
Forum Math. 24 (2012), 339–363, DOI 10.1515/FORM.2011.065 1

Time changes of local Dirichlet spaces by energy
measures of harmonic functions

Naotaka Kajino∗†‡

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

November 12, 2010

Abstract

Given a (symmetric) recurrent local regular Dirichlet form with state space E and
an associated symmetric diffusion {Xt}t∈[0,∞) on E, we consider a function h which
belongs to the extended Dirichlet space, is harmonic outside F1 ∪F2 and equal to a
on F1 and to b on F2, where F1,F2 ⊂ E are (E -quasi-)closed sets and a,b ∈ R, a < b.
We prove that the time change of the real-valued process {h(Xt)}t∈[0,∞) by the energy
measure µ〈h〉 of h is a reflecting Brownian motion on [a,b]. As an application, we also
discuss asymptotic analysis of the heat kernel on the harmonic Sierpinski gasket.
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1 Introduction

As presented in the celebrated work of Itô and McKean [10], any one-dimensional diffu-
sion can be viewed as a suitable reparametrization of one-dimensional Brownian motion.
Such a method of reparametrizations of stochastic processes is known as (random) time
changes. The purpose of this paper is to present a natural extension of this fact for a sym-
metric diffusion on a general state space subject to certain time changes involving harmonic
functions.

We illustrate our main results by treating the scale function of a one-dimensional dif-
fusion as a particular example. For simplicity we concentrate on the case with reflecting
boundaries. Then the state space has to be a compact interval and therefore without loss
of generality we may assume that the state space is [0,1]. Let s : [0,1] → R be strictly in-
creasing and continuous, and let m be a finite Borel measure on [0,1] with full support. Set
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a := s(0) and b := s(1). Following [4, Subsection 2.2.3], we define

F s :=
{

u ∈C([0,1])
∣∣∣ u−u(0) =

∫ (·)

0

du
ds

ds for some
du
ds

∈ L2([0,1],ds)
}

, (1.1)

E s(u,v) :=
1
2

∫ 1

0

du
ds

dv
ds

ds, u,v ∈ F s (1.2)

(note that such du/ds ∈ L2([0,1],ds) as in (1.1) is unique for each u ∈F s). Then (E s,F s)
is an irreducible recurrent strong local regular Dirichlet form on L2([0,1],m) by [4, Propo-
sition 2.2.8], and the associated m-symmetric diffusion X s,m = ({X s,m

t }t∈[0,∞),{Px}x∈[0,1])
has the scale function s and the speed measure m. Clearly, s ∈ F s and

E s(s,v) =
1
2
(v(1)− v(0)), v ∈ F s. (1.3)

In particular, s is harmonic outside the boundary set {0,1}; E (s,v) = 0 for any v ∈F s with
v(0) = v(1) = 0. Moreover, we see that the E s-energy measure µ〈s〉 of s ∈ F s is equal to
ds and that for any ϕ ∈C2(R) and any u ∈ F s,

E s(u,ϕ(s)) =
1
2
(
u(1)ϕ ′(b)−u(0)ϕ ′(a)

)
− 1

2

∫ 1

0
uϕ ′′(s)ds. (1.4)

Let x ∈ [0,1]. By the theory of one-dimensional diffusions (see e.g. [19, V.46–47]),
under Px we can construct a continuous local martingale M = {Mt}t∈[0,∞) and a one-
dimensional Brownian motion B = {Bt}t∈[0,∞) on the same sample space as that of X s,m, so
that M0 = B0 = 0 Px-a.s. and

s(X s,m
t ) = B[a,b]

〈M〉t = s(x)+B〈M〉t +La
〈M〉t −Lb

〈M〉t and Mt = B〈M〉t , t ∈ [0,∞), Px-a.s.; (1.5)

here B[a,b] = {B[a,b]
t }t∈[0,∞) is the reflecting Brownian motion started at s(x) driven by the

Brownian motion B with local times La = {La
t }t∈[0,∞) at a and Lb = {Lb

t }t∈[0,∞) at b, i.e.
(B[a,b],La,Lb) is the pathwisely unique triple of R-valued continuous processes with B[a,b]

[a,b]-valued and started at s(x), La,Lb non-decreasing and started at 0 and such that, Px-a.s.,

B[a,b]
t = s(x)+Bt +La

t −Lb
t , t ∈ [0,∞),

∫ ∞

0
1(a,b](B

[a,b]
t )dLa

t =
∫ ∞

0
1[a,b)(B

[a,b]
t )dLb

t = 0.

(1.6)
(1.6) is called the Skorohod equation for the reflecting Brownian motion on [a,b] started at
s(x) driven by B. In particular, letting τt := inf{u ∈ [0,∞) | 〈M〉u > t} we see that

s(X s,m
τt ) = B[a,b]

t = s(x)+Bt +La
t −Lb

t , t ∈ [0,∞), Px-a.s. (1.7)

On the other hand, since the process N := {Nt := La
〈M〉t −Lb

〈M〉t}t∈[0,∞) is continuous and of
bounded variation, we see that (1.5) actually gives the Fukushima decomposition for s:

s(X s,m
t )− s(X s,m

0 ) = Mt +Nt for any t ∈ [0,∞), Px-a.s. (1.8)

It follows that the equality (1.7) is obtained as the time change of the Fukushima decompo-
sition (1.8) for s by the right-continuous inverse τ(·) of 〈M〉(·).
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In this paper, we extend these facts to the case of certain harmonic functions on a
general recurrent strong local regular Dirichlet space. To state our main results, let E be a
locally compact separable metrizable space with one-point compactification E∆ = E ∪{∆},
let m be a Radon measure on E with full support and let X = ({Xt}t∈[0,∞],{Px}x∈E∆) be an
m-symmetric Hunt process on E whose Dirichlet form (E ,F ) on L2(E,m) is regular. Let
Fe denote the associated extended Dirichlet space and let ũ denote any E -quasi-continuous
m-version of u ∈ Fe, which is unique up to E -q.e. Let a,b ∈ R, a < b and suppose that
F1,F2 ⊂ E are (E -quasi-)closed sets admitting u ∈ Fe such that ũ = a E -q.e. on F1 and
ũ = b E -q.e. on F2. Then let h ∈ Fe be a (F1 ∪F2)-harmonic function satisfying h̃ = ũ
E -q.e. on F1 ∪F2, which does exist by [9, Theorem 4.6.5]. Let

h̃(Xt)− h̃(X0) = M[h]
t +N[h]

t (1.9)

be the Fukushima decomposition for h, where M[h] = {M[h]
t }t∈[0,∞) is a martingale additive

functional and N[h] = {N[h]
t }t∈[0,∞) is a continuous additive functional of zero energy. Note

that if (E ,F ) is strong local then M[h] is continuous by [9, Lemma 5.5.1 (ii)]. Let 〈M[h]〉 =
{〈M[h]〉t}t∈[0,∞) be the quadratic variation of M[h], which is a positive continuous additive
functional with Revuz measure equal to the E -energy measure µ〈h〉 of h. Define σB :=
inf{t ∈ (0,∞) | Xt ∈ B} for B ⊂ E∆. The following is a summary of the main results of this
paper (Theorems 2.12 and 3.6).

Theorem 1.1. Assume that (E ,F ) is recurrent and strong local.
(1) Let ϕ ∈C2(R) satisfy ϕ ′(a) = ϕ ′(b) = 0. Then ϕ(h) ∈ Fe and

E (u,ϕ(h)) = −1
2

∫
E

ũϕ ′′(h̃)dµ〈h〉, u ∈ Fe ∩L∞(E,m). (1.10)

(2) Suppose additionally that σF1 ∨σF2 < ∞ Pm-a.s., where Pm[(·)] :=
∫

E Px[(·)]dm(x). Let
τt := inf{s ∈ [0,∞) | 〈M[h]〉s > t} for t ∈ [0,∞). Then for E -q.e. x ∈ E, under Px, Bh :=
{M[h]

τt }t∈[0,∞) is a one-dimensional Brownian motion started at 0, and {h̃(Xτt )}t∈[0,∞) is the
reflecting Brownian motion on [a,b] started at h̃(x) driven by Bh, with local times La at a and
Lb at b equal respectively to the positive variation and the negative variation of {N[h]

τt }t∈[0,∞).

Remark 1.2. In Theorem 1.1 it is sufficient to assume that (E ,F ) is recurrent and local,
since the strong locality of (E ,F ) easily follows from its recurrence and locality.

Since the positive continuous additive functional 〈M[h]〉 has the Revuz measure µ〈h〉,

{h̃(Xτt )}t∈[0,∞), Bh = {M[h]
τt }t∈[0,∞) and {N[h]

τt }t∈[0,∞) are the time change of the original
processes with respect to the E -energy measure µ〈h〉 of the harmonic function h. By (1.10),
ϕ(h̃)∈ Dom(Lµ〈h〉) and Lµ〈h〉

(
ϕ(h̃)

)
= ϕ ′′(h̃)/2 for the generator Lµ〈h〉 of the time change

of (E,m,E ,F ) by µ〈h〉, which is the Dirichlet space associated with {Xτt}t∈[0,∞] and is
analytically obtained by replacing the reference measure m of the form (E ,F ) by µ〈h〉; see
[4, Chapter 5] and [9, Section 6.2] for general theory of time changes of Dirichlet spaces.

