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1 Introduction

In this article, assuming that (𝐾, 𝑑) is a locally compact separable metric space and
that 𝑚 is a Radon measure (i.e., a Borel measure finite on any compact subset) on 𝐾
with full topological support (i.e., strictly positive on any non-empty open subset),
we consider Korevaar-Schoen-type 𝑝-energy forms on (𝐾, 𝑑, 𝑚), where 𝑝 ∈ (1,∞).
Namely, we are concerned with a functional

𝐸𝑝,𝑠 (𝑢) B lim sup
𝑟↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑟𝑠𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥), 𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚),

where 𝐵𝑑 (𝑥, 𝑟) B {𝑦 ∈ 𝐾 | 𝑑 (𝑥, 𝑦) < 𝑟} and
ffl
𝐴
( · ) 𝑑𝑚 B 1

𝑚(𝐴)
´
𝐴
( · ) 𝑑𝑚 for a

Borel subset 𝐴 of 𝐾 with 𝑚(𝐴) ∈ (0,∞). Here 𝑠 ∈ (0,∞) is a parameter controlling
the smoothness of functions. In the classical settings, the 𝑛-dimensional Euclidean
space (𝐾, 𝑑, 𝑚) = (R𝑛, | · | , 𝑑𝑥) for example, the choice 𝑠 = 1 is natural. Indeed, one
can show (see, e.g., [37, Corollary 6.3] and [19, Theorem 7.13]; see also [17, Theorem
3.5] for a related result) that there exists 𝐶 ∈ (0,∞) such that the distributional
gradient ∇𝑢 of any Sobolev function 𝑢 ∈ 𝑊1, 𝑝 (R𝑛) satisfies

𝐶−1
ˆ
R𝑛

|∇𝑢 |𝑝 𝑑𝑥 ≤ lim sup
𝑟↓0

ˆ
R𝑛

 
|𝑦−𝑥 |<𝑟

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑟 𝑝
𝑑𝑦𝑑𝑥 ≤ 𝐶

ˆ
R𝑛

|∇𝑢 |𝑝 𝑑𝑥.

In particular, the domain of the functional 𝐸𝑝,1 is given by the (1, 𝑝)-Sobolev
space 𝑊1, 𝑝 (R𝑛) in this case. Note that the functional 𝐸𝑝,1 can be considered as a
variant of the functional considered by Korevaar and Schoen in [35], where they
constructed a (1, 𝑝)-Sobolev space 𝑊1, 𝑝 (Ω, 𝑋) of maps from a domain Ω in a
Riemannian manifold to a complete metric space 𝑋 . On the basis of an idea in
[35], Koskela and MacManus [36] introduced a (1, 𝑝)-Sobolev space L1, 𝑝 on any
metric measure space satisfying the volume doubling property and the Poincaré
inequality (in terms of weak upper gradients), a so-called PI-space, as the domain of
a functional similar to 𝐸𝑝,1, and showed that L1, 𝑝 coincides with the (1, 𝑝)-Sobolev
spaces introduced by Hajłasz [18] and Hajłasz–Koskela [20]; see [36, Theorem 4.5].
For any PI-space (𝐾, 𝑑, 𝑚), one can show (see, e.g., [37, Corollary 6.3] and [22,
Corollary 10.4.6]) that L1, 𝑝 = {𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚) | 𝐸𝑝,1 (𝑢) < ∞}, and it turns out
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that the exponent 𝑠 = 1 is critical in the sense that for every 𝑠 > 1, any function
𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚) with 𝐸𝑝,𝑠 (𝑢) < ∞ is constant 𝑚-a.e. if 𝐾 is connected. (See [22,
Chapter 10] for various ways to define (1, 𝑝)-Sobolev spaces on (𝐾, 𝑑, 𝑚) and
relations among them.) Recently, for more general (𝐾, 𝑑, 𝑚) which may not be a PI-
space, Baudoin [6] proposed to define a (1, 𝑝)-Sobolev space KS1, 𝑝 as the domain
{𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚) | 𝐸𝑝,𝑠 (𝑢) < ∞} of 𝐸𝑝,𝑠 with 𝑠 = 𝑠𝑝 , where 𝑠𝑝 is the critical
𝐿 𝑝-Besov exponent defined by

𝑠𝑝 B sup{𝑠 ∈ (0,∞) | 𝐸𝑝,𝑠 (𝑢) < ∞ for some non-constant 𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚)},

and discussed some properties of KS1, 𝑝 such as Sobolev-type embeddings.
The aim of this article is to construct as nice a 𝑝-energy form EKS

𝑝 comparable to
𝐸𝑝,𝑠𝑝 as possible. Such EKS

𝑝 is desired to satisfy at least the following generalized
𝑝-contraction property (see Definition 2.2): if 𝑞1 ∈ (0, 𝑝], 𝑞2 ∈ [𝑝,∞], 𝑛1, 𝑛2 ∈ N
and 𝑇 = (𝑇1, . . . , 𝑇𝑛2 ) : R𝑛1 → R𝑛2 satisfies 𝑇 (0) = 0 and ∥𝑇 (𝑥) − 𝑇 (𝑦)∥ℓ𝑞2 ≤
∥𝑥 − 𝑦∥ℓ𝑞1 for any 𝑥, 𝑦 ∈ R𝑛1 , then for any 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈ (KS1, 𝑝)𝑛1 ,

𝑇 (𝒖) ∈ (KS1, 𝑝)𝑛2 and
(EKS

𝑝 (𝑇𝑙 (𝒖))1/𝑝 )𝑛2
𝑙=1


ℓ𝑞2

≤
(EKS

𝑝 (𝑢𝑘)1/𝑝 )𝑛1
𝑘=1


ℓ𝑞1

. (1.1)

The property (1.1) has been introduced in [27] as arguably the strongest possible
form of contraction properties of 𝐿 𝑝-like energy forms. As revealed in [27], (1.1)
plays important roles in developing nonlinear potential theory in general frameworks
including typical self-similar fractals, on which one can construct 𝑝-energy forms
via discrete approximations as established in [9, 23, 33, 39, 43] (see also [15] for a
different approach). A problem with 𝐸𝑝,𝑠 is that 𝐸𝑝,𝑠 may not satisfy (1.1) because
of the operation of taking limsup. To avoid this issue, we would like to take a limit
(in some sense) of the Besov-type functionals

𝐸𝑝,𝑠 (𝑢, 𝑟) B
ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑟𝑠𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥) (1.2)

as 𝑟 ↓ 0. This strategy does not work for all 𝑠 ∈ (0,∞), but does work in the critical
case 𝑠 = 𝑠𝑝 in the presence of the following weak monotonicity type estimate, which
turns out to hold in many situations: there exists a constant 𝐶 ∈ [1,∞) such that for
any 𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚) with sup𝑟>0 𝐸𝑝,𝑠𝑝 (𝑢, 𝑟) < ∞,

sup
𝑟>0

𝐸𝑝,𝑠𝑝 (𝑢, 𝑟) ≤ 𝐶 lim inf
𝑟↓0

𝐸𝑝,𝑠𝑝 (𝑢, 𝑟). (1.3)

This condition (1.3) was introduced in [6] (see Example 3.14). Our first main re-
sult, Theorem 3.8, gives a desired 𝑝-energy form EKS

𝑝 as a subsequential limit of
{𝐸𝑝,𝑠𝑝 ( · , 𝑟)}𝑟>0 under the assumption of (1.3). More precisely, in Theorem 3.8, we
establish a subsequential limit of the energy functionals given by

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

sgn
(
𝑢(𝑥) − 𝑢(𝑦)

)
|𝑢(𝑥) − 𝑢(𝑦) |𝑝−1 (𝑣(𝑥) − 𝑣(𝑦))

𝑟𝑠𝑝 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥),
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that is, we directly construct a two-variable version EKS
𝑝 (𝑢; 𝑣), which is the counter-

part of

(𝑢, 𝑣) ↦→
ˆ
R𝑛

|∇𝑢 |𝑝−2 ⟨∇𝑢,∇𝑣⟩ 𝑑𝑥 (1.4)

in the Euclidean case, where ⟨ · , · ⟩ denotes the inner product onR𝑛. An advantage of
our construction is that we can obtain a good quantitative estimate on the continuity
of EKS

𝑝 (𝑢; 𝑣) with respect to the nonlinear part 𝑢. Namely, unlike our earlier result
in [27] (see (2.12) below), the present construction of EKS

𝑝 allows us to achieve the
best Hölder continuity exponent as expected from the formal expression (1.4), i.e.,
to show that there exists a constant 𝐶 ∈ (0,∞) such that for any 𝑢1, 𝑢2, 𝑣 ∈ KS1, 𝑝 ,

��EKS
𝑝 (𝑢1; 𝑣) − EKS

𝑝 (𝑢2; 𝑣)
�� ≤ 𝐶 [

max
𝑖∈{1,2}

EKS
𝑝 (𝑢𝑖)

] (𝑝−2)+
𝑝

EKS
𝑝 (𝑢1 − 𝑢2)

(𝑝−1)∧1
𝑝 EKS

𝑝 (𝑣)
1
𝑝

(see (3.12)), which is not known for the 𝑝-energy forms constructed in the preceding
works [9, 15, 23, 33, 39, 43]. See Section 3 for details.

Another superiority of our direct approach is that we can introduce the 𝑝-energy
measures associated with EKS

𝑝 . Roughly speaking, for each 𝑢 ∈ KS1, 𝑝 , the 𝑝-energy
measure ΓKS

𝑝 ⟨𝑢⟩ is a Radon measure on 𝐾 playing the same role as |∇𝑢 |𝑝 𝑑𝑥 in
the Euclidean case. Since we have no counterpart of |∇𝑢 |, it is highly non-trivial
to construct ΓKS

𝑝 ⟨𝑢⟩; indeed, it is not known how to construct canonical 𝑝-energy
measures associated with a given 𝑝-energy form without relying on the self-similarity
of the underlying space and the 𝑝-energy form (see [33, p. 113] and [39, Problem
12.5]). However, our construction of EKS

𝑝 allows us to employ a naive approach as
described below. From the Leibniz and chain rules for the usual gradient operator ∇
on R𝑛, we easily see that for any 𝜑, 𝑢 ∈ 𝐶1 (R𝑛),

𝜑 |∇𝑢 |𝑝 = |∇𝑢 |𝑝−2 ⟨∇𝑢,∇(𝑢𝜑)⟩ −
(
𝑝 − 1
𝑝

) 𝑝−1 ���∇ (
|𝑢 |

𝑝

𝑝−1
) ���𝑝−2 〈

∇
(
|𝑢 |

𝑝

𝑝−1
)
,∇𝜑

〉
.

Since EKS
𝑝 (𝑢; 𝑣) is expected to be the counterpart of

´
R𝑛 |∇𝑢 |

𝑝−2 ⟨∇𝑢,∇𝑣⟩ 𝑑𝑥, the
𝑝-energy measure ΓKS

𝑝 ⟨𝑢⟩ of 𝑢 ∈ KS1, 𝑝 associated with EKS
𝑝 should be characterized

as a unique Radon measure on 𝐾 such that for any 𝜑 ∈ KS1, 𝑝 ∩ 𝐶𝑐 (𝐾),
ˆ
𝐾

𝜑 𝑑ΓKS
𝑝 ⟨𝑢⟩ = EKS

𝑝 (𝑢; 𝑢𝜑) −
(
𝑝 − 1
𝑝

) 𝑝−1
EKS
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
C ΨKS

𝑝,𝑢 (𝜑). (1.5)

In fact, in the case 𝑝 = 2, this is exactly the same as the definition of energy measures
in the theory of regular symmetric Dirichlet forms (see [14, (3.2.14)]). By virtue of
our direct construction, we can show that ΨKS

𝑝,𝑢 is a bounded positive linear functional
on KS1, 𝑝 ∩ 𝐶𝑐 (𝐾) and we obtain ΓKS

𝑝 ⟨𝑢⟩ by applying the Riesz–Markov–Kakutani
representation theorem under the assumption that KS1, 𝑝 ∩𝐶𝑐 (𝐾) is dense in 𝐶𝑐 (𝐾)
with respect to the uniform norm. We also establish some basic properties of ΓKS

𝑝 ⟨𝑢⟩
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like the generalized 𝑝-contraction property and the chain rule. See Section 4 for
details.

As mentioned above, our construction of EKS
𝑝 (𝑢; 𝑣) and ΓKS

𝑝 ⟨𝑢⟩ relies heavily on
the assumption of the weak monotonicity estimate (1.3), and fortunately it turns out
that (1.3) holds in many situations. As proved in [6, Theorem 5.1] (see also [37,
Corollary 6.3]), (1.3) holds on any PI-spaces. Besides, (1.3) has been proved for the
Vicsek set and for the Sierpiński gasket in [6, Theorems 6.3 and 6.6], for nested
fractals in [16, 10], for generalized Sierpiński carpets with 𝑝 strictly greater than
the Ahlfors regular conformal dimension in [45], and in a general setting including
the Sierpiński carpet with any 𝑝 ∈ (1,∞) in [39, Theorem 7.1]. See also [24] for
related results for the Sierpiński gasket. As extensions of these results, we present
two general settings where we can show (1.3). The first one described in Section 5
(see Assumptions 5.19 and 5.35) is based on the notion of 𝑝-conductive homogeneity
due to [33], and includes the settings of [33, Theorems 3.21 and 4.6] except that we
need to assume the Ahlfors regularity of 𝑚, which is not assumed in [33, Theorem
3.21]. (This setting is very similar to that in [39, Section 7], although there are indeed
slight differences between the setting of discrete approximations of (𝐾, 𝑑) in [33]
and that in [39].) In particular, all the examples of self-similar sets in [33, Sections
4.4–4.6] and those planned to be treated in [34] fall within the framework of our
main results in Section 5 (see also Remark 5.15-(2)). The second one presented in
Section 6 (see Assumption 6.1) treats the case of post-critically finite self-similar
structures. In particular, by virtue of the work [9], this framework includes all affine
nested fractals, which were covered only partially in [33] (see Remark 6.2-(3)).

Very recently, for any 𝑝 ∈ [1,∞), Alonso-Ruiz and Baudoin [4] constructed 𝑝-
energy forms and 𝑝-energy measures on PI-spaces as Γ-limits of 𝐸𝑝,1 and Γ-limits
of localized versions of 𝐸𝑝,1, respectively. Their framework is very different from
ours although we do not deal with the case 𝑝 = 1. Indeed, 𝑠𝑝 = 1 on PI-spaces while
𝑠𝑝 > 1 on generalized Sierpiński carpets and some Sierpiński gaskets as proved in
[27, Section 9]. Also, our construction of 𝑝-energy measures enables us to prove
some fundamental properties of them, which were not shown in [4].

