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1 Introduction

In this article, assuming that (K, d) is a locally compact separable metric space and
that m is a Radon measure (i.e., a Borel measure finite on any compact subset) on K
with full topological support (i.e., strictly positive on any non-empty open subset),
we consider Korevaar-Schoen-type p-energy forms on (K, d, m), where p € (1, o).
Namely, we are concerned with a functional

— p
E,.o(u) = limsup / ][ W) = uW®  ym(dx). e LP(K.m),
rlo K JBg(x,r) rsp

where By(x,r) = {y € K | d(x,y) < r}and f,(-)dm = mfA(-)dm for a
Borel subset A of K with m(A) € (0, ). Here s € (0, o0) is a parameter controlling
the smoothness of functions. In the classical settings, the n-dimensional Euclidean
space (K,d,m) = (R",| -], dx) for example, the choice s = 1 is natural. Indeed, one
can show (see, e.g., Corollary 6.3] and [19] Theorem 7.13]; see also Theorem
3.5] for a related result) that there exists C € (0, o) such that the distributional
gradient Vu of any Sobolev function u € WP (R") satisfies

_ p
C_l/ |Vul? dx Slimsup/ ][ Mdydx < C/ |Vul? dx.
n rl0 nJly-x|<r rP R”

In particular, the domain of the functional E, ; is given by the (1, p)-Sobolev
space W17 (R") in this case. Note that the functional E p,1 can be considered as a
variant of the functional considered by Korevaar and Schoen in [33]], where they
constructed a (1, p)-Sobolev space WP (€, X) of maps from a domain Q in a
Riemannian manifold to a complete metric space X. On the basis of an idea in
[35], Koskela and MacManus [36] introduced a (1, p)-Sobolev space £'? on any
metric measure space satisfying the volume doubling property and the Poincaré
inequality (in terms of weak upper gradients), a so-called PI-space, as the domain of
a functional similar to £, 1, and showed that L1P coincides with the (1, p)-Sobolev
spaces introduced by Hajtasz and Hajtasz—Koskela [20]; see [36] Theorem 4.5].
For any PI-space (K, d,m), one can show (see, e.g., Corollary 6.3] and [22]
Corollary 10.4.6]) that L7 = {u € LP(K,m) | Ep 1(u) < oo}, and it turns out
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that the exponent s = 1 is critical in the sense that for every s > 1, any function
u € LP(K,m) with E, ;(u) < oo is constant m-a.e. if K is connected. (See [22]
Chapter 10] for various ways to define (1, p)-Sobolev spaces on (K, d,m) and
relations among them.) Recently, for more general (K, d, m) which may not be a PI-
space, Baudoin [6] proposed to define a (1, p)-Sobolev space KS'*? as the domain
{u € LP(K,m) | Ep s(u) < oo} of E, ¢ with s = s5,, where s, is the critical
LP-Besov exponent defined by

sp = sup{s € (0,00) | E, (1) < oo for some non-constant u € L (K, m)},

and discussed some properties of KS'*? such as Sobolev-type embeddings.

The aim of this article is to construct as nice a p-energy form 853 comparable to
E} s, as possible. Such 855 is desired to satisfy at least the following generalized
p-contraction property (see Definition2.2): if g1 € (0, p], g2 € [p, ], n1,ny €N
and T = (Ty,...,Ty,): R™ — R™ satisfies T(0) = 0 and ||[T(x) = T()|lper <

lx = yllpa: for any x,y € R™, then for any u = (uy,...,up,,) € (KSHPym,

T(u) € (KS"“P)™ and “(c"3§S(T,(u))‘/P)7j1

<[ e wrmiL,

92 rn a.D
The property (I.1I) has been introduced in [27] as arguably the strongest possible
form of contraction properties of L”-like energy forms. As revealed in [27], (T.I)
plays important roles in developing nonlinear potential theory in general frameworks
including typical self-similar fractals, on which one can construct p-energy forms
via discrete approximations as established in [9, 23| 133} |39, i43]] (see also [15] for a
different approach). A problem with E,, ; is that E, ; may not satisfy (I.I)) because
of the operation of taking limsup. To avoid this issue, we would like to take a limit
(in some sense) of the Besov-type functionals

_ p
Ep(ur) :=/K]i . r)Mm(dy)m(dx) (1.2)

rsp

as r | 0. This strategy does not work for all s € (0, o), but does work in the critical
case s = s, in the presence of the following weak monotonicity type estimate, which
turns out to hold in many situations: there exists a constant C € [1, o0) such that for
any u € LP(K,m) with sup,.o Ep s, (4, 1) < 0,

sup E s, (u,r) < C lirgll%nf Eps, (u,r). (1.3)

r>0
This condition (I.3)) was introduced in [6] (see Example [3.14). Our first main re-
sult, Theorem , gives a desired p-energy form 855 as a subsequential limit of

{Ep.s, (+,7)}r>0 under the assumption of (I.3). More precisely, in Theorem 3.8} we
establish a subsequential limit of the energy functionals given by

m(dy)m(dx),

rspp

/ ][ sgn(u(x) —u(y)) lu(x) —u()I"™" (v(x) = v(y))
K JBg(x,r)
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that is, we directly construct a two-variable version 855 (u; v), which is the counter-
part of

(u,v) — / |Vu|P~2 (Vu, Vo) dx (1.4)
Rn

in the Euclidean case, where ( -, - ) denotes the inner product on R". An advantage of
our construction is that we can obtain a good quantitative estimate on the continuity
of 8?5(14; v) with respect to the nonlinear part u. Namely, unlike our earlier result
in [27] (see (2.12) below), the present construction of 855 allows us to achieve the
best Holder continuity exponent as expected from the formal expression (I.4), i.e.,
to show that there exists a constant C € (0, co) such that for any uy, up,v € KSh?,

(p-2*

P
ey o] T e -w

(p—1)A1
P

igﬁs(u];v)_ags(MZ;U)i <C SES(U)IL’

(see (3:12))), which is not known for the p-energy forms constructed in the preceding
works [9] 15} 23 33} [39] [43]]. See Section [3] for details.

Another superiority of our direct approach is that we can introduce the p-energy
measures associated with 855. Roughly speaking, for each u € KS'*”, the p-energy
measure I’ gs (u) is a Radon measure on K playing the same role as |Vu|P dx in
the Euclidean case. Since we have no counterpart of |Vu|, it is highly non-trivial
to construct F§S<u); indeed, it is not known how to construct canonical p-energy
measures associated with a given p-energy form without relying on the self-similarity
of the underlying space and the p-energy form (see [33, p. 113] and [39, Problem
12.5]). However, our construction of 8?3 allows us to employ a naive approach as
described below. From the Leibniz and chain rules for the usual gradient operator V
on R", we easily see that for any ¢, u € C 1 (R™),

—1\"! _p_ |P2 o
¢ |Vul? = |Vu|P~2 (Vu,V(up)) - (pT) ‘V(|u|l’-1 )‘p <V(|u|p—1 ),ng)).

Since &X5(u;v) is expected to be the counterpart of [, |Vu|P~2 (Vu, Vo) dx, the
p-energy measure K3 (u) of u € KS"7 associated with X3 should be characterized
as a unique Radon measure on K such that for any ¢ € KS'"” N C.(K),

-1\ P
/K ¢drﬁs<u>=6§s(u;w)—(—” > ) E(lulPT ) = WS (0).  (15)

In fact, in the case p = 2, this is exactly the same as the definition of energy measures
in the theory of regular symmetric Dirichlet forms (see [14, (3.2.14)]). By virtue of
our direct construction, we can show that ‘I‘E’Su is abounded positive linear functional
on KS"” N C(K) and we obtain 'S (u) by applying the Riesz—Markov—Kakutani
representation theorem under the assumption that KS'*” N C.(K) is dense in C..(K)

with respect to the uniform norm. We also establish some basic properties of ng (u)
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like the generalized p-contraction property and the chain rule. See Section [ for
details.

As mentioned above, our construction of SES(u; v) and FllfS(u) relies heavily on
the assumption of the weak monotonicity estimate (I.3)), and fortunately it turns out
that (I.3) holds in many situations. As proved in [6, Theorem 5.1] (see also [37}
Corollary 6.3]), (I.3) holds on any PI-spaces. Besides, (I.3)) has been proved for the
Vicsek set and for the Sierpiniski gasket in [6, Theorems 6.3 and 6.6], for nested
fractals in [[16} [10], for generalized Sierpiniski carpets with p strictly greater than
the Ahlfors regular conformal dimension in [45]], and in a general setting including
the Sierpiniski carpet with any p € (1, 0) in [39, Theorem 7.1]. See also [24] for
related results for the Sierpiriski gasket. As extensions of these results, we present
two general settings where we can show (I.3)). The first one described in Section [3]
(see Assumptions[5.19)and[5.33) is based on the notion of p-conductive homogeneity
due to [33], and includes the settings of [33| Theorems 3.21 and 4.6] except that we
need to assume the Ahlfors regularity of m, which is not assumed in [33, Theorem
3.21]. (This setting is very similar to that in [39, Section 7], although there are indeed
slight differences between the setting of discrete approximations of (K, d) in [33]]
and that in [39].) In particular, all the examples of self-similar sets in [33 Sections
4.4-4.6] and those planned to be treated in [34] fall within the framework of our
main results in Section [3] (see also Remark [5.I5}{(2)). The second one presented in
Section [6] (see Assumption [6.1)) treats the case of post-critically finite self-similar
structures. In particular, by virtue of the work [9], this framework includes all affine
nested fractals, which were covered only partially in [33] (see Remark [6.2}{3)).

Very recently, for any p € [1, o), Alonso-Ruiz and Baudoin [4] constructed p-
energy forms and p-energy measures on Pl-spaces as I'-limits of £, ; and T-limits
of localized versions of E, 1, respectively. Their framework is very different from
ours although we do not deal with the case p = 1. Indeed, s, = 1 on PI-spaces while
sp > 1 on generalized Sierpinski carpets and some Sierpiniski gaskets as proved in
[27, Section 9]. Also, our construction of p-energy measures enables us to prove
some fundamental properties of them, which were not shown in [4].

This article is organized as follows. In Section [2] we introduce the notion of
p-energy form and the generalized p-contraction property and recall some basic
consequences of this property, following [27]. In Section [3} we present basic nota-
tion related to the Besov-type functionals (T.2)) and, under the assumptions of (I.3)
and some mild conditions, we construct a good p-energy form 8‘55 as a subsequential
pointwise limit of {E, 5, (-, 7)}r>0. We also recall the notion of p-resistance form
and present a sufficient condition for 81155 to be a p-resistance form in the end of
Section [3] Section []is devoted to discussions on the p-energy measures associated
with 8?5. (More precisely, we prove these results in Sections andin a synthetic
way for a more general family of kernels.) In Section[5] we first recall from [33]] the
setting of p-conductively homogeneous compact metric spaces and then verify (T.3)
for them under some geometric assumptions. In Section [] we show (L.3) for post-
critically finite self-similar structures under the assumption of the existence of nice
self-similar p-resistance forms. In Sections[5|and[6] we also show localized energy es-

. . . — pr
timates, some estimates on localized versions f E fB o) sz,,—ﬁ‘,,(y)l m(dy)m(dx)
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of Ep 5, (u) for any Borel subset E of K, and that our construction can be further
modified in the case of self-similar sets to obtain self-similar p-energy forms keeping
most of the good properties of Korevaar—Schoen ones.

Notation Throughout this paper, we use the following notation and conventions.

(1) For [0, co]-valued quantities A and B, we write A < B to mean that there exists
an implicit constant C € (0, co) depending on some unimportant parameters
such that A < CB. We write A < Bif A < Band B < A.

(2) Foraset A, we let #4 € N U {0, oo} denote the cardinality of A.

(3) We set sup® := 0 and inf @ := co. We write a V b = max{a,b}, a AN b =
min{a, b} and a* := aVvOfora,b € [—o0, 0], and we use the same notation also
for [—oo, co]-valued functions and equivalence classes of them. All numerical
functions in this paper are assumed to be [—o0, co]-valued.

(4) Let X be anon-empty set. We defineidy : X — X byidy(x) := x,14 = 1¥ e RX

1 ifx e A,

0 ifx ¢ A,
Sup,cx [u(x)| foru: X — [—oo, oo].

(5) We define sgn: R — R by sgn(a) = 1 c)(a@) = 1(—c0,0)(a).

(6) Let X be a topological space. The Borel o-algebra of X is denoted by B(X),
the closure of A € X in X by ZX, and we say that A C X is relatively compact

for A C Xby14(x) :=1%(x) = and set [|ullgyp = llttllsup,x =

in X if and only if ZX is compact. We set C(X) := {u € RX | u is continuous},
- X
suppy [u] = X \u=1(0) foru € C(X), Cp(X) = {u € C(X) | |lullgy < oo},

Cc(X) = {u € C(X) | suppx[u] is compact}, and Cp(X) = CC(X)Cb(X) =
{u e C(X) | u"(R\ (=&,¢)) is compact for any & € (0, o)}, where Cp, (X) is
equipped with the uniform norm || - |-

(7) Let X be a topological space having a countable open base. For a Borel measure
m on X and a Borel measurable function f: X — [—o0, o] or an m-equivalence
class f of such functions, we let supp,,[f] denote the support of the measure
| f| dm, that is, the smallest closed subset F of X such that fX\F |f| dm = 0.

(8) Let (X, d) be a metric space. We set By(x,r) = {y € X | d(x,y) < r} for
(x,7) € X X (0,00), (A)gr = Uyea Balx,r) for A € X and r € (0, o), and
diam(A, d) = sup, .4 d(x,y) and distg(A, B) = inf{d(x,y) | x € A,y € B}
forA,B C X.

(9) Let (X, B, m) be a measure space. We set f5 = f, fdm = ﬁ fa f dm for
feL'(X,m)and A € B withm(A) € (0,c0), and set m|, = m|g|, for A € 8B,
where B|4 = {BN A | B € B8}. When m is o-finite, the product measure space
of (X, B,m) and itself is denoted by (X X X, B ® B,m X m).
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2 p-Energy forms and generalized p-contraction property

In this section, following [27], we recall the generalized p-contraction property and
some basic consequences of it. Throughout this section, we fix p € (1, ), a measure
space (K, B, m), a linear subspace ¥ of L°(K, m) := L°(K, B, m), where

LO(K, B,m) = {the m-equivalence class of u | u: K — R, u is B-measurable},

and a functional &: F — [0, o0) which is p-homogeneous, i.e., satisfies E(au) =
|a|? E(u) for any (a,u) € R X F. (Note that the pair (8B, m) is arbitrary. In the case
where 8 = 2X and m is the counting measure on K, we have L°(K, 8, m) = RK))
Let us recall the definitions of a p-energy form and the generalized p-contraction
property introduced in [27]]. We adopt here a less restrictive definition of a p-energy
form than those in the preceding works [9} 23] 33| 139, i43]] on the construction of
p-energy forms, in order to deal with a wider class of L”-type energy functionals
including E,, ¢(-,r) in (T2) and [, ¢ dT'R5(-) in ([3) in a unified framework.

Definition 2.1 (p-Energy form; [27, Definition 3.1]) The pair (&, ¥) is said to be
a p-energy form on (K, m) if and only if &'/7 is a seminorm on .

Definition 2.2 (Generalized p-contraction property; [27, Definition 2.1]) The
pair (&, F) is said to satisfy the generalized p-contraction property, (GC),| for
short, if and only if the following hold: if ny,n; € N, g1 € (0, p], g2 € [p, o] and
T=(T,...,Ty,): R" — R™ satisfies

T(0)=0 and |[IT(x) =T(Wllg> < llx = yllpar  foranyx,y e R™, (2.1)

then for any u = (uy, ..., u,,) € ™ we have

e o e,

1/p\m
o =€ ], o

See [27, Sections 2 and 3] for details on consequences of [@} Here, in Propo-
sitions [2.3] 2.4] and 2.3] we recall some results from [27]] that will be used in this
paper.

Proposition 2.3 ([27, Propesition 2.2]) Suppose that (&, F) satisfies|(GC)

(1) VP satisfies the triangle inequality. In particular, & is convex on F.

(2) Let ¢ € C(R) satisfy ¢(0) = 0 and |p(t) — ¢(s)| < |t —s| for any s,t € R.
Then ¢(u) € F and E(¢p(u)) < E(u) for any u € F. Furthermore, for any
ueF NL®(K,m)and ® € C'(R) with ®(0) = 0, we have ®(u) € F and

E(@w)) < sup{|®’ ()7 |1 € R, |t < llull ok omy }EW).  (2:2)
() Foranyu,v € ¥, we haveu Av,u Vv e F and

EwvVo)+&EuAv) <Eu)+E®W). 2.3)
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(4) Foranyu,ve ¥ NL*(K,m), we have uv € ¥ N L*(K,m) and
Eo)'P < oll o (k) E@P + Nl o iy E@)'P. - (24)
(5) If p € (1,2], then for any u,v € F,
2(8w) /P 1E )PP < S(urn)+E(u—v) < 2(E(u)+E()). (2.5)
If p € [2, ), then for any u,v € F,
28 PV +EW) VP D) > E(urv)+E(u-v) = 2(E(u)+E(v)). (2.6)

Proposition 2.4 ([27, Proposition 3.5]) Suppose that (E, F) satisfies ((GC),} Then
forany u,v € F,

" g ()5

2.7)
In particular, in view of the convexity of & from Proposition |2.3] R3¢t
E(u +tv) € [0, ) is differentiable and

1 1\ (p
E(u+v)+Eu—v) -28w) < 2((p-1) A 1)(8(u) 711+ 8(v) p—l)

E(u+sh) —&E(u) _d

lim  sup ES(H +th) =0. (2.8)

520 heFs(h)<1

s =0

Proposition 2.5 ([27, Theorem 3.6]) Suppose that (&, F) satisﬁes For any
u,v € F, we define

, (2.9)
t=0
which exists by Proposition Then for any u,uy,uz,v € F, E(u; -): F — Ris
linear, &(u;u) = E(u), E(au;v) = sgn(a) la|P~! E(u;v) for any a € R,

1 d
E(u;v) = 1_7 Ea(u+tv)

E(u;h) =0 and E(u+h;v) =E(u;v) forany h € E-1(0), (2.10)
E@u;0)] < Ew)P~VIPEW)IP, 2.11)
p-l-ap
P
|E(ur;0) = E(uzsv)| < ¢ Lg{l?g}a(u»] E(ur —uz)/PEW)'P (2.12)
Jorap, = w and some c,, € (0, ) determined solely and explicitly by p.

Notation Throughout this paper, for any p-energy form (&, ) on (K, m) satisfying
and any u,v € ¥, we let E(u; v) € R denote the element given by (2.9).
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3 Construction and properties of Korevaar-Schoen p-energy
forms

In this section, we show the existence of Korevaar-Schoen p-energy forms, i.e.,
pointwise subsequential limits of the Besov-type p-energy functionals (T.2)) under the
assumption of the weak monotonicity estimate (T.3)), and give some basic properties
of the limit p-energy forms. To be precise, we will prove these results for a more
general family of kernels in a synthetic way in order to apply the results in this section
to construct self-similar p-energy forms later in Sections [5]and [6]

Throughout this section, we fix a separable metric space (K, d) with #K > 2 and
a o-finite Borel measure m on K with full topological support. Under this setting,
the map from C(K) to L°(K,m) defined by taking u € C(K) to its m-equivalence
class is injective and hence gives a canonical embedding of C(K) into L°(K,m)
as a subalgebra, and we will consider C(K) as a subset of L°(K,m) through this
embedding without further notice.

We also fix p € (1, c0) throughout this section unless otherwise stated. We will
state some definitions and statements below for any p € [1, o), but on each such
occasion we will explicitly declare that we let p € [1, 00).