The original motivation for this research is asymptotic analysis of the heat kernel on a
fractal called the harmonic Sierpinski gasket (see Figure 4.2 below), which is the image of
an injective harmonic map from the usual Sierpinski gasket (Figure 4.1) into R2 and whose
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heat kernel has proved to be subject to the two-sided Gaussian bound by [15, Theorem 6.3].
In the end of this article, we briefly describe how we can determine an on-diagonal short
time asymptotic behavior of this heat kernel as an application of Theorem 1.1.

The organization of this paper is as follows. In Section 2, we first recall basics of
analytic theory of regular Dirichlet forms, then study fundamental properties of harmonic
functions and prove Theorem 1.1 (1) (Theorem 2.12). In Section 3, we present a few general
results concerning the sample path properties of additive functionals, then give the precise
statement of Theorem 1.1 (2) in Theorem 3.6 and prove it. Section 4 is devoted to an
application of the main results to asymptotic analysis of the heat kernel on the harmonic
Sierpinski gasket.

Notation. In this paper, we adopt the following notations and conventions.
(1) N = {1,2,3, . . .}, i.e. 0 6∈ N.
(2) We set inf /0 := ∞. We write a∨ b := max{a,b}, a∧ b := min{a,b}, a+ := a∨ 0 and
a− := −(a∧0) for a,b ∈ [−∞,∞]. We use the same notations for (equivalence classes of)
functions. All functions treated in this paper are assumed to be R-valued or [−∞,∞]-valued.
(3) Let (E,B) be a measurable space. For a positive measure µ on (E,B), let Bµ denote
the µ-completion of B. A signed measure on (E,B) is by definition an R-valued countably
additive set function on B.
(4) Let E be a topological space. The Borel σ -field of E is denoted by B(E). We set
C(E) := { f | f : E → R, f is continuous} and Cc(E) := { f ∈C(E) | suppE [ f ] is compact},
where suppE [ f ] := {x ∈ E | f (x) 6= 0}. Also set ‖ f‖∞ := supx∈E | f (x)| for f : E → [−∞,∞].

2 Harmonic functions and their energy measures
In the first half of this section, we briefly recall basic facts from analytic theory of regular
Dirichlet forms; see [4, 8, 9, 18] for details. Throughout this section, let E be a locally
compact separable metrizable space, m be a Radon measure on E with full support, i.e.
such that m(G) > 0 for any non-empty open subset G of E (recall that a Radon measure on
E is by definition a positive Borel measure on E for which every compact set is of finite
measure), and let (E ,F ) be a (symmetric) regular Dirichlet form on L2(E,m).

Let Fe be the extended Dirichlet space associated with (E ,F ); u ∈ Fe if and only if u
is an (m-equivalence class of) Borel measurable R-valued function admitting {un}n∈N ⊂F
such that limk,`→∞ E (uk −u`,uk −u`) = 0 and limn→∞ un = u m-a.e. We extend E to a non-
negative definite symmetric bilinear form on Fe by setting E (u,u) := limn→∞ E (un,un)
with u,un as above, so that limn→∞ ‖u−un‖E = 0, where we write ‖u‖E := E (u,u)1/2 for
u ∈ Fe. We have F = Fe ∩L2(E,m) by [9, Theorem 1.5.2 (iii)]. By [9, Corollary 1.6.3],
ϕ(u) ∈ Fe and E (ϕ(u),ϕ(u)) ≤ E (u,u) for u ∈ Fe and a normal contraction ϕ , i.e. a
function ϕ : R→R such that ϕ(0) = 0 and |ϕ(s)−ϕ(t)| ≤ |s− t| for any s, t ∈R. We write
Fe,b := Fe ∩L∞(E,m), which is an algebra under pointwise sum and multiplication by [9,
Corollary 1.6.3].

Definition 2.1. We define the 1-capacity CapE associated with (E ,F ) by

capE (U) := inf{E1(u,u) | u ∈ F ,u ≥ 1 m-a.e. on U}, U ⊂ E open, (2.1)
CapE (A) := inf{capE (U) |U ⊂ E open, A ⊂U}, A ⊂ E, (2.2)
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where E1(u,v) := E (u,v)+
∫

E uvdm for u,v ∈ F . N ⊂ E is called E -polar if and only if
CapE (N) = 0. Moreover, let A ⊂ E and let S (x) be a statement on x ∈ A. Then we say that
S holds E -q.e. on A, or S (x) for E -q.e. x ∈ A, if and only if the set {x ∈ A | S (x) fails}
is E -polar. When A = E we simply say ‘S holds E -q.e.’ instead.

Clearly, CapE is an extension of capE and m(A) ≤ CapE (A) for any A ∈ B(E). By [9,
Theorem A.1.2], CapE is countably subadditive.

Next we define E -quasi notions by utilizing CapE , as follows.

Definition 2.2. (1) A non-decreasing sequence {Fk}k∈N of closed sets in E is called an
E -nest if and only if limk→∞ CapE (K \Fk) = 0 for any compact subset K of E.
(2) A function u : E \N → [−∞,∞], defined outside an E -polar set N, is called E -quasi-
continuous if and only if there exists an E -nest {Fk}k∈N such that

∪
k∈N Fk ⊂ E \N and u|Fk

is R-valued continuous for each k ∈ N.
(3) A subset E0 of E is called E -quasi-open (resp. E -quasi-closed) if and only if there
exists an E -nest {Fk}k∈N such that E0 ∩Fk is open (resp. closed) in Fk for each k ∈ N, with
Fk equipped with the relative topology inherited from E.

Given an E -nest {Fk}k∈N, E \
∪

k∈N Fk is an E -polar set. If we set E1 := E0 ∩
∪

k∈N Fk
in the situation of (3) above, then E1 ∈ B(E), E1 is E -quasi-open (resp. E -quasi-closed)
and E0 \E1 is E -polar. A [−∞,∞]-valued function u defined E -q.e. is E -quasi-continuous
if and only if u is R-valued E -q.e. and u−1(I) is E -quasi-open for any open subset I of R. If
u is E -quasi-continuous, then u ≥ 0 m-a.e. if and only if u ≥ 0 E -q.e. by [9, Lemma 2.1.4],
and u admits a Borel measurable E -quasi-continuous function v : E → R such that u = v
E -q.e. By [9, Theorem 2.1.7], for any u ∈ Fe there exists an E -quasi-continuous function
v such that u = v m-a.e., and such v is called an E -quasi-countinuous m-version of u, which
is unique up to E -q.e. For u ∈ Fe, let ũ denote any E -quasi-countinuous m-version of u.

Definition 2.3. Let µ be a positive Borel measure on E charging no E -polar set, i.e.
µ(N) = 0 for any E -polar N ∈ B(E). (Note that then every E -polar, E -quasi-open or
E -quasi-closed set belongs to B(E)µ and that every E -quasi-continuous function defined
E -q.e. is B(E)µ -measurable.)
(1) µ is called an E -smooth measure if and only if µ(Fk) < ∞ for any k ∈N for some E -nest
{Fk}k∈N. The collection of all E -smooth measures is denoted by SE .
(2) Fµ ⊂ E is called an E -quasi-support of µ if and only if it is E -quasi-closed, µ(E \Fµ) =
0 and Fµ \F is E -polar for any E -quasi-closed set F ⊂ E with µ(E \F) = 0.

If µ ∈ SE and {Fk}k∈N is an E -nest for µ as in Definition 2.3 (1), then µ(E \
∪

k∈N Fk) =
0 and hence µ is σ -finite. Any Radon measure on E charging no E -polar set belongs to
SE ; it suffices to set Fk := Gk, where {Gk}k∈N is a non-decreasing sequence of relatively
compact open subsets of E with

∪
k∈N Gk = E. By [9, Theorem 4.6.3], every µ ∈ SE admits

an E -quasi-support Fµ ∈ B(E).
Associated with u ∈ Fe,b is the E -energy measure µ〈u〉; by [9, Theorem 5.2.3] we have∫

E
f̃ dµ〈u〉 = 2E (u f ,u)−E (u2, f ), u, f ∈ Fe,b, (2.3)

where, for each u ∈ Fe,b, µ〈u〉(∈ SE by [9, Lemma 3.2.4]) is defined as the unique positive
Borel measure on E satisfying (2.3) for any f ∈ F ∩Cc(E) with f in place of f̃ in the
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integrand. For u ∈ Fe,b, [2, Proposition I.4.1.1] implies that µ〈u〉(E) ≤ 2E (u,u) and that

µ〈ϕ(u)〉 ≤ µ〈u〉 for any normal contraction ϕ . (2.4)

Also for u,v ∈ Fe,b, we define a Borel signed measure µ〈u,v〉 on E by µ〈u,v〉 := (µ〈u+v〉−
µ〈u−v〉)/4. (2.3) yields∫

E
f̃ dµ〈u,v〉 = E (u f ,v)+E (v f ,u)−E (uv, f ), u,v, f ∈ Fe,b, (2.5)

and hence Fe,b ×Fe,b 3 (u,v) 7→ µ〈u,v〉 is bilinear and symmetric. Therefore we easily see
that for any u,v ∈ Fe,b and any bounded Borel measurable f : E → [0,∞),[∫

