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Abstract

We introduce a new contraction property, which we call the generalized p-
contraction property, for p-energy forms as generalizations of many well-known in-
equalities, such as p-Clarkson’s inequality, the strong subadditivity and the Markov
property in the theory of nonlinear Dirichlet forms, and show that any p-energy form
satisfying p-Clarkson’s inequality is Fréchet differentiable. We also verify the gener-
alized p-contraction property for p-energy forms on fractals constructed by Kigami
[Mem. Eur. Math. Soc. 5 (2023)] and by Cao-Gu—Qiu [Adv. Math. 405 (2022),
no. 108517]. As a general framework of p-energy forms taking the generalized p-
contraction property into consideration, we introduce the notion of p-resistance form
and investigate fundamental properties of p-harmonic functions with respect to p-
resistance forms. In particular, some new estimates on scaling factors of self-similar
p-energy forms on self-similar sets are obtained by establishing Holder regularity
estimates for p-harmonic functions, and the p-walk dimensions of any generalized
Sierpinski carpet and the D-dimensional level-l Sierpiriski gasket are shown to be
strictly greater than p.
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1 Introduction

In the late 1980s, Goldstein [Gol87] and Kusuoka [Kus87| independently constructed a
Brownian motion (a canonical diffusion process) on the Sierpiriski gasket (the left of Figure
1.2) as a scaling limit of the simple random walks on pre-gaskets (approximating graphs),
and Barlow—Perkins [BP88| established detailed estimates called the sub-Gaussian heat
kernel estimates for its transition density. Subsequently, Kigami [Kig89| directly con-
structed the Laplacian on the Sierpinski gasket as a scaling limit of the discrete Lapla-
cians on pre-gaskets, and Fukushima—Shima [[F'S92] indicated that the theory of Dirichlet
forms was well-applicable to the field of analysis on fractals; more precisely, Fukushima
and Shima gave a direct description of the regular symmetric Dirichlet form (&, F3) cor-
responding to the Friedrichs extension of Kigami’s Laplacian, which is an analogue of
the pair of the Dirichlet 2-energy [ |Vu|> dz = &(u) and the associated (1,2)-Sobolev
space W% = F, on smooth spaces, and used it to investigate the eigenvalue problems
for Kigami’s Laplacian'. Later, Kigami [Kig93] extended the method in [FS92] to post-
critically finite self-similar sets (Definition 5.3), and Kusuoka—Zhou [KZ92| constructed
regular symmetric Dirichlet forms (€, F3) on a large class of self-similar sets including the
Sierpinski carpet (the right of Figure 1.2) through a subsequential scaling limit of discrete
Dirichlet forms. (The first construction of a Brownian motion on the Sierpinski carpet
was done by Barlow—Bass [BB89] by establishing a subsequential convergence of scaled
Brownian motions on pre-carpets.) See, e.g., [Barl3, Kig01] for further background on the
field of analysis on fractals. As another advantage of the theory of Dirichlet forms, once
we obtain a regular symmetric Dirichlet form (&, F,), we can capture the associated en-
ergy measure I's(u) playing the role of |Vu|® dz although the density “|Vu|” usually does
not make sense on fractals due to the singularity of I's(u) with respect to the canonical
volume measure (see [Hin05, KM20]| for details of this singularity of I's(u)).

The main purpose of this article is to develop a general theory of LP-analogues of
(&, Fo,T'5(+)), where p € (1,00), on the basis of the new contraction property which
we call the generalized p-contraction property. For a large class of triples (K, m,p) of a
self-similar set K, a natural self-similar measure m on K and p € (1,00), an LP-analogue
of (&, F,) on (K, m), namely a p-energy form (&,, F,) playing the role of [ |Vu|” dz and
the associated (1, p)-Sobolev space W', where F, is a linear subspace of L(K,m) and
&0 Fp — [0,00) is such that S,}/ " is a seminorm on F,, has been constructed in several
works [CGQ)22, HPS04, Kig23, KO+, MS25+, Shi24]?, most of which are very recent.
Furthermore, the associated p-energy measure I',(u), which is a finite Borel measure on
K and an analogue of |Vu|” dx, has been introduced in [MS25+, Shi24] with the help of

IThe results in [FS92, Kig89] were proved for the D-dimensional level-2 Sierpiniski gasket (Framework
9.9), where D € N with D > 2.

2The main difference among these works is the classes of (K, m,p) on which (&,, F,) is constructed.
Let us briefly summarize what classes of (K, m,p) is treated in these works (see [KS23+, Introduction]
for details). In [CGQ22, HPS04], K is assumed to be a post-critically finite self-similar set (Definition
5.3) so that the Sierpiriski gasket is included while the Sierpinski carpet is excluded. The case where K is
the Sierpiriski carpet is allowed in [Kig23, KO-+, MS25-+, Shi24], but we need to assume that p is strictly
greater than the Ahlfors regular conformal dimension of K (Definition 8.5-(4)) in [Kig23, KO-+, Shi24].
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Figure 1.1: The Sierpiniski gasket (left) and the Sierpinski carpet (right)

the self-similarity of (&,, F,). See Section 5 for details on the self-similarity of a p-energy
form, and Example 4.2 for examples of p-energy measures which do not rely on the self-
similarity. Compared with the case of p = 2, where the theory of symmetric Dirichlet
forms is applicable, very little has been established for p € (1,00) \ {2} in the direction of
dealing with (&,, F,I',(+)) in a general framework. In particular, there are two missing
pieces in known results for (£,, Fp,, I'p(+)): first, useful contraction properties of it, and
secondly, the (Fréchet) differentiabilities of £, and of I',. In the first half of this paper
(Sections 2-5), we aim at establishing general results filling these missing pieces. We shall
explain more details of the main results of these sections below.

The first missing piece is contraction properties of (&,, F,,I',(-)). Every p-energy
form (&,,F,) constructed in the previous studies is known to satisfy the following unit
contractivity:

utAleF, and E,(ut A1) <E(u) for any u € F,. (1.1)

In the case of p = 2, by using some helpful expressions of &, e.g., [FOT, Lemma 1.3.4
and (3.2.12)], (1.1) can be improved to the following normal contractivity (see [MR,
Theorem 1.4.12] for example): if n € N and T: R" — R satisfy |T(z)] < > 7, |x]
and |T'(z) — T(y)| < >p_y |ze — yx| for any z = (21,...,2,),y = (Y1,...,Ysn) € R?, then
for any u = (uy,...,u,) € Fy we have

T(w) e F and &E(T(w)2 <> Elup)?. (1.2)

k=1

NI

It is natural to expect that (&,, F,) for p € (1,00) \ {2} also has a similar property to
(1.2) since &y(u) is an analogue of [ |Vul” dz; nevertheless, it is not clear whether (1.1)
can be improved in such a way without going back to the constructions of (£,, F,) in the
previous studies. Not only (1.2) but also other useful inequalities like the following strong
subadditivity and p-Clarkson’s inequality, were not mentioned in [CGQ)22, HPS04, Kig23,
MS25+, Shi24]:

(Strong subadditivity) For any u,v € F,, we have vV v,u Av € F, and

E(uV )+ E(unv) < Eu)+ Ev). (1.3)
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(p-Clarkson’s inequality) For any u,v € F,,

{Ep(u+v)+€p(u—v) (&,(w)7T + &, (v)71)"" it pe (1,2],

RO R (Cla),
Ep(u+v) + Elu—v) <2(E(u)7T + Ey(v)rT) if p € (2,00).

These inequalities play significant roles in the nonlinear potential theory with respect to
(&p, Fp). For example, (1.3) will be important to consider the p-capacity associated with
(&py Fp); see [BVOD, (H3)]. Also, we will frequently use (Cla), in this paper; see Theorem
1.3 below for one of the most important consequences of (Cla),. Since it is not known,
unlike the case of p = 2, whether such desirable inequalities as (1.2), (1.3) and (Cla),
are implied by the unit contractivity (1.1), one needs to go back to the constructions of
(&p, Fp) in the preceding works if one wishes to show them. The situation is similar for
p-energy measures. While it is natural to expect that contraction properties of (€,, F,)
are inherited by the associated p-energy measures, in order to show them for p-energy
measures, we need to recall how p-energy measures are constructed, partially because no
canonical way to define p-energy measures for a given p-energy form (&,, F,) is known
(see [MS25--, Problem 10.4]).

To overcome this situation, in this paper we develop a general theory of p-energy forms
on the basis of the generalized p-contraction property, which is arguably the strongest pos-
sible form of contraction properties of p-energy forms and defined as follows. Throughout
the rest of this section, we fix p € (1,00), a measure space (X,B,m), and the pair
(€p, Fp) of a linear subspace F, of L°(X, m)? and a functional &,: F, — [0, 00) which is
p-homogeneous, i.e., satisfies &,(au) = |a|’ &, (u) for any u € F, and any a € R. The pair
(&, Fp) is said to be a p-energy form on (X, m) if and only if £Y? is a seminorm on Fp.

Definition 1.1 (Generalized p-contraction property; Definition 2.2). We say that (&,, F,)
satisfies the generalized p-contraction property, (GC), for short, if and only if the following
holds: if ny,ny € N, ¢1 € (0,p], ¢2 € [p,o0] and T = (T1,...,T,,): R™ — R" satisfy
7(0) = 0 and [[T(z) = TY)|lee < [z —Yllp for any z,y € R™, then for any u =
(U1, Upy) € FJ1 we have

T(u) € F* and "(gp(ﬂ(u))%)RQ

=1

o < [ G0 (o),

Note that the particular case of (GC), for (p,n1,n2,q1,92) = (2,n,1,1,p) is nothing
but the normal contractivity (1.2). As recorded in the following proposition, (GC), is
actually a generalization of many useful inequalities like (1.2), (1.3) and (Cla),.

Proposition 1.2 (Proposition 2.3). Let ¢ € C(R) satisfy ¢(0) = 0 and |p(t) — p(s)| <
|t — s| for any s,t € R. Assume that (€,, F,) satisfies (GC),. Then the following hold.

(a) (Triangle inequality and strict convexity) 5;/ P is a seminorm on F,, and for any
A€ (0,1) and any f,g € F, with E,(f) NEy(g) NE(f —g) > 0,

EAf+ 1 =A)g) <A&(f) + (1= A)E(g).
3We set L°(X,m) := {the m-equivalence class of f | f: X — R, f is B-measurable}; see (2.1).
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(b) (Lipschitz contractivity) ¢(u) € F, and E,(p(u)) < E,(u) for any u € F,.
(c) (Strong subadditivity) Assume that ¢ is non-decreasing. Then for any f,g € Fp,

E(f—o(f=9)+&E(g+e(f —9) <E) +E(9).

In particular, (1.3) holds.
(d) (Leibniz rule) For any f,g € F, N L®(X,m), we have

frgeF, and E(f-g)r < ||9||Loo(K,m) E(f)r + ||f||L°°(K,m) Eplg)r.

(e) (p-Clarkson’s inequality) Let f,g € F,. If p € (1,2], then

2(&,(f) +&,(9) = E(f + 9) + E(f — 9) > 2(E,())7T + E(g)71)"

If p € [2,00), then

2(&,(f) +&,(9) S Ef +9) + E(f — 9) < 2(E())7T + E(g)71)"
In particular, (Cla), holds.

Since the generalized p-contraction property is introduced as arguably the strongest
possible formulation of the contraction property of (£,, F,), it is highly non-trivial whether
p-energy forms constructed in the previous studies satisfy it. In Section 8, we see that the
existing constructions of p-energy forms in the previous studies do yield ones satistying
(GC),. (See also [KS524-+] for another approach, which is based on Korevaar—Schoen
p-energy forms, to obtain p-energy forms satisfying (GC),.)

In the rest of this section, we assume that (&,,F,) is a p-energy form on (X, m).
The other missing piece in the previous studies on p-energy forms is their differentia-
bility, which should be useful to study p-harmonic functions with respect to &,. (See
[KM23, Problem 7.7] and [MS25 1, Conjecture 10.8] for some motivations to investigate
p-harmonic functions on fractals.) In [CGQ22, HPS04, Shi24], p-harmonic functions are
defined as functions minimizing &, under prescribed boundary values. However, it is still
unclear how to give an equivalent definition of p-harmonic function in a weak sense due
to the lack of a “two-variable version” &,(u; ¢) [Kig23, Problem 2 in Section 6.3]. We shall
recall the Euclidean case to explain the importance of this object. Let D € N and let U
be an open subset of RP. A function u € W1P(RP) is said to be p-harmonic on U in the
weak sense if and only if

/RD IVu(z) [P~ (Vu(z), Vo(z))go de = 0 for every ¢ € C=(U), (1.4)

where (-, - )gp denotes the inner product of RP. Tt is well known that (1.4) is equivalent
to the variational equality

/RD Vu(2)|? de = inf{/RD Vo (2)? do

vEWl’p(RD),v—ueWOl’p(U)}. (1.5)
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The issue in considering an analogue of (1.4) for &, is that we do not have a satisfac-
tory counterpart, &,(u; @), of [ |Vul""? (Vu, Vi) dr assomated with £,. As mentioned in
[SW04, (2.1)], the ideal definition of &,(u;¢)* is

1 d

Ep(u; p) = dté’p(u +tp)| (1.6)

t=0
but the existence of this derivative is unclear” because the constructions of &£, in the pre-
vious studies include many steps such as the operation of taking a subsequential scaling
limit of discrete p-energy forms. Similarly, in respect of p-energy measures, no suit-
able way is known to define a “two-variable version” I',(u; ) which plays the role of
|Vul’? (Vu, V) dz. The ideal definition of I',(u; @) is similar to (1.6), i.e., for any Borel
subset A of K,
Iy o)(A) = - ST+ ()] (1.7)
t=0
Such a signed measure was discussed in [B\/ 05, Section 5], but the existence of the deriva-
tive in (1.7) (in some uniform manner) was an assumption in [BV05]; see [BV05, (H4) and
the beginning of Section 5] for details. Similarly, in [Cap07], the (scale-invariant) elliptic
Harnack inequality for p-harmonic functions on metric fractals (|[Cap07, Definition 2.3|)
was proved under some assumptions including the existence of I',(u; ), which was called
the measure-valued p-Lagrangian and denoted by £P)(u, ¢) in [Cap07]. However, for sit-
uations where no explicit expression of the p-energy measure I',(u) is available unlike the
case of the Euclidean spaces, there is no proof of the existence of the derivative in (1.7)
in the literature. (The p-energy form on the Sierpinski gasket constructed in [HPS04] is
discussed in [Cap(07, Section 5| as a concrete examples and it is stated in [Cap07, p. 1315]
that “we can define the corresponding Lagrangian £ (u,v)”, but we have been unable to
find in the literature a rigorous proof of the existence of the derivatives in [Cap07, p. 1315]
defining &,(u,v) and in [Cap07, p. 1303, (L5)] defining L®) (u, v) for the p-energy form on
the Sierpiniski gasket obtained in [HPS04].)
As another main contribution of this paper, we make a key observation that p-
Clarkson’s inequality (Cla), implies the desired differentiability of &,. In addition to
this result, we record basic properties of £,(u; ¢) given by (1.6) in the following theorem.

Theorem 1.3 (Proposition 3.6 and Theorem 3.7). Assume that (€,, F,) satisfies (Cla),.
Then the function R >t — E,(f +tg) € [0,00) is differentiable for any f,g € F,, and for
any ¢ € (0, 00),

& dg) — & d
lim sup o/ + ? o) d—c‘fp(f +tg) =0,
o0 J9eFyi () <e/ (0=2)" Ep(9) <L t t=0
where ¢/0 == co. Moreover, define E,(-; -): FpyxFp, = R by &E(f;9) = (f—l—tg)|t o

and let a € R, f, f1, fo,9 € Fp and h € & 1(0). Then the following hold

4Strichartz and Wong [SW04] proposed an approach based on the subderivative instead of (1.6), i.e
they defined &,(u; @) as the interval [£, (u; ), &, (u; )], where %Ep(u +to)|,_, = € (u; ).

5The case of p = 2 is special because of the parallelogram law. Indeed, & is known to be a quadratic
form and hence & (u,v) = (€ (u+ v) — E(u — v)) is a symmetric form satisfying (1.6).
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a) &(f; ) =&(f) and E(af;g) = sen(a) o’ & (f; 9)-
The map E,(f; -): Fp — R is linear.

E(f;h) =0 and E(f + h;g) = &,(f; 9)-
R>t—&(f+tg;g) € R is strictly increasing if and only if E,(g) > 0.
E,(F;9) < E(F)T &(g)r.

*p ap 1
1Ep(f159) — Ep(fas 9)] < Cp(gp(fl) \% 5p<f2>) v E(fi — f2) 7 Eplg)r, where oy =
i A 1%1 and C, € (0,00) is a constant determined solely and explicitly by p.

&\—/\_/

—
S~—

We also establish a similar result for p-energy measures as follows, which is the first
rigorous result on the existence of the derivative in (1.7) for p-energy measures on fractals.
(Recall that the existence of p-energy measures in a general setting not assuming the self-
similarity of the space and the p-energy form is unknown; see [MS25+, Problem 10.4].)

Theorem 1.4 (Propositions 4.3, 4.8 and Theorem 4.5). Let By be a o-algebra in X, and
assume that {T'y(u) }uer, is a family of measures on (X, By) such that I',(f)(X) < E,(f)
for any f € F, and such that (I'y(-)(A),F,) is a p-energy form on (X,m) satisfying
(Cla), for any A € By. Then R 3t — L',(f +tg)(A) € [0,00) is differentiable for any
f,9 € Fp and any A € By, and for any ¢ € (0,00),

r SOV A) =T (Y (A)  d
. “up p{f +09)(A) =T (fH(A) d
040 A€Bo, £,96Fp; Ep(f)<c/(p—2)*, Ep(g) <1 0 dt

Ly(f +tg)(A) = 0.

t=0

Moreover, the set function T),(f;g): By — R defined by Tp(f;9)(A) = L4T,(f +

pdt
t9>(‘4)‘t:o is a signed measure on (X, By) for any f,g € F,, and the following hold for

any A € By, any a € R and any f, f1, f2, 9, h € F, with I',(h)(A) = 0:

a) Tp(f; F)(A) = Typ(f) and Ty(af; g)(A) = sgn(a) [al” T, (f; 9)(A).

b) The map I')(f; -)(A): F, = R is linear.

c) Tp(f; h)(A) = 0 and T'p(f + h; g)(A) = T(f;9)(A).

d) Rat—=T,(f+1tg;9)(A) € R is strictly increasing if and only if T',(g)(A) > 0.
e) For any By-measurable functions p,1: X — [0, 00],

o~ o~~~ o~

[evaral< ([ o drp<f>)””1 ( Wdrp(g));

(f) Let o, = L AL and C, be the same constants as in Theorem 1.3-(f). Then
p p

‘Fp<f1§ 9)(A) — Fp<f2; 9)(A)|

p—l—ap

< Cp(Tp(A)A) VT (£)(A) 7 Tplfi = £2)(A) 7 Ty{g) ().

3=

In the second part of this paper (Sections 6 and 7), we aim at developing a general
theory of p-energy forms taking (GC), into account and focusing on a “low-dimensional”
setting. Namely, we introduce the notion of p-resistance form as defined in Definition 1.5
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below and establish fundamental properties of this class of p-energy forms, as a natural
extension of the theory of resistance forms for p = 2 introduced in [Kig95] and developed
further in [Kig01, Kigl2] by Kigami. In the rest of this section, we consider the situation
where (B, m) is the pair of 2% = {4 | A C X} and the counting measure on X, so that
LY(X,m) = RY; see also Remark 2.1.

Definition 1.5 (p-Resistance form; Definition 6.1). We say that (&,, F,) is a p-resistance
form on X if and only if the following conditions hold:

(RF1), F, is a linear subspace of RY containing 1x and &,(-)Y? is a seminorm on F,
satisfying {u € F, | Ey(u) =0} = Rl .

(RF2), The quotient normed space (F,/R1x,&,(-)?) is a Banach space.

(RF3), If z # y € X, then there exists u € F,, such that u(z) # u(y).

(RF4), For any z,y € X,

p

ue]:p\R]IX} < 00.

(RF5), (&,, F,) satisfies the generalized p-contraction property (GC),.

We verify that the p-energy forms on p-conductively homogeneous compact metric
spaces (K, d) (Definition 8.11) constructed by Kigami in [Kig23, Theorem 3.21], where p
is assumed to be strictly greater than the Ahlfors regular conformal dimension of (K, d)
(Definition 8.5-(4)), are p-resistance forms. In addition, we prove that the p-energy forms
on post-critically finite self-similar sets constructed by Cao-Gu-Qiu in [CGQ)22, Proposi-
tion 5.3| are also p-resistance forms for any p € (1, o) under the condition (R) in [CG()22,
p. 18]. See Section 8 for details of the frameworks treated in [CG()22, Kig23|. Similar to
the case of p = 2, developing a general theory of p-resistance forms allows us to investigate
p-energy forms provided by these broad frameworks in a synthetic manner.

It is immediate that if (€,, F,) is a p-resistance form on X, then Rg, (-, - )7 is a
metric on X and any function in F, is a Lipschitz function on K with respect to this
metric. In the theory of resistance forms (p = 2), it is well known that Re,(-, -) is a
metric, which is called the resistance metric of the resistance form (&, F); see [KigO1,
Theorem 2.3.4| for a proof. In view of this fact for p = 2, it is natural to seek the largest
exponent ¢ such that Rg (-, -)? is a metric. The following theorem gives the answer.

1

Theorem 1.6 (Corollary 6.32). If (§,, F,) is a p-resistance form on X, then Rg (-, - )71
15 a metric on X.

The power 1/(p—1) in Theorem 1.6 is sharp; see Example 6.34. Let us call Re, (-, - )Tll
the p-resistance metric of (£,,F,). Theorem 1.6 was proved in [ACFP19, Her10| for the
canonical p-energy forms (i.e., those given by (6.2)) on finite weighted graphs (V, L) and
in [Shi21] for this class of forms on infinite graphs. Theorem 1.6 establishes the same
result for the first time for p-energy forms which are not of the form (6.2) and for ones
on continuous spaces.
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We also investigate p-harmonic functions with respect to p-resistance forms, which
should be considered as part of nonlinear potential theory under the condition that each
point has a positive p-capacity. Let us explain some basic results in this introduction.
The following definition is a natural analogue of (1.4) (or of (1.5)).

Definition 1.7 (£,-Harmonic function; see Definition 6.12). Let (&,, F,) be a p-resistance
form on X and let B be a non-empty subset of X. A function h € F, is said to be &,-
harmonic on X \ B if and only if

Ey(h;p) =0 for any ¢ € F, with ¢|g =0,
or equivalently (see Proposition 6.11 for this equivalence),

Ey(h) = nf{&,(u) | u € F,, ulp = h|s}.

A standard argument in variational analysis ensures the existence and uniqueness of
&y,-harmonic functions with given boundary values.

Proposition 1.8 (Part of Theorem 6.13). Let (£,, F,) be a p-resistance form on X and
let B be a non-empty subset of X. Define F,|p = {u|p | u € F,}. Then for any u €
Folp, there exists a unique function hif’ [u] € F, satisfying hg’ [u”B =u and 5p(hif’ [u]) =
inf{&,(v) | v € F,, v|p = u}.

Using the (nonlinear) operator h3?[-]: F,|z — F, given in Proposition 1.8, we can
introduce a new p-resistance form on the boundary set B, which is called the trace of
(&p, Fp) to B. This notion is at the core of our theory of p-resistance forms, and turns
out to be a powerful tool especially when we work on post-critically finite self-similar sets;
see Subsection 8.3 for example. Here we just record fundamental results on traces in the
following theorem.

Theorem 1.9 (Trace of p-resistance form; part of Theorem 6.13). Let (&,,F,) be a p-
resistance form on X and let B be a non-empty subset of X. Define &,|5: Fplp — [0, 00)

by &) = E,(R[u]) for u € Folg. Then (&|p,Folp) is a p-resistance form on B.
Furthermore, R, = R5p|B><B and

Elpluyv) = Sp(hif’[u]; h%’][v]) for any u,v € F,|p.

Now let us state results on behavior of £,-harmonic functions. We start with com-
. o . . - : &
parison principles for €,-harmonic functions, namely monotonicity properties of h% [u]

with respect to the boundary value u. Because of the nonlinearity of the operator h%,
a mazimum principle does not imply a comparison principle unlike the case of p = 2.
Fortunately, by virtue of Proposition 1.8 and the strong subadditivity (1.3), we can prove
the following weak comparison principle for £,-harmonic functions (Proposition 6.26):

If ) # B C X and u,v € F,|p satisfy u < v on B, then h%[u] < th”[v] on X. (1.8)
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We also show a localized version of (1.8) under suitable assumptions (Proposition 6.30).
Furthermore, by employing the approach in [Cap(07|, we show the following (scale-
invariant) elliptic Harnack inequality for non-negative &,-harmonic functions under some
extra assumptions including the existence of nice p-energy measures (see Theorem 6.36
for the precise statement): there exists a constant C' € (0,00) such that for any
(z,5) € X x (0,00) and any non-negative h € F, that is £,-harmonic on By (z,2s),
where R, = Ré}i(pfl),

sup h < C inf h, (1.9)

Bﬁp(x,s) Bﬁp(m,s)

which is well known to imply a local Holder continuity of h. Regarding continuity es-
timates for &,-harmonic functions, we also obtain the following sharp Holder regularity
estimate, which in fact implies Theorem 1.6 as an easy corollary.

Theorem 1.10 (Theorem 6.31). Let (&,,F,) be a p-resistance form on X and let B be a
non-empty subset of X. Define B'» := [ — u~1(0) and, for x € X \ B”»,

w8

Letx € X\ B’ andy € X. Then

1

ue Fy, up=0, ux)# O}) o

Ry(x,y)
hgp ]lBU{x} Yy < Ap—’
Moreover, for any h € F, that is €,-harmonic on X \ B and satisfies supp |h| < 00,
R
(@) ()] < 22Dy ety hiy).

Rp(l’, B) z'y'eB

Next let us move to applications of our general theory of p-resistance forms. In their
forthcoming papers [[KS-+a, KKS+b], the authors will heavily use this theory to make some
essential progress in the setting of post-critically finite self-similar structures; see [KS23 1|
for a survey of these results described in the setting of the Sierpiniski gasket. In Section
9 of this paper, we shall give another application to strict inequalities for the p-walk
dimensions of two classes of self-similar fractals, the generalized Sierpiniski carpets and the
D-dimensional level-/ Sierpiriski gasket (see Figure 1.2). Let K be a generalized Sierpinski
carpet or the D-dimensional level-I Sierpiniski gasket, equip K with the Euclidean metric
d, let p € (1,00), and assume in the former case that p is strictly greater than the Ahlfors
regular conformal dimension of (K, d). Then by Theorem 8.30 in the former case and by
Theorem 8.51 in the latter case, we can construct a canonical p-resistance form (&,, F,)
on K. To be more precise, let {F;};cs, with S a suitable non-empty finite set, be the
family of contractive similitudes defining K, i.e., such that K = J,.q F5(K). Then there
exists a p-resistance form (&,,F,) on K which satisfies 7, C C(K) and the following
self-similarity for some o, € (1,00)(, which we call the weight of (£,, F)):

E(u) = crngp(u oF;), ueF, (1.10)

€S
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Figure 1.2: From the left, a non-planar generalized Sierpinski carpet (Menger Sponge)
and the 2-dimensional level-I Sierpinski gaskets (I = 2,3,4)

Letting r. € (0,1) denote the common contraction ratio of the similitudes {F;};cs, we
define the p-walk dimension dy, , of K by

log ((#S)Up)
log(r:t)

w,p T

which coincides with the walk dimension of K if p = 2. As shown in [MS25+, Theorem
7.1], the value dy , shows up as a space-scaling exponent in the following manner:

p
Ep(u) < hmsup/ ][ d Jutz) = uly) wu(dy) p(dz), ue Fp,
lz—y|<r Ty

10

where p denotes the log(#S)/log(r;!)-dimensional Hausdorff measure on (K,d). In the
case of p = 2, the strict inequality dy > > 2 has been verified for various self-similar
fractals, and has been shown to imply a number of anomalous features of the diffusion
associated with (&, F2); see, e.g., [Kaj23| and the references therein for further details.
Compared with the case of p = 2, the class of self-similar fractals for which dy, > p
has been proved in [Shi24, Theorem 2.27| is limited to the planar generalized Sierpinski
carpets due to the lack of counterparts of many useful tools available in the case of p = 2.
As an application of the differentiability in (1.6), in Section 9, we show dy, > p for any
generalized Sierpinski carpet and for the D-dimensional level-I Sierpiniski gasket with any
D,l € N\ {1}. The proof for the former follows closely the argument in [Xaj23|, whereas
for the latter we need a different argument from that in [Kaj23].

We would also like to mention a geometric role of o, appearing in (1.10). As done
in [Kig20, Kig23], the constant o, is obtained by seeking the behavior of conductance
constants ([Kig23, Definition 2.17]) on approximating graphs of K; see Theorem 8.12 for
details. A remarkable fact is that the behavior of o, as a function of p is deeply related
to the Ahlfors reqular conformal dimension dimarc(K,d) of (K, d) (see Definition 8.5-
(4) for its definition); indeed, o, > 1 if and only if p > dimarc(K,d) (see, e.g., [Kig20,
Theorem 4.7.6]). Therefore, knowing properties of the function p — o, is very important
to understand the Ahlfors regular conformal dimension and related geometric information.
Nevertheless, we do not know anything other than the following:

(Continuity; [Kig20, Proposition 4.7.5]) o, is continuous in p.
(Simple monotonicity; [Kig20, Proposition 4.7.5]) o, is non-decreasing in p.



14 N. Kajino and R. Shimizu

(Holder-type monotonicity; [Kig20, Lemma 4.7.4]) dy,/p is non-increasing in p.
(Relation with dimagc; [Kig20, Theorem 4.7.6]) o, > 1 if and only if p > dimarc(K, d).

As yet another application of our theory of p-resistance forms, we prove in Theorems
8.32 and 7.9 the following new monotonicity behavior of ¢, (in suitably general settings
including any generalized Sierpinski carpet and the D-dimensional level-l Sierpiriski gasket

with any D,l € N\ {1}°):
(dimarc (K, d),00) 2 p— 0;/(”_1) € (0,00) is non-decreasing, (1.11)

which is good evidence that properties of p — (7;/ ®=1 are also important to deepen our
understanding of (€,, F,) and, possibly, of dimarc (K, d).

Let us conclude this introduction by mentioning a significant difference between our
theory and some recent results [BBR24, Kuw24| on p-energy forms based on strongly
local regular symmetric Dirichlet forms. (Similar p-energy forms were considered earlier
in [HRT13, Remark 6.1].) In the settings of [BBR24, Kuw24]|, the associated p-energy
measure FpDF<u> can be explicitly defined by using the “density” which plays the role of
“IVu|” and is independent of p (see Example 4.2-(3)), whereas it is almost impossible to
find a priori such a density on fractals. Meanwhile, we can naturally define the self-similar
p-energy measure I'y(u) of u by using (1.10); see Section 5 for details. (See also [[KS24 -]
for p-energy measures associated with Korevaar—Schoen p-energy forms.) In [KKS-+b], the
authors will show that I',(u,) and I';(u,) are mutually singular for any p, ¢ € (1, 00) with
p # q and any (uy,, u,) € F, x F, for a certain class of post-critically finite self-similar sets
including the D-dimensional level-l Sierpiriski gasket with any Dl € N\ {1}, by proving
that (1,00) 3 p — 011,/ P=1) g strictly increasing. This phenomenon on the singularity of
energy measures never happens if we consider the energy measures I})F(-), IPF(-) that
naturally show up in the settings of [BBR24, KKuw24|. This point also motivates us to
develop a general theory of p-energy forms in an abstract setting in order to deal with
fractals.

This paper is organized as follows. In Section 2, we collect basic results on the gen-
eralized p-contraction property (GC),. In Section 3, we prove the differentiability of
p-energy forms satisfying p-Clarkson’s inequality (Theorem 1.3). Moreover, we see that
the (Fréchet) derivative in (1.6) gives a homeomorphism between F,,/€,'(0) and its dual.
We also discuss regular and strong local properties of p-energy forms there. In Section 4,
under the assumption of the existence of p-energy measures, we discuss their fundamen-
tal properties (Theorem 1.4 for example). We also formulate a chain rule for p-energy
measures and observe some consequences of it. In Section 5, we recall standard notions
on self-similar structures, discuss the self-similarity of p-energy forms and see that we can
associate self-similar p-energy measures to a given self-similar p-energy form. Section 6
is devoted to the study of fundamental nonlinear potential theory for p-resistance forms,

6Tt is essentially known to experts that dimarc(K,d) = 1 for the D-dimensional level-l Sierpiniski
gasket K equipped with the Euclidean metric d. In Theorem B.8, we give a new proof of this fact, based
on the existence of self-similar p-resistance forms proved in Theorem 8.50 as an extension of [CGQ22,
Theorem 6.3|, for a large class of post-critically finite self-similar sets with good geometric symmetry; see
Subsection B.2 for details and relevant results in the literature.
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most of which are mentioned in the introduction (see Theorems 1.6, 1.9, 1.10, Proposition
1.8, (1.8) and (1.9)). We further investigate the theory of p-resistance forms in the self-
similar case in Section 7. In particular, we establish a Poincaré-type inequality in terms
of self-similar p-energy measures under some geometric assumptions on the p-resistance
metric. In Section 8, the generalized p-contraction property (GC), is verified for the p-
energy /p-resistance forms constructed in [CGQ)22, Kig23|. More precisely, in Subsections
8.1 and 8.2, we recall the notion of p-conductively homogeneous compact metric space and
the construction of p-energy forms due to [Kig23| and prove (GC), for them. In Subsec-
tion 8.3, we focus on the case of post-critically finite self-similar structures and show that
the eigenforms constructed in [CGQ22| are indeed p-resistance forms. In Subsection 8.4,
we prove the existence of eigenforms for a large class of post-critically finite self-similar
sets with good geometric symmetry (Theorem 8.50), extending [CG ()22, Theorem 6.3| by
following the framework of [Kig01, Theorem 3.8.10]. In Section 9, we prove dy,, > p for
the generalized Sierpinski carpets and the D-dimensional level-l Sierpinski gasket by using
properties of p-harmonic functions established in Section 6. In Appendix A, we show that
(GC); holds for any symmetric Dirichlet form, the (2-)energy measures associated with
any regular symmetric Dirichlet form, and their densities. Lastly, in Appendix B we col-
lect some miscellaneous results related to self-similar p-resistance forms on post-critically
finite self-similar structures.

Notation. Throughout this paper, we use the following notation and conventions.

(1) For [0, oo]-valued quantities A and B, we write A < B to mean that there exists an
implicit constant C' € (0, 00) depending on some unimportant parameters such that
A< CB. We write A< Bif A< Band B < A.

(2) For aset A, welet #A € NU {0, 00} denote the cardinality of A.

(3) We set supf) = 0, inf) .= oo, a/0 = oo for a € (0,00] and 0° := 1. We write
a Vb :=max{a,b}, a Ab = min{a,b} and a™ == a V0 for a,b € [—00, 00|, and we
use the same notation also for [—o0, co]-valued functions and equivalence classes of
them. All numerical functions in this paper are assumed to be [—o00, oo]-valued.

(4) We define sgn: R — R by sgn(a) == |a| ' a for a € R\ {0} and sgn(0) == 0.

(5) Let n € N. For z = (z1)p_; € R", we set [[z]|p = ||z, = (> |zklP) /P for
p € (0,00), [|z]lee = [|2[lpoe = maxi<p<n zx| and [lz]| = [z, For &: R" — R
which is differentiable on R™ and for k € {1, ..., n}, its first-order partial derivative in

the k-th coordinate is denoted by 0, ® and its gradient is denoted by V& = (0, P)}_;.
(6) Let X be a non-empty set. We define idx: X — X by idx(z) =z, 14 = 1% € R¥

1 itre A
for A C X by la(x) = 15(x) = " and set ||u = ||lu =
= y A( ) A( ) 0 lfl’gA, ” Hsup H ”sup,X
Sup,ey [u(z)] for u: X — [—00,00]. Also, set oscx[u] = sup, ,ex [u(r) — u(y)| for
u: X — R with [ully,, < oo.

(7) Let X be a topological space. The Borel o-algebra of X is denoted by B(X), the
closure of A C X in X by ZX, and we say that A C X is relatively compact in
X if and only if A% s compact. We set C(X) = {u € RX | u is continuous},
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suppy|u| = X\u—l(O)X for u € C(X), Cp(X) = {u € C(X) | |lully,, < oo}, and
Ce(X) ={u € C(X) | suppy|u] is compact}.

(8) Let X be a topological space having a countable open base. For a measure m
on a o-algebra B in X including B(X), we let suppy[m| denote the support of m
in X, i.e., the smallest closed subset F' of X such that m(X \ F') = 0, and set
supp,,|f] = suppxl|f| dm] for a B-measurable function f: X — [—00,00]| or an
m~equivalence class f of such functions.

(9) Let (X,d) be a metric space. We set By(x,r) = {y € X | d(z,y) < r} for (z,r) €
X % (0,00), and diam(A, d) = sup, ,c d(z,y) and disty(A, B) = inf{d(x,y) | v €
A,y € B} for subsets A, B of X.

(10) Let (X,B,m) be a measure space. We set f, f dm = m [ fdmfor f e L'(X, m)
and A € B with m(A) € (0,00), and set m|4 = m|g, for A € B, where B|4 =
{BN A | B € B}. For a measure p on (X, B), we write y < m to mean that p is
absolutely continuous with respect to m.

2 The generalized p-contraction property

In this section, we will introduce the generalized p-contraction property and establish
basic results on this property. Throughout this section, we fix p € (1,00), a measure
space (X, B,m), a linear subspace F of L%(X,m) := L°(X, B, m), where

L°(X, B, m) := {the m-equivalence class of f | f: X — R, f is B-measurable}, (2.1)

and a functional £: F — [0, 00) which is p-homogeneous, i.e., satisfies £(au) = |a|” E(u)
for any (a,u) € R x F.

Remark 2.1. Note that the pair (B, m) is arbitrary. For example, (B, m) could be the pair
of 2 = {A | A C X} and the counting measure on X, in which case L°(X, B,m) = R¥.
We will make this choice of (B, m) later in Section 6.

Definition 2.2 (Generalized p-contraction property). The pair (€, F) is said to satisfy
the generalized p-contraction property, (GC), for short, if and only if the following hold:
if ny,na €N, q1 € (0,p], @2 € [p,oc] and T = (T1,...,Tp,): R™ — R™ satisfy

T(0)=0 and |T(z) =TY)l < |z =yl foranyz,y e R™, — (2.2)
then for any u = (uy,...,u,,) € F™ we have
T e 7 and (€T | < [E - (GO,

The next proposition is a collection of useful inequalities included in (GC),.

Proposition 2.3. Let ¢ € C(R) satisfy (0) = 0 and |¢(t) — ¢(s)| < |t —s| for any
s,t € R." Assume that (€, F) satisfies (GC),,.

"Note that any such ¢ satisfies [p o f| < |f] on X for any f: X — R and hence g o f € LP(X,m) for
any f € LP(X,m).



Contraction properties and differentiability of p-energy forms 17

T(x,y) =x+vy, z,y € R, satisfies (2.2) with (q1,q2,n1,n2) = (1,p,2,1). In partic-
ular, EY7 is a seminorm on F, and & is strictly convex on F/E71(0), i.e., for any

A€ (0,1) and any f,g € F, if E(f)NE(G) NE(f —g) > 0, then
ENf+ (1 =XN)g) <AE(f) + (1 = ME(9). (2.3)
T = ¢ satisfies (2.2) with (q1,q2,n1,n2) = (1,p,1,1). In particular,
for any ¢ as assumed above, p(u) € F and E(p(u)) < E(u) for any uw € F. (2.4)
Assume that ¢ is non-decreasing. Define T = (T}, Ty): R* — R? by
Ti(z1,m9) = 11 — (21 — 12)  and Ty(x1,29) = 29 + ©(x1 — 22), (71,79) € RZ
Then T satisfies (2.2) with (g1, q2,n1,n2) = (p,p,2,2). In particular,
E(f—o(f—9)+E(g+e(f—g) <Ef)+E(g) forany f.ge F.  (2.5)

In particular, by considering the case of p(x) = x*, we have the following strong
subadditivity: for any f,g e F, fVg, fNge F and

E(fVg)+E(f Ng) <E(f) +E(g). (2.6)
For any ay,ay > 0, define T : R? — R by
T (zy,29) = ([(—a1) Vay 'z Aay) - ([(—a2) Vay'zs] Aag),  (31,22) € R%

Then T2 satisfies (2.2) with (q1,q2,n1,m2) = (1,p,2,1). In particular, for any
f,9 € FNL>®(X,m) we have

Fr9eF and E(F 9" < lgllmpom EDY + 1 fliminm E@Y7. 27)
Assume that p € (1,2]. Define T = (T1,Ty): R* — R? by
T1<1'1, IL‘Q) = 2—([2—1)/1)(1,1 —f-l’g) and TQ(lL‘l,ZEQ) = 2—(1)—1)/[)(1.1_1.2)7 (1'1, 1'2) € R2.

Then T satisfies (2.2) with (q1,q2,n1,n2) = (p/(p —1),p,2,2). In particular, (€, F)
satisfies the following p-Clarkson’s inequality:

E(f+9)+E(f —g) = 2(ENHYD +E(@Y*N™ for any f,g € F. (2.8)
Assume that p € [2,00). Define T = (Ty,Ty): R? — R? by
Tl(lCl, 1'2) = 271/[)(1'1 + 33'2) and TQ(SL’l,LEQ) = 271/}7(%1 — .1'2), (.I'l, LCQ) € RQ.

Then T satisfies (2.2) with (q1,q2,n1,n2) = (p,p/(p — 1),2,2). In particular, (€, F)
satisfies the following p-Clarkson’s inequality:

E(f+9)+E(f—9) 2NV + €9V ) for any fg € F. (29)
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Remark 2.4. (1) The property (2.5) is inspired by the nonlinear Dirichlet form theory
due to Cipriani and Grillo [CG03]. See [Cla23, Theorem 4.7] and the reference therein
for further background.

(2) There are two versions of p-Clarkson’s inequality, one of which is stronger than the
other. The inequalities (2.8) and (2.9) above are the stronger one for p € (1,2] and
for p € [2,00), respectively; see Remark 3.3 below for the weaker one.

Proof of Proposition 2.3. (a): It is obvious that T'(z,y) = z + y satisfies (2.2) with
(q1,q2,m1,m2) = (1,p,2,1) and hence the triangle inequality for €Y7 holds. Since
(0,00) > x +— aP is strictly convex, for any A\ € (0,1) and any f,g € F with

E(f)NE(G NE(f —g) >0,
EANf+ (L =Ng) < AENHYP+ (1 =NE)'") < AE(f) + (1= NE(g),

where we used the triangle inequality for £/7 in the first inequality.

(b

):
(c): Let = (z1,22),y = (y1,%2) € R% For ease of notation, set z; = x; — y; and
= @(x1 — x2) — ¢(y1 — y2). Then |T(z) = T(y)lls» < [l — yll,» ic equivalent to

This is obvious.

A
21— AP + ]z + AP < |l + |l (2.10)

so we will show (2.10). Note that |A| < |z; — 25| since ¢ is 1-Lipschitz. The desired
estimate (2.10) is evident when z; = z3, so we consider the case of z; # z5. Assume that
21 > z3 because the remaining case z; < z is similar. Then (21 —22) —(y1 —y2) = 21— 22 >
0 and thus 0 < A < 21 — 2. Set ¢, (t) = [t|” (t € R) for brevity. If 0 < A < %722 then
29 < zg+ A<z — A <z and we see that

21

22+A
|z1—A|p+|22+A|p—|z1|p—|z2|p:/ wyd— [ gl

29 z1—A

< AP (2 + A) — (21 — A)) <0.

If A> 252 then 2p < 2y — A < 25 + A < z; and thus

21

z1—A
M—AV+W+AW—MP—MP:/ wyd— [ () de

z9 zo+A
< (21 — 22— A) (19;,(21 - A) - %/9(2’2 + A)) <0,
which proves (2.10). The case of p(z) = T immediately implies (2.6).
(d): For any ay,as > 0 and (21, z2), (y1, y2) € R?, we see that

T2 (21, x2) — T (21, T2))|
< |(—a1) Voaytr A al‘ ‘( —ag) V aflxz A a2) — ((—ag) Voaitys A a2)|
+ ’ —ag) V ay yg/\a2| |( —ay) Vay'r /\al) — ((—al)\/aglyl /\al)‘

Sal‘al Ty —ay 92‘4—@2‘@2 Ty — Gy 3/1‘ = [v1 —y1| + 22 — o ,
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whence T2 satisfies (2.2). We get (2.7) by applying (GC), with ur = ||gl joc(xm) [

Uz = ||f||L°0(X7m)ga ar = ||f||Loo(X,m)7 a2 = ||g||L°°(X,m)'
(e),(f): These statements follow from p-Clarkson’s inequality for the ’-norm (see, e.g.,
[Cla36, Theorem 2]). O

The following corollary is easily implied by Proposition 2.3-(b),(d).

Corollary 2.5. Assume that (€, F) satisfies (GC),.
(a) Letue FNL®(X,m) and let ® € C'(R) satisfy ®(0) = 0. Then

O(u) € F and E(P(w)) < sup{|®' ()" |t €R,|t| < [ll oo (xmy FE(u). - (2:11)

(b) Letd, M € (0,00) and let f,g € F satisfy f >0, 9 >0, f <M and (f+9)|{s20y > 0.
Then there ezists C € (0,00) depending only on p,d, M such that

L e and 5(4) < C(E(f) +Elg)). (2.12)

f+yg f+g

(c) Letn € N, ¢ € [L,p], w = (ug,...,u,) € F" and v € LY(X,m). If there exist
m-versions of w,v such that [v(z)| < ||lu(z)||, and |v(z) —v(y)| < ||lu(z) — w(y)]l,.
for any x,y € X, thenv € F and E(v) < H (E(uk)l/p)::1’ v

Proof. (a): This is immediate from Proposition 2.3-(b).

(b): We follow [MS23-+, Proposition 6.25(ii)]®. Let ¢ € C'(R) be a Lipschitz map such

% < (' for some constant C” depending

only on §. Since f-o(f +g) = ﬁ, we get (2.12) by using (2.4) and (2.7).

(c): The proof below is similar to [MR, Corollary 1.4.13]. Fix m-versions of u,v
satisfying [v(2)] < [lu(z)l, and fo(z) —v(y)| < [Ju(z) —u(y)l, for any z,y € X. We
define Tp: w(X) U {0} — R by setting 7(0) := 0 and Ty(z) = v(x) for each z € u(X),
where x € X satisfies z = w(x). This map Tp is well-defined since v(z) = 0 for any
z € X with u(z) = 0 and |v(z) — v(y)| < |lu(z) — u(y)|,, = 0 for any z,y € X with
u(zr) = u(y) € u(X). In addition, we easily see that |Tp(z1) — To(22)| < ||z1 — 22|, for
any 21,22 € u(X)U {0}, ie., Tp: (w(X)U{0},] -|,) — R is 1-Lipschitz. Noting that
(R™, || - ||;¢) is & metric space by ¢ > 1, we obtain a 1-Lipschitz map 7': (R", || -||,,) = R
satisfying T'(z) = Ty(z) for any z € u(X) U {0} by applying the McShane-Whitney
extension lemma (see, e.g., [HKST, p. 99]). Since T satisfies (2.2) with (q1, g2, n1,n2) =
(¢,p,n,1) and T'(u) = v, the assertions follow from (GC),. O

that o(z) = L for > § and sup,,cp

We also notice that (GC), implies a new variant of p-Clarkson’s inequality, which we
call improved p-Clarkson’s inequality. This result is not used in the paper, but we record
it for potential future applications.

8The article [MS23-] is a detailed version of [MS25+]. Several statements and proofs have been
removed from the latter, so we still refer to [MS23+] for those omitted results and arguments.
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Proposition 2.6 (Improved p-Clarkson’s inequality). Define ¢,: (0,00) — (0,00) by
Pp(s) = (1+s)P P +sgn(l —s)[1—s"", s>0. (2.13)
(a) Assume that p € (1,2]. For s € (0,00), define T® = (T}, T5): R* — R? by
T (w1, w0) =27y ()P (w1 + @), T5 (w1, 22) = 27"y (s7 ) /P (21 — 22).

Then T* satisfies (2.2) with (q1,q2,n1,n2) = (p,p,2,2) for any s € (0,00). If (€, F)
satisfies (GC),, then

iglg{¢p(3)g<f) +p(sT)E(G) ) SE(f+g)+E(f—g) forany f.ge F. (2.14)

(b) If € satisfies (2.14), then (2.8) holds.
(c) Assume that p € [2,00). For s € (0,00), define T = (T}, Ts): R* = R? by

T (1, 22) = () P+ (s Pmo, T (21, 22) = hyp(s) /Py —tp(s™) 7/ Pas.

