛ :=
⋃
w∈Λ Fw(V0) and V := VΛ ∪ {Fw(x), Fw(y)}. Then Λ is a partition of Σ and

E|V (u) = ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ) for any u ∈ F|V . (B.9)

Proof. The proof is very similar to Proposition 7.4. It is clear that Λ is a partition of Σ.
Note that, by Proposition 7.2-(2), R1/p

E is compatible with the original topology of K and
thereby diam(K,R

1/p
E ) <∞. For any u ∈ F|V ,

E|V (u)
= min

{
E(v)

∣∣ v ∈ F , v|V = u
}

(5.7)
= min

{
ρwE(v ◦ Fw) +

∑
τ∈Λ\{w}

ρτE(v ◦ Fτ )

∣∣∣∣∣ v ∈ F , v|V = u

}

≥ min

{
ρwE(v ◦ Fw)

∣∣∣∣∣ v ∈ F , v|V = u

}
+min

{ ∑
τ∈Λ\{w}

ρτE(v ◦ Fτ )

∣∣∣∣∣ v ∈ F , v|V = u

}
≥ ρwmin{E(v) | v ∈ F , v|U = u ◦ Fw}+

∑
τ∈Λ\{w}

ρτ min{E(v) | v ∈ F , v|V0 = u ◦ Fτ}

= ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ).

To prove the converse, let v ∈ C(K) satisfy v ◦ Fw = hEU [u ◦ Fw] and, for τ ∈ Λ \ {w},
v ◦ Fτ = hEV0 [u ◦ Fτ ]. Such v is well-defined since Kw ∩Kτ = Fw(V0) ∩ Fτ (V0). Also, we
have v|V = u and v ∈ F by (5.5). Moreover,

E|V (u) ≤ E(v) (5.7)
=
∑
τ∈Λ

ρτE(v ◦ Fτ ) = ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ).

This completes the proof.

Proof of Theorem B.9. Let Λ, U, VΛ, V be the same as in Lemma B.10. Set Γ1(w; Λ) :=
{τ ∈ Λ | w ̸= τ,Kw ∩Kτ ̸= ∅} for simplicity. Then #Γ1(w; Λ) ≤ #(CL)#(V0) by [Kig01,
Lemma 4.2.3]. Let ψxy ∈ F satisfy ψxy(x) = 1, ψxy(y) = 0 and E(ψxy) = RE(x, y)

−1. Let
u∗ ∈ F satisfy u∗(x) = 1, u∗(y) = 0, u|V \Fw(U) ∈ R1V \Fw(U) and

E(u∗) = inf{E(v) | v ∈ F , (v ◦ Fw)|U = ψxy, v|V \Fw(U) ∈ R1V \Fw(U)}.

Such u∗ is uniquely exists by a standard argument in the variational analysis. Also, by
Proposition 2.3-(b), we easily see that 0 ≤ u∗ ≤ 1. Since RV0/R1V0 is a finite dimensional
vector space, there exists a constant C ∈ (0,∞) such that

E|V0(u)1/p ≤ C max
z,z′∈V0

|u(z)− u(z′)| for any u ∈ RV0 . (B.10)
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Then, by using Lemma B.10, we see that

RE(Fw(x), Fw(y))
−1 ≤ E(u∗) = E|V (u∗)

= ρwE|U(u∗ ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u∗ ◦ Fτ )

= ρwE|U(u∗ ◦ Fw) +
∑

τ∈Γ1(w;Λ)

ρτE|V0(u∗ ◦ Fτ )

(B.10)
≤ ρw

RE(x, y)
+ Cp

∑
τ∈Γ1(w;Λ)

ρτ

≤ ρw

(
1

RE(x, y)
+ Cp

(
max
i∈S

ρi

)
(#Γ1(w; Λ))

)
= ρw

(
1

RE(x, y)
+ C ′RE(x, y)

RE(x, y)

)
≤ ρw

(
1 + C ′ sup

z,z′∈K
RE(z, z

′)

)
RE(x, y)

−1,

which shows the desired lower estimate in (B.8).
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