E
f dµ〈u,v〉

]2
≤

∫
E

f dµ〈u〉

∫
E

f dµ〈v〉, (2.6)∣∣∣∣[∫
E

f dµ〈u〉

]1/2
−

[∫
E

f dµ〈v〉

]1/2
∣∣∣∣2

≤
∫

E
f dµ〈u−v〉 ≤ 2‖ f‖∞‖u− v‖2

E . (2.7)

Then by a limiting procedure using (2.4), (2.7) and [9, Corollary 1.6.3], for any u,v ∈ Fe
we can uniquely define a finite E -smooth measure µ〈u〉 and µ〈u,v〉 := (µ〈u+v〉− µ〈u−v〉)/4
so that µ〈u〉(E) ≤ 2E (u,u) and Fe ×Fe 3 (u,v) 7→ µ〈u,v〉 is bilinear and symmetric. Again
we get (2.6) and (2.7) in the same way, and we can also verify (2.4) by using Banach-Saks
theorem (see [4, Theorem A.4.1] or [18, Theorem A.2.2]). It is immediate by (2.6) and
(2.7) that µ〈u1,v〉 = µ〈u2,v〉 for u1,u2,v ∈ Fe with ‖u1 − u2‖E = 0. Moreover, if (E ,F ) is
strong local, then we have the following chain rule for µ〈·〉, which often plays essential roles
in analysis of strong local Dirichlet forms.

Lemma 2.4 ([9, Theorem 3.2.2]). Let n ∈ N, u1, . . . ,un ∈ Fe and let ϕ = ϕ(x1, . . . ,xn) ∈
C1(Rn) satisfy ϕ(0) = 0. Suppose either that u1, . . . ,un ∈ Fe,b or that ∂ϕ/∂xi is bounded
on Rn for any i ∈ {1, . . . ,n}. Then ϕ(u1, . . . ,un) ∈ Fe. Moreover, if in addition (E ,F ) is
strong local, then for any v ∈ Fe,

dµ〈ϕ(u1,...,un),v〉 =
n

∑
i=1

∂ϕ
∂xi

(ũ1, . . . , ũn)dµ〈ui,v〉. (2.8)

Remark 2.5. [2, Proposition I.4.1.1] and [9, Theorems 3.2.2 and 5.2.3] are stated mainly
for functions in F ∩L∞(E,m) or F and not necessarily for those in Fe,b or Fe, but we
easily see that they are valid for functions in Fe in the following manner:

[2, Proposition I.4.1.1] can be easily extended to functions in Fe,b by using Banach-
Saks theorem. For the other two theorems, choose η ∈ L1(E,m)∩L∞(E,m) so that η > 0
m-a.e., and set F η := Fe ∩L2(E,η ·m), where (η ·m)(A) :=

∫
A ηdm for A ∈ B(E). Then

by [9, Theorem 6.2.1], (E ,F η) is a regular Dirichlet form on L2(E,η ·m), and by [9,
Theorem 3.1.2, Problems 3.1.1 and 1.4.1] it is strong local if (E ,F ) is. By [9, Corollary
4.6.1 and the argument before Lemma 6.2.9], the notion of E -nest and the E -quasi notions
with respect to (E ,F η) (on L2(E,η ·m)) coincide with those with respect to (E ,F ) (on
L2(E,m)). Moreover, F η ∩L∞(E,η ·m) = Fe,b, and for any u1, . . . ,un ∈Fe we can choose
η as above so that ui ∈ L2(E,η ·m) and hence ui ∈F η for i∈{1, . . . ,n}. Now [9, Theorems
3.2.2 and 5.2.3] applied to functions in F η ∩L∞(E,η ·m) or F η yield the desired assertions
for functions in Fe,b or Fe.
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We now start our study of harmonic functions and their E -energy measures. First, we
give the definition of harmonic functions.

Definition 2.6. Let F ⊂ E be E -quasi-closed and set F u
F := {v ∈ Fe | ṽ = ũ E -q.e. on F}

for u ∈ Fe. We call h ∈ Fe F-harmonic if and only if

E (h,h) = inf{E (v,v) | v ∈ F h
F} or equivalently, E (h,v) = 0, ∀v ∈ F 0

F . (2.9)

Let F ⊂ E be E -quasi-closed. The equivalence of the two conditions in (2.9) for h ∈Fe
is obvious. Let u ∈ Fe. Then by [9, Theorems 4.1.3, 4.2.1 (ii), 4.6.5 and A.2.6 (i)], there
exists an F-harmonic function h ∈ F u

F . (2.9) implies that, if h1,h2 ∈ F u
F are F-harmonic

then ‖h1 −h2‖E = 0 and hence µ〈h1〉 = µ〈h2〉. Also by (2.9), if h ∈ F u
F is F-harmonic and

ϕ is a normal contraction such that ϕ(ũ) = ũ E -q.e. on F , then ϕ(h) is also an F-harmonic
function belonging to F u

F .
The following lemma will be used in the proof of Lemma 3.3.

Lemma 2.7. Let u ∈ Fe. If F ⊂ E is an E -quasi-support of µ〈u〉 then u is F-harmonic.

Proof. Let v ∈ F 0
F , ` ∈ N and set u` := (−`)∨ (u∧ `) and v` := (−`)∨ (v∧ `). Let n ∈ N,

n ≥ 2. Then (2.5) yields 2E (u`,v`
n) =

∫
E ṽ`dµ〈u`,v`

n−1〉 +
∫

E(ṽ`)n−1dµ〈u`,v`〉 = 0, where the
latter equality follows by µ〈u〉(E \F) = 0, (2.4) and (2.6).

Next let ϕ ∈ C2(R) satisfy ϕ(0) = ϕ ′(0) = 0. Then ϕ(v`) ∈ Fe by Lemma 2.4. By
approximating ϕ ′′ uniformly on [−`,`] by polynomials, we see that there exists a sequence
of polynomials {ϕn}n∈N such that ϕn(0) = ϕ ′

n(0) = 0 and supx∈[−`,`] |ϕ ′
n(x)−ϕ ′(x)| → 0

as n → ∞. The argument in the previous paragraph yields E (u`,ϕn(v`)) = 0, and letting
n → ∞ results in E (u`,ϕ(v`)) = 0 since limn→∞ ‖ϕn(v`)−ϕ(v`)‖E = 0 by [9, (3.2.27)].

Finally, choose f ∈C1(R) so that 0 ≤ f ≤ 1, f (0) = 0 and f (x) = 1 for |x| ≥ 1, and set
ψn(x) :=

∫ x
0 f (ny)dy. Then ψn ∈C2(R) and ψn(0) = ψ ′

n(0) = 0. Similarly to [9, Corollary
1.6.3] we have limn→∞ ‖v`−ψn(v`)‖E = 0 and hence E (u`,v`) = limn→∞ E (u`,ψn(v`)) = 0.
Now letting ` → ∞ yields E (u,v) = 0 by [9, Corollary 1.6.3]. Thus u is F-harmonic. �

Given an E -quasi-closed set F ⊂ E and u ∈ Fe, an F-harmonic function h ∈ F u
F may

not be unique since (E ,F ) is not assumed to be irreducible. Nevertheless we still have a
kind of equivalence between F-harmonic functions belonging to F u

F , as follows.

Lemma 2.8. Let F ⊂ E be E -quasi-closed, u ∈ Fe and h1,h2 ∈ F u
F be F-harmonic. Then

(1) h̃1 = h̃2 µ〈h1〉-a.e. (Recall that µ〈h1〉 = µ〈h2〉.)
(2) Let ϕ ∈C1(R) satisfy ϕ(0) = 0. Suppose either that h2 ∈ Fe,b or that ϕ ′ is bounded on
R. Then ϕ(h1),ϕ(h2) ∈ Fe and ‖ϕ(h1)−ϕ(h2)‖E = 0.

Proof. (1) Let f := |h1−h2|∧1. Then f ∈F 0
F and ‖ f‖E ≤ ‖h1−h2‖E = 0. Let ` ∈ N and

g` := (−`)∨(h1∧`). (2.3) implies that
∫

E f̃ dµ〈g`〉 = 2E (g` f ,g`)−E (g2
` , f ) = 2E (g` f ,g`).

[4, Exercise 1.1.10] together with ‖ f‖E = 0 yields ‖g` f‖E ≤ ‖ f‖L∞(E,m)‖g`‖E ≤ ‖h1‖E .
E (g` f ,h1) = 0 by (2.9), and then 0 ≤

∫
E f̃ dµ〈g`〉 = 2E (g` f ,g` − h1) ≤ ‖h1‖E ‖g` − h1‖E .

Since lim`→∞ ‖g` − h1‖E = 0 by [9, Corollary 1.6.3], letting ` → ∞ and (2.7) lead to∫
E f̃ dµ〈h1〉 = 0, which yields the assertion since f̃ = |h̃1− h̃2|∧1 E -q.e. and hence µ〈h1〉-a.e.