This article is organized as follows. In Section 2, we introduce the notion of
𝑝-energy form and the generalized 𝑝-contraction property and recall some basic
consequences of this property, following [27]. In Section 3, we present basic nota-
tion related to the Besov-type functionals (1.2) and, under the assumptions of (1.3)
and some mild conditions, we construct a good 𝑝-energy form EKS

𝑝 as a subsequential
pointwise limit of {𝐸𝑝,𝑠𝑝 ( · , 𝑟)}𝑟>0. We also recall the notion of 𝑝-resistance form
and present a sufficient condition for EKS

𝑝 to be a 𝑝-resistance form in the end of
Section 3. Section 4 is devoted to discussions on the 𝑝-energy measures associated
with EKS

𝑝 . (More precisely, we prove these results in Sections 3 and 4 in a synthetic
way for a more general family of kernels.) In Section 5, we first recall from [33] the
setting of 𝑝-conductively homogeneous compact metric spaces and then verify (1.3)
for them under some geometric assumptions. In Section 6, we show (1.3) for post-
critically finite self-similar structures under the assumption of the existence of nice
self-similar 𝑝-resistance forms. In Sections 5 and 6, we also show localized energy es-
timates, some estimates on localized versions

´
𝐸

ffl
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥 )−𝑢(𝑦) | 𝑝
𝑟 𝑝𝑠𝑝

𝑚(𝑑𝑦)𝑚(𝑑𝑥)
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of 𝐸𝑝,𝑠𝑝 (𝑢) for any Borel subset 𝐸 of 𝐾 , and that our construction can be further
modified in the case of self-similar sets to obtain self-similar 𝑝-energy forms keeping
most of the good properties of Korevaar–Schoen ones.

Notation Throughout this paper, we use the following notation and conventions.
(1) For [0,∞]-valued quantities 𝐴 and 𝐵, we write 𝐴 ≲ 𝐵 to mean that there exists

an implicit constant 𝐶 ∈ (0,∞) depending on some unimportant parameters
such that 𝐴 ≤ 𝐶𝐵. We write 𝐴 ≍ 𝐵 if 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

(2) For a set 𝐴, we let #𝐴 ∈ N ∪ {0,∞} denote the cardinality of 𝐴.
(3) We set sup ∅ B 0 and inf ∅ B ∞. We write 𝑎 ∨ 𝑏 B max{𝑎, 𝑏}, 𝑎 ∧ 𝑏 B

min{𝑎, 𝑏} and 𝑎+ B 𝑎∨0 for 𝑎, 𝑏 ∈ [−∞,∞], and we use the same notation also
for [−∞,∞]-valued functions and equivalence classes of them. All numerical
functions in this paper are assumed to be [−∞,∞]-valued.

(4) Let 𝑋 be a non-empty set. We define id𝑋 : 𝑋 → 𝑋 by id𝑋 (𝑥) B 𝑥, 1𝐴 = 1𝑋
𝐴
∈ R𝑋

for 𝐴 ⊆ 𝑋 by 1𝐴(𝑥) B 1𝑋
𝐴
(𝑥) B

{
1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴,

and set ∥𝑢∥sup B ∥𝑢∥sup,𝑋 B

sup𝑥∈𝑋 |𝑢(𝑥) | for 𝑢 : 𝑋 → [−∞,∞].
(5) We define sgn: R→ R by sgn(𝑎) B 1(0,∞) (𝑎) − 1(−∞,0) (𝑎).
(6) Let 𝑋 be a topological space. The Borel 𝜎-algebra of 𝑋 is denoted by B(𝑋),

the closure of 𝐴 ⊆ 𝑋 in 𝑋 by 𝐴
𝑋

, and we say that 𝐴 ⊆ 𝑋 is relatively compact
in 𝑋 if and only if 𝐴

𝑋
is compact. We set 𝐶 (𝑋) B {𝑢 ∈ R𝑋 | 𝑢 is continuous},

supp𝑋 [𝑢] B 𝑋 \ 𝑢−1 (0)
𝑋

for 𝑢 ∈ 𝐶 (𝑋), 𝐶𝑏 (𝑋) B {𝑢 ∈ 𝐶 (𝑋) | ∥𝑢∥sup < ∞},
𝐶𝑐 (𝑋) B {𝑢 ∈ 𝐶 (𝑋) | supp𝑋 [𝑢] is compact}, and 𝐶0 (𝑋) B 𝐶𝑐 (𝑋)

𝐶𝑏 (𝑋)
=

{𝑢 ∈ 𝐶 (𝑋) | 𝑢−1 (R \ (−𝜀, 𝜀)) is compact for any 𝜀 ∈ (0,∞)}, where 𝐶𝑏 (𝑋) is
equipped with the uniform norm ∥ · ∥sup.

(7) Let 𝑋 be a topological space having a countable open base. For a Borel measure
𝑚 on 𝑋 and a Borel measurable function 𝑓 : 𝑋 → [−∞,∞] or an𝑚-equivalence
class 𝑓 of such functions, we let supp𝑚 [ 𝑓 ] denote the support of the measure
| 𝑓 | 𝑑𝑚, that is, the smallest closed subset 𝐹 of 𝑋 such that

´
𝑋\𝐹 | 𝑓 | 𝑑𝑚 = 0.

(8) Let (𝑋, 𝑑) be a metric space. We set 𝐵𝑑 (𝑥, 𝑟) B {𝑦 ∈ 𝑋 | 𝑑 (𝑥, 𝑦) < 𝑟} for
(𝑥, 𝑟) ∈ 𝑋 × (0,∞), (𝐴)𝑑,𝑟 B

⋃
𝑥∈𝐴 𝐵𝑑 (𝑥, 𝑟) for 𝐴 ⊆ 𝑋 and 𝑟 ∈ (0,∞), and

diam(𝐴, 𝑑) B sup𝑥,𝑦∈𝐴 𝑑 (𝑥, 𝑦) and dist𝑑 (𝐴, 𝐵) B inf{𝑑 (𝑥, 𝑦) | 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}
for 𝐴, 𝐵 ⊆ 𝑋 .

(9) Let (𝑋,B, 𝑚) be a measure space. We set 𝑓𝐴 B
ffl
𝐴
𝑓 𝑑𝑚 B 1

𝑚(𝐴)
´
𝐴
𝑓 𝑑𝑚 for

𝑓 ∈ 𝐿1 (𝑋, 𝑚) and 𝐴 ∈ B with𝑚(𝐴) ∈ (0,∞), and set𝑚 |𝐴 B 𝑚 |B|𝐴 for 𝐴 ∈ B,
where B|𝐴 B {𝐵 ∩ 𝐴 | 𝐵 ∈ B}. When 𝑚 is 𝜎-finite, the product measure space
of (𝑋,B, 𝑚) and itself is denoted by (𝑋 × 𝑋,B ⊗ B, 𝑚 × 𝑚).
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2 𝒑-Energy forms and generalized 𝒑-contraction property

In this section, following [27], we recall the generalized 𝑝-contraction property and
some basic consequences of it. Throughout this section, we fix 𝑝 ∈ (1,∞), a measure
space (𝐾,B, 𝑚), a linear subspace F of 𝐿0 (𝐾, 𝑚) B 𝐿0 (𝐾,B, 𝑚), where

𝐿0 (𝐾,B, 𝑚) B {the 𝑚-equivalence class of 𝑢 | 𝑢 : 𝐾 → R, 𝑢 is B-measurable},

and a functional E : F → [0,∞) which is 𝑝-homogeneous, i.e., satisfies E(𝑎𝑢) =
|𝑎 |𝑝 E(𝑢) for any (𝑎, 𝑢) ∈ R × F . (Note that the pair (B, 𝑚) is arbitrary. In the case
where B = 2𝐾 and 𝑚 is the counting measure on 𝐾 , we have 𝐿0 (𝐾,B, 𝑚) = R𝐾 .)

Let us recall the definitions of a 𝑝-energy form and the generalized 𝑝-contraction
property introduced in [27]. We adopt here a less restrictive definition of a 𝑝-energy
form than those in the preceding works [9, 23, 33, 39, 43] on the construction of
𝑝-energy forms, in order to deal with a wider class of 𝐿 𝑝-type energy functionals
including 𝐸𝑝,𝑠 (·, 𝑟) in (1.2) and

´
𝐾
𝜑 𝑑ΓKS

𝑝 ⟨ · ⟩ in (1.5) in a unified framework.

Definition 2.1 (𝑝-Energy form; [27, Definition 3.1]) The pair (E, F ) is said to be
a 𝑝-energy form on (𝐾, 𝑚) if and only if E1/𝑝 is a seminorm on F .

Definition 2.2 (Generalized 𝑝-contraction property; [27, Definition 2.1]) The
pair (E, F ) is said to satisfy the generalized 𝑝-contraction property, (GC)𝑝 for
short, if and only if the following hold: if 𝑛1, 𝑛2 ∈ N, 𝑞1 ∈ (0, 𝑝], 𝑞2 ∈ [𝑝,∞] and
𝑇 = (𝑇1, . . . , 𝑇𝑛2 ) : R𝑛1 → R𝑛2 satisfies

𝑇 (0) = 0 and ∥𝑇 (𝑥) − 𝑇 (𝑦)∥ℓ𝑞2 ≤ ∥𝑥 − 𝑦∥ℓ𝑞1 for any 𝑥, 𝑦 ∈ R𝑛1 , (2.1)

then for any 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈ F 𝑛1 we have

𝑇 (𝒖) ∈ F 𝑛2 and
(E(𝑇𝑙 (𝒖))1/𝑝 )𝑛2

𝑙=1


ℓ𝑞2

≤
(E(𝑢𝑘)1/𝑝 )𝑛1

𝑘=1


ℓ𝑞1

. (GC)𝑝

See [27, Sections 2 and 3] for details on consequences of (GC)𝑝 . Here, in Propo-
sitions 2.3, 2.4 and 2.5, we recall some results from [27] that will be used in this
paper.

Proposition 2.3 ([27, Proposition 2.2]) Suppose that (E, F ) satisfies (GC)𝑝 .
(1) E1/𝑝 satisfies the triangle inequality. In particular, E is convex on F .
(2) Let 𝜑 ∈ 𝐶 (R) satisfy 𝜑(0) = 0 and |𝜑(𝑡) − 𝜑(𝑠) | ≤ |𝑡 − 𝑠 | for any 𝑠, 𝑡 ∈ R.

Then 𝜑(𝑢) ∈ F and E(𝜑(𝑢)) ≤ E(𝑢) for any 𝑢 ∈ F . Furthermore, for any
𝑢 ∈ F ∩ 𝐿∞ (𝐾, 𝑚) and Φ ∈ 𝐶1 (R) with Φ(0) = 0, we have Φ(𝑢) ∈ F and

E(Φ(𝑢)) ≤ sup
{
|Φ′ (𝑡) |𝑝

�� 𝑡 ∈ R, |𝑡 | ≤ ∥𝑢∥𝐿∞ (𝐾,𝑚)
}
E(𝑢). (2.2)

(3) For any 𝑢, 𝑣 ∈ F , we have 𝑢 ∧ 𝑣, 𝑢 ∨ 𝑣 ∈ F and

E(𝑢 ∨ 𝑣) + E(𝑢 ∧ 𝑣) ≤ E(𝑢) + E(𝑣). (2.3)
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(4) For any 𝑢, 𝑣 ∈ F ∩ 𝐿∞ (𝐾, 𝑚), we have 𝑢𝑣 ∈ F ∩ 𝐿∞ (𝐾, 𝑚) and

E(𝑢𝑣)1/𝑝 ≤ ∥𝑣∥𝐿∞ (𝐾,𝑚) E(𝑢)1/𝑝 + ∥𝑢∥𝐿∞ (𝐾,𝑚) E(𝑣)1/𝑝 . (2.4)

(5) If 𝑝 ∈ (1, 2], then for any 𝑢, 𝑣 ∈ F ,

2
(
E(𝑢)1/(𝑝−1)+E(𝑣)1/(𝑝−1) ) 𝑝−1 ≤ E(𝑢+𝑣)+E(𝑢−𝑣) ≤ 2

(
E(𝑢)+E(𝑣)

)
. (2.5)

If 𝑝 ∈ [2,∞), then for any 𝑢, 𝑣 ∈ F ,

2
(
E(𝑢)1/(𝑝−1)+E(𝑣)1/(𝑝−1) ) 𝑝−1 ≥ E(𝑢+𝑣)+E(𝑢−𝑣) ≥ 2

(
E(𝑢)+E(𝑣)

)
. (2.6)

Proposition 2.4 ([27, Proposition 3.5]) Suppose that (E, F ) satisfies (GC)𝑝 . Then
for any 𝑢, 𝑣 ∈ F ,

E(𝑢 + 𝑣) + E(𝑢− 𝑣) −2E(𝑢) ≤ 2
(
(𝑝−1) ∧1

) (
E(𝑢)

1
𝑝−1 +E(𝑣)

1
𝑝−1

) (𝑝−2)+
E(𝑣)1∧ 1

𝑝−1 .

(2.7)
In particular, in view of the convexity of E from Proposition 2.3-(1), R ∋ 𝑡 ↦→
E(𝑢 + 𝑡𝑣) ∈ [0,∞) is differentiable and

lim
𝑠→0

sup
ℎ∈F;E(ℎ)≤1

����E(𝑢 + 𝑠ℎ) − E(𝑢)
𝑠

− 𝑑

𝑑𝑡
E(𝑢 + 𝑡ℎ)

����
𝑡=0

���� = 0. (2.8)

Proposition 2.5 ([27, Theorem 3.6]) Suppose that (E, F ) satisfies (GC)𝑝 . For any
𝑢, 𝑣 ∈ F , we define

E(𝑢; 𝑣) B 1
𝑝

𝑑

𝑑𝑡
E(𝑢 + 𝑡𝑣)

����
𝑡=0
, (2.9)

which exists by Proposition 2.4. Then for any 𝑢, 𝑢1, 𝑢2, 𝑣 ∈ F , E(𝑢; · ) : F → R is
linear, E(𝑢; 𝑢) = E(𝑢), E(𝑎𝑢; 𝑣) = sgn(𝑎) |𝑎 |𝑝−1 E(𝑢; 𝑣) for any 𝑎 ∈ R,

E(𝑢; ℎ) = 0 and E(𝑢 + ℎ; 𝑣) = E(𝑢; 𝑣) for any ℎ ∈ E−1 (0), (2.10)

|E(𝑢; 𝑣) | ≤ E(𝑢) (𝑝−1)/𝑝E(𝑣)1/𝑝 , (2.11)

|E(𝑢1; 𝑣) − E(𝑢2; 𝑣) | ≤ 𝑐𝑝
[

max
𝑖∈{1,2}

E(𝑢𝑖)
] 𝑝−1−𝛼𝑝

𝑝

E(𝑢1 − 𝑢2)𝛼𝑝/𝑝E(𝑣)1/𝑝 (2.12)

for 𝛼𝑝 B (𝑝−1)∧1
𝑝

and some 𝑐𝑝 ∈ (0,∞) determined solely and explicitly by 𝑝.