Then T* satisfies (2.2) with (q1,q2,n1,m2) = (p,p,2,2) for any s € (0,00). If p €
2,00) and (€, F) satisfies (GC),, then

E(f+9)+E(f —g) <f{Gy()E(F) + (s )E(9)}  for amy fLg € F. (2.15)
(d) If & satisfies (2.15), then (2.9) holds.

Proof. We first recall a key result from [BCL94, Lemma 4|: for any z,y € R,

P P — SuPs>0{wp ) 2] + (s ‘1)\?11’”} if p e (1,2], 916
el { fooltn(s) laf + ip(s ) Py iEpe o). )

(a): By considering z+y, x—y in (2.16) instead of x, y, we have that for any s € (0, 00),
277y (s) [w +yl” + 277 (s7H) |2 — gl < Jal” + [yl

which means that 7" satisfies (2.2) with (q1, g2, n1,m2) = (p,p,2,2). Since s € (0,00) is
arbitrary, we obtain (2.14).

(b): Let f,g € F with E(f)AE(g) > 0, set a = E(f)Y/®V and b := £(g)"/~ Y. Then,
ililg{%(s)g(f) +p(s7)E(9) } = ¥p(b/a)a”™" + by(a/b)b" ™ = 2(a + 0)P,

which together with (2.14) yields (2.8).

(c): For any s € (0,00), we immediately see from (2.16) that T satisfies (2.2). Since
s € (0,00) is arbitrary, we obtain (2.15).

(d): Let f,g € F with E(f)AE(g) > 0, set a = E(f)YPV and b= (g )Up D, Then,
inf{vn(s)E(f) +vn(s7)E()} < Up(b/a)a”" + P (a/b)V"™" = 2(a + b)"~

which together with (2.15) yields (2.9). O
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The property (GC), is stable under taking suitable limits and some algebraic oper-
ations like summations. To state precise results, we recall the following definition on
convergences of functionals.

Definition 2.7 (|Dal, Definition 4.1 and Proposition 8.1]). Let X’ be a topological space,
let F': X - RU{+o0} and let {F,,: X - RU {£00}}nen.

(1) The sequence {F,, } en is said to converge pointwise to F' if and only if lim,, ., F,(z) =
F(z) for any x € X.

(2) Assume that X is a first-countable topological space. The sequence {F, },cn is said
to '-converge to F (with respect to the topology of X') if and only if the following
conditions hold for any x € X

(i) Ifz, — zin X, then F(x) <liminf, ,. F,(x,).
(i) There exists a sequence {x, ey in X such that

T, > xin X and limsup F,(z,) < F(z). (2.17)

n—o0

A sequence {x, },en satisfying (2.17) is called a recovery sequence of {F,}nen at .

We also need the following reverse Minkowski inequality (see, e.g., [AF, Theorem
2.12)).

Proposition 2.8 (Reverse Minkowski inequality). Let (Y, A, 1) be a measure space’ and
let r € (0,1]. Then for any A-measurable functions f,g: Y — [0, o],

(/Y f du) " + (/Y g du) " < (/Y(f+g)rdu> m. (2.18)

In the following definition, we introduce the set of p-homogeneous functionals on F
which satisfies (GC),.

Definition 2.9. Recall that F is a linear subspace of L°(X,m). Define
UT(F) =UFC = {&': F —[0,00) | £ is p-homogeneous, (&', F) satisfies (GC),}.

Now we can state the desired stability of (GC),.

Proposition 2.10. (a) a;EW 4+ a,E@ € USC for any EM £O) ¢ USC and any a1, as €
[0, 00).

(b) Let {5(”)}n€N CUFC and let £ F — [0,00). If {€M},en converges pointwise to
E®) then £ ¢ use.

(c) Assume that F C LP(X,m) and let us regard F as a topological space equipped
with the topology of LP(X,m). Let {E™ € Ufc}nEN and let £°): F — [0,00). If
{E€M}en T-converges to £°), then £°) € USC.

9In the book [AF], the reverse Minkowski inequality is stated and proved only for the L"-space over

non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same proof
works for any measure space.
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Proof. The statement (b) is trivial, so we will show (a) and (c¢). Throughout this proof,
we fix ny,ny € N, ¢4 € (0,p, g2 € [p,o0] and T = (T1,...,Tp,): R" — R"™ satisfying
(2.2).

(a): Let EW €@ € YFC. Then a€™ € L{ZS’C is evident for any a € [0,00). Set
E(f) = EV(f) + ED(f), f € F, and let u = (u,...,u,,) € F™. It suffices to
prove || (E(Ty(u))"/7)” g < B i), " |l ar - For simplicity, we consider the case of
¢z < 00. (The case of g2 = 00 is similar.) Then we have

3

2

E(ﬂ(u))QQ/p
=1
2 ) @) q2/p
=3[ ) + £ (Bw)]
p/az\ /P
Zg(i) (ﬂ(u))q2/p] (by the triangle ineq. for ||| e/»)
1e{1,2}
n /a1 n plar\ /P
ép [ 5(1)(uk>m/p + 25(2)(uk)‘11/”]
k=1 k=1

P
a1

k=1

n 2 n a2/a

(2.18) ! 1/ P !

< ( [5(1)%) +5<2>(uk)]q ”) - (Z E(uk)ql/p) , (2.19)
k=1

which implies FE € Z/{pGC.

(c): Let w = (uy,...,up,) € F™, and let {u,, = (U1n,-..,Un ) nen € F™ be a
recovery sequence of {£™}, oy at w. We first show tnat ||7j(u) — Ti(w)ll po(x my) = 0 as
n — 0o. Indeed, for any v = (vy,...,v,,) and any z = (21,..., z,,) € LP(X,m)™, we see
that

max Ti(0) = T oy < / lo(e) — 2(0)| m(de)

/(Zm - ale >/ m(da)

< pipmw/n Z 10k = 212 ) (2.20)
k=1

where we used Holder’s inequality in the last line. Since maxy |[ux — trnl| o,y — 0 @S
n — 00, (2.20) implies the desired convergence [|Ti(w) — Ti(wn)|| 1o (x m) = O-

Now we prove (GC), for the I-limit £°) of {£(M},,cy (with respect to the LP(X,m)-
topology). It is easy to see that £(°) is p-homogeneous (see, e.g., [Dal, Proposition 11.6]).
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We assume that ¢o < 0o since the case go = 0o is similar. Then,

ZS )PP < th inf £ (Ti(u,)) ™" < lim mfzg(” ()™

n—oo n—oo
p .92 p 92
ni q P a1 P
< hgggolf (; g (uk’n)‘h/p> (Z gl (ug q1/p> :
which proves £(>) ¢ Z/{pGC. ]

3 Differentiability of p-energy forms and related results

In this section, we show the existence of the derivative in (1.6) for any p-energy form (&, F)
satisfying p-Clarkson’s inequality, (2.8) or (2.9), and establish fundamental properties of
the “two-variable version” of £ defined by (1.6).

Throughout this section, we fix p € (1,00), a measure space (X, B, m), and a p-energy
form (€, F) on (X, m) in the following sense:

Definition 3.1 (p-Energy form). Let F be a linear subspace of L°(X,m) and let £: F —
[0,00). The pair (€, F) is said to be a p-energy form on (X, m) if and only if £V/7 is a
seminorm on F.

Note that the same argument as in the proof of Proposition 2.3-(a) implies that £ is
strictly convex on F/E71(0) (see (2.3)).

3.1 p-Clarkson’s inequality and differentiability

In this section, we mainly deal with p-energy forms satisfying p-Clarkson’s inequality in
the following sense.

Definition 3.2 (p-Clarkson’s inequality). The pair (£, F) is said to satisfy p-Clarkson’s
inequality, (Cla), for short, if and only if for any f, g € F,

{8<f +9)TE(S —9) 2 2ENTT +E@T)" ifpe (1,2,
E(f+9)+E(f —g) S2AENTT +E)7T)" i pe20)

Remark 3.3. The following weaker version of p-Clarkson’s inequality is also well known:
for any f,g € F,

E(f+g)+&E(f—9g) <
E(f+g) +&E(f—g) >

(Cla),

(E(f) +E(9) if p € (1,2],
(8(f)+5(g)) if p € [2,00).

Since, for any a,b € [0, 00), Holder’s inequality yields (ap%l + bp%l)p_l > 2772(q + b) if
p € (1,2] and (aplf1 + bp%l)p*1 < 2772(a+b) if p € [2,00), (Cla), with &2, 52 in place

of f,g implies (Cla);. In this paper, we will use this implication without further notice.

(Cla),,
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To state a consequence of (Cla), on the convexity of £/7 let us recall the notion
of uniform convexity. See, e.g., [Cla36, Definition 1]. (The notion of uniform convexity
is usually defined for normed spaces in the literature. We present the definition for
seminormed spaces because we are mainly interested in (F, £1/7).)

Definition 3.4 (Uniformly convex seminormed spaces). Let (X, |-|) be a seminormed
space. We say that (X, |-]) is uniformly conver if and only if for any e > 0 there exists
d > 0 with the property that |f + g| < 2(1 — §) whenever f,g € X satistfy |f| = |g| =1
and |f —g| > e.

It is well known that (Cla), implies the uniform convexity as follows.

Proposition 3.5. Assume that (€, F) satisfies (Cla),. Then (F,EYP) is uniformly con-
vex.

Proof. The same argument as in [Cla36, Proof of Corollary of Theorem 2| works. m

Moreover, (Cla), provides us the following quantitative estimate for the central differ-
ence, which plays a central role in this section.

Proposition 3.6. Assume that (£, F) satisfies (Cla),. Then for any f,g € F,

1 127 1
" e 6

E(f+9)+E(f = ) —26(f) <2(1V (0= 1) [E(H)7T + E(g) 7T

and the function R 3 t — E(f + tg) € [0,00) is differentiable. Moreover, for any c¢ €
(0, 00),

E(f+dg9)—E(f) d
5 —ag(f+t9)

lim sup sup
00 feFie(f)<e/(p-2)t geF;€(g)<1

—0. (32

t=0

Proof. Let f,g € F. If p € (1,2], then (3.1) is immediate from (Cla),. If p € (2, 00), then
setting a := E(f)YP~Y and b = E(g)/P~V, we see from (Cla), that

a+b
E(f+9)+E(f—9)—2&(f) < 2((a+b)P ' —a"™") = 2(p—1)/ "% ds < 2(p—1)(a+b)"?b,

proving (3.1). For the rest of the proof, we first note that by the convexity of &,

EU+39) =) 0 o EU = 09) = E()

5 im 5 exist in R, (3.3)

the limits lim
510
and for any 0 € (0, 00),

Ds(f;9) = E(f +0g) + E(f — dg) — 2E(f) > 0, (3.4)

E(f +09)—E(f) . Ef +59)—E(f)| _ Dilf:9)
) 510 s - 5
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On the other hand, we see from (3.1) that for any 0 € (0, 00),

Dilfig) )2 EW@) L e, e (3.6)
ST 20— 1007 |E(N)T 6| el ifpe (2.00).

By (3.4) and (3.6), the limits in (3.3) coincide, so that the function t — E(f + tg) is
differentiable at 0 and thereby at any s € R by replacing f with f + sg, and then we
obtain (3.2) by combining this differentiability at 0 with (3.5) and (3.6). O

Proposition 3.6, especially (3.2), implies the Fréchet differentiability of £ on F/E71(0).
We record this fact and basic properties of these derivatives in the following theorem.

Theorem 3.7. Assume that (€, F) satisfies (Cla),. Then £: F/E71(0) — [0,00) is
Fréchet differentiable on the quotient normed space F/E7Y(0). In particular, for any

f,geF,

1
the derivative E(f;g) = — ig(f +tg)| €R exists, (3.7)

p dt o
the map E(f; -): F — R is linear, E(f; f) = E(f) and E(f;h) = 0 for h € £710).
Moreover, for any f, f1, fo,9 € F and any a € R, the following hold:

Rotw— E(f+tg;g) € R is strictly increasing if and only if E(g) > 0. (3.8)
E(af;g) =sgn(a) [al" " E(f;9), E(f+hig)=E(f:9) forh e ETH0). (3.9)
E(f: 9)l < ECH)TDIPE(g) . (3.10)

)

where oy, =

E(fi19) = Ef:9)| < CoE(R) VER)) T PE = fa) o 7E(g) 7, (3.1
A 71 and C, € (0,00) is a constant determined solely and explicitly by p.

1
P
Remark 3.8. The Holder continuity exponent «, appearing in (3.11) is not opti-
mal because this exponent can be improved to (p — 1) A 1 in the case of E(f;g) =
Jan IV FIP “2(Vf,Vg)dz. However, whether such an improved Holder continuity holds
is unclear even for concrete p-energy forms constructed in the previous works [CGQ)22,
Kig23, MS25+, Shi24]. We can see the optimal Holder continuity ((3.11) with (p—1) A1l
in place of a,) for p-energy forms constructed in [[K{S24-|, where a direct construction of
p-energy forms based on the Korevaar—Schoen type p-energy forms is presented.

Proof of Theorem 3.7. The existence of £(f;¢g) in (3.7) is already proved in Proposition
3.6. The properties £(f;ag) = a&(f;g), E(af;g) = sgn(a)|al’" E(f;g) and E(f; f) =
E(f) are obvious from the definition. The equalities E(f+h;g) = E(f+g) and E(f;h) =0
for any h € £71(0) follow from the triangle inequality for £'/7, so (3.9) holds. The property
(3.8) is a consequence of the strict convexity of £ (see (2.3)) and the differentiability in
(3.7).

To show that E(f; -) is linear, it suffices to prove E(f; 91 + g2) = E(f;01) + E(f; 92)
for any g1, 9. € F. For any t > 0, the convexity of £ implies that

5(f + (g + 92)) —&(/f) _ 5(%(f + 2tg1) + %(f + 2t92)) —&(f)

t t
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E(f +2tq) — E(f) N E(f +2tga) — E(f)
- 2t 2t '

< E(f;q1) + E(f;92). We obtain the

(3.12)

Passing to the limit as ¢ | 0, we get £(f; 91 + g2)
converse inequality by noting that

S(f_tg)_g(ﬁ_)_ig(f_{_tg) =—pE(f;g9) astlO,
t dt t=0

and by applying (3.12) with —g;, —go in place of g1, g respectively.
The Holder-type estimate (3.10) follows from the following elementary estimate:

aVvb
la? — b?| = / qrit dt' < qat* Vb a—b| for g€ (0,00), a,be€[0,00). (3.13)

Ab

Indeed, by (3.13) and the triangle inequality for £/7, for any t > 0,

‘5(f + tgt) — 5(f)‘ < p(g(f + tg)l/p Vi 5(]:7)1/17)17*15(9)1/19‘ (3.14)

We obtain (3.10) by letting ¢ | 0 in (3.14). We conclude that E(f; -) is the Fréchet
derivative of £ at f by (3.2), the linearity of £(f; -) and (3.10).

In the rest of this proof, we prove (3.11). Our proof is partially inspired by an argument
due to Smulian in [Smu0]. In this proof, C,;, i € {1,...,5}, is a constant depending
only on p. We first show an analogue of (3.1) for £/7. Using (3.13), we can show that
there exists ¢, € (0, 2_p3) depending only on p such that

£(f) — E(f +6g)] 1p _ 1
sup{ £7) f.geF,6e€(0,00),d <cE(f)Y 75(9)_1}§E' (3.15)

Define ¢: R — R by ¢(t) = [¢|?, and fix f,g € F and § € (0,00) with § < ¢, E(f)Y/?
and £(g) = 1. Then there exist 6,0, 0 € [0, 1] such that

0 <Y(E(f +0g)) +v(E(f —dg)) — 20(E(f))

U(As) [E(f +0g) = E(F)] — ¥ (A2s) [E(f) = E(f = d9)]

¢,(A1(5))D5<f;9) - (¢ (Alé A25 ) E(f)—E&(f - 59)}

W' (A15)Ds(f;9) — " (Ars + 0(A2 5 — Avg)) (Aas — Aig) [E(f) — E(f = dg)], (3.16)

where Ds(f; g) is the same as in (3.4) and
Arg = E(f) +0[E(f +0g9) = E(f)],  Ass = E(f —dg) +0:[E(f) — E(f — dg)].

By (3.15), we note that |4y 5| A[Ays + 0(Ass — A1) = 3E(f), which together with (3.16)
and (3.1) implies that for any (8, f) € (0,00) x F with 0 < 6 < c,&(f)Y?,

0 < 9(E(f +09)) +Y(E(f = 0g)) — 20(E(f))
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1_ (p
< Cpa (£

_ 1 1_ -2 1 (p 1)
< Cpad - SN (g e (),

1 517/\p I +g(f> —2+ (P 1)(52)

In particular, if £(f) = 1, then
E(f+69) 7+ E(f = 69)' /P <24 €, 6% V5515 for any § € (0,¢,). (3.17)
Next let f1, f, € F. Then, by (3.10) and (3.13),
E(fos f1) = EI < |E(fas f1) = E(fo)l + 1E(f2) — E(f)]
< <g<f2)<p—1>/p +p(g(f2)(p—1)/p Vv E(f)PD /p)) (fr — f2)V/7
< Cpa(EC IV (L)) E(f — f) (3.18)
Now, for any f1, fo,g € F with £(f1) = £(g) = 1 and any § € (0,c¢,), we sce that

E(f1:69) — E(f2;09)
=E(fi; L +0g9) + E(fas L = 69) — E(fr) — E(f2 fr)

(3.10)

< (ST EL) I (ECf +89)7 + E(fi — 69) 7)) = E(f1) — E(fai 1)

(3.13),(3.17)

< (L Gl = f2)77) (24 Cud 55) — E(F) — €(fai ).
Similarly, we can show

E(f1;69) — E(f2;09)
= —E(f1; f1 —69) — E(fas fr +0g) +E(f1) + E(f2; f1)

(14 G (i — )77) (24 €8 56) + E(R) + E(fa: )
From these estimates, we have

E(fi1g) — E(far g)] = 1EU1399) - E(f2199)]

< (L Cpal (fr = )7) (267 4 G050 ) — 7€ (1) = 67 € )
= (1 +Cpal(fr — fz)l/p) (25—1 - Op,m(p*l)Aril) —2071E(f1) + 6 Y (ER) — E(fas /1))
(3.18)

< (14 Gallfi = £)17) (2071 4+ @O ) — 267+ G UE(fr — )7
< Cpa (007007 1 5E(f - o)),

IFE(fL— f2) <’ */(p=DvD) , then, by choosing 6§ = E(f1 — f2)®P~DVD/P" we obtain

E(f139) — E(fa: 9)] < CpsE(fr — fo) DA/, (3.19)
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The same is clearly true if £(f; — fo) > POV e E(fo) <2PH1+E(fL — f2)).
Finally, for any f1, fo,g € F with E(f1) A E(g) > 0, we have

5(60%UP5G;M)‘5<edgvf6GQM)

(3.19) 1/ Y fi B £ ((p—1)A1)/
< CpsE(f1)P7VPE(g) p5<g(f1)1/p g(fl)l/p)

Cos(E(F) VES)) T Pe()VPE(fr — fo)r.

The same estimate is clearly true if £(fy) A £(g) > 0. Since (3.11) is obvious when
g € E710) or E(f1) VE(f2) =0, we obtain (3.11). O

E(Fisg) — E(fo; 9)| = E(fr)P~V/Pg(g)V/P

(3.19)
<

The following theorem gives a quantitative continuity for the inverse map of f +—

E(fs )
Theorem 3.9. Assume that (€, F) satisfies (Cla),. Then for any f,g € F,

Lp-)E-p* (p=D)AL
Ef—g) < CEDVEQ] ( sup wuwa—e@wm) . (320

pEF;E(p)<1

where C), € (0,00) is a constant determined solely and explicitly by p.

Proof. For ease of notation, for any linear functional ®: F — R, we set [[®] -, =
SUDerewy<t |P(u)|. Clearly, [[®1 + @of z, < [[ 4]z, + [[P2] £, for any linear function-
als @1, @90 F — R. Note that [|E(f; -]z, = E(f)P=V/P for any f € F by (3.10). In
particular, for any f,g € F,

EN'T —E) Mz = 1€ )l

which together with (3.13) with ¢ = (p — 1)/p implies that

<[IEWf; ) =€ Iz

E() =) < T (ENPV EW ) IES ) = Egs e B21)

Let us define ¢): R — R by ¢(¢) == %g(f%—t(g f)). Then ¢ € C*(R) by (3.2) and (3.11);
indeed, (3.2) implies that ¢'(t) = E(f + t(g — f); 9 — f), which is continuous by (3.11).
Now we see that

WO =I1E(fi9 = NI < IE(f:9) — €+ 1E(9) — E()I

I £l E @)+ L (€ V EW) ) e )~ Elgi

p 1/p 1/p ) )
(HE) (EAPVEDPYINES: ) = E(g; )l -
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Similarly,
= leio— 1< (14 27) (€01 €6 e(s: )~ .
Since v is C'-convex, we obtain
e +e (552)| = plota/a - w0 < (vl v )

< (ENPVEQ)PYIES; ) = Elgs 5
where we put ¢, = g(l + %). Similarly,

2
Therefore, it follows that

¢ (%) > (E(/) v E(9) — ()P V E@) (S ) — €l z.) - (3:22)

Next we derive an estimate on £(45¢) by using (Cla), and (3.22). Set a = E(f) V £(9)
for simplicity. If p € [2,00), then

e(152) L aen e v sy < (15)

(3.22)

1/p . *

< a—(a—ca € )~ E(g; )
<caEf; ) = E(gs )lFs -

In the rest of the proof, we assume that p € (1,2]. We see that

. <f B g)l/(l)—l) (02)1) (g(f) —|—5(g)>1/(p_1) . (f+g)1/(p—1)

's<>+s(f *9)\ pIU(1L/2) — (V)] < o (EDYPV EWQ) ) €U ) — Elg: .

2 2 2

(3.22)

V/(-1)
<o (a- el gl e
In the case of a < c,a*?||E(f; ) — E(g; ) 7., we have

’ <¥> o= o D < gt (S ) — £ )l

Let us consider the remaining case a > c,a'/? ||E(f; -) — E(g; )£, Then we have from
(3.13) with ¢ =1/(p — 1) that

PRV Vo=
c (f : g) _ M) (a —c,a || E(f; ) — Elg; ')H.F,*) ’

2—p

C
S P EC ) = Elg;

Hence we obtain the desired estimate (3.20). O
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The following proposition is a kind of monotonicity on values of p-Laplacian. This
result will play important roles in Subsection 6.4 later and in the subsequent works [KS+a,

KS+Db].

Proposition 3.10. Assume that (£, F) satisfies (Cla), and the strong subadditivity (2.6).
Let uy, ug, v € F satisfy (ug—ui)Av)(z) =0 form-a.e. v € X. Then E(uy;v) > E(ug;v).

Proof. Let t > 0. Define f,g € F by f = u; + tv and g = us. Then we easily see that
fVg=us+tvand fAg=uy. By (2.6), we have E(us+1tv) 4+ E(uy) < E(ug +tv) + E(ug),
which implies that
E(ug + tv) — E(ug) < E(uy +tv) — E(uy)
t - t '
Letting t | 0, we get E(ug;v) < E(uy;v). O

We conclude this subsection by viewing typical examples of p-energy forms.

Example 3.11. (1) Let D € N, let Q be an open subset of R?, let B := B(f), let m
be the D-dimensional Lebesgue measure on 2 and let F = W'?(Q) be the usual
(1, p)-Sobolev space on 2 (see [AL, p. 60] for example). Define E(f) == [V f|[75qm):
f € F, where the gradient operator V is regarded in the distribution sense. Then
by following a similar argument as in the proof of Theorem A.19, one can show that
(€, F) is a p-energy form on (€2, m) satisfying (GC),. In this case, we have

E(fig) = / V@) (V). Vo(@))an dr,  fog € F,

where (-, - )gp denotes the inner product on R”.

(2) In the recent work [Kig23, MS25+]|, a p-energy form (£, F) on a compact metriz-
able space is constructed via discrete approximations under some analytic and ge-
ometric assumptions. See [CGQ22, HPS04] for constructions of p-energy forms on
post-critically finite self-similar sets. The construction in [CGQ)22] can be seen as
a generalization of that in [HPS04]. As will be seen in more detail later in Section
8, we can prove that p-energy forms constructed in [CGQ)22, Kig23, MS25+4| satisfy
(GC),, while even (Cla), is not mentioned in [CGQ)22, Kig23|. Furthermore, very
recently, Kuwae [Kuw24] introduced a p-energy form (&7, H?) based on a strongly
local Dirichlet form (&, D(&)) on L*(X,m). It is shown that (&7, H'?) satisfies (Cla),
in [Kuw?24, Theorem 1.7]. We can also verify (GC),, for (7, H'*) by using some good
estimates due to the bilinearity (Theorem A.19). See Appendix A for details.

(3) There are various ways to define (1, p)-Sobolev spaces in the field of analysis on metric
spaces (see, e.g., [HKST, Chapter 10]). In these definitions, roughly speaking, we find
a counterpart of |Vu|, e.g., the minimal p-weak upper gradient g, > 0 (see, e.g.,
[HP\ST Chapter 6] for details), and consider a p-energy form (£, F) on (X, m) given
by E(u) = = [y gtdm and F = {u € LP(X,m) | g, € LP(X,m)}. Unfortunately,
this p—energy form may not satisfy (Cla), because the map u +— g, is not linear in
general (see, e.g., [HKST, (6.3.18)]). However, in a suitable setting, we can construct a
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functional which is equivalent to £ and satisfies (Cla),; see the p-energy form denoted
by (F,, W'P) in [ACD15, Theorem 40|. Moreover, we can verify (GC), for (F,, Wh?)
since (Fs, p, W?) defined in [ACD15, (7.3)] satisfies (GC), and F, is defined as a
I'-limit point of F;, , as k — 0o. (See also the proof of Theorem 8.19.)

3.2 p-Clarkson’s inequality and approximations in p-energy forms

In this subsection, in addition to the setting specified at the beginning of this section, by
considering F N LP(X,m) instead of F if necessary, we also assume for simplicity that
F C LP(X,m).

We introduce a family of natural norms on F in the following definition.

Definition 3.12 ((£,a)-norm). Let a € (0,00). We define the norm || - || , on F by

1/p
1llew = (EA) +alflpim) > FEF (3.24)
We call || - [|¢ , the (€, a)-norm on F.

Clearly, for any a,a’ € (0,00), || [|¢, and || - ||¢ ,, are equivalent to each other.

The following proposition states on the convexity of || - ||, .

Proposition 3.13. Let a € (0,00) and assume that (£, F) satisfies (Cla),. Then
(Il - Hga, F) is a p-energy form on (X, m) satisfying (Cla),, and (F, || -[¢,) is uniformly
convex. Moreover, if (F,||-||¢,) is a Banach space in addition, then it is reflezive.

Proof. We have (Cla), for the p-energy form (|- ||%, ,F) on (X, m) by applying (2.19) to
T: R? — R given in Proposition 2.3-(e),(f). The uniform convexity |- ||, follows from
[Cla36, Proof of Corollary of Theorem 2|. 7

Assume that (F,||-[|¢,) is a Banach space. Then (F,|[-[,) is reflexive by the
Milman-Pettis theorem (see, e.g., [Yos, Theorem 2 in Section V.2|) since (F, || |[l¢,) is
uniformly convex. O]

We will frequently use the following Mazur’s lemma, which is an elementary fact in
the theory of Banach spaces.

Lemma 3.14 (Mazur’s lemma,; see, e.g., [Yos, Theorem 2 in Section V.1|). Let (vp)nen

be a sequence in a normed space V converging weakly to some element v € V. Then there
exist N, € N with N > k and { g} <<y, C [0, 1] with Z;V:’“k Mg = 1 for each k € N

such that limy_,e0 > 1% Aggvy = v in norm in V.

We also prepare the following two lemmas.

Lemma 3.15. Assume that (€, F) satisfies (Cla), and that F equipped with | - |, is a

Banach space. For v € Lﬁ(X, m), we define a bounded linear map ¥, : LP(X,m) — R
by Wy(u) = [yuvdm. Then {U,|r | v € L7 (X,m)} is dense in F*, and the map
Lﬁ(X, m) 3 v V,|r € F* is a bounded linear map with operator norm at most 1.
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Proof. Set M = {U,|# | v € L7 1(X,m)}. Then M C F* since el o xmy < Nulles

for any v € F. Suppose that M #+ F*. Let ¢ € F* \MP. By the Hahn-Banach
theorem, there exists ® € F** such that ®(¢) # 0 and ®|_» = 0. Since F is reflexive
by Proposition 3.13, there exists u € F such that ®(¢) = ¢ (u) for any ¢ € F*. Then
for any ¢ € M we have ¢(u) = ®(¢) = 0, which implies that u = 0. This contradicts
o(u) = P(¢) # 0 and hence we obtain M = F*. The map L7 7(X,m) 3 v — U, €
F* is obviously linear, and is easily seen to have operator norm at most 1 by Holder’s
inequality and the fact that [Jul|(x ) < [lullg, for any u € F. O

Corollary 3.16. Assume that (£, F) satisfies (Cla), and that F equipped with || - ||, is
a Banach space. If LP(X,m) is separable, then F and F* are separable.

Proof. Since Lﬁ(X, m) is separable by the separability of Lppj(X, m)* = LP(X,m) and
[Yos, Lemma in Section V.2], it follows from Lemma 3.15 that F* is separable, which in
turn implies by [Yos, Lemma in Section V.2| that F is separable. ]

Lemma 3.17. Assume that (€, F) satisfies (Cla), and that F equipped with |- |c, is
a Banach space. If {u,}neny C F converges in norm in LP(X,m) to uw € LP(X,m) and
SUPen € (Un) < 00, then u € F and {u, fnen converges weakly in (F, || ,) to u.

Proof. Since F is reflexive and sup,,ey [[uallg, < oo, some subsequence of {uy,},en con-
verges weakly in (F, || - [|¢ ;) to some f € F by [Yos, Theorem 1 in Section V.2| and hence
weakly in LP(X,m) to both u and f by the continuity of the inclusion map of F into
LP(X,m), and thus u = f € F. For any ¢ € F* and any € > 0, by Lemma 3.15, there
exists v € Lﬁ(X, m) such that || — ¥, | 7|

7+ < €. Then we easily see that
() — p(un)| < p(u) = To(w)] + [Wy(u) = Ty ()] + [@(un) — Vo(un)]

< (s + sup e, ) + 19 (0) = W)

whence limsup,,_, . [p(u) — p(u,)| < 5(||u||571 + SUp,,en ||un||gl) Since € > 0 is arbitrary,
we obtain lim,, ., ¢(u,) = ¢(u). This completes the proof. O

We collect some useful results on convergence in £ in the following proposition.

Proposition 3.18. Assume that (£, F) satisfies (Cla), and that (F,||-||¢,) is a Banach

space. 7

(a) If {un}tnen C LP(X, m) converges in norm in LP(X,m) tow € LP(X,m), then E(u) <
liminf, . E(u,), where we set E(f) = oo for f € LP(X,m)\ F.

(b) If {unnen € F converges in norm in LP(X,m) to uw € F and lim, o € (uy,) = E(u),
then lim,, o ||u — unH&1 = 0.

Proof. (a): If liminf, . €(u,) = 0o, then the desired statement clearly holds. So, we as-
sume that liminf, ., £(u,) < co. Pick a subsequence {u,, }ren such that limy_, E(u,, ) =
liminf,, o €(un). Then {un, }ren is a bounded sequence in (F, [| - [|¢ ;) converging in norm
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in LP(X,m) to u and hence Lemma 3.17 implies that v € F and that {u,, }ren converges
weakly in F to u. Since || - || is lower semicontinuous with respect to the weak topology

of F, we have from limy o0 [[tn, | o (x ) = [0l 1o(x ) that E(u)Y? < liminf, o & (up)'?.

(b): If w € £7Y(0), then E(u — u,) = E(u,) — E(u) = 0. It suffices to consider the
case of £(u) = 1. Since u + u,, converges in LP(X,m) to 2u as n — oo, by (a),

2 = &£(2u)'/? < liminf & (u + uy,) Yr < hmsupé’(u—l—un) r

n—oo

< lim E(u,)Y? + E(u)? =2,

n—oo

ie., lim, o E(u+u,) =2°P. By (Cla),, if p <2, then

1/(p—1)
lim &(u —u,)"®™ < 2(5(u) + lim 5(un)> T tim &4 ) V@D
n—oo

n—oo n—oo

— 9.9l/=1) _9p/(b=1) _ .
If p > 2, then

lim E(u —u,) < 2°71 (S(U) + lim E(un)) — lim E(u+u,) =2"1-2 27 =0.

n—oo n—oo n—o0

Since {uy, }nen converges in norm in LP(X, m) to u, we obtain the desired convergence. [

The following convergences in £ are also useful. These are analogues of [FOT, Theorem

1.4.2-(iii), (iv),(v)].

Corollary 3.19. Assume that (£, F) satisfies (2.4) and (Cla), and that (F,||-||¢,) is a
Banach space.

(a) Let {@ntnen € C(R) satisfy lim, o0 n(t) = t, ©n(0
|t —s| for anyn € N, s,t € R. Then {¢,(u) }ne Q F
for any u € F.

(b) Letu € F, {up}neny C F and ¢ € C(R) satisfy lim, o ||u — Un”s,l =0, ¢(0) =0,
lo(t) — @(s)] < |t —s| for any s,t € R and p(u) = u. Then {o(u,)}nen € F and
lim, 00 E(u — @(uy)) = 0.

Remark 3.20. Let us make the same remark as [[{S23--, Remark 2.21| for the reader’s
convenience. Typical choices of {(pn}neN C C(R) in Corollary 3.19-(a) are ¢, (t) = (—n)V
(t An) and @,(t) =t — (=) vV (t A L). A typical use of Corollary 3.19-(b) is to obtain
a sequence of [-valued functions converging to w in (F,||-|lg;) when I C R is a closed
interval and u € F is I-valued, by considering ¢ € C(R) given by ¢(t) == (inf I) V (¢ A
sup I).

) = 0 and |@u(t) = @n(s)]
and lim, o0 E(u— @, (u)) =

Proof of Corollary 3.19. (a): It is immediate from the dominated convergence theorem
that {¢,(u)}nen converges in norm in LP(X,m) to u. Since ¢,(u) € F and E(p,(u)) <
E(u) for any n € N by (2.4), we see from Proposition 3.18-(a) that

E(u) < liminf E(¢,(w)) < limsup E(pn(u)) < E(u).

n—oo n—oo
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Thus lim,, 00 E(¢n(u)) = E(u), and lim,, o E(u — pu(u)) = 0 by Proposition 3.18-(b).

(b): By (2.4) we have ¢(u,,) € F and E(p(uy)) < E(uy,) for any n € N, and {¢(uy,) }nen
converges in norm in LP(X,m) to ¢(u) = w since |p(u) — o(u,)| < |u—u,| on X. We
therefore see from Proposition 3.18-(a) that

E(u) <liminf E(p(uy,)) < limsup E(p(u,)) < lim E(u,) = E(u).

n—oo n—oo n—oo

Thus lim,, 0 £(@(uy,)) = E(u), and lim,, . E(u—¢(u,)) = 0 by Proposition 3.18-(b). [

3.3 Fréchet derivative as a homeomorphism to the dual space

In many practical situations, the quotient normed space F/E71(0) (equipped with the
norm £'/?) becomes a Banach space (see Subsection 6.2). To state some basic properties
of this Banach space, we recall the notion of uniformly smoothness.

Definition 3.21 (Uniformly smooth normed space). Let (X, || -||) be a normed space.
The normed space X is said to be uniformly smooth if and only if

lu+ ]| + [[u — |
2

lim 7* sup{ — 1| fJull =1, |lv|| = T} = 0.
7—0

The following duality between uniform convexity and uniform smoothness is well
known. (See also [BCL94, Lemma 5| for a quantitative version of this theorem.)

Theorem 3.22 (Day’s duality theorem; see, e.g., [T, Proposition 1.e.2|). Let X be a
Banach space. Then X is uniformly convex if and only if its dual space X* is uniformly
smooth.

We also recall the notion of duality mapping and fundamental results on it in the
following proposition (see, e.g., [Miya, Definition 2.1, Lemmas 2.1 and 2.2|).

Proposition 3.23 (Duality mapping). Let X be a Banach space and let X* be the dual
space of X. Let |- ||y, be the norm of W for each W € {X,X*}. For (z, f) € X x X*,
we set (z, f) = f(x). Forx € X, define F: X — 2% by

(@, f) = llzl% = 1153

which 1s called the duality mapping of X'. Then the following properties hold:
(a) F(x)#0 for any x € X.

(b) If X is reflexive, then |J, . F(x) = X*.

(c) If X is strictly convex, i.e., |[Ax+ (1 =Nyl < Mz|ly + (1 = N [|ylly for any
A€ (0,1) and any x,y € X \ {0}, then #(F(z)) =1 for any z € X.

F(z)={fex*

Now we can state a result on the dual space of F/E71(0).

Theorem 3.24. Assume that (€, F) satisfies (Cla), and that F /E~*(0) is a Banach space.
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(a) The Banach space F/E7(0) is uniformly convex and uniformly smooth. In particu-
lar, it 1s reflexive and its dual Banach spaces (.7-"/5*1(0))* 15 also uniformly convex
and uniformly smooth.

(b) The map f + E(f;-) is a homeomorphism from F/E7Y(0) to (F/E71(0))". In
particular, (F/E71(0))" = {&(f;-) | f € F}.

Proof. For ease of notation, set X == F/E71(0) and ||ul| , = &(u)"/? for any u € X.

(a): The uniform convexity of X" is immediate from Proposition 3.5, whence X is re-
flexive by the Milman-Pettis theorem. Also, we easily see from (3.17) that X is uniformly
smooth. The same properties for X* follow from Theorem 3.22.

(b): Let u € X and define A(u) = S(u)%flé'(u; ) € X*. (We define A(u) = 0 if
E(u) =0.) We will show that A: X — X* is a bijection. By (3.10), we have

JA@) | = E@)F|E s | = E@)F T = Jullp -
Then (u, A(u)) = E(u)r = [|u]]% = |A(u)|

A(w) € {f € X" | (u, f) = llully = I fllx-} = F(u),

where F': X — X* is the duality mapping. We see from Proposition 3.23 and (a) that
A: X — X* is a surjection. Note that the mapping F~1': X* — X** = X defined by
FYf)y={ue X | (uf) = |ul> = |f]%} for f € X* is the duality mapping from
X* to X. By Proposition 3.23 and (a) again, we conclude that A is injective. The map
f— E(f;-) and its inverse are continuous by (3.11) and (3.20), respectively. O

2
%+ and hence

We also present a similar statement for (| -[[¢ ,)-
Corollary 3.25. Let o € (0,00). Assume that F C LP(X,m), that (£, F) satisfies (Cla),
and that Xy, = (F, |- |l¢,) is a Banach space.

(a) The Banach space X, is uniformly convex and uniformly smooth. In particular, it is
reflexive and its dual space X} is also uniformly convexr and uniformly smooth.

(b) For each [ € F, define a linear map ¥/ : F — R by
¥.(0) = E(fig) +a [ se()AP gdm, geF. (329)
X
Then the map f — \Ifg,a 1s @ homeomorphism from X, to X:. In particular, X} =
{1 feF}.

Proof. We define &,: F x F — R by

Ealu;v) = E(u;v) + oz/ sgn(u) [ul’ " vdm, u,veF.
b
and set E,(u) = Ea(u;u) = |lullz,. Then (E,, F) is a p-energy form on (X,m) and it
satisfies (Cla), by Proposition 3.13. We have the desired result by applying Theorem 3.24
to (& F). O
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3.4 Regularity and strong locality

In this subsection, in addition to the setting specified at the beginning of this section, we
make the same topological assumptions as [FOT, (1.1.7)], i.e.,

X is a locally compact separable metrizable topological space, (3.26)

m is a (positive) Radon measure on X with suppy[m] = X (3.27)

(it is implicit in (3.27) that the o-algebra B which X is equipped with is assumed to be
the Borel o-algebra B(X) of X). Here, as usual, by a (positive) Radon measure on X
we mean a Borel measure on X which is finite on any compact subset of X. Under this
setting, the map from C(X) to L°(X, m) = L°(X, B(X), m) defined by taking u € C(X)
to its m-equivalence class is injective and hence gives a canonical embedding of C'(X) into
L°(X,m) as a subalgebra, and we will consider C'(X) as a subset of L°(X, m) through
this embedding without further notice.

The following definitions are analogues of the notions in the theory of regular sym-
metric Dirichlet forms (see, e.g., [FOT, p. 6]).

Definition 3.26 (Core). Let € be a subset of F N C.(X).

(1) € is said to be a core of (£, F) if and only if € is dense both in (F, | -|¢,) and in

(CC(X)7 ” ’ ||sup)'

(2) A core € is said to be special if and only if € is a linear subspace of F NC.(X), € is
a dense subalgebra of (C.(X), || - [|,,,), and for any compact subset K of X and any
relatively compact open subset G of X with K C G, there exists ¢ € ¥ such that
>0, p=1on Kand p=00on X \G.

Definition 3.27 (Regularity). We say that (£, F) is regular if and only if there exists a
core € of (€,F).

We can show the following result on regular p-energy forms, which is an analogue of
[FOT, Exercise 1.4.1].

Proposition 3.28. Assume that (€, F) is reqular and that F has the following properties:
utAN1€F foranyuc€ F, (3.28)

w € F  for any u,v € F N Cyp(X). (3.29)
Then F N C.(X) is a special core of (€,F).

Proof. 1t is clear that F NC.(X) is a core of (£, F). By (3.29), FNC.(X) is a subalgebra
of C.(X). Let K be a compact subset of X and G be a relatively compact open subset
G of X with K C GG. By Urysohn’s lemma, there exists ¢y € C.(X) such that g = 2 on
K and 9o =0on X \ G. Let € € (0,1/2). Fix ¢p € F N C.(X) satisfying ¢ = 1 on EX,
which exists by the regularity of (£, F), the locally compactness of X and (3.28). Since
FNCe(X) is a core of (€, F), there exists ¢ € FNC,(X) such that ||y — ¢||,,, <. Now
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we define p € C.(X) by ¢ := (¢ —ep)* A 1. (Note that suppy[¢] is compact since G s
compact.) Then ¢ € F N C.(X) by (3.28). Clearly, p =1 on K and ¢ =0 on X \ G, so
the proof is completed. O

The proposition above ensures when there exist cutoff functions in F. We also intro-
duce the following condition stating the existence of cutoff functions in a weaker sense.

Definition 3.29. We say that a p-energy form (€, F) on (X, m) satisfies the property
(CF),, if and only if, for any open subset U of X and any compact subset K of U, there
exists p € F N L>®(X,m) such that p(z) = 1 for m-a.e. x € K and ¢(x) = 0 for m-a.e.
re X\U.

We could consider variants of (CF),, such as one requiring ¢ € FNC(K) in addition,
but we do not discuss those in this paper. Note that (CF),, holds if (£, F) admits a
special core.

Next we introduce two formulations of the notion of strong locality for (£, F).

Definition 3.30 (Strong locality). (1) We say that (£, F) has the strong local property
(SL1) if and only if, for any fi, f2, g € F with either supp,,[f1 — a1] or supp,,[fe — as]
compact and supp,,[f1 — a1] N supp,,[f2 — as] = 0 for some ay, ay € E71(0),

E(fit+ fatg)+E(9) =E(fr +9) +E(fa+9) (3.30)

(2) Assume that (£, F) satisfies (Cla),. We say that (£, F) has the strong local property
(SL2) if and only if, for any fi, fo, g € F with either supp,,[f1 — fo—«] or supp,,[g— ]
compact and supp,,[fi1 — f2 — a] Nsupp,,[g — B8] = 0 for some «, B € E71(0),

E(f1;9) =E(f2 9). (3.31)
In the following propositions, we collect basic results about (SL1) and (SL2).

Proposition 3.31. Assume that (€, F) satisfies (Cla),.

(a) If (€, F) satisfies (SL1), then for any fi, fa,g € F with either supp,,[fi — ai1] or
SUpp,, [fo — ao| compact and supp,,[fi1 — cu] Nsupp,,[fo — az] =0 for some a1,z €
£710),

E(fi+ f2:9) = E(f19) + E(f219)- (3.32)

(b) If (€, F) satisfies (SL2), then for any fi, fa,g € F with either supp,,[fi — f2 — &
or supp,,lg — B8] compact and supp,,[f1 — fo — a] Nsupp,,lg — B] = O for some

a, B e E710),
E(g; ) = E(g; f). (3.33)

Proof. (a): Note that (3.30) with g = 0 implies that E(f; + f2) = E(f1) + E(f2). For any
t € (0,00), we have from (3.30) that

E(fi+ fot+tg) —E(fr + f2)
t

E(fi+tg) —E(fr) n E(f2+tg) —5<f2).

p—1 —
+ P E(g) ; ;
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We obtain (3.32) by letting ¢ | 0 in this equality.
(b): Since £(g; ) is linear by Theorem 3.7, it suffices to prove £(g; fi — f2) = 0, which
follows from (3.31) with ¢, 0, fi — fo in place of fi, fa, g. O

Proposition 3.32. Assume that (€, F) satisfies (Cla),.
(a) If (€, F) satisfies (SL1), then (€, F) also satisfies (SL2).
(b) Assume that (€, F) satisfies (SL2) and the following three conditions:

w € F for any u,v € FNL®(X,m). (3.34)

For anyu € F, {(—n) V (uAn)}tnen € F and lim E(u— (—n) V (uAn)) =0. (3.35)
n— o0

(&€, F) satisfies (CF),,. (3.36)

Then (&, F) satisfies (SL1).

Proof. (a): Let fi, fa,9 € F, a1, € £71(0) and ¢t € R\ {0}, and assume that either

Supp,, [f1— f2—a] or supp,, [g— ] is compact and that supp,, [ fi1— fo—a]Nsupp,,[g—B] = 0.
By (3.30) with fo — fi,tg, f1 in place of fi, fo, g we have

E((fo— f1)+tg+ fi) +E(f) =E((fa— 1) + fr) +E(tg + fr),
whence

L EGitg) —E(F) 1, Elftig) ~E(h)
p t—=0 t p t—0 t B

(f2;9),

proving (SL2).

(b): We first consider the case g € FNL®(X,m). Let f1, fo € F and ay, as € E71(0),
and assume that supp,,[fi1 — a1] is compact and that supp,,[f1 — 1] Nsupp,,[f2 — az] = 0.
Let U be an open neighborhood of supp,,[fi — ai] such that U C X \ supp,,[f2 — aa].
By (3.36) and the locally compactness of K, there exists ¢ € F € L>®(X, m) such that
o(x) = 1 for m-a.e. x € U, supp,,[¢] is compact and supp,,[¢] Nsupp,,[f2 — az] = 0. Note
that pg € F by (3.34). Then we see from (SL2) that

Efitfotg)+E(g) =EfHr+fatg i) +E L+ fatg fa) +ESL+ fatgi9) +E(9)

(SL2

:)5(f1 + g, f1) +E(fa+g; f2) HE(fL + fat+g:9) +E(g)
=&+ h) +Ef2+ g5 o)
+E&(fit+fata(l—9g) +EfL+ fat+gipg) +E(9).  (3.37)

Since supp,,[¢g] and supp,,[fi1 — a1] are compact, supp,,[f1 — a1] Nsupp,,[(1 —¢)g] =0
and supp,,[f2 — as] Nsupp,,[¢g] = 0, we have the following equalities by (SL2):

Efit+fotg(1—p)g) =E(fa+g;(1—¢)g).
E(fr + fa+gi09) = E(fr + g5 09).
E(g) =E(g; (1 —p)g) + E(g;09) = E(f1 + g; (1 = p)g) + E(f2 + g; ¥9)-
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By combining these equalities and (3.37), we obtain

E(fit+ fatg)+E(9) =E(fr+g; fi) +Efa+ g f2) +EfL +g:9) +E(fa+ 95 9)
=E&(fr+g)+E(f2+9)

The proof for the case where supp,,[f2 — a2 instead of supp,,[fi1 —a1] is compact is similar,
so (SL1) holds if g € F N L>®(X,m).

Lastly, we prove (SL1) without assuming the boundedness of g. Let g € F and set
gn = (—n)V (g An), n € N. Then g, € F by (3.35), and the statement proved in the
previous paragraph yields that

for any n € N. Thanks to (3.35) and the triangle inequality for £!/?, we obtain the desired
equality (3.31) by letting n — oo in the equality above. O

4 p-Energy measures and their basic properties

In this section, we discuss p-energy measures dominated by a p-energy form. Similar to
the case of p-energy forms, we introduce the two-variable version of p-energy measures
and prove their basic properties.