(2) First suppose either that h1,h2 ∈ Fe,b or that ϕ ′ is bounded. Then for some ψ ∈C1(R)
and c ∈ (0,∞), cψ is a normal contraction and ϕ(hi) = ψ(hi) m-a.e. for i = 1,2. Thus
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ϕ(hi) ∈ Fe and c2µ〈ϕ(hi)〉 ≤ µ〈h1〉 for i = 1,2, in view of (2.4). Let F0 be an E -quasi-
support of µ〈h1〉. Then (1) and [9, Theorem 4.6.2] imply that h̃1 = h̃2 E -q.e. on F0, and
hence ϕ(h̃1) = ϕ(h̃2) E -q.e. on F0. Since F0 is E -quasi-closed and µ〈ϕ(hi)〉(E \F0) = 0 for
i = 1,2, Lemma 2.7 yields E (ϕ(h1),ϕ(h1)) = E (ϕ(h2),ϕ(h2)) = E (ϕ(h1),ϕ(h2)), from
which it is immediate that ‖ϕ(h1)−ϕ(h2)‖E = 0.

Next suppose only that h2 ∈ Fe,b. Let ` ∈ N satisfy ` ≥ ‖h2‖L∞(E,m) and let g` be
as in (1). Then since |h̃1| = |ũ| = |h̃2| ≤ ` E -q.e. on F , g` is also an F-harmonic func-
tion belonging to F u

F and hence ϕ(g`),ϕ(h2) ∈ Fe and ‖ϕ(g`)− ϕ(h2)‖E = 0 by the
previous paragraph. Since lim`→∞ ϕ(g`) = ϕ(h1) m-a.e. and ‖ϕ(gk)− ϕ(g`)‖E = 0 for
k, ` ≥ ‖h2‖L∞(E,m), an argument similar to [4, Proof of Lemma 1.1.12] shows ϕ(h1) ∈ Fe
and ‖ϕ(h1)−ϕ(g`)‖E = 0 for `≥‖h2‖L∞(E,m). Thus we obtain ‖ϕ(h1)−ϕ(h2)‖E = 0. �

In the main results of this paper, we put the following assumption (BC):

(E ,F ) is recurrent, i.e. 1 ∈ Fe and E (1,1) = 0. F1,F2 ⊂ E are E -quasi-closed
and admit u ∈ Fe such that ũ = 0 E -q.e. on F1 and ũ = 1 E -q.e. on F2. a,b ∈ R,
a < b and h ∈ F a,b is (F1 ∪F2)-harmonic, where F s,t := F

s1+(t−s)u
F1∪F2

for s, t ∈ R.
(BC)

In the situation of (BC), F1 ∩F2 is E -polar and there does exist an (F1 ∪F2)-harmonic
function h ∈ F a,b. Such u ∈ Fe as in (BC) exists if F1 ∩F2 = /0 and if either F1 is closed
and F2 is compact or vice versa, since (E ,F ) is regular and 1 ∈ Fe.

The following proposition is due to Fitzsimmons [7].

Proposition 2.9 ([7, (2.7)]). Assume (BC). Then there exists a unique Borel signed mea-
sure λ on E charging no E -polar set, such that

E (h,v) = −(b−a)
∫

E
ṽdλ , v ∈ Fe,b, (2.10)

and λ is independent of particular choices of a,b and h. Moreover, let λ1(A) := λ (A\F2)
and λ2(A) := −λ (A \F1) for A ∈ B(E). Then λ1,λ2 ∈ SE , λ = λ1 − λ2, λ1(E \F1) =
λ2(E \F2) = 0 and λ1(F1) = λ2(F2) = (b−a)−2E (h,h).

Note that, if λ is a Borel signed measure on E charging no E -polar set, then so is its total
variation |λ | and hence

∫
E ṽdλ for v∈Fe,b and λ (A\Fi) for A∈B(E), i = 1,2 are defined.

The proof of Proposition 2.9 given by Fitzsimmons [7, (2.7)] is based on its probabilistic
counterpart shown in [3, Proof of Theorem 3.2]. We give an alternative analytic proof here.

Proof. Let h0,1 ∈F 0,1 be (F1∪F2)-harmonic. Then a1 +(b−a)h0,1(∈F a,b) is also (F1∪
F2)-harmonic and hence ‖(b−a)h0,1 −h‖E = 0 by (2.9). Thus E (h,v) = (b−a)E (h0,1,v)
for v ∈ Fe, and therefore it suffices to show the assertions for h0,1 instead of h. Since
‖h0,1−(0∨h0,1)∧1‖E = 0 by (2.9), we may assume 0≤ h0,1 ≤ 1 m-a.e. Let h1,0 := 1−h0,1

and v ∈Fe,b. Choose (F1∪F2)-harmonic functions u0,1 ∈F
vh0,1
F1∪F2

and u1,0 ∈F
vh1,0
F1∪F2

so that
|u0,1| ∨ |u1,0| ≤ ‖v‖L∞(E,m) m-a.e. (2.9) yields E (h0,1,u1,0h0,1) = E (h1,0,u0,1h1,0) = 0 and
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therefore by (2.3) and (2.9),

E (h0,1,v) = E (h0,1,vh1,0)+E (1 −h1,0,vh0,1) = E (h0,1,u1,0)−E (h1,0,u0,1)

= −
(
2E (h0,1,u1,0h0,1)−E ((h0,1)2,u1,0)

)
+

(
2E (h1,0,u0,1h1,0)−E ((h1,0)2,u0,1)

)
= −

∫
E

ũ1,0dµ〈h0,1〉 +
∫

E
ũ0,1dµ〈h1,0〉. (2.11)

It follows from (2.11) that |E (h0,1,v)| ≤ 4‖v‖L∞(E,m)E (h0,1,h0,1) for any v ∈Fe,b. Then [8,
Theorem 4.2] and a time change argument as in Remark 2.5 imply the existence of a Borel
signed measure λ on E charging no E -polar set and satisfying (2.10).

Let G ⊂ E be E -quasi-open. By [9, Lemma 4.6.1] we can choose uG ∈ F 0
E\G so that

ũG > 0 E -q.e. on G. Let uk := (0∨kuG)∧1 for k ∈N. Then uk ∈F 0
E\G and limk→∞ ũk = 1G

E -q.e. Now (2.10) yields λ (G) = limk→∞
∫

E ũkdλ = − limk→∞ E (h0,1,uk). Therefore the
values of λ for E -quasi-open sets are uniquely determined by the property (2.10), and the
Dynkin class theorem [12, Theorem 2.1.3] implies the uniqueness of λ .

Next we prove that λ1 ∈ SE . Let λ1 = λ+
1 − λ−

1 be the Hahn decomposition of λ1.
It suffices to show that λ1 is a positive measure, i.e. λ−

1 = 0. Since λ1|B(F2) = 0 we can
choose L ∈ B(E \ F2) so that λ+

1 (L) = λ−
1 (E \ L) = 0. Let K ⊂ L be a closed subset

of E. Since E \F2 and E \ (F2 ∪K) are E -quasi-open, by the previous paragraph there
exist {uk}k∈N,{vk}k∈N ⊂ F 0

F2
such that |uk| ∨ |vk| ≤ 1 m-a.e. for k ∈ N, limk→∞ ũk = 1E\F2

E -q.e. and limk→∞ ṽk = 1E\(F2∪K) E -q.e. Then we easily see from (2.10) and (2.11) that∫
E(ũk − ṽk)+dλ =−E (h0,1,(uk −vk)+)≥ 0, and letting k → ∞ yields 0 ≤ λ (K) = λ1(K) =
−λ−

1 (K), i.e. λ−
1 (K) = 0. Now λ−

1 (L) = sup{λ−
1 (K) | K ⊂ L, K is closed in E} = 0 by [5,

Theorem 7.1.3] and hence λ−
1 = 0. In exactly the same way we have λ2 ∈ SE , and in

particular λ |B(E\(F1∪F2)) = 0. Therefore λ = λ1 − λ2 and λ1(E \ F1) = λ2(E \ F2) = 0.
Finally, letting v := 1 and v := h0,1 in (2.10) yields λ1(F1) = λ2(F2) = E (h0,1,h0,1). �

Remark 2.10. The boundary value h̃ =
{a on F1

b on F2
E -q.e. is essential in Proposition 2.9. In

fact, for general u ∈ Fe and an E -quasi-closed set F ⊂ E, there may not exist such a Borel
signed measure λ on E as in (2.10) even if h ∈ F u

F is F-harmonic.

A simple application of Lemma 2.4 and Proposition 2.9 yields the following fact due to
Fitzsimmons [7], which is used in Section 4. See [7, Proposition 2.9] for a proof. Note that,
if u ∈Fe then by µ〈u〉 ∈ SE we can regard ũ as a measurable map ũ :

(
E,B(E)µ〈u〉 ,µ〈u〉

)
→

(R,B(R)), and therefore the image measure µ〈u〉 ◦ ũ−1 on (R,B(R)) is defined.