First, we introduce a function space determined by a family of kernels {k; },o.

Definition 3.1 Let p € [1,00) and let k = {k,},~0 be a family of [0, co]-valued
Borel measurable functions on K X K. We define a linear subspace Bf;,oo of LP (K, m)
by

Bt = {f e LP(K,m)

x) — Pl (x,y)m m(dx) < oo
?‘i‘é’/K/K'f” FON kr (e, y) m(dy)m(dr) < }

(3.1)
and equip Bﬁ,oo with the norm || - | B defined by

l/p
I lge = ||f||L,,(K,m)+(sup//If(x)—f(y)l"kr(x,y)m(dy)m(dx)) .
’ r>0JK JK

Also for each r € (0, ), we define J,, ,: LP (K, m) — [0, oo] by
) = /K /K £ ) = FOIP ke (e y) m(dy)m(dv),  f € LP(Kom),

and set D(JX ) == {f € LP(K.,m) | JX ,(f) < eo}.

In the rest of this section, we fix a family of kernels k = {k, },~¢ as in Definition
To state some basic properties of Jf,’r, let us recall the reverse Minkowski
inequality (see, e.g., [1, Theorem 2.13]).
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Proposition 3.2 (Reverse Minkowski inequality) Let (Y, A,u) be a measure
spacd’|and let r € (0, 1]. Then for any A-measurable functions f,g: Y — [0, o],

1/r 1/r 1/r
(/ny du) +(/Yg d/l) S(/}y(f+g) dﬂ) . (3.2)

For ease of notation, we define y,: R — R by

yp(a) = sgn(a) lal’".
The following proposition is elementary.

Proposition 3.3 For any r € (0, ), (JX P D(Jf,’r)) is a p-energy form on (K, m)
satisfying |( and forany f,g € D(Jp’r

F(fag) = /K /K Yo (FG) = FO5) () = g0k (x. 3) m(dy)m(dy).  (3.3)

Proof. Suppose that T = (T1,...,T,,): R — R™ satisfies (2.1) and that g, < co.
Then for any u = (uy,...,u,,) € D(J;‘,»r)"1 and any r € (0, o),

)
Z Jf)’r (T'l(u))QZ/p
=1
G2
<

2 pla a@/p
// Z|T1(u(x))—Tl(u(y))|qzl k, (x,y) m(dy)m(dx)
K JK |4
(A1) S pla a/p
u - ai (.

< /K/K ;I c(x) —ur ()] l ky (x, y) m(dy)m(dx)
. qi1/p 92 /q1
(S)( (/ / () = usc (DI e (. y>m(dy)m(dx>) )

n @/q
i (Z Jﬁ’r(uk)ql/p) ‘ (3.4)

=1

Here we used the triangle inequality for the norm of LP/9' (K x K, m, (dxdy)) in (%),
Where m,(dxdy) =k, (x,y) m(dy)m(dx). The proof for the case g, = co is similar,

so (Jk Do D(J ,-)) is a p-energy form on (K, m) satisfying|(GC) | The equality @D

follows from the dominated convergence theorem.

Similarly, we can show the next proposition.

! In the book [[1], the reverse Minkowski inequality is stated and proved only for the L"-space over
non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same
proof works for any measure space.
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Proposition 3.4 Let r € (0,0) and define N (f) = ||f||€p(K o+ JE L (f) for

fe D(J;‘,’r). Then (Nf,’r, D(Jf,’,)) is a p-energy form on (K, m) satisfying|(GC),,
In particular, for any f,g € D(Jf,,r) with Nf,’r(f) \Y Nlﬁ,r(g) <1,

)(p—l)/\l

Ne,(f+g) < (27T = NE(f - 9) (3.5)

Proof. A similar estimate as (3.4) shows that (N’;,V,D(J’;,’r)) is a p-energy form

on (K, m) satisfying [(GC),| The desired estimate (3.5) immediately follows from

Proposition 2.3[[(5)] o
Let us introduce a couple of important conditions on k.

Definition 3.5 (1) We say that k = {k, },~¢ is asymptotically local if and only if
there exists {6(r)},>0 € (0, o) such that lim, g §(r) = 0 and

lim/ / ky(x,y) m(dy)m(dx) = 0. (3.6)
0 JKk JK\Ba(x,5(r))
(2) Letp € [1, 00). We say that[((WM),, x|holds if and only if there exists C € [1, c0)
such that
sup J% . (f) < Clim&)nf]f,,r( f) forany f e BX .. (WM),, &
r>0 r

The next theorem states that the normed space B’I‘,’w equipped with || - || Bk is
a nice Banach space. Our proof is very similar to that for the case of the (1; p)-
Korevaar—Schoen-Sobolev space KS'” given in [6, Theorems 3.1 and 4.4]. We
present a complete proof here to make this paper self-contained.

Theorem 3.6 For any p € [1, ), the normed space B’;J,oo is a Banach space.

Moreover, if p € (1, 00) and|((WM), k| holds, then B’l‘)’00 is reflexive and separable.

Proof. Let { fu}nen be a Cauchy sequence in B’l‘,vw. Then there exists a L”-limit f €
LP (K, m) of { f;}nen. Forany € > O there exists N € N such that || f;, — fir ||B§ _<e&

for any n,n’ > N. By using Fatou’s lemma, we see that Jf,’r (f — fn) < &P for any
n > N and hence

Jﬁ,r(f)l/p < Jﬁ,r(f — )P +J’[§,r(fn)1/p <&+ sug”f””Bfm .
ne ’

Therefore, f € Blz;,oo and { f,,}, converges to f in BX _.i.e., B’;’w is a Banach space.

Next we assume that p € (1,00) and that (WM)p,k holds. Then || fllzx =
b oo

(||f||{p(K’m) + limsup, |, Jf,’r(f))l/p is a norm on B’I‘)’m that is equivalent to
-l Bk .- We will show that ||| - || B is uniformly convex (see [12, Definition 1] for

the definition) and thus Bl},oo is reflexive by the Milman—Pettis theorem (see, e.g.,
[22, Theorem 2.49]). Let £ > 0 and f,g € BX _ with MAMge vV llgllge <1
5 P, P,
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and ||| f — glllem > g. By [6, Lemma 4.11], it suffices to find 6 € (0, co) that is
independent of f, g such that ||| f + gl g= < 2(1 — 6). Choose r¢ € (0, o) so that
P,

UANG o ke + T () < s 1IENT oy + T3 (8) < 1 forany r € (0, r0).
Since implies that
sp<uf—m@”Km+h%?p¢,u—g)
< C(IF =&l iy + limink I8, ~ ).
there exists r; € (0, ) such that
17 = &1 0 (i +J5(f—g)>C'eP foranyr e (0,r)).

Hence, for any r € (0,9 A r1), by using (3.3)), we see that

P B (p-1)Al
L+ 817 k) +JK (f+g) < [vap—l _Clgp ,

which implies ||f+g||§,,(K’m) + Jf,’r(f +g) < 2P(1 = 6) for some § € (0, c0)
depending only on p, C, £. The desired uniform convexity is proved.
Since L? (K, m) is separable and the inclusion map of B’I‘),m into L? (K, m) is a

continuous linear injection, B’;y,oo is separable by [2, Proposition 4.1]. O

To obtain the local Holder continuity with exponent (p — 1) A 1 of the Korevaar—
Schoen p-energy forms (see Theorem [3.8}{(d)] below), we will need the following
elementary inequality (see also [38, Proof of Corollary 5.8]).

Lemma 3.7 Foranya,b € R,

2a - b|P! ifpe(1,2],
- <

|7P(a) ‘YP(b)| = {(p_l)(|a|p—2\/|b|p—2) |a—b| lfp € (2’00)
Proof. The desired estimate is evident when |a| A |b| = 0, so we can assume that
0 < |b| < |a| by exchanging a and b if necessary. The proof is divided into the
following five cases.
Case 1: p € (1,2] and ab < 0.

We can assume that b < 0 < a by considering —a, —b instead of a, b respectively
if necessary. Note that |a| < |a — b|. We see that

|y,,(a) —y,,(b)| =aP ' = (=b)P"' <2)alP7 < 2|a - b|P7L.

Case 2: p € (1,2],ab > 0and |a — b| < |b].
By the same reason as the previous case, we can assume that a > b > 0. Noting
that |a — b|P~% > |b|P~2, we have
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a
lyp(@) = yp(b)] = aP = bP~1 = (p - 1>/b -2 gy
<(p-D1bIP2la=bl < (p=-1)]a—-bP".

Case 3: p € (1,2],ab > 0and |a — b| = |b]|.
Similar to the previous cases, we can assume that a > b > 0. Then |a — b| > |b|
is equivalent to b € (0, a/2], whence § < a — b = |a — b|. Now we see that

lyp(@) =y, (b)| =a?~' = b7~ <aP™' <277 ja - p|P7".

Case 4: p € (2,00) and ab < 0.
In this case, we have |b|P 2 < |a|P =2 by p—2 > 0. We can assume that b < 0 < a
similarly to Case 1. Then

yp(a) =yp(B)|=lalP?a—1bI"2b < |alPa—lal"?b=lal"*|a - b].

Case 5: p € (2,0) and ab > 0.
Similar to Cases 2 and 3, we can assume that a > b > 0. Then

(@) = yp(B)] = aP~ — 6P = (p - 1) /b P2 di < (p—1)|al” 2 |a - b.

The above five cases complete the proof. O

Now we can state and prove the first main theorem of this paper as follows. Recall
that we have fixed p € (1, o).

Theorem 3.8 Suppose that|(WM),, k| holds. Then any sequence {7n}nen S (0, 00)
with 7, — 0 has a subsequence {ry }nen such that the following limit exists in [0, co)
forany f € B’;’w:

Ep(f) = lim Jy . (f). (3.7)
Moreover, for any such {ry },en, the functional 85‘, : B’;,,Do — [0, ) defined by (3.7)

satisfies the following properties:
(a) (&K, B’;?,Do) is a p-energy form on (K, m) such that

c! sup (f) < 8k(f) < Chmlnf pr(f) forany f € Bp o (3.8)

r>0

where C € (0, ) is the same as tn_ (WM),, | In particular, if m(K) < oo, then
1K GBk andSk(lK) =

(b) (&K, Bk «) satisfies (GC),, Furthermore, forany f, g € Bp o {JE o (f38) Inen

is convergent in R and

& (fi8) = lim Jj,, (fig). 3.9)
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(Function-wise generalized p-contraction property) Letny,ny € N, g1 € (0, p],
g2 € [p,o), u = (u1,...,un,) € (B’[‘)’oo)"1 and v = (vy,...,0y,) €
LP(K,m)™. If

lo(x) —vW)llear < llu(x) —u(y)llga  formxm-ae. (x,y) € K XK,
(3.10)
thenv € (B’,‘,"X,)"2 and

(A G.11)

S [CATSELRE

iz ear

(Local Holder continuity) There exists C, € (0,00) determined solely and
explicitly by p such that for any f, 2,8 € B’I‘,’m,

(p-2*

IS',‘,(fl;g)—S',‘,(fz;g)|Scp[l_g%}a';(fi)] " e Ai-p)

(p-1)Al 1
PoEr(g)7.
(3.12)
(Strong locality) Suppose that k is asymptotically local.
(i) Let fi.fo.g € BY . If supp,,[fi — ailk] N supp,[fo — axlk] = 0
and either supp,, [ fi — a1lk] or supp,,[ fo — a2lk] is compact for some
ai,ar € R, then

E(fitp+g)+Eh(@) =i+ +EN(H+2). (3.13)
Ex(fi+ f:8) = E(f1:8) + E (f2:8)- (3.14)
(i) Let fi, fr.g € BY . Ifsupp,,[fi — fo —alk] Nsupp,,[g —blk] = 0 and

either supp,,[fi — f2 — alk] or supp,,[g — blk] is compact for some
a,b € R, then

Eh(fi:8) =E5(fr38) and Eh(g: fi) =& (g: ). (B.15)

(Invariance) Let T: K — K be Borel measurable and preserve m, i.e., satisfy
T7'(A) € B(K) andm(T~'(A)) = m(A) forany A € B(K). Ifk is T-invariant,
ie, ky(T(x),T(y)) =k, (x,y) formxm-a.e. (x,y) € KXK foreachr € (0, ),
then foT € B’;,,m and 8’,‘,(]‘ oT) = 8’,‘,(f)f0rany fe B’,‘wo.

Definition 3.9 (k-Korevaar-Schoen p-energy form) Suppose that(WM) , x|holds.
For each sequence {r,}nen € (0,00) as in Theorem the p-energy form
(&k, Bf,’oo) on (K, m) defined by is called the k-Korevaar-Schoen p-energy
form on (K, m) along {r, }nen.

Remark 3.10 Advantages of our p-energy form (&, B’;,’oo) on (K, m) are|(c)|and
The estimate (3.12)) with the Holder continuity exponent (p — 1) A 1 is not known
for the p-energy forms constructed in [9} 123} 133} |39, 143]]. (As stated in Proposition
[2.3] the existence of the derivative as in (2.9) and its local Holder continuity (2.12))
with exponent “’;# for p-energy forms satisfying |(GC),| have been proved in
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[27].) We also do not know Whetherholds for the p-energy forms constructed in
[9, 12311331139} 143].

Proof of Theorem[3.8 Fix a sequence of positive numbers {7, },en with 7, — 0.
Since B’;,,m is separable by Theorem there exists a countable dense subset ¢

of B’;’cx,. A standard diagonal argument yields a subsequence {r,},en of {7y }nen
so that lim;, e Jf,,,n(u) exists in R forany u € €. Lete > 0, f € B’;’w and pick
f« € € satistying sup,.. Jf”(f — f)Y/P < &. Then for any k,[ € N, by using the
triangle inequality for Jf,,r( e,

[ 107 = 1 7]
< = S | VP = T (P 05 = 1

k 1 k 1
<2e |k, ()P = T8 (1)),
Letting kK A I — oo in this inequality, we obtain

timsup |5, (N7 =I5, (£)'/7) < 2,
kAl—o0

which proves that {Jf,,rn (f) }nen is a Cauchy sequence in [0, 00) and hence is conver-

gent in [0, 00). Now we define 8?, : B’]‘,,M — [0, ) by 8;‘, (f) =lim, e Jk’rn (f)-

Clearly, (&K, Bl;;,oo) is a p-energy form on (K, m) satysfying (3.8) by (WM),, k

Let us show[(b)} [(©)} [(d)]and[(€)]because the other properties[(a)|and[(f)|are immediate
from the expression of J,,( -) and the definition of .

, Obviously, [(c)| implies for (&K, B’]‘,’M), so we first show For

simplicity, we consider the case g < oo (the case g, = oo is similar). Let u =
(U1s. .. Up,) € (B’;,,m)”l and v = (vy,...,0s,) € LP(K,m)"™ satisfy (3.10). Then
the same argument as in (3.4) shows that for any r € (0, ),

) ni @/q
DIk ()P < (Z J’;,r<uk>q'/P) : (3.16)
=1 k=1

which implies that v; € B  forany [ € {1,...,n}. Using (377) to take the limit of

(B16) with r = r,, as n — oo, we obtain 3,2, 8’1‘,(01)"2/” < (X, Sf,(uk)ql/")qZ/ql.
This completes the proof of
Next we prove (39). We know that E¥ is Fréchet differentiable on BX by (2:8)

in Proposition Also, by combining (2.7) (in Proposition for Jf,,, and the
convexity of ¢ Jf,’,(f +tg), we see that for any ¢ € (0, 1),

J;c),r(f +tg) - Jllg,r(f) _
t

pI (f:8)



16 Naotaka Kajino and Ryosuke Shimizu

| S =I5 () a
- t - EJp,r(f+tg)

t=0

J;,r(f+tg)+‘];€7,r(f_tg)_2Jf7,r(f) .
; Do,

1
where O,(f;g) = Cp,f,gt(”_l)/\lTl for some constant Cp, ¢ o which depends only
on p, |f|35‘,w and IgIBz;m. Hence we see that

lim sup |8’;,(f; g8) — Jﬁ,rn (f:9)]
n—oo

1 Jk +1g) = Jk 1
< lim [E5(f18) — — - bra S 218 =y )‘+ ~0,(f;8)
n—oo p t p
1 ER(f+e)-&5(H| 1
= ek (f;9 - = = P+ =0:(f;8) — 0,
p t p 110
which shows (329).

[(@)} This is immediate from (3.3)), Holder’s inequality, Lemma[3.7 and (3.9).
By [27, Propositions 3.29 and 3.30], it suffices to show (3:13). For simplicity,
foru € L? (K, m) and E € B(K), define

T o _ P
P E) /E /B ) O e ) (),

and set A; := supp,,[fi — a;1k] fori € {1,2}. We also set .7’;’,(14) = f’[j’r(u | K).
Note that there exists rg € (0, o) such that disty (A, A;) > 26(r) for any r € (0, rp)
since either A or A, is compact. Set N, = K\ ((A1)g,6¢) Y (A2)a,s(r)) for
r € (0, 00). Then for any r € (0, rg),

Ty s (fi+ fr+8)+ 75, (8)

=T (fi+gl (ADasi) +T5, (+8 1 (Ada.sir) + T (8 | No) + T (g)

=J% (fi+g (ADa,s) + T (8] (A)a,5(r) UNy)

+ 7% (48| (A)asir) + 5, (g | (ADa,sr) U Ny

=T (fi+g) + T, (1 +8). (3.17)
Noting that lim, e J% . (u) = EX(u) for any u € BX , n L¥(K,m) by (37)
and the asymptotic locality of k, we obtain (3:13) by letting r := r, and n — oo
in 3.17) provided f1, f>,8 € B',‘)’OO N L®(K,m). Finally, since (-n) V (u A n) €
BY N L¥(K,m),limy_e EX (u— (—n) V (u An)) = 0 by [27, Corollary 3.17] and
supp,, [u — c1k] = supp,,[(—n) V (u An) — clk] for any u € B’;,,oo and any (n,c) €

N xR with n > |c|, (3:13) extends to the remaining case {f1, f2. g} € L*(K, m) by
the triangle inequality for 8’1‘,( )1/P_completing the proof. |



Korevaar-Schoen p-energy forms and associated p-energy measures on fractals 17

Next we would like to state further properties of k-Korevaar-Shoen p-energy
forms in the “strongly p-recurrent” case. To this end, we recall the notion of p-
resistance form introduced in [27] (see [29} 31] for the theory for the case p = 2).

Definition 3.11 (p-Resistance form) Let K be a non-empty set. The pair (&, ) of
F cRK and &: F — [0, o) is said to be a p-resistance form on K if and only if it

satisfies the following conditions

(RF1), ¥ is alinear subspace of RX (containing R1x) and &( - )!/P is a seminorm
on ¥ satisfying {u € ¥ | E(u) = 0} = Rlg.

(RF2),, The quotient normed space (¥ /Rlg, &'/P) is a Banach space.

(RF3), Ifx # y € K, then there exists u € ¥ such that u(x) # u(y).

(RF4), Foranyx,y € K,

|u(x) —u(y)|”
E(u)

u e T\RIK} < 0.
(3.18)

Rg(x7 y) = R(S,f}(-x7 y) = Sup{

(RF5), (&, ) satisfies

We also need to recall the following standard notions on the metric d and the
measure 1.

Definition 3.12 Let Q € (0, o).

(1) The metric d is said to be metric doubling if and only if for any 6 € (0, 1) there
exists N € N such that for any (x,r) € K x (0, c0) we can find {x; }j.V:] C K so
that By(x,r) C Uﬁ-v:l Bg(x;,or).