As in the previous section, throughout this section we fix p € (1, 00), a measure space
(X, B,m) and a p-energy form (£, F) on (X, m).

4.1 p-Energy measures and p-Clarkson’s inequality

The following definition specifies the class of families of measures which we call p-energy
measures and consider in this section.

Definition 4.1 (p-Energy measures dominated by a p-energy form). Let By be a o-algebra
in X' and let {T'(f)} e be a family of measures on (X, By). We say that {T(f)} er is
a family of p-energy measures on (X, By) dominated by (€, F) if and only if the following
hold:

(EM1), I'(f)(X) < &(f) for any f € F.

(EM2), T'(-)(A)'/P is a seminorm on F for any A € By.

We then see that (I'(-)(A), F) is a p-energy form on (X, m) for each A € B, by (EM2),,.

We say that {I'(f)}ser satisfies p-Clarkson’s inequality, (Cla), for short, if and only
if (I'(-)(A),F) satisfies (Cla), for any A € By, i.e., for any f,g € F,

{F<f +9)(A) + (= g)(A) > 2(D{NA)7TT + Dg)(A)77)" it pe (1,2),
D(f +9)(A) +T(f = g)(4) < 2(D(NA7TT +T{g)(A)77)" if p € [2,00)

10While we typically take By = B = B(X) for a prescribed topology on X, we allow By # B here. This
formulation is suitable in the setting of a p-resistance form on X considered in Section 6 and later, where
we choose (B,m) to be the pair of 2% and the counting measure on X as mentioned in Remark 2.1 but
may take By = B(X) for the topology on X induced by the associated p-resistance metric.

(Cla),
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We also say that {I'(f)}scr satisfies the generalized p-contraction property, (GC), for
short, if and only if (I'(-)(A), F) satisfies (GC), for any A € By.

Example 4.2. (1) Consider the same setting as in Example 3.11-(1). Then the family

{T(f)} few1rr(q) of Borel measures on ) given by
DUfY(A) = / V@) de for f € WY(Q) and A € B(Q),
A

is easily seen to be a family of p-energy measures on (€2, B(£2)) dominated by the p-
energy form (£, W'?(Q)) given by £(f) == [, |V f(x)[" dz. Similar to Example 3.11-
(1), one can show (GC), for {I'(f)} fewr»(q) by following an argument in the proof of
Theorem A.19. Recall that £(f;g) = [, IV f(2)]P 2 (Vf(z),Vg(z))go dz. Then we
can see that, by the Leibniz and the chain rule for V, for any u, ¢ € W?(Q)NC* (),

p—1
[t = et - (1) e(uiti) (@1
Q p

Although p-energy forms have been constructed on compact metric spaces [Kig23,
MS25-+], we do not know how to construct the associated p-energy measures because
of the lack of the density “|Vu(x)["”. (As described in (3) below, the theory of Dirich-
let forms gives 2-energy measures {fi()}ucr, associated with a given nice Dirichlet
form (&, F,). On a large class of self-similar sets, however, it is known that s,
is singular with respect to the natural Hausdorff measure on the underlying fractal
[Hin05, KM20].) In the case of self-similar sets, under suitable assumptions, self-
similar p-energy forms are constructed in [CGQ22, Kig23, MS25-+, Shi24|, and we
can introduce p-energy measures satisfying (EM1),, (EM2), and (GC), by using the
self-similarity of p-energy forms. See Section 5 for details.

In [KS24-+], under the assumption called the weak monotonicity condition, the authors
construct a good p-energy form 5;{5, which is called a Korevaar—Shoen p-energy form,
on a locally compact separable metric space (X,d) equipped with a o-finite Borel
measure m with full topological support. As an advantage of 5;(8, the right-hand side
of (4.1) with 5;(8 in place of £ can be extended to a bounded positive linear functional
in ¢ € C,(X) and the p-energy measure I'y°(u) associated with £ is constructed
as the unique Radon measure corresponding to this functional through the Riesz-
Markov—-Kakutani representation theorem. A notable fact is that this approach does
not rely on the self-similarity of the underlying space or of the p-energy form. In
[KKS524-+, Sections 3 and 4], basic properties for TF5(-) like (EM1),, (EM2), and
(GC),, are also shown.

The case of p = 2 is very special thanks to the theory of symmetric Dirichlet forms. If
(&, D(&)) is a strongly local regular symmetric Dirichlet form on L?(X,m), where X
and m are as specified in (3.26) and (3.27), then &(u) = &(u,u) is a 2-energy form
on (X, m) and satisfies (GC)y (see Proposition A.2). In addition, the Dirichlet form
theory provides us with a Borel measure fi,y on X, called the &-energy measure of



Contraction properties and differentiability of p-energy forms 41

u € D(&) associated with (&, D(&)), through the following formula'':

/ @ dpy = E(u, up) — %6’(1&9@) for any ¢ € D(&) N C.(X) (4.2)
X

(recall (4.1), and see [FOT, Section 3.2| for details on energy measures associated
with regular symmetric Dirichlet forms). We easily see that {ji)}uep(s) satisfies
(EM1), and the parallelogram law, which implies (EM2), and (Cla),. We can also
verify (GC)y for {fuu)}uepe) (Proposition A.14). As discussed in [Kuw24], under
the additional assumption of a suitable closability in LP(X, m) formulated as (A.21)
in Definition A.17, we can introduce a family of p-energy measures on (X, B(X))
satisfying (EM1),, (EM2), and (GC), by setting I'(u)(A4) = [, T,(u)% du, where p
is an &-dominant measure (i.e., pi,y < p for any v € D(&)) and '), (u) = dpy/dp;
see Theorem A.19 for the details of this family of p-energy measures.

(4) Let (X, d) be a separable metric space and m a Borel measure on X such that m(X) >
0 and m(Bgy(x,r)) < oo for some r € (0,00) for any x € X. Let g, be the minimal
p-weak upper gradient of u € N'P(X, m), where N"?(X,m) = {u € LP(X,m) | g, €
LP(X,m)} is the Newton-Sobolev space (see [HKST, Section 7.1]). Then I'(u)(A) =
[ 95 dm defines p-energy measures satisfying (EM1), and (EM2),. Indeed, we have
(EM2), by [HKST, (6.3.18)]. However, (Cla), for these measures is unclear because
the map u — g, is not linear in general.

In the rest of this subsection, we assume that By is a o-algebra in X and that {I'(f)} ;e
is a family of p-energy measures on (X, By) dominated by (£, F). The same argument as
in the proof of Proposition 3.6 yields the following result.

Proposition 4.3. Assume that {I'(f)}er satisfies (Cla),. Then for any f,g € F and
any A € By,

I{f + ) (A) + D(f — g)(A) — 2D(f)(A)
1 7 (=2)7F

<21V (p =) [T(NATT + T AT |7 T, (43)

and the function R 3 t — T'(f 4+ tg)(A) € [0,00) is differentiable. Moreover, for any
c € (0,00),

I'(f +69)(A) —T{/H(4) ir(f +1tg)(A)

5 dt =0

lim sup
00 AeBy, f.9€F;E(f)<c/(p—2)*, E(9)<1

t=0

(4.4)
Definition 4.4. Assume that {I'(f)}scr satisfies (Cla),. For each f,g € F, we define
I(f;9): Bo— R by

%F(f—l—tg)(A) . AeB, (4.5)

t=0

I(f;9)(A) =

e~

which exists by Proposition 4.3.

"'To be precise, the definition of pi,y through (4.2) is valid only for v € D(&) N L>=(X,m). We can
still define u(,y for any u € D(&) by considering the limit of f1((_)v(uan)y as n — oco.
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The following properties of I'(f; g) can be shown in a similar way as Theorem 3.7.

Theorem 4.5. Assume that {I'(f)}rer satisfies (Cla),. Let A € By. Then I'(f; -)(A) is
the Fréchet derivative of T(-)(A): F/E71(0) — [0,00) at f € F. In particular, the map
L(f; - )(A): F = Ris linear, I'(f; fY(A) =T(f)(A) and I'(f; h)(A) = 0 if h € F salisfies
['(h)(A) = 0. Moreover, for any f, fi1, f2,9 € F and any a € R, the following hold:
Rot—T(f+tg;9)(A) € R is strictly increasing if and only if I'(g)(A) > 0.  (4.6)

{af:g)(A) = sgn(a) [a]” " T(f;g)(A), T{f+hig)(A) =T{f;9)(A) if T(h)(A) =0.

(4.7)
T(f; 9)(A)] < T(f)(A)PVPT(g)(A)7. (4.8)
ID(fi;9)(A) = T{fa;9)(A)| < Cp(T{f1)(A) v F<f2>(A))p%F<fl - fz)(A)?Ng)(A()jé)

where oy, C,, are the same as in Theorem 5.7.

The set function I'(f; g) is a signed measure as shown in the following theorem.

Theorem 4.6. Assume that {I'(f)}ser satisfies (Cla),. Then for any f,g € F, the set
function T'(f; g) is a signed measure on (X, By). Moreover, for any By-measurable function
p: X = [0,00) with [lplly, < 00, [xwdl(-): F/ETH0) — R is Fréchet differentiable
and has the same properties as those of T'(-)(A) in Theorem 4.5 with “T'(g)(A) > 07 in
(4.6) replaced by “[ ¢ dT'(g) > 07, and for any f,g € F,

/XstF<f;g> _Ld @dl'(f +tg) (4.10)

pdtJx
Proof. The equalities T'(f; ¢)(0) = 0 and |T(f;9)(X)| = |E(f;9)| < oo are clear from
the definition. We will show the countable additivity of I'(f;¢) . The finite additivity
of I'(f;g) is obvious. Let {A,},en € By be a family of disjoint measurable sets. Set

By = U, i1 An for each N € N. Then we see that

I(f;9) (U An> — > T(f9)(An)

neN

t=0

= [I'{f; 9)(Bn)

) (BT g (By) P —s 0,

N—oo

which shows that I'(f; g) is a signed measure on (X, By).

The other properties except for (4.10) can be proved by following the arguments in the

proof of Theorem 3.7, so we shall prove (4.10). By the finite additivity of [, ¢ dI'(f;g) and

Ld [ Hdl(f+tg)|,  in ¢, we can assume that ¢ > 0. Let s,, = l”: apl 4, withag >0
p dt JX t=0 k=1 k

and A, € By be a sequence of simple functions so that s, 1 ¢ m-a.e. as n — oo. Then
we immediately have (4.10) with ¢ = s,,. Since lim, o [y $o dI'(f: 9) = [ ¢ dT(f;g) by
the dominated convergence theorem, it suffices to prove

d

— 5 [ e +t) (4.11)

lim i/ S dU(f +tg)
n—oo dt X

t=0 t=0
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Since (3.14) with [ ¢ dI'(-) in place of £ holds by the fact that ([ ¢dI'(-),F) is a

p-energy form on (X, m), we know that for any By-measurable function ¢: X — [0, 00

with [y < 00,
<(/ wdr<f>)(p_l)/p (f wdr<g>)w. (112)

By (4.12) with ¢» = ¢ —s,, and the dominated convergence theorem, we obtain (4.11). O

d
%/demfﬂm

t=0

Remark 4.7. As mentioned in the introduction, a signed measure corresponding to
[(f;g) is discussed in [BV05, Section 5| under some non-trivial assumptions, which have
not been verified for fractals like the Sierpinski gasket and the Sierpinski carpet in the
literature.

The following proposition gives a natural Holder-type inequality for the total variation
measure [I(f; g)] of T'(f; g).

Proposition 4.8. Assume that {I'(f)}ser satisfies (Cla),. Then for any f,g € F and
any By-measurable functions p,1: X — [0, 00],

[evaictian< ([ o dr<f>)(pwp (f ¢pdr<g>)1/p. (113)

Proof. Let X = PUN be the Hahn decomposition with respect to I'(f; g), i.e., P, N € By,
L{(f;9)(ANP) >0 and I'{f;g)(ANN) <0 for any A € By. Then the total variation
measure |['(f;g)| is given by

D 9)] (A) = T{f:9) (PN A) —T{(f1g)(N' N A), A€ B,
Therefore, by (4.8),
ID(F:9)] (A) < TP N AP DPD{g) (P 0 AY 4 T(£)(N N AP DD {g) (N 0 A
< (DUA(P N A) + TN N A) TP (D(g)(P 1 A) + T{gh(N N A)) 7
= T(f)(A) VT (g)(A) 7, (4.14)

where we used Hoélder’s inequality in the second inequality.

Now we prove (4.13). First, we consider the case where ¢ and v are given by

N1 N2
Y= Zﬁk]IAk, P = Zbk]lBk, where ay, b, € [0,00) and Ay, By, € By.
k=1 k=1

Then we can assume that there exist N € N, {ax}2_,, {br}2_; C [0,00) and a disjoint
family of measurable sets { £} }2_, C By such that ¢ = S | aplp, and ¢ = S0 | bl g, .
Since oy = fo:l arbi 1, , combining (4.14) and Hoélder’s inequality yields

/X G dIT(fig) = S abe T4 6) (B



44 N. Kajino and R. Shimizu

N -V/p / N 1/p
s(Za’;“p‘”WEk)) (ZbﬁﬂgﬂEk))

k=1 k=1

_ (/X /D) dr<f>)(p_1)/p (/X o dp<g>)1/p. (4.15)

Next, assume that ¢ and ¢ are [0, oo]-valued By-measurable functions, and for each w €
{p, ¥} let {s,.w}nen be a non-decreasing sequence of non-negative By-measurable simple
functions such that lim,, . Sp.w(2) = w(z) for any x € X. Then by (4.15) we have (4.13)
with s, Sn in place of ¢, for any n € N, and letting n — oo yields (4.13) by the
monotone convergence theorem. 0

In the following proposition, we show that integrals of non-negative bounded B-
measurable functions with respect to p-energy measures satistying (GC), give p-energy
forms on (X, m) that satisfy (GC),.

Proposition 4.9. Assume that {I'(f)} rer satisfies (GC),. Then for any By-measurable
function ¢: X — [0, 00) with ||¢||y,, < oo, ([x@dl(-),F) is a p-energy form on (X, m)
satisfying (GC),.

sup

Proof. Let ny,ny € N, ¢1 € (0,p], g2 € [p,oo] and T = (T1,...,T,,): R™ — R" satisfy
(2.2), and let w = (uq, ..., u,,) € F™. Similar to (2.19), by using the triangle inequality
for the ¢%/P-norm and the reverse Minkowski inequality (Proposition 2.8) for the ¢%/P-
norm, we see that for any non-negative By-measurable simple function ¢ on X,

‘(( / sodr<zz<u>>)1/p) (( / sodr<uk>)1/p)

We can extend (4.16) to any Bp-measurable function ¢: X — [0, 00] by taking a non-
decreasing sequence of non-negative By-measurable simple functions converging pointwise
to ¢ and applying the monotone convergence theorem, which completes the proof. O

ng ni

< (4.16)

[=11l¢a2 k=11l¢a1

The following Fatou type result is useful.

Proposition 4.10. Assume that F C LP(X,m). Let p: X — [0,00) be By-measurable
and satisfy ||¢lly,, < o0. If {tuntnen C F converges weakly in (F,| - |¢ ) tou € F, then

/gpdf‘(u> < liminf/ wdl(uy,). (4.17)

n—o0

sup

Proof. Let {uy, } be a subsequence with limy_, [y ¢ dT'(uy,) = liminf, o [ @ dT(uy,).
By Mazur’s lemma (Lemma 3.14), there exist N(I) € N and {al,k}g:(? C [0, 1] such that
N(l) > 1, Z,i\;(? apr =1 and v == Ziv:(ll) Qy kU, converges to u in F as | — oo. We see
from the triangle inequality for ([, ¢ dI'(- >)1/p that

N(l)

(f sodr<w>)1/psk§:;a,,k (f sodr<unk>)1/p,

which implies (4.17) by letting [ — oc. O
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4.2 Extensions of p-energy measures

Throughout this subsection, we fix a linear subspace D of F and assume that By is a o-
algebra in X and that {I'(f)}ep is a family of p-energy measures on (X, ;) dominated
by (£,D). In the following proposition, we extend {T'(f)}rep to f € D¥, where D* is a
linear subspace of F defined as

D#::{uEF

lim &(u — u,) = 0 for some {u, },en C D}; (4.18)
n—oo

note that, if 7 C LP(X,m) and F is equipped with the norm || - ||, then D C D,
where the inclusion can be strict in general.

Proposition 4.11. For any u € D¥, there exists a unique measure I'{(u) on (X, By) such
that for any {u,tneny € D with lim, o E(u — uy,) = 0 and any By-measurable function
w: X — [0,00) with ||¢|l,,, < oo,

sup

n—oo

/Xgpdf(u> = lim XgodF(un>, (4.19)

and T'(u) further satisfies T'(u)(X) < E(u). Moreover, for each such ¢, ([ ¢dl'(-), D#)

is a p-energy form on (X, m).

Proof. By (EM2),, and the monotone convergence theorem, for any By-measurable func-
tion ¢: X — [0, 00] and any u,v € D,

(/der<u+v>)1/ps </Xgodr<u>>l/p+</X¢dr<v>)l/p_ (4.20)

In the rest of this proof, let ¢: X — [0,00) be By-measurable and satisfy ||¢l|,,, < oo
Let u € D# and {uy }nen C D satisfy lim, oo E(u—1u,) = 0. By (4.20), { [ gde(un>}n€N
is a Cauchy sequence in [0,00) and lim, o [y @ dl(u,) =: I,(¢) is independent of the

choice of {u,},. In addition, we have that

‘ ([ wariw) Y L

that 0 < I,(¢) < |l¢ll,,, €(u) and that I, is linear in the sense that Iu(zgzl apr) =
SN arl,(gr) for any N € N, (az)_, C [0,00) and By-measurable functions ¢j: X —
[0,00) with [l < 00, k € {1,...,N}. Now we define I'(u)(A) = I,(14) € [0,00)
for A € By, and show that I'(u) is a finite measure on (X, By). Clearly, I'(u) is finitely
additive and T'(u)(X) < E(u) < o0o. Let us show the countable additivity of I'(u). By
(4.21), for any & > 0 there exists Ny € N such that sup sep, [T(u)(A)Y? — T(u,)(A)V7| < e
for any n > Ny. Let {Ag}tren € By be a sequence of disjoint measurable sets, and set
By = Uj_niq Ak for each N € N. Then we see that for any N € N and any n > N,

I {u) (U Ak> — > T{u)(4)

keN

< llpllseh € (un — w77, (4.21)

sup

1/p
= D(u)(By)"? < e+ T'(un)(By)"?,
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whence limy_,o ‘F(u) (Uren 4k) — SV T(u)(Ag)| = 0, proving the desired countable
additivity.

Note that I,,,(0)"? < L,(p)Y? + I,(o)"? for any u,v € D# by (4.20) and the
definition of I4(yp). This together with the monotone convergence theorem implies the
triangle inequality for (fXgodF(->)1/p on D#; in particular, ([, ¢dl'(-),D#) is a p-
energy form on (X, m). Next we show (4.19). Let {u,}neny € D be a sequence satisfying
limy, o0 €(u — u,) = 0. By the triangle inequality for ([, ¢ dT'(-), D#),

() ()

which together with (4.21) implies (4.19); indeed,

L(p)"? — (/}(@dF(u))l/p
= (o) (o) (o)

< 2|l ik € (u = un) P — 0. =

sup n—00

1/p
g(/X sodr<u—un>) < Nl 2 & (u — ),

< +

If, in addition, {I'(f)} sep satisfies (Cla),, then we can easily see that {I'(f)} rep# also
satisfies (Cla),. We record this fact in the following proposition.

Proposition 4.12. If {I'(f)}ep satisfies (Cla),, then so does {I'(f)}ep#.

Proof. This is immediate from (4.19). O

If 7 C LP(X,m) and F equipped with |- ||, is a Banach space, then D’ C D¥ as

remarked after (4.18), and (GC),, for {I'(f)}sep also extends to {I'(f >}f6D]-' as follows.

Proposition 4.13. Assume that 7 C LP(X,m), that F equipped with || - ||¢ , is a Banach
space, and that both (£,D) and {T(f >}f€D satisfy (GC),. Then for any By-measurable

function ¢: X — [0, 00) with ||¢|| 0o, ([ @dl(- >,5f) is a p-energy form on (X, m)
satisfying (GC),.

sup

Proof. Since (&€, D) satisfies (Cla), by (GC), for (£,D) and Proposition 2.3-(e),(f), so does
(& ,ﬁf), which together with the completeness of ( - le, \) guarantees that Lemma

3.17 is applicable to (5, D )
Let ny,ne € N, ¢4 € (0,p], ¢2 € [p,o0] and T = (T1,...,T,,): R™ — R™ satisfy
(2.2). Let w = (ug,...,u,, ) € (ﬁf)n1 For each k € {1,...,n;}, choose {un}tnen € D

so that lim, . ||ux — uanfl =0, set u, = (Urpn,- .-, Un,, n) and let [ € {1,...,n2}.
Then by (GC), for (£,D) and (2. 2) we have {Tl(un)}neN C D, supneNE(Tl(un)) < 00

and limy, o0 [|Ti(wn) — Ti(w)| 1o x ) = 0, and therefore Lemma 3.17 applied to (5,5F)
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implies that Tj(u) € D’ and that {T)(wy,) }nen converges weakly in (Z_DF, - 1le, 1) to Ti(w).

If g < oo, then we see from Proposition 4.10, which is applicable to {F( )} rep” by
Proposition 4.11, and (GC),, for {I'(f)}ep that
1/p\ ™ 417 n2 ‘12/17
s@dF (Ti(u >>) Zhggolf(/ o (T (1))
1=11lga2
n2 a2/p\ /%
< lim inf Z(/deUTz(unD)
=1
/a1
(GC), n a/p
PARTIN
< liminf <Z (/der<uk,n>> )
k=1
1/p\ ™
(L ((/ gde(uk>> ) (4.22)
X k=1ll¢n
The case of gy = oo is similar, so ([ ¢ d['(- ),Z_)]:) satisfies (GC),. O

4.3 Chain rule and strong locality of p-energy measures

In this subsection, we see that strong local properties for p-energy measures hold if p-
energy measures satisfy a chain rule (see Definition 4.14 below). In this subsection, we
assume that (X, m) satisfies (3.26) and (3.27), that D is a linear subspace of F N C(X),
that {I'(f) } rep is a family of p-energy measures on (X, B(X)) dominated by (£,D), and
that 7 C LP(X,m), and we equip F with the norm |- || ;.

Definition 4.14 (Chain rules for p-energy measures). (1) We say that {I'(f)} rep satis-
fies the chain rule (CL1) if and only if for any u € D and any ® € C'(R), we have
®(u) € D and

(@ (u)) = [@'(w)]" dI'(u). (4.23)

(2) Assume that {I'(f)}sep satisfies (Cla),. We say that {I'(f)} ep satisfies the chain
rule (CL2) if and only if for any n € N, u € D, v = (vy,...,v,) € D", ® € C'(R)
and ¥ € C'(R"), we have ®(u), ¥(v) € D and

dD(®(u); T(v)) = > sgn(®(u)) |@'(u)["~" 0p ¥ (v) dI (u; vy). (4.24)

Theorem 4.15. Assume that {I'(f)}sep satisfies (Cla), and (CL2).

(a) {T(f)}fep satisfies (CL1).
(b) (Leibniz rule) For any u,v,w € D, we have vw € D and

dl (u; vw) = vdl(u; w) + w dl(u; v). (4.25)
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(c) ((GC), for R-valued T') Let n € N, ¢ € (0,p] and T: R" — R satisfy T(0) = 0
and |T(z) —T(y)| < ||z —yll,e for any z,y € R™, and let ¢: X — [0, 00] be Borel
measurable.

(1) If T € CYR™), then for any w = (uy,...,u,) € D", (T(u) € D by (CL2), and)

(f M<T(u)>>1/p§ (f sodr<uk>)1/p

(2) If T(u)(X) = E(u) for any v € D, and if F equipped with || - H5,1 is a Banach
space, then for any u = (uy,...,u,) € (Z_?F)n, T(u) € D’ and (4.26) holds.
(d) Let y: R — R satisfy (0) = 0 and 0 < ¥(t) —(s) <t —s for any s,t € R with
s <t, and let p: X — [0, 00| be Borel measurable.
(1) If v € CY(R), then for any u,v € D, (¢Y(u —v) € D by (CL1) from (a), and)

(4.26)

0q

/Xgpdf(u—@b(u—v))+/Xgde(er@/)(u—v)}§/}(npdl“(u)+/xapdl“<v). (4.27)

(2) If D{u)(X) = E(u) for any v € D, and if F equipped with || - ||, is a Banach
space, then for any u,v € 1_77, (u—wv) € D’ and (4.27) holds.

Proof. (a),(b): These are immediate from (CL2).
(c)-(1): Assume T' € C*(R"), and let w = (uy,...,u,) € D". It suffices to prove that

n

(T (w))(A)"? < || (D(ui) (A)'77)_ ||, for any A € B(X); (4.28)

indeed, it is routine to extend (4.28) to (4.26) (see the proof of Proposition 4.9). To
show (4.28), we first construct a good p-version of Y (vy;ve) = W for each vy, vy €
{T(uw),ur,... ,u,}, where p:=T(T(u)) + > ;_, ['(uy). Let {Ay}ren be a countable open

base for the topology of X. Set AY := X \ A;, and A} = A for each k € N, and define

Ak::{UAg

ael

7 C o, 1}’“}, k€N, (4.29)

where A = NI, AY for a = (a;)%; € {0,1}*. Note that Uper A =0 if T = 0. Then
{Ai}ren is a non-decreasing sequence of o-algebras on X with J, . Ax generating B(X).
Note that (J,cro1x A = X and that Af N Ag = for o, B € {0,1}* with a # 3. For
v, v € {T(w),u,...,u}, K € N, a € {0,1}*, define Ty (vi;v5): X — [0,00) by, for
x € AL,

T (visvz) (@) = (A7) 7' {vr; v2) (A7) (4.30)

Then E,[Y(vi;v2) | Ag] = Ti(v1;v2) p-a.e. on X and hence limy_,oo Ty (v1;ve) = T(v1;v2)
p-a.e. on X by the martingale convergence theorem (see, e.g., [Dud, Theorem 10.5.1]) and
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the fact that (J,.y Ar generates B(X). From this convergence together with (4.30) and

(4.8), we obtain
By (M)”*(M)i pae. on X. 431)

dl (vy; v9)
du du

dp

Now we prove (4.28) on the basis of (CL2) and (4.31). Recalling that we have assumed
T € C'(R"), we see from the assumption on 7" that for any x,y = (y1,...,%,) € R,

Zak Yk

Then for any A € B(X), from (CL2), (4.31), (4.32), Holder’s inequality, and the triangle
inequality for the LP/%(A, ji|4)-norm, we obtain

—lime [T(@) = T + e)| < gl (4.32)

rra ) 2 [ ;aﬂw))%ﬂwux)
2 ) g 0T (u(2))| (dF<T(“)> (x)) B (dz(;@ (x)) : u(de)
A )

IN

e g
< P(T(w)( [( )]

= (T @))(A)F || (T (A ””“HW

proving (4.28) and thereby (c)-(1).
(¢)-(2): Recall that {I'(f )}f —~~ is uniquely defined through (4.19) by Proposition 4.11,

and note that the equality I'(u)(X) = £(u) extends from u € D to u € hd by (4.19) and
the triangle inequality for £/7, and hence that {T'(f)} ep” and (5 ﬁf) satisfy (Cla), by

Proposition 4.12. In particular, in view of the Completeness of ( e, 1), Lemma 3.17

is applicable to (E,D ). Now, to see T'(u) € D’ and (4.28) for w = (uq,...,u,) € D",
define j: R® — R by j(z) = exp (_1—||1xH2) for [|z|| < 1 and j(x) = 0 for [|z| > 1,
and set j;(z) = ["j(lx) for each | € N (see [Kuw24, p. 10]). We further define 7;(z) =

Jan Gi(@ =) =51 (W) T (y) dy = [gn 51(y)(T(x—y)=T(y)) dy so that T; € C>(R™), Ti(0) = 0
and lim;_,o, 7;(z) = T'(z) for any = € R™. Moreover, for any =,y € R™,

Ti(z) = Ti(y)| =

| @@= -Th- )| < o=yl @39
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Therefore, letting w = (u1,...,u,) € D", by (c)-(1) we have (4.28) with 7; in place
of T, which together with £(7j(u)) = I'(Tj(w))(X) implies that sup,cy E(Ti(u)) < oo.
Since {T;(w)}1en converges in LP(X,m) to T'(u) as | — oo by T;(0) = 0, (4.33) and the
dominated convergence theorem, We conclude from Lemma 3.17 that T'(u) € D’ and that

{T)(u)}1en converges weakly in ( e, 1) to T'(w). Now we obtain (4.28) by combining
Proposition 4.10 applied to {I'(f >}f 57 and (4.28) with 7 in place of T.

Lastly, let v = (uq,...,u,) € (5F)n, and choose {ul = (ugl), . ,un )}leN C D" so
that {uk }leN converges in norm in F to ug for any k € {1,...,n}. Then by the result

of the previous paragraph we have {T(u®)}ey € D and (4.28) with u® in place of u,
which together with £(T(u®)) = I'(T(u®))(X) and the assumption on 7" implies that

{T(u®)} ey is a bounded sequence in (5f, | - ||571) converging in norm in LP(X,m) to

T(uw). Thus T'(u) € D and {T(uW)}ien converges weakly in (5f Il - ”51) to T(u) by
Lemma 3.17, and hence combining Proposition 4.10 applied to {I'(f >}f ~7 and (4.28)

with u(® in place of w yields (4.28) for u = (uy,...,u,) € (ﬁf)n, proving (c)-(2).

(d)-(1): Assume ¢ € C*(R), and let u,v € D. Again, in view of the proof of Proposi-
tion 4.9 it suffices to show that

MNu—t(u—2v))(A)+T(v+1(u—0))(A) < T(u)(A)+T(v)(A) for any A € B(X). (4.34)
Indeed, since [, @ dI'(f; -) is linear for any f € D by Theorem 4.6 if ||¢||,, < oo, we

sup

see from (CL2), Proposition 4.8, 0 < ¢’ < 1 on R, and Holder’s inequality that for any
A e B(X),

T{u—(u—v))(A) + v+ P(u—v))(A)
(CL2) T(u —(u—v);u)(A) — /qu’(u —v)dl(u—P(u —v);u —v)

T+ wlu = i0)(A) + [ 9= 0)dDo+ du = v)iu =)
:/A(l—qp’(u—v))dl“(u—w(u—v /wu—vdﬂu—w(u—v) v)
+ [ = vl s+ [ W)+ o - v

(- v opart- v v>>> ([a-vi- v>>dr<u>)’l’

+< A¢’u—v AT (u — (u —v) ) (/w u— v)dI'{ >)

([ == v>>) ( [a-vtu- v))dr<v>>

+( | W= ) dl (= v) ) </¢ u—v)dl{ >)
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P (P — = 0)) (A) + Do + w(u — v)) (A))7 (D) (4) + T(w)(A))7,
proving (4.34) and thereby (d)-(1).

(d)-(2): This is proved by following closely the above proof of (c¢)-(2) on the basis of
(d)-(1) and arguing as in (4.22) upon applying Proposition 4.10 to conclude (4.34). [

3=

We also have the following representation formula (see also [Cap03, Theorem 4.1]).

Proposition 4.16 (Representation formula). Assume that {I'(f)};ep satisfies (Cla), and
(CL2) and that T'(f)(X) = E(f) for any f € D. Then for any u,¢ € D,

-1

/XsodF<U> = E(u;up) — (pT)plg(IUIppl L0). (4.35)

Proof. Note that (£, D) satisfies (Cla), by I'(f)(X) = £(f). Define ® € C*(R) by ®(z) =
|$|P%1 Note that ®'(z) = -5 sgn(z) |:1:|Ti1 By (4.25) and (CL2), we see that

proving (4.35). O

We have the following theorem as a consequence of (CL1).

Theorem 4.17 (Image density property). Assume that (£,D) satisfies (2.4) and (Cla),,
that (F,|-ll¢,) is a Banach space, and that {U(f)}sep satisfies (CL1). Then for any
u € D, the Borel measure T'(u) ou™ on R defined by (T'(u) o u™1)(A) = T'{u)(u"1(A)),
A € B(R), is absolutely continuous with respect to the Lebesgue measure on R.

Proof. This is proved, on the basis of (4.23), in exactly the same way as [Shi24, Proposition
7.6], which is a simple adaptation of [CF, Theorem 4.3.8], but we present the details
because in [Shi24] the underlying topological space X is assumed to be a generalized
Sierpinski carpet. It suffices to prove that (I'(u) o w™')(F) = 0 for any u € D and
any compact subset F of R such that Z!(F) = 0, where .Z" denotes the 1-dimensional
Lebesgue measure on R. Let {p,nen C Co(R) satisfy |@,| < 1, lim, o0 @n(z) = 1p(2)
for any x € R and

0 0
/ on(t)dt = / on(t)dt =0 for any n € N.
0
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We define @, ( fo on(t)dt, z € R, and u,, = ®, o u for any n € N. Then we easily
see that @, 6 Cl( )N C( ), ®,(0) = 0, and @/, = ¢, for any n € N. Also, {un}nen
converges in norm in L”(X,m) to 0 by the dominated convergence theorem, and by (2.4)
for (£, D) we have {un}neN C D and sup,cy E(uy,) < oo. Since (Cla), for (€, D) yields

(Cla), for (5,2_) ) and ( Al e 1) is complete, Lemma 3.17 is applicable to (£, D ) and
implies that {u,}nen converges weakly in (_F, |-l 571) to 0. By Mazur’s lemma (Lemma
3.14), there exist N(I) € N and {am}ﬁ:(? C [0,1] such that N(I) > I, ZkN:(? app =1
and chv:(? ap Uy, converges in norm in F to 0 as [ — oo. Let us define ¥; € C'(R)
by ¥; = Ziv:(? a1 Pp,. Then U;(0) = 0 and lim; .o ¥j(z) = 1p(z) for any =z € R.
Furthermore, by Fatou’s lemma, (4.23) and (EM1),,

(D) o u)(F) = / lim [W(6) [ (T{u) o u~)(dt)

l—o00

< limint / W (u () (dz)
—hmlan (U (u))(X) <11m1nf5( () =0,

which completes the proof. m

The following theorem gives arguably the strongest possible forms of the strong locality
of p-energy measures.

Theorem 4.18 (Strong locality of energy measures). Assume that (£,D) satisfies (2.4)
and (Cla),, that (F,|-|l¢,) is a Banach space, and that {U'(f)}sep satisfies (CL1). Let
u,uy, U, v € D, a,a1,a2,b € R and A € B(X).

(a) If ACwu'(a), then T'{u)(A) = 0.
(b) If AC (u—v)"Ya), then T{u)(A) = T(v)(A).
(¢) If ACui'(ay) Uuy'(ay), then

T (uy + ug 4+ v)(A) + Te(v)(A) = Delug 4 v)(A) + De(uy + v)(A). (4.37)
If {T{f)} sep satisfies (Cla), and A C uy*(ar) Uuy ' (ag), then
T (uy + ug; v)(A) = e (ug; v)(A) + Te(ug; v) (A). (4.38)
(d) If{T(f)}sep satisfies (Cla), and A C (u1 — uz) ™" (a) Uv™'(b), then
T (ug;v)(A) = Te(ug; v)(A)  and Tev;up)(A) = Delv;ug) (A). (4.39)

Proof. (a): This is immediate from Theorem 4.17.
(b): This follows from (a) and the triangle inequality for T'g(-)(A)/?.
(¢): Set A; == ANwu; ' (a;), i € {1,2}. We see from (b) that

Pe(ur +ug +v)(A) + Te(v) (A)
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= F5<U2 + U>(A1) + F5<U1 + U>(A2)
= Te(uz + v)(Ar) + Te(ur +v)(Az)
= Te{ur + 0) (A) + Te(us + v)(A),

+Te(v)(A4)
+ Le(ui + ) (A1) + De(uz + v)(A2)

which proves (4.37). Note that I'e(u; + u2)(A) = Te(ur)(A) + Fe(ug)(A) by (4.37) in
the case v = 0. Next assume that {I'(f)} rep satisfies (Cla),. By using this equality and
applying (4.37) with v replaced by tv for t € (0, 00), we have

Lefin 10+ 10)(4) = Telon + 1)) | pap )

Fg<u1 + tU) (A) — Fg (u1>(A) i Fg <U2 + t’U>(A) — F5<U2>(A)
t t ’

which implies (4.38) by letting ¢ | 0.
(d): The proof will be very similar to that of Proposition 3.32-(a). By applying (4.37)
with uy — uq, tv,uy for t € (0,00) in place of uy, us, v, we have

De(uy + tv)(A) = Te(ui)(A)  Te(ug + tv)(A) — Leug) (A)

t t ’

which implies the former equality in (4.39) by letting ¢ | 0. This equality in turn with
v,0,u; — uy in place of uy,uy, v yields the latter equality in (4.39) by the linearity of
Le(v; - )(A). u

5 p-Energy measures associated with self-similar p-energy
forms

In this section, we focus on the self-similar case. We will introduce the self-similarity
of p-energy forms and construct p-energy measures with respect to self-similar p-energy
forms. Some fundamental properties of p-energy measures will be shown.

5.1 Self-similar structure and related notions

We first recall standard notation and terminology on self-similar structures (see [Kig01,
Chapter 1] for example). Throughout this section, we fix a compact metrizable space K,
a finite set S with #5 > 2 and a continuous injective map F;: K — K for each ¢ € S.
We set L = (K, S, {F;}ics).

Definition 5.1. (1) Let W, := {0}, where () is an element called the empty word, let
W, =8" ={w,...w, | w; € Sfori € {1,...,n}} for n € N and let W, =
Unenugoy Wa- For w € W,, the unique n € NU {0} with w € W), is denoted by |wl|
and called the length of w. For w,v € Wy, w = wy ... Wy, v = v1...0,,, we define
wv € W, by wv = wy ... wp,v1 . .. Uy, (W = w, fv = 0).
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(2) We set ¥ == SN = {wjwows ... | w; € S for i € N}, which is always equipped with the
product topology of the discrete topology on S, and define the shift map o: ¥ — X
by o(wiwows ... ) = wowswy . ... For i € S we define 0;: ¥ — ¥ by 0;(wiwows ... ) =
iwiwows . ... For w = wywaws ... € ¥ and n € NU{0}, we write [w], == w; ...w, € W,.

(3) For w = wy...w, € Wi, we set F, .= F,, 0---0F, (Fy:=Iidg), K, = F,(K),
Ow = Oy, O+ 00y, (0p:=idy) and 3, = 0,(%).

(4) A finite subset A of W, is called a partition of 3 if and only if ¥,, N X, = @ for any
w,v € A with w # v and X = [J,,cp Zw-

Definition 5.2. £ = (K, S,{F,}ics) is called a self-similar structure if and only if there
exists a continuous surjective map x: ¥ — K such that F;ox = yoo; for any ¢ € S.
Note that such x;, if it exists, is unique and satisfies {x(w)} = (), cn Ky, for any w € 3.

In the following definition, we recall the definition of post-critically finite self-similar
structures introduced by Kigami in [Kig93|, which is mainly dealt with in Subsection 8.3.

Definition 5.3. Let £ = (K, S, {F;}ics) be a self-similar structure.
(1) We define the critical set C; and the post-critical set P of L by
Cr = Xﬁl(Ui,jeS, izg 10 0 K;) and  Pr=U,en0"(Cr) (5.1)

L is called post-critically finite, or p.-c.f. for short, if and only if P, is a finite set.
(2) We set Vo == x(Pr), Vi = Upew, Fu(Vo) for n € N and V, = UnENU{O} V...

The set Vj should be considered as the “boundary” of the self-similar set K; indeed,
by [Kig01, Proposition 1.3.5-(2)], we have

K,NK,=F,(Vy) N E,(Vp) for any w,v € W, with ¥, N %, = 0. (5.2)

According to [Kig01, Lemma 1.3.11|, V,,_; C V,, for any n € N, and V, is dense in K if
Vo # 0.

The family of cells { K, },ew, describes the local topology of a self-similar structure.
Indeed, { K, 4 }n>0, where K, , = UwEWn;xe k., Kuw, forms a fundamental system of neigh-
borhoods of z € K [Kig0O1, Proposition 1.3.6]. Moreover, the proof of [Kig0O1, Proposition
1.3.6] implies that any metric d on K giving the original topology of K satisfies

lim max diam(K,,d) = 0. (5.3)

n—oo weWn,
Let us recall the notion of self-similar measure.

Definition 5.4 (Self-similar measures). Let £ = (K, S, {F;}ics) be a self-similar structure
and let (6;);es € (0,1)% satisfy >, ¢ 6; = 1. A Borel probability measure m on K is said
to be a self-similar measure on L with weight (0;);cs if and only if the following equality
(of Borel measures on K') holds:

m = Zei(mOFi_l), (5.4)
i€s
where m o F"! denotes the image measure of m by Fj, i.e., (m o F, 1) (A) := m(F ' (A))
for A € B(K).



Contraction properties and differentiability of p-energy forms 55

Remark 5.5. Let £ = (K, S, {F;}ics) be a self-similar structure, m a self-similar measure
on £, and w € W,. We then easily see from (5.4) that uo F,, = vo F}, m-a.e. on K for any
Borel measurable functions u,v: K — [—00, 0] satisfying u = v m-a.e. on K, thereby
that we can define a map F*: L°(K,m) — L°(K,m) by setting F*u := uoF,, and further
that Ff: LP(K,m) — LP(K,m) is a bounded linear operator for any p € [1, oo].

Proposition 5.6 ([Kig01, Section 1.4], [Kig09, Theorem 1.2.7]). Let £ = (K, S,{F;}ics)
be a self-similar structure and let (0;);es € (0,1)% satisfy > ;cq0; = 1. Then there exists
a self-similar measure m on L with weight (6;);cs. Moreover, if K # VOK, then such

m is unique and satisfies m(K,) = 0, and m(Fw(VOK)) = 0 for any w € W,, where
O =0y -+ O, forw=wy...w, € W, (0 :=1).

5.2 Self-similar p-energy forms and p-energy measures

In this subsection, we introduce the notion of self-similar p-energy form and define the
p-energy measures associated with a given self-similar p-energy form. Throughout this
subsection, we fix a self-similar structure £ = (K, S, {F;}ics) with K connected, a o-
algebra B in K including B(K), a measure m on (K, B) with suppy[m] = K, p € (1, 00),
and a p-energy form (€, F) on (K, m).

Definition 5.7 (Self-similar p-energy form). Let p = (p;)ics € (0,00)°. A p-energy form
(€, F) on (K, m) is said to be self-similar on (L, m) with weight p if and only if the
following hold:

FNC(K)={feC(K)| foF,eF foranyiec S}, (5.5)

S(f):ZpiS(foFi) for any f € FNC(K). (5.6)

€S

Note that for any partition A of ¥, (5.6) implies

E(f) = pul(foF,), feFnNCK) (5.7)

weEA

where py, == pu, -+ pu, for w =w;...w, € W,. Indeed, (5.7) follows from an induction
with respect to max,ea |w|.

In the rest of this subsection, we assume that (€, F) is a self-similar p-energy form on
L with weight p = (p;)ics. We can see that the two-variable version £(f;g) also has the
following self-similarity.

Proposition 5.8. Assume that (£,F N C(K)) satisfies (Cla),. Then

E(f;9) = _pé(foF;goF) forany f.g € FNC(K). (5.8)
€S
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Proof. For any f,g € FNC(K) and any ¢t > 0, we have

E(f+tg) —E(f) E(foF,+t(go F)) —E(fo F)
m —;Pi ; .

Letting ¢ | 0 yields (5.8). O

Next we see that p-energy measures are naturally introduced by virtue of the self-
similarity of (€, F) (see also [Hin05, MS25 ]) For f € FNC(K), we define a finite
measure m(gn)<f) on W,, = S™ by putting mg ( Y{w}) = pu€(f o F,) for each w € W,,.
Then {m((gn)( f) }n>o satisfies the consistency condition by (5.7), and hence Kolmogorov’s
extension theorem (see, e.g., [Dud, Theorem 12.1.2]) guarantees that there exists a unique
Borel measure mg(f) on ¥ = SN such that mg(f)(Xw) = pu&(f o F,) for any w € W,.
In particular, mg(f)(X) = E(f). Basic properties of mg(-) are collected in the following
proposition.

Proposition 5.9. (a) Assume that (£,F N C(K)) satisfies (GC),. Then for any A €
B(X), (mg(-)(A), FNC(K)) is a p-energy form on (K, m) satisfying (GC),.

(b) Assume that (€, FNC(K)) satisfies (Cla),. Then for any A € B(X), (mg(-)(A),FnN
C(K)) is a p-energy form on (K,m) satisfying (Cla),, and in particular, for any
f,g € FNC(K), the following derivative exists in R:

me(f;g)(A) = — —me(f +1g)(A) (5.9)

t=0

S
SR

Moreover, mg(f; g) is a signed Borel measure on X.

Proof. (a): Let ni,ne € N, q1 € (0,p], g2 € [p,oo] and T = (T4,...,T,,): R™ — R™
satisfy (2.2), and let w = (ug,...,u,,) € (FNC(K))". We are to show that

[ (me (TH (@) (A7) [ s < [ (e Cd(AY2) 2 s A€ B(E). (5.10)

If A=3%, for some w € W,, then (5.10) is clearly true by (GC), for (£, F). By a similar
argument using the reverse Minkowski inequality on ¢9/? and the Minkowski inequality
on (%/? as in (2.19), we obtain (5.10) for any A belonging to the algebra in ¥ generated by

{Xw twew.. Hence the monotone class theorem (see, e.g., [Dud, Theorem 4.4.2]) implies
that (5.10) holds for any A € B(X).

(b): Note that a special case of (5.10) proves (Cla), for (mg(-)(A), F N C(K)); see
also Proposition 2.3-(e),(f). Then the derivative in (5.9) exists by Proposition 3.6 and
(5.10). In addition, mg(f; g) turns out to be a signed Borel measure on ¥ by Theorem 4.6.
(Even if (£, F) does not satisty (GC),, the above proof of (a) together with the triangle
inequality for £/7 shows (5.10) with (n1,n9,q1,¢2) = (2,1,p,p) and Ty(z,y) = = + ¥,
namely the triangle inequality on F N C(K) for mg(-)(A)'/P.) O
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We now define a family {T'c(f)} rernc(x) of finite Borel measures on K by

Te(f)(A) = (me(f) ox)(A) = me(f)(x'(4)), A€ B(K) (5.11)

for f € FNC(K), where x: ¥ — K is the same map as in Definition 5.2. The following
proposition states basic properties and the self-similarity of {T'¢(f)} rernc(x)-

Proposition 5.10. (a) {Te(f)}rernck) satisfies Te(f)(K) = E(f) for any f € FN
C(K), in particular (EM1),, and (EM2),.

(b) Forany f € FNC(K), any w € W, and any n € NU {0},

pu€(foFy) <Te()(Kw) < Y p(foF). (5.12)

vEWn; Ky MKy #D

(c) Assume that (€, F NC(K)) satisfies (GC),, let p: K — [0, 00] be Borel measurable,
and let ny,ny €N, q1 € (0,p], @2 € [p,oc] and T = (T4,...,T,,): R™ — R" satisfy
. Then for any w = (uy,...,u,,) € (FNC(K))"

H( o dle (T (u >>)1/p>n: (( / sodrg<uk>)1/p)

In particular Proposition 2.3 with ([, ¢ dTg(-), F N C(K)) in place of (€,F) holds
provided ||p]|,,, < 00.

sup

(d) The following equality (of Borel measures on K ) holds:

ni

< (5.13)

092 k=11l¢91

Te(f) = pi(Te(foF)oF")  forany f € F N O(K). (5.14)
ies
(e) Assume that (€, F N C(K)) satisfies (Cla),. Then {T'e(f)}rernck) also satisfies
(Cla),, and the following equality (of signed Borel measures on K ) holds:

Le(fs9) =Y mTe(foFigoF)oFY) forany f.g€ FNC(K).  (5.15)
ieS
(f)  Assume that (€, F NC(K)) satisfies (Cla),. Then mg(f;g)ox™' =Te(f;g) for any
f,g € FNCO(K).

Proof. (a): We easily have T'g(K) = mg(f)(x 1(K)) = me(f)(X) = E(f). The proof of
(EM2), is included in the proof of (c) below.

(b): This statement is the same as [MS23, Lemma 9.15|, which is easily proved by
noting that 3, C x 1(K,) C Uvewn;KmKWé@ Y,

(c): Assume that (€, F) satisfies (GC),. Let us fix T' = (T3,...,T,,): R™ — R™
satisfying (2.2) and w = (uy, ..., u,,) € (FNC(K))™. For any B € B(K), by (GC),, for
(me(-)(x"Y(B)),F NC(K)) (see Proposition 5.9-(a)), we obtain

1Te(T @) (BY7) 2 e < 1 (TeCwnd(B)7) L |- (5.16)
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Again by a similar argument as in (2.19), we see that (5.13) holds for any non-negative
Borel measurable simple function ¢ on K. We get the desired extension, (5.13) for any
Borel measurable function ¢: K — [0, o0], by the monotone convergence theorem.