Corollary 2.11 ([7, Proposition 2.9]). Assume (BC) and that (E ,F ) is strong local. Let
dy denote the Lebesgue measure on (R,B(R)). Then

µ〈h〉 ◦ h̃−1 =
2E (h,h)

b−a
1[a,b]dy. (2.12)

Now we can state and prove the main theorem of this section, which is in fact an
easy consequence of the strong locality, Lemmas 2.4, 2.8 and Proposition 2.9. Note that
µ〈u,v〉(E) = 2E (u,v) for u,v ∈ Fe if (E ,F ) is recurrent, which follows by (2.3). Recall
that ϕ(h) ∈ Fe for any ϕ ∈C1(R) in the situation of (BC) by Lemma 2.8 and 1 ∈ Fe.
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Theorem 2.12. Assume (BC) and that (E ,F ) is strong local.
(1) Set κ := 2(b−a)−1E (h,h). Then for any ϕ,ψ ∈C1(R),

E (ϕ(h),ψ(h)) =
κ
2

∫ b

a
ϕ ′(y)ψ ′(y)dy. (2.13)

(2) Let ϕ ∈C2(R) and u ∈ Fe,b. Then

E (u,ϕ(h)) = (b−a)
(

ϕ ′(b)
∫

F2

ũdλ2 −ϕ ′(a)
∫

F1

ũdλ1

)
− 1

2

∫
E

ũϕ ′′(h̃)dµ〈h〉. (2.14)

Proof. (1) Since we may assume that h ∈ Fe,b by Lemma 2.8, it follows from Lemma 2.4
and (2.12) that for ϕ ,ψ ∈C1(R),

2E (ϕ(h),ψ(h)) = µ〈ϕ(h),ψ(h)〉(E) =
∫

E
ϕ ′(h̃)ψ ′(h̃)dµ〈h〉 = κ

∫ b

a
ϕ ′(y)ψ ′(y)dy.

(2) Using (2.5), Lemma 2.4 and Proposition 2.9, we have

2E (u,ϕ(h)) = µ〈u,ϕ(h)〉(E) =
∫

E
ϕ ′(h̃)dµ〈u,h〉

= E (uϕ ′(h),h)+E (hϕ ′(h),u)−E (uh,ϕ ′(h))

= 2E (ϕ ′(h)u,h)−
(
E (hu,ϕ ′(h))+E (ϕ ′(h)u,h)−E (hϕ ′(h),u)

)
= −2(b−a)

∫
E

ϕ ′(h̃)ũdλ −
∫

E
ũdµ〈h,ϕ ′(h)〉

= 2(b−a)
(

ϕ ′(b)
∫

F2

ũdλ2 −ϕ ′(a)
∫

F1

ũdλ1

)
−

∫
E

ũϕ ′′(h̃)dµ〈h〉,

proving (2.14). �

3 Reflecting Brownian motion arising from time change
by µµµ〈hhh〉

Throughout this section, we follow the notations introduced in the previous section. The
main purpose of this section is to give the precise statement of Theorem 1.1 (2) in Theorem
3.6 and to prove it. In the first part of this section, we recall basics on the m-symmetric
Hunt process corresponding to (E ,F ) and its additive functionals. See [4, 9] for details.
Let E∆ := E∪{∆} denote the one-point compactification of E. In what follows, the measure
m is extended to B(E∆) by setting m({∆}) := 0, and a [−∞,∞]-valued function f defined
(E -q.e.) on E is always set to be 0 at ∆ when needed; f (∆) := 0.

We fix an m-symmetric Hunt process X =
(
Ω,M,{Xt}t∈[0,∞],{Px}x∈E∆

)
on E with life

time ζ and shift operators {θt}t∈[0,∞] whose Dirichlet form on L2(E,m) is (E ,F ). Such
X does exist by [9, Theorem 7.2.1]. Let F∗ = {Ft}t∈[0,∞] be the minimum completed
admissible filtration as in [9, p.311], which is right-continuous by [9, Theorem A.2.1].
For each σ -finite positive Borel measure µ on E∆ and A ∈ F∞, the function E∆ 3 x 7→
Px[A] is B(E∆)µ -measurable, and associated with µ is a measure Pµ on (Ω,F∞) given
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by Pµ [A] :=
∫

E∆
Px[A]dµ(x). Clearly Pµ [Ω] = µ(E∆), and Pµ is σ -finite since Pµ [X0 ∈

B] =
∫

E∆
1Bdµ = µ(B) for B ∈ B(E∆). Let Ex[(·)] and Eµ [(·)] denote expectations (that

is, integrals on Ω) under the measures Px and Pµ , respectively. For (t,ω) ∈ (0,∞)×Ω
let Xt−(ω) := lims→t,s<t Xs(ω) ∈ E∆, which exists by the definition [9, p.314] of X being
a Hunt process. For B ⊂ E∆ and ω ∈ Ω, we set σB(ω) := inf{t ∈ (0,∞) | Xt(ω) ∈ B},
σ̇B(ω) := inf{t ∈ [0,∞) | Xt(ω) ∈ B} and σ̂B(ω) := inf{t ∈ (0,∞) | Xt−(ω) ∈ B}, which
are F∗-stopping times if B ∈ B(E∆) by [9, Theorem A.2.3]. We call N ∈ B(E) a properly
exceptional set for X if and only if m(N) = 0 and Px[σ̇N ∧ σ̂N = ∞] = 1 for any x ∈ E \N.
By [9, Theorem 4.2.1 (ii)], every properly exceptional set for X is E -polar, and conversely
any E -polar set is included in a Borel properly exceptional set for X by [9, Theorem 4.1.1].

Definition 3.1. (1) A family A = {At}t∈[0,∞) of [−∞,∞]-valued function on Ω is called an
additive functional of X if and only if At is Ft -measurable for each t ∈ [0,∞) and there
exist a set Λ ∈ F∞ and a properly exceptional set N ∈ B(E) for X such that the following
conditions (AF1) and (AF2) hold:

Px[Λ] = 1 for any x ∈ E \N and θt(Λ) ⊂ Λ for any t ∈ [0,∞). (AF1)

For each ω ∈ Λ, t 7→ At(ω) is right-continuous on [0,∞), R-valued on [0,ζ (ω))
and has finite left limits on (0,ζ (ω)), A0(ω) = 0, As+t(ω) = At(ω)+As ◦θt(ω)
for any s, t ∈ [0,∞), and if ζ (ω) < ∞ then At(ω) = Aζ (ω)(ω) for any t ∈ [ζ (ω),∞).

(AF2)

We call such sets Λ and N as above a defining set and an exceptional set, respectively, of A.
(2) An additive functional A = {At}t∈[0,∞) of X is called positive continuous, finite contin-
uous or finite cadlag, respectively, if and only if we can choose a defining set Λ of A so
that for each ω ∈ Λ, the function t 7→ At(ω) on [0,∞) is [0,∞]-valued continuous, R-valued
continuous, or R-valued right-continuous with finite left limits on (0,∞), respectively. The
collection of all positive continuous additive functionals of X is denoted by A+

c .
(3) We call two additive functionals A = {At}t∈[0,∞) and B = {Bt}t∈[0,∞) of X equivalent,
and write A ∼A B, if and only if Pm[At 6= Bt ] = 0 for any t ∈ [0,∞).

By [4, Lemma A.3.2 and Theorem 3.1.5], A ∼A B if and only if there exist a defining
set Λ ∈ F∞ and an exceptional set N ∈ B(E), respectively, of both A and B such that
At(ω) = Bt(ω) for any (t,ω) ∈ [0,∞)×Λ. Equivalent additive functionals of X are always
identified henceforth, and any equality among additive functionals of X will always mean
the equivalence ∼A. Let A = {At}t∈[0,∞) be an additive functional of X with defining set
Λ ∈ F∞ and exceptional set N ∈ B(E). Let Λ0 := Λ∩{σ̇N ∧ σ̂N = ∞}. Then we easily see
that Λ0 is also a defining set of A and belongs to F0. Hence by setting At |Ω\Λ0 := 0, we may,
and always do, assume that every additive functional A = {At}t∈[0,∞) of X with defining set
Λ and exceptional set N satisfies Λ ⊂ {σ̇N ∧ σ̂N = ∞}, Λ ∈ F0 and At |Ω\Λ = 0 for t ∈ [0,∞).

By [9, Theorems 5.1.3 and 5.1.4], there is a natural bijection A+
c / ∼A→ SE , A 7→ µA,

called the Revuz correspondence; for A = {At}t∈[0,∞) ∈ A+
c , µA is the unique E -smooth

measure such that for any t ∈ (0,∞) and any f ,η : E → [0,∞] Borel measurable,∫
E

Ex

[∫ t

0
f (Xs)dAs

]
η(x)dm(x) =

∫ t

0

∫
E

Ex[η(Xs)] f (x)dµA(x)ds. (3.1)

µA is called the Revuz measure of A ∈ A+
c . For an additive functional A = {At}t∈[0,∞) of X ,

its energy eA(A) is defined as eA(A) := limt↓0(2t)−1Em[A2
t ] whenever the limit exists.
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Definition 3.2. We define the space M of martingale additive functionals and the space
Nc of continuous additive functionals of zero energy by

M :=
{

M
∣∣∣∣ M = {Mt}t∈[0,∞) is a finite cadlag additive functional of X such that

Ex[M2
t ] < ∞ and Ex[Mt ] = 0 E -q.e. x ∈ E for each t ∈ (0,∞)

}
,

Nc :=
{

N
∣∣∣∣ N = {Nt}t∈[0,∞) is a finite continuous additive functional of X ,

Ex[|Nt |] < ∞ E -q.e. x ∈ E for each t ∈ (0,∞) and eA(N) = 0

}
.