(2) The measure m is said to be volume doubling with growth exponent Q (with
respect to the metric d) if and only if there exists Cy) € (0, co) such that

Qo
m(Bg(x,s)) < C]')(;) m(Bg(x,r)) < oo foranyx € K andany 0 < r < s.
(3.19)

Note that m is volume doubling with growth exponent Q” for some Q' € (0, c0)
if and only if m is volume doubling, i.e., there exists Cp € (0, co) such that

m(Bg(x,2s)) < Cpm(By(x,s)) < oo forany (x,s) € Kx (0,0). (3.20)

(3) The measure m is said to be Q-Ahlfors regular (with respect to the metric d) if
and only if there exists Car € [1, o) such that

Cgllz s€ <m(Bg(x,s)) < Cars2 forany (x,s) € K x (0,2diam(K, d)).
(3.21)

The Q-Ahlfors regularity of m clearly implies that m is volume doubling with
growth exponent Q, and it is also well known that the volume doubling property of
m with respect to d implies the metric doubling property of d.

Now we give a sufficient condition for a k-Korevaar-Schoen p-energy form
(&K, B’I‘,’w) on (K, m) to be a p-resistance form on K.
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Proposition 3.13 Suppose that there exist Q, 8, € (0,00) with 8, > Q such that
the following hold:

(i)  The measure m satisfies m(K) < co and is volume doubling with growth
exponent Q € (0, ).

(ii) holds.

(iii) {ue Bk |sup,.oJ% (1) =0} =Rlg.

(iv) B . C C(K), and there exists C € (0, c0) such that for any f € B’I‘,,oo and

p,>© =

anyx,y € K,

If () = fD)] < Cd(x, ) Pr=DPsup gk (AP, x,yeK. (3.22)
r>0
(v)  Thereexists C € (0, 00) suchthatforany (x, s) € Kx(0, o) with B4(x, s) # K,

inf{sup]f,’r(f) ’ f € C(K),suppg [ f] € Ba(x,25), f > 1o0n By(x, s)}
r>0

_ omBaxs)

< o (3.23)

Then any k-Korevaar—Schoen p-energy form (&K, B’;,’Do) on (K,m), which exists
by[(1)| and Theorem[3.8] is a p-resistance form on K. If in addition m is Q-Ahlfors
regular, then there exist ag, a; € (0, %) such that for any such (X, Bl;,oo)’

aod(x, y)Pr=2 < RS;{; (x,y) < a1d(x,9)P™2  foranyx,y € K. (3.24)

Proof. Let (&K, B’;’oo) be a k-Korevaar-Schoen p-energy form on (K, m). We shall
show that (8’;,3’1‘,,00) is a p-resistance form on K. |(RF1),,| and |(RF5) p| are clear

from Theorem [3.§] and The condition (3.23) immediately implies
By (3:22) and the lower inequality in (3:8) we have Rex (x,y) < d(x,y)Pr~2 for

any x,y € K, whence [[RF4),]and the upper estimate in (3.24) hold. In particular,
sup, vex Rk (x,y) < co.Toprove|(RF2),| we see from (3.22) that for any f € B’;J,w’

/| ’f(x) ~f ran

P
m(dx) < /K ]f( £ () = FOIP m(dy)m(d)

< ( sup Rk (x,y))a’;(f)muo. (3.25)

x,yeK

Let {fu}nen € BY . be a Cauchy sequence in (BY . /Rlk,&X(-)!/P) with
fx fa dm = 0. Then (3.23)) implies that { f,, }neir is a Cauchy sequence in L? (K, m),
and thus {f, },en is a Cauchy sequence in B’;,w Since Bl;;,oo is a Banach space by
Theorem we conclude that (B’;,W/Rl K> 8’1‘,( -)1/P) is also a Banach space.
Next we show the lower estimate in (3.24) under the assumption that m is Q-
Ahlfors regular. Let x,y € K and let s > 0 satisfy d(x,y) > 2s > 27'd(x,y).

Then B,(x, s) # 0. By (3:23), there exists f € BX ., N C(K) such that suppy [ ] C
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Ba(x,s), f = 1 on By(x,2s) and EX (f) < C1527Pr, where C; € (0, ) depends
only on C in (3.23) and Car in (3.21). Hence we have

Re(x,y) 2 E5(f)™ 2 €179 2 d(x,y)/Pr=2. 0

Example 3.14 (Korevaar-Schoen—Sobolev space) In addition to the setting spec-
ified at the beginning of this section, we suppose that K is connected and that
m(Bg(x,r)) < oo for any (x,r) € K X (0, 00). For s > 0, define k* = {k}},~0 by

le (x,r) (y)

k) = Baer)

x,y €K. (3.20)
Clearly, k* is asymptotically local. We define the Besov-Lipschitz space B, ., by
B, = B’I‘:m. Then the critical L?-Besov exponent s, of (K, d,m) is defined as

sp = sup{s € (0,00) | B}, ., contains a non-constant function}. (3.27)

We call KS"? := B;,’joo the (1, p)-Korevaar-Schoen—Sobolev space on (K, d, m).
We also write KS'*” (K, d, m) for KS'*” when we would like to clarify the underlying
metric measure space (K, d, m). If m is Q-Ahlfors regular with respect to d for some
Q € (0, 00), then k%7€ = {k:”’Q}r>0 given by

79 (xy) =P, 0 (). 1y €K,

which again is obviously asymptotically local, also corresponds to the (1, p)-
Korevaar—Schoen—Sobolev space, i.e., B’;‘TZQ = KShP If holds, then
we write 855 instead of 8’;" and call each k°®r-Korevaar—Schoen p-energy form
(655, KS!"?) on (K, m) a Korevaar-Schoen p-energy form on (K,d, m).

It is not easy in general to verify and (3.23) for the family of kernels
k = k°r; see Sections [3 and [6] for some settings in which we can prove these
conditions. On the other hand, a reasonable sufficient condition for (3.22) is known.
In fact, if m is volume doubling with growth exponent Q € (0, o) and ps, > Q,
then (3.22) holds for KS!7; see, e.g., [3} Theorem 5.1] or [6, Theorem 3.2].

Let us give a couple of other examples of families of kernels k, whose associated
Besov spaces B’;,oo coincide with KS'*? under suitable assumptions. The first one
k* = {k},0 is a variant of k*» obtained by replacing r”*» in (3.26) for s = s, with
d(x,y)Psr,i.e., defined by

1Bd (x,r) (y)

# o
ki(x,y) = AP m(Bair) x,y €K, (3.28)

so that k¥ is clearly asymptotically local. When m is volume doubling and (K, d, m)
is equipped with a pair of p-energy form and p-energy measures satisfying a suitable
Poincaré inequality and a capacity upper estimate as in the cases of many examples
including the Sierpiriski carpet, one can show that k* satisfies B’[‘:w = KS!'? and
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see [44] Corollary 1.14] for details. As Proposition [A.T]in Appendix [A]
we give an alternative elementary proof that a Poincaré-type inequality as given in
(&) implies B, = KS!” and

The second family of kernels k"2 is a mollification of k*» obtained by replacing
m(Ba(x,r)) " "1p,(x.r)(v) in B:26) for s = 5, with the heat kernel of a diffusion on
K. Namely, assuming that (K, d) is locally compact, that m is a Radon measure on K,
and that (K, d, m) is equipped with a strongly local regular symmetric Dirichlet form
(&, F) on L*>(K, m) which has a heat kernel {q,},> we define kheat = {kheaty
by

ke (x,y) = W x,y €Kk, (3.29)

where B8 € (1, o) is a parameter to be suitably chosen depending on (K, d, m, &, F).
This family of kernels has been considered in [3} 15,16, 116, 40]] under the assumptions
that (K, d) is complete and that the following (full off-diagonal) sub-Gaussian heat
kernel estimates with walk dimension 8 hold: there exist Cy, ¢y, C2, ¢c3 € (0, c0) such
that for each ¢ € (0, 0),

G d(x,y)\P
mexp(—cl( p ) ) < q:(x,y)

1
d B\ BT
< L exp|—ca (x.y) for m-a.e. x,y € K; (3.30)
m(B(x,t'/B)) t

note that (3.30) implies that m is volume doubling (see, e.g., [25} Remark 1.2-(1)]).
In particular, under these assumptions, it has been proved in [16] that B’;l::: = KSh?
([16, Lemmas 3.3 and 3.4]) and that |(WM) kaspl and |(WM) 1 khea| are equivalent to
each other ([16, Theorem 1.7]). It is also easy to see that, if m is volume doubling, the
upper inequality in (3:30) holds and m(K) < oo, then k" is asymptotically local. On
the other hand, even if (3.30) holds, k"4 is not necessarily asymptotically local when
m(K) = oo, as can be seen from the case of the canonical Dirichlet form on R", (T.4)
for p = 2 with domain W'-2(R"), where s, = 1 as mentioned in the introduction,

B =2and g,(x,y) = (4ﬂt)‘”/2e‘|x‘y|2/<4’) for any (¢, x,y) € (0,00) X R" x R".

4 Associated p-energy measures and chain rule

Next in this section, we introduce the p-energy measures associated with a given
k-Korevaar—Schoen p-energy form (&, B’;,,w), and show their basic properties.

2 Le., a family {q; };~0 of [0, co]-valued Borel measurable functions on K x K such that 7; f =
fK q: (. y) f(y) m(dy) m-a.e.on K forany ¢ € (0, ) and any f € L?(K,m), where {T} };>0
denotes the Markovian semigroup on L*(K, m) associated with (&, F); see [14} Sections 1.1, 1.3
and 1.4] for the definitions of the relevant notions from the theory of symmetric Dirichlet forms.
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Throughout this section, as in the previous section, we fix p € (1, ), a separable
metric space (K,d) with #§ > 2 and a o -finite Borel measure m on K with
full topological support. In addition, we suppose that (K, d) is locally compact.
We also fix a family of kernels k = {k,},~o as in Definition suppose that

k is asymptotically local and that (WM), x| holds, and fix an arbitrary sequence

{rn}nen C (0,00) as in Theorem [3.8] so that we have the k-Korevaar—Schoen p-
energy form (Sk,B’I‘j’m) on (K,m) along {r,},en defined by (3.7). For ease of
notation, we set

my (dxdy) = k;, (x,y) m(dy)m(dx).

Foreachu € BX  NL(K,m), define a linear map WX (u; -): BY, N L*(K,m) —
R by, for each ¢ € BX _ N L*(K,m),

-1
YR (u; ) -=8"(u~uw)—(p;l)p X (1u77 5 ¢) 4.1)
p 4 : P ’ P P ’ ° :

(Note that uep, |u|1’%l € B’I‘,,m by Theorem and Proposition , )

Theorem 4.1 Letu € BY  NCy(K) and ¢ € BY, .NL(K,m). If {u, 9}NCc(K) #
0, then

g = fim [ ) =) w00k, (10 mldym(a)
KK (4.2)
= tim [ [ ) = a1 o)k, () mCyym ),
[ (s )] < Nl @l o iy Elp (). (4.3)
In particular, if in addition ¢ > 0, then lI"!‘,(u; @) = 0.

Proof. First, we observe that
_1\P! .
‘Pl;,,n(u;sﬂ) = Jllj’rn(u;uc,o) - (PTI) ]Z’rn(|u|ﬁ ;90)
= /K K[Iu(x) —u()IP o(x) +yp (u(x) — uy)) - (9(x) — (3)u(y)
p—1 p-l p p
- (T) Yo (T = u ()77 - () - 90(y))] ma(dxdy). (4.4)

Define F,, € B(K X K) by

F, = {(x,y) e KxK | d(x,y) < d(rp) and (@(x), (y)) # (0,0)},

and set

k .
Ly (459)
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= /F [IM(X) —uI” @(x) +yp (u(x) —u(y)) - (e(x) = e(M)u(y)

_ p-1 " ,
_ (Pp_l) ol ~ (17T - (o) - m))] o (d5d5).

Note that limn_,oo(‘l”;,’”(u; ®) —I’;,’n(u; ¢)) = 0by B.6) and lullgyp V @l (km) <

co. Since F K is compact for sufficiently large n € N when ¢ € B% 1 C.(K),
u is uniformly continuous on {x € K | (x,y) € F,, or (y,x) € F,, forsome y € K}
for such n. By combining this observation with the uniform continuity of ¢ —
¢!/ (P=1) sgn(t) on u(K), for any € > 0, we can find N € N such that

2 {7 = 0)177) = (u5) =) )7 sn(a)|

u(x) 1 1
[ (117 sento) = )17 senfu) ] i < el < uil @)

)

for any (x,y) € Up,sn Fn. Using Lemma[3.7, @3)) and Holder’s inequality, we can
find Cp ,, € (0, c0) depending only on p and [|u|[s,, such that

J.

_1\p,-1 Y ,
_ (pTl) 7p(|M(X)|ﬁ - |u(y)|p—1) (p(x) - tp(y))] my, (dxdy)

_ (p—1)Al 1 _
SCp,us(p I)AIS;‘,(M) P Sf,(go)l) = Cp,u,ws(p DAL

Yp (u(x) —u(y)) - (e(x) = @(y)u(y)

sup
n>N

Therefore, (@.4) implies that for any n > N,

W (s ) - / () - 1 ()P 0(x) mn(dxdy)‘
KxK
< |8 i) = 18 i) + [ 1u6) = () 1706) () + g

which together with lim,, .o W&  (u: @) = W% (u; ¢) and (3:6) yields the first equality
in (@2)). The second equality in (4.2)) can be shown similarly by using the expression

K () = /1< K[Iu(x) —uWIP o(y) +vp(ux) —u(y)) - (¢(x) = e(y)u(x)

— p-l p P
- (”71) ¥ (1 @IFT = 1P - () - «p(y»] m(dxdy)

instead of (@.4). Now the estimate [.3) is clear from (@.2). O
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By Theorem we can associate to the functional ‘I”;(u; -) a unique Radon

measure Fﬁ (u) on K under the additional assumption that Bl;uoo N C.(K) is dense
in (Ce(K), || - llsup)» as follows.

Theorem 4.2 Suppose that B’;’w N Ce(K) is dense in (Cc(K), || - [lgup)- Let u €
B’I‘j’m N Cp(K). Then there exists a unique positive Radon measure F’; (u) on K such
that for any ¢ € B’I‘,,m N C.(K),

—1\"! 2
/Ksodr’;<u>=8’;(u;w>—(”7) Ep(lul? 1 ¢). (4.6)

Moreover, Ff, (u)(K) < 8;‘, (1) < oo, and for any ¢ € Cy(K),

[earsu =tim [ [ 1) -ul Wk, (e ml@ma@. @)
K K JK

Definition 4.3 (p-Energy measure associated with a k-Korevaar-Schoen p-
energy form (&%, B )) Suppose that BY N C.(K) is dense in (Ce(K), || - Ilsup)-

and letu € B’;,’oo N Cp(K). The positive Radon measure Ff, (u) on K as in Theorem
is called the p-energy measure of u associated with (¥, B’I‘,’m).

Proof of Theorem[d.2] By virtue of (.3, we can extend ‘P’l‘, (u; -) to a bounded
linear functional on Cy(K) in a standard way as follows. Let u € B’[‘,’oo N Cp(K), let
¢ € Co(K) and choose {¢;};en € BX N Co(K) so that lim; e [|¢ — (’0~f|‘sup =0.
Then {‘P’I‘,(u; ©;)}jen is a Cauchy sequence in R since |‘P;§(u, @) - T.’FC(M; (pj/)|
lles —¢pj,||sup8’;,(u) for any j,j/ € N by @3). Now we define W& (u:¢) :

lim; e ‘Pf, (u; ¢ ), which does not depend on the choice of {¢; } jen. Clearly, we have

IA

|‘¥"I‘, (u; go)| < llellsup 8’; (u). If ¢ > 0, then we obtain ‘f";, (u; ¢) = 0 by considering
{lp;} ;j instead of {¢;};. By applying the Riesz—Markov—Kakutani representation
theorem (see, e.g., [41, Theorems 2.14 and 2.18]), there exists a unique positive
Radon measure I ’I‘, (u) on K satisfying

‘T”;,(u;gb) = /Kl//dF’;,(u) for any ¢ € C.(K). (4.8)

In particular, I'% (u) satisfies (@.6) for any ¢ € BY N C.(K) by @8] and @I).
Next, to show the claimed uniqueness of Ff, (u) and F’; (u)(K) < 8’1‘, (u), let u be
a positive Radon measure on K satisfying (@.6)) with y in place of F’; (u) for any ¢ €
B’]‘,,m N C.(K). Then for any compact subset F of K, noting (3.1)) and the assumption
that B’I‘,’m NCc(K) isdensein (Cc(K), || - [lgup). We can choose ¢ € B’;,oo NC:(K) so
that 15 < ¢ < 1g on K, hence u(F) < [ ¢ du = \P’;)(M;(,D) < 8’;(u) by @3) and
thus u(K) < 8’;(u) < o0. In particular, Cy(K) 3 ¢ — fK ¥ du is a bounded linear
functional on Cy(K) which coincides with ‘Pi‘, (u; -) on B",‘,’Do N C.(K) and thus with
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‘.I}’;, (u; -) on Cy(K), and therefore y = Fﬁ (u) by the uniqueness of a positive Radon
measure on K satisfying (4.8).

Lastly, we shall prove (@.7). Note that (#.7) is true for ¢ € B’;,’oo NC.(K) by @2)
in Theorem As in the first paragraph of this proof, let ¢ € Cy(K) and choose
{@j}jen € Bl;),oo N C¢(K) so that lim; _,c Htp - gpj” = 0. Let € > 0 and choose

sup
N € N so that Hgo - <pj||sup 8’1‘,(14) < g for any j > N. Then, for any n € N and any
J=N,

‘ / o T (u) - / () — uIP () mn(dxdw‘

K KxK

< |‘T",§(u;so) - {I"’;(u;¢j)| + “?’;(u;soj) - ‘I",‘,,n(u;<pj)|
+||90—901||sup/K . |u(x) = u(y)|P my(dxdy)

<26 +|Wh () - WE L (us )]

where Wk | (u; -) is the same as in (#4). Hence we have

lim sup

n—oo

which proves (4.7). O

In the rest of this section, we always suppose in addition that Bl;;,oo N C.(K) is
dense in (CC(K)’ ” : ”sup)-

Note that both the boundedness and the continuity of u are essential in Theorem
B.2} the former is required for the right-hand side of (#.6) to make sense, and the
latter has been used heavily in the proof of Theorem[d.T|above. Next we would like to
extend F1’§ (u) to a wider range of u. Let us use the following notation for simplicity.

| earb@ - [ ) - u)l” o) m (asa)| < 2.
K KxK

Definition 4.4 We define closed linear subspaces Z)Z:Z, and Z)g:; of B’;,,m by

. Bk
Dy = B NCp(K) "7 and DLE = BN Ce(K) 7. (49)

By virtue of the expression (#.2), we can show the generalized p-contraction
property (GC) | for (fK ® dF;‘,( ), B’]‘,’oo N Cp(K)) for any ¢ € C.(K) with ¢ > 0,
which further allows us to extend F’; (u) canonically to u € Z)f,:fo.