(d): The proof is very similar to [Shi24, Proof of Theorem 7.5]. Let k € N, w =
wy...w, € W, and n € N. We see that

Y pmelf o F) (071 (80) = puime(f 0 Fu) (0,0 (Z0) = punme(f © Fu) (Sun.can)
S
= pwlpr...’LUk;g<(f © le) © sz---wk) = m5<f>(2w)

Since w € W, is arbitrary, by Dynkin’s 7-A theorem, we deduce that

me(f)(A) =Y pi(me(fo F)ooi')(4), AeB(E).
i€S
We obtain (5.14) by x o o; = F; 0 x.
(e): Assume that (£,F) satisfies (Cla),. Then {I's(f)}serncx) satisfies (Cla), by
(5.16) (see also Proposition 2.3-(e),(f)). Now we obtain (5.15) by letting ¢ | 0 in

Te(f +1g)(A) =Y ple(f o Fy +t(go F)) (F7'(A)).

ies
(f): This is immediate from (5.11), (4.5) and (5.9). O

We next prove the chain rules (CL1) and (CL2) for I'¢( ). Such chain rules have been
obtained also in [BV05], but we provide here self-contained proofs because our present
framework is different from that of [BV05] and our version (CL2) is stronger than the
chain rule proved in [BV05].

Theorem 5.11. Assume that Rlx C E71(0) and that (€, FNC(K)) satisfies (2.4). Then
{Te(f)}rerncx) satisfies (CL1), i.e., for anyuw € FNC(K) and any ® € C'(R), we have
¢(u) e FNC(K) and

dle{(®(u)) = |®'(u)[" dle{u). (5.17)

Proof. First, let us observe a few consequences of (2.4). The proof of Corollary 2.5-(a)
works even if we assume (2.4) instead of (GC),, so we have (2.11). We then obtain
d(u) € FNCO(K) by (2.11) and Rlgx C £71(0). Also, by (2.11), the identity ab =
*[(a+b)* = (a — b)?] for a,b € R, and the triangle inequality for £/7, there exists a
constant ¢, € (0,00) depending only on p such that for any u,v € F N C(K),

we FNC(K) and  E(uv) < ¢p([Jvllhy, €(w) + [[ullZ,, £(v)); (5.18)
indeed, (5.18) for u,v € F N C(K) with [|lull,,, = [lvll,,, = 1 is easily verified, and this

-1
sup

-1
sup

special case applied to ||ul|_ u, ||v].., v yields (5.18) for general u,v € F N C(K).

Next we will prove that

llim ‘pwé'(d)(u o Fy,)) — Sl(l)(w)‘ =0 for any w e Wi, (5.19)
—00
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where for w € W, and | € NU {0} we set, with an arbitrarily fixed =, € K,

(1) Z Pur€ wT(xO))) : (u © FwT))-

TeW]

We need some preparations to prove (5.19). Note that, for any z € W, and any x € K,
®(u(F.(2))) — @ (u(F.(z0)))
= [u(FZ(:U)) — U(Fz(on)ﬂ (CI)/(u(FZ(ZEQ)))

+/0 [(I)/(U(FZ(ZEQ)) + t(u(F.(z)) — u(F.(x0)))) — @'(u(FZ(:EO)))] dt).

In particular,

®(uo

where u,, D,, I, €

u()
D.(x )

= ®(u(F.(z0)) — @ (w(F.(w0)))u(Fx(20)) + D. L., (5.20)

) are given by

(u(Fe(0))) - (wo F2)(x),
(Fx(z )) u(F(20)),

F.) -
C(K
ol
/ x9)) +tD,(x )) (I)/(U(Fz(xo)))} dt, rekK.

Note that u, € F by (5.5). By (2.11), we have that I, € F and that there exists
a constant Cy ¢ € (0,00) depending only on p, [Jull,,. ,||P’|l oflul. ] Such that
nd

sup sup, [—2([ullgup 2l vl gup
E(IL) < Cyuo€(uoF.) and E(P(uo F,)) < Cyo€(uo F.). Therefore, for any | € NU {0},
Z ng ((I)(u o FwT) - aw7’)

5.20
( == ) Z pr5<DUJTI’LUT>

(5.18)

< 6 Z Pwr ||Iw7—||sup (Duwr) + ||DwT||sup ( wT))

TeW]

<cp(max | Zopr ||Sup+gleav>v<l ||DW,||SHP) Z,%T( wr +Cu¢5(quw7)>

rew,
TeW;

P
< (1 + Cua)€(0) (3 [y + 305 [ Dur ) (5.21)
Since u and @’ are uniformly continuous on K, it follows from (5.3) that max,cw, || Ly ||

sup
and max,ew, || Dy ||,,, converge to 0 as [ — oo, and hence

sup

lim >~ pur€ (@(wo Fiyr) — tur) =0, (5.22)
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which implies (5.19).

By the uniform continuity of ®" and the fact that me(f)(X,) = pu&(f o F,,) for any
fe FNC(K) and any w € W,, we easily observe that

Xn:/ |®' (1o x)|" dme{u) — Sl(l)(w) —0.

Hence, by (5.19) and Dynkin’s -\ theorem,

lim
l—o0

dmg ((u Z | (o x)[P dmg(u). (5.23)
k=1
Then we obtain the desired equality (5.17) by (5.23) and Proposition 5.10-(f). O

To prove (CL2), in addition to (Cla),, we need to assume the closedness of (€, F N
LP(K,m)) in LP(K,m). Recall the definition (3.24) of the norm || ||, which we here
define on F N LP(K, m) without assuming that 7 C LP(K,m).

Theorem 5.12 (Chain rule). Assume that Rl C £71(0), that (€,F N C(K)) sat-
isfies (2.4) and (Cla),, and that (F 0 LP(K,m),||-[|¢,) is a Banach space. Then
{Te(f)} rernck) satisfies (CL2), d.e., for anyn € N, u € FNC(K), v = (v1,...,0,) €
(FNC(K)™, ® € CY(R) and ¥ € CY(R"), we have ®(u), ¥(v) € FNC(K) and

dl e (D( Z sgn (@' (u)) | @' (w) [P~ 9,9 (v) dTe (u; vy). (5.24)

Proof. Let n € N, u € FNC(K), v = (vy,...,v,) € (FNC(K))", ® € CY(R) and
U e CY(R"), so that ®(u) € F N C(K) as observed at the beginning of the proof of
Theorem 5.11. We fix these n,u,v = (vy,...,v,), P,V throughout this proof, and first,
under the additional assumption that V(v) € F N C(K), we will prove that

llim ‘pwc‘,’((l)(u 0o F,);¥(voF,))— 81(2) (w)‘ =0 for any w e W,, (5.25)
—00

where for w € W, and | € NU {0} we set, with an arbitrarily fixed z € K,

prT ( UOFwT($0 U’OF’LUT Zak 'UOFwT:UO))'(’UkOFwT)>'

TeW,;

To prove (5.25), we observe that ’pwé’(@(uo F,);¥(voFy,)) — 81(2)(10)‘ < Ay + Ay,

where
U.(z) = O (u(F.(x0))) - (wo F.)(z),
0.(z) =Y 0u¥(v(Fa(x))) - (ve o F)(w) for z € W,z € K,
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A= 3 o (B0 P W00 Fur) — E(0 (00 Fur)ir)|

TeW,;
AZZ - pr‘r}g qu’wT Uwr)_g(a’wﬂ';@wr)"
TeW,;

Similar to (5.22), we can show that

lim Y~ pur€(U(v 0 Fyr) = Byr) = 0. (5.26)

By (3.10), (3.11) and Holder’s inequality, we have

1/p
Al,l S g(“’ © F " 1 <Z pUIT ’U © FwT) - i]\wT)) )

TeW,

and

A20 S Y pur€(uo Fup) P12 (B(wo Fup) — Uur ) ™78 (Tr)

TeW;

ap/p 1/p
S g(UOF (p—1=ap)/ <Z pr UOFwT) _awﬂ')) (Z pwﬂ'g(aum—)>

TeW] TeW]

Oép/l?
< E(uo F,)rienlp <Z PurE(®(u 0 Fr) —ﬂw>> max € (vy 0 F,)'7.

ked{l,...,
TeEW] { n}

Combining these estimates with (5.22) and (5.26), we obtain lim; ,,, A;; = 0 and thus
(5.25) holds.

Continuing to assume that W(v) € F N C(K), by the uniform continuities of ', 0¥y,
and the fact that mg(f;9)(3y) = pul(f o Fy;go Fy) for any f,g € F N C(K) and any
w € W,, we easily observe that

=0.

lim
l—o0

Z/ sen (@' (u 0 ) 9/ (u 0 ) [ 00 (v 0 X) dme (us 0g) — S (w)

Hence, by (5.25) and Dynkin’s 7-A theorem,

n

dmg (P (u); ¥(v)) = Z sgn (P’ (uox)) |®'(uo )P 0,0 (v o x) dmg (u; vg). (5.27)

k=1

Then by (5.27) and Proposition 5.10-(f), we obtain the desired equality (5.24) under the
additional assumption that U(v) € F N C(K). We stress here that the arguments in this
and the last paragraphs do NOT require the assumption that (F 0 LP(K,m), | -|l¢,) is a
Banach space. (Note also that v € F N C(K) and ® € C'(R) are arbitrary here, and
hence can be chosen to be u = ¥(v) and ¢ = idg as long as ¥(v) € FNC(K).)
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Thus it remains to prove that ¥(v) € F N C(K). We can assume that ¥(0) = 0 since
Rlgx C E71(0). Define Q(v) C R" by

Q) = |~ 01 s 101 | X [ 102l 2l ) %+ X | = [l [l

Then there exists a sequence {VU;};cn of polynomials in n variables with real coefficients
such that U;(0) = 0, |V = ¥l 0@ — 0 and [|0x¥ — Vil ) gy — O for each k €
{1,...,n} as I — oo (see |[CH, Chapter 11.4.3]). Let [ € N. By the mean value theorem,

for a"nyx:($17"'7xn>7y:(yl""’yn) €Q<v)7
i) = ()] <D N0Vl gup o) 125 — vl (5.28)
k=1

Noting that ¥;(v) € F N C(K) by (5.18) and hence that (5.24) with ¥; in place of ¥
holds by the result of the previous paragraph, we see from Propositions 5.10-(a) and 4.8
that

E(W(v)) =T¢( \Ifl( ) (K) (by Proposition 5.10-(a))

/K Z@k\lfl('v(x)) Ce(W(v); vg) (dx) (by (5.24) with ¥, in place of W)

k=1

p—1 1 e
< Z 10k 1| sup.0w) Fg<\I/l(’U)>(K)TFg<Uk>(K)?1’ (by Proposition 4.8)

p—1 "
v)) 7 Z 10k | sup.00) E(vp) VP (by Proposition 5.10-(a)),

which implies that sup,cy £(V;(v)) < oco. Also, by ¥;(0) = 0, (5.28) and the dominated
convergence theorem, {U;(v)}eny converges in LP(K,m) to U(v) as | — oco. Now we

conclude from Lemma 3.17 applied to (8 ,Fﬂ—C’(K)]:mLp(K’m))
(Cla),, that ¥(v) € mfﬂm(mm) NC(K)=F NC(K), completing the proof. [

, which clearly satisfies

In the following corollaries, we recall useful consequences of the chain rule in Theorem
5.12, which are immediate from Proposition 4.16 (or more precisely, (4.36)), Theorems
4.17 and 4.18.

Corollary 5.13. Assume that Rlx C £71(0) and that (£, F N C(K)) satisfies (2.4) and
(Cla),. Then for any u,p € FNC(K),

-1

/KsongM = E(usup) — (pT)p_lf(IUIpfl ;0). (5.29)

Proof. For any u,p € F N C(K), since up € FNC(K) by (5.18), we have (5.24) with
either of (u,up) and (|u|ﬁ , ) in place of (®(u), U(v)) by the second paragraph of the
above proof of Theorem 5.12, and therefore (5.29) follows from Proposition 5.10-(a) and
the argument in (4.36). O
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Corollary 5.14. Assume that Rlx C £7(0), that (€, F N C(K)) satisfies (2.4) and
(Cla),, and that (F N LP(K,m), || [|¢ ) is a Banach space. Then, for any u € F NC(K),
the Borel measure Tg(u) ou™" on R defined by (Te(u) ou™)(A) == Te(u)(u=1(A)), A €

B(R), is absolutely continuous with respect to the Lebesque measure on R.

Corollary 5.15. Assume that Rl C £7Y(0), that (€, F N C(K)) satisfies (2.4) and
(Cla),, and that (F 0 LP(K,m), |- |¢,) is a Banach space. Let u,uy,uz,v € F N C(K),
a,ay,az,b € R and A € B(K).

(a) If ACu'(a), then Te{u)(A) = 0.

(b) If AC (u—v)"'(a), then Te(u)(A) = Te(v)(A).

(¢) If ACuyt(ay) Uus(ay), then

Fg (u1 + ug + U>(A> + F5<U> (A) = Fg <U1 + U> (A) + Fg <U2 + U><A), (530)
Ceuy 4+ ug;v)(A) = Deug; v)(A) + Te(ug; v) (A). (5.31)

(d) If A C (uy —uz) Y(a) Uv=Y(b), then
Peup;v)(A) =Telug;v)(A) and Te(v;ui)(A) = Te(v;ug)(A). (5.32)

5.3 Extensions of self-similar p-energy measures

In this subsection, we fix a self-similar structure £ = (K, S, {F;};cs) with K connected, a
self-similar measure m on L, p € (1,00), and a self-similar p-energy form (€, F) on (£, m)
with weight (p;)ies € (0,00)%, and further assume that 7 C LP(K,m). In this setting, we

first discuss the extension of self-similar p-energy measures to F N C(K) =: F°. Recall
the feature noted in Remark 5.5 of m as a self-similar measure on L.

Lemma 5.16. Assume that (F,||-[|¢,) is a Banach space. Let u € F and {u,}nen C
FNC(K). If {uptnen converges in F to u, then {u, o Fy}nen converges in F to uo F,
for any w € W,. In particular,

woFy € FO  for anyu e F° and any w € W,. (5.33)
E(u) = Zpié'(u o F;) for anyu € F°. (5.34)
icS

Proof. Let {uy,}nen satisfy lim, o ||u — unH&l = 0. Then we easily see from the self-
similarity of m that {u, o F}, },en converges in LP(K, m) to uo F,, for any w € W,. Since
E(upoFy —upo Fy) < pt€(u, —uy) for any n, k € N by (5.6), {u, o Fy, }nen is a Cauchy
sequence in F. Therefore, it has to converge to u o F,, in F, which shows (5.33). By
letting n — oo in (5.6) for u,, we obtain (5.34). O

Now that we have obtained the identity (5.34), in a similar way using Kolmogorov’s
extension theorem as in the previous subsection, for each u € F° we get a unique Borel
measure mg(u) on X such that mg(u)(X,) = pu€(uo F,) for any w € W,. The following
lemma states the triangle inequality for mg(-)(A)/? on F°.
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Lemma 5.17. Assume that (F,||-|z,) is a Banach space. Then for any u,v € F° and
any A € B(Y),
me (u + 0) (A)7 < me (u) (A)VP + me (0) ()17,

Proof. This follows from the triangle inequality for £'/7 and the argument in the proof of
Proposition 5.9-(a). O

Now we identify the p-energy measures {I'¢(u)},c 7o, obtained by applying Proposition
4.11 to the measures defined in (5.11), as {mg(u) o x '},ero.

Proposition 5.18. Assume that (F, | -|l¢) is a Banach space. Then for any u € F°,
Le{u) = me{u) ox™'  (as Borel measures on K ). (5.35)

Proof. The equality (5.35) for u € F N C(K) is obvious from the definition of I'¢(u)
n (5.11). Then the desired assertion immediately follows from (4.19), Lemma 5.17 and

SUP 4z Me (u)(A) < E(u). O

We conclude this subsection by seeing that self-similar p-energy measures can be ex-
tended to functions belonging locally to F° in Definition 5.20 below. To this end, we need
the following lemma.

Lemma 5.19 (Weak locality of self-similar p-energy measures; [MS23+, Lemma 9.6]).
Assume that (F,|-|l¢,) is a Banach space. Let U be an open subset of K. If u,v € F°
satisfy uw = v m-a.e. on U, then T'g(u)(U) = Le(v)(U).

Proof. The proof is exactly the same as [MS23+, Lemma 9.6], but we recall the details
here for the reader’s convenience. By the inner regularity of T'e(u) and T'¢(v) (see, e.g.,
[Dud, Theorem 7.1.3|), it suffices to show I'g(u)(A) = I's(v)(A) for any closed subset A
of U. Let d be a metric on K giving the original topology of K. By (5.3), we can choose
d € (0,disty(A, K\ U)) and N € N so that max,ew, diam(K,,d) < ¢ for any n > N. For
n € N, define C,, .= {w € W,, | ¥, N x*(A) # 0}. Since uo F,, = vo F, (m-a.e. on K)
for any n > N and any w € C,,, we have

W)(Se) = Y pubwo Fa) = 3 publvo Fu) = me(o)(Sc, )

wECn wGCn

Since {X¢, }nen is a decreasing sequence satisfying (), oy e, = x 7' (A) (see [Hm )5, Proof
of Lemma 4.1] or [MS23--, Proof of Proposition 9.3|), we obtain I'g (u)(A) = I'c(v)(A) by
letting n — oo in the equality above. D
Definition 5.20. Let U be a non-empty open subset of K.

(1) For each linear subspace D of F, we define a linear subspace Dy,.(U) of L°(U, m|y)
by

Droe(UV) — {f e LU, mly)

f = f* m-a.e. on V for some f#* € D for (5.36)
each relatively compact open subset V' of U '
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(2) Assume that (F, | -||,) is a Banach space. In this setting, for each f € (F%)i(U) =
F2(U), we further define a Radon measure T'e(f) on U as follows. We first define
Le(f)(E) = Te(f#)(E) for each relatively compact Borel subset E of U, with A C U
and f# € F° as in (5.36) chosen so that E C A; this definition of Tg(f)(F) is
independent of a particular choice of such A and f# by Lemma 5.19. We then define
Ce(fYE) = lim, oo L'e(f)(E N A,) for each E € B|y, where {4, }nen i a non-
decreasing sequence of relatively compact open subsets of U such that (J, .y An = U;
it is clear that this definition of T'¢(f)(F) is independent of a particular choice of
{A, }nen, coincides with the previous one when E is relatively compact in U, and
gives a Radon measure on U.

5.4 Self-similar p-energy form as a fixed point

This subsection is devoted to presenting a standard method to construct a self-similar
p-energy form. The main result of this subsection (Theorem 5.22) is essentially the same
as the fixed point theorem in [Kig0O0, Theorem 1.5], but we present the details to show a
useful version of this fixed point theorem where a fixed point is explicitly given as a limit.

In this subsection, we fix a self-similar structure £ = (K, S, { F} }ics) with K connected,
a self-similar measure m on L, p € (1,00), and a linear subspace F of LP(K,m) with the
following property:

uwo F, € F forany u € F and any w € W, (5.37)
(recall Remark 5.5). We define
E(F) ={E: F = [0,00) | (£,F) is a p-energy form on (K, m)}.
Definition 5.21. Let p = (p;)ics. For n € NU {0}, we define S,,,: €,(F) — &,(F) by

Spn(E)(u) = Y puE(uoF,) for E € &,(F)and u e F. (5.38)

wEWn

(Note that the triangle inequality for S, (F)'? can be shown easily.) Set S, := S, and
Spo = ide, () for simplicity. Clearly, Sy, =S, =S5,085,0---08,.

n

The desired self-similar p-energy form with weight p will be constructed as a non-
trivial fixed point of S,. The following theorem, which can be regarded as a version of
[Kig00, Theorem 1.5] in a specific situation, describes when we can find such a fixed point
and how it is obtained.

Theorem 5.22. Let p = (p;)ics and let E° € €,(F). Assume that the quotient normed
space F/(E°)71(0) (equipped with the norm E°(-)Y/?) is separable and that there evists a
constant C € [1,00) such that

C1E%u) < 8pn(E)(u) < CEY(w)  for anyu € F and any n € N. (5.39)
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Then there exists {ny}ren € N with ng < ngyq1 for any k € N such that the following limit
ezists in [0,00) for any u € F:

ng—1

E(u) = lim — Z S, (%) (u (5.40)

k—o00 N s

Furthermore, (€, F) is a p-energy form on (K, m) satisfying
C1E%u) < E(u) < CE%(u) for any u € F and any n € NU{0}, (5.41)
where C' is the constant in (5.39), and

= Z puw€(uo Fy)  for any uw € F and any n € NU {0}. (5.42)

wGWn

Proof. Set &™ = %Z;:é S,;(E%) for n € N for ease of notation. Then it is clear that
Em € €,(F). Let € be a countable dense subset of F/(£°)7(0). Since {E™(u)}nen is
bounded in [0, 00) for any u € F by (5.39), by a standard diagonal procedure, there exists
{ni}tren € N with ny < ngyq for any k& € N such that {E™(v) }ren is convergent in [0, 0o)
for any ' € €. Let u € F, ¢ > 0 and u, € € satisfy £°(u — u,)"/? < . Then for any
k,l € N, by the triangle inequality for £"(-)¥/? and (5.39),

’gnk(u)l/p — &M (u) 1/p|
‘gnk( )1/19 E™ (u 1/1)} + ‘gnk 1/p EM(u l/p‘ + ‘gm 1/19 gm(u*)l/p}
< 20VPe 4 ‘gnk 1/19 ™ (u) 1/p|7
whence lim supy_, o [E™ (1)!/P — £ (u)/?| < 2C'/Pe. Therefore {£™ (u)}ren is conver-
gent in [0,00) for any u € F, so the limit in (5.40) exists. It is clear that (£,F) is a
p-energy form on (K, m) satisfying (5.41).
Let us show (5.42). For any n € N and any u € F, we easily see that

e (w) + S,lE") ) = Z Spust(E)(w) = () + Spn(€)(u).  (543)

Since limy, o0 S,(E™)(u) = S,(E)(u) and limy, o0 1y, 'Sy, (E°) (1) = 0 by (5.39), we obtain
S,(€) = & by letting n — oo along {ny }ren in (5.43). Hence (5.42) holds. O

By virtue of the explicit representation (5.42), the resulting p-energy form (&,F)
inherits some nice properties of (£°, F). In the following proposition, we see that (GC),
and the invariance under good transformations are examples of such properties.

Proposition 5.23. Assume the same conditions as in Theorem 5.22 and let € be given
by (5.40).

(a) If (E°, F) satisfies (GC),, then (€, F) also satisfies (GC),.
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(b) Let T be a family of Borel measurable maps from K to K. Assume that uoT € F
and E%(uoT) = E%u) for anyw € F and any T € T . Furthermore, we assume that
for any T € 7, there exists a bijection 7r: W, — W, such that

Tr|w, s a bijection from W, to itself for each n € NU {0}, (5.44)
T(Ky) € Krpwy and FT_Tl(w) oToF,€e.7 foranyw e W,, (5.45)

and
Pw = Prp(w) for any w € W,. (5.46)

Then E(uoT) = E(u) for anyu € F and any T € T .

Proof. (a): Let ny,ny € N, ¢1 € (0,p], g2 € [p,oc] and T = (T4,...,T,,): R — R"™
satisfy (2.2). Let w = (uq,...,u,,) € F. Then Tj(uy o Fy,) = Tj(ug) o F, € F for any
ke{l,...,n1} and any w € W, by (GC), for (£°, F) and Lemma 5.39. If g5 < oo, then
by a similar estimate as (2.19),

;Sp<50) (Tl Q2/p Z

q2/p

IVl F;)

€S

250 oF a2/p

=1

<D p

€S

Zpl [Zg (ug, o F}) a/p

€S k=1

p/a2\ /P
) (by the triangle ineq. for ||| ,g/»)

p/tn) a2/p
a2
P

b

q/p\ a1 n q2/q
= ( Sp(go)(uk)ql/p> ,
k=1

whence [|(S,(E)(Ti(w)?),2 |0 < [1(Sp(E)(ur) 7)1 |l,0i- The case of g = o0 is
similar, so (S (&%), F) satlsﬁes (GQ),. Slmllarly, one can easily show that (S, ("), F)
satisfies (GC), for any n € N. Hence (GC), for (£, F) holds by (5.42) and Proposition
2.10-(b).

(b): By (5.42), it suffices to prove S, ,(E%)(woT) = S,,(E)(u) for any u € F, any
n € NU{0} and any T" € .7. We immediately see that

Spa(€)uoT) =Y pu€f((uoT)oF,)

-

Z[Zpl (ug o F)

k=1 LS

wEWn
= prgo qu (w)) © F;Tl(w)oTon)
weWp,
:) 4" Z pwgo u o FT ) ’3 4425.46) Sp7n<go)(u)7
weWn,

which completes the proof. O]
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Also, (€, F) in Theorem 5.22 turns out to be strongly local under a mild condition.

Proposition 5.24. Assume the same conditions as in Theorem 5.22 and let € be given
by (5.42). If {u € F | E%u) = 0} = Rlg, then {u € F | E(u) =0} = Rl and (€, F)
satisfies the strong local property (SL1).

Proof. 1t is immediate from (5.41) that {u € F | E(u) = 0} = R1x. We will show (SL1)
for (€, F). Let uj,ug,v € F and ay,a9 € R. Set A; := supp,,[u; — a;1g] for i € {1,2}
and assume that A; N Ay = . By (5.3), there exists n € N such that (U,cw, (4, Kw) N
(UwEWn[AQ] K,) =0, where W,[A;] ={w e W, | K,NA; # 0}. Note that u;o F,, = a;1x
for w € W,, \ W,[4;]. This together with £(1x) = 0 and (5.42) yields that

S(U1+U2+U)
= Z puw€(uy o Fy +voFy) + Z puw(uz 0 Fyy +vo F)

wEWn[A1] weWn[A2]

+ Z puw€(vo Fy)

WEWR\(Wr[A1]UW,[A2])

=& +v)+Ew+v)— Y. pfoF)— Y pl(oF,)

weWn\Wn [Al] weWn\Wn [AQ}

+ Z pw€(vo Fy)

= 8(’&1 + U) + g(UQ -+ U) - S(U)>

which shows (SL1). O

6 p-Resistance forms and nonlinear potential theory

In this section, we will introduce the notion of p-resistance form as a special class of p-
energy forms, and investigate harmonic functions with respect to a p-resistance form. In
particular, we prove fundamental results on taking the operation of traces of p-resistance
forms, weak comparison principle and Holder continuity estimates for harmonic functions.
We also show the elliptic Harnack inequality for non-negative harmonic functions under
some assumptions, and introduce the notion of p-resistance metric with respect to a given
p-resistance form.

Throughout this section, we fix p € (1,00), a non-empty set X, a linear subspace F
of R* and £: F — [0,00). (This setting corresponds to choosing as (B, m) the pair of 2%
and the counting measure on X in the previous sections; recall Remark 2.1.)

6.1 Basics of p-resistance forms

The next definition is an LP-analogue of the notion of resistance form introduced by
Kigami in [Kig95]; see [Kig01, Kig03, Kigl2| for details on resistance forms.
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Definition 6.1 (p-Resistance form). The pair (£, F) of F C RX and £: F — [0, 00)

is said to be a p-resistance form on X if and only if it satisfies the following conditions

(RF1),-(RF5),:

(RF1), F is a linear subspace of RX containing R1yx and £(-)Y/? is a seminorm on JF
satisfying {u € F | E(u) =0} = Rlx.

(RF2), The quotient normed space (F/R1y,EP) is a Banach space.

(RF3), If z # y € X, then there exists u € F such that u(z) # u(y).

(RF4), For any z,y € X,

u(z) — u(y)l”

Re(2,y) = Rer(r,y) = SUP{ E(u)

uEf\RﬂX}<oo. (6.1)

(RF5), (&,F) satisfies (GC),,.

Remark 6.2. (1) The notion of 2-resistance form coincides with the original notion of
resistance form ([KigO1, Definition 2.3.1]) although the condition (RF5), is stronger
than (RF5) in [KigO1, Definition 2.3.1]. Indeed, we can obtain (RF5), by [Kigl2,
Theorem 3.14| and the explicit definition of £, in [Kigl2, Proposition 3.8|.

(2) Let (€, F) be a p-resistance form on a finite set V. Then F = R by (RF1),, (RF3),
and (RF5), (see also [Kigl2, Proposition 3.2|), so we say simply that £ is a p-resistance
form on V if V is a finite set.

Example 6.3. (1) Consider the same setting as in Example 3.11-(1) and assume that € is
a bounded domain satisfying the strong local Lipschitz condition (see [AF, Paragraph
4.9]). Then the p-energy form ([, |V f[" dz, W'P(Q)) is a p-resistance form on Q if
and only if p > D. Indeed, (RF1), and (RF5), are clear from the definition (we
used the boundedness of € to ensure R1g C LP(Q)), (RF2), and (RF3), follow from
[AF, Theorem 3.3 and Corollary 3.4] for any p € (1,00). If p > D, then we can
use the Morrey-type inequality [AF, Lemma 4.28] to verify (RF4),. Conversely, the
supremum in (6.1) is not finite when p < D. To see it, we can assume that z = 0 € €.
Let 6 € (0,00) be small enough so that B(0,0) C Q and y € B(0,4d). For all large
n € N so that n™' < §, define u,, € C(Q) by

log |z| ' —log 6! i
= 1 Q.
n(2) < logn — log 1 ) AR

Then we easily see that u,(0) = 1, u,(y) = 1 and u,, € W(Q) with
1 1

P p o
\Vu,|” dz < / 12| dz = |Sp_i] / F—p+D-1 g,
/Q log (nd) | JB.s)\B0On ) log (nd) 1

[ 1Sp1] [log (né)| " if p= D,
B —'%D_‘;' llog (nd)| ™" (5D_” — n_(D_p)) if p< D,

where |Sp_1| is the volume of the (D — 1)-dimensional unit sphere. In particular,

lunle)—un W)y o6 as n — 00, so (RF4), does not hold.
S p
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The construction of a regular p-energy form on a p-conductively homogeneous com-
pact metric space (K,d) in [Kig23, Theorem 3.21] requires the assumption p >
dimarc (K, d), where dimarc(K,d) is the Ahlfors regular conformal dimension of
(K,d). (See Definition 8.5-(4) for the definition of dimagrc (K, d). The same condition
p > dimpagc (K, d) is also assumed in [Shi24].) This condition p > dimarc (K, d) plays
the same role as p > D in (1) above (see also [CCK24, Theorem 1.1]). In Theorem
8.19, we will see that p-energy forms constructed in [Kig23, Theorem 3.21| are indeed
p-resistance forms. We also show that p-energy forms on p.-c.f. self-similar sets in
[CGQ22, Theorem 5.1] under the condition (R) in [CGQ22, p. 18] are p-resistance
forms in Theorem 8.43.

Here we recall typical p-resistance forms on finite sets given in [KS23+, Example 2.2-
(1)] because these examples are important to construct self-similar p-resistance forms
on p.-c.f. self-similar structures in Subsection 8.3. Let V' be a non-empty finite set.
Note that in this case £ is a p-resistance form on V' if and only if £: RV — [0, 00)
satisfies (RF1), and (RF5),; indeed, (RF3), is obvious for F = RY, (RF2), and
(RF4), are easily implied by (RF1), and dim(F/R1y) < oco. Now, consider any
functional £: RV — [0, 00) of the form

Ew)= 3 Y Leylula) —u(y)” (62)

z,yeV

for some L = (Lyy)syev € [0,00)"*V such that L,, = Ly, for any z,y € V. It is
obvious that & satisfies (RF1), if and only if the graph (V, Ey) is connected, where
B, ={{z,y} |z,y eV, #y, Ly, > 0}. Itis also easy to see that & satisfies (RF5),.
It thus follows that £ is a p-resistance form on V' if and only if (V) E) is connected.
Note that, while any 2-resistance form on V is of the form (6.2) with p = 2, the
counterpart of this fact for p # 2 is NOT true unless #V < 2.

In the rest of this section, we assume that (£, F) is a p-resistance form on X. Then

the following proposition is immediate from the definition (6.1) of Re and Theorem 3.24.

Proposition 6.4. (1) For any u € F and any x,y € X,

(2)
(3)

u(z) —u(y)” < Re(x,y)E€(u). (6.3)

1/p . .
Rg/p 18 a metric on X.

(F/Rlx, EYP) is a uniformly conver Banach space, and thus it is reflezive.

In particular, the metric Ré/ ” induces a topology on X. Throughout the rest of this

section, we consider X as a topological space with the topology induced by R(lg/ P Note

that then F C C(X) by (6.3).

We introduce the regularity of p-resistance forms as follows.

Definition 6.5 (Regularity). Assume that X is locally compact. We say that (€, F) is
regular if and only if 7 N C.(X) is dense in (Co(X), [| - [|4,,)-
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The regularity ensures the existence of cutoff functions.

Proposition 6.6. Assume that X is locally compact and that (€, F) is reqular. Then for
any open subset U of X and any compact subset K of U, there exists v € FNC.(X) such
that 0 < ¢ < 1,1 =1 on an open neighborhood of K and suppx[v)] C U. In particular,
FNC.(X) is a special core.

Proof. Since X is locally compact, we can pick an open subset 2 of X such that K C €,
o C U and Q" is compact. By Urysohn’s lemma, there exists g € C.(X) such that
0 <y <1, 19=1o0nQ and suppy[ty] C U. Since (£, F) is regular, for any ¢ € (0,1/2)
there exists ¢. € F N C.(X) such that [[¢hy — ey, < €, and then the function ¢ =
[(1—2¢)7 (¥ — )] A1 belongs to F N C.(X) by (RF1), and Proposition 2.3-(b) and
has the desired properties. O

We need the following notation to define traces of a p-resistance form later.

Definition 6.7. Let B be a non-empty subset of X. Define a linear subspace F|g of F
by Flp = {ulp | u e F}.

The following proposition is useful to discuss boundary conditions on finite sets.

Proposition 6.8. Let B be a non-empty finite subset of X. Then F|p = R5.

Proof. By virtue of (RF1),, it suffices to show that 12 € F|p for any € B under the
assumption that #B > 2. Let + € B. For each y € B\ {z}, by (RF1), and (RF2),,
there exists u, € F satisfying u,(z) = 1 and u,(y) = 0. Let f = 3  _p (,,(uy A1) and
g = ZyeB\{x}((l—uy)Jr/\l). Then f,g € F by (RF1), and (RF5),. Since f(z) = #B—1,
fle\fzy S #B —2, g(x) = 0 and g|p\ (23 > 1, the function h € F given by

hi=(f— (#B-2)(g" A1) A1
satisfies h|p = 12 and hence 17 € F|p. O

The next definition is introduced to deal with Dirichlet-type boundary conditions.

Definition 6.9. For a non-empty subset B C X, define

FUB)={uc Flulx)=0forany x € X\ B}, B := ﬂ u™*(0).
ueFO(X\B)

For basic properties of B”, see [Kig12, Chapters 2, 5 and 6]. Here we only recall the
following results, which will be used later.
Proposition 6.10 (|Kigl2, Theorems 2.5 and 6.3]). Let B be a non-empty subset of X.

(a) Cr = {B ‘ B C X,B = Bf} satisfies the axiom of closed sets and it defines a
topology on X. Moreover, {x} € Cx for any x € X.
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(b) For any B C X and x & B”, there exists u € F such that u € F°(X \ B), u(z) =1
and 0 <u <1.

(c) Assume that X is locally compact and that (€, F) is reqular. Then B = B for any
closed set B of X.

Proof. The statements (a) and (b) follow from [Kigl12, Theorem 2.4 and Lemma 2.5|. The
argument showing (R1) = (R2) in [Kigl2, Proof of Theorem 6.3| proves (c). O

For B C X and = € B”, we define

Ju(z)[”

&(u)
Note that Re(z,{y}) = Re(z,y) for y € X \ {z} by Proposition 6.10-(a).

Re(s.B) = Re.rfo. B) = sup{

u € FUX\ B), u(x) # 0} <oo. (6.4)

6.2 Harmonic functions and traces of p-resistance forms

In this subsection, we consider harmonic functions with respect to p-resistance forms and
traces of p-resistance forms to subsets of the original domains.

The following proposition states that the variational and distributional formulations
of harmonic functions coincide for p-resistance forms.

Proposition 6.11. Let h € F and B C X. Then the following conditions are equivalent:
(1) E(h) = inf{&(u) |u € F, u|lp = h|p}.
(2) E(h; ) =0 for any ¢ € FO(X \ B).

Proof. For ¢ € F, define E,: R — R by E,(t) == E(h + ty), so that E,, is differentiable
by Proposition 3.6. If £(h) = inf{&(u) | u € F, u|p = h|p} and ¢ € F°(X \ B), then E,
takes its minimum at ¢t = 0, and thus £(h; p) = %%EWG)LZO =0, proving (1) = (2).
Conversely, assume that E(h; @) = 0 for any ¢ € FO(X \ B), and let u € F satisfy
ulp = h|g. Then by u—h € F(X \ B) we have 4|, Eu_n(t) = pE(h;u— h) = 0, which
together with the convexity of E,_, implies that £(u) = E,_n(1) > E,_,(0) = E(h),
proving (2) = (1). O

Definition 6.12 (&-(sub,super)harmonic function). Let B C X and h € F. We say that
h is €-subharmonic on X \ B if and only if

E(h;p) <0 for any ¢ € F(X \ B) with ¢ > 0. (6.5)

We say that h is E-superharmonic on X \ B if and only if —h is £-subharmonic on
X \ B, and say that h is £-harmonic on X \ B if and only if A is both £-subharmonic
and E-superharmonic on X \ B, i.e., h satisfies either (and hence both) of (1) and (2) in
Proposition 6.11. We set Hg p = {h € F | h is £&-harmonic on X \ B}.
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E-harmonic functions with given boundary values uniquely exist, and their energies
under £ define a new p-resistance form on the boundary set, as follows. This new p-
resistance form is called the trace of (£, F) on the boundary set.

Theorem 6.13. Let B C X be non-empty, and define E|p: F|p — [0,00) by
E|lp(u) =inf{E(v) |v e F,vlp=u}, uéecF|s. (6.6)

Then (€|p, F|B) is a p-resistance form on B and Rg|, = Re|pxp. Moreover, for any
u € F|p there exists a unique h[u] € F such that h%[u]‘B = u and E(h5[u]) = Elp(u),
so that h%(F|g) = He.p, and

h%lau + bl g] = ahy[u] +blx  for any u € F|p and any a,b € R, (6.7)
Elp(u;v) = E(hG[ul; A5 [v])  for any u,v € Flp,
Els(flBigls) = E(fr9) for any | € Hep and any g € F,

where E|p(u;v) =1 L& p(u+ tv)‘tzo for u,v € F|p (recall (3.7)).

1
)
Remark 6.14. The map h%[-] does not satisfy either h[u + v] < h§[u] + h§[u] for any
u,v € F|p or h[u+v] > h§[u] + h§u] for any u,v € F|p in general, unless p = 2 or
4B <2

Proof of Theorem 6.15. We first show the desired existence of h&[u] for any u € F|p. Let
us fix y, € B and let o == inf{€(v) | v € F with v|p = u} € [0,00). Then there exists
{vn}nen such that v, € F, v,|p = w and E(v,) < a +n~! for any n € N. Note that
”’“TJ”” € F also satisfies (”’“TJ’”Z) = u for any k,l € N. In the case of p € (1,2], we see
that

B

(2.8) B
(v — v)YO D < 2(E () + E)) YTV = E(u 4 0) /D

<2020+ k17T _op/ -1/

N 2(204)1/(”_1) — op/(p=1) 1/ (p=1) — . (6.10)

kAl— o0

Similarly, in the case of p € [2,00), we have

(2.9) -
E(vy —u) < 2(5@16)1/(}771) + g(vz)l/(pil))p fo E(vg +vy)

S e s

= 2(20V/ )" — 20 =0, (6.11)

kAl—o0

Consequently, {v, }nen is a Cauchy sequence in (F/Rlyx,EYP). By (RF2),, there exists
h € F such that h(y.) = u(y.) and lim,,_, E(h — v,) = 0. For any y € B, by (RF4),,

|h(y) —u@)|” = 1h(y) —va(W)" = [(h = va)(y) = (B —va) ()" < Re(y,y)E(h—vp) — 0
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as n — oo, and hence h|g = u. In particular, h is a minimizer of «. Assume that g € F
also satisfies g|p = v and £(g) = a. Then a similar estimate to (6.10) or to (6.11) imply
that E(h — g) = 0. Since h —g € F°(X \ B) and B # (), we have h = g = h§[u] by
(RF1),. The property (6.7) immediately follows from (RF1), for (£, F).

Next we prove that (€|, F|p) is a p-resistance form on B. It is clear that &|g(au) =
lal’ €|p(u) for any u € F|p. Let us show the triangle inequality for &|z(-)Y/?, Since
(h5[u] + h5[v])| , = u + v for any u,v € F|p, we see that

Elp(u+v)'/? = &(hg[u+ v])l/p < E(hu] + h%[v])l/p
< E(WG[u))” + E(ME 1)) = Elp(w) VP + E|p(v) .

By (6.7), we easily see that F|p contains Rlp. If u € F|p satisfies E|p(u) = 0, then
h%[u] € R1x and hence h§[u]|, = u € R1p. Thus (RF1), for (€], F|p) holds. To prove
(RF2), for (&|p, Flp), let {u,} C F|p satisty limunm—oo €| 5(Un — up) = 0. Then, by the
triangle inequality for £|p(-)'/?, we easily see that {&€|p(u,)}nen is a Cauchy sequence
in [0,00). By (Cla), for (£,F) and a similar argument to (6.10) (or to (6.11)), we have
limn/\mﬁooé’(h‘% [u,] — h%[um]) = 0. Hence there exists h € F such that lim, . E(h —
h%[u,)) = 0 by (RF2), for (€, F). Then €|p(h|p —u,) < E(h—h§[u,]) — 0, which proves
the completeness of (F|p/R1g,&|p(-)"?). The condition (RF3), for F|p is clear from
that of F. The inequality R, < Re|pxp (and hence (RF4), for (£]p, F|p)) follows from
the following estimate:

[u(z) —u(y)” _ |hlul(z) — hEu)(y)]"
Elp(u) € (hig[ul)

< Re(z,y) for any z,y € B, u € F|g.

To show the converse inequality Rg|, > Re|pxp, let ,y € B and let v € F \ Rlx be
such that u(x) # u(y). Then u|p € F|p \ Rlp and E(u) > £|p(u|p) > 0. Therefore,

u(z) — u(@)f _ Juls(z) — uls()]
Ew) = Elpulp)

The same estimate is clear if u(z) = u(y), so taking the supremum over u € F \ Rlx
yields Re(x,y) < Rg,(x,y). Lastly, we prove (RF5), for (€|, F|g). Let ni,ny € N,
@ € (0,p], ¢ € [p,o<], and T = (Ty,...,T,,): R™ — R™ satisfy (2.2), and let u =
(uiy .. uny) € (Flp)". Note that Ty(uw) = T;(hG[udl, ..., hE[un,])| , € F|p. Therefore,
if g3 < 00, then

2 Haz 112 q2/p
(Sewmey) < (Se(nosint . s5im)")
=1 l:ll e .
< (Z 5(h%[uk])ql/p> _ (Z 5|B(Uk)q1/p>

The case go = oo is similar, so (£|p, F|p) satisfies (GC),.

< RS\B('xay)'

|5

1/q2

a1
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We conclude the proof by showing (6.8) and (6.9). By Proposition 3.6, we know that

lim Elputtv) —&|p(u)
tl0 +t

d
= %5|B(u—|—tv) N

and

 (nlal £ D) — ()
1o +
For any ¢ > 0, we have
E(Mplu] — thi[v]) = E(hp[u) _ Elp(u—tv) — E|p(u)
—t - —t
< Elp(u+tv) — &|p(u) - E(hgu] + thi[v]) — E(hG[u])
- t - t ’
and hence we obtain (6.8) by letting ¢ | 0. If f € He p, i.e., h§[f|5] = f, then E(f;g) =

E(f;h%lg)) = ElB(flp; glp) since g — h§g|s] € FO(X \ B) for any g € F. This proves
(6.9). 0

= p& (h[u); h[v]).

The following proposition states a compatibility of the operation taking traces.
Proposition 6.15. Let A, B be subsets of X such that ) # A C B. Then (€|g|a, Flpla) =
(€], Fla) and h o hi'B = h%. In particular, hilB[u] = hi[u]‘B for any u € F|4.

Proof. Clearly, we have F|p|a = F|a. For any u € F|4, we see that
Ela(u) = E(hG[u]) > min{€(v) | v € F such that v|p = hi[uHB}
= &l (halul| )
> min{&|p(w) | w € F|p such that w|s = hi[uHA =u}
— Ella(u) = &|p (5" u]) = & (1 [157[u]])

> min{S(v) ‘ v € F such that v|4 = (h}g o hi'B)[uHA = u} = E&la(u),

which implies €]4(u) = €|p|a(u) and € (h4[u]) = E((h% o hi'B)[u]). Since the restrictions
to A of both functions h§[u] and (h% o hi‘B)[u] are u, the uniqueness in Theorem 6.13
implies 1§ [u] = (% ohi'B) [u]. Taking their restrictions to B yields hi‘B [u] = h4[u]| ;. O

The following theorem presents an expression of (£, F) as the “inductive limit” of its
traces {€]v }vex 1<#v<co to finite subsets, which is a straightforward generalization of the
counterpart for resistance forms given in [Kaj, Corollary 2.37]. This expression can be
applied to get a few useful results on convergences of the seminorm £/7.

Theorem 6.16. It holds that

F= {u c R sup Elv(uly) < oo}, (6.12)
VCX;1<#V <o
E(u) = sup Elv(uly) for anyu e F. (6.13)

VCX;1<#V<x
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Proof. Define (&,, F,) by

E(u) = sup Elv(uly), ueRX,
VCX;1<#V<x

and F, = {u € RX | & (u) < oo}. Then &'” is clearly a seminorm on F, and {u € F, |
E(u) = 0} = R1y. We first show that, for any V' C X with 1 < #V < oo and any
u€RY,

hylu) € Fo and  Elyv(u) = min{&.(v) | v € F,v|y = u} = E(h{ [u]), (6.14)
both of which are obtained by seeing that, for any U C X with 1 < #U < oo,
Elv (M5 [u]],) < E(hT[u]) = Elv(u).

Indeed, taking the supremum over U, we get &, (h§ [u]) < €]y (u) and hence (6.14) holds.
(The converse E|y(u) < & (h{[u]) is clear from the definition.) We also note that &,
satisfies (Cla), since (€|y, F|y) is a p-resistance form for each Y C X and &|y(uly) <
E|v(uly) for any U,V C X with ) £V C U and u € RY.

The inclusion F C F, and the estimate £, < £ (on F) easily follow from the following
estimate:

Elv(uly) = S(hf/[ulv]) < &(u) forany u € F and any V C X with 1 < #V < 0.

To show F, C F and £ < &,, let u € F,, let us choose a subset V,, C X for each n € N
such that 1 < #V,, < oo and €|y, (uly,) > E(u) —n~!, and set u, = hf, [u]y,]. Then

(6.14) (6.14)

E(u) —n™t < &y, (uly,) =" E(un) < E(u),

which implies that lim, . E(u,) = lim, oo E(uy,) = Ei(u). Using (Cla), for &, and
E () > &, (uy), we easily obtain lim,_. E(u — u,) = 0 similarly as (6.10) or (6.11).
We next show that {u, },en is a Cauchy sequence in (F/Rly,EYP). From (Cla), for &,
limy, 00 E(uy) = limy, o0 Ex(uy,) = E.(u) and

6.14
E(u + ) > E(ME, oy [k + ) lviow]) > 2% oo (ulveony) = 27E.(us),

we can obtain limya;—eo € (ur —u;) = 0 similarly as (6.10) or (6.11). Hence, by (RF1), for
(€, F), there exists v € F such that lim,, o, £(v —u,) = 0. By & < € on F, we conclude
that lim, , & (v — u,) = 0, which together with the triangle inequality for EYP and
lim,, 00 E(u — uy,) = 0 implies that &, (u — v) = 0 and thus u — v € Rlx. In particular,
u=(u—v)+veF and £(u) = lim, o E(u,) = E(u), completing the proof. O

Corollary 6.17. Let u € F and let {u, }nen C F.