Let M = {Mt}t∈[0,∞) ∈ M . Then for E -q.e. x ∈ E, M is an (F∗,Px)-martingale with
M0 = 0 Px-a.s. and Ex[M2

t ] < ∞ for any t ∈ [0,∞). As stated in [9, p.200], there exists 〈M〉=
{〈M〉t}t∈[0,∞) ∈ A+

c , unique up to the equivalence ∼A and called the quadratic variation of
M, such that Ex[M2

t ] = Ex[〈M〉t ], t ∈ [0,∞) for E -q.e. x∈E. We easily see that 〈M〉 is a finite
continuous additive functional of X and that {M2

t −〈M〉t}t∈[0,∞) is a (F∗,Px)-martingale for
E -q.e. x ∈ E. Letting f = η = 1 and A = 〈M〉 in (3.1) yields eA(M) = µ〈M〉(E)/2. We set
M ◦ := {M ∈ M | eA(M) < ∞}.

Let u ∈ Fe. Then associated to u is a finite cadlag additive functional u(X)− u(X0)
of X given by u(X)− u(X0) := {ũ(Xt)− ũ(X0)}t∈[0,∞) (on a defining set), whose equiv-
alence class under ∼A is independent of choices of an E -quasi-continuous m-version ũ
of u. The Fukushima decomposition theorem [9, Theorem 5.2.2] asserts that there exist
M[u] = {M[u]

t }t∈[0,∞) ∈M ◦ and N[u] = {N[u]
t }t∈[0,∞) ∈Nc, unique up to the equivalence ∼A,

such that u(X)−u(X0) = M[u] +N[u], or equivalently, for E -q.e. x ∈ E,

ũ(Xt)− ũ(X0) = M[u]
t +N[u]

t for any t ∈ [0,∞), Px-a.s. (3.2)

Moreover, we have µ〈M[u]〉 = µ〈u〉 by [9, Theorem 5.2.3] and hence eA(u(X)− u(X0)) =

eA(M[u]) = µ〈u〉(E)/2 ≤ E (u,u) by [9, (5.2.3)].
Before presenting the main theorem of this section (Theorem 3.6), we provide a lemma

and a proposition which concern sample path properties of additive functionals of X and
will be of independent interest. They assert that N[u] can change its value only on an E -
quasi-support of µ〈u〉, or in other words only when 〈M[u]〉 increases, complementing [9,
Theorem 5.4.1 (i) and Lemma 5.4.2 (i)].

Lemma 3.3. Let u ∈ Fe and F ⊂ E be an E -quasi-support of µ〈u〉. Then for E -q.e. x ∈ E,

N[u]
t (ω) = 0 for any t ∈ [0,σF(ω)), Px-a.e. ω ∈ Ω. (3.3)

Proof. Since F is E -quasi-closed, by [4, Proof of Theorem 3.3.3 (i)] we can choose a
properly exceptional set N ∈ B(E) for X so that B := F ∪N ∈ B(E) and B is finely closed
with respect to X (see [4, 9] for details concerning fine topology). Then B is also an E -
quasi-support of µ〈u〉. Let uB(x) := Ex[ũ(XσB)], x ∈ E. By [9, Theorems 4.1.3, 4.2.1 (ii),
4.6.5 and A.2.6 (i)], uB is an B-harmonic function belonging to F u

B , and so is u by Lemma
2.7. Thus ‖u− uB‖E = 0 and hence [9, Theorem 5.2.4] yields N[u] = N[uB]. Now by [9,
Lemma 5.4.2 (i)], for E -q.e. x ∈ E we have (3.3) with B in place of F , and the result follows
since σB = σF Px-a.s. for x ∈ E \N and hence for E -q.e. x ∈ E. �

Proposition 3.4. Let u ∈ Fe. Then for E -q.e. x ∈ E,

N[u]
s (ω) = N[u]

t (ω) for any s, t ∈ [0,∞) with 〈M[u]〉s(ω) = 〈M[u]〉t(ω), Px-a.e. ω ∈Ω. (3.4)
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Proof. Choose Λ ∈ F0 and N ∈ B(E) so that they are respectively a defining set and an
exceptional set of both N[u] and 〈M[u]〉. Then under our convention, Λ0 := Λ∪{ζ = 0}
is also a defining set of them (note that either {ζ = 0} ⊂ A or {ζ = 0}∩A = /0 for each
A ∈ F∞). Let R(ω) := inf{t ∈ [0,∞) | 〈M[u]〉t(ω) > 0} for ω ∈ Ω and set B := {x ∈ E |
Px[R = 0] = 1}. B is an E -quasi-support of the Revuz measure µ〈u〉 of 〈M[u]〉 by [9, Theorem
5.1.5]. Clearly, we can choose F ∈ B(E) so that F ⊂ B and B\F is E -polar, and then F is
also an E -quasi-support of µ〈u〉. Since σF = σB Px-a.s. for E -q.e. x ∈ E, [9, Lemma 5.1.11]
and Lemma 3.3 imply that Px[R = σF ] = 1 and (3.3) hold for any x ∈ E \N0 for some
properly exceptional set N0 ∈ B(E) for X with N ⊂ N0. Let Ω(3.3) be the event in (3.3) and
Ω0 := {R = σF}∩Ω(3.3) ∩Λ0, which belongs to F∞ by virtue of [6, Chapter III, 13 and 33]
and satisfies Px[Ω0] = 1 for any x ∈ E \N0. For ω ∈ Ω0, by (3.3), the definition of R(ω)(=
σF(ω)) and the continuity of N[u]

(·) (ω) : [0,∞)→R we see that N[u]
t (ω) = 0 for any t ∈ [0,∞)

with 〈M[u]〉t(ω) = 0. Now we set Ω[u] :=
∩

t∈Q∩[0,∞) θ−1
t (Ω0). Since {ζ = 0} ⊂ Λ0 and

N[u] = 〈M[u]〉 = 0 on {ζ = 0}, we have {ζ = 0} ⊂ Ω0 and hence P∆[Ω0] = 1. Therefore
for x ∈ E \N0, the Markov property of X ([4, Theorem A.1.21], [18, Exercise IV.1.9 (v)])
yields Px[θ−1

t (Ω0)] = Ex[PXt [Ω0]] = 1 for any t ∈ [0,∞) and hence Px[Ω[u]] = 1. We can
verify (3.4) for ω ∈ Ω[u] by using (AF2) for N[u] and 〈M[u]〉, and the proof is complete. �

Turning to the situation of (BC), Propositions 2.9 and 3.4 result in the next proposition.

Proposition 3.5. Assume (BC), and for i = 1,2 let Ai = {Ai
t}t∈[0,∞) ∈ A+

c be the positive
continuous additive functional of X with Revuz measure λi, where λi ∈ SE is as in Propo-
sition 2.9. Suppose that (E ,F ) is strong local and that σF1 ∨σF2 < ∞ Pm-a.s. Then there
exist Λ ∈ F0 and N ∈ B(E) which are respectively a defining set and an exceptional set of
the five additive functionals h(X)−h(X0), M[h], A1, A2 and 〈M[h]〉, such that the following
conditions are valid:
(i) Let x ∈ E \N. Then Ex[(M

[h]
t )2] = Ex[〈M[h]〉t ] < ∞ and Ex[M

[h]
t ] = 0 for any t ∈ [0,∞).

(ii) Let ω ∈Λ. Then ζ (ω)= limt→∞〈M[h]〉t(ω)= ∞, h̃(X(·)(ω)) is [a,b]-valued and M[h]
(·) (ω)

is continuous. If s, t ∈ [0,∞) and 〈M[h]〉s(ω) = 〈M[h]〉t(ω) then M[h]
s (ω) = M[h]

t (ω) and
Ai

s(ω) = Ai
t(ω), i = 1,2. Also, h̃(Xt(ω))− h̃(X0(ω)) = M[h]

t (ω)+(b−a)(A1
t (ω)−A2

t (ω))
for any t ∈ [0,∞) and

∫ ∞
0 1(a,b](h̃(Xs(ω))dA1

s (ω) =
∫ ∞

0 1[a,b)(h̃(Xs(ω))dA2
s (ω) = 0.

Note that, on account of [9, Theorem 4.6.6 (ii)], the condition that σF1 ∨σF2 < ∞ Pm-a.s.
is satisfied if (E ,F ) is irreducible and CapE (F1)CapE (F2) > 0 in addition to (BC).

The proof of Proposition 3.5 is postponed until the end of this section. Using Proposi-
tion 3.5, now we can state and prove the main theorem of this section. Recall that, under
our convention, 〈M[h]〉 is set to be 0 on Ω\Λ in the situation of Proposition 3.5.