Theorem 4.5 For any u € Df,:fo, there exists a unique positive Radon measure

Fl;? (u) on K such that for any {u, }nen C Bl;),oo NCp(K) withlim,,_, 8’;(u—un) =0
and any Borel measurable function ¢: K — [0, co) with ||¢||g,, < oo,

/gpdr’;(u): 1im/¢dr’;,<un>, (4.10)
K n—o Jg
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and F’; (u) further satisfies F’I‘; (u)(K) < 8’; (u). Moreover, for each such ¢,
(fK @ dl“;‘,( ), Z)f,jfo) is a p-energy form on (K, m) satisfying|(GC),,

Proof. First, forany ¢ € C.(K) with ¢ > 0, we will show that (fK @ dF’;( ), B’I‘,,mﬂ
Cp(K)) satisfies Throughout this proof, we fix n;,n € N, ¢q; € (0, p],
g2 € [p,oo] and T = (T, ..., Tpy,): R™ — R™ satisfying (2.1)). Let us consider the
case ga < oo since the proof for the case go = oo is similar. Let u = (uy,...,up,) €
(B N Cp(K))™ . Note that Ty(u) € BY 0 C,(K) for each I € {1,...,n,}. For
any n € N, we see that

1

@/p
E (/ |1 (u(x)) = T ()" ¢(x) mn(dxdy))
KxK

I=1

2 rla: @/p
2 DT 0) =TI | () ()

il plai @/p
4 AXKI;IMk(X)—uk(y)I"‘ @(x) m, (dxdy)

@/q

9 [ a/p
< (Z (/KXK lux (x) = ur ()17 @(x) mn(dxdy))

k=1

where we used the triangle inequality for the norm of LP/9' (K x K,m,,) in (). By

letting n — oo, we obtain from (4.7) that
. 1/p
( / ¢drp<uk>)
K

'((/f<¢drﬁ<ﬂ<u>>)w)

Next we will extend (@.T1) to any Borel measurable function ¢: K — [0, oo].
Let us start with the case ¢ = 14, where A € B8(K). By [41] Theorem 2.18], there
exist sequences {K, },en and {U,, }nen such that K, C A C U, K,, is compact, U,
is open and lim,,,co MAXye (7 (1)} Ufur }1 Fllj ()(U, \ K) = 0. By Urysohn’s lemma,
we can pick ¢, € C.(K) sothat 0 < ¢, < 1, ¢,|k, = 1 and suppg [¢n] C U,.
Applying @.11) for ¢,, we obtain

na ny

<

4.11)

I=11l¢ga2 k=1ll¢g41

n

|(rScm )

I=1

n

o =@ e)”

e

By letting n — oo, we get @.I1) with ¢ = 14. Using the reverse Minkowski
inequality on ¢9'/7 and the Minkowski inequality on £22/P (see also [27) Proof of
Proposition 2.9-(a)], where [GC),,|is shown to be stable under addition), we see that
(@TT) holds also for any non-negative Borel measurable simple function ¢ on K. We
get the desired extension, @]) for any Borel measurable function ¢: K — [0, oo],
by the monotone convergence theorem.
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Now let us extend p-energy measures. In the rest of this proof, let ¢: K —
[0, c0) be a Borel measurable function such that [|¢llg,, < co. Letu € Z)f,jlo’o and
{uptnen C Bk,oo N Cp(K) satisfy lim,,_,q, 8’12(u — uy) = 0. By Proposition
for ([ @dT%(-), BX . N Cy(K)), forany n,n’ € N,

1/p 1/p
( /K wdr’;<un>) —( /K ¢dr’;<un/>)

which implies that the limit lim, e fK godF’l‘, (un) = I,(p) exists in R and it is
independent of the choice of {u,},. In addition, by letting n’ — oo in the estimate
above, we have that

1
< ll@llil? &K (un — un) 17,

l/p
‘(/wdr’;wn)) —L(@)"7| < llpllsel 8 (u - )P @.12)
K

Also, it is clear that 0 < I,(¢) < [l¢llgyp Sﬁ(u) and that [, is linear in the sense
that I, (X3, aker) = Yoy arlu(ex) forany N € N, (a)., € [0, 0) and Borel
measurable functions @i : K — [0, o) with [|¢k|ls,, < o0, k € {1,..., N}. Now we
define Ff, (u)(A) = I,(14) € [0, 0) for A € B(K), and show that F’; (u) is a finite
Borel measure on K. Clearly, F’; (u) is finitely additive and F’; u)(K) < 8’1‘, (1) < oo,
Hence it suffices to prove the countable additivity of Ff) (u). By @12), for any & > 0
there exists No € N such that sup 4c g |F’;,(u)(A)1/1’ - F’;(un)(A)l/”| < ¢ for
any n > Ny. Let {Ax}ren C B(K) be a sequence of disjoint Borel sets, and set
Bn = Uj_n4 Ak foreach N € N. Then we see that for any N € N and any n > Ny,

N
g Ak) = > Ty (Ag)
k=1

keN

1/p

Tk (u) =T (u)(BN)''P < &+ Tl un)(Bn)'P,

whence limpy_ |F§(u) (Uken Ax) — Zszl Ff,(u)(Ak)| = 0, proving the desired
countable additivity.

Before showing @10), i.e., L,(¢) = [ gode,(u), we will extend @.TT1) to the
pair ([ ¢ dF;‘,( ), Z)f,:f,’o). To this end, we need to show that for any {u, }neny C

B’}‘,’m N Cp(K) converging weakly in B’I‘,’w tou € D’;:i asn — oo,

/ @ dI' (u) < lim inf / o dT% (uy). (4.13)
K n—e JK

By extracting a subsequence of {u,}, if necessary, we can assume that the limit
lim,; 00 fK ® de,(u,,) exists. By Mazur’s lemma (see, e.g., [22, p. 19]), there exist

N(n) € N and {an,k}ivz(:) c [0,1] with N(n) > n and Zivz(:) anx = 1 for each
n € N such thatv,, = kN:(:) ap, k Uk converges to u in B’;),m as n — oo. We see from

and Proposition for (fK @ dl“f,( ), B’;,’w N Cp(K)) that
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1/p  N(n) 1/p
( /K sodr’,;<vn>) < ) ank ( /K sodrf,<uk>) :
k=n

which implies @13) by letting n — co. With this preparation, let us show
that the pair (wadF’;<->,Z)f,fo) satisfies Let u = (uy,...,un) €
(DKL), For each k € {1,...,m}, fix {ugntnen S BE ., N Cp(K) so that
1m0 |Juk — ”k’"”B",m =0.Setu, = (U1 sUnjn)- Byfor (Sk,B’I‘,’OO)
(see Theorem i and (2.1)), we know that {T}(u,)}, is bounded in B,oo and
that lim,, e, |77 (#,,) — T7(u)||;» = 0. Since B¥ .o s Teflexive (see Theorem and

B’;J,oo is continuously embedded in L? (K, m), we see that T;(u) € Z)f,:f,’o and that
there exists a subsequence {7;(uy,;)}; such that 7j(u,,) weakly converges to 7;(u)

in B’I‘,’w as j — oo forany [ € {1,...,n,}. By @I3), we see that

1/p ny 1/p 1/q>
H((/KMF'HTI(u))) ) S(;lijrri)glf(/I(¢dF’;(7}(unj))) )

V&) =

ny 1/p l/qZ
< liminf dr*(T(u,,,
mir (Z(/K¢ 8w, )

=1

n 1/p 1/q
< liminf dr* (ug .
min (Z(/Kw ) )

k=1

(st

if g2 < 0. The case g3 = oo is similar, so ([ ¢ dTk(-), D2,) satisfies|(GC),,
Finally, we can prove @.I0). Let {un}tnen € BY ., N Cy(K) be a sequence

satisfying lim,, e 8’;(u—un) =0.By Proposition for (Jx dl“’;,( -, Z)f,fo),

we have
1/p 1/p
( /K stFf,W)) - ( /K wdr’;<un>)

which together with @.12) implies that

nz

=1

ny

k=111¢41

1
< llpllsed &5 (u—un)'/?,

1
Iu(so)l/”—(/Ksodrlé(u)) ’

< +

1/
L(@)''? - (/Ksodl“ﬁ<un>) ’

< 2llellsif € (u—un)''? —o0.

sup n—oo

(/ drk( >)1/I’ (/ drk( >)l/l’
[(90 P Un ](90 P u
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Hence we obtain {10). a

Thanks to Proposition for ([ x pdl’ ’,‘,( ), le,:fo), we can show the next

result. See [27, Theorem 4.5 and Proposition 4.6] for further details on Ff,(u; v) in
the theorem below.

Theorem 4.6 Letu,v € D’;:f;. Define Ff,(u; v)y: B(K) — R by

T (us ) (A) = ]l) %F’;w +10)(A) for A € B(K). (4.14)

t=0

Then I“;‘) (u;v) is a signed Borel measure on K and satisfies F’; (uyu) = F’I‘,(u).
k.b

Moreover, for any u,v € D}’

[0, o],

and any Borel measurable functions ¢,: K —

1
/ @ dF’;, (uy - ): DI;,:}; — R is the Fréchet derivative of — / @ dF’IZ( -Yatu
K P Jk
(4.15)

provided ||¢||y,, < o0, and

sup

/Kwd|r',§<u;u>\s (/KW‘L dr’;,<u>) " (/Kw”dl“’;,(v))p. (4.16)

Proof. Tt is proved in [27, Theorem 4.5] that Ff,(u;v) is a signed measure. The
statements (@.135) and @.16) follow from [27, Propositions 4.6 and 4.8]. O

As an important consequence of the strong locality of (&K, B,oo) obtained in
Theorem , the inequality Ff, (u)(K) < 8’;, (1) in Theorems and E turns
out to be an equality as longasu € z)f,;g,. Namely, we have the following proposition,
which is the counterpart for (K, B’I‘,’w) of the well-known equality [[14, Lemma
3.2.3] for the strongly local part of a regular symmetric Dirichlet form.

Proposition 4.7 Ifu,v € Df,;;, then F’;, (u; v)(K) = 8’1‘,(u; v).

Proof. Since (F’;( . )(K),D’;,:fo) and (Sk,B'[‘,’oo) satisfy |(GC),,| by Theorems
and thanks to the linearity of &(u; -), (2.11) and é Iél from Proposition
for (E,F) = (Fﬁ( : )(K),Z)f,:fo), (Sk,B’,‘,’w) it suffices to consider the case
u,v € B’I‘J,w N C.(K). We first show that Ff,(u)(K) = Sf,(u) for any u € B’;),oo N
C.(K). Since K is locally compact and we assume that Bl;;,oo N C.(K) is dense in
(Ce(K), || - Ilsup)- by using Proposition we can find an open neighborhood U
of the compact subset suppg [¢#] of K and ¢ € Bk’Do NC.(K)sothat0 < ¢ < 1 and
@(x) = 1forany x € U. Then suppg [u] Nsuppg [¢ — 1k ] = 0. By Theorem (@)}
we have 8’; (u;up —u) =0 and 6’1‘, (|u|% ;¢) = 0. In particular, by (@.6),

rh @) > [ erhw =g
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whence we have Ff,(u)(l() = 8’;, (u).
Next let u,v € B’;,»oo N C.(K). The argument in the previous paragraph implies
that for any ¢ € (0, 1),

F’I‘,(u +tv)(K) — Ff,(u)(K) _ 8’1‘,(u +tv) — 8’1‘,(u)
t t '

By letting ¢ | O in this equality, we have Fﬁ(u;v)(K) = 8’1‘,(u; v) by @I4) and

6. o
We also have the following expression of | K ¥ dT* (u; v) if ¢ € C.(K). In partic-

ular, we can deduce the analogues of Theorem , for ( f k¥ dF’;,( ), Z)f,:l;).
Theorem 4.8 For any u,v € Z)’;:Z, and any ¢ € C.(K),

/t,odl“f,(u;v)

K

- lim / / Yo (1) = 14(0) (000) = 0P (ks (. y) m(dy)m(dx)  (A.17)
K JK

n—oo

lim / / 7o (1(2) = () (0(x) — 0Pk, (. ) m(dy)m(dv). (4.18)
K JK

n—oo

In particular, the following hold:

(@) Letnj,np € N, q1 € [1,p], g2 € [p,oo], u = (uy,...,upn) € (Df,:];)nl,
v = (v1,...,0,) € L%K,m)™, and let y: K — [0, 0] be Borel measur-
able. If there exist m-versions of u and v such that ||[v(x)||;a, < [|u(x)||par
and [[o(x) —v(W)llpa < llu(x) —u(y)llga for any (x,y) € K X K, then

ve (D%2)™ and
I/p
((/Kwdr’;<uk>) )

]’),LX)
1/p
( / wdr’;<w>)
K
(b) Fo.r any up,u,v € Z)’;jfo and any Borel measurable function ¢ : K — [0, o)
with |||y < oo,

na nj

< (4.19)

I=1ll¢a2 k=1ll¢ga

‘/Kwdr’;<u1;u>—/Kwdr§<uz;v>

(p-2* (p-DAl
drk (u;
oy, v >]

( /K W dUy (uy — u2>)

where C), is the constant in Theorem@

( / wdr’,‘,<v>)",

(4.20)

<C,

Proof. Throughout this proof, we fix ¢ € C.(K). We first show @.17) in the case
u = v. Define
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1240 = [ 1) = SO e ma(drdy) forn € Nand £ € DL,
X
Fix {ug}ren C Bk N Cp(K) satisfying limy e ||u — Mk”Bk = 0. We easily
have |72 (u)!/? —I"<uk>1/p| < IMu—u)'r < clp ||(,0||5up K —u)''p,

where C € (0, oo) 1s the constant in (3.8). By @.10) and Prop0s1t10n R3}(D) for
(fx edlh (), Z) b, we see that for any n, k € N,

1/p
|( /K ¢dr’;<u>) Iy

1/p 1/p
<[ [ earsw) - ([ partom)

+|zz e - 1z )|

+

1/p
( /| sodr,’;<uk>) I )P

I/p
< (1+CYP) |lglldF &K (u — ug) 1P + (/ sodr;;<uk>) — I ).
K

Since limy, e |(fK (pdl"’;(uk»l/p _ I(;’(uk)l/l’) = 0by (#2) and k € N is arbitrary,

we conclude that limy, e I (u) = Jx e dr‘ﬁ (u).
Next we consider the general case u # v. By Proposition[2.4]and the convexity of
1+ I/(u+tv),forany r € (0,1) and any n € N,

LIy (u+tv)y = 17 (u)
t

L1y (u+tv)y = 17 (u)

d
- ”90||sup Ot(bt;l)) < gf,;l@t-f-.?l)) <

s=0 !

bl

421

where O, (u;0) = Cp . vt(p DAG for some constant Cp, , , € (0, o) which depends
only on p, 8’13 (u) and 8" (v). Now we obtain (@.17) by noting that

d
a]g(u + sv)

=/ Yp (u(x) —u(0)) (0(x) = v(y)@(x) my (dxdy)
KxK

s=0

and letting first n — co in (.21)) and then 7 | 0 by using (#.13). The equality (4.18)
can be shown similarly by considering

) = [ 100 = SO e m )
KxK
instead of Zj(f) in the above arguments.

Lastly, let us show [(a)] and@

a) By Theoremté’k , byisa p-energy form on (K, m) satisfying| (GC) ,,l
For each [ € {1,...,ny}, by the argument in [27, Proof of Corollary 2.4-(c)],
we can find a 1- Lipschitz map T;: (R™, ||+ |l;1) — R satisfying Tl(O) = 0 and
T;(u(x)) = vy(x) for any x € K. By applying L we have v; € Z) b and hence
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ve (Z)Ilﬁj’;)"z. Then the inequality @.19) in the case ¢ € C.(K) is immediate from
@T17), and we can further extend (@.19) to general ¢ in exactly the same way as the
second paragraph of the proof of Theorem §.5]

The estimate (.20) in the case ¢ € C.(K) is immediate from @17). We can
easily extend it to the desired case since C.(K) is dense in L'(K, u) for the finite
Borel measure p on K given by

= |08 o) + [T Gugs )| + T Gy ) + T (ua) + T uy — ) + T (0). O

The next theorem states the chain rule for our p-energy measures.

Theorem 4.9 (Chain rule) Let n € N, u € BX 0 Cp(K), v = (v1,...,00) €
(B’;),oo N Cp(K))", @ € C'(R), ¥ € C'(R") and suppose that ®(0) = ¥(0) = 0.
Then ®©(u), ¥ (v) € B’;,w N Cp(K) and

AT (D (u); ¥ (v)) = Z Yp (@ (1)) 0¥ (v) dT¥ (us vr). (4.22)
k=1

Proof. Tt is immediate from Theorem (see also Proposition 2.3[{(2)) that
D(u), ¥(v) € B’;,’oo N Cp(K). Note that

dp = d (@) W (@) + Y |y (@ () 9e¥ ()] @ [T s )|
k=1
defines a finite Borel measure u on K by (#.16). Since C..(K) is dense in L' (K, p),
it suffices to prove that for any ¢ € C.(K),

[ earb@w:w@) =Y [ orp(@ w)aew drbw).
K ~ Jk

Let ¢ € C.(K) and define F,, € B(K X K), n € N, by
F, ={(x,y) e KxK | d(x,y) <6(rn), ¢(x) # 0}.

Note that F_nKXK is a compact subset of K X K for sufficiently large n € N since
¢ € C.(K), lim, 0 8(r,) = 0 and (K, d) is locally compact. Set

ap = / Yp (@u(x) — @(u(v))) (¥ (0(x)) = P()¢(x) my(dxdy)

Fn

and

by = /F Yp (@' ((x))) 0¥ (0(x)yp (u(x)—u(y)) (0(x)=0(y)) (x) my (dxdy).
k=17 Fn
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By Theorem and (3.6), it suffices to show lim,_,c |a, — b,| = 0. To estimate
la, — b,|, we introduce

cp = /F Yp (@ (u(x)) - ¥p (u(x) —u(y)) (0(x) = v(y))p(x) my(dxdy).
We will show that lim,,_, |a, — ¢,| = lim, . |b, — ¢, = 0. Note that

D(u(y)) - @(u(x)) = [u(y) = u() [ (@ (u(x) + equ(x, ),

where we set e, (x,y) = fol [® (u(x) +1(u(y) —u(x))) = (u(x))] dt. Lete > 0.
Since @’ is continuous, |[u||s,, < oo and u is uniformly continuous on F}, for large
enoughn € N, we can find Ny € Nso that \eq),u(x, y)| < gforany (x,y) € Uysn, Fa-
By Lemma there exists Cp, € (0, c0) depending only on p such that for any
n > Npand (x,y) € Upsn, Fus

[p (@) = D)) = 7p (@ () - vp (ux) = u(y))|
< CpeP M A0, y) P u(x) — u(y)[PTIN

where A0 (x,y) = |@(u(y)) = P(u(x))| V [®' (u(x))(u(y) — u(x))|. By Hélder’s
inequality, we have

sup |a, — ¢yl
n>N

_ (p_2)+ -1 1
< Cpe PN | Coll0ll gy +lullgg )| Ml Ml

where Co ,, = 1+”q),Hsup,[—Ilullsup,llul\sul,]‘ In particular, we getlim,, .« |a, — c,| = 0.

Similarly, we can find N> € N so that for any (x, y) € U, N, Fus

(F(o(x)) —P((y) - Z Y (0(x)) (0(x) —v(y))

k=1

< elo(x) —o(y)].

Then we easily see that

_ < (I)/ p-1 p-1 )
Sup 1bn = cnl < & NPy 1 peltpr 10 Mol
whence lim,,_, |6y, — cu| = 0. ]

The following image density property of p-energy measures is a consequence of
the chain rule. We note that the proof below does not rely on specific representations

of T¥ like and @17).

Theorem 4.10 (Image density property) For any u € B’[‘,’oo N Cp(K), the Borel
measure F’I‘, (u)ou=" onR defined by Ff, (uyou='(A) = F’;, W)(u='(A)), A € B(R),
is absolutely continuous with respect to the 1-dimensional Lebesgue measure on R.
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Proof. This is proved, on the basis of Theorem 4.9} in exactly the same way as [43]
Proposition 7.6], which is a simple adaptation of [[L1, Theorem 4.3.8], but we present
the details because in [43] the underlying topological space K is assumed to be a
generalized Sierpiniski carpet, a self-similar compact set in the Euclidean space. It
suffices to prove that F’; (uyou ' (F) =0foranyu € B’I‘,,m NCp(K) and any compact
subset F of R such that £ (F) = 0, where .#! denotes the 1-dimensional Lebesgue
measure on R. Let {¢, }nen € Ce(R) satisfy |@,| < 1, limy—e0 ¢, (x) = 1p(x) for
any x € R and

o0 0
/ on(t) dt = / on(t)dt =0 foranyn e N.
O _

(o)

We define @,,(x) := fox wn(t)dt, x € R, and u,, := ®, o u for any n € N. Then we
easily see that ®, € C'(R) N C.(R), ®,(0) =0, and @/, = ¢,, for any n € N. Also,
u, converges to 0 in LP (K, m) as n — co by the dominated convergence theorem.