(a) Assume that im,, (U () — un(y)) = u(x) — u(y) for any x,y € X. Then E(u) <
liminf, . E(uy).
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(b) limy, 0o E(u — uy,) = 0 if and only if limsup,,_,. €(u,) < E(u) and limy, oo (u,(x) —
un(y)) = u(z) — uly) for any z.y € X

Proof. Assume that u,u, € F, n € N, satisfy lim, oo (un(z) — u,(y)) = u(x) — u(y) for
any x,y € X. For any € > 0, by Theorem 6.16, there exists V' C X with 1 < #V < oo
such that &|y(uly) > £(u) — . Then we have

Tim Ely (un|v) = Elv(ulv) > E(u) =,

since RV is a finite-dimensional vector space, €|y (-)P is a seminorm on RY and
lim,, 0o maxy yey |(Un(z) — un(y)) — (u(x) —u(y))| = 0. In particular, there exists Ny €
N (depending on ¢) such that E(u,) > E|lv(unly) > E(u) — e for any n > N
and hence liminf, . &(u,) > £(u), proving (a). Next, in addition, we assume that
limsup,, oo €(u) < E(u). Then lim, o E(up) = E(u). Since {*L2}, oy satisfies the
same conditions as {u, }nen, we obtain lim, . &(“2) = £(u). Similar to (6.10) or
(6.11), we have from (Cla), for £ that lim,,,. &(u —u,) = 0. The converse part of (b) is
clear from (6.3). O

Corollary 6.18. (a) Let {¢n}neny € C(R) satisfy lim, oo @n(t) =t for any t € R and
|on(t) — on(s)] < |t —s| for any n € N and any s,t € R. Then {¢,(u) }neny C F and
lim, 00 E(u — @n(u)) =0 for any u € F.

(b) Letu € F, {up}nen C F and p € C(R) satisfylim, o, E(u—uy,) =0, lim,, o u,(z) =
u(z) for some x € X, |o(t) — @(s)| < |t —s| for any s,t € R and ¢(u) = u. Then
{p(un) nen © F and lim,, 00 E(u — p(uy)) = 0.

Proof. (a): This is immediate from Corollary 6.17 and (RF5),.
(b): For any y € X, we have

[u(y) = un(y)| < Re(a,y)VPE (u—ua) P + |u(z) — un(z)| =0,

and hence lim,, o ¢(un(y)) = ©(u(y)) = u(y). By (RF5), we also have {¢(uy,)tneny € F
and limsup,_, . E(¢(u,)) < lim, 00 E(u,) = E(u). Thus lim, o E(u — ¢(u,)) = 0 by
Corollary 6.17-(b). O

In the following proposition, we record a useful variant of Theorem 6.16.

Proposition 6.19. Let {V,}nenugoy be a non-decreasing sequence of non-empty finite
subsets of X, and set V, = UnENU{O} V.. If

the map F > u v uly, € Fly

is injective (and hence a linear isomorphism),  (6.15)

*

then (note that {€|y, (u|v, ) }nenugo} is non-decreasing since {V,, }rnenuqoy is non-decreasing),

Fly, = {u e R | lim &)y, (uly,) < oo}, (6.16)
n—0o0

E(uiv) = lim Ely, (uly,ivly,) for any u,v € F, (6.17)
n—oo
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lim &(u— hf, [uly,]) =0 for anyu e F. (6.18)

n—oo

In particular, ifv*x = X, then (6.16), (6.17) and (6.18) hold, and
F= {u e O(X) ‘ Tim Ely, (uly,) < oo}. (6.19)

Proof. Assume (6.15). By Theorem 6.16, we have F|y, C {u € RY* | lim,_,o0 E|v, (uly,) <
oo} and E(u) > lim, e |y, (uly,) for any u € F. To show the converse, let u € R
satisfy lim,,_o €|y, (uly,) < oo, set u, = hS, (uly,) € F for each n € NU {0} and fix
xg € Vo. We can assume that u(zg) = 0 by considering u — u(z) instead of u. A similar
estimate to (6.10) or (6.11) for £ and (RF2), together imply that lim, . E(v — u,) =0
for some v € F with v(zo) = 0. Since |v(z) — u(z)|” < Re(x,x9)E(v — uy,) for any x € V,
and any n € N with z € V, by (6.3), we get u = v|y, € Fly,, proving Fly, 2 {u €
RY* | limy, 00 €y, (uly,) < 0o} and thereby (6.16). We then have (6.18) by (6.15) and
lim,, 00 (v — uy,) = 0, and obtain (6.17) from (6.18), (3.10), (3.11) and (6.8).

Lastly, if v = X, then since F C C(X) by (6.3) we have (6.15), hence (6.16), (6.17)
and (6.18) hold, and (6.19) follows from (6.16) and F C C(X). O

Based on Proposition 6.19, standard machinery for constructing the “inductive limit”
of p-energy forms on p.-c.f. self-similar structures can be stated in Theorems 6.21 and 6.22
below, which are extensions of the counterpart for resistance forms given in [Kaj, Lemma
2.24, Theorem 2.25 and Corollary 2.43| to p-resistance forms. This approach will be used
in Subsection 8.3, where the construction of p-energy forms due to [CGO)22] is reviewed.
See also [Kig0O1, Sections 2.2, 2.3 and 3.3| for the details in the case of p = 2.

Definition 6.20 (Compatible sequence of p-resistance forms on finite sets). Let V), be
a non-empty finite set and let £™ be a p-resistance form on V, for each n € N U {0}.
We say that the sequence S = {(V,, 5(”))}neNu{0} is a compatible sequence of p-resistance
forms if and only if V,, C V,.; and £7V|y, = ™ for any n € NU {0}.

Theorem 6.21. Let S = {(Vn,E(”))}neNu{o} be a compatible sequence of p-resistance
forms. We define V, = UneNu{o} Vo,

Fs = {u e RY | lim £M(uly,) < oo}, and (6.20)
Es(u) = lim £™(uly,), u € Fs. (6.21)

Then (Es, Fs) is a p-resistance form on V, and Es|y, = E™ for any n € NU {0}.

Proof. Noting that {€™ (uly,, ) }nenugoy is non-decreasing for any u € RY*, we easily obtain
(RF1), for (s, Fs). To see (RF5), for (Es,Fs), let n1,ny € N, ¢1 € (0,p], g2 € [p, 9]
and T' = (Ty,...,T,,): R™ — R™ satisfy (2.2), and let u = (u1,...,up,) € Fg'. Then,
for any I € {1,...,ny}, (GC), for £™ implies that

EM(T(wly,)'"” < [[(€™ (Tu(uly, )" 7)2 |,
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< [HE™ b)) il < I (Eso (i) 7)< 00

By letting n — oo, we obtain (GC), for (€s,Fs), i.e., (RF5), for (€s, Fs) holds. Before
proving (RF2),-(RF4), for (€s, Fs), we shall show the following claim:

For any n € NU {0} and any u € R, there exists a unique 3 [u] € Fs such

that i [u]|,, =u and Es(h§) [u]) = min{Es(v) | v € Fs, vy, =u} = EM(u). (6.22)

v,

To prove (6.22), by (RF1), and (RF5), for (Es, Fs), we first note that #{v € Fs | Es(v) =
a} <1, where a == min{€s(v) | v € Fs,v|y, = u}. (Recall the arguments in (6.10) and
(6.11).) Hence it suffices to show the existence of the minimizer realizing «. For any
ko > ki > n, we have h§"?| |Vk = 5" [u] by EWy, = €™ and Proposition 6.15,
1
which implies that u,.(x) = h;‘;:c) [u](z) for x € Vi with k > n is well-defined. Clearly,
Usly, = u. For any k > n, we have E®)(u,|y,) = EF¥FV(w,|y,,,) by Proposition 6.15
again, whence u, € Fs and Es(u,) = EM(u). Since £™(u) < Es(v) for any v € Fs with
vly, = u, we also get Es(u,) = a, so hf [u] = u, is the desired function.
Now let us go back to the proof of (RF2),~(RF4),.

(RF3),: This is immediate since Fsly, = R for any n € NU {0} by (6.22).
(RF4),: Let z,y € V. with  # y and let n € NU {0} satisfy =,y € V,. Let u =

hf;y} []l;{;x’y}] € RY". Then for any v € Fs with v,y = ]l;{;x’y},

(6.22)

Es(v) > EM(uly,) > Renlr,y) ™t = €0 (u) "2 (1§, [u]).

Therefore, we have

Res(z,y) = Es(h$ [u]) ™" = Reon (2,3) < 0. (6.23)

(RF2),: Fix z. € V,, and let {ug}ren C Fs satisfy ug(z,) = 0 for any & € N and
limgpisoo Es(ug — w;) = 0. From (RF4),, {ux(x)}ren is a Cauchy sequence in

R for any = € V,, so we can define v € RY* by u(z) = limj_,o ux(x). Let

€ (0,00). Then there exists Ny € N such that supy ;> y, Es(ur — ;) < €. Since
EM(.)Y/P is a norm on the finite-dimensional vector space RY" /R1,, , we obtain

EM™ (uly, —wly,) < 1i]£ninf53(uk—ul) < e forany !> Ny and any n € NU {0}.
—00

Letting n — oo here, for any [ > Ny we obtain u — u; € Fg, therefore u =
(u—w) +w € Fs, also Es(u — w;) < e, and thus lim; .« Es(u — w;) = 0, which
proves that (fg/R]lV*,Eé/p) is a Banach space.
Now we know that (€s, Fs) is a p-resistance form on V.. Then (6.22) means that
h, = hii [u] for any u € RV, whence Es|y, = £™ by (6.22) again. O

The following theorem yields a p-resistance form on the completion of (X, Rl/ ).
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~

Theorem 6.22. Let ()? ) be the completion of the metric space (X, Ré/p). Define Fc
R¥ and £: F — [0,00) by

~—

F={ueCX)|ulx € F}, (6.24
E(u) = E(uly), uweF. (6.25)

Then (€, F) is a p-resistance form on X, Rl/p d, and the map F > u — ulx € Fisa
linear isomorphism.

Proof. Set ﬁ(x y) = c/l\(a: y)? for ease of notation, then R ‘X < = Re. For any u € F,

we know that u is uniformly continuous with respect to d by (6.3) for (£, F), so there
exists a unique @ € C(X) satisfying |y = u and then @ € F. This implies that the  map
Four— ulx € F is a bijection and thus it is a linear isomorphism. Also, for u € F, we
define the continuous function 7,: X x X — R by n.(z,y) = |u(z) — u(y)|’ — R(z, y)&(u).
Since Ny |xxx < 0 by (6.3) for Rg, the continuity of 1, yields

lu(z) —u(y)P < R(z,y)E(u), zyeX. (6.26)

Now we show (RF1),-(RF5), for (€. F).

(RF1),: p: Clearly, F is a linear subspace of R¥ containing R1 5 and E()7 is a semi-
norm on F. By 14|x = 1x and (RF1), for (&€, F), it holds that {uv € F | £E(u) = 0} =
Rlg

(RFQ)p: This is immediate from (RF2), for (€, F) since F 3 urs ulx € Fis a linear
isomorphism.

(RF5),: This is immediate from (RF5), for (€, F).

(RF3), and (RF4),: Let 2,y € X with 2 # y and let {2, }n0, {Untnso C X satisfy
lim,, o0 }A%(x,a:n) = lim,, 00 }A%(y,yn) = 0. We can assume that z, # y, for any n > 0.
Let u, € F be the unique function satisfying u, |y = h‘fxn " }[]lg{ci"’y"}}. Then {é\(un)}nZO
is bounded in [0, 00) since &(u,) = Re(Tn, yn) ™" = R(@n, yn)"' — R(z,y)~ as n — oc.
Also, it is easy to see that 0 < u, < 1. From (6.26) and the Arzela—Ascoli theorem,

there exist a subsequence {u,, }; and u, € C(X) such that limg e [|u, — Uny loup = 0-
A similar argument as in the proof of (RF2), for (£s, Fs) in Theorem 6.21 implies that

Uy € F and limy_ oo g(u* — Uy, ) = 0. Now we define u € F by u = u, — u.(y) so that
u(y) = 0. Then we have from (6.26) that
’u(xnk) - u<ynk) - Hp < é(xmw ynk)g(u - unk) — O?

k—o0

whence u(x) = 1, in particular, (RF3), holds. By (6.26) again, we obtain Rz(z,y) <

E(x,y) < 00, so (RF4), holds. Moreover, this also shows Rz(z,y) = ]%(:E,y) = c‘j'(u)_l
]

Corollary 6.23. Let S = {(Vmg(n))}neNU{O} be a compatible sequence of p-resistance
forms and let (K,d) be the completion of (V*,Réép), where (Es, Fs) 1is the p-resistance
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form on V), = UnENU{O} V, given in Theorem 6.21. Define Fs C RX and Es: Fs — [0, 00)
by

Fs={ueCK) | uly, € Fs} = {u € C(K) | lim £(uly,) < oo}, (6.27)
Es(u) = Es(uly.) = lim EM(uly,), u e Fs. (6.28)
Then (85,}"5) is a p-resistance form on K, Rl/p v, € Fs

1S a linear isomorphism. In particular, 53 EM for any n € NU{0}.

v, =

Proof. We obtain the desired assertions by applying Theorem 6.22 with V., (£s,Fs)
in place of X, (¢, .7-") Also by 83]V = &M (see Theorem 6.21) and the fact that
=£&m, O

We conclude this subsection with a discussion of strong locality of p-resistance forms.

Definition 6.24 (Strong locality of p-resistance form). (1) We say that (£,F) has the
strong local property (SL1) if and only if

E(uy +us +v) + EW) = E(ur +v) + E(ug + v). (6.29)

for any wuy, us, v € F with either supp y[u; — a;lx] or supp y[us — as1 x] compact and
(ui(x) — ay)(uz(x) — ay) = 0 for any x € X for some aq,ay € R.

(2) We say that (€, F) has the strong local property (SL2)s, or (€, F) is strongly local, if

and only if

E(up;v) = E(ug;v) (6.30)
for any uy,us, v € F with either suppy[u; — us — alx] or suppy[v — bl x| compact
and (ui(x) — uz(x) — a)(v(z) — b) = 0 for any = € X for some a,b € R.

(3) We say that (€, F) has the strong local property (SL1),, if and only if (SL1), with
“(up(x) — ay1)(ua(xz) — ag) = 0 for any z € X7 replaced by “suppylu; — a;lx]| N
suppy [ug — a1 x] = 0" holds.

(4) We say that (€, F) has the strong local property (SL2),, if and only if (SL2), with
“(ur(z) —ug(z) —a)(v(z) —b) = 0 for any x € X" replaced by “suppy[u; —ug —alx]|N
suppy[v — bl x] = (" holds.

Note that (SL1),, and (SL2),, are exactly (SL1) and (SL2), respectively, in Definition
3.30 with “supp,,” replaced by “suppy”. In the following proposition, we discuss rela-
tions among the strong local properties (SL1)s, (SL2)g, (SL1), and (SL2),, introduced in
Definition 6.24.

Proposition 6.25. (a) If X is locally compact and (€, F) is reqular and satisfies (SL2),,,
then (€, F) satisfies (SL1)s,.

(b) If (€, F) satisfies (SL1)y, then (€, F) satisfies (SL2)y,.

(c) (&,F) satisfies (SL1)s if and only if (€, F) satisfies (SL1)s,.
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(d) (&€, F) satisfies (SL2)s if and only if (€, F) satisfies (SL2)y,.
In particular, if X is locally compact and (€, F) is regular, then (SL1)s, (SL2)s, (SL1)y
and (SL2)y, are equivalent to each other.

Proof. (a): Since (&, F) satisfies (3.34), (3.35) and (3.36) with m the counting measure
on X by Proposition 2.3-(d), Corollary 6.18-(a) and Proposition 6.6, the implication from
(SL2),, to (SL1),, is proved in exactly the same way as the proof of Proposition 3.32-(b)
(note that the separability of X is used there only to define supp,,|-]).

(b): This is proved in exactly the same way as the proof of Proposition 3.32-(a).

(c): The implication from (SL1); to (SL1),, is obvious. Conversely, assume (SL1),,, let
uy,uz,v € F, a1,as € R and assume that either suppy[u; — a;lx] or suppy[us — aslx]
is compact and (u;(z) — a1)(ua(z) —ag) = 0 for any z € X. For n € N, let ¢, € C(R)
be given by ¢,(t) =t — (—%) V(t A %) and set uy, = @,(u1 —a;lx) and uy, =
©n(ug — aslx), so that u;, € F and lim,_,o E(u; — u;,) = 0 for ¢ € {1,2} by Corollary
6.18-(a) and (RF1),. Then for each n € N, since suppy[ui,] N suppyluz,] = 0 and
either suppy[u1,] or suppylus,| is compact by the assumptions on wui,us, it follows
from (SL1), that (ui, + us, +0) + E(v) = E(urn +v) + E(ugy, + v), and we obtain
E(ur +us +v)+ EW) =E(uy +v) + E(ug + v) by letting n — oo, proving (SL1).

(d): The implication from (SL2), to (SL2), is obvious. Conversely, assume (SL2),,,
let uy, us,v € F, a,b € R and assume that either supp y[u; —ug — al x| or suppy[v — bl x]
is compact and (uy(z) — uz(z) — a)(v(z) —b) = 0 for any z € X. For n € N, set
U = @nu(v — blyx) , where ¢, is the same as in the proof of (c), so that v, € F and
lim,, 0o £(v — v,) = 0 by Corollary 6.18-(a) and (RF1),. Then for each n € N, since
suppy|ur — uz — al x| Nsuppy[v,] = 0 and either suppy[u; — uy — alx] or suppy[v,] is
compact by the assumptions on uy, us, v, it follows from (SL2),, that £(uy; v,) = € (ug; vy),
and we obtain £(uy;v) = E(ug;v) by letting n — oo, proving (SL2). O

6.3 Weak comparison principles

In this subsection, we show some weak comparison principles in this context. The first
one is obtained as an application of the strong subadditivity.

Proposition 6.26 (Weak comparison principle I). Let B be a non-empty subset of X.
Then, for any u,v € F|p satisfying u(y) < v(y) for any y € B, it holds that

hGu)(x) < W] (z)  for any z € X. (6.31)

In particular,
i%fu < h5[ul(z) < supu  for any x € X. (6.32)
B

Proof. Let f = h%[u] and g :== h%[v]. We will prove f Ag = f, which immediately implies
(6.31). Since (f Ag)|p =w and (f V g)|p = v, we have

E(f) <E(fNg) and E(g) <E(fVg).
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By the strong subadditivity in (2.6), we obtain E(f A g) = E(f) (and E(f V g) = E(g)),
which together with the uniqueness in Theorem 6.13, we have f A g = f. O]

We can extend the weak comparison principle above to arbitrary open subsets if X
is locally compact and (&, F) is regular and strongly local. See Proposition 6.30 below.
This version of weak comparison principle will be used to prove the strong comparison
principle on p.-c.f. self-similar structures in a forthcoming paper [[KS+a]. We begin with
some preparations.

Definition 6.27. Let U be a non-empty open subset of X.
(1) We define

Floc(U) = {f e RY

fly = f#1y for some f# € F for each
relatively compact open subset V of U |

(2) Assume that (€, F) is strongly local. Let V' C U be an open subset. A function
h € Fioe(U) is said to be E-harmonic on V if E(h¥; ) = 0 for any ¢ € FO(V) with

supp[e] compact (with respect to the metric topology of Ré/ ), where h* € F satisfies
hllsupply] = h#]lsupp[vﬁ}'

Remark 6.28. (1) If X = K comes from a self-similar structure and the topology in-
duced by Ré/ P coincides with the original topology of K, then the definition of F,.(U)
above is the same as (5.36) by virtue of F C C(K).

(2) By the strong locality of (£, F), the value £(h#; ) is independent of a particular
choice of h.

We need the following proposition to achieve the desired weak comparison principle.

Proposition 6.29. Assume that X is locally compact and that (€, F) is reqular and
strongly local. Let U be a non-empty open subset of X and let uw € F satisfy u(x) =0 for

anyxEGXU:UX\U. Then uly € F.

Proof. Define ¢, € C(R) by ¢,(t) :=t— (1) V (tAL) and set A, = U Nsuppy[pn(u)] for
each n € N. Since ul|gy = 0, 4, = 7 n suppy [¢n(u)] and thus A, is a compact subset
of U. By Proposition 6.6, there exists v, € F such that 1,4, < v, < 1y. Then we easily
obtain ¢, (u)1y = ¢,(u)v,, hence by Corollary 6.18-(a) and Proposition 2.3-(d) we have
on(u)ly € F. By the strong locality and Corollary 6.18-(a), {¢,(u)1y }nen is a Cauchy
sequence in (F/Rlx,EYP). Thus, by (RF2), and (6.3), {¢n,(u)1y }uen converges in norm
in (F/Rly,EYP) to its pointwise limit uly, whence uly € F. O

Now we can state the desired version of the weak comparison principle.

Proposition 6.30 (Weak comparison principle II). Assume that X is locally compact
and that (€, F) is reqular and strongly local. Let U be non-empty open subset of X such

that T is compact and U # X. If u,v € C’(UX) N Floc(U) are E-harmonic on U and
u(z) <w(z) for any x € OxU = T \ U, then u(z) <v(x) for any x € T
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Proof. We first observe that dxO # () for any non-empty open subset of X such that 0"
is compact and O # X. To this end, suppose that dxO = @ and then show O = X.
We see from Proposition 3.28 that there exists ¢ € F N C.(X) such that ¢|o = 1 and
¢|lx\o = 0 since O = 0" is compact. By the strong locality of (£,F) and (RF1),, we
have £(¢) = 0 and hence ¢ € Rlx. Therefore, X \ O = () since O is non-empty.

Let us go back to the proof. Since u and v are uniformly continuous on T and
OxU # 0, for any € > 0 there exists § > 0 such that

V= {m eU ) distRé/p(x,axU) > 5} £ 0,

and u(x) < v(x) + ¢ for any z € Tr \ V. Then V is a relatively compact open subset
of U and hence there exist v#,v# € F such that uly = u#1 and vly = v#1. Define
f=u? —(u* — o) 1y, g = 0¥ + (u¥ —0v#) 1x\y. Then f,g € F by u*(z) < v#(z)
for any x € 0xV # 0, Propositions 2.3-(b) and 6.29. We also have f,g € Hg x\v by
the strong locality of (£, F). Since f(x) = (u# A v#)(z) < (u¥ V o¥)(z) = g(z) for any
x € X \ V, Proposition 6.26 implies that u(z) = u¥(z) = f(z) < g(x) = v¥#(x) = v(2)
for any x € V. Therefore, we conclude that u(x) < v(z) + ¢ for any = € U~ Since e > 0
is arbitrary, we complete the proof. O

6.4 Sharp Holder regularity of harmonic functions

In this subsection, we present a sharp Hélder regularity estimate on £-harmonic functions
and prove that Ré/ =1 is a metric on X.

As an application of Proposition 3.10, we can show the following Holder continuity
estimate for £-harmonic functions.

Theorem 6.31. Let B be a non-empty subset of X, v € X \ B” andy € X. Then

Re(w,y)"/®Y

£ Bu{z}
hBU{w} []lB My) < Re(z, B)1/(p—1)' (6.33)
Moreover, for any h € He g with supg |h| < oo,
1/(p—-1)
h(z) — h(y)| < Fel@y) osc[h]. (6.34)

< Y
'S R, B0 %

Proof. Since (6.33) and (6.34) are obvious if x = y, we may and do assume that = # y.

To show (6.33), on one hand, we see that

—&|Bugay(Ip: 1) = E|pufay(I; Lpugay) — €lBugey(1s; 1s)
= g|BU{x}(]1B; ]lB) = Rg(l’, B)_l' (635)

On the other hand,
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— —& (M 18] Ay [a]) (b (6.9))
— ~Elputea (Moo [15] |BU{E ,i12)  (by Proposition 6.15 and (6.9))

> —&|Bu{oy} hBU{I} 15](y h{z nl 1,)) {Bu{x’y}; ]lm) (by Proposition 3.10)

= —h5u 18] (1) ElBugey (h{x L)l puge sy ]1z>
= —h‘;u{x} [15](y)" "€l way (L Liwyy — 1) (by Proposition 6.15 and (6.9))
= thu{x}[]lB](y)p e(z,y) ™ (6.36)

We obtain (6.33) by combining (6.35) and (6.36).
Next we prove (6.34). Let h € H¢ p satisfy supg |h| < co. Then we see that

h—h(z) < W0 [(h h(z (by Propositions 6.26 and 6.15)

|Bu{ }}
< hBU{a:} [osc[h] : ]lgu{:c}] (by Proposition 6.26 and (h — h(x))"(z) = 0)

_ 1Bz}
= ogc[h] hBU{z} [ ] .
Similarly, we have
h—h(z) > —hE0 [(h _ h<x))—\BU{x}} > — osclh] - hBu{x}[ Bu{x}}

Hence, by combining these estimates with (6.33), we get (6.34). ]

Using Theorem 6.31, we can show the triangle inequality for Ré/ (=),

Corollary 6.32. RYP™V. X x X — [0,00) is a metric on X.
£

Definition 6.33 (p-Resistance metric). We define ép,g = R}g/ "= and call ﬁp,g the
p-resistance metric of (€, F).

Proof of Corollary 6.32. It suffices to prove the triangle inequality Re(z,z)"/® D <

Re(z, )Y@ 4+ Re(y, )Y/~ for any x,y, 2 € X with #{x,y,2} = 3. By (6.33) with

B = {z}, we have h{x 3 []lix’z}} (y) < % By exchanging the roles of x and z, we

z,z Re(y,2)Y/ (=1 {z,z} {z,z}
get h{x o []li }] (y) < %. Since 1y = hfx 3 [1:77] + h{x 3 (13, we have

L < Re(z,y)t/ PV Rs(y,Z)”(p*”’
= Be(z, )00 | Rg(w, 2) /@D

which proves the desired triangle inequality for Ré/ P=1), O]

Example 6.34. Let p € (1,00) and (£, F) be a p-resistance form on the unit open interval
(0,1) given by

F=W""0,1) and &E(u / Vul’ dx.
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(Recall Example 6.3-(1).) For any x,y € (0,1) with 0 < z < y < 1, we easily see that
u € Wh(0,1) defined by u(t) = (y — x) '(t — )Ly (t), t € (0,1), is E-harmonic on
(0,1) \ {z,y}. Therefore we have Re(z,y) = (y — 2)P~! and the p-resistance metric ﬁp’g
coincides with the Euclidean metric on (0, 1). In particular, the Holder regularity estimate
(6.34) is sharp. This example also shows that exponent 1/(p—1) in the p-resistance metric
is sharp, that is, Rg is not a metric for « > 1/(p — 1) in general.

6.5 Elliptic Harnack inequality for non-negative harmonic func-
tions

Throughout this subsection, we assume that {I'(u)},cr is a family of p-energy measures
on (X,B(X)) dominated by (€, F) and satisfies (Cla),. For ease of the notation, we set
B, e — RYO.

In this subsection, we establish the elliptic Harnack inequality for non-negative &£-
superharmonic functions under some extra analytic conditions (Theorem 6.36). We mainly
follow the argument in [Cap07], but we assume the two-point estimate (6.39) instead of the
Poincaré inequality [Cap07, (2.4)] (see also Remark 7.13). Let us start with the following
log-Caccioppoli inequality under the assumption of the chain rule (CL2).

Lemma 6.35 (Log-Caccioppoli type inequality). Assume that {I'(u)},er satisfies the
chain rule (CL2). Then there exists C € (0,00) (depending only on p) such that for any
A e € (0,00) with A > 1, any (x,s) € X x (0,00) and any u € F such that u >0 on X,
u is E-superharmonic on By, (x, As) and I'(u)(X) = &E(u), it holds that
/ | dD(®.(u)) < Cinf{E(p) | ¢ € F, ¢, (25 = 1,8uppy[p] C Bﬁp(w,As)},
Bﬁp(x,s P

(6.37)
where ®. € CY(R) is any function satisfying ®.(x) = log (z + &) —loge for any x € [0, 0).

Proof. Let p € F satisfy ¢|p. (z.s) = 1, suppx[p] C Bﬁp (x, As) and
P

E(p) = nf{E(p) | v € F,¢ls, s = 1suppxly] C By, (v, As)},

which exists by Theorem 6.13. Let € > 0 and set u. == u + &. Note that pPul™? € F by
Proposition 2.3-(d) and Corollary 2.5-(a). We see that
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(

*

IN

R

) 1
— (5(%; Prul ) — / ul ™ dl (u; 90p>>
I—p By (2.45)

< — u P dl (u; o)
1_p Bﬁp(x,As)
(CL2) p

— D (D (u); @
P—1JB. (2,49 (@e(w); )

Byp
p—1 ES

@13) p (1 o z
O / @ dT (D, (u)) pid / dl ()
p— 1\2 Bﬁp(z,As) Bﬁp(iU»AS)

-1 op—1
< PP e+ i),
p— 1 2p Bﬁp(:r,As) p Bép (z,As)

where we used Theorem 4.18 and I'(u.)(X) = E(u.) in (x), the fact that u. is &-
superharmonic on By (, As) in (%*), and Young’s inequality in the last inequality. Hence

L@ (u)) < p12°E (). 0

z,s

we obtain fBA (
Bp

Now we can prove the desired elliptic Harnack inequality as in the following theorem.
We will see later in Theorem 7.15 that Theorem 6.36 is applicable to p.-c.f. self-similar
structures equipped with good self-similar p-resistance forms (see Subsection 7.2 for the
precise setting).

Theorem 6.36 (Elliptic Harnack inequality). Assume that there exist T: X x (0,00) —
(0,00) and Ay, Az, C € (0,00) with Ay > 1 and Ay > 1 such that the following hold:

(i)  For any (z,s) € X x (0,00),
Y(z,2s) < CY(x,s). (6.38)
(ii)  For any (x,s) € X x (0,00) and any u € F,

sup  |u(y) —u(2)[f < CY(z,s) T {u) (Bﬁp(x, Ais)). (6.39)

y,zGBﬁp(x,s)
(i) For any (z,s) € X x (0,00) with By (v, Azs) # X,
inf{&(y) | p € F, 90|B§p(ﬂ’:8) =1, suppy[¢] C Bﬁp({E,AQS)} < CY(z,s). (6.40)

(iv)  {D(u)}uer satisfies the chain rule (CL2).
Then there exist Cy € (0,00) and ég € (0,1) such that for any (x,s) € X x (0,00)
with Bﬁp(x,éﬁls) # X and any u € F such that u > 0 on X, u is E-superharmonic on
By, (, 5q's) and D'(u)(X) = E(u), it holds that

sup u<Cqy inf wu. (6.41)

Bﬁp (z,9) Bﬁp(a:,s)
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Proof. Let ¢ € (0,00) and set 0y = (A1Ay)"L. Let (x,5) € X x (0,00) satisfy
Bﬁp(x,éﬁls) # X, and let v € F be such that v > 0 on X, u is £-superharmonic
on Bﬁp(x,éﬁls) and T'(u)(X) = E(u). Set u. = u+ e, M, = SUDg, (z.s) Ue and
me = infBﬁp(m)s) u.. From (RF1),, (3.9), (EM1), and (EM2),, u. is E-superharmonic
on Bﬁp(:z:,éﬁls) and I'(u.)(X) = E(u.). By (6.38), (6.39), (6.37) and (6.40), there exists
Coy € (0,00) independent of z, s, u, e such that

sup logu. — . inf logu. < Cy,

Bﬁp (LL‘,S) ﬁp (I,S)

whence log (]\m/[—z) < Cy. In particular, M, /m. < e“©. We obtain (6.41) by letting e | 0. [

7 Self-similar p-resistance forms and p-energy measures

In this section, we investigate p-resistance forms by focusing on the self-similar case as
in Section 5. Throughout this section, we fix p € (1,00) and a self-similar structure
L= (K,S {F}ics) with #S > 2 and K connected.

7.1 Self-similar p-resistance forms
We first introduce the notion of self-similar p-resistance form.

Definition 7.1 (Self-similar p-resistance form). Let p = (p;)ics € (0,00) and let (€, F)
be a p-resistance form on K. We say that (£, F) is a self-similar p-resistance form on
L with weight p if and only if F C C(K) and (€, F) satisfies (5.5) and (5.6) (under the
original topology of K implicit in £ = (K, S, {F;}ics) being a self-similar structure).

Throughout the rest of this section except Proposition 7.8 and Theorem 7.9, we fix a
self-similar p-resistance form (£, F) on £ with weight p = (p;)ics € (0,00)°. Note that
the topology induced by the p-resistance metric Ep,g of (£, F) may be different from the
original topology of K implicit in £ = (K, S, {F;};cs) being a self-similar structure. Under
the present setting, in referring to a topology of K we always consider its original topology.
Note also that then F is dense in (C(K), || - [|,,) by the compactness of K, (2.7), (RF1),,
(RF3), and the Stone-Weierstrass theorem (see, e.g., [Dud, Theorem 2.4.11]).

The following properties of the p-resistance metric are elementary.

Proposition 7.2. (1) For any x,y € K,

Re(Fu(x), Fu(y)) < p' Re(z,y). (7.1)

(2) If min;eg pi > 1 and if either diam(K, Epf) < oo or L is a p.-c.f. self-similar struc-
ture, then R, ¢ is compatible with the original topology of K, and in particular, Vi is
dense in (K, R,¢).



Contraction properties and differentiability of p-energy forms 89

Remark 7.3. It is known that, if p = 2, min,cgp; > 1 and £ is a p.-c.f. self-similar
structure, then there exists ¢ € (0, 00) such that for any z,y € K and any w € W,,

Re(Fy(x), Fu(y)) > cp,' Re(z,y); (7.2)

see [Kig03, Theorem A.1]. We extend this result to the case of p € (1,00) \ {2} in
Subsection B.3; see Theorem B.9.

Proof of Proposition 7.2. (1): This is immediate from (5.6). (See [KigOl, Lemma 3.3.5]
for the case of p = 2.)

(2): We can show that ﬁng is compatible with the original topology of K, by following
[Kig09, Proof of Proposition B.1]| if diam (X, }Azp,g) < 00, and by following [Kig01, Proof of
Theorem 3.3.4] if £ is a p.-c.f. self-similar structure (see also Lemma 8.42 below). Then
V. is dense in (K, ﬁp,g) since V., = K by [Kig01, Lemma 1.3.11]. O

The following proposition presents compatible sequences of p-resistance forms having
a self-similarity:.

Proposition 7.4. Let n € NU{0}, let A be a partition of X and set V;, o = ep Fu(Va).
Then for any v € Fly, ,

Elvun (W) = D pullv, (wo Fy), (7.3)
weEA
h(“:éL,AW) oF,=hf (uoF,) foranyw € A. (7.4)
In particular, for any m € NU{0} and any u € Fly,,,.,
EWVin (W) = Y puly,(uo F). (7.5)
wEWm

Proof. Note that (7.5) follows from (7.3) by choosing A = W, and that the sequence
S = {(Vm A Ev, A)}n NUL0) is a compatible sequence of p-resistance forms by Proposition

6.15. Let u € Fly, ,. Then we see that

Elv, ,(u) =min{&(v) | v € F with vly, , = u}

) min{z puwE(vo Fy)

wEA

v e F with vy, , = u}
> pr min{&(v) | v € F with v]y, =uoF,} = pr5|w(quw).
weA weA

To prove the converse, define v € C'(K) so that v o F,, = hf, [uo F,] for any w € A; note
that such v is well-defined by (5.2). Then vy, , = v and v € Fs by (5.5). Since

Ely, 4 (u) < E(v) D > puEWo Fy) = pul(hf, [uo Ful) = puélv,(uo F,),

weA weEA weEA
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we have (7.3). Next we prove (7.4). We have £(hf, [u] o F,) > E(hf, [uo F,]) for any
w € A. Since 7

‘€|Vn,A (u) = 5(h(\€/n,A [u]) = Z Puw€ (hf/n,,\ [u] o Fw)

wEA
> Z pwg(h‘g/n [u o Fw]) = Z pw5|Vn (u o Fw) = 8’Vn,A(u)’
wEA wEA

we obtain £ (h%}n [u] o F,) =E(hY, [uo F,]) for any w € A. The uniqueness in Theorem
6.13 implies h§, [u] o F,, = A, [uo F,). O

The following corollary is an immediate consequence of Proposition 6.19.

Corollary 7.5. Assume that L = (K, S,{F;}ics) is a p.-c.f. self-similar structure. Then

F= {u e O(K) ‘ lim €]y, (ulv,) < oo}, (7.6)

E(uyv) = lim &|y, (ulv,;vlv,) for any u,v € F, (7.7)
n—o0

lim &(u — hi, [uly,]) =0 for any u € F. (7.8)

Proof. By F C C(K) and V." = K we have (6.15), and therefore (7.6) follows from

6.16), F C C(K) and V. = K, (7.7) from (6.17), and (7.8) from (6.18). (Note that

(

(6.19) may not be applicable to the present situation because the topology considered in

6.19) is that induced by RYP and may be different from the original topology of K.) [
£

The following proposition gives characterizations of £-harmonic functions on K \ V.

Proposition 7.6. Let n € NU{0} and h € C(K). Then the following two conditions are
equivalent to each other:

(1) h € Hey,.
(2) hoFy € Heyy for any w € Wi,

If in addition L is a p.-c.f. self-similar structure, then each of (1) and (2) above is equiv-
alent also to the following condition:

(3) For any m € N with m > n and any © € V,,, \ V,,,

Yl (h o Fylve; 11?31(@) ~0. (7.9)

WEWnm; € F (Vo)

Proof. To see (1) = (2), let w € W,,, ¢ € F°(K \ V) and define (F,).¢: K — R by

Ft Ky,
(Fy)ep = poF. 1 on K,,
0 on K\ K,.
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Then since (F,).p € C(K) by ¢|y, = 0 and (5.2), it follows from (5.5) that (F,).p €
FO(K\V,), and then from (1) and (5.6) that 0 = E(h; (Fy)«p) = pu€(ho Fy; ), proving
ho F, € Hey,, namely (2). The converse implication (2) = (1) is obvious from (5.6).

Next we prove the equivalence between (1) and (3) for a p.-c.f. self-similar structure
L. We first show (1) = (3). For any m > n and any ¢ € F°(K \ V), we note that
hs, [<p|vm]‘vn = 0. Then, for any h € Hgy,, we have from (7.5) that

0=_Elv, (hlv,ielv) = Y pullv (o Fulvieo Fuly,)  for any ¢ € FO(K \ V).

weWnm,

By choosing ¢ € FO(K \ V,,) so that ¢|y,, = 1Y for z € V,, \ V,,, we obtain (3). We
next assume that h € C'(K) satisfies (7.9) and fix ¢ € F°(K \ V,) in order to show the
converse implication (3) = (1). For m > n, we see from (7.5), ¢|y, = 0 and (7.9) that

Elv(lvielv) = D pullvy (b o Fulvys ¢ © Fulw)

wEWm

= D 3 e(Pu)putli (ho Fulyyi 137)

weWnm yeVp

O pr]V()(hon\VO;]l‘%l(z)):O.

2€Vin\Vn WEW ;€ Fyw (Vo)
Letting m — oo here on the basis of (7.7), we obtain £(h; ¢) = 0, and hence h € Hey,. O

Thanks to the self-similarity, we can get the following localized version of the weak
comparison principle (recall Proposition 6.26).

Proposition 7.7 (A localized weak comparison principle). Let n € NU {0}, w € W,,,
and let u,v € Hey, satisfy u(x) < v(z) for any x € F,(Vo). Then u(z) < v(z) for any
z e K,.

Proof. Since h o F,, € Hgy, by the implication from (1) to (2) in Proposition 7.6, the
assertion follows by applying Proposition 6.26 to h o F,. O]

Next we show the monotonicity in p of the ]ﬁ—th power of the weight of a self-similar
p-resistance form with constant weight on a p.-c.f. self-similar structure (Theorem 7.9
below); see also Theorem 8.32 for a similar result in another framework including the
generalized Sierpinski carpets. The proof of Theorem 7.9 requires the following basic
result, which is immediate from (5.2) and Proposition 2.10-(a).

Proposition 7.8. Assume that L is a p.-c.f. self-similar structure. Let k,n € NU{0} and
let E be a p-resistance form on Vi. Let p = (p;)ies € (0,00)% and define A7'(E): RVen —
[0,00) by
N(E)w) = Y poBluo Fuly), ueR%. (7.10)
weWn,

Then A} (E) is a p-resistance form on Viip.
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Theorem 7.9. Assume that L is a p.-c.f. self-similar structure. Let pi,ps € (1,00)
satisfy p1 < pe, and for each s € {1,2}, let ps € (1,00) and let (s, F) be a self-similar
ps-resistance form on L with weight (ps)ics. Then

pi/(Pl—l) S p;/(pZ—l)' (711)

Proof. Let s € {1,2}, n € NU {0}, and let E,, be the p,-resistance form on V;, given by

u) = py Z Z |U(Fv(x)) - U(Fv(y))

veWn, z,yeVp

Ps e R,

so that A7, ) (Eso) = Es,. Since both E.o(-)YP and &y, ()P are norms on the
finite-dimensional vector space R'? /R1y;, there exists C; € [1,00) such that

C7 B o(u) < Elvy(u) < CyEqo(u)  for any u € RY. (7.12)

Since Af, . (Elvy) = Eslv, by (7.5), we see from (7.12) that
Co B, n(u) < &y, (u) < CoE,,(u) for any n € NU{0} and any u € R"™.  (7.13)

Now we move to the proof of (7.11). Let us fix xg,y0 € Vo with zg # yo and set
B = {x0,y0}. Then we can find w € W, so that BN K,, =0 and hy,, = h; o F, ¢ Rl,
where h; = h}? [1,,]. (Supposing that hjoF,, € R1k for any w € W, with BNK,, = (), we
would easily get a contradiction by using the connectedness of K, [Kig01, Theorem 1.6.2],
(6.3) and hy(xo) # hi(yo).) Noting that ¢ = infoerc, Re, (v, B) > & (b, [15])" > 0 by
Proposition 7.7 and (6.4) and that 0 < hy <1 by (6.32), for any n € NU {0} we obtain

52|v0(h1 w|Vo) < 52|Vn(h1,w

(7.13)
< CyFs,(hwlv,)

=Copy D D Im(Fun(@)) = ha(Fuu@)™ " - i (Fy(2)) = haw(Fo ()"

veW, z,yeVpy

v.,) (by Proposition 6.15 and (6.6))

pr2—P]1

Can T X (Mgmers) | hee) - bR o)

veW, z,yeVp

(7.1) . (p2—p1)/(p1—1)
< (c sup Rg, (w,y))
z,yeK

(p2p17(p271)/(p171))nELn(th‘Vn)

>(p2—p1)/(2?1—1)

(7.13)
< 0102< ~! sup R, (z,y) (,02,01 (P2 )/ 1) Er(h1w)- (7.14)

z,yeK

Since sup, i Re, (2,y) < 0o by Proposition 7.2-(2) and &y, (h1,w]v;), E1(h1w) € (0,00),
we conclude by letting n — oo in (7.14) that pap; P2~/ ® 7Y > 1, proving (7.11). O
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7.2 Two-point estimate and capacity upper estimate

This subsection is devoted to proving the two-point estimate and the (p, p)-Poincaré in-
equality in terms of self-similar p-energy measures, and showing also the capacity upper
estimate under the additional assumption that £ is a p.-c.f. self-similar structure.

Recall that we fix a self-similar p-resistance form (€, F) on £ with weight p = (p;)ies €
(0,00)%. In this subsection, we further assume that min;cg p; > 1 and that the p-resistance
metric }A%p = Apf of (£,F) is compatible with the original topology of K, which is,
in view of Propositions 6.4-(1) and 7.2-(2), equivalent to assuming min;esp; > 1 and
diam (K, ﬁp) < 00. (Also by Proposition 7.2-(2), the assumption of diam(K, ﬁp) < 00
can be dropped when L is a p.-c.f. self-similar structure.) We also let {I'¢(u) },ex be the
associated p-energy measures defined in (5.11). In the following definition, we introduce

natural scales {As}se(0,1) With respect to }/%p. See [Kig09, Kig20] for further details on
scales.

Definition 7.10. (1) We define A% = {0},

A= {w | w=wi . wy € WA {0}, (puan )07 > 52 p 00

for each s € (0,1). (Note that {Af”}se(o,n is the scale associated with the weight
function g(w) = pu/?™; see [Kig20, Definition 2.3.1].)

(2) For each (s,z) € (0,1] x K, we define Afg(x) = {w € A§p | © € K,} and
Uf”"(a:,s) = Uw€A§g o K. Inductively, for M € N, define Af’}’w(aj) ={w € A§” ]

Koy 0 UJ\%&@: s) # 0} and UEP(:E, s$)=U & K

It is easy to see that lim,omin{|w| | w € A} = oo, that AL” is a partition of
Y for any s € (0,1], and that Aff’ < ASR;" for any si,s5 € (0,1] with sy < s5. By
[Kig20, Proposition 2.3.7|, for any = € K and any M € N U {0}, {Uﬁp(aﬁ, 5)}56(0’1] is
non-decreasing in s and forms a fundamental system of neighborhoods of = in K.

If {Uﬁ’; (x, 8)}(:5,5)er(0,1} is comparable to the metric balls with respect to ﬁp (in the

sense of (7.15) below) for some M, € N, then we have the following two-point estimate.

Proposition 7.11 (Two-point estimate). Assume that there exist oy, a9 € (0,00) such
that for any (x,s) € K x (0,1],

Bp (z,a15) C Uﬁi(x, s) € By (@, as). (7.15)

Then there exist C, A € (0,00) with A > 1 such that for any (x,s) € K x (0,00) and any
U € Floe (BEP(SU, AS)),

sup  |u(y) —u(z)|’ < CsP 'Te(u) (Bﬁp(:r;, As)). (7.16)

y,ZEBﬁp (Q?,S)
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Proof. We can assume that o; < ap and a1 < 1 without loss of generality. Throughout
this proof, we fix € K and set A := a; *(ay V diam(K, R »)). We first consider the case
of s € (a1,00). Note that B (z,As) = K. By (6.3) and Proposition 5.10-(a), for any
Y,z € Bﬁp(x, s) and any u € F,

[uly) = u(z)l" < diam(K, R,)P"'€(u) = Craf ™ 'Te(u) (K),

where C) == a; """ diam(K, R,)?~. This shows (7.16) in the case of s € (a1, 00).
Next let s € (0,1]. Let U be a relatively compact open subset of K such that
U2 U ?(z,a7's) and let u# € F satisfy u = u# on U. For any y,z € By (@,s), there

exists {v(i)}22 1 C AREI ML (z) such that y € K,q), 2 € Kyom.41) and K,y;NEKyiq1) 7 0
Qg

for each ¢ € {1,2,.. 2M} Let us fix 2; € K, N Kyu41) and ¢ € Vg that satisfy
r; = Fyu(q;). We note that, for any v/, 2’ € K,(),

uly!) — u( = P (Fb ) — u(Fao(Fb )|
< R¢ (Fv_(il)<y,)7 Fv_(il)(zl))g(u# o Fy@))

S dlam(K R p)" ™ (E)FE <U#>(Kv(i)) = diam(K, /Rp)p_lp;é)rg<u> (Ko@)

—~

Hence
lu(y) —u(2)
2M,—1

< (M. + 1) (\U( — (@) Z Ju(z:) = ulwip) " + ulzan,) — U(Z)!p>

63 2M 41

) . ~ -1 _
< ((2M, + 1) diam(K, Rp))p Z Pvé)F8<u><Kv(i))
i=1
2M+1

< Oy e {u ( U Ky ) < o8P 'Tg, (u)(Bp(z, oy 'aas)),

where C5 = ((2M, + 1)a; ' diam(K, ﬁp))p_l. This proves (7.16) for s € (0, ay]. O
From (7.16), we easily obtain the following (p, p)-Poincaré inequality.

Proposition 7.12 ((p, p)-Poincaré inequality). Assume that there exist oy, s € (0,00)
such that (7.15) holds for any (z,s) € K x (0,1]. Let u be a Radon measure on K
with suppg|p] = K. Then there exist C, A € (0,00) with A > 1 such that for any
(z,s) € K x (0,00) and any u € Fioc (BEP(I’,AS)),

][ u— ][ wdj
B5 (z,s) Bﬁp(x,s)

Rp

p

dp < CsP 1 Tg{u) (Bﬁp(x,As)). (7.17)
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Proof. This is immediate from (7.16) and the obvious inequality

f u— ][ wdp
Bﬁp(z,s) Bs (z,s)

Rp
Remark 7.13. In [Cap07, Theorem 2.4|, Capitanelli obtained an oscillation estimate like
(7.16) from the (p, p)-Poincaré inequality [Cap07, (2.4)] under a suitable volume growth
condition for the measure p. This implication can be seen by a well-known telescopic sum
argument (see, e.g., [HK98, Proof of Lemma 5.17]).

p

du < sup  |u(y) —u(2)”. O
y,zEBﬁp(:r,s)

As shown in [KS24-+) Lemma 6.7 and Proposition 6.9], if £ is a p.-c.f. self-similar
structure, then the condition (7.15) and the capacity upper estimate hold. Furthermore
by [[{524+, Lemma 6.8], there exists a self-similar measure on £ which is Ahlfors regular
with respect to ﬁp (see Definition 8.5-(2)). We record these results in the following
proposition.