Notation Throughout this paper, for any 𝑝-energy form (E, F ) on (𝐾, 𝑚) satisfying
(GC)𝑝 and any 𝑢, 𝑣 ∈ F , we let E(𝑢; 𝑣) ∈ R denote the element given by (2.9).
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3 Construction and properties of Korevaar–Schoen 𝒑-energy
forms

In this section, we show the existence of Korevaar–Schoen 𝑝-energy forms, i.e.,
pointwise subsequential limits of the Besov-type 𝑝-energy functionals (1.2) under the
assumption of the weak monotonicity estimate (1.3), and give some basic properties
of the limit 𝑝-energy forms. To be precise, we will prove these results for a more
general family of kernels in a synthetic way in order to apply the results in this section
to construct self-similar 𝑝-energy forms later in Sections 5 and 6.

Throughout this section, we fix a separable metric space (𝐾, 𝑑) with #𝐾 ≥ 2 and
a 𝜎-finite Borel measure 𝑚 on 𝐾 with full topological support. Under this setting,
the map from 𝐶 (𝐾) to 𝐿0 (𝐾, 𝑚) defined by taking 𝑢 ∈ 𝐶 (𝐾) to its 𝑚-equivalence
class is injective and hence gives a canonical embedding of 𝐶 (𝐾) into 𝐿0 (𝐾, 𝑚)
as a subalgebra, and we will consider 𝐶 (𝐾) as a subset of 𝐿0 (𝐾, 𝑚) through this
embedding without further notice.

We also fix 𝑝 ∈ (1,∞) throughout this section unless otherwise stated. We will
state some definitions and statements below for any 𝑝 ∈ [1,∞), but on each such
occasion we will explicitly declare that we let 𝑝 ∈ [1,∞).

First, we introduce a function space determined by a family of kernels {𝑘𝑟 }𝑟>0.

Definition 3.1 Let 𝑝 ∈ [1,∞) and let 𝒌 = {𝑘𝑟 }𝑟>0 be a family of [0,∞]-valued
Borel measurable functions on𝐾×𝐾 . We define a linear subspace 𝐵𝒌

𝑝,∞ of 𝐿 𝑝 (𝐾, 𝑚)
by

𝐵𝒌
𝑝,∞ B

{
𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚)

����� sup
𝑟>0

ˆ
𝐾

ˆ
𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥) < ∞
}

(3.1)
and equip 𝐵𝒌

𝑝,∞ with the norm ∥ · ∥𝐵𝒌
𝑝,∞

defined by

∥ 𝑓 ∥𝐵𝒌
𝑝,∞
B ∥ 𝑓 ∥𝐿𝑝 (𝐾,𝑚) +

(
sup
𝑟>0

ˆ
𝐾

ˆ
𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)
)1/𝑝

.

Also for each 𝑟 ∈ (0,∞), we define 𝐽𝑝,𝑟 : 𝐿 𝑝 (𝐾, 𝑚) → [0,∞] by

𝐽𝒌𝑝,𝑟 ( 𝑓 ) B
ˆ
𝐾

ˆ
𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥), 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

and set 𝐷 (𝐽𝒌𝑝,𝑟 ) B { 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚) | 𝐽𝒌𝑝,𝑟 ( 𝑓 ) < ∞}.

In the rest of this section, we fix a family of kernels 𝒌 = {𝑘𝑟 }𝑟>0 as in Definition
3.1. To state some basic properties of 𝐽𝒌𝑝,𝑟 , let us recall the reverse Minkowski
inequality (see, e.g., [1, Theorem 2.13]).
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Proposition 3.2 (Reverse Minkowski inequality) Let (𝑌,A, 𝜇) be a measure
space1 and let 𝑟 ∈ (0, 1]. Then for any A-measurable functions 𝑓 , 𝑔 : 𝑌 → [0,∞],(ˆ

𝑌

𝑓 𝑟 𝑑𝜇

)1/𝑟
+

(ˆ
𝑌

𝑔𝑟 𝑑𝜇

)1/𝑟
≤

(ˆ
𝑌

( 𝑓 + 𝑔)𝑟 𝑑𝜇
)1/𝑟

. (3.2)

For ease of notation, we define 𝛾𝑝 : R→ R by

𝛾𝑝 (𝑎) B sgn(𝑎) |𝑎 |𝑝−1 .

The following proposition is elementary.

Proposition 3.3 For any 𝑟 ∈ (0,∞), (𝐽𝒌𝑝,𝑟 , 𝐷 (𝐽𝒌𝑝,𝑟 )) is a 𝑝-energy form on (𝐾, 𝑚)
satisfying (GC)𝑝 , and for any 𝑓 , 𝑔 ∈ 𝐷 (𝐽𝒌𝑝,𝑟 ),

𝐽𝒌𝑝,𝑟 ( 𝑓 ; 𝑔) =
ˆ
𝐾

ˆ
𝐾

𝛾𝑝
(
𝑓 (𝑥) − 𝑓 (𝑦)

)
(𝑔(𝑥) − 𝑔(𝑦))𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥). (3.3)

Proof. Suppose that 𝑇 = (𝑇1, . . . , 𝑇𝑛2 ) : R𝑛1 → R𝑛2 satisfies (2.1) and that 𝑞2 < ∞.
Then for any 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈ 𝐷 (𝐽𝒌𝑝,𝑟 )𝑛1 and any 𝑟 ∈ (0,∞),

𝑛2∑︁
𝑙=1

𝐽𝒌𝑝,𝑟
(
𝑇𝑙 (𝒖)

)𝑞2/𝑝

(3.2)
≤ ©«

ˆ
𝐾

ˆ
𝐾

[
𝑛2∑︁
𝑙=1

|𝑇𝑙 (𝒖(𝑥)) − 𝑇𝑙 (𝒖(𝑦)) |𝑞2

] 𝑝/𝑞2

𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)ª®¬
𝑞2/𝑝

(2.1)
≤ ©«

ˆ
𝐾

ˆ
𝐾

[
𝑛1∑︁
𝑘=1

|𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦) |𝑞1

] 𝑝/𝑞1

𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)ª®¬
𝑞2/𝑝

(∗)
≤

(
𝑛1∑︁
𝑘=1

(ˆ
𝐾

ˆ
𝐾

|𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦) |𝑝 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)
)𝑞1/𝑝

)𝑞2/𝑞1

=

(
𝑛1∑︁
𝑘=1

𝐽𝒌𝑝,𝑟 (𝑢𝑘)𝑞1/𝑝

)𝑞2/𝑞1

. (3.4)

Here we used the triangle inequality for the norm of 𝐿 𝑝/𝑞1 (𝐾 ×𝐾, 𝑚𝑟 (𝑑𝑥𝑑𝑦)) in (∗),
where 𝑚𝑟 (𝑑𝑥𝑑𝑦) B 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥). The proof for the case 𝑞2 = ∞ is similar,
so (𝐽𝒌𝑝,𝑟 , 𝐷 (𝐽𝒌𝑝,𝑟 )) is a 𝑝-energy form on (𝐾, 𝑚) satisfying (GC)𝑝 . The equality (3.3)
follows from the dominated convergence theorem. ⊓⊔

Similarly, we can show the next proposition.

1 In the book [1], the reverse Minkowski inequality is stated and proved only for the 𝐿𝑟 -space over
non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same
proof works for any measure space.
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Proposition 3.4 Let 𝑟 ∈ (0,∞) and define 𝑁𝒌
𝑝,𝑟 ( 𝑓 ) B ∥ 𝑓 ∥ 𝑝

𝐿𝑝 (𝐾,𝑚) + 𝐽
𝒌
𝑝,𝑟 ( 𝑓 ) for

𝑓 ∈ 𝐷 (𝐽𝒌𝑝,𝑟 ). Then (𝑁𝒌
𝑝,𝑟 , 𝐷 (𝐽𝒌𝑝,𝑟 )) is a 𝑝-energy form on (𝐾, 𝑚) satisfying (GC)𝑝 .

In particular, for any 𝑓 , 𝑔 ∈ 𝐷 (𝐽𝒌𝑝,𝑟 ) with 𝑁𝒌
𝑝,𝑟 ( 𝑓 ) ∨ 𝑁𝒌

𝑝,𝑟 (𝑔) ≤ 1,

𝑁𝒌
𝑝,𝑟 ( 𝑓 + 𝑔) ≤

(
2𝑝∨

𝑝

𝑝−1 − 𝑁𝒌
𝑝,𝑟 ( 𝑓 − 𝑔)

) (𝑝−1)∧1
. (3.5)

Proof. A similar estimate as (3.4) shows that (𝑁𝒌
𝑝,𝑟 , 𝐷 (𝐽𝒌𝑝,𝑟 )) is a 𝑝-energy form

on (𝐾, 𝑚) satisfying (GC)𝑝 . The desired estimate (3.5) immediately follows from
Proposition 2.3-(5). ⊓⊔

Let us introduce a couple of important conditions on 𝒌.

Definition 3.5 (1) We say that 𝒌 = {𝑘𝑟 }𝑟>0 is asymptotically local if and only if
there exists {𝛿(𝑟)}𝑟>0 ⊆ (0,∞) such that lim𝑟↓0 𝛿(𝑟) = 0 and

lim
𝑟↓0

ˆ
𝐾

ˆ
𝐾\𝐵𝑑 (𝑥, 𝛿 (𝑟 ) )

𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥) = 0. (3.6)

(2) Let 𝑝 ∈ [1,∞). We say that (WM)𝑝,𝒌 holds if and only if there exists𝐶 ∈ [1,∞)
such that

sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) ≤ 𝐶 lim inf
𝑟↓0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) for any 𝑓 ∈ 𝐵𝒌
𝑝,∞. (WM)𝑝,𝒌

The next theorem states that the normed space 𝐵𝒌
𝑝,∞ equipped with ∥ · ∥𝐵𝒌

𝑝,∞
is

a nice Banach space. Our proof is very similar to that for the case of the (1, 𝑝)-
Korevaar–Schoen–Sobolev space KS1, 𝑝 given in [6, Theorems 3.1 and 4.4]. We
present a complete proof here to make this paper self-contained.

Theorem 3.6 For any 𝑝 ∈ [1,∞), the normed space 𝐵𝒌
𝑝,∞ is a Banach space.

Moreover, if 𝑝 ∈ (1,∞) and (WM)𝑝,𝒌 holds, then 𝐵𝒌
𝑝,∞ is reflexive and separable.

Proof. Let { 𝑓𝑛}𝑛∈N be a Cauchy sequence in 𝐵𝒌
𝑝,∞. Then there exists a 𝐿 𝑝-limit 𝑓 ∈

𝐿 𝑝 (𝐾, 𝑚) of { 𝑓𝑛}𝑛∈N. For any 𝜀 > 0 there exists 𝑁 ∈ N such that ∥ 𝑓𝑛 − 𝑓𝑛′ ∥𝐵𝒌
𝑝,∞

< 𝜀

for any 𝑛, 𝑛′ ≥ 𝑁 . By using Fatou’s lemma, we see that 𝐽𝒌𝑝,𝑟 ( 𝑓 − 𝑓𝑛) ≤ 𝜀𝑝 for any
𝑛 ≥ 𝑁 and hence

𝐽𝒌𝑝,𝑟 ( 𝑓 )1/𝑝 ≤ 𝐽𝒌𝑝,𝑟 ( 𝑓 − 𝑓𝑛)1/𝑝 + 𝐽𝒌𝑝,𝑟 ( 𝑓𝑛)1/𝑝 ≤ 𝜀 + sup
𝑛∈N

∥ 𝑓𝑛∥𝐵𝒌
𝑝,∞
.

Therefore, 𝑓 ∈ 𝐵𝒌
𝑝,∞ and { 𝑓𝑛}𝑛 converges to 𝑓 in 𝐵𝒌

𝑝,∞, i.e., 𝐵𝒌
𝑝,∞ is a Banach space.

Next we assume that 𝑝 ∈ (1,∞) and that (WM)𝑝,𝒌 holds. Then ||| 𝑓 |||𝐵𝒌
𝑝,∞
B(

∥ 𝑓 ∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + lim sup𝑟↓0 𝐽

𝒌
𝑝,𝑟 ( 𝑓 )

)1/𝑝 is a norm on 𝐵𝒌
𝑝,∞ that is equivalent to

∥ · ∥𝐵𝒌
𝑝,∞

. We will show that ||| · |||𝐵𝒌
𝑝,∞

is uniformly convex (see [12, Definition 1] for
the definition) and thus 𝐵𝒌

𝑝,∞ is reflexive by the Milman–Pettis theorem (see, e.g.,
[22, Theorem 2.49]). Let 𝜀 > 0 and 𝑓 , 𝑔 ∈ 𝐵𝒌

𝑝,∞ with ||| 𝑓 |||𝐵𝒌
𝑝,∞

∨ |||𝑔 |||𝐵𝒌
𝑝,∞

< 1
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and ||| 𝑓 − 𝑔 |||𝐵𝒌
𝑝,∞

> 𝜀. By [6, Lemma 4.11], it suffices to find 𝛿 ∈ (0,∞) that is
independent of 𝑓 , 𝑔 such that ||| 𝑓 + 𝑔 |||𝐵𝒌

𝑝,∞
≤ 2(1 − 𝛿). Choose 𝑟0 ∈ (0,∞) so that

∥ 𝑓 ∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + 𝐽

𝒌
𝑝,𝑟 ( 𝑓 ) < 1, ∥𝑔∥ 𝑝

𝐿𝑝 (𝐾,𝑚) + 𝐽
𝒌
𝑝,𝑟 (𝑔) < 1 for any 𝑟 ∈ (0, 𝑟0).

Since (WM)𝑝,𝒌 implies that

𝜀𝑝 < ∥ 𝑓 − 𝑔∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + lim sup

𝑟↓0
𝐽𝒌𝑝,𝑟 ( 𝑓 − 𝑔)

≤ 𝐶
(
∥ 𝑓 − 𝑔∥ 𝑝

𝐿𝑝 (𝐾,𝑚) + lim inf
𝑟↓0

𝐽𝒌𝑝,𝑟 ( 𝑓 − 𝑔)
)
,

there exists 𝑟1 ∈ (0,∞) such that

∥ 𝑓 − 𝑔∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + 𝐽

𝒌
𝑝,𝑟 ( 𝑓 − 𝑔) > 𝐶−1𝜀𝑝 for any 𝑟 ∈ (0, 𝑟1).

Hence, for any 𝑟 ∈ (0, 𝑟0 ∧ 𝑟1), by using (3.5), we see that

∥ 𝑓 + 𝑔∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + 𝐽

𝒌
𝑝,𝑟 ( 𝑓 + 𝑔) <

[
2𝑝∨

𝑝

𝑝−1 − 𝐶−1𝜀𝑝
] (𝑝−1)∧1

,

which implies ∥ 𝑓 + 𝑔∥ 𝑝
𝐿𝑝 (𝐾,𝑚) + 𝐽

𝒌
𝑝,𝑟 ( 𝑓 + 𝑔) ≤ 2𝑝 (1 − 𝛿) for some 𝛿 ∈ (0,∞)

depending only on 𝑝, 𝐶, 𝜀. The desired uniform convexity is proved.
Since 𝐿 𝑝 (𝐾, 𝑚) is separable and the inclusion map of 𝐵𝒌

𝑝,∞ into 𝐿 𝑝 (𝐾, 𝑚) is a
continuous linear injection, 𝐵𝒌

𝑝,∞ is separable by [2, Proposition 4.1]. ⊓⊔

To obtain the local Hölder continuity with exponent (𝑝 − 1) ∧ 1 of the Korevaar–
Schoen 𝑝-energy forms (see Theorem 3.8-(d) below), we will need the following
elementary inequality (see also [38, Proof of Corollary 5.8]).