By Proposition , we deduce that {u, },cn is bounded in Bf,,w Since B’;;,m is

reflexive by Theorem [3.6| and B’,‘,’m is continuously embedded in L? (K, m), there
exists a subsequence {uy, } ke weakly converging to 0 in B’I‘,,m. By Mazur’s lemma,

there exist N(/) € N and {al,k}kN:(l” C [0,1] with N(I) > [ and ZkN:(ll) ajr =1 for

each [ € N such that Zsz(ll) ap xUn, converges to 0 in B’]‘,,w as [ — oo. Let us define
¥, € C'(R) by ¥ = XM a; 4@y, Then ¥;(0) = 0, ¥ — 15 and, by Fatou’s
lemma, Theorem 4.9]and Proposition[4.7]

¥ (uy o u™ (F) :Alli%|wg(t)|P (M6 Gy o u™") (dr)

< liminf /K %] (u(x))|” T% (u) (dx)

= lim inf T (W) (1)) (K) = 1ilrgglfa’; (¥;(u)) =0,

which completes the proof. O

Now we can obtain the strongest possible forms of the strong locality of Ff,( -5
as in the following theorem, which is an easy consequence of Theorem .10} the
triangle inequality for F’I‘,( Y!/P and @.14); see [27, Theorem 4.17] for a proof.

Theorem 4.11 (Strong locality of p-energy measures) Let u,u,uz,v € B’;,m N
Cp(K), a,ay,az,b € Rand A € B(K).

(@ IfA Cu'(a), then F;‘,{u)(A) =0.
(b) IfAC (u—v)"'(a), then F;‘, u)(A) = F’I;(v)(A).
() IfAC ul_l(al) v Mz_l((lz), then

T Gy + 1y + ) (A) + Th () (A) = T8 (uy + 0)(A) + Th (uz +0)(A),  (4.23)
[ (1 +u2:0)(A) = Ty (un:0) (A) + Tp(uai0)(A). (4.24)
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(d) IfAC (uy —uz)~'(a) Uv'(b), then
[ (u1i0)(A) = Th(u2i0)(A)  and  Ty(viun)(A) = Tp(viua)(A). (4.25)
Using Theorem [.T1] we can extend Proposition 4.7 as follows.
Corollary 4.12 Letu,v € Z)’;jl;. If{u, v}ﬁZ)’;jio # 0, then r’;<u; v)(K) = 8’;(14; V).

Proof. Similar to the proof of Proposotion it suffices to consider the case
u,v € B’I‘,,m N Cp(K) with {u,v} N Bl;;,oo NC.(K) # 0. Let f,g € {u,v} satisfy
{f.g} = {u,v} and f € B’l‘;,w N C¢(K). Similar to the proof of Proposition ,
we can find an open neighborhood U of the compact subset suppg [ f] of K and
p € B’]‘,’Do N C.(K) sothat 0 < ¢ < 1 and ¢(x) = 1 for any x € U. Then

suppg [ f] N suppg [g(¢ — 1k)] = 0, so we have

&y(fige) iff=u,
L —
Epl1i0) = {a&g% fooifr=o

by Theorem and

Tp(f80)(K)  if f=u,
K (g Y(K)  if f=u,

by Theorem , Since f,gp € B’;,’oo N C.(K), we obtain Ff,(u;v)(K) =

k . e ¥
&, (u;v) by Proposition O

I (s 0)(K) = {

S p-Energy forms on p-conductively homogeneous spaces

In this section, we verify for the family of kernels k = k57 defined by
(3:26) and (3.27) on p-conductively homogeneous compact metric spaces equipped
with Ahlfors regular measures. We also show some estimates on localized versions
of Korevaar—Schoen p-energy forms, and construct, on the basis of Korevaar—Schoen
p-energy forms, self-similar p-energy forms on p-conductively homogeneous self-
similar sets as well. We refer to [33, Sections 4.3—4.6] for many concrete examples
covered by this framework.

5.1 p-Conductively homogeneous spaces

Les us recall the notation and terminology in [32}[33]] by following [27, Section 8.1].
We fix a locally finite (non-directed) infinite tree (7', E7) in the usual sense (see [33}
Definition 2.1] for example), and fix a root ¢ € T of T. (Here T is the set of vertices
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and E7 is the set of edges.) For any w € T \ {¢}, we use ¢w to denote the unique
simple path in 7 from ¢ to w.

Definition 5.1 ([33}, Definition 2.2])
(1) Forw e T,definen: T — T by

{wnl if w# ¢ and gw = (wy, ..., w,),
m(w) = .
1) ifw=¢.

Set S(w) := {v e T | n(v) = w} \ {w}. Moreover, for k € N, we define S¥(w)
inductively as
stwy = | st
veS(w)
For A C T, define SK(A) = Upea SK(A).
(2) For w € T and n € N U {0}, define |w| := min{n > 0 | 7" (w) = ¢} and
T, ={weT]||w|=n}
(3) Define X = {(wn)n>0 | wn € Ty and w;, = 7(wy41) foralln € NU {0}}. For

w = (Wp)n>o € Z, we write [w], for w, € T,. For w € T, define ¥, =
{(wn)nz0 € | W)y =w}. For A C T, define X4 = Uyea Zu-

We introduce a partition parametrized by a rooted tree (see [32, Definition 2.2.1]
and [42] Lemma 3.6]).

Definition 5.2 (Partition parametrized by a tree) Let K be a compact metrizable
topological space without isolated points. A family of non-empty compact subsets
{Ky}wer of K is called a partition of K parametrized by the rooted tree (T, ET, ¢)
if and only if it satisfies the following conditions:
(P1) Ky = K and for any w € T, #K,, > 2 and Ky = Upes () Ko-
(P2) Forany w € %, (0 K[w)],, 15 a single point.

In the rest of this section, we fix a compact metrizable topological space without
isolated points K, a locally finite rooted tree (7, ET, ¢) satisfying#{v € T | {v, w} €
Er} > 2forany w € T, a partition {K,, },er parametrized by (T, E7, ¢), a metric d

on K with diam(K, d) = 1, and a Borel probability measure m on K. In the following
definition, we collect some basic pieces of the notation used in [32} 33].

Definition 5.3 Forn € NU {0} and A C T,,, define
E; = {{v,w} | v,weT,,v+w,K,NK, # 0},

and E;(A) = {{v,w} e E; | v, W € A}. Let d,, be the graph distance of (T, E},).
For M € NU {0}, w € T, and x € K, define

ITy(w) ={veT,|d,(v,w) <M} and Upy(x;n) = U U K,.

weT,;:xeKy, velpy (w)
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To state geometric assumptions in [33]], we need the following definition (see [32}
Definitions 2.2.1 and 3.1.15].)

Definition 5.4 (1) The partition {Ky, } 7 is said to be minimal if and only if K, \
Uvetiy\{wy # @ foranyw € T.
(2) The partition { Ky, }yer is said to be uniformly finite if and only if sup,, . #I'1 (w) <

0o.
We also use the following notation for simplicity.
Definition 5.5 Forn € NU{0} and U C K, define7,,[U] = {w € T, | K,NU # 0}.

Now we describe basic geometric conditions in [33]. The conditions @], @] and
(5.6) in[(3)] below are important to follow the rest of this paper.

Assumption 5.6 ([33, Assumption 2.15]) Let (K,O) be a connected compact
metrizable space, {Ky}yer @ partition parametrized by the rooted tree (7, ¢), d
a metric on K that is compatible with the topology O and diam(K,d) = 1 and m a
Borel probability measure on K. There exist M, € N and r, € (0, 1) such that the
following conditions (1)—(5) hold.

(1) K is connected for any w € T, {Ky }per is minimal and uniformly finite, and
inf,,,>0 minge7;,, #S(w) > 2.

(2) There exist c; > 0,i € {1,...,5}, such that the following conditions (2A)—(2C)
are true.

(2A) Foranyw €T,
el < diam(Ky, d) < cor!™. 5.1

(2B) Foranyn e Nand x € K,
Ba(x, c3rl) € Upy, (x;n) € Ba(x, car?). (5.2)
(2C) For any n € N and w € T,,, there exists x € K, satisfying
Ky, 2 By(x,csrl). (5.3)
(3) There exist m; € N, y; € (0,1) and y € (0, 1) such that
m(Ky) = ym(Ky)) foranyweT, (5.4)

and
m(Ky) < yym(K,) foranyw €T andv € S"™ (w). (5.5)

Furthermore, m is volume doubling with respect to d and

m(Ky) = Z m(K,) foranyw e T. (5.6)
veS(w)

(4) There exists My > M, such that for any w € T, k > 1 and any v € S¥(w),
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th ist | < Mo and (vp, ..., Sk (w)l+!
Ty, (0)nS* () € {U, €Ty ere exist [ < My and (v v) € S¥(w) }

such that (vj_1,v;) € E\*u| forany j € {1,...,1}

(5) Forany w € T, n(T'pz,+1(w)) € Ty, (m(w)).

Note that if a Borel probability measure m on K satisfies (5.6)), then we have
m(K,NK,) =0 foranyov,w € T withv # w and |v| = |w|; (5.7)

see [27, Proposition 8.7] for a proof of this fact.

Next we introduce conductance, neighbor disparity constants and the notion of
p-conductive homogeneity in Definitions[5.9}[5.7/and [5.10] We also recall the notion
of a covering system in Definition [5.8] which is used in the definition of neighbor
disparity constants. See [33| Sections 2.2, 2.3 and 3.3] for further details on these
topics. In the rest of this section, we fix p € (1, o) unless otherwise stated. We will
state some definitions and statements below for any p € [1, c0), but on each such
occasion we will explicitly declare that we let p € [1, c0).

Definition 5.7 ([33, Definitions 2.17 and 3.4]) Let p € [1,00), n € N U {0} and
AcCT,.
(1) Define €7 ,: RA — [0, o) by

Eralf = > Ifw-foI", fer:
{u,v}eE; (A)
We write &7, (f) for SZ’Tn (f).
(2) For Ag,A; C A, define cap;’7 (Ag, A3 A) by

caply (Ao, Ai; A) = inf{& ,(f) | f € R, fla, =ifori € {0,1}}.
(3) (Conductance constant) For Aj, A € A and k € N U {0}, define

Ep k(A1, Az, A) = cap™ (S¥ (A1), $*(A2); S*(4)).

For M € N, define Epr,p i = SUpyer Ep.k ({W}, Tiw) \ Tar (w), Tjyy))-

Definition 5.8 ([33, Definitions 2.26-(3) and 2.29]) Let Ny, Ng € N.

(1) Let n € NU {0} and A C T,. A collection {G,v}l’f:1 with G; C T, is called
a covering of (A, E;;(A)) with covering numbers (Nt, Ng) if and only if A =
Uf.;l Gy, maxyea #{i | x € G;} < Nt and for any (u,v) € E;;(A), there exists
[ < Ng and {w(1),...,w(l+ 1)} € A such that w(1) = u, w(l + 1) = v and
(w(i), w(i + 1)) € Us_, E;(G)) forany i € {1,...,1}.

(2) Let # € Unpenuqoy{A | A € T,}. The collection ¢ is called a covering
system with covering number (N1, Ng) if and only if the following conditions
are satisfied:

@) SUPpc #A < oo.
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(i) Foranyw € T and k € N, there exists a finite subset 4" C _# NT|,|+« such
that .4 is a covering of (Sk(w) E‘w|+k(Sk(w))) with covering numbers
(N7, NE).

(iii) Forany G € _# and k € NU{0},if G C T,,, then there exists a finite subset
N C _# Ny such that 4 is a covering of (S¥(G), E*+k(Sk(G))) with
covering numbers (N7, Ng).

The collection _# is simply said to be a covering system if # is a covering

system with covering numbers (N7, Ng) for some (N7, Ng) € N2,

Definition 5.9 ([33, Definitions 2.26 and 2.29]) Let p € [1,0),n € Nand A C T,,.
(1) Fork e NU {0} and f: T,,4x — R, define P, f: T,, » R by

(Pof)(w) = D, fmK,), weT,

veSk (w)

1
Zvesk(w) m(Ky)

(Note that P, i f depends on the measure m.)
(2) (Neighbor disparity constant) For £k € N U {0}, define

Sz A(Pn kf)
opi(A) = sup o
riska—r E0YG 0 ()

(3) Let # € U,u»0{A | A C T,} be a covering system. Define

o =max{op i (A)|A€ FLACT,} and o = sup o) .
neNU{0}

Definition 5.10 ([33, Definition 3.4]) Let p € [1, ). The compact metric space K
(with a partition {Ky,}yer and a measure m) is said to be p-conductively homoge-
neous if and only if there exists a covering system _¢ such that

sup o-kaM*,,,,k < 0o, (5.8)
kenu{o} 7

Theorem 5.11 (A part of [33, Theorem 3.30]) Let p € [1,0) and suppose
that Assumption holds. If K is p-conductively homogeneous, then there exist
c1,¢2,0p € (0,00) and a covering system _# such that for any k € N U {0},
s

<a' k<cza'

K (5.9)

ok < Em.pk < cza'_k and clo'

€10y p p

The following weak monotonicity is a key consequence of the p-conductive
homogeneity.

Lemma 5.12 (Weak monotonicity) Let p € [1, o) and suppose that Assumption
holds. If K is p-conductively homogeneous, then there exists C € (0, co0) such
that for any k,1 € N, any A C Ty and any f € L' (K, m),

Ty 8y A(Prf) < Cap &N | (Pratf), (5.10)
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where o, is the constant in (5.9).
Proof. This follows immediately by combining [33] Lemma 2.27] and (5.9). O
We also recall the “Sobolev space” ‘WP introduced in [33] Lemma 3.13].

Definition 5.13 Let p € [1, o). Suppose that Assumption [5.6| holds and that K is
p-conductively homogeneous. Let o, be the constant in (5.9).

(1) Forn e NU{0},w € T;,, E € B(K) with E D K, and f € L'(E,m|g), define
P,f(w) = wafdm.
(2) We define N),: L? (K, m) — [0, c0] and WP C LP (K, m) by

1/p
Np(f) 1=( sup 0,','87,(Pnf)) . feLP(K,m),
neNU{0}

WP = {f e LP(K,m) | Np(f) < oo}.

Note that NV, (f) = 0 if and only if f is constant on K (see [27, Section 8.1] for
details). We also equip “W? with the norm || - ||4y» defined by

1/
1 llawe = (11050 gy + Np (D7) F WP,

(3) Forn e NU{0}, A C T, E € B(K) with E 2 e Kw and f € L' (E, m|g),
we define _
E" () = ahE" \(Puf).

We also set &7 (f) = é; 7. (f) for f € L'(K,m).
Now we can introduce a framework to construct a p-resistance form on K.

Assumption 5.14 Let (K, d, {Ky}wer,m) satisfy Assumption In addition,
(K, d,{Ky}wer,m, p) satisfies the following conditions:

(1) The measure m is Ahlfors regular with respect to d. (Recall (3.21).)
(2) K is p-conductively homogeneous.
(3) o) > 1, where o, is the constant in (5.9).

Remark 5.15 (1) By [32, Theorem 4.6.9], Assumption is equivalent to
p > dimarc (K, d), where dimagrc (K, d) denotes the Ahlfors regular conformal
dimension of (K, d). (See, e.g., [33} (1.1)] for the definition of dimarc (K, d).)

(2) It is highly non-trivial in general to verify that a given compact metric space
K is p-conductively homogeneous. In [33] Sections 4.3—4.6] and [34], the p-
conductive homogeneity for p > dimarc(K, d) has been proved for various
large classes of self-similar sets K in R” equipped with the Euclidean metric d.

In the following theorem, we recall a fundamental result on “WP.



40 Naotaka Kajino and Ryosuke Shimizu

Theorem 5.16 ([33, Lemmas 3.16, 3.19, 3.24 and Theorem 3.22], [27, Theorem
8.16]) Let p € [1, ). Suppose that (K, d, {Ky}wer, m) satisfies Assumption[5.6land
that K is p-conductively homogeneous. Then WP equipped with the norm || - ||y is
a Banach space. If p > 1, then WP is reflexive and separable. If p > dimagrc (K, d),
or equivalently o, > 1, then WP C C(K) and WP is dense in (C(K), || - [|up)-

Let us introduce an important exponent, which we call the p-walk dimension, to
describe the main result in this section.

Definition 5.17 Suppose that Assumption [5.6 holds, that m is Ahlfors regular and
that K is p-conductively homogeneous. Let . € (0, 1) be the constant in (3.1)), let
op be the constant in (5.9) and let d; be the Hausdorff dimension of (K, d). Define

5.11)

We call dy, ,, the p-walk dimension of (K, d, {Ky}wer, m).

The next proposition states a suitable capacity upper bound in this framework.

Proposition 5.18 ([27, Proposition 8.21]) Suppose that (K, d,{Ky}wer, m, p) sat-
isfies Assumption Then there exists C € (0,c0) such that for any (x,s) €
K x (0,1],

inf{Np(f)P ) f € WP, flpa(xs) = Lsuppg [ f] € Ba(x, 2s>} < Cshimdvr,
(5.12)

We also consider the following setting to deal with the case p < dimarc(K, d).

Assumption 5.19 Let (K, d, {Ky}wer,m) satisfy Assumption In addition,
(K, d,{Ky}wer,m, p) satisfies the following conditions:

(1) The measure m is Ahlfors regular with respect to d.
(2) K is p-conductively homogeneous.
(3) There exists C € (0, o0) such that for any (x, s) € K x (0, 1],

inf{Np ()7 | £ € WP 0 CEK), Fliyce) = 1 suppi [f] € Ba(x.29)]
< Csh=dwp (5.13)

Note that Assumption implies Assumption by Proposition
The same argument as in [39, Lemma 6.26] yields a good partition of unity under

Assumption as given in Lemma and thus we obtain the regularity of ‘W?
in Corollary [5.21]

Lemma 5.20 Suppose that Assumption holds. Let & € (0,1) and let V be a
maximal e-net of (K, d). Then there exists a family of functions {\, } ,cv that satisfies
the following properties:

(l) ZzeV lpZ = 1
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() ¢z € WP NC(K), 0 < ¢y < 1, Yzlpy(z,e/4) = 1 and suppg[y:] C
Bu(z,5¢/4) forany z € V.

(iii) IfZ eVandz €V \ {Z}, then wZ"Bd(z,s/él) =0.
(iv)  There exists C € (0, 00) such that N, (y)P < Ce%=dr foranyz € V.

Corollary 5.21 Suppose that Assumption[5.19holds. Then WP N C(K) is dense in
(CK), 1+ Nlsup)-

5.2 Localized energy estimates

In this subsection, we show localized energy estimates on Korevaar—Schoen p-energy
forms, which will imply with the family of kernels k*7 (recall (3.26)) and
the equality s, = dy ,/p. Estimates in this subsection are very similar to [39] Section
7] although the setting of “partitions” in [39] is slightly different from ours.

We start with the following lemma giving a Poincaré-type estimate.

Lemma 5.22 ([27, Lemma 8.22]) Suppose that Assumption holds. Then there
exists a constant C € (0, 00) such that for any f € LP(K,m) and any w € T,

/ £ (o) = fic|” m(dx) < Crl"1 e hmmfa"*S'l,:"(w)( ). (5.14)

w

The next proposition shows an upper bound on localized Korevaar—Schoen energy
functionals.