Proposition 7.14. Assume that L is a p.-c.f. self-similar structure.

(a) There exist ay, s € (0,00) such that for any (s,z) € (0,1] x K,
By (z,045) € Ulﬁp(a:, s) € By (@, azs). (7.18)

(Equivalently, Ep is 1-adapted to the weight function g(w) = p;l/(pfl); see [Kig20,
Definition 2.4.1].)
b) Let ds(p) € (0,00) be such that > . p-_df(p)/(p_l) =1, and let m be the self-similar
€S i
measure on L with weight (pi_df(‘o)/(p_l))i6

s. Then there exist ¢1,cy € (0,00) such
that for any (x,s) € K x (0,2diam(K, R,)),

as"? < m(By (x,5)) < crs P, (7.19)

In particular, ﬁp is metric doubling. (Recall that a metric space (X, d) is said to be
metric doubling if and only if there exists N € N such that any (z,7) € X x (0, 00)
satisfies By(z,7) C U, Ba(zs,7/2) for some {z;}¥, C X.)

(c) There exists C' € (0,00) such that for any (x,s) € K x (0, 00),

inf{&(u) | u € F, ulp; (ra15) = 1, supplu] C Bﬁp(x,2a25)} < Cs~7Y (7.20)
where aq, ay are the constants in (7.18).

Proof. Although the proof is the same as [[{524 | Lemmas 6.7, 6.8 and Proposition 6.9],
we recall the proof below for the reader’s convenience. Throughout this proof, we set
A, = Afp for ease of notation. Note that K # VOK since #Vy < oo and K is connected.

(a): By (7.1), we have diam(K,, R,) < pw"?"" diam(K, R,) for any w € W,, which
implies the latter inclusion in (7.18) with ay € (2 diam(XK, ﬁp), o0) arbitrary. (In particu-
lar, diam(K,, R,) < ass for any w € A,.) We will show the former inclusion in (7.18). It
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suffices to prove that there exists oy € (0, 00) such that fip(x, y) > ags for any s € (0, 1],
any w,v € Ay with K, N K, = 0 and any (z,y) € K,, x K,. Let ¢, = h‘f/o []I;/O} for any
q € Vo. Fix w € A; and let u,, € C(K) be such that, for 7 € A,

1 if 7 =w,
U © Fr = 43 v (@reru vy Ya if 74w and K, N K, # 0, (7.21)
0 if K, NK, =70.

By the self-similarity of (€, F), we have u,, € F and

=Y pr&luy o Fy) = > prE Yoo W] (122)

TEAs TeAN\{w}; K- NKw#0 qeVo;Fr(q)€Fw (Vo)

(Note that Ay is a partition of 3.) Set p := max;eg p; € (1,00) and ¢; == maxgey, £(¢,) €
(0,00). Then p7' > p~'sP7! for any 7 € A,. Since #{r € A, | K, N K,, # 0} <
(#C[;)(#VO) by [Kig0l, Lemma 4.2.3], (7.22) together with Holder’s inequality implies
that

() < (HCo) #VD)5 P VP 1 = (o) @, (723)

For any v € A, with K, N K, = ) and any (z,y) € K,, x K, we clearly have u,(z) =1
and u,(y) = 0. Hence

~

Ry(x,y) > E(u)™P7D > ays,
which proves the desired result.

(b): This is immediate from (7.18), #{7 € Ay | K, N K, # 0} < (#Cr)(#Vo) ([Kig01,
Lemma 4.2.3]) and m(K,,) = pa™®/®™ (Proposition 5.6).

(c): It suffices to consider the case of s € (0,1] since By (z,2ass) = K for any

(z,8) € K x (1,00) and £71(0) = Rlg by (RF1),. Let u, € F be the same function as

in the proof of (a) for each w € A,. Then ¢ = max,ep, ,(2) U satisfies g0|U,§p( )= 1.
1 (x,s

Since diam(K,, }A%p) < s, we see from (7.18) that supply] C Bp (z,2az2s). By (2.6) for
(€, F), (7.23) and [Kig01, Lemma 4.2.3], we have ¢ € F and

Z E(ty) < (ay8) P V(HCL) (#V) = Cs~ @71, O

Combining Propositions 7.11, 7.14 and Theorem 6.36, we obtain the elliptic Harnack
inequality for self-similar p-resistance forms on p.-c.f. self-similar structures.

Theorem 7.15. Assume that L is a p.-c.f. self-similar structure. Then there exist Cy €
(0,00) and ég € (0,1) such that for any (z,s) € K x (0,00) with Bﬁp(x,éﬁls) # K and
any u € F such that w > 0 on K and u s €-superharmonic on Bg (z,04"s), it holds that

sup u<Cqx inf w. (7.24)

Bﬁp (z,9) Bﬁp(a:,s)
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Proof. We have Theorem 6.36-(i),(ii),(iii) with Y(z, s) := s~®~1 by Propositions 7.11 and
7.14, and Theorem 6.36-(iv) holds by F C C'(K) and Theorem 5.12. Since I'g(u)(K) =
E(u) for any u € F by Proposition 5.10-(a), the desired estimate (7.24) follows from
Theorem 6.36. L

Remark 7.16. The results in this subsection, Propositions 7.11, 7.12, 7.14 and Theo-
rem 7.15, are applicable to a large class of p.-c.f. self-similar structures. Indeed, their
assumptions are all satisfied in the situation of Theorem 8.43, which summarizes the
construction of regular self-similar p-resistance forms on p.-c.f. self-similar structures due
to |[CGQ22|, and the assumptions of Theorem 8.43 in turn hold for strongly symmetric
p.-c.f. self-similar sets (see Framework 8.46 and Definition 8.47) as proved in Theorem
8.50 below.

8 Constructions of p-energy forms satisfying the gener-
alized p-contraction property

In the preceding sections, we have established fundamental results on p-energy forms sat-
isfying the generalized p-contraction property (GC),, in particular p-Clarkson’s inequality
(Cla),. In this section, we would like to describe how to get a good p-energy form satisfy-
ing these properties in a few settings inspired by [Kig23] and [CGQ22]. (See also [KS24+|
for another approach toward such a construction.)

8.1 p-Energy forms on p-conductively homogeneous compact met-
ric spaces

In this subsection, we verify that p-energy forms on p-conductively homogeneous compact
metric spaces constructed in [Kig23] satisfy (GC),. We mainly follow the notation and
terminology of [Kig23] in this and the next subsections. We refer to [Kig23, Chapter 2|
and [Kig20, Chapters 2 and 3| for further details.

Throughout this subsection, we fix a locally finite, non-directed infinite tree (T, Er)
in the usual sense (see [Kig23, Definition 2.1| for example), and fix a root ¢ € T of T.
(Here T is the set of vertices and E7p is the set of edges.) For any w € T\ {¢}, we use
¢w to denote the unique simple path in (7, E7) from ¢ to w.

Definition 8.1 ([Kig23, Definition 2.2|). (1) For w € T, define 7: T — T by

¢ if w = o.

Set S(w) = {v € T | m(v) = w} \ {w}. Moreover, for k € N, we define S*(w)

inductively as
S w) = S*().
veS(w)

r(w) = {wnl if w# ¢ and ¢w = (wy, . .., wy),
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For A C T, define S*(A) =, c4 S*(4).

(2) For w € T and n € NU {0}, define |w| := min{n > 0 | 7"(w) = ¢} and T,, = {w €
T | |w| =n}.

(3) Define ¥ = {(wn)n>0 | wn € T), and w,, = m(wpy1) for all n e NU{0}}. For w =
(Wn)n>0 € X, we write [w], for w, € T,,. Define ¥, := {(wn)n>0 € X | wp| = w} for
weT, and X4 = UweAEw for ACT.

Let us recall the definition of a partition parametrized by a rooted tree.

Definition 8.2 (Partition parametrized by a tree; [Kig20, Definition 2.2.1] and [Sas23,
Lemma 3.6]). Let K be a compact metrizable topological space without isolated points. A
family of non-empty compact subsets { K, }er of K is called a partition of K parametrized
by the rooted tree (T, E, ¢) if and only if it satisfies the following conditions:

(P1) Ky = K and for any w € T, #K,, > 2 and Ky = U e 5, Ko
(P2) For any w € X, (1,50 K, 1s a single point.

In the rest of this subsection, we fix a compact metrizable topological space without
isolated points K, a locally finite rooted tree (T, Er, ¢) satisfying #{v € T | {v,w} €
Er} > 2 for any w € T, a partition {K,, }wer parametrized by (T, Er, ¢), a metric d on
K with diam(K,d) = 1, and a Borel probability measure m on K. Now we introduce a
graph approximation {(7},, £) }nenufoy of K.

Definition 8.3 (|Kig23, Proposition 2.8 and Definition 2.5-(3)]). For n € NU {0} and
A CT,, define

E: = {{v,w} ‘ v,we Ty, v#w K,NK, #0},
and E;(A) = {{v,w} € E; | v,w € A}. Let d, be the graph distance of (T,, E}). For
M € NU{0} and w € T,,, define

Fy(w)={veT,|d,(v,w) <M} and Upy(x;n):= U U K,.

To state geometric assumptions in [Kig23|, we need the following definition.

Definition 8.4 (|Kig20, Definitions 2.2.1 and 3.1.15]). (1) The partition { Ky, }yer is said
to be minimal if and only if K, \ Uvele‘\{w} # () for any w € T.

(2) The partition {K, }wer is said to be uniformly finite if and only if sup,,.p #I'1(w) <
0o. We set L, = sup,cp #1'1(w).

We also recall the following standard notion on metric measure spaces; see, e.g., [Hei,
Kig20, MT| for further background.

Definition 8.5. (1) The measure m is said to be volume doubling with respect to the
metric d if and only if there exists Cp € (0, 00) such that

m(Bg(z,2r)) < Cpm(By(z,r)) for any (x,r) € K x (0,00). (8.1)

The constant Cp is called the doubling constant of m.
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(2) Let @ € (0,00). The measure m is said to be Q-Ahlfors regular with respect to the
metric d if and only if there exists Cag € [1,00) such that

Crn? <m(By(w,7)) < Carr? for any (z,7) € K x (0,2diam(K, d)).  (8.2)

The measure m is simply said to be Ahlfors reqular (with respect to d) if there exists
Q@ € (0,00) such that m is @Q-Ahlfors regular. Also, the metric d is said to be Q-
Ahlfors regular if there exists a Borel measure y on K which is Q-Ahlfors regular
with respect to d.

(3) A metric p on K is said to be quasisymmetric to d, p e d for short, if and only if

there exists a homeomorphism 7: [0, 00) — [0, 00) such that

pl,b) <7 d(z,b) for any z,a,b € K with x # a.
p(z,a) d(x, a)
(4) The Ahlfors regular conformal dimension of (K, d) is the value dimarc (K, d) defined

as
there exists a metric p on K such that}

dimagrc(K, d) = iﬂf{@ >0 ’ P& d and p is @-Ahlfors regular

If m is Ahlfors regular, then it is clearly volume doubling. It is well known that the
existence of a @Q-Ahlfors regular m on (K, d) implies that the Hausdorff dimension of
(K,d) is Q.

Now we recall basic geometric conditions in [Kig23]. The conditions (1), (2) and (3)
below are important to follow the rest of this paper.

Assumption 8.6 ([Kig23, Assumption 2.15]). Let (K, O) be a connected compact metriz-
able space, { K, }wer a partition parametrized by the rooted tree (T, ¢), let d be a metric
on K that is compatible with the topology O and diam(K,d) = 1 and let m be a Borel
probability measure on K. There exist M, € N and r, € (0,1) such that the following
conditions (1)—(5) hold.

(1) K, is connected for any w € T, {K,}wer is minimal and uniformly finite, and
inf,,,>0 minyer,, #S(w) > 2.

(2) There exist ¢; € (0,00), i € {1,...,5}, such that the following conditions (2A)-(2C)
are true.

(2A) For any w € T,
e < diam (K, d) < eyl (8.3)

(2B) For any n € N and any = € K,
By(z,c3ry) C Up(x;n) C By(z,eqrl). (8.4)

(In [Kig20], the metric d is called M,-adapted if the condition (8.4) holds.)
(2C) For any n € N and w € T, there exists x,, € K,, satisfying

Ky O Ba(zy, c517). (8.5)
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(3) There exist m; € N, 71 € (0,1) and v € (0,1) such that

m(Ky) > ym(Krw) forany we T, (8.6)
and
m(K,) < yym(K,) forany w e T and any v € S™ (w). (8.7)
Furthermore, m is volume doubling with respect to d and
m(Ky) = Z m(K,) forany weT. (8.8)
veS(w)

(4) There exists My > M, such that for any w € T, any k > 1 and any v € S*(w),

Dar. (v) N S¥(w) { e Ty

there exist [ < My and (v, ...,v;) € S*(w)"*?
such that (vj_1,v;) € L}, for any j € {1,...,0} [
(5) For any w € T, m(I'ar.+1(w)) C I'ag, (m(w)).

We record a simple consequence of (8.8) in the next proposition.

Proposition 8.7. Assume that the Borel probability measure m satisfies (8.8). Then
m(K, N Ky) =0 for any v,w € T with v # w and |v| = |w|.

Proof. Let n € NU{0} and v, w € T, satisfy v # w. Enumerate T,, as {z(1), 2(2), ..., 2(l,)}

such that z(1) = v and 2(2) = w, where [, = #T,,. Inductively, define K., by

K.q) = K.q)

and i
K+ = Ko \ (U Kz(z’)) :
=1

Then {Kz(j)}i‘ll is a disjoint family of Borel sets and U?‘”:l f{z(j) = K. Therefore,

t=m(K) =3 m(R.g).

On the other hand,(8.8) implies that

In
L=m(Ky) => m(K.q).

J=1

Therefore, we conclude that m(Kz(j) \ I?Z(j)) =0 for any j € {1,...,1,}. In particular,

0= m<Kz(2) \ fN(z(z)> = m<Kw \ (K \ (K, N Kw))) = m(K, N Ky),

which completes the proof. O]
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Next we introduce conductance, neighbor disparity constants and the notion of p-
conductive homogeneity in Definitions 8.10, 8.8 and 8.11, following [Kig23, Sections 2.2,
2.3 and 3.3|. We will state some definitions and statements below for any p € (0, 00) or
p € [1,00), but on each such occasion we will explicitly declare that we let p € (0,00) or
p € [1,00). Our main interest lies in the case p € (1, 00).

Definition 8.8 ([Kig23, Definitions 2.17 and 3.4]). Let p € (0,00), n € NU {0} and
ACT,.

(1) Define £7,: R* — [0,00) by

A= ) fw—fPF, feR™
{u,v}€E} (A)
We write E)(f) for £} (f).
(2) For Ay, A; C A, define capZ(Ao, Aq; A) by

capl (Ao, Ar; A) = inf{E1,(f) | f€RA f

4, =i for i € {0,1}}.
(3) (Conductance constant) For A;, Ay C A and k € NU {0}, define
Epie(Ar, A, A) == capp™(5*(Ay), S*(Az); S*(A)).
For M € N, define Eyp i = super Epr({w}, Tiw \ Tar(w), Tiw).

Let us recall the notion of covering system, which will be used to define neighbor
disparity constants and the notion of conductive homogeneity.

Definition 8.9 (|Kig23, Definitions 2.26-(3) and 2.29|). Let Ny, Ng € N.

(1) Let n € NU{0} and A C T,,. A collection {G;}¥_, with G; C T,, is called a covering of

(A, EX(A)) with covering numbers (Np, Ng) if and only if A = ¥, G, maxyeca #{i |

xr € G;} < Npr and for any (u,v) € EX(A), there exists | < Ng and {w(1),...,w(l +

1)} € A such that w(l) = u, w(l+1) = v and (w(i),w(i+1)) € U?:l E*(G,) for any

ie{l,...,1}.

(2) Let 7 C U,enugoy{A | A € T} The collection 7 is called a covering system with
covering number (Np, Ng) if and only if the following conditions are satisfied:

(i) supue s #A < oo.

(ii) For any w € T and any k € N, there exists a finite subset A4 C _Z N i1
such that .4 is a covering of (S*(w), EﬁUHk(Sk(w))) with covering numbers
(NT, NE)

(i) For any G € # and any k € NU {0}, if G C T,,, then there exists a finite
subset A" C _# N T4y, such that A4 is a covering of (S*(G), Ex,,.(S*(G)))
with covering numbers (N7, Ng).

The collection ¢ is simply said to be a covering system if and only if there exist

(N7, Ng) € N? such that _# is a covering system with covering number (N, Ng).
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Definition 8.10 ([Kig23, Definitions 2.26-(1),(2) and 2.29]). Let p € (0,00), n € N and
ACT,.

(1) For k e NU{0} and f: 7,1 — R, define P, ;f: T,, — R by

(Pupf)(w) = ZUESk( (K, Z flv w € T,

veSk (w)

(Note that P, xf depends on the measure m.)
(2) (Neighbor disparity constant) For & € NU {0}, define

A) = A
pk(A) B Ssél(lf% ek A)( 7

(3) Let # CU,50{A| A CT,} be a covering system. Define

O'I“;?’n =max{o,(A)|Ae #,ACT,} and 0};’; = sup Uz{k,n
neNU{0}
Definition 8.11 ([Kig23, Definition 3.4|). Let p € [1,00). The compact metric space K
(with a partition { K, }wer and a measure m) is said to be p-conductively homogeneous if
and only if there exists a covering system _¢# such that

sup o EM*pk < 00. (8.9)

p,k
keNu{0}

When we would like to clarify which partition is considered, we also say that K is p-
conductively homogeneous with respect to { Ky }wer-

For our purposes, the next consequence of (8.9) is more important than the original
definition of the p-conductive homogeneity.

Theorem 8.12 (Part of [Kig23, Theorem 3.30]). Let p € [1,00) and assume that As-
sumption 8.6 holds. If K is p-conductively homogeneous, then there exist o,y € (0, 00),
€ (0,00) and a covering system ¢ such that for any k € NU {0},

aoapk <Empr < Oéldp_k and aga < 0/ < ala (8.10)

In particular, the constant o, is determined by the following limit:

1/k

op = lim (Enr, pie) (8.11)

k—oo
Remark 8.13. The existence of the limit in (8.11) is true without the p-conductive homo-
geneity. Indeed, if (K, d, { Ky, }wer) satisfies the conditions Assumption 8.6-(1),(2),(4),(5),
then [Kig23, Theorem 2.23| together with Fekete’s lemma implies the existence of the
limit in (8.11) for any p € (0,00). For convenience, we call o, the p-scaling factor of

(Ka da {Kw}weT)'
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We also recall the “Sobolev space” WP introduced in [Kig23, Lemma 3.13].

Definition 8.14. Let p € [1,00). Assume that Assumption 8.6-(1),(2),(4),(5) hold and
let 0, be the constant in (8.11).

(1) For n € NU{0}, define P,: L'(K,m) — R by P,f(w) = f,. fdm, weT,.
(2) Define N,: LP(K, m) — [0, 00] and a linear subspace WP of LP(K,m) by

1/p
No(f) = ( sup Uﬁﬁ(ﬂf)) , [ e LP(K,m),
neNU{0}
WP = {f e LP(K,m) | N,(f) < oo},
and we equip WP the norm || - |,,, defined by
1/p
1l = (1A + A7) 7 F €WV,

(3) For a linear subspace D of WP, we define

U,(D) = {@@: D — [0,00)

&P is a seminorm on D, there exist ag,a; € (0, 00)
such that apN,(f) < E(f)VP < N, (f) forany f € D

For ease of notation, set U, = U, WVP?).
(4) For n e NU{0} and A C T,,, we define £ ,: LP(K,m) — [0,00) by
Epall) = opEia(Puf), f € LP(K,m).
We also set gz’}(f) = gng(f).

We have the following property on N, thanks to the connectedness of K and Assump-
tion 8.6-(3).

Proposition 8.15. Let p € [1,00). Assume that Assumption 8.6 holds. Then N,(f) =0
if and only if there exists ¢ € R such that f(x) = ¢ for m-a.e. x € K.

Proof. 1t is clear that N,(f) = 0 if f is constant. Assume that N,(f) = 0. Note that
(T, EY) is a connected graph for each n € NU {0} (|Kig23, Proposition 2.8]). Therefore,
N,(f) = 0 implies that for each n € NU {0} there exists ¢, € R such that P, f(w) = ¢,
for any w € T,,. By (8.8), we have ¢, = ¢,+1 and hence there exists ¢ € R such that ¢, = ¢
for any n € NU {0}. Now we let £y C K denote the set of Lebesque points of f, i.e.,

gfﬁ—{l’EK

imf ) — Fy) mldy) = o}. (8.12)

0 By(z,r)
Then, by the volume doubling property of m and the Lebesgue differentiation theorem

(see, e.g., [Hei, Theorem 1.8]), we have £y € B(K) and m(K \ .Zy) = 0. For any x € %
and any n € NU {0}, by Proposition 8.7 and Assumption 8.6-(2),(3),

1
~ m(Un, (x5n))

@) - = ‘f(ﬂs) - f fdm

M, (zim)

[ 1@ = )] i)
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C x) — m(d
< ]éd(wmum £ midy),

where we used (8.4) and the volume doubling property of m in the last inequality. Here
C € (0,00) is a constant that is independent of z, f and n. By letting n — oo in the
estimate above, we obtain f(z) = ¢ for any x € %, which completes the proof. m

As shown in [Shi24, Kig23|, WP is a nice Banach space embedded in C'(K) if K is
p-conductively homogeneous and p > dimarc(K,d). More generally, we can show the
following theorem.

Theorem 8.16. Let p € [1,00). Assume that (K, d,{Ky}wer,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then WP is a Banach space and WP is
dense in LP(K,m). If p € (1,00), then WP is reflexive and separable. Moreover, if in
addition p > dimarc(K, d), then WP is a dense linear subspace of (C(K), || - [|4,,)-

Remark 8.17. By [Kig20, Theorem 4.6.9], the condition p > dimarc(K, d) is equivalent
to o, > 1.

Proof of Theorem 8.16. Note that WP is a Banach space by [Kig23, Lemma 3.24] and
that W? is dense in LP(K,m) by [Kig23, Lemma 3.28].

In the rest of this proof, we assume that p € (1,00). Let us show that WP? is reflexive.
Theorem 8.12 and [Kig23, Lemma 2.27| together imply that there exists a constant C' €
(0,00) such that for any k,I € N, any A C T, and any f € RS'(),

p,S!

EF A(Praf) < CEW( A () (8.13)

The rest of the proof is very similar to [MS25-+, Proof of Theorem 6.17(ii)|, so we give only
a sketch (see also [Shi24, Theorem 5.9] and the proof of Theorem 8.19-(a) below). Define

~ 1/p
1, = <|| : ||’2P(K’m) +&(- )) , which can be regarded as the LP-norm on K Ul E.

Also, we consider EN';} as a [0, oo]-valued functional on LP(K,m). From |[Dal, Theorem 8.5
and Proposition 11.6], by extracting a subsequence of {E;}}neN if necessary, we can assume

that {gg}neN ['-converges to some p-homogeneous functional E,: LP(K,m) — [0, 00| as

1
n — oo. Then {||-||,,}nen I-converges to ||| = (Il - [ E,) " as n — 00,

and hence (|| -[|”,WP) is a p-energy form on (K,m) satisfying (Cla),. By using (8.13)
and noting that limy_, P, fx(w) = P,f(w) for any n € NU {0}, any w € T, and any
fofe € LP(K,m) with limyseo || f — fello(xmy = 0, we can show that [|- || is a norm
on WP that is equivalent to | -||,,,. Thus, WP is reflexive by Proposition 3.5 and the
Milman—Pettis theorem. The separability of WP immediately follows from Corollary 3.16
(see also [AHIM23, Proposition 4.1]).

In the case of p > dimagrc (K, d), WP can be identified with a subspace of C'(K) and
is dense in (C(K),||-|l..,) by [Kig23, Lemmas 3.15, 3.16 and 3.19|. O

sup

Let us introduce an important value, p-walk dimension, which will be a main topic in
Section 9.
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Definition 8.18 (p-Walk dimension). Let p € (0,00). Assume that (K, d,{Ky}wer)
satisfies Assumption 8.6-(1),(2),(4),(5). Let r. € (0,1) be the constant in (8.4), let o, be
the p-scaling factor of (K, d, {Ky}wer) (see (8.11) and Remark 8.13). We define 7, € R
by

log o,
= . 8.14
» log ! (8.14)
If in addition m is Ahlfors regular with respect to d, then we define d,,, € R by
dywp = di + Tp, (8.15)

where d; denotes the Hausdorff dimension of (K, d). We call dy, ,, the p-walk dimension of
(Kv du {Kw}wGT)-

Now we prove the main result in this subsection, which is an improvement of [Kig23,

Theorem 3.21].

Theorem 8.19. Let p € (1,00). Assume that (K,d,{Ky}wer,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then there exist £,: WP — [0,00) and
c € (0,00) such that the following hold:

(a) (gp)l/p is a seminorm on WP and
cNL(f) S ENYP < N(f)  for any f € WP, (8.16)

(b) (é\p, WP) is a p-energy form on (K, m) satisfying (GC),.
(c) (Invariance) Let T: (K, B(K),m) — (K,B(K),m) be Borel measurable and satisfy
5”(f T) = Sn(f) for any n € N and any f € LP(K,m). Then foT € WP and

E(foT) E(f) for any f € WP,
(d) If in addition p > dimagrc (K, d), then (gp, WP) is a regular p-resistance form on K
and there exist C € [1,00) such that

Ctd(x,y)™» < Rg (z,y) < Cd(z,y)™  for any z,y € K. (8.17)

Proof. The most part of the proof will be very similar to that in [Kig23, Theorem 3.21],
but we present the details because we do not assume p > dimagrc(K, d) unlike [Kig23,
Theorem 3.21]. Let 8 be a subsequential I'-limit of {En}n with respect to the topology
of LP(K,m) as in [Kig23, Proof of Theorem 3.21], i.e., there exists a subsequence {Sp o
[-converging to é\p with respect to LP(K,m) as n’ — oo. (Note that such a subsequential
[-limit exists by [Dal, Theorem 8.5].)

(a): E'p is p-homogeneous by [Dal, Proposition 11.6]. The triangle inequality for
gp( )¥/? will be included in the proof of (b), so we shall prove (8.16). From the defi-
nition of the I'-convergence, it is immediate that Sp( f) < liminf, E”( ) < N (f)P.
Let us show the former inequality in (8.16). Let f € WP and let { fn/}n/ be a recovery
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sequence of {E'}y at f, ie., limpy_yoo [|f = fuvll posem = 0 and E(f) = limpy_yo £ (fur).
Since lim,, oo Pgfo(w) = Py f(w) for any k € N and any w € Tk, by (8.13),

Ex() = lim E(fu) < C lim & (fu) = CE(f),

n'/—oo n/—o00

where C' € (0, 00) is the constant in (8.13). We obtain the desired estimate by taking the
supremum over k£ € NU {0}.

(b): Let ny,ny € N, ¢1 € (0,p], g2 € [p,o0] and T = (T1,...,T,,): R"™ — R" satisfy
(2.2). Define Q,,: L'(K,m) — L'(K,m) by

Quf =Y Puf(w)lk, for f € L' (K, m). (8.18)

’LUETn

Note that [|Q,||;, » < 1 by (8.8) and Holder’s inequality. Let us show
LP(K,m)—LP(K,m)

lf — anHLp(K,m) — 0 as n — oo for any f € LP(K,m). Define the Hardy—Littlewood

maximal operator .# : LP(K, m) — L°(K,m) by

r>0

M () = sup ]i W) i),z e K

Since m is volume doubling with respect to d by Assumption 8.6-(3), by [HKST, Theorem
3.5.6], there exists a constant C' € (0, 00) such that |2 f| 1y gy < ClIf || 1o my for any
f € LP(K,m). We also easily see that for any f € LP(K, m) and any = € K,

B 2Ty
Quf@l< Y Pfwls Y ™ ;Ef;fj’””]{g L

'LUETnﬂfeKw wETn;ZEKw

<y mBdn2en) 4oy < onfe),

wWETh;x€ Ky m(Bd(xu” C5TI}))
where x,, € K, and ¢, ¢5 are the same as in Assumption 8.6-(2) and we used the volume
doubling property in the last inequality, and C; € (0, 00) is a constant depending only on
sup,er #1'1(w), ca, ¢5 and the doubling constant of m. Let f € LP(K,m) and let £y C K
denote the set of Lebesgue points of f asin (8.12). Then . € B(K) and m(K \.%;) =0
by the Lebesgue differentiation theorem for a volume doubling metric measure space (see,
e.g., |[Hei, Theorem 1.8]). Since

f@)-Quf@ < Y f y)| m(dy)

wWETh;xEKy

C x) — m(dy),
< ]id(mn)m £l midy)

we have |f(z) — Qnf(x)] = 0 as n — oo for any z € .Z;. Now the dominated convergence
theorem implies [|f — Qun [/ oy — O-
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Let w = (uy,...,u,, ) € (WP)™ and choose a recovery sequence {ug , }ns of {g’;}'}n/ at
uy, for each k € {1,...,n;}. For brevity, we write @, = (U1, ..., Un, n/) and

Pyu,(v) = (Pn/ul,n/(v), . ,Pn/unw/(v)) eR™, veT,,
Qn’un/(v) = (Qn/ul,n/<v)a <. 7Qn’un1,n’ (/U)) € Rnlv v e Tn’-

Note that ||ty — Quttkm | 1o,y — 0 as n' — oo by the fact proved in the previous
paragraph. Similar to an argument in [Kig23, p. 46|, by using ||Qn||Lp(K,mHLp(K’m) <1
and the estimate (2.20), we have

[Ti(w) = T Quww ) 1o (repmy ——0 forany l€{l,...,no}. (8.19)

n/—o00

Also, by Proposition 8.7, we note that
Py (Ti(Quun)) = Ti(Pyuy) € R™  for any I € {1,...,ns}. (8.20)

With these preparations, we prove (GC), for (gp, WP). We consider the case of ¢ < 00
since the case of go = oo is similar. By (8.19) and (8.20), we see that

Z@(Tl(u w/p < thmf&’ TlQn/un))qz/p
=1

n/—oo
520 g o q2/p
: lsz:lo%fZ T Y TP (1) = TPt ()|
(v,w)EEn,
/ q2/p
(218) ol
< liminf % > T (Pt (v) = T( Pt (0)) |5
(v,w)GEz
) a2/p
(22 o
< 1}%@ 717 Z | Poa(v) — Pow(v)][je
(va)EE:L/
/ plar\ /P
. o, pi
<liminf | 5= > Z\Pn,um ~ Pty (w) "
(v,w)EET*L,
() ni o'n’ a/p ﬁ.%
. . D p
< limnf Z[7 2 |Pn/uk,n/<v>—Pn/uk,nf<w>|]
k=1 (v,w)eEE?,
P 92 Lp .42
ni q1 P ni R a P
< (Z hmsupc‘f (uk,n/)‘“/p> < <25p<uk)ql/p> , (8.21)
k—1 n/—o0 k=1

where we used the triangle inequality for the ¢”/%-norm on E’ in (). Hence (éA’p, WP)
satisfies (GC),.
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(c): This is clear from the definitions of WP and of gp.

(d): In the case of p > dimagrc (K, d), a combination of (b), [Kig23, Lemmas 3.13, 3.16,
3.19 and Theorem 3.21] and Theorem 8.16 implies that (g'p, WP) is a regular p-resistance
form on K. Then the estimate (8.17) is exactly the same as [Kig23, (3.21) in Lemma
3.34], so we complete the proof. O

Remark 8.20. The construction of 85 in [MS25+, Theorem 6.22] is very similar to that

of SAp in the proof above although the setting and assumption on a partition in [MS25 ] is
slightly different from ours. Thanks to Proposition 8.7, the operators M, and J,, defined
in [MS25+, (6.8) and (6.9)] correspond to P, and @, respectively. In particular, (8.19)
and (8.20) for M, and J, are also true. Hence we can easily see that the p-energy form
(&), Fp) in [MS25 1, Theorem 6.22| also satisfies (GC),.

Before concluding this subsection, we deal with the capacity upper estimate and a
Poincaré-type inequality under the additional assumption on the Ahlfors regularity of m.
In addition to the density of WP in C(K'), we can obtain the following capacity upper
bound under the p-conductive homogeneity of K if p > dimarc(K,d) and m is Ahlfors
regular.

Proposition 8.21 (Capacity upper estimate). Let p € (1,00) and A € (1,00). Assume
that Assumption 8.6 holds, that K is p-conductively homogeneous, that p > dimagrc(K, d)
and that m is Ahlfors reqular. Then there exists C' € (0,00) such that for any (x,r) €
K x (0,1],

m(Bg(z,r)) |

rdw.p

inf{N,(w)? | w € W?, ulp, @y =1, suppglu] C By(z, Ar)} < C (8.22)

Proof. Let r, € (0,1) and M, € N be the constants in Assumption 8.6. For r € (0, 1],
choose n € N as the minimal positive integer such that co(M, + 1)r? < (A —1)r, where ¢,
is the constant in (8.3). Let x € K and set T, (z,r) = T,[Ba(z,r)] for ease of notation.
Then, by the metric doubling property of (K, d), there exists N € N which is independent
of z and r such that #7T,(x,r) < N. By [Kig23, Lemma 3.18] and its proof, for any
w € T,,(z, r) there exists hyy, ., € WP such that hay, |k, = 1, sSuppg b w] € Un, (w) and
Ny(hag)? S o2 Now we define vy, = Yo, o Bt € WP Then ey = 1,
suppg [Vz.r] € Ba(x, Ar) and

Np(thup )P < NP1 max Ny(har, )P S o = ri @ dee) < pli=duo,
weTy (x,r)

weTy (x,r

Since m is Ahlfors regular and N, (¢, A1) < Ny(¢,,) by [Kig23, Theorem 3,21, we
obtain (8.22). O

The following Poincaré-type inequality for cells is easy.

Lemma 8.22. Let p € (1,00). Assume that Assumption 8.6 holds, that K 1is p-
conductively homogeneous, and that m is Ahlfors reqular. Then there exists a constant
C € (0,00) such that for any f € LP(K,m) and any w € T,

/w f(w)—][wfdm

p ~
m(dz) < Crl®r liminf £ (f). (8.23)

nooo PSS (w)




Contraction properties and differentiability of p-energy forms 109
Proof. Set k = |w|. Recall that lim, e |Qnf — fll1sxm) = 0 as shown in the proof of
Theorem 8.19-(b). Hence, for any n € N, we see that

1

m(K.)

D 1Pk () = Pef (w)|" m(IK,)

vGS”(w)

|Qn+kf — P f (w)[” m(dx)

vES“(w

= ]i |Querf(x) = Pef(w)]” m(dz) —  |f(z) = Pef(w)]” m(dz),  (8.24)

n—oo K
w

where we used Proposition 8.7 in the second equality. By [Kig23, (5.11) in Theorem 5.11|
and (8.10), there exists C' € (0, 00) which is independent of f and n such that

S 1Paekf () = Pef(w) m(K,) < Crboigrgh (). (8.25)

m(Kuw) vES™ (w)
We obtain (8.23) by combining (8.24), (8.25), (8.5) and the Ahlfors regularity of m. [

To upgrade (8.23) to a Poincaré inequality for metric balls in K, we need the following
standard fact.

Lemma 8.23 (|BB, Lemma 4.17|). Let ¢ € [1,00) and let (Y, A, p) be a measure space.
For any f € L'(Y,u) and any E € A with u(E) € (0, 00),

—][Efduq

Now we prove a Poincaré-type inequality in terms of discrete p-energy forms.

dp < 21 inf][ |f —al” du. (8.26)
aeR J p

Proposition 8.24. Let p € (1,00). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors reqular. Then there ezist C,a € (0, 00)
such that for any (x,r) € K x (0,1] and any f € LP(K, m),

/ f—- ][ fdm
Bg(z,r) By(z,r)

Proof. Throughout this proof, M, € N and r, € (0,1) are the same constants as in
Assumption 8.6. Let (x,r) € K x (0,1]. We first consider the case of r € (¢34, 1], where
c3 is the constant in (8.4). By Lemma 8.22 with w = ¢,

p (8.26)
/ f— ][ fdm| dm < 2P /
By(z,r) By(z,r) By(z,r)

p

dm < Cr®™» lim inf £ o T [Ba(z.ar) () (8.27)

k—o00

dm

dm < Chmmf&'“(f)

n—o0
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where C' € (0,00) is the constant in (8.23). Since diam(K,d) = 1, this shows (8.27)
for any A > (c3r,)”!. Hence it suffices to consider the remaining case, i.e., the case
of r € (0,c3r.]. Let n € N satisfy c3r” > r > cgr™™. Set Ty (z5n) = {v € T |
v € 'y, (w) for some w € T, such that = € K, }. Then we see that

[ fw-f  am
U, (z5m) U, (z5n)

<ot 3 (/ (y) — Puf (@) m(dy) +m(K.,)

welyy, (z5n)

< Z ( dehmmfé'ng,]f )(f)—i-?“df

p

m(dy)

p
Puf)~f g )

P
Pof(w) — ][ fam| . (8.28)
Unr, (z;n)
Note that, by Proposition 8.7,

1
P)—f  fdm= s 0 (Bufw) = B0 (629

k—o0

wel pr, (z5n)

vel M, (z3m)

For any w € 'y, (x;n), by choosing w' € 'y, (z;n) \ {w} so that P, f(w) — P, f(w') =
MaXyer,,, (zm) | Pnf(w) — Pof(v)|, we have from (8.29) and Proposition 8.7 that

Puf)~f

Hence, by Hoélder’s inequality, (8.10) and [Kig23, (2.17)],

Puf) =~ fam

< [Puf(w) = P f (w)].

p

< M+ 1P, e (F)

< pwr=d iy inf £ EF (f)- (8.30)

oo PSE(Tar, (zm))

Note that #I'y, (7;n) < LM<*2 by Assumption 8.6-(1) and that S*(Ty.(z;n)) C

Tyir[Ba(w, car™)] € Tpyr|Ba(z, c5 'y 047’)] by Assumption 8.6-(2), where ¢, is the same
as in (8.4). Now we set A == (1V 04)03 7.1, Then, by (8.28) and (8.30),

p
[ - pdm] miay)
U, (z5m) Unr, (z3m)
(8:30) d on+k M.+2,.d <. e ok
S rlimint L ERe,, @) S D i ing €15, an (F):
wel pr, (z5n)
Since
p (8.26) b
[ - gam my < [ g - f  fdm| ma)
By(z,s) Bg(z,r) By(z,s) U, (z5m)
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(8.4)
e[ lw-f  fim
U]W* (z;n) U]V[* (x;n)

we obtain (8.27). O

p

m(dy),

8.2 Self-similar p-energy forms on p-conductively homogeneous
self-similar structures

In this subsection, we construct a self-similar p-resistance form on self-similar structures
under suitable assumptions. Our main result in this subsection, Theorem 8.30, implies
that self-similar p-energy forms constructed in [Kig23, Theorem 4.6] satisty (GC),.

We start with some preparations before constructing self-similar p-resistance forms.
In the following definition, we introduce a good partition parametrized by a rooted tree.

Definition 8.25 (|Kig23, Definition 4.2]). Let £ = (K, S, {F; }ics) be a self-similar struc-
ture, let r € (0,1) and let (j,).es € N°. Define

n
jlw) = iji and g(w) = @ for w=w;...w, € W,.
i=1

Define 7(wy « - - wy,) == wy -+ - wp_q for w =w; ... w, € W, and
ANy={w=wr--w, € W, | g(7(w)) > r* > g(w)}.

Set T = {(k,w) | w € A T = Ukenugoy T and define v: T — W, as 1(k,w) =
w. Moreover, define Epqy C T % T by

Erw = {((k,v), (k+1,w)) € T,gr) X Tk(:)l ke NU{0},v=worv= %(w)},
so that (T, Ey) is a rooted tree ([Kig23, Proposition 4.3]).

In the rest of this subsection, we presume the following assumption on the geometry
of our self-similar structure.

Assumption 8.26. Let £ = (K, S,{F;}ics) be a self-similar structure with #S > 2
and K connected. Set K, = K,y for w € T*(T*) for simplicity. There exist r, €
(0,1) and a metric d giving the original topology of K with diam(K,d) = 1 such that
(K,d,{Ky}peree), m) satisfies Assumption 8.6, where m is the self-similar measure on K
with weight (rJ*%),cs and dy is the unique number satisfying > o ré*% = 1.

Under Assumption 8.26, we have the dg-Ahlfors regularity of m as follows.

Proposition 8.27 (|Kig23, Proposition 4.5]). The value d; coincides with the Hausdorff
dimension of (K,d) and m is d¢-Ahlfors reqular with respect to d.
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To obtain a self-similar p-energy form on L, we first discuss the self-similarity of
WP (recall (5.5)). The following lemma can be shown in exactly the same way as [Kig23,
Theorem 4.6-(1)] although the condition p > dimagrc (K, d) is assumed in [Kig23, Theorem
4.6].

Lemma 8.28. For any u € LP(K,m), any k € NU {0} and any n € N U {0} with
n > maxyew, j(w),

> &Py (uo Fy)) < E(Pou). (8.31)

weWy

In particular, if in addition K is p-conductively homogeneous (with respect to { Ky} et ),
then wo F,, € WP for any u € WP and any w € W,, and hence

WP A C(K) C {ue CK) [uoF, € WP for any i € SY. (8.32)

Similar to the case of p = 2 (see, e.g., [Kig00, KZ92|), we will obtain a self-similar
p-energy form on (£, m) with weight o, == (Jff)seg as a fixed point obtained by applying
Theorem 5.22. To this end, we need the converse inclusion of (8.32) and uniform estimates
on Sy, »(E) for any/some E € U,( WP NC(K)); recall the definition of Sy, ,, in Definition
5.21. These conditions are true if K is p-conductively homogeneous and p > dimarc (K, d)
as described in the following proposition. (This result is essentially proved in [Kig23, Proof
of Theorem 4.6].)

Proposition 8.29. Let p € (1,00) and assume that K is p-conductively homogeneous
(with respect to { Ky }yereo ). If p> dimarc(K,d), then

WP ={ueC(K)|uoF;, € WP for anyi € S}, (8.33)
and there exists C' € [1,00) such that for any E € U,, any uw € WP and any n € N,
CTINL(u)? < Sy n(E)(u) < CNG(u)?. (8.34)

Proof. The uniform estimate (8.34) follows from [Kig23, (4.6) and (4.8)]. (In the proof of
[Kig23], the assumption p > dimarc (K, d) is used to obtain [Kig23, (4.8)].) In the rest of
the proof, we prove

WP D {ueC(K)|uoF, e WP forany i € S} = WE.

(The converse inclusion is proved in Lemma 8.28.) We note that the following estimate
in [Kig23, lines 8-9 in p. 61] is true for every u € WE: there exists a constant C”" € (0, 00)
such that

gg(u) < Z oI IN,(uwo Fy)P = C'Sy, n(NP)(u) for any n € N, u € Wh.  (8.35)

p
'LUGWn

(We need p > dimagrc (K, d) to obtain (8.35) by following the argument in [Kig23, p. 61].)
Taking the supremum over n € N in the left-hand side of (8.35), we have Wi C WP. [



Contraction properties and differentiability of p-energy forms 113

Now we can obtain a desired self-similar p-energy form. The following theorem is a
generalization of [Kig23, Theorem 4.6] taking into account the case of p < dimarc (K, d).

Theorem 8.30. Let p € (1,00). Assume that Assumption 8.26 holds, that K is p-
conductively homogeneous (with respect to {Ky }yere) and that the following pre-self-
similarity conditions hold:

WPNC(K)={ue C(K)|uoF;, e WP for anyi € S}. (8.36)
There exists C' € [1,00) such that (8.34) holds for any w € WP NC(K), n € N. (8.37)

Let o, be the constant in (8.11), set o, = (0190'5)565, let (EA'p, WP) be any p-energy form on

(K, m) given in Theorem 8.19 and set F, = WP N C’(K)Wp. Then there exists {ny }ren C
N with ny, < ngy1 for any k € N such that the following limit exists in [0,00) for any
u € Fp:

E(u) = lim — Z S, (&) (w). (8.38)

Moreover, the following properties hold:

(a) (&, Fp) is a self-similar p-energy form on (L,m) with weight o,, and there exist
ag, a1 € (0,00) such that ag Npy(u)? < Ey(u) < ay N(u)P for any u € F,.

(b) (&, Fp) satisfies (GC),.

(c) (&, Fp) satisfies the strong local property (SL1).

(d) Ifin addition p > dimagrc (K, d), then F, = WP and (€,, F,) is a reqular self-similar
p-resistance form on L with weight o, and there ezist ap, ay € (0,00) such that

aod(z,y)™ < Re,(x,y) < ard(x,y)™  for any x,y € K. (8.39)

Remark 8.31. (1) In the case of p > dimagrc(K,d), the pre-self-similarity conditions,
(8.36) and (8.37), can be dropped by virtue of Proposition 8.29.

(2) On p.-c.f. self-similar structures, self-similar p-energy forms have been constructed
also in [CGQ)22]; we show in Subsection 8.3 below that the self-similar p-energy forms
considered in [CGQ22] are all p-resistance forms (on Vi, and ones on K if the weight
p = (pi)ies of the form satisfies min;cg p; > 1). Note that any p € (1, 00) is allowed in
the framework of [CG()22] unlike that of [Kig23] (see (d) above). While it is extremely
hard to determine the value dimarc(K,d) in general, for a p.-c.f. self-similar set K
typically dimarc(K,d) = 1 (see |CP14, Theorem 1.2] for a sufficient condition for
dimarc(K,d) = 1). In Appendix B.2, we prove that the Ahlfors regular conformal
dimension of any strongly symmetric p.-c.f. self-similar set (see Framework 8.46 and
Definition 8.47 below) is one when it is equipped with the p-resistance metric of a
nice self-similar p-resistance form; the proof is based on the existence of self-similar
p-resistance forms on strongly symmetric p.-c.f. self-similar sets proved in Theorem
8.50 as an extension of [CG(Q)22, Theorem 6.3].

Proof of Theorem 8.30. The existence of the limit in (8.38) and its properties (a), (b) and
(c) are immediate from (8.36), (8.34), Lemma 5.16, Theorem 5.22, Propositions 5.23-(a)
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and 5.24. Let us verify (d). Recall that WP C C(K) by p > dimagrc(K,d) (Theorem
8.16), whence F, = WP. A similar argument as in the proof of Theorem 8.19-(d) shows
that (&,, WP) is a regular p-resistance form on K satisfying (8.39). This completes the
proof. O]

Similar to Theorem 7.9, we can obtain the monotonicity of a;/ P=1) ip p > dimagc (K, d).
Note that the following result is not restricted to p.-c.f. self-similar structures.

Theorem 8.32. Assume that Assumption 8.26 holds. Let p,q € (dimarc (K, d),o0) sat-
isfy p < q, and assume that K is s-conductively homogeneous (with respect to { Ky }yerts) )
for each s € {p,q}. Then

Ullj/(pfl) < U;/(qfl). (8.40)

Proof. The proof is very similar to that of Theorem 7.9. By Proposition 8.29, (8.36) and
(8.34) with s € {p,q} in place of p hold. Let (&, W?) be a self-similar s-resistance form
on L given in Theorem 8.30 for each s € {p,q}. Fix two distinct points xg,yp € K,
set B = {xo,y0} and define h, = % [12] € WP, Then 0 < h, < 1 by the weak
comparison principle (Proposition 6.26) and we can find w € W, satisfying K, N B = ()
and hy,,, == h,o F,, Rl . Similar to (7.14), by using (6.34) and (7.1), we can show that
for any {u,v} € E

|Pnhq,w(u) —Pnh%w( )‘q D < C n(dw,p— df) |

where C' € (0, 00) is independent of n. Hence we have

dWP d 1 n
Eq (hpw) = Z | Pahgw(w) = Pohguw(v)|* < Oy s &y (hpw),
{u,v}eE}
which implies that
(0 LoD/ (- 1>) EM () < CEM () < CN,y ()P (8.41)

By (8.13), there exists C, € (0,00) such that N,(f)? < C, 1rn1nfnﬁoo§q(f) for any
f € LYK, m). This together with (8.41) implies that

N (hy ) lim sup <0;10;q_1)/(p_1)>n < C'Ny(hp )P < 0.

n—oo

Since Ny (hy.) > 0, we obtain aq_laj(gq_l)/(p_l) < 1, which means (8.40). O

We conclude this subsection by applying Theorem 6.36 (elliptic Harnack inequality)
to the p-energy form (&,, F,) in Theorem 8.30 in the case of p > dimagrc(K,d). We
immediately obtain the following corollary by combining Propositions 5.10, 7.11, 8.21,
8.27, (8.4), (8.39) and Theorem 6.36.