Lemma 3.7 For any 𝑎, 𝑏 ∈ R,

��𝛾𝑝 (𝑎) − 𝛾𝑝 (𝑏)�� ≤ {
2 |𝑎 − 𝑏 |𝑝−1 if 𝑝 ∈ (1, 2],
(𝑝 − 1)

(
|𝑎 |𝑝−2 ∨ |𝑏 |𝑝−2) |𝑎 − 𝑏 | if 𝑝 ∈ (2,∞).

Proof. The desired estimate is evident when |𝑎 | ∧ |𝑏 | = 0, so we can assume that
0 < |𝑏 | ≤ |𝑎 | by exchanging 𝑎 and 𝑏 if necessary. The proof is divided into the
following five cases.
Case 1: 𝑝 ∈ (1, 2] and 𝑎𝑏 < 0.

We can assume that 𝑏 < 0 < 𝑎 by considering −𝑎,−𝑏 instead of 𝑎, 𝑏 respectively
if necessary. Note that |𝑎 | ≤ |𝑎 − 𝑏 |. We see that��𝛾𝑝 (𝑎) − 𝛾𝑝 (𝑏)�� = 𝑎𝑝−1 − (−𝑏) 𝑝−1 ≤ 2 |𝑎 |𝑝−1 ≤ 2 |𝑎 − 𝑏 |𝑝−1 .

Case 2: 𝑝 ∈ (1, 2], 𝑎𝑏 > 0 and |𝑎 − 𝑏 | ≤ |𝑏 |.
By the same reason as the previous case, we can assume that 𝑎 ≥ 𝑏 > 0. Noting

that |𝑎 − 𝑏 |𝑝−2 ≥ |𝑏 |𝑝−2, we have
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ˆ 𝑎

𝑏

𝑡 𝑝−2 𝑑𝑡

≤ (𝑝 − 1) |𝑏 |𝑝−2 |𝑎 − 𝑏 | ≤ (𝑝 − 1) |𝑎 − 𝑏 |𝑝−1 .

Case 3: 𝑝 ∈ (1, 2], 𝑎𝑏 > 0 and |𝑎 − 𝑏 | ≥ |𝑏 |.
Similar to the previous cases, we can assume that 𝑎 ≥ 𝑏 > 0. Then |𝑎 − 𝑏 | ≥ |𝑏 |

is equivalent to 𝑏 ∈ (0, 𝑎/2], whence 𝑎
2 ≤ 𝑎 − 𝑏 = |𝑎 − 𝑏 |. Now we see that��𝛾𝑝 (𝑎) − 𝛾𝑝 (𝑏)�� = 𝑎𝑝−1 − 𝑏𝑝−1 ≤ 𝑎𝑝−1 ≤ 2𝑝−1 |𝑎 − 𝑏 |𝑝−1 .

Case 4: 𝑝 ∈ (2,∞) and 𝑎𝑏 < 0.
In this case, we have |𝑏 |𝑝−2 ≤ |𝑎 |𝑝−2 by 𝑝−2 ≥ 0. We can assume that 𝑏 < 0 < 𝑎

similarly to Case 1. Then��𝛾𝑝 (𝑎) − 𝛾𝑝 (𝑏)�� = |𝑎 |𝑝−2 𝑎 − |𝑏 |𝑝−2 𝑏 ≤ |𝑎 |𝑝−2 𝑎 − |𝑎 |𝑝−2 𝑏 = |𝑎 |𝑝−2 |𝑎 − 𝑏 | .

Case 5: 𝑝 ∈ (2,∞) and 𝑎𝑏 > 0.
Similar to Cases 2 and 3, we can assume that 𝑎 ≥ 𝑏 > 0. Then��𝛾𝑝 (𝑎) − 𝛾𝑝 (𝑏)�� = 𝑎𝑝−1 − 𝑏𝑝−1 = (𝑝 − 1)

ˆ 𝑎

𝑏

𝑡 𝑝−2 𝑑𝑡 ≤ (𝑝 − 1) |𝑎 |𝑝−2 |𝑎 − 𝑏 | .

The above five cases complete the proof. ⊓⊔

Now we can state and prove the first main theorem of this paper as follows. Recall
that we have fixed 𝑝 ∈ (1,∞).

Theorem 3.8 Suppose that (WM)𝑝,𝒌 holds. Then any sequence {𝑟𝑛}𝑛∈N ⊆ (0,∞)
with 𝑟𝑛 → 0 has a subsequence {𝑟𝑛}𝑛∈N such that the following limit exists in [0,∞)
for any 𝑓 ∈ 𝐵𝒌

𝑝,∞:
E𝒌
𝑝 ( 𝑓 ) B lim

𝑛→∞
𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 ). (3.7)

Moreover, for any such {𝑟𝑛}𝑛∈N, the functional E𝒌
𝑝 : 𝐵𝒌

𝑝,∞ → [0,∞) defined by (3.7)
satisfies the following properties:
(a) (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) is a 𝑝-energy form on (𝐾, 𝑚) such that

𝐶−1 sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) ≤ E𝒌
𝑝 ( 𝑓 ) ≤ 𝐶 lim inf

𝑟↓0
𝐽𝒌𝑝,𝑟 ( 𝑓 ) for any 𝑓 ∈ 𝐵𝒌

𝑝,∞, (3.8)

where 𝐶 ∈ (0,∞) is the same as in (WM)𝑝,𝒌 . In particular, if 𝑚(𝐾) < ∞, then
1𝐾 ∈ 𝐵𝒌

𝑝,∞ and E𝒌
𝑝 (1𝐾 ) = 0.

(b) (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) satisfies (GC)𝑝 . Furthermore, for any 𝑓 , 𝑔 ∈ 𝐵𝒌

𝑝,∞, {𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 ; 𝑔)}𝑛∈N
is convergent in R and

E𝒌
𝑝 ( 𝑓 ; 𝑔) = lim

𝑛→∞
𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 ; 𝑔). (3.9)
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(c) (Function-wise generalized 𝑝-contraction property) Let 𝑛1, 𝑛2 ∈ N, 𝑞1 ∈ (0, 𝑝],
𝑞2 ∈ [𝑝,∞], 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈ (𝐵𝒌

𝑝,∞)𝑛1 and 𝒗 = (𝑣1, . . . , 𝑣𝑛2 ) ∈
𝐿 𝑝 (𝐾, 𝑚)𝑛2 . If

∥𝒗(𝑥) − 𝒗(𝑦)∥ℓ𝑞2 ≤ ∥𝒖(𝑥) − 𝒖(𝑦)∥ℓ𝑞1 for 𝑚 × 𝑚-a.e. (𝑥, 𝑦) ∈ 𝐾 × 𝐾 ,
(3.10)

then 𝒗 ∈ (𝐵𝒌
𝑝,∞)𝑛2 and(E𝒌

𝑝 (𝑣𝑙)1/𝑝 )𝑛2
𝑙=1


ℓ𝑞2

≤
(E𝒌

𝑝 (𝑢𝑘)1/𝑝 )𝑛1
𝑘=1


ℓ𝑞1

. (3.11)

(d) (Local Hölder continuity) There exists 𝐶𝑝 ∈ (0,∞) determined solely and
explicitly by 𝑝 such that for any 𝑓1, 𝑓2, 𝑔 ∈ 𝐵𝒌

𝑝,∞,

��E𝒌
𝑝 ( 𝑓1; 𝑔) − E𝒌

𝑝 ( 𝑓2; 𝑔)
�� ≤ 𝐶𝑝 [ max

𝑖∈{1,2}
E𝒌
𝑝 ( 𝑓𝑖)

] (𝑝−2)+
𝑝

E𝒌
𝑝 ( 𝑓1 − 𝑓2)

(𝑝−1)∧1
𝑝 E𝒌

𝑝 (𝑔)
1
𝑝 .

(3.12)
(e) (Strong locality) Suppose that 𝒌 is asymptotically local.

(i) Let 𝑓1, 𝑓2, 𝑔 ∈ 𝐵𝒌
𝑝,∞. If supp𝑚 [ 𝑓1 − 𝑎11𝐾 ] ∩ supp𝑚 [ 𝑓2 − 𝑎21𝐾 ] = ∅

and either supp𝑚 [ 𝑓1 − 𝑎11𝐾 ] or supp𝑚 [ 𝑓2 − 𝑎21𝐾 ] is compact for some
𝑎1, 𝑎2 ∈ R, then

E𝒌
𝑝 ( 𝑓1 + 𝑓2 + 𝑔) + E𝒌

𝑝 (𝑔) = E𝒌
𝑝 ( 𝑓1 + 𝑔) + E𝒌

𝑝 ( 𝑓2 + 𝑔), (3.13)

E𝒌
𝑝 ( 𝑓1 + 𝑓2; 𝑔) = E𝒌

𝑝 ( 𝑓1; 𝑔) + E𝒌
𝑝 ( 𝑓2; 𝑔). (3.14)

(ii) Let 𝑓1, 𝑓2, 𝑔 ∈ 𝐵𝒌
𝑝,∞. If supp𝑚 [ 𝑓1 − 𝑓2 − 𝑎1𝐾 ] ∩ supp𝑚 [𝑔− 𝑏1𝐾 ] = ∅ and

either supp𝑚 [ 𝑓1 − 𝑓2 − 𝑎1𝐾 ] or supp𝑚 [𝑔 − 𝑏1𝐾 ] is compact for some
𝑎, 𝑏 ∈ R, then

E𝒌
𝑝 ( 𝑓1; 𝑔) = E𝒌

𝑝 ( 𝑓2; 𝑔) and E𝒌
𝑝 (𝑔; 𝑓1) = E𝒌

𝑝 (𝑔; 𝑓2). (3.15)

(f) (Invariance) Let 𝑇 : 𝐾 → 𝐾 be Borel measurable and preserve 𝑚, i.e., satisfy
𝑇−1 (𝐴) ∈ B(𝐾) and𝑚(𝑇−1 (𝐴)) = 𝑚(𝐴) for any 𝐴 ∈ B(𝐾). If 𝒌 is𝑇-invariant,
i.e., 𝑘𝑟 (𝑇 (𝑥), 𝑇 (𝑦)) = 𝑘𝑟 (𝑥, 𝑦) for𝑚×𝑚-a.e. (𝑥, 𝑦) ∈ 𝐾×𝐾 for each 𝑟 ∈ (0,∞),
then 𝑓 ◦ 𝑇 ∈ 𝐵𝒌

𝑝,∞ and E𝒌
𝑝 ( 𝑓 ◦ 𝑇) = E𝒌

𝑝 ( 𝑓 ) for any 𝑓 ∈ 𝐵𝒌
𝑝,∞.

Definition 3.9 (𝒌-Korevaar–Schoen 𝑝-energy form) Suppose that (WM)𝑝,𝒌 holds.
For each sequence {𝑟𝑛}𝑛∈N ⊆ (0,∞) as in Theorem 3.8, the 𝑝-energy form
(E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) on (𝐾, 𝑚) defined by (3.7) is called the 𝒌-Korevaar–Schoen 𝑝-energy

form on (𝐾, 𝑚) along {𝑟𝑛}𝑛∈N.

Remark 3.10 Advantages of our 𝑝-energy form (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) on (𝐾, 𝑚) are (c) and

(d). The estimate (3.12) with the Hölder continuity exponent (𝑝−1) ∧1 is not known
for the 𝑝-energy forms constructed in [9, 23, 33, 39, 43]. (As stated in Proposition
2.5, the existence of the derivative as in (2.9) and its local Hölder continuity (2.12)
with exponent (𝑝−1)∧1

𝑝
for 𝑝-energy forms satisfying (GC)𝑝 have been proved in
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[27].) We also do not know whether (c) holds for the 𝑝-energy forms constructed in
[9, 23, 33, 39, 43].

Proof of Theorem 3.8. Fix a sequence of positive numbers {𝑟𝑛}𝑛∈N with 𝑟𝑛 → 0.
Since 𝐵𝒌

𝑝,∞ is separable by Theorem 3.6, there exists a countable dense subset C

of 𝐵𝒌
𝑝,∞. A standard diagonal argument yields a subsequence {𝑟𝑛}𝑛∈N of {𝑟𝑛}𝑛∈N

so that lim𝑛→∞ 𝐽𝒌𝑝,𝑟𝑛 (𝑢) exists in R for any 𝑢 ∈ C . Let 𝜀 > 0, 𝑓 ∈ 𝐵𝒌
𝑝,∞ and pick

𝑓∗ ∈ C satisfying sup𝑟>0 𝐽
𝒌
𝑝,𝑟 ( 𝑓 − 𝑓∗)1/𝑝 < 𝜀. Then for any 𝑘, 𝑙 ∈ N, by using the

triangle inequality for 𝐽𝒌𝑝,𝑟 ( · )1/𝑝 ,���𝐽𝒌𝑝,𝑟𝑘 ( 𝑓 )1/𝑝 − 𝐽𝒌𝑝,𝑟𝑙 ( 𝑓 )
1/𝑝

���
≤ 𝐽𝒌𝑝,𝑟𝑘 ( 𝑓 − 𝑓∗)1/𝑝 +

���𝐽𝒌𝑝,𝑟𝑘 ( 𝑓∗)1/𝑝 − 𝐽𝒌𝑝,𝑟𝑙 ( 𝑓∗)
1/𝑝

��� + 𝐽𝒌𝑝,𝑟𝑙 ( 𝑓 − 𝑓∗)1/𝑝

≤ 2𝜀 +
���𝐽𝒌𝑝,𝑟𝑘 ( 𝑓∗)1/𝑝 − 𝐽𝒌𝑝,𝑟𝑙 ( 𝑓∗)

1/𝑝
��� .

Letting 𝑘 ∧ 𝑙 → ∞ in this inequality, we obtain

lim sup
𝑘∧𝑙→∞

���𝐽𝒌𝑝,𝑟𝑘 ( 𝑓 )1/𝑝 − 𝐽𝒌𝑝,𝑟𝑙 ( 𝑓 )
1/𝑝

��� ≤ 2𝜀,

which proves that {𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 )}𝑛∈N is a Cauchy sequence in [0,∞) and hence is conver-
gent in [0,∞). Now we define E𝒌

𝑝 : 𝐵𝒌
𝑝,∞ → [0,∞) by E𝒌

𝑝 ( 𝑓 ) B lim𝑛→∞ 𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 ).
Clearly, (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) is a 𝑝-energy form on (𝐾, 𝑚) satysfying (3.8) by (WM)𝑝,𝒌 .