Theorem 3.6. Assume (BC). Suppose that (E ,F ) is strong local and that σF1 ∨σF2 < ∞
Pm-a.s. Let A1,A2 ∈ A+

c , Λ ∈F0 and N ∈B(E) be as in Proposition 3.5. Define {τt}t∈[0,∞),
Fh
∗ = {Fh

t }t∈[0,∞), Xh = {Xh
t }t∈[0,∞), Bh = {Bh

t }t∈[0,∞), La = {La
t }t∈[0,∞) and Lb = {Lb

t }t∈[0,∞)

by τt := inf{s ∈ [0,∞) | 〈M[h]〉s > t} on Ω (note that τt is an F∗-stopping time), Fh
t := Fτt ,

Xh
t := a on Ω\Λ, Bh

t = La
t = Lb

t := 0 on Ω\Λ and

Xh
t := h̃(Xτt ), Bh

t := M[h]
τt , La

t := (b−a)A1
τt
, Lb

t := (b−a)A2
τt

on Λ. (3.5)
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Then Xh,Bh,La,Lb are R-valued Fh
∗-adapted continuous processes with Xh [a,b]-valued,

La,Lb non-decreasing and Bh
0 = La

0 = Lb
0 = 0 on Ω. Moreover, (Bh,Fh

∗) is a one-dimensional
Brownian motion on the probability space (Ω,F∞,Px) for each x∈E \N, and for any ω ∈Λ,

Xh
t (ω) = h̃(X0(ω))+Bh

t (ω)+La
t (ω)−Lb

t (ω), t ∈ [0,∞), (3.6)∫ ∞

0
1(a,b](X

h
s (ω))dLa

s (ω) =
∫ ∞

0
1[a,b)(X

h
s (ω))dLb

s (ω) = 0. (3.7)

In particular, for x ∈ E \N, Xh is the reflecting Brownian motion on [a,b] started at h̃(x)
with local times La at a and Lb at b, driven by the Brownian motion (Bh,Fh

∗) on (Ω,F∞,Px).

Proof. Note that τ(·)(ω) : [0,∞)→ [0,∞] is right-continuous non-decreasing for any ω ∈ Ω
and hence that Fh

∗ is right-continuous by [12, Problem 1.2.23]. For ω ∈ Λ, since 〈M[h]〉s(ω)
is finite, continuous in s and tends to ∞ as s → ∞, we have τt(ω) < ∞ and 〈M[h]〉τt (ω)(ω) = t
for t ∈ [0,∞) and limt→∞ τt(ω) = ∞. Therefore Xh,Bh,La,Lb can be defined by (3.5) and
are R-valued Fh

∗-adapted right-continuous processes with Xh [a,b]-valued and La,Lb non-
decreasing. Now the other assertions are immediate from Proposition 3.5 (ii) and [12,
Theorem 3.4.6]; (3.7) follows since we have

∫ ∞
0 ϕ(τs(ω))dLa

s (ω) =
∫ ∞

0 ϕ(s)dA1
s (ω) and∫ ∞

0 ϕ(τs(ω))dLb
s (ω) =

∫ ∞
0 ϕ(s)dA2

s (ω) for ω ∈ Λ and any Borel measurable ϕ : [0,∞) →
[0,∞] by Proposition 3.5 (ii) and the Dynkin class theorem [12, Theorem 2.1.3]. �

We prove Proposition 3.5 in the rest of this section. The following lemma is required.

Lemma 3.7. (1) Let F ⊂ E be E -quasi-closed and satsify σF < ∞ Pm-a.s. If u ∈ F 0
F and

‖u‖E = 0 then u = 0.
(2) Assume (BC). Suppose that σF1∪F2 < ∞ Pm-a.s. Then a ≤ h̃ ≤ b E -q.e.

Proof. (1) N[u] = 0 by [9, Theorem 5.2.4], and µ〈u〉 = 0, which is the Revuz measure of
〈M[u]〉. Thus 〈M[u]〉= 0, hence M[u] = 0 and it follows that ũ(Xt) = ũ(X0) for any t ∈ [0,∞),
Pm-a.s. Let B := F ∩ ũ−1(0). Then since u ∈ F 0

F , F \B is E -polar and hence σB = σF < ∞
Pm-a.s. The right-continuity of ũ(X(·)) on a defining set of u(X)−u(X0) yields ũ(XσB) = 0
Pm-a.s. and therefore ũ(X0) = ũ(XσB) = 0 Pm-a.s. Hence m(ũ−1(0)) = Pm[ũ(X0) = 0] = 0.
(2) h− (a∨h)∧b ∈ F 0

F1∪F2
since 1 ∈ Fe by the recurrence, and ‖h− (a∨h)∧b‖E = 0 by

(2.9). Therefore (1) yields h = (a∨h)∧b, i.e. a ≤ h ≤ b m-a.e. Thus the result follows. �

Proof of Proposition 3.5. For E -q.e. x ∈ E, Px[ζ = ∞] = 1 by [9, Lemma 1.6.5 and Prob-
lem 4.5.1] and

∫ ∞
0 1R\{a}(h̃(Xs))dA1

s =
∫ ∞

0 1R\{b}(h̃(Xs))dA2
s = 0 Px-a.s. by λi(E \Fi) = 0,

i = 1,2, h̃|F1∪F2 = a1F1 + b1F2 E -q.e. and [9, Lemma 5.1.11 and Theorem 5.1.5]. We also
have N[h] = (b−a)(A1 −A2) by virtue of Proposition 2.9 and [9, Theorem 5.4.2].

Note that M[h] is a finite continuous additive functional of X by [9, Lemma 5.5.1 (ii)]
and the strong locality of (E ,F ). Noting also Lemma 3.7 (2), we can choose a defining set
Λ0 ∈ F0 and an exceptional set N0 ∈ B(E) of the five additive functionals h(X)− h(X0),
M[h], A1, A2 and 〈M[h]〉 so that M[h]

(·) (ω) is R-valued continuous for each ω ∈ Λ0, h̃|E\N0
is [a,b]-valued and (i) of the statement holds with N0 in place of N. Let Λ1 be the set
of ω ∈ Λ0 possessing all the properties in (ii) of the statement except limt→∞〈M[h]〉t = ∞.
Then clearly θt(Λ1)⊂ Λ1 for any t ∈ [0,∞), and [6, Chapter III, 13 and 33] yields Λ1 ∈ F∞.
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Moreover, Px[Λ1] = 1 for E -q.e. x ∈ E \N0 by the previous paragraph, Proposition 3.4
and [12, p.175, (4.18)]; note that M[h] is a continuous (F∗,Px)-martingale with quadratic
variation 〈M[h]〉 for each x ∈ E \N0 by (i).

We prove that Px[limt→∞〈M[h]〉t = ∞] = 1 for E -q.e. x ∈ E \N0. The following short
proof of this fact is due to the referee. Let Z := limt→∞〈M[h]〉t and f (x) := 1−Ex[e−Z ],
x ∈ E \N0. (AF2) of 〈M[h]〉 implies that Z = 〈M[h]〉t + Z ◦θt on Λ0 for t ∈ [0,∞) and that
f is excessive for the restriction X |E\N0 of X to E \N0, which is defined by [9, (A.2.23)]
and is an m-symmetric Hunt process on E \N0 by [9, Theorem A.2.8]. By the recurrence of
(E ,F ) and [4, Lemma 3.5.5 (i)] (note also [9, Theorem 4.2.1 (ii)]), for E -q.e. x ∈ E \N0,
Ex[ f (Xt)] = f (x) i.e. Ex[(e〈M

[h]〉t −1)e−Z ] = 0 for t ∈ [0,∞) and hence Px[Z ∈ {0,∞}] = 1.
Set σ := σh̃−1(a) ∨σh̃−1(b). On Λ1 ∩{Z = 0}, M[h]

t = A1
t = A2

t = 0, hence h̃(Xt) = h̃(X0) for
t ∈ [0,∞) and therefore σ = ∞. Now since σ < ∞, Pm-a.s. and hence Px-a.s. for E -q.e. x∈E
by [4, Lemma A.2.4 (ii)] and [9, Theorem A.2.7, Theorem 4.6.1 (ii) and Lemma 2.1.4], it
follows for E -q.e. x ∈ E that Px[Z = 0] = Px[Λ1 ∩{Z = 0}] = 0 and hence Px[Z = ∞] = 1.

The proof is completed by choosing a properly exceptional set N ∈ B(E) for X with
N0 ⊂ N so that Px[Λ1 ∩{Z = ∞}] = 1 for any x ∈ E \N and setting Λ := Λ1 ∩{Z = ∞}∩
{σ̇N ∧ σ̂N = ∞}. �

Remark 3.8. Instead of appealing to a general result (Proposition 3.4), we could adopt
the following more direct proof of Theorem 3.6, which is due to the referee: Since h(X)−
h(X0) = M[h] + (b− a)(A1 −A2) and

∫ ∞
0 1(a,b](h̃(Xs))dA1

s =
∫ ∞

0 1[a,b)(h̃(Xs))dA2
s = 0, the

triple (h̃(X),(b−a)A1,(b−a)A2) pathwisely solves the Skorohod equation for (M[h], h̃(X0))
on [a,b]. From this fact, similarly to the above proof we can prove Px[limt→∞〈M[h]〉t = ∞] =
1 for E -q.e. x ∈ E. Moreover, since solutions for the Skorohod equation are invariant un-
der continuous reparametrization, from M[h]

t = Bh
〈M[h]〉t

we can conclude that (Xh,La,Lb) is

pathwisely the unique solution to the Skorohod equation for (Bh, h̃(X0)) on [a,b].