Proposition 5.23 Suppose that Assumption[5.19holds. Then there exists C € (0, o)

—K
such that for any E € B(K), any open neighborhood E' of E and any f €
Lp(El’mlE’)’

limsup/]i( )If(x) de;(y)P” m(dy)m(dx)

rl0 r
< CllmsupllmmePT [(E)dr](f) (5.15)

rlo n—eo

Furthermore, with C € (0, %) the same as in (5.19), for any f € LP (K, m),

P
sup/ 7[ 1) = TP e SO ayym(ax) < N, (). (5.16)
r>0 Bgy(x,r) revsp

Proof. Letr, € (0,1) and M, € N be the constants in Assumption [5.6} Let r > 0
and choose n(r) € N satisfying c3r, nHl < cary n(r) , where c3 is the constant
in (3.2). Then, for any w € T,y and x € K,,, we have Bd(x, r) C Upy, (x;n(r)) €

Upr,+1(w). Let f € LP(E’,m|g/), where E’ is an open neighborhood of EX. Set
¢ = (M. +2)ca(czr.)™! € (0,00), where c; is the constant in (5.1). Then, by
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1), Uwet) [E] SK(Tpr41(w)) € Tisn(r)[(E)d,cr] for any k € N and there exists
ro € (0, c0) such that (E)g,cr € E’ for any r € (0,rp). By using | f(x) — f(y)|P <

|f(x) - fk, b Py ‘fKU - wa|p and Lemma we see that for any
r € (0, rp),
_ P
[f  UDTOP
By(x.,r) revsp
- P
< Z / / If(x)rdwi(y)l m(dy)ym(dy)

weTy, () [E].veln, 41 (w)

ok ok
S lim inf & *;'f?) () +liminf & +§'§f L)( f))

wETn(r) [E]sUEFM*-H (w) (

+ Z oy | f, = fral”

weT, () [E],veln, 41 (w)

Y 11m1nf8§+;§gw(w))(f)+ > e (f). (517

k—o0 P.Tar, 41 (w)
weTn(,,) [E] weT,,(r) [E]

Since the partition {Ky, }yer is uniformly finite, we have

Sk+n(r) S sn+n(r)
11]11llol;lf Sp S’”(FM*H(w))(f) < 11]?llg.}f Z Sp,Sk (FM*+1(LU))(f)
WETn(r) [EJ WETn(r)[ J
<l1]£rl>10r01f8 (E)d”](f) (5.18)

We also have from Lemma[5.12] that

=n(r) gnr) o
Z & laa @) ) SE, 7 1)y ) SUMINEES 71y ()
‘UETn(r)[E]

(5.19)
By (3.17), (5.18)) and (5.19), there exists C € (0, oo) (depending only on the constants
associated with Assumption 5.6 such that for any r € (0, rg),

r

P
/ ][ ) - FOI” L 07 FOV  dyym(dr) < Climinf & 1), () (5:20)
By (x,r) w.p d.c
whence we obtain (5.15) by letting | 0 in (5.20). If f € L”(K,m), then we have
(3-16) by letting E := K in (3.20). o

Before proving inequalities in the converse direction matching (5.13) and (5.16),
let us introduce a localized version of ‘W7,

Definition 5.24 Let U be a non-empty open subset of K. We define a linear subspace
WE(U) of LO(U, m|u) by

WP (U) = {f e L°(U,m|y)

f = f*m-ae.onV for some f* € WP for
each relatively compact open subset V of U |
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The following lower bound on localized Korevaar—Schoen energy functionals can
be shown in a similar way as [6, Theorem 5.2].

Proposition 5.25 Suppose that Assumption[3.19\holds. Then there exists C € (0, o)
such that for any E C K, any open neighborhood E’ of EK and any u € 10C(E ),

. = o |u(x) —u()I”
limsup &" (u) < Climlim 1nf/ ][ ——————— m(dy)m(dx).
Nesco p.TnlE] 510 E)as J Ba(x,r) dw,p

rl0 r
(5.21)
Furthermore, with C € (0, ) the same as in (3.21), for any f € LP (K, m),
- p
Np(f)P < Climinf/ ][ Mm(dy)m(dx). (5.22)
rlo d(-x r) revep

Proof. Letr € (0, 1), let N, be a maximal r-net of (K, d), and let {¢; , }.en, be a
partition of unity as given in Lemma [5.20] Define A, : L”(K,m) —» WP N C(K)
by A, f = Y.en, fBa(zr/)Wzr for f € LP(K,m). Then we can easily see that
lim, o ”Arf - f”LP(K,m) = 0 and Sup,~o ”Ar“LP(K,m)—)LP(K,m) < oo. For any
large n € N so that 4cor! < r, where ¢; is the constant in (3.1)), a similar argument
asin [39, Lemma 7.4] shows that there exists C; > 0 depending only on the constants
associated with Assumption[5.6]such that

g;l’»Tn[Bd(z 5r/4)] (Arf)
p
=¢ / ][ eo = FOIE A, 7O m(dy)m(dx). (5.23)
By(w,3r) J Bg(x,97) W,D

weN, de(z 11r/4) r

Let us fix 6 > 0 and define N, (E) := {z € N, | EN By(z,r) # 0}. Then, for any
small enough r > 0 so that r < §/7, we have E C |, cn, (g) Ba(z,5r/4) and

g U Baw.3r) € (B)as,
ze€N, (E) weN,NBy(z,11r/4)

whence we see that for any f € LP (K, m),
&y 11£1(Arf)
Y & nisatesran(Arh)

ZEN, (E)

(SRk) 1f &) = fODI”
=G Z /Bd(w 3r) ﬁd(x 9r)  de P m(dy)m(dX)

z€N, (E) weN, ﬂBd(Z 11r/4) "

/ / Y = SO 4 m(a, 524
(E)a,s / Ba(x,9r) wr

r
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where we used the metric doubling property of (K, d) in the last inequality. (Here,
we consider small enough r > 0 so that r < §/7 and large enough n € N so that
derrlt <rl)

To prove the desired estimate (5.21)) for u € (Wlf)’ .(E"), we fix a relatively compact

open subset V of E” and u* € WP satisfying V 2 E, u* € WP and u = u® m-a.e.
on V. Also, fix a sequence {rg }xen C (0, 00) such that rx | 0 as k — co and
d

dim T (| (E)as) = Himinfr=r Jp  (a | (Eas) < Np (i) < oo,

where Jp (g 1 A) = [y fg, (o) EOED n(dy)m(dy) for g € LP(K,m) and

A € B(K). Setuy := A, jou” for each k € N. By combining (5.24) with E = K and
(516), for all large k € N, we have

#0N _H P
Np(uk)p S/K]i( )Wl—u(y)'m(dy)m(dx) SNp(u#)p < o0, (5.25)

W, p
Tk

which implies that {uy }xen is bounded in ‘WP, Since ‘WP is reflexive by Theorem

we can assume that uy converges weakly in ‘WP to some function us, € WP

as k — oco. Since ‘WP is continuously embedded in L? (K, m), we have uq, = u®.

Hence, by Mazur’s lemma and (5.24)), we obtain

liisip T Ul = 13?3 “‘}ﬁ %nfr—dwj,,,,(u# | (E)a.s). (5.26)
Note that, by (5.1), Uyer, () Kw S V for all large enough n € N and (E)g,-+5 SV
for all small enough 6,7 € (0, ). For such n, 6 and r, we have gﬁ T [Ej(u#) =
EZ,T,L[E] (u) and Jp, , (u* | (E)a,s) = Jp.r(u| (E)a,s), whence we obtain (5.21).
We nextconsiderthecase E = K.Let f € LP (K, m) andsetJ, . (f) = Jp - (fIK)

for r > 0. Similar to the previous case, we assume that {ry }ren is a sequence of
positive numbers such that r; | 0 as k — oo and

kh—r}go rlzdw’p‘lp,rk (f) = HI;I}i%)nfr_dwyp‘]P,r(f) < o,

which together with (5.24) implies that {A,, 9 f}xen is a bounded sequence in
‘WP. A similar argument using Mazur’s lemma as in the previous paragraph yields

62, 0
5.3 Weak monotonicity and Poincaré inequality

Now we can prove the main theorem of this section, which verifies for the
family of kernels k = k*» defined by (3.26) and (3:27) for the first time in the setting
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of a p-conductively homogeneous compact metric space equipped with an Ahlfors
regular measure. This also solves a part of [33, Section 6.3, Problem 4].

Theorem 5.26 Suppose that (K, d,{Ky}wer, m, p) satisfies Assumption and
let sp, k = k*» and KS"? be as defined in Example Then sp, = dw p/p,
WP = KS"P, WP 0 C(K) is dense in WP, and(WM),, x| holds. Moreover, there
exists C € [1, o) such that

C™ ' supJk (f) S Np(f)P < Climl%)nfjf,’r( f) forany f € LP(K,m). (5.27)

r>0

Proof. By (5.16) and (5.22), we have WP = Bdw“’/ " and (B27). (Recall Example
for the definition of B, .) In particular, s, > dy,,/p. To show the opposite
inequality, let s > dy ,/p and let f € WP \ Rlg. (Note that ‘WP contains a
non-constant function by (3.12).) Let A,: LP(K,m) — WP N C(K) be the same
operator as in the proof of Proposition[5.23]for each r € (0, 1). Then, by (5.24) with
E =K,

sp

P
En (A, f)<c/ ]i( 9)|f(x) FO) m(dy)m(dx) (5.28)

for any n € N and r € (0, 1) with 4cor!" < r, where ¢ is the constant in (5.I) and
C > 0 is a constant independent of f, r, and n. As in the proof of [33, Theorem
3.21], let {8'” }ken be a I'-converging subsequence of {8" }nen and define 8 as its
I-limit. Since & p is lower semicontinuous with respect to the LP (K, m)-topology
(see [[13} Proposition 6.8]) and gp = Np ()P (see [33] pp. 45-46]), we see that

0<Ny(F)? < Ep(f) < liml%)nf Ep(Arf) < liml%)nfli;n inf & (A, f),

which together with (5.28) and lim, o r*-» =P = co implies that f ¢ B}, . Since
s > dy, p/p is arbitrary, we conclude that dy, ,/p > s,. In particular, we obtain

—  awr
WP = KS"P and (WM),, x} The inclusion ‘W? € WP N C(K) follows from
(5:23) and Mazur’s lemma, so we complete the proof. o

Corollary 5.27 Suppose that (K, d, {Ky}wer, m, p) satisfies Assumption[5.14} Then
any Korevaar-Schoen p-energy form (EXS, WP) on (K,d,m), which exists by
Theorems|[5.26|and[3.8|(recall Example[3.14), is a p-resistance form on K, and there
exist ag, a1 € (0, 00) such that for any such (81155, Wp),

apd (x, y) e =dr < RSES (x,y) < ard(x, )™= foranyx,y € K.  (5.29)

Proof. Define k := k* by (3.26) with s = dy,, ,/p. Then by Theorem[5.26] Proposi-
t10n|31g|and [6l Theorem 3.2], the assumptlons of Prop0s1t1on|T1_'3'|w1th df, dy,p in
place of O, B, hold under Assumptlon L SO (SKS “WP)is a p-resistance form on
K. The estimate (5.29) follows from the df -Ahlfors regularity of m and Proposition
B.13 O



46 Naotaka Kajino and Ryosuke Shimizu

We also have a Poincaré-type inequality in terms of the localized versions of
(&K, WP). (For the Vicsek set, such a Poincaré-type inequality was proved in [[7,
Corollary 4.2].)

Proposition 5.28 Suppose that (K, d,{Ky}wer,m, p) satisfies Assumption [5.19
Then there exist C € (0,00) and A € [1, o) such that for any (z,s) € K x (0, 1] and
any f € W (Ba(z, As)),

/ £ ) = faten P m(dy)
By(z,s)

p
< Cs® liminf / ][ /) df W)l m(dy)m(dx).  (5.30)
0 JBy(z.As) JBa(x.r) révp

Proof. Throughout this proof, M, € N and r, € (0, 1) are the same constants as in
Assumption[5.6] We assume that f € WP for simplicity. Let (z,s) € K x (0, 1] and
choose n € N satisfying 37" > s > c3r™*!, where c3 is the constant in (32). Let f €
LP(K,m)and setI'ys, (z;n) ={v €T | v e 'y, (w) for some w € T,, with z € K}
Then we see that

/ FO) = fons. e | m(dy)
Upm. (z;n)

< Y 1O - ol m@)

welpy, (z3n) ¥ 0w

<ort ( / 1FO) = fr|” m(dy>+m<Kw>|wa—fuM*um\")

welay, (zzn) 7 Kw

< Z ( Wth1nf8n+kk( )(f)+s ‘fK = fum., (zn)| ) (5.31)

wely, (z;n)

Since minyery,, (z:n) Jk, < fUps, (zzn) < MAXyely, (zin) fK,» for any w € Ty, (z3n)
there exists w’ € 'y, (z;n) \ {w} such that |f1<w = fum. (z;n)l < \fkw = [k,
together with Holder’s inequality yields that

H

|wa - fUM*(Z:n)|p S SZ,FzM*(w) (f) s hep=di hmmfngr.é{k(FzM*(w))(f)’ (532)

where we used (5.9) and [33] (2.17)] in the last inequality. Note that sup, . #'p (w) <
LM by (5.2) and the volume doubling property of m. This observation together with

(3:31)) and (3.32) implies that
| 10 = ool m@)
Um. (z:n)

dw o 14 1 on+ w ]
$ s7r lim inf Z & Sk (Pong () () S 5™ hm“‘fap Te[Ba(z.As2)] ()

—00
welp, (z;n)
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_ p
@ sdw,p hm lnf/ f M m(dy)m(dx)’
rl0 By(z,As) JBy(x,r) rewp

which yields (3.30) in the case f € ‘WP since

/ |f(y) - fUM*(x;n)|p m(dy) 2 /
Uwm, (z;n)

By(z,s

y |f(y) - de(z,s)ip m(dY)

The case f € W (By(x, A’s)), where A’ > A (set, e.g., A’ = 2A), is similar. O

5.4 Self-similar p-energy forms based on Korevaar-Schoen p-energy
forms

In this subsection, we construct a self-similar p-energy form by improving [33}
Theorem 4.6]. We need some preparations before constructing such a good self-
similar p-energy form. We first review basic notation and terminology on self-similar
structures. In particular, we recall the notion of a post-critically finite self-similar
structure introduced by Kigami [28]], which is mainly dealt with in the next section.
See [29, Section 1] and [30, Chapter 1] for further details. Throughout this section,
we fix a compact metrizable space K, a finite set § with #S > 2 and a continuous
injective map F;: K — K foreachi € §. We set L := (K, S, {F;}ics)-

Definition 5.29 (1) Let Wy := {0}, where 0 is an element called the empty word,
let W, = 8" ={w;...w, | w; € Sfori € {1,...,n}} for n € N and let
W. = Unenufoy Wa- For w € W,, the unique n € N U {0} with w € W, is
denoted by |w| and called the length of w.

(2) Weset 2 = SY = {wjwiws ... | w; € S fori € N}, which is always equipped
with the product topology of the discrete topology on S, and define the shift map
0: X > Xbyoc(wwiws...) = wwsws....Fori € S wedefineo;: XL — X
by o (Wiwrw3 . ..) = iwwrws . ... Forw = wwyws ... € Xandn € NU{0},
we write [w], = w] ...w, € W,.

(3) Forw=w; ...w, € W,,weset F, .= F, 0---0F,, (Fp =idk), Ky, = F,(K),
O = Oy, 0+ 00y, (0p =1ids) and Z,, = 0y (2).

4) Letw,v € W, w = wy ... Wy, vV = V1...0,,. We define wv € W, by wv =
W ... Wy U1 ...0p (WO :=w,0v :=v). We write w < vif and only if w = vt for
some 7 € W,.

(5) A finite subset A of W, is called a partition of X if and only if £, N X, = 0 for
any w,v € Awithw # vand X = J,ep Zu-

(6) Let Ay, Ay be partitions of X. We say that A; is a refinement of Ay, and write

A1 < Ay, if and only if for each w! € A there exists w? € A, such that w! < w?.

Definition 5.30 £ = (K, S, {F;}ies) is called a self-similar structure if and only if
there exists a continuous surjective map y : 2 — K such that F; o y = y o g; for any
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i € S. Note that such y, if it exists, is unique and satisfies {y (w)} = (N, en K[ w),, for
any w € X.

Definition 5.31 Let £ = (K, S, {F;};cs) be a self-similar structure.
(1) We define the critical set C ¢ and the post-critical set P r of L by

Cr=x"" (Ui,jes, izj Ki N Kj) and Pr=Uneno"(Cr).

L is called post-critically finite, p.-c.f. for short, if and only if P is a finite set.
(2) Weset Vo == x(Pr), Vi = Unew, Fuw(Vo) forn € Nand V. = U, enuqoy Va-

The set Vi should be considered as the “boundary” of the self-similar set K;
indeed, K, N K, = Fy,(Vp) N F,(Vy) for any w,v € W, with £, N X, = 0 by [29]
Proposition 1.3.5-(2)]. According to [29, Lemma 1.3.11], V,,_; € V,, forany n € N,
and V, is dense in K if V) # 0.

Definition 5.32 (Self-similar measure) Let £ = (K, S, {F;}ics) be a self-similar
structure and let (6;);cs € (0, 1) satisfy ;.5 6; = 1. A Borel probability measure
m on K is said to be a self-similar measure on L with weight (8;);cs if and only if
the following equality (of Borel measures on K) holds:

m= Z 0 (F).m. (5.33)

ieS

Next we introduce the notion of self-similarity for p-energy forms and p-
resistance forms.

Definition 5.33 (Self-similar p-energy/p-resistance form) Let £ = (K, S, {F; }ics)
be a self-similar structure and let m be a Radon measure on K with full topolog-
ical support. Let (pp s)ses € (0,0)5 and define pp = Pp.w, *** Pp.w, for each
w=w...w, €W,. A p-energy form (&E,,F,) on (K, m) (with ¥, € LP(K,m))
is called a self-similar p-energy form on (L, m) with weight (pp )ses if and only if
the following hold:

FpNC(K)={ueC(K)|uoFseF,foranys € S}, (5.34)
Ep(u) = pr,scﬁp(u o Fy) foranyu e #,NC(K). (5.35)
seS

If ¥, € C(K) and (&, F,,) is a p-resistance form on K satisfying (5.34)) and (5.35),
then (&, Fp) is called a self-similar p-resistance form on L with weight (pp_s)ses-

We will focus on self-similar structures having rationally related contraction
ratios as in [33]. In the next definition, we introduce a good partition parametrized
by a rooted tree.

Definition 5.34 ([33, Definition 4.2]) Let £ = (K, S, {F;}ics) be a self-similar
structure, let » € (0, 1) and let (jg)ses € RS. Define
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n
Jj(w) = iji and g(w) =r'™ forw=w...w, €W,.

i=1
Define w(w; -+ - wy) = wy - - wy—1 forw =wy ... w, € W, and

A= {w=wi - wy € We | g(T(w) > r > g(w)}.

Set T,ﬁr) = {(k,w) | w € Afk} and T = Urenugoy T]ir). Moreover, define
Erey ST xT0) by
Epo = {((k, 0), (k+1,w) e T x T | k e NU{0}, 0 =worv= ﬁ(w)}.

We introduce the following assumption in order to construct a self-similar p-
energy form on (£, m). (Recall that we have fixed p € (1, ).)