Let us show (b), (c), (d) and (e) because the other properties (a) and (f) are immediate
from the expression of 𝐽𝒌𝑝,𝑟 ( · ) and the definition of E𝒌

𝑝 .
(b),(c): Obviously, (c) implies (GC)𝑝 for (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞), so we first show (c). For

simplicity, we consider the case 𝑞2 < ∞ (the case 𝑞2 = ∞ is similar). Let 𝒖 =

(𝑢1, . . . , 𝑢𝑛1 ) ∈ (𝐵𝒌
𝑝,∞)𝑛1 and 𝒗 = (𝑣1, . . . , 𝑣𝑛2 ) ∈ 𝐿 𝑝 (𝐾, 𝑚)𝑛2 satisfy (3.10). Then

the same argument as in (3.4) shows that for any 𝑟 ∈ (0,∞),

𝑛2∑︁
𝑙=1

𝐽𝒌𝑝,𝑟 (𝑣𝑙)𝑞2/𝑝 ≤
(
𝑛1∑︁
𝑘=1

𝐽𝒌𝑝,𝑟 (𝑢𝑘)𝑞1/𝑝

)𝑞2/𝑞1

, (3.16)

which implies that 𝑣𝑙 ∈ 𝐵𝒌
𝑝,∞ for any 𝑙 ∈ {1, . . . , 𝑛2}. Using (3.7) to take the limit of

(3.16) with 𝑟 = 𝑟𝑛 as 𝑛→ ∞, we obtain
∑𝑛2
𝑙=1 E

𝒌
𝑝 (𝑣𝑙)𝑞2/𝑝 ≤

(∑𝑛1
𝑘=1 E

𝒌
𝑝 (𝑢𝑘)𝑞1/𝑝 )𝑞2/𝑞1 .

This completes the proof of (c).
Next we prove (3.9). We know that E𝒌

𝑝 is Fréchet differentiable on 𝐵𝒌
𝑝,∞ by (2.8)

in Proposition 2.4. Also, by combining (2.7) (in Proposition 2.4) for 𝐽𝒌𝑝,𝑟 and the
convexity of 𝑡 ↦→ 𝐽𝒌𝑝,𝑟 ( 𝑓 + 𝑡𝑔), we see that for any 𝑡 ∈ (0, 1),����� 𝐽𝒌𝑝,𝑟 ( 𝑓 + 𝑡𝑔) − 𝐽𝒌𝑝,𝑟 ( 𝑓 )𝑡

− 𝑝𝐽𝒌𝑝,𝑟 ( 𝑓 ; 𝑔)
�����
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=

����� 𝐽𝒌𝑝,𝑟 ( 𝑓 + 𝑡𝑔) − 𝐽𝒌𝑝,𝑟 ( 𝑓 )𝑡
− 𝑑

𝑑𝑡
𝐽𝒌𝑝,𝑟 ( 𝑓 + 𝑡𝑔)

����
𝑡=0

�����
≤
𝐽𝒌𝑝,𝑟 ( 𝑓 + 𝑡𝑔) + 𝐽𝒌𝑝,𝑟 ( 𝑓 − 𝑡𝑔) − 2𝐽𝒌𝑝,𝑟 ( 𝑓 )

𝑡

(2.7)
≤ 𝑂𝑡 ( 𝑓 ; 𝑔),

where 𝑂𝑡 ( 𝑓 ; 𝑔) = 𝐶𝑝, 𝑓 ,𝑔𝑡 (𝑝−1)∧ 1
𝑝−1 for some constant 𝐶𝑝, 𝑓 ,𝑔 which depends only

on 𝑝, | 𝑓 |𝐵𝒌
𝑝,∞

and |𝑔 |𝐵𝒌
𝑝,∞

. Hence we see that

lim sup
𝑛→∞

��E𝒌
𝑝 ( 𝑓 ; 𝑔) − 𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 ; 𝑔)

��
≤ lim
𝑛→∞

�����E𝒌
𝑝 ( 𝑓 ; 𝑔) −

1
𝑝
·
𝐽𝒌𝑝,𝑟𝑛 ( 𝑓 + 𝑡𝑔) − 𝐽

𝒌
𝑝,𝑟𝑛

( 𝑓 )
𝑡

����� + 1
𝑝
𝑂𝑡 ( 𝑓 ; 𝑔)

=

�����E𝒌
𝑝 ( 𝑓 ; 𝑔) −

1
𝑝
·
E𝒌
𝑝 ( 𝑓 + 𝑡𝑔) − E𝒌

𝑝 ( 𝑓 )
𝑡

����� + 1
𝑝
𝑂𝑡 ( 𝑓 ; 𝑔) −−→

𝑡↓0
0,

which shows (3.9).
(d): This is immediate from (3.3), Hölder’s inequality, Lemma 3.7 and (3.9).
(e): By [27, Propositions 3.29 and 3.30], it suffices to show (3.13). For simplicity,

for 𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚) and 𝐸 ∈ B(𝐾), define

𝐽𝒌𝑝,𝑟 (𝑢 | 𝐸) B
ˆ
𝐸

ˆ
𝐵𝑑 (𝑥, 𝛿 (𝑟 ) )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝑘𝑟 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥),

and set 𝐴𝑖 B supp𝑚 [ 𝑓𝑖 − 𝑎𝑖1𝐾 ] for 𝑖 ∈ {1, 2}. We also set 𝐽𝒌𝑝,𝑟 (𝑢) B 𝐽𝒌𝑝,𝑟 (𝑢 | 𝐾).
Note that there exists 𝑟0 ∈ (0,∞) such that dist𝑑 (𝐴1, 𝐴2) > 2𝛿(𝑟) for any 𝑟 ∈ (0, 𝑟0)
since either 𝐴1 or 𝐴2 is compact. Set 𝑁𝑟 B 𝐾 \ ((𝐴1)𝑑, 𝛿 (𝑟 ) ∪ (𝐴2)𝑑, 𝛿 (𝑟 ) ) for
𝑟 ∈ (0,∞). Then for any 𝑟 ∈ (0, 𝑟0),

𝐽𝒌𝑝,𝑟 ( 𝑓1 + 𝑓2 + 𝑔) + 𝐽𝒌𝑝,𝑟 (𝑔)
= 𝐽𝒌𝑝,𝑟 ( 𝑓1 + 𝑔 | (𝐴1)𝑑, 𝛿 (𝑟 ) ) + 𝐽𝒌𝑝,𝑟 ( 𝑓2 + 𝑔 | (𝐴2)𝑑, 𝛿 (𝑟 ) ) + 𝐽𝒌𝑝,𝑟 (𝑔 | 𝑁𝑟 ) + 𝐽𝒌𝑝,𝑟 (𝑔)
= 𝐽𝒌𝑝,𝑟 ( 𝑓1 + 𝑔 | (𝐴1)𝑑, 𝛿 (𝑟 ) ) + 𝐽𝒌𝑝,𝑟 (𝑔 | (𝐴2)𝑑, 𝛿 (𝑟 ) ∪ 𝑁𝑟 )
+ 𝐽𝒌𝑝,𝑟 ( 𝑓2 + 𝑔 | (𝐴2)𝑑, 𝛿 (𝑟 ) ) + 𝐽𝒌𝑝,𝑟 (𝑔 | (𝐴1)𝑑, 𝛿 (𝑟 ) ∪ 𝑁𝑟 )

= 𝐽𝒌𝑝,𝑟 ( 𝑓1 + 𝑔) + 𝐽𝒌𝑝,𝑟 ( 𝑓2 + 𝑔). (3.17)

Noting that lim𝑛→∞ 𝐽𝒌𝑝,𝑟𝑛 (𝑢) = E𝒌
𝑝 (𝑢) for any 𝑢 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐿∞ (𝐾, 𝑚) by (3.7)
and the asymptotic locality of 𝒌, we obtain (3.13) by letting 𝑟 B 𝑟𝑛 and 𝑛 → ∞
in (3.17) provided 𝑓1, 𝑓2, 𝑔 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐿∞ (𝐾, 𝑚). Finally, since (−𝑛) ∨ (𝑢 ∧ 𝑛) ∈
𝐵𝒌
𝑝,∞ ∩ 𝐿∞ (𝐾, 𝑚), lim𝑛→∞ E𝒌

𝑝 (𝑢 − (−𝑛) ∨ (𝑢 ∧ 𝑛)) = 0 by [27, Corollary 3.17] and
supp𝑚 [𝑢 − 𝑐1𝐾 ] = supp𝑚 [(−𝑛) ∨ (𝑢 ∧ 𝑛) − 𝑐1𝐾 ] for any 𝑢 ∈ 𝐵𝒌

𝑝,∞ and any (𝑛, 𝑐) ∈
N × R with 𝑛 > |𝑐 |, (3.13) extends to the remaining case { 𝑓1, 𝑓2, 𝑔} ⊈ 𝐿∞ (𝐾, 𝑚) by
the triangle inequality for E𝒌

𝑝 ( · )1/𝑝 , completing the proof. ⊓⊔
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Next we would like to state further properties of 𝒌-Korevaar–Shoen 𝑝-energy
forms in the “strongly 𝑝-recurrent” case. To this end, we recall the notion of 𝑝-
resistance form introduced in [27] (see [29, 31] for the theory for the case 𝑝 = 2).

Definition 3.11 (𝑝-Resistance form) Let 𝐾 be a non-empty set. The pair (E, F ) of
F ⊆ R𝐾 and E : F → [0,∞) is said to be a 𝑝-resistance form on 𝐾 if and only if it
satisfies the following conditions (RF1)𝑝-(RF5)𝑝:
(RF1)𝑝 F is a linear subspace of R𝐾 (containing R1𝐾 ) and E( · )1/𝑝 is a seminorm

on F satisfying {𝑢 ∈ F | E(𝑢) = 0} = R1𝐾 .
(RF2)𝑝 The quotient normed space (F /R1𝐾 , E1/𝑝) is a Banach space.
(RF3)𝑝 If 𝑥 ≠ 𝑦 ∈ 𝐾 , then there exists 𝑢 ∈ F such that 𝑢(𝑥) ≠ 𝑢(𝑦).
(RF4)𝑝 For any 𝑥, 𝑦 ∈ 𝐾 ,

𝑅E (𝑥, 𝑦) B 𝑅(E,F) (𝑥, 𝑦) B sup
{
|𝑢(𝑥) − 𝑢(𝑦) |𝑝

E(𝑢)

���� 𝑢 ∈ F \ R1𝐾
}
< ∞.
(3.18)

(RF5)𝑝 (E, F ) satisfies (GC)𝑝 .

We also need to recall the following standard notions on the metric 𝑑 and the
measure 𝑚.

Definition 3.12 Let 𝑄 ∈ (0,∞).
(1) The metric 𝑑 is said to be metric doubling if and only if for any 𝛿 ∈ (0, 1) there

exists 𝑁 ∈ N such that for any (𝑥, 𝑟) ∈ 𝐾 × (0,∞) we can find {𝑥 𝑗 }𝑁𝑗=1 ⊆ 𝐾 so
that 𝐵𝑑 (𝑥, 𝑟) ⊆

⋃𝑁
𝑗=1 𝐵𝑑 (𝑥 𝑗 , 𝛿𝑟).

(2) The measure 𝑚 is said to be volume doubling with growth exponent 𝑄 (with
respect to the metric 𝑑) if and only if there exists 𝐶′

D ∈ (0,∞) such that

𝑚(𝐵𝑑 (𝑥, 𝑠)) ≤ 𝐶′
D

( 𝑠
𝑟

)𝑄
𝑚(𝐵𝑑 (𝑥, 𝑟)) < ∞ for any 𝑥 ∈ 𝐾 and any 0 < 𝑟 ≤ 𝑠.

(3.19)
Note that 𝑚 is volume doubling with growth exponent 𝑄′ for some 𝑄′ ∈ (0,∞)
if and only if 𝑚 is volume doubling, i.e., there exists 𝐶D ∈ (0,∞) such that

𝑚(𝐵𝑑 (𝑥, 2𝑠)) ≤ 𝐶D𝑚(𝐵𝑑 (𝑥, 𝑠)) < ∞ for any (𝑥, 𝑠) ∈ 𝐾 × (0,∞). (3.20)

(3) The measure 𝑚 is said to be 𝑄-Ahlfors regular (with respect to the metric 𝑑) if
and only if there exists 𝐶AR ∈ [1,∞) such that

𝐶−1
AR 𝑠

𝑄 ≤ 𝑚(𝐵𝑑 (𝑥, 𝑠)) ≤ 𝐶AR 𝑠
𝑄 for any (𝑥, 𝑠) ∈ 𝐾 × (0, 2 diam(𝐾, 𝑑)).

(3.21)

The 𝑄-Ahlfors regularity of 𝑚 clearly implies that 𝑚 is volume doubling with
growth exponent 𝑄, and it is also well known that the volume doubling property of
𝑚 with respect to 𝑑 implies the metric doubling property of 𝑑.

Now we give a sufficient condition for a 𝒌-Korevaar–Schoen 𝑝-energy form
(E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) on (𝐾, 𝑚) to be a 𝑝-resistance form on 𝐾 .
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Proposition 3.13 Suppose that there exist 𝑄, 𝛽𝑝 ∈ (0,∞) with 𝛽𝑝 > 𝑄 such that
the following hold:
(i) The measure 𝑚 satisfies 𝑚(𝐾) < ∞ and is volume doubling with growth

exponent 𝑄 ∈ (0,∞).
(ii) (WM)𝑝,𝒌 holds.
(iii)

{
𝑢 ∈ 𝐵𝒌

𝑝,∞
�� sup𝑟>0 𝐽

𝒌
𝑝,𝑟 (𝑢) = 0

}
= R1𝐾 .