4 Example: the harmonic Sierpinski gasket

In this section, we briefly discuss an application of Theorems 2.12 and 3.6 to short time
asymptotic analysis of the heat kernel on a fractal called the harmonic Sierpinski gasket.
Let V0 = {q1,q2,q3} ⊂ R2 be the set of the three vertices of an equilateral triangle, and for
i ∈ {1,2,3} =: S define Fi : R2 → R2 by Fi(x) := (x+qi)/2. The Sierpinski gasket (Figure
4.1) is defined as the unique non-empty compact set K ⊂ R2 that satisfies K =

∪
i∈S Fi(K).

As studied in [1, 14, 20], a standard resistance form (E ,F ) is defined on the Sierpinski
gasket K and its resistance metric is compatible with the original (Euclidean) topology
of K. Therefore F ⊂ C(K), and for any finite positive Borel measure m on K with full
support, (E ,F ) is an irreducible recurrent strong local regular Dirichlet form on L2(K,m)
with jointly continuous heat kernel pm = pm(t,x,y) : (0,∞)×K ×K → (0,∞). (See [14,
Chapter 2] and [16, Part I] for basic theory of resistance forms.) Moreover, its extended
Dirichlet space is equal to F , the empty set /0 is the only E -polar set and every E -quasi-
open set is open, independently of the reference measure m. Therefore harmonic functions
with respect to (E ,F ) are defined as in Definition 2.6, also independently of m.
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Figure 4.1: The Sierpinski gasket Figure 4.2: The harmonic Sierpinski gasket

Let h1,h2 ∈F be V0-harmonic functions with h1(q1) = h2(q1) = 0, h1(q2) = h1(q3) = 1
and h2(q2) = −h2(q3) = 1/

√
3, so that E (h1,h1) = E (h2,h2) > 0 and E (h1,h2) = 0. By

multiplying E by a constant, we assume that 2E (h1,h1) = 2E (h2,h2) = 1. By [13, Theorem
3.6], the continuous map Φ : K → R2 defined by Φ(x) := (h1(x),h2(x)) is injective and
hence a homeomorphism from K onto its image KH := Φ(K), which is called the harmonic
Sierpinski gasket (Figure 4.2). Note that then we may regard F as a linear subspace of
C(KH) and hence (E ,F ) as a resistance form on KH .

Kusuoka [17] and Kigami [13, 15] have studied the properties of the Dirichlet form
(E ,F ) using the Kusuoka measure µ := µ〈h1〉 + µ〈h2〉 as the reference measure of the form
(E ,F ); note that the E -energy measures µ〈h1〉 and µ〈h2〉 have full supports since h1 and h2
are non-constant on any non-empty open subset of KH by [14, Example 3.2.6]. Their results
suggest that analytic properties of the Dirichlet space (KH ,µ ,E ,F ) are closely related with
the geometry of KH . For example, for x,y ∈ KH , define

dH(x,y) := inf{|γ|Euc | γ : [0,1] → KH , γ is continuous, γ(0) = x, γ(1) = y}, (4.1)

where |γ|Euc denotes the length of γ with respect to the Euclidean metric. Then dH is a
metric on KH compatible with the original topology of KH , and Kigami [15, Theorem 6.3]
has shown that the jointly continuous heat kernel pµ associated with the Dirichlet space
(KH ,µ,E ,F ) is subject to the two-sided Gaussian bound: for (t,x,y) ∈ (0,∞)×KH ×KH ,

c1

µ
(
B√

t(x,dH)
) exp

(
−c2

dH(x,y)2

t

)
≤ pµ(t,x,y) ≤ c3

µ
(
B√

t(x,dH)
) exp

(
−c4

dH(x,y)2

t

)
,

(4.2)
where Br(x,dH) := {y ∈ KH | dH(x,y) < r} and c1,c2,c3,c4 ∈ (0,∞).

We are interested in asymptotic behaviors of this heat kernel pµ(t,x,y) as t ↓ 0. Let
o := (0,0) = Φ(q1) ∈ Φ(V0). In view of the picture of KH (Figure 4.2), around the point o,
KH looks very much like a one-dimensional interval. From this observation, it is natural to
expect that the behavior of pµ(t,o,o) as t ↓ 0 will be similar to that of the transition density
of Brownian motion. This is in fact the case, as we shall see below.

First, we can prove the following theorem based on our main results and [7, Proposition
2.9] (Corollary 2.11). Recall that pµ〈h1〉

is the jointly continuous heat kernel associated with
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the Dirichlet space (KH ,µ〈h1〉,E ,F ) (note that here the reference measure is µ〈h1〉, not µ).

Theorem 4.1. Let p[0,1] : (0,∞)× [0,1]× [0,1]→ (0,∞) denote the transition density of the
reflecting Brownian motion on [0,1]. Then

pµ〈h1〉
(t,o,x) = p[0,1](t,0,h1(x)), (t,x) ∈ (0,∞)×KH . (4.3)

Note that h1 : KH → [0,1] is the projection on the real axis and that h1(o) = 0.
The proof of Theorem 4.1 is given in the end of this section. On the other hand, essen-

tially as a consequence of the following estimate on the decay of the measure µ〈h2〉

1
15

εβ ≤
µ〈h2〉

(
h−1

1 ([0,ε))
)

µ〈h1〉
(
h−1

1 ([0,ε))
) ≤ 15εβ , ε ∈ (0,1], (4.4)

where β := 2log5/3 3 = 4.30132 . . . , we can verify

pµ(t,o,o)− pµ〈h1〉
(t,o,o) = O(t(β−1)/2) as t ↓ 0; (4.5)

note that (4.4) reflects our observation that the shape of KH around o resembles that of a
one-dimensional interval.

Since p[0,1](t,0,0) = 2/
√

2πt +O(exp(−ct−1)) as t ↓ 0 for some c ∈ (0,∞), from The-
orem 4.1 and (4.5) we conclude that

pµ(t,o,o) =
1√
2πt

(
2+O(tβ/2)

)
as t ↓ 0. (4.6)

Furthermore, we remark that the same result is true at any x ∈ Φ(V∗), where inductively
Vn :=

∪
i∈S Fi(Vn−1) for n ∈ N and V∗ :=

∪
n∈NVn; there exists ξx ∈ (0,∞) such that

pµ(t,x,x) =
1

ξx
√

2πt

(
1+O(tβ/2)

)
as t ↓ 0. (4.7)

We do not go into the details of (4.5), (4.6) and (4.7) here. The proofs of these results,
along with much more detailed information on the asymptotics of pµ , will be treated in a
forthcoming paper [11] by the author.

Now we close this paper with the proof of Theorem 4.1.

Proof of Theorem 4.1. Let X1 =
(
Ω,M,{X1

t }t∈[0,∞],{Px}x∈(KH )∆

)
be a µ〈h1〉-symmetric

diffusion on KH whose Dirichlet form on L2(KH ,µ〈h1〉) is (E ,F ). Then since the empty set
/0 is the only E -polar set and 〈M[h1]〉= {t}t∈[0,∞) as additive functionals of X1 by (3.1), The-
orem 3.6 implies that {h1(X1

t )}t∈[0,∞) is a reflecting Brownian motion started at h1(x) under
Px for any x ∈ KH . Let t ∈ (0,∞) and x ∈ KH . Then Px[X1

t ∈ dy] = pµ〈h1〉
(t,x,y)dµ〈h1〉(y)

by [16, Theorem 10.4], and therefore by the symmetry of pµ〈h1〉
and p[0,1] we have

∫
KH

pµ〈h1〉
(t,y,x) f (h1(y))dµ〈h1〉(y) = Ex[ f (h1(X1

t ))] =
∫ 1

0
p[0,1](t,y,h1(x)) f (y)dy (4.8)
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for any f ∈ L2([0,1],dy). Note that µ〈h1〉
(
h−1

1 ([0,ε))
)

= ε for ε ∈ (0,1] by Corollary
2.11 and that {h−1

1 ([0,ε))}ε∈(0,1] is a fundamental system of neighborhoods of o ∈ KH

by h−1
1 (0) = {o} and [14, Theorem 3.2.14]. Therefore letting f := ε−11[0,ε) in (4.8) and

then ε ↓ 0 result in (4.3) by the continuity of pµ〈h1〉
and p[0,1]. �

Remark 4.2. We can prove (4.8) also in an analytic way by using Theorem 2.12 (2), as
follows: Let L1 be the non-positive self-adjoint operator on L2(KH ,µ〈h1〉) associated with
(KH ,µ〈h1〉,E ,F ). By Corollary 2.11 and Theorem 2.12 (2), {1}∪{

√
2cos(nπh1)}n∈N is

an orthonormal system in L2(KH ,µ〈h1〉) consisting of eigenfunctions of −L1 with eigen-
values 0 and n2π2/2 respectively. Then by using this fact, we can calculate the integral∫

KH
pµ〈h1〉

(t,y,x) f (h1(y))dµ〈h1〉(y) for f ∈ L2([0,1],dy) to verify (4.8); see [11, Proof of
Proposition 4.9] for details.
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a natural adaptation of [21, Theorem 2.2] in the framework of a recurrent local Dirichlet
space, and Theorem 2.12 provides the analytic counterpart of those results in this situation.
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