Corollary 8.33 (Elliptic Harnack inequality for self-similar p-resistance form). Let p €
(1,00). Assume that Assumption 8.26 holds, that K is p-conductively homogeneous (with
respect to {Ky}ypereo) and that p > dimarc(K,d). Then (E€,,WP) and {T¢,(u) buewr
given in Theorem 8.30 and in (5.11) respectively satisfy the assumptions, and thereby the
property in the conclusion, of Theorem 6.36 with K, m, % in place of X, u, Y (z,s).
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8.3 Self-similar p-resistance forms on p.-c.f. self-similar structures

In this subsection, under the condition (R) in [CGQ)22, p. 18|, we see that the construction
of p-energy forms on p.-c.f. self-similar structures constructed due to [CGQ22| yields p-
resistance forms. The framework in [CGQ)22] focuses only on p.-c.f. self-similar structures,
but allows any p € (1, 00) throughout, and also the choice of the weights of self-similar p-
resistance forms is flexible there so that non-arithmetic weights can arise unlike Theorem
8.30; see Subsection B.1 for a proof that non-arithmetic weights do arise in the framework
of Subsection 8.4 under a mild condition on the p.-c.f. self-similar structure L.

In the following definitions, we recall some classes of p-energy forms on finite sets
considered in [CGQ)22].

Definition 8.34 (|CGQ)22, Definition 2.1]). Let A be a finite set with #A > 2. Let

E:R* — [0,00) and consider the following conditions.

(i) E@f+1—1t)g) <tE(f)+ (1 —1t)E(g) for any f,g € R4 and any ¢ € [0, 1].
(i)  E(tf) =|t|P E(f) for any f € R* and any ¢ € R.

(iii) E(f +tl4) = E(f) for any f € R4 and any ¢ € R.

(iv) E(fT A1) < E(f) for any f € R4,

() {f €RA|B(f) =0} =RI,

We define M,,(A) and M, (A) by
My (A) = {E: R* = [0,00) | E satisfies (i)-(v)}, (8.42)
M, (A) == {E: R* = [0,00) | E satisfies (i)-(iv)}. (8.43)
Definition 8.35 (|CGQ)22, Definition 2.8]). Let A be a finite set with #A4 > 2. For

E\, Ey € M,(A), define a metric A 4y OR M, (A) by

Aty (B, B) = sup{ | Bx (u) — Ex(u) ‘ we R\ Rl osclu] = 1
= sup{|E1(u) — Es(u)] ‘ u € RA,oic[u] < 1}. (8.44)
For ease of notation, we set |E|g7 1) = dg; 4 (E,0) for E € MVP(A).
(1) We define S,(A) € M, (A) by

there exists (cyy)zyea € [0,00) such that

S = (B e | U8 S Fb e e Ry 549

Note that any functional in S,(A) is a p-resistance form on A (see Example 6.3-(3)).
(2) We define Q,(A) € M, (A) by

there exist B D A and E € S,(B) such that

"(A) =< FE¢€ A) | ~ ~ ~ : 8.46
%(4) { Ml )'E‘A:E, where E|A isthetraceoonnA} (8.46)
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Let Q,(A) be the closure of Q' (A) in (./\/lp(A),dep(A)), ie.,

there exists { £, fnen € Q,(A) such}' (8.47)

Qp(A> = {E S MP(A) ‘ that llmn_>oo dﬂp(A)(E’ En) = O

Then we can show that any functional in Q,(A) is a p-resistance form on A.

Proposition 8.36. Let A be a finite set with #A > 2 and let E € Q,(A). Then E is a
p-resistance form on A.

Proof. Note that (RF1),-(RF4), for £ € Q,(A) are clear, so we shall prove (RF5),, i.e.,
(GC),. Let {Eptnen € Q,(A) satisty lim,, o dﬂp(A)(E7En) = 0. Then it is easy to see
that lim,, oo E,(u) = E(u) for any u € R? (see also [CG()22, Lemma A.1]). Since E,
satisfies (GC), for any n € N, we have (GC), for E by Proposition 2.10-(b). O

Next we introduce renormalization operators playing central roles in the construction
of p-energy forms on p.-c.f. self-similar structures. In the rest of this subsection, we
always assume that £ = (K, S, {F;}ics) is a p.-c.f. self-similar structure with #S > 2 and
K connected.

Definition 8.37 (Renormalization operator; [CG(Q)22, Definition 3.1]). Let p, = (pp.i)ies €
(0,00)% and k € NU {0}. For a p-resistance form E on Vj, define p-resistance forms
A, (E): RV+1 — [0,00) and R, (E): R — [0, 00) by'?

Ap,(E)(w) =) ppiE(uoFy), uweR%  and R, (E) = A, (E)

€S

L (848)

(recall Proposition 7.8 and Theorem 6.13). To be precise, Ap,,R,, depend on k, but
we omit it for ease of the notation. By [CGQ)22, Lemma 3.2-(b)|, we have AZP(E)|Vk =

Ry, (E) for any n € NU {0}, i.e.,

Ry (E)(u) = inf{ > ppwE(o Fy)

U}EWn

v € RV yly, = u}, u e R,

The following theorem, which is an adaptation of [CGQ)22, Theorem 4.2|, gives a
necessary and sufficient condition for the existence of an eigenform with respect to R, .
This theorem can be shown by combining [CGQ)22, Lemma 4.4 and Proof of Theorem
4.2] with Proposition 8.36, so we omit the proof.

Theorem 8.38 (Condition for the existence of an eigenform; cf. [CG()22, Theorem 4.2|).
Let p, = (ppi)ies € (0,00)%. Let us consider the following condition (A): there exist

c € (0,00) and a p-resistance form E on Vy such that

i Rgn > Ryn e NU{0}. A
L g () 2 € max Ry () or anyn €NU{O) (A)

12We use different symbols from [CGQ22].




(a)

(d)
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Assume that (A) holds. Then there exists a unique number A = A(p,) € (0,00) such
that the following hold: for any E' € M,(Vy), there exists C € [1,00) such that

C'\"E'(u) < Rj) (E')(u) < CX"E'(u)  for any n € NU{0} and any u € R™.
(8.49)
Assume that (A) holds. Let Ey € Sp(Vo). Forn € N, define E, € Q,(Vo) by

1
n+1

E,(u) = inf{ Z)\finp(Eo)(vh/j) veR™ vy, = u}, u e RY, (8.50)
=0

where X is the number given in (a). Then there exists a subsequence {E,, }ren such
that it converges in the topology induced by d - In particular, there exists F, €

Q,(Vo) such that
E.(u) = lim E, (u), u€ RY. (8.51)
—00

Assume that (A) holds. Let Ey € S,(Vy), let E. € Q,(Vy) be given by (8.51) and

let A be the number given in (a). Then {A*IRZP(E*)(U)}ZGNU{O} is non-decreasing for
any u € R and R, (EZEO)) =AY, where £ € Q, (Vo) is given by

EO(y) = Jim AR, (B)(u), ueRY. (8.52)
—00

p

Assume that there exist A € (0,00) and a p-resistance form E on Vy such that
Rp,(E) = AE. Then (A) holds.

Remark 8.39. (1) If p, satisfies (A) for some p-resistance form E on V1, then by

[CGQ22, Lemma 4.4-(a)], for any p-resistance form E on Vj there exists ¢ € (0, 00)
such that (A) with F,¢ in place of E, ¢ holds. Hence (A) is a condition relying only
on p,.

The assertion & € Q,(Vp) follows from (8.52). Indeed, for any n,l € NU {0}, by
(5.2) and Proposition 6.15, one can see that

1 < o
l _ —j AL+
R, (En) = (n - ;/\ JAPPJ(EO)>

Let € > 0. Then for all large enough k£ € N, we have

€ Q,(Vo).

Vo

|E'(u) — E,, (u)] <& whenever u € R" satisfies osc[u] < 1.

Vo

For such k € N and u € R", since (6.32) implies

AL (E") AL (Eny) ]
P < P <
osc [hvo [u]] < o%c[u], osc [hvo [u] | < o%c[u],
we have
Ri,p(E’)(u) - Ri,p (Enk)(u)‘ <e Z Ppw  Whenever u € R satisfies osc[u] < 1.

Vi
weW) 0

This shows that dgy .\ (R}, (E), Ry, (Ey,)) — 0 as k — oo, whence it follows that
’Ri,p(E’) € 9,(Vp). Therefore, & e 9,(Vo).
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In the rest of this subsection, we fix p, = (pp.)ics € (0,00)%.

important conditions on p,, following [CG()22, Section 5]:

Let us introduce two

(A’) There exists a p-resistance form &Y on V; such that Rp, (é}go)) = &0,
(R) ((A’) holds and) min;eg p,; > 1.
Note that by Theorem 8.38, (A’) implies (A), and (A) implies that A\™'p, satisfies (A’)
for some A € (0, 00).

The following proposition is important to construct a self-similar p-resistance form as
an “inductive limit” of discrete p-resistance forms as presented in [CG()22, Proposition

5.3], which is an adaptation of the relevant pieces of the theory of resistance forms due to
[KigO1, Sections 2.2, 2.3 and 3.3].

Proposition 8.40. Assume that (A’) holds. Define M = Ay, (5;0)), i.e.,

EZE") (u) = Z pp7w€1§0)(u oF,), ucR"™. (8.53)

weWy,

n+m)‘v = 5,§”) for any n,m € NU{0}, i.e.,

{(Vn,&g"))}n>0 15 a compatible sequence of p-resistance forms.

Then 51(,”) s a p-resistance form on 'V, and S,S

Proof. We will show 8§”+m)|v =&, (See [KigO1, Proposition 3.1.3] for the case of
p=2.) It suffices to prove &' = g™ for any n € NU {0} by virtue of Proposition
6.15. Note that the case of n = 0 is true by R,, (51(,0)) =& and that

SIS"H)(u) = me 5;") (uo Fy), forany n € NU{0} and u € RV, (8.54)

€S

Assume that E,Em) ‘v = SZS’”‘” for some m € N. Then for any u € R,

m (8.54) m—
EMw) "= ppi & (wo F)

€S

i€S
(52 min{me 515’”)(@ oF) |ve R oy, = u}
ies

8.54) . m "
29 mm{é‘lg ) (v) ‘ v € RV oy, = u} = &! +1)|Vm(u),
which completes the proof. O

We can naturally construct a p-resistance form as an inductive limit on the countable
set V, as described in the following proposition.
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Proposition 8.41. Assume that (A’) holds and let {(Vn,gén))}wo be the compatible
sequence of p-resistance forms given in Proposition 8.40. Define a linear subspace F, . of
RY and &, .: Fp. — [0,00) by

Fps = {u c R" }S”)(u|vn) < oo}, and (8.55)
Epilu) = lim. EM(uly,), u€ Fpu (8.56)

Then (&, Fp«) is a p-resistance form on Vi satisfying &, .|v, = 8,5") for anyn € NU{0}.
Moreover, the following self-similarity properties hold:

Fps ={u€RY |uoF; € F,, for any i€ S}, (8.57)
u) = Z Ppi Eps(uo Fy)  for any u € F, .. (8.58)
ies

If in addition (R) holds, then for any u € F, . there exists a unique u € C(K) such that
uly, =u, and {u | v € F,.} is dense in C(K).

Proof. It is immediate from Theorem 6.21 that (€, ., F,.) is a p-resistance form on V,
with &, .|y, = g™ . By the definition in (8.53), it is easy to see that for any n, k € NU{0}
and any u € R,

S;zgnJrk (ulv,,\) = Z Py € UOF v.,)-

weWy,

This immediately implies (8.57) and (8.58). The existence of unique continuous exten-
sions of functions in F, . under (R) is proved in [CG()22, Theorem 5.1-(b)|. A standard
argument using the Stone-Weierstrass theorem shows that ¢ == {u | u € F,.} is dense
in C(K). Indeed, ¥ is an algebra since F, . is also an algebra by Proposition 2.3-(d).
For any =,y € K with = # y, choose n € N and v,w € W, so that = € K,,y € K, and
K,NK, = 0. (Such n,v,w exist by (5.3).) Then, by setting v = h‘:’;’;* (15, (v, we see that
Ypy = U € € satisfies g, () = 1 and ¢,y (y) = 0, so we can use the Stone-Weierstrass
theorem to conclude that ¢ is dense in C'(K). O

To extend (&, Fp.) to a p-energy form defined on K, we need to specify how to
regard functions in F, . as functions defined on K, which is indeed a delicate problem and
discussed in [CGQ22, Theorems 5.1 and 5.2]. In this paper, we are mainly interested in
the case where F,,, can be embedded into C'(K). In other words, we always assume that
(R) holds. (See [CGQ)22, Theorem 5.2] and [KS | a, Appendix| for details on a situation
when we can identify a function u € R"* satisfying lim, o £ (uly, ) < 0o with a function
on K without (R).) To state a construction of self-similar p-resistance forms under (R),
we need the following lemma.

Lemma 8.42. Assume that (A’) and (R) hold. Let (€,., Fp.) be the p-resistance form

on V. given in Proposition 8.41. Then idy,: (Vi, R}gﬁp) — K is uniquely extended to the
completion, which gives a homeomorphism.
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Proof. The proof is very similar to arguments in [KigO1, Proposition 3.3.2, Lemma 3.3.5
and Theorem 3.3.4]. Let (K,d) be the completion of (V*,Rl/p ) and let (@,,*,]—/zp’*)
be the p-resistance form on K defined by (6.27) and (6.28), where we choose S =
{(Vn,&gn))}neNU{o}. Also, we fix a metric d on K which gives the original topology of

K. Recall that R;A/p = gby Corollary 6.23. For n € N, we define

O, = min inf R, x )
" V,WEW; KyNKw=0 \ 2€F, (Vi),y€Fw (Vi) 5”’*( ’y)

Then 6, > 0 since Rg, , (2,y) > &, . (hf};’*[]lpw(vo)])_l for any (z,y) € F,(Vi) x Fy,(Vi). Let
{zy }n>0 be a Cauchy sequence in (V4 Régp*) For each n € N, choose N(n) € N so that
sup  Rg,, (wr, 21) < 0y
kI>N(n)
Then there exists w € W, such that {x;}i>nm) C UUGW” KoKz Fo (Vi) = A
Since lim,,_,o maxew, diam(A, ,,d) = 0 by (5.3), we conclude that idy, : (Vi, Rl/p)
(Vi d

v.xv. ) is uniformly continuous. Now we define 6: (K : d) (K, d) as the unique con-
v, = idy,. Let us show that 6 is injective. Assume that z,y € K
satisfy 0(x) = 0(y). Let {,}n>0, {¥n}n>0 be Cauchy sequences in (V;,R}ggp*) satisfying

lim,, o0 c/l\(:p, Tp) = lim,,_ o c/l\(y, Yn) = 0. Then lim, ., d(0(x), z,) = lim, 0 d(0(y), yn) =
0 since # is continuous. For any u € ﬁpﬁ*, let w, € C(K) be the unique function satisfying
Unlv, = hf};* [u]y;, ], which exists by Proposition 8.41. Also, let v, € C(K) be the unique
hf/i‘* [u]y, ]; recall the proof of Theorem 6.22. Then we see that

on(x) = lim A2 [u)(z) = Bu(6(x)) = Bu(8(y)) = lim hy? [u](ye) = valy).  (8.59)

k—o0 Vn k—o0

Let us fix 0 € Vy C V,,. By (6.3) for (5p*7]?p,*)7

~ 5 €.
u(z) — va(2)]” < Rg, (2,0)&p(u— ) = Rg, (v,0)E.(ulv. — /" [ulv,]),

which together with (6.18) and (8.59) implies that

u(z) = lim v, (2) = lim v,(y) = u(y).
Since u € .7?,,7* is arbitrary, we conclude that Rgp (z,y) = 0 and hence x = y. This means
that @ is injective. 7
Next we see that {F;};cs yields a family of contractions on the complete (non-empty)
metric space (K, d) By virtue of (8.58), similarly to the proof of (7.1), one can show
that for any w € W, and any z,y € Vi,
d(Fu(@), Fu(y))? = R, (Fu(@), Fuly)) < ppuBe, (2.9) = ppud(z,y)”

Py*
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In particular, F,|v.: (Vi,d 1) — (V*, d) is uniformly continuous, and hence there exists a
. Then it is clear that

unique continuous map £ K. K — K such that FK |v

J(Ff(x), Ff(y)) < Dpad 1rd(z,y) for any z,y € K, (8.60)

and that QoFK F,,00. Now, by (R) and (8.60), {F}R}ies is a family of contractions on
(K, d) By [Klo 01, Theorem 1.1. 4] there exists a unique non-empty compact subset K
of K such that Ko = |J,_g FE(K,). Let us fix 0 € Ko and set A == Uwew. FE (o) C K.
Then 0(A) = U,ew. Fu(f(0)) is dense in (K, d) by (5.3). Since 6(A) C 0(Ky) C K and
le/(\'o) is compact by the continuity of 6, we have 6(Ko) = K and thus §(K) = K. Then
K turns out to be compact since K = K, by the injectivity of . Now 6 turns out to be a

homeomorphism between K and K. From the uniqueness of #, we conclude that K=K
and # = idg. We complete the proof. O

The following theorem describes a construction of a self-similar p-resistance form as
the inductive limit of {8 }n>0 under the condition (R).

Theorem 8.43. Assume that (A’) and (R) hold. Let {(Vn,é}g”))}wo be the compatible
sequence of p-resistance forms given in Proposition 8./0, and define

F, = {u € O(K) | Tim £ (uly,) < oo}, (8.61)
&(u) = lim EM(u), u€ T, (8.62)

Then (&, F,) is a reqular self-similar p-resistance form on L with weight p,, Elv, = 815”)
for any n € NU {0}, and R¢, is compatible with the original topology of K.

Remark 8.44. Similar to Proposition 5.23, by choosing a suitable Ey € S,(Vp) in Theo-
rem 8.38, we can verify nice properties like the symmetry-invariance (see (9.7) for details)
of E, in (8.51), & in (8.52) and &,. See also Theorem 8.51.

Proof of Theorem 8.43. By Lemma 8.42 and Corollary 6.23, (£,, F,) is a p-resistance form
on K. The self-similarity conditions, (5.5) and (5.6), for (&,, F,) are obvious from Propo-
sition 8.40. By Lemma 8.42 and Proposition 8.41, Rg, is compatible with the original
topology of K and (&,, F,) is regular (recall Definition 6.5). O

Let us recall the following proposition, which is useful to verify (R) for concrete
examples.

Proposition 8.45 (|CGQO)22, Lemma 5.4|). Assume that (A’) holds. If w € W, \ {0}
satisfies W™ = www ... € P, then py,, > 1.
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8.4 Existence of eigenforms on strongly symmetric p.-c.f. self-
similar sets

Let us conclude this section by showing (A) for a special class of p.-c.f. self-similar sets
called affine nested fractals, which was introduced in [FHK94] as a generalization of the
class called nested fractals introduced by Liondstrgm [Lin90]. More precisely, we will
work in a wider class called strongly symmetric p.-c.f. self-similar sets. The proof of
(A) for affine nested fractals was given in [CGQ)22, Theorem 6.3], but their description
on the group of symmetries in the paper [CG()22] is not sophisticated!®, so we provide
the details of the proof for (A) and improve the assumptions in [CG()22, Theorem 6.3|
simultaneously in Theorem 8.50.

We start with recalling the definitions of a group of symmetries, affine nested fractals
and strongly symmetric p.-c.f. self-similar sets. See, e.g., [Kig01, Section 3.8| for details.

Framework 8.46. Let D € N and let S be a non-empty finite set with #S > 2. Let
{cities C (0,1), {aities € RP and {U;}ics € O(D), where O(D) is the collection of
orthogonal transformations of R”. Define f;: R? — R” by fi(z) = c¢;Uyx + a; for each
i € S. Let K be the self-similar set associated with {f;}ics, set F; == fi|x for each i € S
and assume that £ = (K, S, {F;}ics) is a p.-c.f. self-similar structure. We also assume
that K is connected, M = #(V;) < oo and Zf\il ¢ = 0, where ¢; € R” is defined so
that Vo = {¢:}M,. Let d: K x K — [0,00) be the Euclidean metric on K given by

Definition 8.47 (|KigO1, Definitions 3.8.3 and 3.8.4]). (1) We define

w € W, there exists w’ € W,, such that

g € O(D), for any n € NU {0} and any}
9(Ky) = Ky and g(F,,(V)) = Fur (Vo)

gsym([') = gsym = {g’K

where O(D) denotes the orthogonal group in dimension D. Note that for any g € Geym
and any w € W,, a word w’' € W, satisfying |w| = |w'| and g(K,) = K, is uniquely
determined. In particular, the map 7,: W, — W, defined by 7,(w) = w’ gives a
bijection such that |7,(w)| = |w| for any w € W,.

(2) For x,y € RP with = # y, let g,,: RP? — RP be the reflection in the hyperplane
{zeRP ||z — 2=y — 2]}

(3) Let m, = #{|lz —y| | x,y € Vo,x # y} and Iy .= min{|z — y| | z,y € Vo, z # y}. We
define {I;}7" inductively by ;41 = min{|z — y| | 7,y € Vo, |z — y| > I;}.

(4) Let m € NU {0} and (z;); € (V;)". Then (x;), is called an m-walk (between x;
and x,) if and only if there exist w,... , w™ € W,, such that {z;, z; 11} C F,:(Vp) for
alli € {1,2,...,n—1}. A O-walk (x;), is called a strict 0-walk (between z; and z,)
if and only if |x; — x;41| = [y for any i € {1,2,...,n — 1}.

BFor a group of symmetries, say G, one of the essential properties that is needed to prove the G-
invariance of the resulting self-similar p-energy form is Proposition 8.49-(2). We have to be careful
whether this property holds for G, but this point is not taken care of in [CGQ22].
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(5) L is called a strongly symmetric p.-c.f. self-similar set if and only if it satisfies the
following four conditions:
(SS1) For any z,y € Vi with x # y, there exists a strict 0-walk between x and y.
(SS2) If z,y,z € Vo and |z —y| = |z — 2|, then there exists g € Gsm such that
g(z) =z and g(y) = 2.
(SS3) For any i € {0,...,m, — 2}, there exist x,y,z € Vj such that |z —y| = [,
|I - Z| = li-‘rl and gyz|K € gsym'
(SS4) Vj is Geym-transitive, i.e., for any =,y € V with = # y, there exists g € Geym
such that g(z) = y.
(6) L is called an affine nested fractal it g,y|x € Gsym (L) for any z,y € V with = # y.

Remark 8.48. In [Kig01, Definitions 3.8.3 and 3.8.4|, the following group of symmetries
Gs is used instead of Ggym:

9

gs = {9|K

note that Ggymy € Gs. Under the assumption that

g € O(D), for any n € NU{0} and any w € W,
there exists w' € W, such that g(F,,(Vp)) = Fu (Vo)

#(F;(Vo) N F;(Vp)) <1 for any ¢,5 € S with i # j, (8.63)

we know that Ggy, = G, by [KigO1, Proposition 3.8.19]. The difference between Ggyp, and
Gs does not affect the arguments in the parts of [CGQ22, KigO1] (Proposition 8.49 and
Theorem 8.50 below) that we need.

Let us recall a few properties of Ggm and of affine nested fractals in the following
proposition, which can be shown in the same ways as in [Kig01, Section 3.8]. (Let us
emphasize that we do not assume (8.63) unlike [Kig0O1, Section 3.8].)

Proposition 8.49 (|Kig01, Propositions 3.8.7, 3.8.20 and Lemma 3.8.23|). (1) IfL is an
affine nested fractal, then it is a strongly symmetric self-similar set.

(2) Let w e Wy, g € Gsym and set
Ugw = FJ,l ogo [,

where w' € W, is the unique word satisfying Fy (Vo) = g(F(Vo)). Then Uy € Gsym.
(3) Let a,b € Vi and assume that gup|x € Geym. If x,y € F,(Vo) for some w € W,,
|z —b|] < |z —al| and |y —b| > |y — a|, then guw(Ky) = K.

Now we can present the following theorem proving the existence of an eigenform on
Vo for strongly symmetric self-similar sets and improving [CGQ)22, Theorem 6.3]. Note
that the case p = 2 corresponds to the existence of a harmonic structure on £ in [Kig01,
Theorem 3.8.10].

Theorem 8.50. Assume that L is strongly symmetric. If

Ppi = Ppir forany i € S and any g € Geym, (8.64)
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where i € S is the unique element satisfying Fy (Vo) = g(F;(Vo)), then p, satisfies (A).
In particular, if there exists p, € (0,00) such that p,; = p, for any i € S, then (A’) and
(R) with (/\(pp)_lpp)ies in place of p, hold, where \(p,) is the number given in Theorem
8.98-(a).

Proof. The proof is essentially the same as [CG()22, Proof of Theorem 6.3|, but we give the
details of it since we weaken the assumption of [CG()22, Theorem 6.3]. For n € NU {0},
define E,,, € S,(V,,) by

By = Y o S lu(Fu(@) —u(Fu)f, uwe R,

weWn x,y€Vo;|z—y|=lo

Note that, by Proposition 8.49-(2) and (8.64), E, ,, is Gsym-invariant, i.e., E, ,(uogly,) =
E,.(u) for any u € R and any g € Geym. We fix a1, as € V that satisfy |a; — as| = o
and claim that for any n € N and any x,y € Vy with x # y,

1

§REp,n (a’lv a2) < REp,n (xvy) < (#%)pREp,n (alu 0’2)7 (865>

which implies (A) for p, with ¢ = 2(#V,)P.

We first show the upper estimate in (8.65). Let (x;)%, € (Vp)**! be a strict 0-
walk between x and y. Then, by (SS2), (5SS4) and the Ggyy-invariance of E, ,, we have
Rg,., (i, xiy1) = Rp, (a1, az) for any i € {0,...,k — 1}. Hence we see that

k-1
R, (x,y)""" <> R, (v, 2:1)"" = kR, (a1,02)"" < (#V0) R, , (a1, a2)'",
i=0
which shows the desired estimate.

Next we prove the lower estimate in (8.65). The case of |z — y| = [y is clear by (SS2),
(SS4) and the Ggyp-invariance of E,,,, so we assume that |z —y| > lp. By (SS1), there
exists 2z € Vp such that |z — z| = ;. Define u € R by

Epn . :
u(a) = hg,z}[]lx](a) if a € V, satisfies |a — z| < |a — 9|,
hew iy [La](gy2(a)) if a € V,, satisfies |a — z| > |a — y/,

which is well-defined since Theorem 6.13 implies h%:;} [1.](a) = 1/2 whenever |a — z| =
la —y|. Since |z —z| = Iy < |xr —y|, we have u(x) = hg’;}[]lx](x) = 1. Also, u(y) =

hﬁf}’;} [1.](9y-(y)) = 0. Hence Rg, ,(x,y) > E,,(u)"'. Now we define Hy,, = {a € V, |

la —z| <l|a—vyl|}, Hyp ={a €V, ||a—z| >|a—y|} and we see that

E

pn(U) = Z + Z + Z PpwEpo(uo Fulv)

weWn; weWn; weWn;
Fuw(Vo)CH1,n  Fuw(Vo)CH2n  Fu(Vo)ZH;in
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Epn
=2 Z PpwLipo (h{;;z} [1z] o Fw|Vo> + Z PpwEpo(u o Fulv).
wEWn; weWn;
Fu(Vo)CHin Fuw(Vo)ZHin

To estimate the second term in the right-hand side in the above equality, let a,b € V}
satisfy |a —b| = ly, |Fw(a) — z| < |Fy(a) —y| and |Fy,(b) — z| > |F,(b) —y|. Then we
have g,.(F., (Vo)) = F,(Vo) by Proposition 8.49-(3). This along with the minimality of [,
implies that g,.(F,(a)) = F,(b), whence it follows that u(F,(a)) = u(F,(b)). Hence

Yo ppwBpowoFulv) = D e > |u(Fu(a)) — u(Fu (b))

weWn: WEWn; a,b€ Vosla—bl=lo,
Fy(Vo)ZHin Fu(Vo)ZHin {Fuw(a),Fuw(b)}SHin
Or{Fw (a‘)7F’LU (b)}gH27n

<2 Y (R0 Fulva).
’wEWn§
Fw(VO)gHz,n

and we deduce that

1

-1
Rg,, (z,y) > Ep,n(u)fl > -Epn <h%§} []lw]) = éREp,n(al,Cm)’

1
2
completing the proof. O

The following theorem gives symmetry-invariant self-similar p-resistance forms on
strongly symmetric self-similar sets.

Theorem 8.51. Assume that L is a strongly symmetric p.-c.f. self-similar set and that
(A7), (R) and (8.64) hold. Then there exists a self-similar p-resistance form (&,, F,) on
L with weight p, such that uo g € F, and E,(uo g) = Ey(u) for any u € F, and any
g e gsym-

Proof. Define Ey € S,(Vy) by Eo(u) =3, ey, [u(z) — u(y)[” for u € RY. Then Ey(u) =
FEy(uog) for any u € RY and g € Giym. By Theorem 8.50 and explicit expressions (8.50),
(8.51) and (8.52), there exists a p-resistance form & on Vj such that Rop, (5}20)) =& and
5120) (u) = E,SO)(u o g) for any u € RY and any g € Goy. The desired symmetry-invariance
for (€,, F,) is immediate from (8.64), Proposition 8.49-(2), the fact that 7,|w, : W, — W,
is a bijection for any n € NU {0}, and the expressions (8.61), (8.62). O

9 p-Walk dimension of Sierpinski carpets/gaskets

In this section, we prove the strict inequality dy,, > p for the generalized Sierpinski
carpets and the D-dimensional level-/ Sierpinski gasket as an application of the nonlinear
potential theory developed in Sections 6 and 7. In particular, we remove the planarity in
the hypothesis of the previous result [Shi24, Theorem 2.27|.
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9.1 Generalized Sierpinski carpets

Following [Kaj23, Section 2|, we recall the definition of the generalized Sierpiriski carpets.

Framework 9.1. Let D, € N, D > 2,1 > 3 and set Qg == [0,1]”. Let S C {0,1,...,1—
1}P be non-empty, define f;: RP? — RP by fi(z) == 7Y% + [~'z for each i € S and set
Q1 = Ues fi(Qo), so that Q1 C Q. Let K be the self-similar set associated with {f;}es.
Note that K C Q. Set F; = f;|k for each i € S and GSC(D,,S) = (K, S,{F;}ics). Let
d: K x K — [0,00) be the Euclidean metric on K normalized so that diam(K,d) = 1,
set d = log;(#5S), and let m be the self-similar measure on GSC(D, [, S) with uniform

weight (1/#S5)ies-

Recall that dr is the Hausdorff dimension of (K, d) and that m is a constant multiple
of the d¢-dimensional Hausdorff measure on (K, d); see, e.g., [KigO1, Proposition 1.5.8 and
Theorem 1.5.7]. Note that dy < D by S € {0,1,...,1 —1}7.

The following definition is due to Barlow and Bass [BB99, Section 2|, except that
the non-diagonality condition in [BB99, Hypotheses 2.1] has been strengthened later in
[BBKT] to fill a gap in [BB99, Proof of Theorem 3.19]; see [BBKT, Remark 2.10-1.] for
some more details of this correction.

Definition 9.2 (Generalized Sierpinski carpet). GSC(D, 1, S) is called a generalized Sier-

puniski carpet if and only if the following four conditions are satisfied:

(GSC1) (Symmetry) f(Q1) = @, for any isometry f of R with f(Qo) = Q.

(GSC2) (Connectedness) Q)q is connected.

(GSC3) (Non-diagonality) intgo (Q1 N [T5, [(ix — ex)l ™, (i, + 1)I71]) is either empty or
connected for any (ix)P_, € ZP and any (g;,)2_, € {0,1}.

(GSC4) (Borders included) [0,1] x {0}P~! C Q.

See |[BB99, Remark 2.2] for a description of the meaning of each of the four conditions
(GSC1), (GSC2), (GSC3) and (GSC4) in Definition 9.2. To be precise, (GSC3) is slightly
different from the formulation of the non-diagonality condition in [BBK'T, Subsection 2.2],
but they have been proved to be equivalent to each other in [Kajl0, Theorem 2.4|; see
[Kaj10, Section 2| for some other equivalent formulations of the non-diagonality condition.

In this subsection, we assume that GSC(D,[,S) = (K, S,{F;}ics) as introduced in
Framework 9.1 is a generalized Sierpiriski carpet as defined in Definition 9.2.

We next ensure the existence of a symmetry-invariant p-resistance form on GSC(D, [, S)
for p > dimagrc (K, d) by applying Theorem 8.30.

Definition 9.3. We define

Go = {flic | f is an isometry of R”, £(Qo) = Qo (9.1)

which forms a finite subgroup of the group of homeomorphisms of K by virtue of (GSC1).

Corollary 9.4. Let p € (dimarc(K,d),00). Then Assumption 8.26 holds with r, = 17!,
K is p-conductively homogeneous, and there exists a reqular self-similar p-resistance form
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(&, WP) on GSC(D, 1, S) with weight (0,)ies such that it satisfies the conditions (a)-(d)
of Theorem 8.30. Moreover, (E,, WP) has the following property:

If ue WP and g € Gy then wo g € WP and Ey(uo g) = E,(u). (9.2)

Proof. Assumption 8.26 and the p-conductive homogeneity for the generalized Sierpinski
carpets in the case p € (darc, 00) follow from [Kig23, Theorem 4.13] or [Shi24, Proposition
4.5 and Theorem 4.14|. Let (£,,WP) be a self-similar p-resistance form given in Theorem
8.30. Then the desired properties except for (9.2) are already proved. We can easily
see that g}?(f og) = g’;}(f) for any f € LP(K,m), any g € Gy and any n € N U {0},
and that the conditions (5.44)-(5.46) with Gy in place of 7 hold. Hence the desired
symmetry-invariance (9.2) follows Theorem 8.19-(c), (8.38) and Proposition 5.23-(b). O

Recall that o, and dy,, are defined for any p € (0,00) (under Assumption 8.26). We
know the following monotonicity on dy ,/p in p € (0, 00).

Proposition 9.5. dy, ,/p > dy ,/q for any p,q € (0,00) with p < q.
Proof. This follows from [Kig20, Lemma 4.7.4] and the fact that d; = log;(#5). ]

The following definition is exactly the same as part of [Kaj23, Definition 3.6].

Definition 9.6. (1) We set Vi = K N ({e} x RP™!) for each ¢ € {0,1} and U, =
KN\ (Vg UVg).

(2) We define g. € Gy by g. = 7|k for each ¢ = (g,)P_, € {0,1}7, where 7.: RP? — RP
is given by 7.((x)2_,) = (e, + (1 — 2e1)zy)P_,, and define a subgroup G, of Gy by

G :={g. | e € {0} x {0, 1}P°'}. (9.3)

In the rest of this subsection, we fix p € (darc,o0) and a self-similar p-resistance
form (&,,WP) in Corollary 9.4. Recall Theorem 6.13 and let hy = h“g/”ouvl []lvol] € Wr.
0 0

The strategy to prove dy,, > p is very similar to [Kaj23], that is, we will prove the non-
Ep-harmonicity on Uy of hy = Y7 . (Fu)«(I7%ho + ¢i’'1x) € WP, which also satisfies
holyg =i (i =0,1). (See [Kaj23, Figures 2 and 3] for illustrations of hg and of hy.) Then
the strict estimate dy, , > p will follow from &,(hg) < &,(h2) and the self-similarity of &,.
Our arguments will be easier than that of [[Kaj23] by virtue of WP C C(K).

The next proposition is a key ingredient. Note that it requires our standing assumption
that S # {0,1,...,1 — 1}P, which excludes the case of K = [0,1]? from the present
framework.

Proposition 9.7. Let hy = Y, . (Fu)«(I7%ho + ¢{'1g) € WP. Then hy is not &,-
harmonic on Uy and helys =i for each i € {0,1}.

Proof. The proof is a straightforward modification of [[{aj23, Proposition 3.11| thanks to
Theorem 6.13. We present here a self-contained proof for the reader’s convenience.
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We claim that, if hy were £,-harmonic on Uy, then hy € WP would turn out to be
&y-harmonic on K \ V', which would imply by combining with Proposition 6.11 that
Ep(ho) = Ey(ho; ho) = 0, which would be a contradiction by (RF1), and WP C C'(K).

For each ¢ = (g)2, € {1} x {0,1}P7, set U* == K N [[y(ex — L,ex + 1) and
K = KN lex — 1/2,ex + 1/2]. Fix ¢. € WP N Co(U?) so that o e = lg-,
which exists by (8.17), (RF1), and (RF5),. Let v € WP N C.(K \ V) and, taking an
enumeration {e®1}22" of {1} x {0,1}”~! and recalling Proposition 2.3-(d), define v, €
WPNC,(U?) for e € {1} x {0,1}P~ by v.) == vp.) and v = v k) Hf;ll(]lK — Pe))
for k € {2,...,2P71}. Then v — Zae{l}x{O,l}fFl Ve = UHae{1}x{0,1}D*1(]lK — ) EWPN
Ce(Up), hence &,(ho;v) = >° 11501301 Ep(ho; v=) by Proposition 6.11 (with Y = K\ Uj).
Therefore the desired &,-harmonicity of hy on K \ Vy would be obtained by deducing that
E(hg;ve) = 0 for any ¢ € {1} x {0,1}P~L.

To this end, set €@ = (1yy(k))E_,, take i = (ix)P; € S with 4y < [ — 1 and
i+e© ¢ S, which exists by # # S € {0,1,...,1— 1}’ and (GSC1), and let ¢ = (g;,)2_, €
{1} x {0,1}P~1. We will choose i¢ € S with Fy-(e) € F;(K n ({1} x (0,1)P71)) and
assemble v, 0 g, 0 F.;! with a suitable g,, € G; for w € Wy with Fj;-(g) € K, into a function
Vea € WP N C.(Up). Specifically, set =" := ((l — DLy (k) + 1 —er) + (28 — 1)nk)kD:1
for each n = (n,)P_, € {0} x {0,1}P~! and I* == {n € {0} x {0,1}¢71 | i7" € S}, so that
i€ == %2 € S by (GSC4) and (GSC1) and hence 0p € I¢. Thanks to v. € WP N C.(U?)
and i +¢® & S we can define v. 5 € C(K) by setting

for each w € Wa. (9.4)

| v.ogpo Fyt ifpelf and w = "
v =
S ) if w ¢ {ii" | n € I}

Then suppy[ves] € K; \ Vi C Uy by (9.4) and iy < [ — 1. In addition, v.5 0 F,, € WP
for any w € Wy by (9.4), v. € WP and (9.2). Thus v.» € F, by (5.5) and therefore
v.2 € WP N C.(Up). Recall that hy o F, = [72hg + ¢ 1 for any w € Wy and note that,
by the uniqueness in Theorem 6.13, hg o g, = ho for any n € I°. Then we have

hzyvez ZU2Z 20-Dg ho,UeOgn>

nele

= Zazl 20D (ho 0 gy v2) = (#Is)aild(p*l)ﬁp(ho;vg). (9.5)

nele

Now, supposing that hs were £,-harmonic on Uy, from (9.5), #I1¢ > 0, v.» € F, N C.(Up)
and Proposition 6.11, we would obtain &,(hg;v.) = o, 2P~ 1)(#[5) e (hg,v&g) = 0,
which would imply a contradiction as explained in the last two paragraphs. O

Theorem 9.8. d,,, > p for any p € (0,00).

Proof. 1t suffices to prove the case of p € (darc, 00) by Proposition 9.5. Let hg, hy € WP
be as in Proposition 9.7. By Proposition 9.7, we have &,(hy) < &,(h2). This strict
inequality combined with (5.6) shows that

Eplho) < E(ha) = (0,(#S)177)°E,(ho),



Contraction properties and differentiability of p-energy forms 129

whence 7 < 0,(#S5). Since o, = [™»~% and dy = log (#S)/logl, we get dy, =
log (0,(#5))/logl > p. O

9.2 D-dimensional level-/ Sierpinski gasket
Following [Kaj13, Example 5.1|, we introduce the D-dimensional level-l Sierpiriski gasket.

Framework 9.9 (D-dimensional level-/ Sierpiniski gasket). Let D,l € N, D > 2/ [ > 2
and let {gx}2_, € RP be the set of the vertices of a regular D-dimensional simplex so
that qo,...,qp_1 € {(21,...,2p) ERP | 2y =0} and ¢p € {(21,...,2p) € RP | z; > 0}.
Further let S := {(i)f, | i € NU {03,320 i <1 — 1}, and for each i = (iy)f, € S
we set ¢ = qo+ Yory I Vir(qr — qo) and define f;: RP? — RP by fi(z) = g + 1" (z — qo).
Let K be the self-similar set associated with { f;}ics and set F; == f;|x. Let SG(D,[,S) =
(K, S,{F;}ics), which is a self-similar structure. Let d: K x K — [0, 00) be the Euclidean
metric on K normalized so that diam(K,d) = 1, set d; == log;(#5), and let m be the
self-similar measure on SG(D, [, S) with uniform weight (1/#5S5);cs.

SG(D,1,95) is clearly an affine nested fractal (recall Framework 8.46 and Definition
8.47), and called the D-dimensional level-l Sierpiriski gasket. In the rest of this subsection,
we fix the Sierpinski gasket SG(D, [, S) and the self-similar measure m as in Framework
9.9. We can easily verify [Kig23, Assumption 2.15| for SG(D,,S). In addition, it is well
known that m is dg-Ahlfors regular (see |Kig23, Proposition E.7| for example). Similar
to Corollary 9.4, we have a symmetry-invariant p-resistance form on SG(D, [, S) for any
p € (1,00). (The Ahlfors regular conformal dimension of (K, d) is 1; see Theorem B.8.)

Definition 9.10. We define
Go = {flx | £ is an isometry of R”, f(Vo) = Vi}, (9.6)

which forms a finite subgroup of the group of homeomorphisms of K.

Corollary 9.11. Let p € (1,00). Then Assumption 8.26 holds with r, = 7', K
18 p-conductively homogeneous, and there exists a reqular self-similar p-resistance form
(Ep, WP) on SG(D, 1, S) with weight (0,);es such that it satisfies the conditions (a)-(d) in
Theorem 8.30. Moreover, (E,, WP) has the following property:

Ifue WP and g € Gy then wo g € WP and Ey(uo g) = E,(u). (9.7)
Similar to Proposition 9.5, we have the following monotonicity of dy ,/p in p.
Proposition 9.12. d,, ,/p > dy ,/q for any p,q € (0,00) with p < q.

We can prove the following main result by using compatible sequences.

Theorem 9.13. dy, > p for any p € (0,00).
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Proof. Let p € (1,00) and let (&,, WP) be a self-similar p-resistance form on SG(D, 1, S)
as given in Corollary 9.11. Define u € C(K) by u(x1,...,xp) == x; for any (z1,...,2p) €
K C RP. Then uly, € WPy, for any n € NU {0} by Proposition 6.8. We claim that if
uly, were &yly;-harmonic on Vi \ Vg, then &, |y, (uly,) = 0, which would contradict (RF1),.
Suppose that &,|v; (uly;; ¢) = 0 for every ¢ € RV with ¢|y, = 0. Noting that (uly, o
F))lv, = 7 uly, + ¢ 1y, for some constant ¢; € R and using (7.5), we have
Elvi(ulviip) =0, > Elw(ulv 0 Fipo Fy) =177 Vo, > " & v (ulvipo F).  (9.8)
ies i€s
It is easy to see that (Vi \ Vo) N {(z1,...,2p) € RP | 2y = 0} # 0. Let z € V1 \
with z € {z; = 0} and let ¢ = ]l}{/;} € RY. Since uog = u for any ¢ € G, with
g({x1 = 0} N K) = {z; = 0} N K, the Gy-invariance (9.7) implies &,y (u|vo;]lf{/2i}) =
Eplva (] vy ]l}/gj}) for any 4,5 € {0,...,D — 1}. Since g o F; = 0 € R for any j € S with
z ¢ K, we have from (9.8) that

0:£p|V1(u|V1; )_l (o= 1) Z & |V0 u|Voa900F)

zES z€EK;
= 1"V, - (#{i € S | 2 € Ki})Elvi (ulwes 170 ).
Hence we get &, v, (u]vy; ]l}/gj}) =0 for every j € {0,..., D — 1}. Therefore,

gp|Vo<u|Vo;]l}{/2D}) td |V0 U|V0)1V0 ZS |V0 u|Voa {q; })

which yields &,|v; (ulvy; v) = 0 for every v € R". In partlcular, Eplvi (ulyy) = 0, which is a
contradiction and hence we conclude that uly, is not &,|y,-harmonic on V3 \ V5. Combining
with Proposition 6.15, we see that

Eplvy
Exlva () = Eplvilva (ulve) = Elvi (" [ulva] ) < Elva (ulva). (9.9)

Similar to (9.8), we have &Ey|v; (ulv,) = 7Po,(#S)Ep|v, (ulvy, ). Hence the strict inequality
(9.9) yields 1 < [7P%w»=dt(4S) = [9»=P which proves d,, > p for any p € (1,00). By
Proposition 9.12, we complete the proof. n
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A Symmetric Dirichlet forms and the generalized 2-
contraction property

In this section, we verify the generalized contraction properties for various energy forms
resulting from symmetric Dirichlet forms.

A.1 Symmetric Dirichlet forms satisfy the generalized 2-contraction
property

In this subsection, we show that any symmetric Dirichlet form satisfies (GC),. Through-
out this subsection, we fix a measure space (X, 5, m).

Let us recall the definition of the notion of symmetric Dirichlet form. See, e.g., [CF,
FOT, MR] for details of the theory of Dirichlet forms.

Definition A.1 (Symmetric Dirichlet form). Let F be a dense linear subspace of
L*(X,m) and let £: F x F — R be a non-negative definite symmetric bilinear form
on F. The pair (€, F) is said to be a symmetric Dirichlet form on L*(X,m) if and only
if 7 equipped with the inner product £ + (-, -)12(x,m) is a Hilbert space, u™ A1 € F and
E(uwt Al ,ut A1) < E(u,u) for any u € F.

We can show that a symmetric Dirichlet form (€, F) satisfies (GC), by modifying the
proof of [MR, Theorem 1.4.12].

Proposition A.2. Let (€, F) be a symmetric Dirichlet form on L*(X,m). Then (&, F)
given by Ey(u) = E(u,u) is a 2-energy form on (X, m) satisfying (GC),.

Proof. 1t is clear that 521/ ? is a seminorm on F, so we shall prove (GC), for (&, F).
Let ny,ny € N, ¢4 € (0,2], ¢2 € [2,00] and T = (T3, ...,Ty,): R™ — R™ satisfy (2.2).
We consider the case of ga < oo (the case of ¢o = oo is similar). Let {Ga}as0 be the
strongly continuous resolvent on L?( X, m) associated with (€, F); see, e.g., [MR, Theorem
[.2.8]. By [MR, Theorem 1.2.13-(ii)|, it suffices to prove that for any w = (uy,...,u,,) €
L*(X,m)™ and any «a € (0, c0),

no 1/q2 n1 1/q1
(Z«l—aGam<u>,Tz<u>>ié@<,m>) < (Z<<1—aGa>uk,uk>%!&m>> (A

=1 k=1

By the linearity of G, and (2.2), it is enough to prove (A.1l) in the case where uy is a
simple function for each k € {1,...,n;}, so we assume that

N
uy, = Zaki]lA“ ked{l,...,m}, (A.2)

1=1

where N € N, (o)X, CR, {4}, C B(X) with m(A;) < oo and A;NA; =0 for i # j.
Fix a € (0,00) and, for i,j € {1,..., N}, we define

bi,j = <(1 — aGa)]lA” ]lAj>L2(X,m)7 )\l = m(Al) and a’ij = <OéGa]1Ai, ]lAj>L2(X,m)~
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Then b;; = \id;; — a;; by a simple calculation, and a;; = aj; since G, is a symmetric
operator on L?(X,m) (see, e.g., [MR, Theorem 1.2.8]). Hence for any (21,...,2x) € RY,

N

Z ZiZij'j = Z CLZJ + Z m;z J’ (AS)
ij=1 i<j
where m; = \; — Zfil a;j. Note that a;; > 0 for any 4, j € {1,..., N} since aGo1la, >0
by [MR, Theorem 1.4.4]. We set A = |JY, A;, and then we have aG,(14) < 1 by [MR,
Theorem 1.4.4] and

N
Zaij:oz/ ]lAGa(]lA].)dm:oz/
u=1 X

Ga(]lA)]lAjdmé/ ]lAjdm:)\j,
X

X

whence m; > 0. With these preparations, we show (A.1) for u defined in (A.2). Set
Ty =T(a, ..., ;) foreach [ € {1,...,ny}. We see that

no q2/2
Z((l —aG,)T(u), Ti(uw )>qL22/2Xm = Z (Z 1,17 l])

=1 =1 1,j=1
q2/2
A 2
= 1<J
(2.18) na 2/q N 2/a2 92/
: 2(2<>) +z( )
1<J =1 j=1
22) n @2/q 2/a N n1 2/a 2/a /2
. 2 2
S DI E ) oTEEl B B ol (] Dot
i<j k=1 j=1
nm 2/q1 N n1 2/q %ZT
/2 /2
= Z (Z(aij(aki — akj)z)lh ) + Z ( (mjaky)ql )
i<j \k=1 J=1 \k=1
(*) ni N 9 q1/2 2/q1\ 2 @1
< Z Zaij(aki ;) +Zm]0‘kg
k=1 1<j j=1
o @ /2\ ©/n
— (Z a” i — Oék] +Zm3akj>
k= 1<J
" q1/2 @/q - %.%2
2
= (Z i A ’Lj) = (Z<(1 —aG )Ukaukyé;/(X m)) ’
7 k=1

where we used the triangle inequality for £%/%-norm in (*). The proof is completed. [
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Next we will extend (GC)s to (&, Fe), where F, is the extended Dirichlet space; see
Definition A.4 below. (See, e.g., [FOT, Section 1.5] or [CF, Section 1.1] for details on the
extended Dirichlet space.) We need to recall the following result.