Assumption 5.35 Let £ = (K, S, {F;};cs) be aself-similar structure such that #S >
2 and K is connected. There exist 7, € (0,1), (js)ses € N° and a metric d giving
the original topology of K with diam(K, d) = 1 such that (K, d, {K,},c70v), M, P)
satisfies Assumption where df € (0, 00) is such that Y cg #is% = 1 and m is
the self-similar measure on K with weight (rf“"d‘c)sE s- (The collection {F;};cs is said
to have rationally related contraction ratios ({*)scs.)

Under Assumption [5.35] we have V # 0 since K is connected and #S > 2 (see
[29, Proposition 1.3.5-(3)] or [29, Theorem 1.6.2]). Also, we can easily show that
m is dp-Ahlfors regular as stated in the following proposition (see [33, Proposition
4.5)).

Proposition 5.36 Suppose that L is a self-similar structure and that there exist
re € (0,1), (s)ses € NS and a metric d giving the original topology of K with
diam(K, d) = 1 such that (K, d, {Ky} e, m) satisfies Assumption Let d; €
(0, 00) be such that Y ;s r{sd{ = 1 and let m be the self-similar measure on K with
weight (r*“df)ses. Then dy is the Hausdorff dimension of (K, d) and m is dg-Ahlfors
regular with respect to d.

To construct a self-similar p-energy form, we need to take care of the pre-self-
similarity condition (see [39, Theorem 8.12]). We can easily verify this condition in
the case o, > 1 by modifying (33, Proof of Theorem 4.6]; see [27, Section 8.2] for
details.

Proposition 5.37 Suppose that Assumption[5.33|holds and that o, > 1. Then (5.34)
with WP in place of ), holds and there exists C € [1, o0) such that for any n € N
and any u € WP C C(K),

c! Z O'}é(w)Np(uOFw)p SN,(w)P <C Z U}{(w)Np(uOFw)P.
weW, weW,

Now we can present an improvement of [33, Theorem 4.6] in the following
formulation.
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Theorem 5.38 Suppose that Assumption holds, that (5.34) with WP in place
of Fp holds, and that there exists Cy € [1,00) such that for any n € N and any
u e WP ncC(K),

Co' DL AN F)P < Ny < Co Y o Np(uwo Fu)P. (5.36)

weW, weWw,

For eachn € N, define k™ = (k™ },¢ by

1 & —iw) 214, (x,
K (xy) = Z Z yoiw) (@.wan’ N
=0

+1 dy, p+ds
n weWw; reep

where Ay, = {(x,y) € Ky x Ky | d(Fy'(x),F;'(y)) < r}. Then k™ is

asymptotically local, (WM),, x| holds, B’;,(';Z, = WP, and for any sequence
{(8’1‘,('1),(WP)}neN with (8’1‘,("),fWP) a k" -Korevaar-Schoen p-energy form on
(K, m) for each n € N, there exists a sequence {n;} jen € Nwithn; < nj, for any

J € N such that the following limit exists in [0, o) for any u € ‘WP:

EXS (u) = Jim 5" (u). (5.37)

Moreover, for any such {8;‘,(") Ynew and {n;} jen, the functional S’lfs WP — [0, )
defined by (3.37) satisfies the following properties:

(@) (EXS,WP) is a self-similar p-energy form on (L, m) with weight (o-}f)ses.
(b) Foranyu € WP,

(CCo) ™' Np(u)? < E53(u) < CCoNp (u)?, (5.38)

where C, Cy € [1, o) are the constants in (5.27) and in (5.36) respectively.

(©) (Sgs, WP) satisfies|(GC) | Furthermore, foranyu,v € ‘WP, {8’[‘,(nj) (u;0)}jen
is convergent in R and

EXS(us0) = lim "™ (us0). (5.39)

(d) Theorem with (Sgs, WP) in place of (E, B’I‘)’w) hold.
(e) For any isometric map T: (K,d) — (K, d) preserving m, uoT € WP and

Sgs(u oT) = Sﬁs(u)for any u € WP,
() If in addition o, > 1, then (EXS, WP) is a p-resistance form on K, and

there exist ag, a1 € (0, o) independent of particular choices of {8",‘,(") tnen and
{n;}jen such that

agd (x, y)r=dr < RS}§S (x,y) < ard(x, y)™r~%  foranyx,y € K. (5.40)
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Proof. Set k = {k,}r>0 by ky(x,y) = r=®r=d1g . (y). Recall that BY =
KS!? since pSp = dy_p and m is dp-Ahlfors regular (see Example Theorem
and Proposition . By using (5.2)), we can easily see that k) is asymptoti-
cally local. Let us show Note that for any > 0 and any u € LP (K, m),

we have
n
Jk (n) 1
P

r (u) =

Z oIk (o Fy), (5.41)

n+ 1 =0 weW;

where we used (F, X Fy,)"'(Ay,) = {(x,y) € K xK | d(x,y) < r} and
m = ri%(F,).m. By combining (54T), Theorem and (3:36), we obtain

(WM) , x| Moreover, for any n € N and any u € WP,
n)

(CCo) ' sup K" (u) < Ny (u)? < CCy nmi(r)lfjgfr (u), (5.42)
r>0 r—

where C,Cy € [1,c0) are the constants in (3.27) and in (5.36) respectively. In
particular, BK"™ = WP and {8’,‘7<") (u) }nen is bounded for each u € WP, Since ‘WP

p,oo
. )
is separable and 8’; "

that there exists {#;} jen € Nwithn; < nj, such that the limitlim;_, 8’,‘,<nj) (u) =
EXS(u) exists for any u € ‘WP From this definition, (5.42) and Theorem [3.8f{(b)|

we immediately see that (5.38) holds and that (EXS, WP) satisfies|(GC),,
Since we assume that ‘WP satisfies (5.34), it suffices to show the following
equality for any u € W?:

= Ny (-)? by (5.42), a standard diagonal argument implies

ggs (u) = Z 0',;“855 (u o Fy). (5.43)

seS

From Theorem [3.8] together with a diagonal argument, we can choose a sequence

{ri}1en € (0, 00) with limyo ry = O such that 8"’ () = limyeo JX'7" (1) for any
j € Nand any u € ‘WP. Using (5.41), we easily see that for any (j, /) € N? and any
ue€lLP(K,m),

1 (nj)

js k") k
Do wo By + —— Ik ()
= n;+ 1
(nj) ; ()
= J’;,’rz (u) + Z o'z,(w)Jf,’nj (no Fy).

ni+1
J wEan+1

Letting [ — oo and j — oo, we obtain (5.43)) by (5.42)) and (5.36).
Similar to the proof of (3.9), by using Proposition 2.4 and the convexity of

1 8’;07) (u + tv), we can prove (5.39).
This is clear from Theorem(c) for (8’;,(") , WP) and (3.39).

IfT: (K,d) — (K,d) is an isometric map preserving m, then for any n € N,
b

k™ is clearly T-invariant, and hence by Theorem ) and B'l‘,(;z, = WP we have
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uoT € WP and 8’;,(") (uoT) = Sf,(") (u) for any u € ‘WP, which together with
(5-37) implies that Sgs(u oT) = ggs (u) for any ue WP,

In the case o, > 1, we easily see that (EXS, WP) is a p-resistance form
on K satisfying (5.40) by combining Proposition 3.13] d¢-Ahlfors regularity of m,
dy,p > di by 0, > 1, Theorem[5.16] Proposition[5.18|and [33] Lemma 3.34]. O

We collect properties of the p-energy measures associated with (SES, WP) in
the following theorem. See also [27, Sections 4 and 5] for other basic properties. Let
us emphasize that we do not know whether Theorem [5.39}{(c)|below holds in a more
general setting of self-similar p-energy forms like that of [27]].

Theorem 5.39 Suppose the same assumptions as in Theorem let (8’1‘;(") ,WP)
be any k"™ -Korevaar-Schoen p-energy form on (K,m) for each n € N, let
{nj}jen € N be any sequence as in Theorem and let (Sllfs,‘Wp) be the
p-energy form on (K, m) defined by (5.37). Then for any u € WP N C(K), there
exists a unique positive Radon measure fgs (u) on K such that

[ earssw
K
u pP— 1 p-l u p
= SES(u;ugo) - (T) 855(|u|lf‘ ;@) forany ¢ € WP N C(K). (5.44)

Moreover, the following hold:

(a) For any u € ‘WP, there exists a unique positive Radon measure l*gs (uy on K
such that for any {u,}nen € WP N C(K) with lim,—,co N (u — u,) = 0 and
any Borel measurable function ¢: K — [0, 00) with ||¢]|g,, < oo,

/ @dI'5S(u) = lim / @ dI8S (uy), (5.45)
K n—oo K

and f}lgs (u) further satisfies fgs (u)(K) = Sgs(u). Moreover, for each such ¢,
(fK @ dfgs( ), WP) is a p-energy form on K satisfying|(GC),,

(b) Theorem with WP and f‘f, in place of Dl;,:fo and T’ ;‘, respectively, holds. In
particular, for any u,v € WP,

IS8 (u; v)(A) = , AeB(K), (5.46)

d <ks
s (u+1tv)(A) »

1
p
defines a signed Borel measure on K such that fgs (u; v)(K) = SES(M; v) and
f‘llfs (uyu) = f,lfs (u). Furthermore, for any u,v € ‘WP and any ¢ € C(K),

/ @ dl 3 (us0) = lim / odTs"™ (u; ). (5.47)
K —*®JK
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(¢) Theorem with WP and fgs in place of DI;,:Z, and F’l‘, respectively,
hold.

(d) Theorems and with WPNC(K) and fgs inplace of B NCp(K)
and F’; respectively, hold.

Proof. Fix {n;}en € N so that Sgs = lim; e 8,;7(”]») .Letu € WP NC(K).Letting
j — oo in {.6) with 8’1‘,("j "in place of &K and using (5:39), we have

M —1\"7t P M
0< W, (us ) = Ex5(usup) - (pT) ERS(1ulP7T 1 ¢) < llellp E5° (w)

for any ¢ € WP N C(K) with ¢ > 0. Since WP N C(K) is dense in C(K), we can
get the desired positive Radon measure f§5<u) (in the case u € WP N C(K)) by
using the Riesz—Markov—Kakutani representation theorem as done in the proof of
Theorem[.2] Also, we easily see that

/ W dr8S(uy = lim / z//dl“’;("j)<u) for any ¢ € C(K), (5.48)
K J7® JK

whence ([, ¥ dURS(-), WP n C(K)) is a p-energy form on (K,m) satisfying
Then we can prove @ by following the same argument as in the proof of
Theorem [4.3]

The property |(b)|except for I’ ES (u;v)(K) = éllfs (u; v) and for (53.47) follow from
[27, Theorem 4.5 and Proposition 4.6]. The equality (5.47) can be shown in the
same way as the proof of (3.9) by using (5.48), Proposition[2:4]and the convexity of
t > [ 0dl5S(u+ 1v). We have I8 (u; v)(K) = SES (u;v) from Proposition
E37) and G47) u

The statement|(c)|and the chain rule #22) with I ES in place of Ff, are immediate
from and the corresponding properties of Ff,(nj ’. Since we can follow the
proofs of Theorems andby using the chain rule of I'¥S, we complete the
proof of [(d)] O

Remark 5.40 There is another way to construct the p-energy measures associated
with (égs, WP), which is based on the self-similarity (5.43)); see [27 Section 5.2]
for the details of this construction (see also Proposition [6.12] below). The resulting
p-energy measures turn out to satisfy (5.44)) and therefore coincide with the ones
{fgs (u)}ewr constructed in Theorem (see [27, Proposition 5.12]).

6 p-Resistance forms on p.-c.f. self-similar structures

In this section, we verify (WM), x| for a family of kernels k corresponding to
the (1, p)-Korevaar-Schoen—Sobolev space under the assumption of the existence
of a good p-resistance form on a post-critically finite self-similar structure. (See
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[9, Theorem 4.2] or [27, Section 8.3] for the existing construction of self-similar
p-resistance forms in this setting.)

6.1 Geometry under the p-resistance metric

We first present the setting of this section. Throughout this section, we presume the
following assumption.

Assumption 6.1 Let p € (1,00) and £ = (K, S, {F;}ics) be a p.-c.f. self-similar
structure with #5 > 2 and K connected. Let (E,, F,,) be a self-similar p-resistance
form on £ with weight (p,.)ies € (0, 0)5 such that

i i > 1. 6.1
fl!g;lpp,t (6.1)

_df.p/(P_l)

p.i
—dt,p/(p—1)

(0,577,

pii ieS-

Let dr, € (0, 00) be such that };cs p = 1, and let m be the self-similar

measure on £ with weight

Remark 6.2 (1) The condition (6.1 corresponds to the condition (R) in [9, p. 18].

(2) Assumption [6.1] is equivalent to the existence of a p-eigenform on V, with
respect to the renormalization operator with weight (o, ;)ies € (1, 00)S ie., a

p-resistance form & ;,0) on Vj such that

inf{z ppiEY (vo F)

ieS

veRV vly, = u} = 6[(,0)(u) for any u € RV0;

see [27, Proposition 6.19 and Theorem 8.42] for a detailed proof of this equiva-
lence. In the case p = 2, this is nothing but the existence of a regular harmonic
structure on .£ as defined in [29, Definition 3.1.2].

(3) Any self-similar p-resistance form constructed in [33, Theorem 4.6] must satisfy
pp.i = 0 for some n; € N, where o7, is the constant in (3.9). This restriction
excludes the self-similar p-resistance forms with weight (pp ;)ies € (1, 00)S
satisfying (log pp,i)/logpp.; ¢ Q for some i, j € S, whereas they are covered
by [9l]; as proved in [27, Proposition B.2], they do exist abundantly on plenty of
typical affine nested fractals.

(4) Itis easy to see that dr , > 1 by using (6.1)) and (6.3) below.

In this subsection, we will show the Ahlfors regularity of m, the capacity upper
bound and the Poincaré inequality in terms of the p-resistance metric of (Ep, Fp),
which is defined as follows.

Definition 6.3 (p-Besistance metric; [27, Definition 6.33]) We define the p-
resistance metric R g, K X K — [0, ) of (&, Fp) by
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&

Fig. 1 Some examples of affine nested fractals

~ 1
Rpe,(x,y) = Rg,(x,y)?7, x,y€eK (6.2)
(recall (3-I8)). For simplicity, we write R, := R ¢,,.

We record some properties of Rg, and R P

Proposition 6.4 ([27, Proposition 7.2 and Corollary 6.32])
(1) Foranyw € W, and any x,y € K,

Re, (Fu(x), Fu(y)) < p,lyRe, (x,). (6.3)

—~ —R
(2) R, is a metric on K giving the original topology of K. In particular, V., " = K.
(3) Foranyu € ¥, andx,y € K,

lu(x) —u(y)I” < Re, (x, y)Ep (u).
In particular, ¥, € C(K).
In the next definition, we introduce the symmetry on K with respect to (&, ).

Definition 6.5 We define

G = {T

which forms a subgroup of the group of surjective isometries of (K, R ») by 3:13)
and (62).

Let us introduce natural scales {As}se(0,1] With respect to R p- (See [26] Defini-
tions 6.12 and 6.13] for the case p = 2.)

T: K — K, T is a homeomorphism preserving m, and 6.4
u0T,u0T‘1eﬁ,andé’p(uOT)=8p(u)f0ranyu€?'p ’ 6.4)

Definition 6.6 (1) We define A; := {0},

— - -1 -1
Ag = {w | w=w...w, €W, \ {0}, (pp,wl...wnfl) Yp=1) >822 pp,u/;(p )}
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for each s € (0, 1). (Note that {A, }e(0,1] is the scale associated with the weight
function g(w) := ppl/(p D see [32] Definition 2.3.1].)

(2) For each (s,x) € (0,1] x K, we define Aso(x) = {w € As | x € Ky},
Up(x,s) = UwEAw(x) Ky, As1(x) = {w € Ay | K,y N Up(x,s) # 0} and
Ui(x,s) = UwEA,—,l(x) K.

Similar to the case p = 2 in [26] Section 6.1], it is easy to see that lim, o min{|w] |
w € Ay} = oo, that A is a partition of X for any s € (0, 1], and that A;, < Ay,
for any s1,s2 € (0,1] with s; < s,. By [32, Proposition 2.3.7], for any x € K,
each of {Up(x, 5)}se(0,1] and {U1(x, s)}se(0,1] is non-decreasing in s and forms a
fundamental system of nelghborhoods of x in K. Moreover, {U;(x, 5)}se(0,1] can
be used as a replacement for the metric balls {Bz (x s)}(x ) ek x (0.diam(K,R,)] in

(K,R p) by virtue of the following lemma, which was obtained in [26, Lemma 6.14]
in the case p = 2.

Lemma 6.7 There exist a1, as € (0, o) such that for any (s,x) € (0,1] X K

Bg (x,a15) CUi(x,s) € By (x,a2s). (6.5)
P P

Proof. By (5.33), we have diam(K,,, R,,) < p_l/(p Y diam(K, R,) forany w € W,,
which implies the latter inclusion in @ with a; € (2diam(K, R p),00) arbitrary.
(In particular, diam(Ky, Ep) < ays for any w € Ag.) We will show the former
inclusion in (6.5) in the rest of this proof. To this end, it suffices to prove that there
exists a; € (0, c0) such that R,,(x y) = ays for any s € (0, 1], any w,v € Ay with
Ky, N K, =0andany (x,y) € K, X K. Let ¢, = hVé’ [10°] for any g € Vo, where
h‘%’ denotes the &,-harmonic extension operator from Vj, that is, ¢, is the unique
functionin 7, such thaty, v, = 1,° and &, (¥4) = min{E, (v) | v € Fp, vy, = 1}
(see [27, Theorem 6.13]). Fix w € Ay and let u,, € C(K) be such that, for 7 € Ay,

1 ifr=w,
U © Fr =X sevoFe(q)eFu (Vo) Ya ift#wand K NK,, # 0, (6.6)
0 it Kr N K, =0.

Since Ay is a partition of X, we have u,, € ¥, by (5.34), and

ap(“w) = Z pp,'rgp(”w o F;)

TEAS

= Z Pp.Sp Z Yq (6.7)
7eAs\{w}K:NKy#0 qeVoiFr(q)€F, (V)

by (5.35). Set p,, = maxjes pp,i € (1,00) and ¢y = maxgey, Ep(Yg) € (0, 00).
Then p,!; = (p,,)"'sP~! for any 7 € Aq. Since #{r € A, | K- NK,, # 0} <
(#Cr)(#Vy) by [29, Lemma 4.2.3], together with Holder’s inequality implies
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that
Ep(uw) < (HCL)(#VO)P,s P (#Vo)P et =t (a1s)™ "7V (68)

For any v € Ay with K, N K, = 0 and any (x,y) € K, X K,, we clearly have
uy(x) = 1 and uy,(y) = 0. Hence

ﬁ,,(x, y) = Sp(u)_l/(p_l) > ays,
which proves the desired result. O

Now we can show that m is dr, ,-Ahlfors regular (see [26, Lemma 6.8] for the
case p = 2).

Lemma 6.8 There exist ci,c2 € (0,00) such that for any x € K and any s €
(0,2diam(K, Rp)],

crsfr < m(Bﬁp (x,5)) < cos¥r. (6.9)

Proof. This is immediate from (6.3), #{7 € Ay | K: N Ky, # 0} < (#Cr)(#V)) (see

[29, Lemma 4.2.3]) and m(K,,) = p,,'0'? ™" (see [29] Corollary 1.4.8]). O

The proof of Lemmaincludes the following capacity upper bound in terms of
the p-resistance metric R,.

Proposition 6.9 There exists C € (0, 00) such that for any x € K and any s €
(0,2diam(K, R))],

inf{ &, (u) | u € Fp.ulny (xans) = 1suppg [u] € By (x.2m9)} < Cs~ P70,
(6.10)
where a1, a; are the constants in (6.3)).