(iv) 𝐵𝒌
𝑝,∞ ⊆ 𝐶 (𝐾), and there exists 𝐶 ∈ (0,∞) such that for any 𝑓 ∈ 𝐵𝒌

𝑝,∞ and
any 𝑥, 𝑦 ∈ 𝐾 ,

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶𝑑 (𝑥, 𝑦) (𝛽𝑝−𝑄)/𝑝 sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 )1/𝑝 , 𝑥, 𝑦 ∈ 𝐾. (3.22)

(v) There exists𝐶 ∈ (0,∞) such that for any (𝑥, 𝑠) ∈ 𝐾×(0,∞) with 𝐵𝑑 (𝑥, 𝑠) ≠ 𝐾 ,

inf
{
sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 )
���� 𝑓 ∈ 𝐶 (𝐾), supp𝐾 [ 𝑓 ] ⊆ 𝐵𝑑 (𝑥, 2𝑠), 𝑓 ≥ 1 on 𝐵𝑑 (𝑥, 𝑠)

}
≤ 𝐶𝑚(𝐵𝑑 (𝑥, 𝑠))

𝑠𝛽𝑝
. (3.23)

Then any 𝒌-Korevaar–Schoen 𝑝-energy form (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) on (𝐾, 𝑚), which exists

by (ii) and Theorem 3.8, is a 𝑝-resistance form on 𝐾 . If in addition 𝑚 is 𝑄-Ahlfors
regular, then there exist 𝛼0, 𝛼1 ∈ (0,∞) such that for any such (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞),

𝛼0𝑑 (𝑥, 𝑦)𝛽𝑝−𝑄 ≤ 𝑅E𝒌
𝑝
(𝑥, 𝑦) ≤ 𝛼1𝑑 (𝑥, 𝑦)𝛽𝑝−𝑄 for any 𝑥, 𝑦 ∈ 𝐾 . (3.24)

Proof. Let (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) be a 𝒌-Korevaar–Schoen 𝑝-energy form on (𝐾, 𝑚). We shall

show that (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) is a 𝑝-resistance form on 𝐾 . (RF1)𝑝 and (RF5)𝑝 are clear

from Theorem 3.8 and (iii). The condition (3.23) immediately implies (RF3)𝑝 .
By (3.22) and the lower inequality in (3.8) we have 𝑅E𝒌

𝑝
(𝑥, 𝑦) ≲ 𝑑 (𝑥, 𝑦)𝛽𝑝−𝑄 for

any 𝑥, 𝑦 ∈ 𝐾 , whence (RF4)𝑝 and the upper estimate in (3.24) hold. In particular,
sup𝑥,𝑦∈𝐾 𝑅E𝒌

𝑝
(𝑥, 𝑦) < ∞. To prove (RF2)𝑝 , we see from (3.22) that for any 𝑓 ∈ 𝐵𝒌

𝑝,∞,

ˆ
𝐾

���� 𝑓 (𝑥) −  
𝐾

𝑓 𝑑𝑚

����𝑝 𝑚(𝑑𝑥) ≤
ˆ
𝐾

 
𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≲

(
sup
𝑥,𝑦∈𝐾

𝑅E𝒌
𝑝
(𝑥, 𝑦)

)
E𝒌
𝑝 ( 𝑓 )𝑚(𝐾). (3.25)

Let { 𝑓𝑛}𝑛∈N ⊆ 𝐵𝒌
𝑝,∞ be a Cauchy sequence in (𝐵𝒌

𝑝,∞/R1𝐾 , E𝒌
𝑝 ( · )1/𝑝) withffl

𝐾
𝑓𝑛 𝑑𝑚 = 0. Then (3.25) implies that { 𝑓𝑛}𝑛∈N is a Cauchy sequence in 𝐿 𝑝 (𝐾, 𝑚),

and thus { 𝑓𝑛}𝑛∈N is a Cauchy sequence in 𝐵𝒌
𝑝,∞. Since 𝐵𝒌

𝑝,∞ is a Banach space by
Theorem 3.6, we conclude that (𝐵𝒌

𝑝,∞/R1𝐾 , E𝒌
𝑝 ( · )1/𝑝) is also a Banach space.

Next we show the lower estimate in (3.24) under the assumption that 𝑚 is 𝑄-
Ahlfors regular. Let 𝑥, 𝑦 ∈ 𝐾 and let 𝑠 > 0 satisfy 𝑑 (𝑥, 𝑦) > 2𝑠 ≥ 2−1𝑑 (𝑥, 𝑦).
Then 𝐵𝑑 (𝑥, 𝑠) ≠ ∅. By (3.23), there exists 𝑓 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶 (𝐾) such that supp𝐾 [ 𝑓 ] ⊆
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𝐵𝑑 (𝑥, 𝑠), 𝑓 ≥ 1 on 𝐵𝑑 (𝑥, 2𝑠) and E𝒌
𝑝 ( 𝑓 ) ≤ 𝐶1𝑠

𝑄−𝛽𝑝 , where 𝐶1 ∈ (0,∞) depends
only on 𝐶 in (3.23) and 𝐶AR in (3.21). Hence we have

𝑅E𝒌
𝑝
(𝑥, 𝑦) ≥ E𝒌

𝑝 ( 𝑓 )−1 ≥ 𝐶−1
1 𝑠𝛽𝑝−𝑄 ≳ 𝑑 (𝑥, 𝑦)𝛽𝑝−𝑄 . ⊓⊔

Example 3.14 (Korevaar–Schoen–Sobolev space) In addition to the setting spec-
ified at the beginning of this section, we suppose that 𝐾 is connected and that
𝑚(𝐵𝑑 (𝑥, 𝑟)) < ∞ for any (𝑥, 𝑟) ∈ 𝐾 × (0,∞). For 𝑠 > 0, define 𝒌𝑠 = {𝑘𝑠𝑟 }𝑟>0 by

𝑘𝑠𝑟 (𝑥, 𝑦) B
1𝐵𝑑 (𝑥,𝑟 ) (𝑦)

𝑟 𝑝𝑠𝑚(𝐵𝑑 (𝑥, 𝑟))
, 𝑥, 𝑦 ∈ 𝐾. (3.26)

Clearly, 𝒌𝑠 is asymptotically local. We define the Besov–Lipschitz space 𝐵𝑠𝑝,∞ by
𝐵𝑠𝑝,∞ B 𝐵𝒌𝑠

𝑝,∞. Then the critical 𝐿 𝑝-Besov exponent 𝑠𝑝 of (𝐾, 𝑑, 𝑚) is defined as

𝑠𝑝 B sup
{
𝑠 ∈ (0,∞)

�� 𝐵𝑠𝑝,∞ contains a non-constant function
}
. (3.27)

We call KS1, 𝑝 B 𝐵
𝑠𝑝
𝑝,∞ the (1, 𝑝)-Korevaar–Schoen–Sobolev space on (𝐾, 𝑑, 𝑚).

We also write KS1, 𝑝 (𝐾, 𝑑, 𝑚) for KS1, 𝑝 when we would like to clarify the underlying
metric measure space (𝐾, 𝑑, 𝑚). If𝑚 is𝑄-Ahlfors regular with respect to 𝑑 for some
𝑄 ∈ (0,∞), then 𝒌𝑠𝑝 ,𝑄 =

{
𝑘
𝑠𝑝 ,𝑄
𝑟

}
𝑟>0 given by

𝑘
𝑠𝑝 ,𝑄
𝑟 (𝑥, 𝑦) B 𝑟−𝑝𝑠𝑝−𝑄1𝐵𝑑 (𝑥,𝑟 ) (𝑦), 𝑥, 𝑦 ∈ 𝐾,

which again is obviously asymptotically local, also corresponds to the (1, 𝑝)-
Korevaar–Schoen–Sobolev space, i.e., 𝐵𝒌𝑠𝑝 ,𝑄

𝑝,∞ = KS1, 𝑝 . If (WM)𝑝,𝒌𝑠𝑝 holds, then
we write EKS

𝑝 instead of E𝒌𝑠𝑝
𝑝 and call each 𝒌𝑠𝑝 -Korevaar–Schoen 𝑝-energy form

(EKS
𝑝 ,KS1, 𝑝) on (𝐾, 𝑚) a Korevaar–Schoen 𝑝-energy form on (𝐾, 𝑑, 𝑚).
It is not easy in general to verify (WM)𝑝,𝒌 and (3.23) for the family of kernels

𝒌 = 𝒌𝑠𝑝 ; see Sections 5 and 6 for some settings in which we can prove these
conditions. On the other hand, a reasonable sufficient condition for (3.22) is known.
In fact, if 𝑚 is volume doubling with growth exponent 𝑄 ∈ (0,∞) and 𝑝𝑠𝑝 > 𝑄,
then (3.22) holds for KS1, 𝑝; see, e.g., [3, Theorem 5.1] or [6, Theorem 3.2].

Let us give a couple of other examples of families of kernels 𝒌, whose associated
Besov spaces 𝐵𝒌

𝑝,∞ coincide with KS1, 𝑝 under suitable assumptions. The first one
𝒌# = {𝑘#

𝑟 }𝑟>0 is a variant of 𝒌𝑠𝑝 obtained by replacing 𝑟 𝑝𝑠𝑝 in (3.26) for 𝑠 = 𝑠𝑝 with
𝑑 (𝑥, 𝑦) 𝑝𝑠𝑝 , i.e., defined by

𝑘#
𝑟 (𝑥, 𝑦) B

1𝐵𝑑 (𝑥,𝑟 ) (𝑦)
𝑑 (𝑥, 𝑦) 𝑝𝑠𝑝𝑚(𝐵𝑑 (𝑥, 𝑟))

, 𝑥, 𝑦 ∈ 𝐾, (3.28)

so that 𝒌# is clearly asymptotically local. When 𝑚 is volume doubling and (𝐾, 𝑑, 𝑚)
is equipped with a pair of 𝑝-energy form and 𝑝-energy measures satisfying a suitable
Poincaré inequality and a capacity upper estimate as in the cases of many examples
including the Sierpiński carpet, one can show that 𝒌# satisfies 𝐵𝒌#

𝑝,∞ = KS1, 𝑝 and
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(WM)𝑝,𝒌# ; see [44, Corollary 1.14] for details. As Proposition A.1 in Appendix A,
we give an alternative elementary proof that a Poincaré-type inequality as given in
(A.1) implies 𝐵𝒌#

𝑝,∞ = KS1, 𝑝 and (WM)𝑝,𝒌# .
The second family of kernels 𝒌heat is a mollification of 𝒌𝑠𝑝 obtained by replacing

𝑚(𝐵𝑑 (𝑥, 𝑟))−11𝐵𝑑 (𝑥,𝑟 ) (𝑦) in (3.26) for 𝑠 = 𝑠𝑝 with the heat kernel of a diffusion on
𝐾 . Namely, assuming that (𝐾, 𝑑) is locally compact, that𝑚 is a Radon measure on 𝐾 ,
and that (𝐾, 𝑑, 𝑚) is equipped with a strongly local regular symmetric Dirichlet form
(E, F ) on 𝐿2 (𝐾, 𝑚) which has a heat kernel {𝑞𝑡 }𝑡>02, we define 𝒌heat = {𝑘heat

𝑟 }𝑟>0
by

𝑘heat
𝑟 (𝑥, 𝑦) B 𝑞𝑟𝛽 (𝑥, 𝑦)

𝑟 𝑝𝑠𝑝
, 𝑥, 𝑦 ∈ 𝐾, (3.29)

where 𝛽 ∈ (1,∞) is a parameter to be suitably chosen depending on (𝐾, 𝑑, 𝑚, E, F ).
This family of kernels has been considered in [3, 5, 6, 16, 40] under the assumptions
that (𝐾, 𝑑) is complete and that the following (full off-diagonal) sub-Gaussian heat
kernel estimates with walk dimension 𝛽 hold: there exist𝐶1, 𝑐1, 𝐶2, 𝑐2 ∈ (0,∞) such
that for each 𝑡 ∈ (0,∞),

𝐶1

𝑚(𝐵(𝑥, 𝑡1/𝛽))
exp

(
−𝑐1

(
𝑑 (𝑥, 𝑦)𝛽

𝑡

) 1
𝛽−1

)
≤ 𝑞𝑡 (𝑥, 𝑦)

≤ 𝐶2

𝑚(𝐵(𝑥, 𝑡1/𝛽))
exp

(
−𝑐2

(
𝑑 (𝑥, 𝑦)𝛽

𝑡

) 1
𝛽−1

)
for 𝑚-a.e. 𝑥, 𝑦 ∈ 𝐾; (3.30)

note that (3.30) implies that 𝑚 is volume doubling (see, e.g., [25, Remark 1.2-(1)]).
In particular, under these assumptions, it has been proved in [16] that 𝐵𝒌heat

𝑝,∞ = KS1, 𝑝

([16, Lemmas 3.3 and 3.4]) and that (WM)𝑝,𝒌𝑠𝑝 and (WM)𝑝,𝒌heat are equivalent to
each other ([16, Theorem 1.7]). It is also easy to see that, if𝑚 is volume doubling, the
upper inequality in (3.30) holds and𝑚(𝐾) < ∞, then 𝒌heat is asymptotically local. On
the other hand, even if (3.30) holds, 𝒌heat is not necessarily asymptotically local when
𝑚(𝐾) = ∞, as can be seen from the case of the canonical Dirichlet form on R𝑛, (1.4)
for 𝑝 = 2 with domain 𝑊1,2 (R𝑛), where 𝑠𝑝 = 1 as mentioned in the introduction,
𝛽 = 2 and 𝑞𝑡 (𝑥, 𝑦) = (4𝜋𝑡)−𝑛/2𝑒−|𝑥−𝑦 |

2/(4𝑡 ) for any (𝑡, 𝑥, 𝑦) ∈ (0,∞) × R𝑛 × R𝑛.

4 Associated 𝒑-energy measures and chain rule

Next in this section, we introduce the 𝑝-energy measures associated with a given
𝒌-Korevaar–Schoen 𝑝-energy form (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞), and show their basic properties.

2 I.e., a family {𝑞𝑡 }𝑡>0 of [0,∞]-valued Borel measurable functions on 𝐾 × 𝐾 such that 𝑇𝑡 𝑓 =´
𝐾
𝑞𝑡 ( ·, 𝑦) 𝑓 (𝑦) 𝑚(𝑑𝑦) 𝑚-a.e. on 𝐾 for any 𝑡 ∈ (0,∞) and any 𝑓 ∈ 𝐿2 (𝐾, 𝑚) , where {𝑇𝑡 }𝑡>0

denotes the Markovian semigroup on 𝐿2 (𝐾, 𝑚) associated with (E, F); see [14, Sections 1.1, 1.3
and 1.4] for the definitions of the relevant notions from the theory of symmetric Dirichlet forms.
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Throughout this section, as in the previous section, we fix 𝑝 ∈ (1,∞), a separable
metric space (𝐾, 𝑑) with #𝐾 ≥ 2 and a 𝜎-finite Borel measure 𝑚 on 𝐾 with
full topological support. In addition, we suppose that (𝐾, 𝑑) is locally compact.
We also fix a family of kernels 𝒌 = {𝑘𝑟 }𝑟>0 as in Definition 3.1, suppose that
𝒌 is asymptotically local and that (WM)𝑝,𝒌 holds, and fix an arbitrary sequence
{𝑟𝑛}𝑛∈N ⊆ (0,∞) as in Theorem 3.8, so that we have the 𝒌-Korevaar–Schoen 𝑝-
energy form (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) on (𝐾, 𝑚) along {𝑟𝑛}𝑛∈N defined by (3.7). For ease of

notation, we set
𝑚𝑛 (𝑑𝑥𝑑𝑦) B 𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥).

For each 𝑢 ∈ 𝐵𝒌
𝑝,∞∩𝐿∞ (𝐾, 𝑚), define a linear map Ψ𝒌

𝑝 (𝑢; · ) : 𝐵𝒌
𝑝,∞∩𝐿∞ (𝐾, 𝑚) →

R by, for each 𝜑 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐿∞ (𝐾, 𝑚),

Ψ𝒌
𝑝 (𝑢; 𝜑) B E𝒌

𝑝 (𝑢; 𝑢𝜑) −
(
𝑝 − 1
𝑝

) 𝑝−1
E𝒌
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
. (4.1)

(Note that 𝑢𝜑, |𝑢 |
𝑝

𝑝−1 ∈ 𝐵𝒌
𝑝,∞ by Theorem 3.8-(b) and Proposition 2.3-(4),(2).)