Proposition A.3 ([Sch99b, Proposition 2] and [Sch99a, Lemma 1]'*). Let (£, F) be a
symmetric Dirichlet form on L*(X,m). If {uy}nen € F converges m-a.e. to 0 as n — oo
and limgp; oo € (ugp — uy, up, — uy) = 0, then lim,, o €(uy,, u,) = 0.

Now we define the extended Dirichlet form (€, F.).

Definition A.4 (Extended Dirichlet form). Let (£, F) be a symmetric Dirichlet form on
L?(X,m). We define the extended Dirichlet form (€, F,) of (€, F) by

Fe

lim, o fr = f m-a.e. for some {f,, }nen € F
{f € LO(X, m) with hmk/\l%oog(fk — ), fr— fl) -0 N }7 (A4)

E(f, f)= nh_)rgo E(fn, fn), [ € Fe, where {f,}nen is a sequence as in (A.4).  (A.5)

Each such {f,}nen as in (A.4) is called an approzimating sequence for f. By Proposition
A3, the limit lim, o £(fy, fn) in (A.5) does not depend on a particular choice of { f,, }nen,
and we have F = F,N L*(X,m) by [Sch99b, Proposition 2|; see also |[C'F, Theorem 1.1.5].

We also need the following proposition, which is proved by utilizing a version [CF,
Theorem A.4.1-(ii)] of the Banach—Saks theorem.

Proposition A.5 ([Sch99a, Lemma 2|'%). Let (€, F) be a symmetric Dirichlet form on
LA(X,m), and let {up}neny C F. If iminf, o0 E(tp,u,) < 00 and {u,}nen converges
m-a.e. tou € L°(X,m) as n — oo, then u € F, and E(u,u) < liminf, . E(up, uy).

Now we can show that the extended Dirichlet form (£, F.) satisfies (GC)s.

Proposition A.6. Let (€, F) be a symmetric Dirichlet form on L*(X,m). Then (&, F.)
given by Ey(u) = E(u,u) is a 2-energy form on (X, m) satisfying (GC),.

Proof. 1t is clear that 521/2 is a seminorm on F.. Let us show (GC), for (&, F.).
As in the proof of Proposition A.2) let ny,ne € N, ¢ € (0,2], ¢ € [2,00] and
T = (Ty,...,T,,): R™ — R™ satisfy (2.2). Let uw = (u1,...,u,,) € Fr. For
each k € {1,...,m}, let {upn}nen € F be an approximating sequence for uy. Set
Wy, = (U1, .-, Unyp). Since T) € C(R™) and (&, F) satisfies (GC), (Proposition A.2),

4Tn [Sch99a, Lemma 1], Proposition A.3 is stated and proved for a much wider class of (£, F). The
assumptions made in [Sch99a, Lemma 1| are that (X, B,m) is an arbitrary measure space, that F is a
linear subspace of LY(X,m) and that £: F x F — R is a non-negative definite bilinear form satisfying the
strong sector condition (see [Sch99a, Definition 1]) and the Fatou property (see [Sch99a, Definition 2]),
both of which are satisfied if (£, F) is a symmetric Dirichlet form. Indeed, the strong sector condition is
immediate from the Cauchy—Schwarz inequality for £ and the Fatou property for (€, F) holds by [Sch99b,
Proposition 2].

15Tn [Sch99a, Lemma 2|, Proposition A.5 is stated and proved for the same class of bilinear forms (€, F)
as Proposition A.3 is in [Sch99a, Lemma 1].



134 N. Kajino and R. Shimizu

lim, 00 T1(wy,) = Ti(w) m-a.e. and {E(T}(u,)) frnen is bounded. Then we have T;(u) € F.
and & (T (uw)) < liminf, . &(T(w,)) by Proposition A.5, and see by (GC), for (&, F)
from Proposition A.2 that

[ (€(TiCw) ) 2 | < || Gmnint &(Tieun)) )2,

< liminf || (Ex(Ti ())2);2 |

< timinf | (& (unn)' )il o = 11 (E2(a) )i s

n—

a2

proving that (&, F.) satisfies (GC)s. O

A.2 The generalized 2-contraction property for energy measures

In this subsection, under the standard topological assumptions on (X, m), we verify (GC),
for the (2-)energy measures associated with a regular symmetric Dirichlet form.

Throughout this subsection, we assume that X and m are as specified in (3.26)
and (3.27), which are precisely the topological assumption [FOT, (1.1.7)] made almost
throughout the book [FOT], and that (£, F) is a symmetric Dirichlet form on L?(X,m)
which is regular, i.e., possesses a core in the sense of Definition 3.26-(1).

A regular symmetric Dirichlet form is known to satisfy the following representation.

Theorem A.7 (Beurling-Deny expression; see, e.g., [FOT, Theorem 3.2.1]). There exist
a symmetric bilinear form £ on F N C.(X) satisfying £ (u,v) = 0 for any u,v €
F N C(X) with v constant on a neighborhood of suppy [u], a symmetric Radon measure
Jon X x X\ {(z,z) | v € X} and a Radon measure k on X such that

E(u,v) = E9(u,v) + EV (u,v) + E®(u,v)  for any u,v € F N CL(X), (A.6)

where
£0)(u,v) = /X (o) = u(p))0(a) = o) T(dady), €)= /X u(z)o() k(dx)

Moreover, such £©), J and k are uniquely determined by E. We call £ the local part of
&, J the jumping measure associated with £ and k the killing measure associated with €.

In the next two propositions, we extend each of £ €U £®) in (A.6) to F, and
associate energy measures to each of them; see [FOT, Section 3.2| for their proofs.

Proposition A.8. Let u € F, and {u,}nen € F be an approvimating sequence for u.
Then, for any E% € {£©) €W EWY LE# (U, up) bnen is a Cauchy sequence in [0, 00)
and the limit lim,, o E7 (up,u,) € [0,00) does not depend on a particular choice of an
approzimating sequence {uy tnen for u.
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Proposition A.9. Let £# € {£,£©@,£0) Y. For any u € F N C,(X), there exists a
unique Radon measure ,u?; on X such that

/@du< = &% (u, ugo)——é’#( 2.¢)  for any o € FNC(X). (A7)
X

Moreover, for any Borel measurable function ¢: X — [0,00) with ||¢|l,,, < oo, any

sup

u € F, and any approzimating sequence {u, }pen € F NCo(X) foru, { [y Lpduim}neN is

a Cauchy sequence in [0,00), lim, . [y gpdutn> does not depend on the choice of {uy}n,

and | gpdu# = limy, 00 [ god,u# ) where ufiw 1s the Radon measure on X defined by

() = i o, (4) for A € B(X).

Definition A.10 (Energy measures). Let u € F.. Let j, denote the measure in the
above proposition in the case £# = £. We call Huy the energy measure of u. For each w €
{c,j,k}, let 14 denote the measure in the above proposmon in the case 5# = &), For

u,v € F., we also define ,u<u’v> = i(”tw) — ,ut_v)) where p ) € {,u Ty Mi>7#’<€_>},

The following lemma is a Fatou-type property for energy measures.

Lemma A 11. Let gp‘ X — [0,00) be a Borel measurable function with ¢l < oo

A sup
and let u ) € {,u (. uz_>,u’<“,>}. If {up}neny € F and u € F, satisfy lim, oo uy, = u
m-a.e. and SUDpen E(Umun) < 00, then

/ gpdu?; < liminf/ gpdut ) (A.8)
X n—00 X n

Proof. By extracting a subsequence of {u,}, if necessary, we can assume that the limit
limy, o0 [ @duiw exists. By using a version |[CF, Theorem A.4.1-(ii)] of the Banach—
Saks theorem, we can find a subsequence {u,, }ren such that {v;}eny C F defined by v, =
[t 22:1 Un,, satisfies limyn; o0 € (vp—uy, vp—1;) = 0. Noting that lim; . v, = um-a.e. and
using Proposition A.3, we have lim;_o, €(u — v, u — v;) = 0. Hence limy_,o [ goal,ufil> =

1/2
fX @du@ by Proposition A.9. By the triangle inequality for (fx gpduﬁ) ,

. 2 g 1/2
(92 "< fowe) "

which implies (A.8) by letting I — oo. O

Now we can show that the integrals of non-negative bounded Borel measurable func-
tions with respect to energy measures give 2-energy forms satisfying (GC)s.

Pr0p051t10n A.12. Let p: X — [0,00) be a Borel measurable function with |||, < oo

and let u ) € {pey, (. ,u } Then ( fXng,u , Fe) is a 2-energy form on (X, m)
satzsfymg (GC)
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Proof. Let ny,ny € N, ¢ € (0,2], g2 € [2,00] and T = (T1,...,T,,): R™ — R" satisfy
(2.2). It sufﬁces to prove that for any v = (u1,...,u,,) € (F N C(X))™ and any

p e FNC(X
1/2
#
(")

172\ "2
#
H ( W“m(u») )
Indeed, we can extend (A.9) to any w € F and any Borel measurable function ¢: X —

ni

< (A.9)

I=11l¢92 k=11l¢an1
e

[0, 00] as follows. Let us start with the case of ¢ = 14, where A € B(X). By [Rud,
Theorem 2.18]|, there exist sequences { K, }nen and {U, }neN such that K,, CACU,, K,
is compact, U, is open and lim,,_,o MaXye {7, (u)}l,ufus}, M (U \ K,,) = 0. By Urysohn’s
lemma, we can pick ¢,, € C.(X) so that 0 < ¢, <1, gon\K = 1 and suppy[on] € U,. By

no m
(A.9) with ¢, in place of ¢, we obtain H (Mf;(u»(]{n)lm)l:l N < H (Mzw(Un)l/Q) .

< |t )

k=1

091

By letting n — oo, we get (A.9) with ¢ = 14, i.e.,

| ety (72072, (A.10)

(a2 a1

By the reverse Minkowski inequality on ¢4/2 and the Minkowski inequality on ¢92/2
(see also (2.19)), we can extend (A.10) to (A.9) for any non-negative Borel measur-
able simple function ¢ on X, By the monotone convergence theorem, (A.9) holds
for any Borel measurable function ¢: X — [0,00]. Next we will extend (A.9) to
u = (ug,...,u,) € F. Since F N C(X) is dense in (F,||-|s,), there exists an
approximating sequence {uy,tney € F N Co(X) for uy for each k € {1,...,n1}. Set
Wy, = (Uip,-..,Un,n). Then, for each [ € {1,...,n2}, lim, oo T}(uw,) = T}(u) m-a.e.,
Ti(u,) € F and sup,, oy E(Ti(w,), Ti(u,)) < oo by Proposition A.2. Hence T)(u) € F. by

Proposition A.5, and
1/2
< (hﬂiﬂf /X v d“(Tz(un>>) >
1=11l¢a2

172\ ™2
172\ "2
#
((/X@Odﬁ‘m(un») >l

=1
=111¢92
172\ ™
dut )
(( /X‘P Folug, ) >
172\ ™
(o))
X k=1

where we used Lemma A.11 in the first inequality and Proposition A.9 in the last equality.
This implies that ([, QOd/Lz%), Fe) is a 2-energy form on (X, m) satisfying (GC)s.

Let us go back to the proof of (A.9) in the case where u = (uy, ..., uy,,) € (FNC(X))™
and ¢ € FNC.(X). Fix a metric d on X which is compatible with the given topology
of X, an increasing sequence of relatively open sets {G;}ien with (J,cyGr = X and a

n2

<

092

< lim inf
n—o0

(A.9)
< liminf
n—oo

k=11lyga1

Y

091
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sequence of positive numbers {¢; };eny with ¢; | 0 as I — oo. Then there exist a sequence of
positive numbers {f,, }nen with §, T 0o as n — oo, a family of Radon measures {0} -0
on X x X and a family of Radon measures {mg}s~o on X with mg < m such that for
any v € FNC.(X),

[ etne =i (5[ o) o) pte)ostadn) + § [ o) ol matao))
(A1)

and

/ ¢ dug,y = lim lim Bn
X

> ola) = o) (@) 03, (dr, dy). (A12)
Froonmo0 S J{(ay)eCixCld(ay) <6

See [FOT, the equations just before (3.2.13) and (3.2.19)] for details. Note that T;(u) €
FNC.(X) for each | € {1,...,n} by Proposition A.2 and 7;(0) = 0. If g2 < oo, then we
have from (A.11) that

ng q2/2
> </ Sﬁdﬂm(u»)
X

I=1
(2.18)

< i (5 [ I = Tl o) os(dn, )
q2/2
# 5 e o) ma))
2.2 q2/2
i (5 ) ute) — )l pte) ostandy) + / o) ) )

[g /XXX Jur(z) — wi(y)|* () 05(de, dy)

2 a2

5 [P et mﬁ<dx>] /> .

k=1

where we used the triangle inequality for a suitable L?%-norm on (X x X)UX in (*) (here
LI denotes the disjoint union). The case of g = oo is similar, so we obtain the desired
estimate (A.9) for /ﬂf.) = ji(.y. The other case uf) € {uf_>,u{.),u’§,>} can be shown in a
similar way by virtue of the expression in [FOT, (3.2.23)]. O

Next we see that “|Vu|” also satisfies a similar contraction property. To present the
precise definition of the density, we recall the notion of minimal energy dominant measure.

Definition A.13 (Minimal energy dominant measure; [Hin10, Definition 2.1]). A o-finite
Borel measure p on X is called a minimal energy-dominant measure of (€, F) if and only
if the following two conditions hold.
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(i)  Forany f € F, we have pp < pu.
(ii) If another o-finite Borel measure p' on X satisfies (i) with p in place of ', then
poL

The existence of a minimal energy-dominant measure is proved in [Nak85, Lemma 2.2|
(see also |[Hinl0, Lemma 2.3|). For any minimal energy-dominant measure p of (€, F),
the same argument as in [HmlO Proof of Lemma 2.2] implies that fus > < p for any

f € Fe. In addition, for ,u y € {1y, ,ui } we easily see that u (1.g) < p for any
J #
f,9 € Fe. We define I' (u, v) = % and Fﬁ(u) = I (u,u) for u,v € F..

Proposition A.14. Let u be a minimal energy-dominant measure of (£, F) and for each
[ e Fe, let Uyu(f) = dwpy/dp and U (f) = duy /dp for each w € {c, j, k}. Let T#(-) e
{Tu(-), (), TU(-), u( )}.  Then for any ni,ng € N, ¢1 € (0,2], ¢2 € [2,00] and
T=(T1,...,T,,): R" — R" satisfying (2.2) and any u = (uy, ..., Uy, ) € FM,

H(Ff(Tl(u))( )1/2 " Hm < ||( (u )(x)l/2 " for p-a.e. x € X, (A.13)

Heth

and m particular for any p € [q1,q2] N (0, 00) and any Borel measurable function p: X —

H( [ et >>‘5du)l/p> (( / soFf(uk)gdu)l/p>

Proof. We first construct a good pi-version of I'# (v) for each v € F,. Fix {X; }nen € B(X)
such that X,, € X,11, X = U,,eny X» and p(X,,) € (0,00) for each n € N. Let {Ay}ren
be a countable open base for the topology of X. Set A? := X \ Ay and A} := Ay for each
k € N, and define a non-decreasing sequence { Ay }ren of o-algebras in X in the same way

as (4.29). Forv e F., n,k € N, a € {0,1}*, define T/ (v),1: X — [0, 00) by, for z € Ag,

no ni

< (A.14)

I=111¢92 k=11l¢an1

AN X)) (AY N X, if W(A*NX,) >0,
D# (o)) o= § PO DX (AEN ) (AT N X (A15)
0 if u(AYNX,)=0.
.- —1 # _ 7J>(( )an) .
We also set p, = pu(X,) 'u((-) N X,) and v = W' Then we easily see that

E,. [vf | Ay] = L#(0)nk p-ae. on X, and hence limy_,o Fﬁ( V) = VI p-ae. on X, by
the martingale convergence theorem (see, e.g., [Dud, Theorem 10.5.1]) and the fact that
Uken Ar generates B(X). Now we define ff(v) X — [0,00) by ff(v)(m) = v¥(x) for
ne€Nand z € X, \ X,,_1, where X, := (). Then fff(v) =T#(v) p-a.e. on X.

Next we show (A.13). Let ny,n2 € N, ¢1 € (0,2], g2 € [2,00], u = (u1,...,u,,) € FM
and let T'= (T1,...,T,,): R™ — R™ satisfy (2.2) with 2 in place of p. By Proposition
A.12 and (A.15), for any n,m € N and any = € X,

I Ta@)am (@) 22 o < O b @)
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By letting m — 0o, we obtain

| (F# )@ 2)”

=111¢92

ny

for p-a.e. v € X,

< | (Ff o @2)

k=11l¢an

whence (A.13) holds. Lastly, if p € [¢1, ¢2] N (0,00) and g2 < oo, then we see that for any
Borel measurable function ¢: X — [0, o],

([ vt an)™ L ( [ ez, wan)”

=1
([ el I, o d$>)q2/p

@2/q

< (Z( / sormk)é’du)ql/p) , (A16)

k=1

where we used the triangle inequality for the norm of LP/%1 (X, ¢du) in (). The case of
g2 = 00 is similar, so we obtain (A.14). ]

If (€, F) is strongly local, then we can show (GC),, for (T,(-)?/2, F.). To prove it, we
need some preparations. The following proposition is the standard Minkowski integral
inequality (see, e.g., [DF, Appendix B5]).

Proposition A.15. Let (X;, B;,m;) be a o-finite measure space for each i € {1,2}. Let
q € [1,00) and let f: X1 x Xy — [—00,00] be measurable with respect to the product
o-algebra of By and By. Then

</)(1 (/X2 | f (21, z9)] m2(dl’2)>qml(d9ﬁ)); < /X2 (/Xl | f (21, 22) | ml(dx1>>;m2(d$2).

(A.17)

Next we show a tensor-type inequality for non-negative definite symmetric bilinear
forms.

Proposition A.16. Let V' be a finite-dimensional vector space over R, let E: V X
V. — R be a non-negative definite symmetric bilinear form, let ni,ny € N and let
A = (Ak)1<i<nsi<k<n, be a real matriz. If (uy,...,u,,) € V™, ¢ € (0,00), g2 € (0, 00]
and q; < qz, then

H( ZW ).

=11lga2

(A.18)

< ”AHZ%—%% H(E(uk)l/Q)m Hgtn ’

where we set E(u) = E(u,u) foru €V and ||A||£q1 L1z = SUDpeRn ] 0, <1 | Az|| yas -



140 N. Kajino and R. Shimizu

Proof. The desired inequality follows from a Beckner-like result in [DF, 7.9.] (see also
[Bec75, Lemma 2]). We present a complete proof for convenience. Let 7, be the Gaussian
measure on R", ie., v,(dz) = (2m) "% exp (— | z|” /2) dz, for each n € N and set n =
dim(V/E~1(0)) e NU{0}. If n =0, i.e., E(u) = 0 for any u € V, then (A.18) is clear.
Hence we assume that n > 1 in the rest of the proof. Let m;: R" — R be the projection
map to the j-th coordinate for each j € {1,...,n}. Then we have from [DF, Proposition
in 8.7.] that for any (ay)7_, € R,

-1
I35 ( /
R |

Indeed, (A.19) is obviously true in the case of («;); = (01;); and this together with the
invariance of 7, under ¢2-isometries implies the desired equality (A.19).

Let us fix a basis {e;}7_; C V of V satisfying E(e;, ej1) = d;; for each j, j* € {1,...,n},
which exists by the Gram—Schmidt orthonormalization. Now we define ¢t: V' — L% (R", ~,,)
by

7 ()

q /¢
d’}/n(dx)) = H(O‘j)?le@ . (A.19)

t(u) = HmH;qll(Rm) ZE(u, e))?rj, uweV. (A.20)
j=1
Then [|¢(w)|| o g,y = (30— Elu,e;))"* = E(u,u)/2 by (A.19). If g5 < oo, then

n2

1/2 ¢ q2/q @
Jhormy (S ([ et )
1=11lgaz =1
g2\ 91/62 Va
( ) dVn
=1
ni 1/‘11
< [|All g g2 (/HZ\L(W)\‘“ d%)
k=1
ni 1/‘11
= HA||5331—>£Z22 (Z E(uk)q1/2> )
k=1

where we used (A.17) with ¢ = ¢1/¢2 in (%). Since the case of ¢; = oo is similar, so we
obtain (A.18). O

(

*
~

Z Alkb(uk)

k=1

IN

Let us recall the definition of p-energy forms introduced by Kuwae in [Kuw?24]

Definition A.17 (|[[{uw24, Definition 1.4]). Let ¢ be a minimal energy-dominant measure
of (§,F),pe (1,00) and 2 C {u € FNLP(X,m) | T,(u)z € LP(X, 1)} a linear subspace.
Assume that (€, F) is strongly local and that

lim,, 00 fX )Ed,u = 0 for any {u,}lnen € Z satisfying

A.21
limy a ko0 fX (u, — uk)z dp =0 and lim,, o HunHLp (Xm) = 0. ( )
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We define the norm || -/, on Z by |lul| 4, = (||u||Lp xm) T+ S5 Tulu)z d,u)l/p nd
let (H'Y?(X), |- |l41») denote the completion of (2, ||H1,p) SO that we may and do
consider H'?(X) as a linear subspace of L”(X, m) since the canonical bounded linear map
from H'P(X) to LP(X,m) extending idy is injective by (A.21). Then we can uniquely
extend ', to HP(X) by defining T, (u )z € LP(X,p) for u € Hl’p(X) as the LP(X, u)-
limit of Fu(un)%, where {u,}neny € 2 satisfies lim,ng—so00 fX (U, — uk) dp = 0 and
limy, o0 [Ju — un”Lp(X,m) 0.

Remark A.18. The condition (A.21) always holds if p > 2 and p(F,) < oo for any n € N
for some E-nest {F),},en'® as proved in [Kuw24, Proposition 1.1]; the latter condition!”
on p is not assumed there, but is necessary for [Kuw24, Proof of Proposition 1.1| to make
sense.

Now we can show the main result in this subsection.

Theorem A.19. Let i be a minimal energy-dominant measure of (€,F), p € (1,00) and
2 C{ue FNLP(X,m) | Fﬂ(u)% € LP(X,u)} a linear subspace. Assume that (€, F) is
strongly local and that (A.21) holds. In addition, we assume that

f( ) € D for any u € P™ and any T e C>®(R™) satisfying

T(a)-T(y) (A.22)
SUP, yecRn:z£y % < o0 and T(O) =0.

Ifni,ng €N, ¢1 € (0,p], g2 € [p,o0] and T = (T, ..., T,,): R™ — R"™ satisfy (2.2) and
w=(Up,..., Uy ) € HY(X)™ then T(u) € H"*(X)" and

(T (2)2))2 e < | Culr) @)y for prace w€ X (A28)

In particular, {F )2 d'u’}ueHl’P(X) is a family of p-energy measures on (X, B(X)) domi-
nated by ([, Ty )2 dy, H'" (X)) and satisfies (GC),.

Proof. Let us consider the same mollifiers as in [[Kuw24, the last paragraph in p. 10|, i.e.,
define j: R™ — R by j(x) = exp (—m) for ||z|]| < 1 and j(x) := 0 for ||z] > 1, set
Jm(x) = m™ j(mz) for each m € N. We define T} ,(z) = [gn, Un(—y) —ju(¥)T1(y) dy =
fRnl ]n(?J)(Tln(x_y)_Tlm(y)) dy so that T, € C* (R™), T1,,(0) = 0 and lim,, Tln(l’) =

6Namely, a non-decreasing sequence {F, },en of closed subsets of X such that Unen FF, is dense in
(F 1l lg.1), where Fr, == {u € F | u=0m-ae. on X\ F,}; see, e.g., [CI, Definition 1.2.12-(i) and
Theorem 1.3.14-(ii)].

1"Note that a minimal energy-dominant measure y of (£, F) does not satisfy this condition in general.
Indeed, consider the case where X = R, m is the Lebesgue measure on R and (£, F) is the Dirichlet form
of the Brownian motion on R, and let ;1 be a Borel measure on R. Then it is easy to see from [Kigl2,
Theorem 9.9] that p satisfies the condition in Remark A.18 if and only if x4 is a Radon measure on R.
On the other hand, since F = W"2(R) and du, = [«/|> dm for any u € WH2(R), it is clear that p is a
minimal energy-dominant measure of (£, F) if and only if p is o-finite and satisfies © < m and m < p.
Of course, the latter class of p contains plenty of measures which are not Radon measures on R and
thereby are minimal energy-dominant measures of (€, F) failing to satisfy the condition in Remark A.18.
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T(x) for any x € R™. Then (2.2) with T := (T\,,, ..., Ty,.) in place of T holds; indeed,
for any x,y € R™,

790 =19 = |( [ inTita =)~ Titw - 1)
< [ DI =) = T = Dl d:

(2.2) .
sux—mma/ ju2) dz = 17—yl (A.24)
R™1

I=11l¢22

where we used (A.17) with ¢ = ¢ in (%). Moreover,

H (Z 3le,n(33)yk>
k=1 =1

whence ||(akﬂv”(m))”€%11ﬁ€§% <1 for any x € R™.

(A.24)
=lime™ [T(@) =T @ +ey)[, < lyll s (A25)

(a2

We first prove (A.23) with T in place of T under the assumption that u =
(Ug, ... up,) € P™. Set w = (U, ..., U, ) where uy is a E-quasicontinuous m-version

of uy, (see [FOT, p. 69 and Theorem 2.1.3]). We have T},,(u) € Z by (A.22) and

(10 (w Z 0; T (w(2))0; T 0 (w(2))l (ui, u))(z)  for prae. 2 € X (A.26)

i,7=1

by the chain rule in [Kuw24, (7) in p. 2|. Let {fy}rea € F be an algebraic basis of F over
R. Then there exist n € N, {a;}7_; € R, k€ {1,...,n1}, and {g;}7_; € {fa}rea such
that u, = > 7 | oy g; for each k € {1,...,m}. Let R be the ﬁnitely generated algebra

=J =0l shv >

j=1

ajERforeaChje{l,...,n}}

so that {uy};L, C U and U is countable. Since R is dense in R, forany x € X, N e N, k €
{1,...,m} and [ € {1,...,ny}, there exists Alzk’% € R such that ‘8len(ﬂ(a:)) — Aﬁﬁ <

N-1. Note that T')(-, -)(z): U x U — R is a non-negative definite symmetric bilinear
form for p-a.e. x € X since U is countable. By Proposition A.16, for p-a.e. z € X,

n 1/2
(zAzﬁfAz;ii <uz-,uj><x>)

1,j=1

| (S er) ],

< (14 |@tin@@)e - A2,

n2

[=111¢a2

o )| E) @)
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Letting N — oo in the estimate above and recalling (A.26), we obtain
i) @) < )@ Tor pne s X, (A2)

under the assumption that u € ™.
Next let U= (U,..., Uy ) € H“’(X)"1 and fix {u™ = (uln, ey Upy, n)}neN Cc gm

((/X T, (ugn)? du) 1/p>

In particular, {7} ,(u™)},cy is bounded in H'P(X). Noting that H'?(X) is reflexive
([Kuw24, Theorem 1.7]) and that lim, e [ Dyu(ur — ugn)? du = 0, we find {n;};ex C N
with infjen(nj41 —nj) > 1 such that T (w(™)) converges weakly in H?(X)®"2 to some
v=(v1,...,U,,) € H"(X)®"2 and maxke{l 77777 ) Du(ur — g, )(x) — 0 for prae v € X

||Lp(X’m) = 0 by (A.24) and the dominated
convergence theorem, we have v, = Tl('u,) By Mazur’s lemma (Lemma 3.14), there exist
{N(i)}ien € N and {e;} C [0, 1] with inf;en(N(i) —¢) > 1 and ZN(Z «;; = 1 such that
U= Z;V:(Z) ;i Ty n,; (™)) converges strongly in H'?(X) to Tj(u) for any [ € {1,...,n}
as ¢ — oo0. Then we easily see that for py-a.e. x € X and any i € N,

.....

argument as in (A.16) implies that

H( L (T3 (u >>’z’du)1/p>n2

=1

ni

<

92 k=1ll¢n

as j — 00.'® Since lim,,_,q, HTln (u™) —

NG) "
T @) (2)2);2 e < ||| D2 T (Thn, () ()2
J=i I=11lga2
NG)
< i | (Cu(Tim, (™) (2)72),2 |0,
=i
(A2ry VO
< Z QG H Uk n] 1/2)”1 Héql ) (A28>

where we used the triangle inequality for the norm of /% in the second inequality. Note
that for p-a.e. x € X,

Zlggloz:a” H p (U ) ( 1/2)m ng1 - H(Fu(uk)( )1/2 . qu1‘

Since lim;_, fX I — Tl(u))g dp = 0, there exists {m;};en € N with inf;en(m; —
m;) > 1 such that lim; o I, (0, —T1(w))(z) = 0 for pra.e. x € X andany ! € {1,...,no}.
In view of the triangle inequality for FN(-)% (see [Kuw24, (3) in p. 2|), we have

8The direct sum HP(X)®"2 is equipped with the norm 1l griw(xyone = > I1fill g1 5y for amy
=, s fn,) € HVP(X)ON2,
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-----

tain (A.23) by (A.28). Once we get (A.23), we easily see by the same argument as in
(A.16) that {Fu(u)% d'“}ueHLp(Xy which is obviously a family of p-energy measures on

(X, B(X)) dominated by ([, I\u(+)% du, H*P(X)), satisfies (GC),. O

B Some results for p-resistance forms on p.-c.f. self-
similar structures

B.1 Existence of p-resistance forms with non-arithmetic weights

In this subsection, we discuss a gap between the frameworks in Subsection 8.2 and in
Subsection 8.3 for p.-c.f. self-similar structures. As in Subsection 8.3, we fix p € (1,00)
and a p.-c.f. self-similar structure £ = (K, S, {F} }ics) with #S > 2 and K connected.

The following proposition about the “eigenvalue” A(p,) in Theorem 8.38 is a key result.

Proposition B.1. Let p, = (ppi)ics € (0,00)°. Assume that p, satisfies (A) (recall

Remark 8.39).

(a) For any a € (0,00), ap, = (apy.i)ics satisfies (A) and A ap,) = aX(p,).

(b) Let p, = (ppi)ies € (0,00)°. If p, satisfies (A) and p,; < ppi for any i € S, then
App) < A(pyp)-

Proof. Throughout this proof, we fix a p-resistance form Ej on Vj.

(a): Since Ry, (Eo) = aRy (Eo) for any n € NU {0}, we easily see that ap, satisfies
(A). Recall from Theorem 8.38-(a) that A(ap,) € (0,00) is the unique number satisfying
the following: there exists C' € [1,00) such that

C'\ap,)"Eo(u) < Rap, (Eo)(u) < CAapp)" Eo(u) for any n € NU{0}, u € RY,
(B.1)
Therefore, A(ap,) = aX(py).
(b): Since Ry (Eo)(u) < Ry (Eo)(u) for any u € R by (B.1), there exists C' € [1, c0)
such that for any n € NU {0} and any u € R"?,

CIA(py)" Eo(u) < Ry (Eo)(u) < R (Eo)(u) < CAN(p,)" Eo(u).

Since n € N U {0} is arbitrary and Fy(u) > 0 for u € R" \ Rly,, we conclude that
App) < A(py)- 0

Now we can show the existence of p-resistance forms with non-arithmetic weights on
a class of strongly symmetric p.-c.f. self-similar sets as follows. (Recall the notation in
Subsection 8.4.)
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Proposition B.2. Let L be a strongly symmetric p.-c.f. self-similar set. Assume that
there exists v € S such that

U Te(i) # . (B.2)

geg

Then there exists p, = (ppi)ics € (0,00)° such that X(p,) =1, ppi > 1 for anyi € S, p,
satisfies (8.64) and

1 A
8 Ppi ZQ for somei,j€S. (B.3)
log pp.;

In particular, there exists a self-similar p-resistance form (E,, F,) on L with weight p,,.

Remark B.3. (1) Any weight p, = (pp.i)ics of a p-energy form constructed in Theorem
8.30 must satisfy p,; = o} for some n; € N, where o, € (0, 00) is the p-scaling factor.
Hence constructions of self-similar p-energy forms with weight p, which satisfies (B.3)
are not covered by Theorem 8.30 (or by [Kig23, Theorem 4.6]).

(2) The condition (B.2) is not very restrictive. See Figure B.2 for examples of self-similar
sets satisfying this condition. In Figure B.1, we present examples of self-similar sets
that do not satisfy (B.2).

Proof of Proposition B.2. Fix i € S and set Sy = {J,cq74(i) and Sy == S\ S;, which is
non-empty by (B.2). For ¢ € R, we define p,(t) = (pps(t))ses by

Pps(t) =14+1tlg,(s) forsesS.

It is easy to see that p,(t) satisfies (8.64). Set A,(t) :

= A(pp(t)) for simplicity. By
Proposition B.1, for any t € R, any § € (0,00) and any s € S,

(1=t — ON(0) < \p(t — 8) < \() < Aplt +8) < (14t + 8N 0),

whence \,(t) is continuous in ¢.
Fix j € S5 and define

_ log (ppi(t)/M(t)) —log (A (1))
- log (pp(1)/Ap(t))  log (141) —log (A(t)’

Since r;;(0) = 1 and 7; j(t) is continuous in ¢, there exists t, € R\{0} such that r; ;(t,) &€ Q.
The existence of a self-similar p-resistance form on £ with weight p,, follows from Theorems
8.50 and 8.51, so we complete the proof. O

Tij (t) teR.

B.2 Ahlfors regular conformal dimension of affine nested fractals

In this subsection, we prove that the Ahlfors regular conformal dimension of any strongly
symmetric self-similar set equipped with the p-resistance metric for any p € (1,00) is
equal to one (Theorem B.5). We also show that the Ahlfors regular conformal dimension
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Figure B.1: Examples of affine nested fractals that do NOT satisfy (B.2). From the left,
D-dimensional level-2 Sierpiriski gasket (D = 2, 3), pentakun and hexagasket.

Figure B.2: Examples of affine nested fractals that satisfy (B.2). From the left, 2-
dimensional level-l Sierpinski gasket (I = 3,4), snowflake and a Sierpiniski gasket-type
fractal.

with respect to the Euclidean metric is also equal to one under some geometric condition
(Theorem B.8).

Very similar results are already known in the literature. Indeed, Tyson and Wu [T W06,
Theorems 1.3-1.5] showed that the (quasi)conformal dimensions (as defined in [T'WO06,
p. 206]) of the D-dimensional level-2 Sierpinski gasket and of the N-polygasket with
N/4 ¢ 7 are equal to one'. (The values of the conformal dimension and the Ahlfors
regular conformal dimension coincide if the underlying metric space is compact, quasiself-
similar [EEB24, Definition 2.4], connected and locally connected [EB24, Theorem 1.6].)
Also, Carrasco Piaggio [CP14, Theorem 1.2| provided a general criterion for a compact
and metric doubling metric space to have Ahlfors regular conformal dimension one. This
subsection is aimed at giving a new proof of a variant of these results in [TW06, CP14]
based on the existence of self-similar p-resistance forms proved in Theorem 8.50.

Throughout this section, we assume that £ = (K, S, {F;}ics) is a strongly symmetric
p.-c.f. self-similar set (recall Framework 8.46 and Definition 8.47). Let ¢; € (0,1) be the
contraction ratio of F; for each i € S. Note that (¢;);es € (0,1)° must satisfy

C; = Cr,5) for any i € S and any g € Gyym, (B.4)

because of the symmetry of L. For each p € (1,00), we also fix a self-similar p-resistance
form (£, F7*) on L with weight (psp)ics for some pu, € (1,00), i.e., a p-resistance form

19 According to [TW06, the paragraph after Theorem 1.3], T. J. Laakso had shown before the work
[TWO06] that the conformal dimension of the 2-dimensional level-2 Sierpiriski gasket (equipped with the
Euclidean metric) is equal to one.
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(EF,F¥) on K such that

FF={ueC(K)|uoF;, € FF for any i € S},
Ef(u):p#,ngf(uoﬂ) for any u € F.

i€S

By Theorem 8.50, such a self-similar p-resistance form on £ exists and the number py
is uniquely determined. Let Rf denote the p-resistance metric associated with (5;,éﬁ , ]:jt ).

The next proposition ensures that }A%f is quasisymmetric to the g-resistance metric
with respect to any self-similar g-resistance form arising from Theorem 8.50. (Recall
Definition 8.5-(3).)

Proposition B.4. Let p,q € (1,00) and assume that p; = (pgi)ics € (0,00)° satisfies
(8.64), pgi > 1 for any i € S and N(p,) = 1, where X\(p,) € (0,00) is the unique number
giwen in Theorem 8.50. Let (&,, F,) be a self-similar q-resistance form on L with weight
pq, which exists by Theorems 8.50, and let }/%q be the q-resistance metric associated with
(&4, Fy)- Then Eq,gq is quasisymmetric to ﬁf

Proof. We will use |Kig20, Corollary 3.6.7| to show the desired statement. We first show
that there exist oy, ay € (0,00) such that

alp;}u/(p’l) < diam( K, éq) < agp;llu/(pfl) for any w € W.. (B.5)

The upper estimate in (B.5) is immediate from (7.1). To prove the lower estimate in
(B.5), note that we can easily find my € N such that for any w € W, there exist
vl v? € Wiw|4m, With v < w, i =12 and Ku N K, = 0. (It is enough to choose
mo satisfying 2(max;eg¢;)™ < 1.) Then, by the proof of Proposition 7.14-(a) and
Ppwi < Pgw(Maxicg pgi)™, there exists oy € (0,00) that is independent of w € W,
such that

~

inf  Ry(z,y) > anp, /@Y,
et @) 2 angy

which implies the desired lower estimate in (B.5).

Next we note that £ is a rationally ramified self-similar structure by [Kig09, Propo-
sition 1.6.12]; moreover, by combining [Kig09, Proposition 1.6.12], K, N K,, = F,(Vp) N
F,(Vp) for any v,w € W, with ¥, N X, = 0 (see [Kig01, Proposition 1.3.5-(2)]) and the
fact that each element of V; is a fixed point of F} for some i € Sg, .= {i € S | K;NVy # 0},
L is rationally ramified with a relation set

R = {{w()} {v()} 95 2(0) y() | w(G),v(G), 2(), w() € WA}, (B6)

satisfying w(j),v(j) € Say. (See |[Kig09, Sections 1.5 and 1.6 and Chapter 8| for details
about rationally ramified self-similar structures.)

With these preparations, we will apply [Kig20, Corollary 3.6.7] to ﬁ%gq and }A%f . By

~

Proposition 7.14-(a) and (B.5), R,¢, is 1-adapted and exponential (see [Kig20, Definition
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2.4.7 and 3.1.15-(2)] for these definitions; see also Remark in [Kig20, p. 108]). Similarly,
Rf is also 1-adapted and exponential. Hence, by [Kig20, Corollary 3.6.7|, Ry, is qua-
sisymmetric to ﬁf if and only if ﬁq,gq is gentle with respect to fi# (see [Kig20, Definition
3.3.1] for the definition of the gentleness). Define g,(w) = pad @™ and G p(w) = P

= Pyp
for w € W,. Since g, and g4, satisfy the condition (R1) in [Kig09, Theorem 1.6.6] by

(8.64) and (B.6), we obtain the desired gentleness by [Kig09, Theorem 1.6.6] and (B.5).
This completes the proof. n

Now we can determine the Ahlfors regular conformal dimension of (K, ﬁf ) by using
the discrete characterization of the Ahlfors regular conformal dimension due to Keith and
Kleiner (see [CP13, the paragraph before Corollary 1.4]).

Theorem B.5. dimarc(K, ]3%7?) =1.

Proof. We will use a version of the characterization of dimagrc(K, E#) in [Kig20, Theorem
4.6.9]. Note that (K, ﬁf) satisfies (BF1) and (BF2) in [Kig20, Section 4.3| by Proposition
7.14-(a), (B.5), [Kig09, Proposition 1.6.12, Lemmas 1.3.6 and 1.3.12|. We define a graph
G, = (V,, E,) and g-energy EpG", q € (1,00), on G,, by

E, ={(z,y) | z,y € F,(Vp) for some w € W,},

and
1

&) =5 X @)= fW)", feRrR™

(z,y)€En
Note that {G,},>0 is a proper system of horizontal networks with indices (1,2(#V, —
1)#Vp, 1, 1) in the sense of [Kig20, Definition 4.6.5]. Therefore by [Kig20, Theorem 4.6.9],
dimpre (K, R¥) = 1 if and only if the following holds: for any ¢ € (1, 00),

liminf sup inf{&;" (1) | £ € RV, flpiy = 1, flz, =0) =0, (BT)

k‘—>OO ’LUGW*

where Zy, = {2 € Viysn | € F, (V) for some v € W}, with K, N K,, = 0}. Since both
5#|V 1/ 7 and £70(-)!4 are norms on the finite-dimensional vector space R /Ry,

there ex1sts C > 1 such that C~ 15#“/ ) < EFo(u) < CE#‘V ) for any u € RY. Hence,
by Propositions 7.2-(2) and 7.4, we obtain C~ 1€f|v ) < Pl qEG”( u) < CS#‘V ) for

any n € NU {0} and any u € R". Recall that I';(w) = {v € W}y | K, N K,, # @} for
w € W, (Definition 8.3). Let hy, € F;* be the unique function satisfying hgw|x, = 1,
hqwlx, = 0 for any v € Wy \ I'1(w) and

EF (hgw) = inf{é'f(u) ’ ulk, = 1,ulk, = 0 for any v € Wy, \Pl(w)}.

q

Then we see from (7.20), (7.18) and (B.5) that

sup inf{&; (1) | f € R flr, i = 1. flz,. = 0}
welWsy



Contraction properties and differentiability of p-energy forms 149

~(lwl+k) # —(lwl+k) # —k
<Oy 5w &7y (hgulviun) < Oy sup EF(hg) S 0y

Since py, € (1,00) for any ¢ € (0, 1), we obtain (B.7). The proof is completed. O

To discuss the Ahlfors regular conformal dimension of K with respect to the Euclidean
metric, we need the following assumption.

Assumption B.6. We define A¢ := {0},
A ={w|w=w ... w, € W,\ {0}, diam(Ky,. v, ,,d) > s> diam(K,,d)}
for each s € (0,1). For s € (0,1], M e NU{0} and = € K, define

{z()Mo S Al with k < M +1, 2(1) = w, 2(k) = v

v € A4, there exists w € A? with z € K, and}
such that K, ;) N K,j41) # 0 forany j € {1,...,k—1}

A?}M(x) = {v

and U, (v, s) = UweAg{M(z) K. Then there exist M, € N, ap, a4 € (0, 00) such that

Uy (2, a08) C By(z,s) C U (z,0108) for any (z,s) € K x (0,1].
(Equivalently, d is M,-adapted; see [Kig20, Definition 2.4.1].)

Remark B.7. We do not know whether Assumption B.6 is true for any strongly symmet-
ric self-similar set. Even for nested fractals, being 1-adapted with respect to the Euclidean
metric is required as an additional assumption in [Kig23, Assumption 4.41].

Now we can show the main result in this section under Assumption B.6.

Theorem B.8. Assume that Assumption B.6 holds. Then dimagrc(K,d) = 1.

Proof. Thanks to Theorem B.5, it suffices to prove that Eﬁ is quasisymmetric to d. Obvi-
ously, d is exponential since diam(K,,d) = ¢, diam(K,d). By (B.4), a similar argument
as in the proof of Proposition B.4 implies that R;fE is gentle with respect to d. Hence

[Kig20, Corollary 3.6.7] together with Assumption B.6 implies that ﬁ# is quasisymmetric
to d. O

B.3 An estimate on self-similar regular p-resistance forms on p.-
c.f. self-similar structures

This subsection is devoted to proving the following theorem, which is a generalization of
[Kig03, Theorem A.1].

Theorem B.9. Let p € (1,00), let L = (K, S,{F;}ics) be a p.-c.f. self-similar structure
with #S > 2 and K connected, and let (£, F) be a self-similar p-resistance form on L
with weight p = (p;)ics € (1,00)°. Then there exists ¢ € (0,1) such that for any z,y € K
and any w € W,

¢py Re(,y) < Re(Fy(x), Fu(y)) < py' Re(z,y). (B.8)
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Since the upper estimate in (B.8) is obtained in (7.1), what matters is the lower
estimate in (B.8). To prove it, we need the following lemma.

Lemma B.10. Assume the same conditions as in Theorem B.9. Let x,y € K and
weW,. Set A ={r=m...1€Ws| (pPryor,,) " > puw > p-'}, U=V,U/{x,vy},
Vi = Upen Fo(Vo) and V := Vy U{F,(z), F(y)}. Then A is a partition of ¥ and

Elv(w) = pullu(uo Fy)+ > pEly(uoFy) for anyue Fly.  (B.9)
TeA\{w}

Proof. The proof is very similar to Proposition 7.4. It is clear that A is a partition of 3.
Note that, by Proposition 7.2-(2), Ré/ P is compatible with the original topology of K and

thereby diam(K, Ré/p) < oo. For any u € Fly,
Elv (u)
=min{&(v) | v € F,v|y = u}

5D min{ng(v oF,)+ Z prEWo Fr) |veF, vy = u}
TeA\{w}
> min{pwéf(v oFy,)|veEF,vy= u} —I—min{ Z prEWo F) |veFvy= u}
TeA\{w}

> ppymin{€(v) |v e F,vly =uo F,} + Z prmin{&E(v) | v € F,v|y, =uo F;}
reA\{w}

= pu€lv(uo Fy) + Z p-Elvy(uo Fr).
TeA\{w}

To prove the converse, let v € C(K) satisfy v o F,, = h§[uo F,] and, for 7 € A\ {w},
vo F, = hi [uo F;]. Such v is well-defined since K, N K, = F,(Vo) N F-(Vy). Also, we
have v|y = u and v € F by (5.5). Moreover,

Elv(u) <EW) Z S pE(wo F) = pufluluo Fu)+ Y pr€lu(ucF).
reA TeA{w}

ut

This completes the proof. O

Proof of Theorem B.9. Let A,U, V),V be the same as in Lemma B.10. Set I';(w;A) =
{reAN|w#7,K,NK, # 0} for simplicity. Then #I';(w; A) < #(C)#(Vp) by [Kig01,
Lemma 4.2.3]. Let 1, € F satisfy ¢, (z) = 1, ¥y (y) = 0 and E(¢yy) = Re(z,y)~ ' Let
uy € F satisfy u.(z) = 1, us(y) = 0, uly\p, ) € Rly\p, @) and

E(u,) =inf{&€(v) |v e F,(vo Fy)|lu = Yay, v|\r,w) € Rlv\p, @)}

Such wu, is uniquely exists by a standard argument in the variational analysis. Also, by
Proposition 2.3-(b), we easily see that 0 < u, < 1. Since RY? /R1y; is a finite dimensional
vector space, there exists a constant C' € (0, 00) such that

Elve(w)? < Czr?%)‘;o lu(z) —u(z')| for any u € R". (B.10)
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Then, by using Lemma B.10, we see that

Re(Fu(@), Fu(y)) ™ < E(w) = Elv(w)

:pw8|U(u*OFw)+ Z pTg‘V()<u*OFT)
TeA\{w}

:pr‘U(u*on) + Z pTg|V0(u*OFT)

Telr (U)A)

>

7€l (w;A)
+CP (r?e%x pz-> (#11 (w; A)))

,Rg(l',y)
+C Re(z,

(B.10)
< v
5(37 Y)

R
(ﬁ

(z,y)
S Pw (1 + Cl sup RS(/Z? Z/))Rg(iﬂ, y)717

z,z'e K

which shows the desired lower estimate in (B.8). O
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