Proof. Letu,, € ¥, be the same function as in the proof of Lemmafor eachw €
As. Then ¢ = maxyen, , (x) Uw satisfies ¢y, (x,s) = 1. Since diam (K, I?,,) < ass,

we see from (6.3)) that suppg [¢] C Bﬁp (x,2a2s). By 2.3) for (&, Fp), (6.8) and
[29, Lemma 4.2.3], we have ¢ € ¥, and

Ep(@) < D, Eplun) < (1) PV HCHHV) = €5~ O

welg 1 (x)

Similar to Lemma [5.20] and Corollary [5.21] we can easily show the next lemma
as a consequence of (6.10), and obtain the regularity of 7.

Lemma 6.10 Let € € (0,1) and let V be a maximal e-net of (K, Ep). Then there

exists a family of functions {¥;},cy that satisfies the following properties:

(i) Zzev lﬁz =1

(i) Y € 7:p’ 0<y, <1, ‘//Z|B§P(z,s/4) =1 and Suppg [¥:] Bﬁp (z,5¢/4) for
anyz €V;
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(iii) IfzeVandz €V \{z}, then Wz'|B§p (z,e/4) = 0.
(iv)  There exists C € (0, 00) such that &, (y;) < Ce= P~V forany z € V.

Corollary 6.11 (&, F)p) is regular, i.e., Fp, is dense in (C(K), || - ||syp)-

Next, in order to state a Poincaré-type inequality in this context, we introduce
the associated self-similar p-energy measures in Proposition and a localized
version of ¥, in Definition Thanks to (5.33), we can define the p-energy
measures associated with (&, ) by using Kolmogorov’s extension theorem. We
recall fundamental results on the p-energy measures constructed in this way in the
following proposition. See [39, Section 9] and [27, Section 5.2] for further details
and properties of them.

Proposition 6.12 (Self-similar p-energy measures) For each u € ¥, there exists
a unique positive Radon measure I'g ,(u) on K satisfying

r-1 »
/ @dlg,(u) = Sp(u;utp)—(pT) Ep(lulPT5¢) forany ¢ € F,. (6.11)
K

Moreover, the following hold:

(i) Tg,u)(Kw) = ppuwESp(uo Fy) forany u € F), and any w € W,.

(i) Tg, (- YW AP is a seminorm on Fp for any A € B(K).

(iii) lg, (u)(Kw N K7) =0 for any u € ¥, and any w,v € W, with X, N - = 0.

(iv) Tg,(u)(A) =Tg,(v)(A)foranyu,v € F, andany A € B(K) with (u—v)|a €
Rl4.

Proof. For the construction of a candidate for ng (u), see [39, Section 9] or [27,
Section 5.2]. Then the properties and [(iv)] follow from [39] Proposition 9.3,
Corollaries 9.8 and 9.9] since #(K,, N K;) < co by #Vj < oo and [29, Proposition
1.3.5-(2)]. We obtain [()] by combining and [39, Proposition 9.4]. The equality
(6.TT) is proved in [27, Proposition 5.12], and the uniqueness of a positive Radon
measure on K satisfying (6.1T)) follows from Corollary [6.1T]and the uniqueness part
of the Riesz—-Markov—Kakutani representation theorem (see, e.g., [41, Theorems
2.14 and 2.18]). O

Definition 6.13 Let U be a non-empty open subset of K. We define a linear subspace
ﬁ,lOC(U) of C(U) by

fla = f*| 4 for some f# € F for each
relatively compact open subset A of U

7:P,loc(U) = {f € C(U)

}. 6.12)

For each f € ¥ 10c(U), we further define a positive Radon measure I'g , (f) on U
as follows. We first define I'g, (/) (E) = I'g,( f*Y(E) for each relatively compact
Borel subset E of U, with A C U and f* € ¥, as in (6.12) chosen so that E C A;
this definition of I'g, ( f) (E) is independent of a particular choice of such A and i
by Proposition We then define T, (f)(E) = lim, o T'g, (f)(E N Ay)
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for each E € B(U), where {A, },en 1S a non-decreasing sequence of relatively
compact open subsets of U such that | J,,ciy An = U; it is clear that this definition
of I's,, (f)(E) is independent of a particular choice of {A, },en, coincides with the
previous one when E is relatively compact in U, and gives a Radon measure on U.

Now we can prove a Poincaré-type inequality in terms of the p-resistance metric.

Proposition 6.14 ((p, p)-Poincaré inequality) There exist C, A € (0, 00) with A >
1 such that for any (x, s) € K x (0,diam(K, R,)] and any u € 7:p,loc(B§p (x, As)),

/l;ﬁp (x,s)

Proof. For simplicity, we consider the case u € ¥,. Note that, since m(K,NK,) =0
for any v,v” € W, with £, N Z,, = 0 (see [29] Corollary 1.4.8]),

/ g dm < Z / |u - uU](x’s)|p dm.
BEP (x,a15)

wehy (x) Ko
Letw € Ay,1(x). Forany (y, z) € K, x U (x, s), there exist v, v*, v* € Ay (x) such
that ! = w, z € K5 and K, N K1 # 0 foreachi € {1,2}. Letus fixx; € K, NK i1
and g; € Vj so that x; = Fi(¢q;). Then

" m(dy) < CshrtrITg (u)(Bg (x.As)). (6.13)

M(Y) - uBﬁp (x,s)

u-— MBEP (x,a1s)

() =@ <377 (Je) = uG]” + Jue) = uGA)| + o) - u2)|”)

3
. = \p-1 -
< (3diam(K, R,))” pr’lvirsp<u>(Kvi)
=1

i
3

GLE

i=1

< CsP™'Tg, (u) < CsP'Tg, (u)(Bg (x,a2s)).

Therefore, noting that m(K,) < s%» by (6.5) and (6.9), we have

IA

/ () = g oy |” m(dy) / f u(y) - u(2)|? m(dxm(dy)
K, K, JU(x,s)

shrtP 1Ty (u)(Bg (x,a29)),

A

which together with sup . ¢yexx(0,1] #/s,1(x) < oo (see [29, Lemma 4.2.3]) yields

®13). 0
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6.2 Estimates on self-similar p-energy measures and weak
monotonicity

In this subsection, we show localized energy estimates on Korevaar-Schoen p-
energy forms in terms of their associated self-similar p-energy measures and verify
We continue to follow the setting in the previous subsection, i.e., we
suppose that Assumption holds. We consider &, as a [0, co]-valued functional
defined on L? (K, m) by setting &, (f) := cofor f € LP (K, m) \ Fp.

Similar arguments as in Propositions [5.23] and [5.23] yield an upper bound on
localized Korevaar—Schoen energy functionals in Proposition[6.15]and a lower bound
on them in Proposition [6.16] below.

Proposition 6.15 There exists C € (0, o) such that for any E € B(K), any open
neighborhood E’ ofEK and any u € Fp 10c(E’),

lim sup / ][ lu@) ~u(I” m(dy)m(dx) < CTg, (W)(E").  (6.14)
(X s)

Slo df p+p 1
Moreover, with C € (0, co) the same as in (6.14), for any f € L” (K, m),

sup / ][ YW =IO | < coni, o
(x s)

s>0 df ptpl

Proof. LetV be arelatively compact open subset of E’ with V 2 EK and let u® € Fp
satisfy u* = u m-a.e. on V. Similar to |39} (7.2)], by using (6.9) and (6.13)), we easily
see that for any s € (0, 00),

# #0 NP
[, o P maman = e, 6,200 616
where A € [1, ) is the constant in (6.13) and C € (0, o) is independent of x, s and
f- We get (6.14) by letting s | 0 since I'g,, (u#>((E)§“2AS) =Tg, <”>((E)Ep,2As)
for any s € (0, o) with (E) Ro2as €V by Proposition|[6.12 The estimate (6.13)
for f € F, is easily implied by I'g, (f)(K) = E,(f) and (6.16) with E = K. For
f € LP(K,m)\ Fp, (6.15) is obvious by &, (f) = oo, so the proof is completed. O

Proposition 6.16 There exists C € (0, ) such that for any E € B(K), any open
neighborhood E’ ofEK and any u € Fp 10c(E’),

p
Lg, (u)(E) < Chmhmlnf/ ][ |u(x3 u()i” m(dy)m(dx).
510 s]0 E)R s R (x,5) t.ptP

6.17)
Furthermore, with C € (0, %) the same as in (6.17), for any f € LP (K, m),
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df ptP— 1

Ep(f) < Chmmf/ ][ ) = FO | ayma). (6.18)
R (x s)

Proof. Let s € (0,1) and fix a maximal r-net Ny of (K, Ep). Let {¢; s}zen, be

a partition of unity as given in Lemma and define A,: LP(K,m) — F, by

Asf = 2zen, By (zs/H¥zs for [ € LP(K,m). Then we can easily see that
P

lim, o |1Arf = fllLe(k.my = O and sup,.o |A|lLr (k m)y—Lr (km) < oo. Using
Proposition |6.12{(1v), we can show that there exists C; > 0 that is independent
of x, s and f such that

Fe, (A, f) By, (2.55/4)

|f(x) = fFDIP
<C —— m(d dx),
=" Z(z 11s/4) /ﬁp (w,3s) ]iﬁp (x,9s) sdtprp=l {dym{(d)

wENsﬂBﬁp
(6.19)

for any small enough s > 0. Let us fix § > 0 and define Ny(E) = {z € Ny |
EmBk‘p (Z, S) * 0} Since UZENS (E) UWENsﬁBﬁp (z,11s/4) BE,, (LU, 3S) Cc (E)Ep,é for

all small enough s > 0 and (K, R p) is metric doubling by Lemma we have

Te, (A )E) < ) Te,(Af)(Bg, (2.55/4))

z€Ng(E)

@ / ][ Lf &) = fI” m(dy)m(dx), f € LP(K,m),
E)R s (x9s)

df ptpP— 1

(6.20)

where C € (0, o) is independent of x, s and f. Once we get (6.20), the argument
in the proof of Proposition [5.23] with minor modifications proves (6.17). Indeed,

for u € Fp10c(E’), a relatively compact open subset V of E’ with V 2 E" and

u* € F, satisfying u* = u m-a.e. on V, we have from Proposition that
Le, (Au*Y(E) =T &, (Asu)(E) if s is sufficiently small. Then similar arguments
using Mazur’s lemma as in the proof of Proposition [5.23|implies (6-17) and (6.18).

Now we can identify ¥, as the (1, p)-Korevaar-Schoen—Sobolev space.

Theorem 6.17 Let s, k = k*r and KS'P (K, E,,,m) be as defined in Example
3. 14|with Ep inplace of d. Then s, = (dg,p +p—1)/p, Fp = KS!'P (K, Ep, m), and
( >

WM),, i|holds. Moreover, there exists C € [1, c0) such that

c*lsup kAN <&y (f)<C11mmf +(f) forany f € LP(K,m). (6.21)

Proof. We have F,, = B;ff,;," =DIP 4hd (6:27) by (6.13) and (6.18)). In particular,
sp > (dip+p—1)/p.Lets > (d, + p—1)/p and let f € ¥, \ Rlg, which
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exists by (©.10). Let A,: L?(K,m) — ¥, be the same operator as in the proof of
Proposition[6.16] for each r € (0, 1). Then, by (6.20) with E = K, for any r € (0, 1)
and f € LP(K,m),

7sp

o) ) = FOIP
—ean=c | fBﬁpu,%) m(dym(d),  (622)

where C > 0 is independent of f and r. Clearly, sup,.(&E,(Arf) > 0 and
rdip*P=175P — oo as r | 0. Hence we obtain s > s, since f ¢ B, , by (6:22). This

implies that (ds,, + p — 1)/p > s,,. In particular, we obtain ¥, = KS'P (K, Ep, m).

Also,[(WM),, 4] follows from (6.13)) and (6.18). O
Unfortunately, it is not clear whether Korevaar—Schoen p-energy forms (Sgs, Fp)

on (K, R p» 1), which exist by Theorems and(recall Example|3.14)), are self-
similar or not. However, we can construct a self-similar p-resistance form on £ by

the same argument as in the proof of Theorem [5.38] Recall that 7, N C(K) = 7, is
dense both in (C(K), || - ||s,p) and in ¥, by Proposition and Corollary

Theorem 6.18 For each n € N, define k™ = {k{"},~¢ by

1 < ds p+p=1)/(p=1) LAy, (X, ¥)
kﬁn)(x,y) = Z Z pp’wf’” p=D/(p=1) Awr 7] x,y €K,

2d; tp-1°
n+1 wew, ey

where Ay, = {(x,y) € Ky X Ky | Ry(Fy'(x),F;'(y)) < r}. Then k™
is asymptotically local, (WM),, ;| holds, B’;ig = Fp, and for any sequence

{(Sﬁ("),ﬁ)}neN with (85‘,("),7-',,) a k"™ -Korevaar-Schoen p-energy form on
(K,m) for each n € N, there exists a sequence {n;}jen C N with n; < nj
for any j € N such that the following limit exists in [0, o) for any u € F):

EpSw) = lim & (u). (6.23)

Moreover, for any such {8’;“” Inen and {n;} jen, the functional SVIISS: Fp — [0, )
defined by (6.23) satisfies the following properties:
(a) (EXS, Fp) is a self-similar p-resistance form on L with weight (pp ;)ies.
(b) Foranyu € Fp,
C'8,(u) < EXS (1) < CE,(u),

where C € [1, ) is the constant in (6.21).

(¢) Foranyu,v € Fp, {8’;(nj) (u;0)} jen is convergent in R and

&S (i) = lim "™ (usv). (6.24)

() Theorem[3.§ with (EXS, F,) in place of (€%, BK ) hold.
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(e) 855 (uoT) = é?s(u) foranyu € ¥, and any T € G (recall (6-4)).

In addition, we obtain the p-energy measures associated with the p-resistance
form (855, ¥p) in the same way as in Theorem (See also [27, Sections 4 and
5] for other basic properties. As mentioned before Theorem [5.39] we do not know
whether Theorem[6.19}{(c)|below holds for general self-similar p-resistance forms.)

Theorem 6.19 Let (Sk(") Fp) be any k" _Korevaar-Schoen p-energy form on
(K, m) for each n € N, let {n;}jen € N be any sequence as in Theorem[6.18] and
let (SKS F,) be the p-resistance form on K defined by (6.23). Then for any u € ¥,

there exists a unique positive Radon measure T’ §s<u> on K such that for any ¢ € ¥,

SKS, \ _ SKS/ . _(p-1 ol SKS (11727 .
del—‘p <M> - 8p (u,u(p) p ap (|u|p ’QD) (625)
K

Moreover, the following hold:

(a) Let ¢: K — [0,00) be a Borel measurable function with ||¢||y,, < oo. Then
(fK @ deS( ), Fp) is a p-energy form on (K, m) satisfying |(GC),,

(b) Theorem with ¥, and Fk in place of Z)p o and Ff, respectively, holds. In
particular, for any u,v € ?},

IS (u; v)(A) = %“gsw +10)(A)

. AeB(K), (6.26)

1
p =0

defines a signed Borel measure on K such that fgs (u; v)(K) = SVES(M; v) and
fllfs(u; uy = fgs<u) Furthermore, for any u,v € ¥, and any ¢ € C(K),
/ ¢ dI8S(u;v) = Tim / odTs"™ (u; ). (6.27)
K Joeo Jk
(c) Theorem . wzth Fp and FKS in place of Z)k b and Fk respectively,
hold.

(d) Theoremsn and 1 with ¥, and FKS in place of B w NCp(K) and
F respectively, hold.

A Appendix: An alternative family of kernels in Example [3.14]

In this Appendix, we give a simple sufficient condition for B’;foo = KS"? and
where k* = {k¥},.¢ is defined by (3.28). As in Example we fix
p € (1,00) and assume that (K,d) is a connected separable metric space with
#K > 2 and that m is a Borel measure on K with full topological support satisfying
m(Bgy(x,r)) < oo for any (x,r) € K X (0, c0).
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Proposition A.1 Lets € (0, 00) andlet k® = {k}}, >0 be the family of kernels defined
by (3.26). Assume that m is volume doubling, and that the following Poincaré-type
inequality holds: there exist C € (0,00) and A € [1, 00) such that for any u € Bf,‘:oo
and any (z,r) € K X (0, ),

/ |u - ”Bd(ZJ)|p dm
B,(z,r)

_ p
< CrPS liminf / f M m(dy)m(dx). (A1)
610 JBy(z.ar) JBa(x,6) or

Then there exists C' € [1, o) such that for any u € B’,C:oo’

lu(x) —u(y)[”
o By il

< C'liminf / ][ @) —uN”  aym(a). (A2)
rl0 By (x,r) rpPs

In particular, if (Ad) with S = Sp holds, then the family of kernels k* = {k*},-¢
defined by (3:28) satisfies B ., = KS"P and|(WM),, .+

Remark A.2 If (K, d,m) supports the p-Poincaré inequality in terms of upper
gradients, then the estimate @ with s = 1 follows from [37, Corollaries 6.3 and
6.5]. For p-conductively homogeneous compact metric spaces and post-critically
finite self-similar sets as in the settings of Sections[5]and[6] we can verify (A22) with

s = 5p; see Propositions[5.28] [6.14 and [6.16]

Proof of Proposition[A]] Since m is volume doubling and (K, d) is connected, we
have the following reverse volume doubling property of m (see, e.g., [8, Corollary
3.8] or [21} Exercise 13.1]): there exist ¢, @ € (0, c0) depending only on the doubling
constant Cp of m such that

m(Bq(x,r))
m(Ba(x,R)) ~

(e
c](%) for any x € K and any 0 < r < R < diam(K, d).

(A.3)
Let r € (0, o0). We have

lu(x) —u(»)|”
/ ]id(x " ALy m(dy)m(dx)
|u(x) —u(y)I”
< Z 2aj / ~/B,1(X 277 r)\Bg(x,2-GDr) d(x,y)PSm(B(x,277r)) m(dy)m(dx).

Let j € NU {0}, and let N; C K be a2 /r-net in (K, d), i.e., a maximal subset of
K such that d(z1,z2) > 27/r for any z1,25 € N; with z; # z2; such N; exists and
is countable since B (x, R) is totally bounded for any (x, R) € K x (0, o) thanks to
the metric doubling property of d implied by the volume doubling property of m.
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Then we see that

|u(x) —u(y)|”
. —— m(dy)m(dx)
/K/Bd(x,Zfr)\Bd(x,Z(-f”)r) d(x,y)P*m(Ba(x,27/r)) Y

|u(x) —u(y)|”
—— m(dy)m(dx)
zezzlvj /IBd(z,Z‘fr) /Bd(X,z_jr)\B(x,Z‘(j“)r) d(x,y)PSm(Bg(x,277r))
Z C]%(Q‘(j“)d‘l’s /
a ZGN;‘ m(Bd(Z’ 2_]7')) Bd(Z,z’jr) Bd(x,Z’jr)

Z ZPC%(Z_(j+l)r)—PS // |u(x) . |p m(dy)m(dx)
- - —j+l
ZENj m(Bd (Z, 2_-]7')) Bd(Z’Z*jJr'r)z B,(z,277*1r)

— P
& 272053 liminf / ][ Ju) =" ym(ar)
By(z,22-7*r) J By (x,8) ors

ZEN; o0

<cxtimint [ f ( 6)'”()“)6+(”"’m(dy)m(dx>,

IA

|u(x) = u(y)|” m(dy)m(dx)

510

where ¢, depends only on p, s, 4, Cp and C in (AT). Combining the above estimates,
we obtain

P
Lot e mdmta)

_ _ p
<cicep Z 27% lim inf/ ][ M m(dy)m(dx)
= K JBy(x.8) opPs

510

610

_ p
=cie(1 =277 lllmmf/ ][ Mm(dy)m(dx),
Ba(x,6) or
which shows (A2). o
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