Theorem 4.1 Let 𝑢 ∈ 𝐵𝒌
𝑝,∞∩𝐶𝑏 (𝐾) and 𝜑 ∈ 𝐵𝒌

𝑝,∞∩𝐿∞ (𝐾, 𝑚). If {𝑢, 𝜑}∩𝐶𝑐 (𝐾) ≠
∅, then

Ψ𝒌
𝑝 (𝑢; 𝜑) = lim

𝑛→∞

ˆ
𝐾

ˆ
𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥)𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

= lim
𝑛→∞

ˆ
𝐾

ˆ
𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑦)𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥),
(4.2)

��Ψ𝒌
𝑝 (𝑢; 𝜑)

�� ≤ ∥𝜑∥𝐿∞ (𝐾,𝑚) E𝒌
𝑝 (𝑢). (4.3)

In particular, if in addition 𝜑 ≥ 0, then Ψ𝒌
𝑝 (𝑢; 𝜑) ≥ 0.

Proof. First, we observe that

Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) B 𝐽𝒌𝑝,𝑟𝑛 (𝑢; 𝑢𝜑) −

(
𝑝 − 1
𝑝

) 𝑝−1
𝐽𝒌𝑝,𝑟𝑛

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)

=

ˆ
𝐾×𝐾

[
|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥) + 𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

)
· (𝜑(𝑥) − 𝜑(𝑦))𝑢(𝑦)

−
(
𝑝 − 1
𝑝

) 𝑝−1
𝛾𝑝

(
|𝑢(𝑥) |

𝑝

𝑝−1 − |𝑢(𝑦) |
𝑝

𝑝−1
)
· (𝜑(𝑥) − 𝜑(𝑦))

]
𝑚𝑛 (𝑑𝑥𝑑𝑦). (4.4)

Define 𝐹𝑛 ∈ B(𝐾 × 𝐾) by

𝐹𝑛 B {(𝑥, 𝑦) ∈ 𝐾 × 𝐾 | 𝑑 (𝑥, 𝑦) < 𝛿(𝑟𝑛) and (𝜑(𝑥), 𝜑(𝑦)) ≠ (0, 0)},

and set

𝐼𝒌𝑝,𝑛 (𝑢; 𝜑)
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B

ˆ
𝐹𝑛

[
|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥) + 𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

)
· (𝜑(𝑥) − 𝜑(𝑦))𝑢(𝑦)

−
(
𝑝 − 1
𝑝

) 𝑝−1
𝛾𝑝

(
|𝑢(𝑥) |

𝑝

𝑝−1 − |𝑢(𝑦) |
𝑝

𝑝−1
)
· (𝜑(𝑥) − 𝜑(𝑦))

]
𝑚𝑛 (𝑑𝑥𝑑𝑦).

Note that lim𝑛→∞
(
Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) − 𝐼𝒌𝑝,𝑛 (𝑢; 𝜑)

)
= 0 by (3.6) and ∥𝑢∥sup ∨ ∥𝜑∥𝐿∞ (𝐾,𝑚) <

∞. Since 𝐹𝑛
𝐾×𝐾 is compact for sufficiently large 𝑛 ∈ N when 𝜑 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾),
𝑢 is uniformly continuous on {𝑥 ∈ 𝐾 | (𝑥, 𝑦) ∈ 𝐹𝑛 or (𝑦, 𝑥) ∈ 𝐹𝑛 for some 𝑦 ∈ 𝐾}
for such 𝑛. By combining this observation with the uniform continuity of 𝑡 ↦→
|𝑡 |1/(𝑝−1) sgn(𝑡) on 𝑢(𝐾), for any 𝜀 > 0, we can find 𝑁 ∈ N such that���� 𝑝 − 1

𝑝

(
|𝑢(𝑥) |

𝑝

𝑝−1 − |𝑢(𝑦) |
𝑝

𝑝−1
)
−

(
𝑢(𝑥) − 𝑢(𝑦)

)
|𝑢(𝑦) |

1
𝑝−1 sgn

(
𝑢(𝑦)

) ����
=

�����ˆ 𝑢(𝑥 )

𝑢(𝑦)

[
|𝑡 |

1
𝑝−1 sgn(𝑡) − |𝑢(𝑦) |

1
𝑝−1 sgn

(
𝑢(𝑦)

) ]
𝑑𝑡

����� ≤ 𝜀 |𝑢(𝑥) − 𝑢(𝑦) | (4.5)

for any (𝑥, 𝑦) ∈ ⋃
𝑛≥𝑁 𝐹𝑛. Using Lemma 3.7, (4.5) and Hölder’s inequality, we can

find 𝐶𝑝,𝑢 ∈ (0,∞) depending only on 𝑝 and ∥𝑢∥sup such that

sup
𝑛≥𝑁

�����ˆ𝐹𝑛
[
𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

)
· (𝜑(𝑥) − 𝜑(𝑦))𝑢(𝑦)

−
(
𝑝 − 1
𝑝

) 𝑝−1
𝛾𝑝

(
|𝑢(𝑥) |

𝑝

𝑝−1 − |𝑢(𝑦) |
𝑝

𝑝−1
)
· (𝜑(𝑥) − 𝜑(𝑦))

]
𝑚𝑛 (𝑑𝑥𝑑𝑦)

�����
≤ 𝐶𝑝,𝑢𝜀 (𝑝−1)∧1E𝒌

𝑝 (𝑢)
(𝑝−1)∧1
𝑝 E𝒌

𝑝 (𝜑)
1
𝑝 C 𝐶𝑝,𝑢,𝜑𝜀

(𝑝−1)∧1.

Therefore, (4.4) implies that for any 𝑛 ≥ 𝑁 ,����Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) −

ˆ
𝐾×𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
����

≤
��Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) − 𝐼𝒌𝑝,𝑛 (𝑢; 𝜑)

�� + ˆ
𝐹𝑐𝑛

|𝑢(𝑥) − 𝑢(𝑦) |𝑝𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦) + 𝐶𝑝,𝑢,𝜑𝜀 (𝑝−1)∧1,

which together with lim𝑛→∞ Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) = Ψ𝒌

𝑝 (𝑢; 𝜑) and (3.6) yields the first equality
in (4.2). The second equality in (4.2) can be shown similarly by using the expression

Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑) =

ˆ
𝐾×𝐾

[
|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑦) + 𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

)
· (𝜑(𝑥) − 𝜑(𝑦))𝑢(𝑥)

−
(
𝑝 − 1
𝑝

) 𝑝−1
𝛾𝑝

(
|𝑢(𝑥) |

𝑝

𝑝−1 − |𝑢(𝑦) |
𝑝

𝑝−1
)
· (𝜑(𝑥) − 𝜑(𝑦))

]
𝑚𝑛 (𝑑𝑥𝑑𝑦)

instead of (4.4). Now the estimate (4.3) is clear from (4.2). ⊓⊔
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By Theorem 4.1, we can associate to the functional Ψ𝒌
𝑝 (𝑢; · ) a unique Radon

measure Γ𝒌
𝑝 ⟨𝑢⟩ on 𝐾 under the additional assumption that 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾) is dense
in (𝐶𝑐 (𝐾), ∥ · ∥sup), as follows.

Theorem 4.2 Suppose that 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾) is dense in (𝐶𝑐 (𝐾), ∥ · ∥sup). Let 𝑢 ∈

𝐵𝒌
𝑝,∞ ∩𝐶𝑏 (𝐾). Then there exists a unique positive Radon measure Γ𝒌

𝑝 ⟨𝑢⟩ on 𝐾 such
that for any 𝜑 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾),

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ = E𝒌

𝑝 (𝑢; 𝑢𝜑) −
(
𝑝 − 1
𝑝

) 𝑝−1
E𝒌
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
. (4.6)

Moreover, Γ𝒌
𝑝 ⟨𝑢⟩(𝐾) ≤ E𝒌

𝑝 (𝑢) < ∞, and for any 𝜑 ∈ 𝐶0 (𝐾),
ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ = lim

𝑛→∞

ˆ
𝐾

ˆ
𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥)𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥). (4.7)

Definition 4.3 (𝑝-Energy measure associated with a 𝒌-Korevaar–Schoen 𝑝-
energy form (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞)) Suppose that 𝐵𝒌

𝑝,∞ ∩𝐶𝑐 (𝐾) is dense in (𝐶𝑐 (𝐾), ∥ · ∥sup),
and let 𝑢 ∈ 𝐵𝒌

𝑝,∞ ∩𝐶𝑏 (𝐾). The positive Radon measure Γ𝒌
𝑝 ⟨𝑢⟩ on 𝐾 as in Theorem

4.2 is called the 𝑝-energy measure of 𝑢 associated with (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞).

Proof of Theorem 4.2. By virtue of (4.3), we can extend Ψ𝒌
𝑝 (𝑢; · ) to a bounded

linear functional on 𝐶0 (𝐾) in a standard way as follows. Let 𝑢 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾), let

𝜑 ∈ 𝐶0 (𝐾) and choose {𝜑 𝑗 } 𝑗∈N ⊆ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾) so that lim 𝑗→∞

𝜑 − 𝜑 𝑗


sup = 0.
Then {Ψ𝒌

𝑝 (𝑢; 𝜑 𝑗 )} 𝑗∈N is a Cauchy sequence in R since
��Ψ𝒌
𝑝 (𝑢; 𝜑 𝑗 ) − Ψ𝒌

𝑝 (𝑢; 𝜑 𝑗′ )
�� ≤𝜑 𝑗 − 𝜑 𝑗′sup E

𝒌
𝑝 (𝑢) for any 𝑗 , 𝑗 ′ ∈ N by (4.3). Now we define Ψ̃𝒌

𝑝 (𝑢; 𝜑) B
lim 𝑗→∞ Ψ𝒌

𝑝 (𝑢; 𝜑 𝑗 ), which does not depend on the choice of {𝜑 𝑗 } 𝑗∈N. Clearly, we have���Ψ̃𝒌
𝑝 (𝑢; 𝜑)

��� ≤ ∥𝜑∥sup E𝒌
𝑝 (𝑢). If 𝜑 ≥ 0, then we obtain Ψ̃𝒌

𝑝 (𝑢; 𝜑) ≥ 0 by considering
{𝜑+

𝑗
} 𝑗 instead of {𝜑 𝑗 } 𝑗 . By applying the Riesz–Markov–Kakutani representation

theorem (see, e.g., [41, Theorems 2.14 and 2.18]), there exists a unique positive
Radon measure Γ𝒌

𝑝 ⟨𝑢⟩ on 𝐾 satisfying

Ψ̃𝒌
𝑝 (𝑢;𝜓) =

ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ for any 𝜓 ∈ 𝐶𝑐 (𝐾). (4.8)

In particular, Γ𝒌
𝑝 ⟨𝑢⟩ satisfies (4.6) for any 𝜑 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾) by (4.8) and (4.1).
Next, to show the claimed uniqueness of Γ𝒌

𝑝 ⟨𝑢⟩ and Γ𝒌
𝑝 ⟨𝑢⟩(𝐾) ≤ E𝒌

𝑝 (𝑢), let 𝜇 be
a positive Radon measure on 𝐾 satisfying (4.6) with 𝜇 in place of Γ𝒌

𝑝 ⟨𝑢⟩ for any 𝜑 ∈
𝐵𝒌
𝑝,∞∩𝐶𝑐 (𝐾). Then for any compact subset 𝐹 of 𝐾 , noting (3.1) and the assumption

that 𝐵𝒌
𝑝,∞∩𝐶𝑐 (𝐾) is dense in (𝐶𝑐 (𝐾), ∥ · ∥sup), we can choose 𝜑 ∈ 𝐵𝒌

𝑝,∞∩𝐶𝑐 (𝐾) so
that 1𝐹 ≤ 𝜑 ≤ 1𝐾 on 𝐾 , hence 𝜇(𝐹) ≤

´
𝐾
𝜑 𝑑𝜇 = Ψ𝒌

𝑝 (𝑢; 𝜑) ≤ E𝒌
𝑝 (𝑢) by (4.3) and

thus 𝜇(𝐾) ≤ E𝒌
𝑝 (𝑢) < ∞. In particular, 𝐶0 (𝐾) ∋ 𝜓 ↦→

´
𝐾
𝜓 𝑑𝜇 is a bounded linear

functional on𝐶0 (𝐾) which coincides with Ψ𝒌
𝑝 (𝑢; · ) on 𝐵𝒌

𝑝,∞∩𝐶𝑐 (𝐾) and thus with
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Ψ̃𝒌
𝑝 (𝑢; · ) on 𝐶0 (𝐾), and therefore 𝜇 = Γ𝒌

𝑝 ⟨𝑢⟩ by the uniqueness of a positive Radon
measure on 𝐾 satisfying (4.8).

Lastly, we shall prove (4.7). Note that (4.7) is true for 𝜑 ∈ 𝐵𝒌
𝑝,∞ ∩𝐶𝑐 (𝐾) by (4.2)

in Theorem 4.1. As in the first paragraph of this proof, let 𝜑 ∈ 𝐶0 (𝐾) and choose
{𝜑 𝑗 } 𝑗∈N ⊆ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾) so that lim 𝑗→∞
𝜑 − 𝜑 𝑗


sup = 0. Let 𝜀 > 0 and choose

𝑁 ∈ N so that
𝜑 − 𝜑 𝑗


sup E

𝒌
𝑝 (𝑢) < 𝜀 for any 𝑗 ≥ 𝑁 . Then, for any 𝑛 ∈ N and any

𝑗 ≥ 𝑁 , ����ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ −

ˆ
𝐾×𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
����

≤
���Ψ̃𝒌
𝑝 (𝑢; 𝜑) − Ψ̃𝒌

𝑝 (𝑢; 𝜑 𝑗 )
��� + ���Ψ̃𝒌

𝑝 (𝑢; 𝜑 𝑗 ) − Ψ𝒌
𝑝,𝑛 (𝑢; 𝜑 𝑗 )

���
+

𝜑 − 𝜑 𝑗


sup

ˆ
𝐾×𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝑚𝑛 (𝑑𝑥𝑑𝑦)

≤ 2𝜀 +
��Ψ𝒌
𝑝 (𝑢; 𝜑 𝑗 ) − Ψ𝒌

𝑝,𝑛 (𝑢; 𝜑 𝑗 )
�� ,

where Ψ𝒌
𝑝,𝑛 (𝑢; · ) is the same as in (4.4). Hence we have

lim sup
𝑛→∞

����ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ −

ˆ
𝐾×𝐾

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
���� ≤ 2𝜀,

which proves (4.7). ⊓⊔

In the rest of this section, we always suppose in addition that 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾) is

dense in (𝐶𝑐 (𝐾), ∥ · ∥sup).
Note that both the boundedness and the continuity of 𝑢 are essential in Theorem

4.2; the former is required for the right-hand side of (4.6) to make sense, and the
latter has been used heavily in the proof of Theorem 4.1 above. Next we would like to
extend Γ𝒌

𝑝 ⟨𝑢⟩ to a wider range of 𝑢. Let us use the following notation for simplicity.

Definition 4.4 We define closed linear subspaces D𝒌 ,𝑏
𝑝,∞ and D𝒌 ,𝑐

𝑝,∞ of 𝐵𝒌
𝑝,∞ by

D𝒌 ,𝑏
𝑝,∞ B 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑏 (𝐾)
𝐵𝒌
𝑝,∞

and D𝒌 ,𝑐
𝑝,∞ B 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾)
𝐵𝒌
𝑝,∞
. (4.9)

By virtue of the expression (4.2), we can show the generalized 𝑝-contraction
property (GC)𝑝 for (

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩, 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾)) for any 𝜑 ∈ 𝐶𝑐 (𝐾) with 𝜑 ≥ 0,

which further allows us to extend Γ𝒌
𝑝 ⟨𝑢⟩ canonically to 𝑢 ∈ D𝒌 ,𝑏

𝑝,∞.

Theorem 4.5 For any 𝑢 ∈ D𝒌 ,𝑏
𝑝,∞, there exists a unique positive Radon measure

Γ𝒌
𝑝 ⟨𝑢⟩ on 𝐾 such that for any {𝑢𝑛}𝑛∈N ⊆ 𝐵𝒌

𝑝,∞∩𝐶𝑏 (𝐾) with lim𝑛→∞ E𝒌
𝑝 (𝑢−𝑢𝑛) = 0

and any Borel measurable function 𝜑 : 𝐾 → [0,∞) with ∥𝜑∥sup < ∞,
ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ = lim

𝑛→∞

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛⟩, (4.10)
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and Γ𝒌
𝑝 ⟨𝑢⟩ further satisfies Γ𝒌

𝑝 ⟨𝑢⟩(𝐾) ≤ E𝒌
𝑝 (𝑢). Moreover, for each such 𝜑,

(
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞) is a 𝑝-energy form on (𝐾, 𝑚) satisfying (GC)𝑝 .

Proof. First, for any 𝜑 ∈ 𝐶𝑐 (𝐾) with 𝜑 ≥ 0, we will show that (
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩, 𝐵𝒌
𝑝,∞∩

𝐶𝑏 (𝐾)) satisfies (GC)𝑝 . Throughout this proof, we fix 𝑛1, 𝑛2 ∈ N, 𝑞1 ∈ (0, 𝑝],
𝑞2 ∈ [𝑝,∞] and 𝑇 = (𝑇1, . . . , 𝑇𝑛2 ) : R𝑛1 → R𝑛2 satisfying (2.1). Let us consider the
case 𝑞2 < ∞ since the proof for the case 𝑞2 = ∞ is similar. Let 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈(
𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾)

)𝑛1 . Note that 𝑇𝑙 (𝒖) ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) for each 𝑙 ∈ {1, . . . , 𝑛2}. For

any 𝑛 ∈ N, we see that

𝑛2∑︁
𝑙=1

(ˆ
𝐾×𝐾

|𝑇𝑙 (𝒖(𝑥)) − 𝑇𝑙 (𝒖(𝑦)) |𝑝 𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
)𝑞2/𝑝

(3.2)
≤ ©«

ˆ
𝐾×𝐾

[
𝑛2∑︁
𝑙=1

|𝑇𝑙 (𝒖(𝑥)) − 𝑇𝑙 (𝒖(𝑦)) |𝑞2

] 𝑝/𝑞2

𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
ª®¬
𝑞2/𝑝

(2.1)
≤ ©«

ˆ
𝐾×𝐾

[
𝑛1∑︁
𝑘=1

|𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦) |𝑞1

] 𝑝/𝑞1

𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
ª®¬
𝑞2/𝑝

(∗)
≤

(
𝑛1∑︁
𝑘=1

(ˆ
𝐾×𝐾

|𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦) |𝑝 𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)
)𝑞1/𝑝

)𝑞2/𝑞1

,

where we used the triangle inequality for the norm of 𝐿 𝑝/𝑞1 (𝐾 × 𝐾, 𝑚𝑛) in (∗). By
letting 𝑛→ ∞, we obtain from (4.7) that

((ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑇𝑙 (𝒖)⟩

)1/𝑝
)𝑛2

𝑙=1


ℓ𝑞2

≤

((ˆ

𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
)𝑛1

𝑘=1


ℓ𝑞1

. (4.11)

Next we will extend (4.11) to any Borel measurable function 𝜑 : 𝐾 → [0,∞].
Let us start with the case 𝜑 = 1𝐴, where 𝐴 ∈ B(𝐾). By [41, Theorem 2.18], there
exist sequences {𝐾𝑛}𝑛∈N and {𝑈𝑛}𝑛∈N such that 𝐾𝑛 ⊆ 𝐴 ⊆ 𝑈𝑛, 𝐾𝑛 is compact, 𝑈𝑛
is open and lim𝑛→∞ max𝑣∈{𝑇𝑙 (𝒖) }𝑙∪{𝑢𝑘 }𝑘 Γ𝒌

𝑝 ⟨𝑣⟩(𝑈𝑛 \𝐾𝑛) = 0. By Urysohn’s lemma,
we can pick 𝜑𝑛 ∈ 𝐶𝑐 (𝐾) so that 0 ≤ 𝜑𝑛 ≤ 1, 𝜑𝑛 |𝐾𝑛 = 1 and supp𝐾 [𝜑𝑛] ⊆ 𝑈𝑛.
Applying (4.11) for 𝜑𝑛, we obtain(Γ𝒌

𝑝 ⟨𝑇𝑙 (𝒖)⟩(𝐾𝑛)1/𝑝
)𝑛2

𝑙=1


ℓ𝑞2

≤
(Γ𝒌

𝑝 ⟨𝑢𝑘⟩(𝑈𝑛)1/𝑝
)𝑛1

𝑘=1


ℓ𝑞1

.

By letting 𝑛 → ∞, we get (4.11) with 𝜑 = 1𝐴. Using the reverse Minkowski
inequality on ℓ𝑞1/𝑝 and the Minkowski inequality on ℓ𝑞2/𝑝 (see also [27, Proof of
Proposition 2.9-(a)], where (GC)𝑝 is shown to be stable under addition), we see that
(4.11) holds also for any non-negative Borel measurable simple function 𝜑 on 𝐾 . We
get the desired extension, (4.11) for any Borel measurable function 𝜑 : 𝐾 → [0,∞],
by the monotone convergence theorem.
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Now let us extend 𝑝-energy measures. In the rest of this proof, let 𝜑 : 𝐾 →
[0,∞) be a Borel measurable function such that ∥𝜑∥sup < ∞. Let 𝑢 ∈ D𝒌 ,𝑏

𝑝,∞ and
{𝑢𝑛}𝑛∈N ⊆ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑏 (𝐾) satisfy lim𝑛→∞ E𝒌
𝑝 (𝑢 − 𝑢𝑛) = 0. By Proposition 2.3-(1)

for (
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩, 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾)), for any 𝑛, 𝑛′ ∈ N,�����(ˆ𝐾 𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢𝑛⟩
)1/𝑝

−
(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛′⟩

)1/𝑝
����� ≤ ∥𝜑∥1/𝑝

sup E𝒌
𝑝 (𝑢𝑛 − 𝑢𝑛′ )1/𝑝 ,

which implies that the limit lim𝑛→∞
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢𝑛⟩ C 𝐼𝑢 (𝜑) exists in R and it is
independent of the choice of {𝑢𝑛}𝑛. In addition, by letting 𝑛′ → ∞ in the estimate
above, we have that�����(ˆ𝐾 𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢𝑛⟩
)1/𝑝

− 𝐼𝑢 (𝜑)1/𝑝

����� ≤ ∥𝜑∥1/𝑝
sup E𝒌

𝑝 (𝑢𝑛 − 𝑢)1/𝑝 . (4.12)

Also, it is clear that 0 ≤ 𝐼𝑢 (𝜑) ≤ ∥𝜑∥sup E𝒌
𝑝 (𝑢) and that 𝐼𝑛 is linear in the sense

that 𝐼𝑢
(∑𝑁

𝑘=1 𝑎𝑘𝜑𝑘
)
=

∑𝑁
𝑘=1 𝑎𝑘 𝐼𝑢 (𝜑𝑘) for any 𝑁 ∈ N, (𝑎𝑘)𝑁𝑘=1 ⊆ [0,∞) and Borel

measurable functions 𝜑𝑘 : 𝐾 → [0,∞) with ∥𝜑𝑘 ∥sup < ∞, 𝑘 ∈ {1, . . . , 𝑁}. Now we
define Γ𝒌

𝑝 ⟨𝑢⟩(𝐴) B 𝐼𝑢 (1𝐴) ∈ [0,∞) for 𝐴 ∈ B(𝐾), and show that Γ𝒌
𝑝 ⟨𝑢⟩ is a finite

Borel measure on𝐾 . Clearly, Γ𝒌
𝑝 ⟨𝑢⟩ is finitely additive and Γ𝒌

𝑝 ⟨𝑢⟩(𝐾) ≤ E𝒌
𝑝 (𝑢) < ∞.

Hence it suffices to prove the countable additivity of Γ𝒌
𝑝 ⟨𝑢⟩. By (4.12), for any 𝜀 > 0

there exists 𝑁0 ∈ N such that sup𝐴∈B(𝐾 )
��Γ𝒌
𝑝 ⟨𝑢⟩(𝐴)1/𝑝 − Γ𝒌

𝑝 ⟨𝑢𝑛⟩(𝐴)1/𝑝 �� < 𝜀 for
any 𝑛 ≥ 𝑁0. Let {𝐴𝑘}𝑘∈N ⊆ B(𝐾) be a sequence of disjoint Borel sets, and set
𝐵𝑁 B

⋃∞
𝑘=𝑁+1 𝐴𝑘 for each 𝑁 ∈ N. Then we see that for any 𝑁 ∈ N and any 𝑛 ≥ 𝑁0,�����Γ𝒌

𝑝 ⟨𝑢⟩
(⋃
𝑘∈N

𝐴𝑘

)
−

𝑁∑︁
𝑘=1

Γ𝒌
𝑝 ⟨𝑢⟩(𝐴𝑘)

�����1/𝑝 = Γ𝒌
𝑝 ⟨𝑢⟩(𝐵𝑁 )1/𝑝 ≤ 𝜀 + Γ𝒌

𝑝 ⟨𝑢𝑛⟩(𝐵𝑁 )1/𝑝 ,

whence lim𝑁→∞
��Γ𝒌
𝑝 ⟨𝑢⟩ (

⋃
𝑘∈N 𝐴𝑘) −

∑𝑁
𝑘=1 Γ

𝒌
𝑝 ⟨𝑢⟩(𝐴𝑘)

�� = 0, proving the desired
countable additivity.

Before showing (4.10), i.e., 𝐼𝑢 (𝜑) =
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢⟩, we will extend (4.11) to the
pair (

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞). To this end, we need to show that for any {𝑢𝑛}𝑛∈N ⊆

𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) converging weakly in 𝐵𝒌

𝑝,∞ to 𝑢 ∈ D𝒌 ,𝑏
𝑝,∞ as 𝑛→ ∞,

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩ ≤ lim inf

𝑛→∞

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛⟩. (4.13)

By extracting a subsequence of {𝑢𝑛}𝑛 if necessary, we can assume that the limit
lim𝑛→∞

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢𝑛⟩ exists. By Mazur’s lemma (see, e.g., [22, p. 19]), there exist
𝑁 (𝑛) ∈ N and {𝛼𝑛,𝑘}𝑁 (𝑛)

𝑘=𝑛
⊆ [0, 1] with 𝑁 (𝑛) > 𝑛 and

∑𝑁 (𝑛)
𝑘=𝑛

𝛼𝑛,𝑘 = 1 for each
𝑛 ∈ N such that 𝑣𝑛 B

∑𝑁 (𝑛)
𝑘=𝑛

𝛼𝑛,𝑘𝑢𝑘 converges to 𝑢 in 𝐵𝒌
𝑝,∞ as 𝑛→ ∞. We see from

(GC)𝑝 and Proposition 2.3-(1) for (
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩, 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾)) that
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𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑣𝑛⟩

)1/𝑝
≤
𝑁 (𝑛)∑︁
𝑘=𝑛

𝛼𝑛,𝑘

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
,

which implies (4.13) by letting 𝑛 → ∞. With this preparation, let us show
that the pair (

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞) satisfies (GC)𝑝 . Let 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈(

D𝒌 ,𝑏
𝑝,∞

)𝑛1 . For each 𝑘 ∈ {1, . . . , 𝑛1}, fix {𝑢𝑘,𝑛}𝑛∈N ⊆ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) so that

lim𝑛→∞
𝑢𝑘 − 𝑢𝑘,𝑛𝐵𝒌

𝑝,∞
= 0. Set 𝒖𝑛 B (𝑢1,𝑛, . . . , 𝑢𝑛1 ,𝑛). By (GC)𝑝 for (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞)

(see Theorem 3.8-(b)) and (2.1), we know that {𝑇𝑙 (𝒖𝑛)}𝑛 is bounded in 𝐵𝒌
𝑝,∞ and

that lim𝑛→∞ ∥𝑇𝑙 (𝒖𝑛) − 𝑇𝑙 (𝒖)∥𝐿𝑝 = 0. Since 𝐵𝒌
𝑝,∞ is reflexive (see Theorem 3.6) and

𝐵𝒌
𝑝,∞ is continuously embedded in 𝐿 𝑝 (𝐾, 𝑚), we see that 𝑇𝑙 (𝒖) ∈ D𝒌 ,𝑏

𝑝,∞ and that
there exists a subsequence {𝑇𝑙 (𝒖𝑛 𝑗 )} 𝑗 such that 𝑇𝑙 (𝒖𝑛 𝑗 ) weakly converges to 𝑇𝑙 (𝒖)
in 𝐵𝒌

𝑝,∞ as 𝑗 → ∞ for any 𝑙 ∈ {1, . . . , 𝑛2}. By (4.13), we see that
((ˆ

𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑇𝑙 (𝒖)⟩

)1/𝑝
)𝑛2

𝑙=1


ℓ𝑞2

≤
(
𝑛2∑︁
𝑙=1

lim inf
𝑗→∞

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑇𝑙 (𝒖𝑛 𝑗 )⟩

)1/𝑝
)1/𝑞2

≤ lim inf
𝑗→∞

(
𝑛2∑︁
𝑙=1

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑇𝑙 (𝒖𝑛 𝑗 )⟩

)1/𝑝
)1/𝑞2

≤ lim inf
𝑗→∞

(
𝑛1∑︁
𝑘=1

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘,𝑛 𝑗 ⟩

)1/𝑝
)1/𝑞1

=


((ˆ

𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
)𝑛1

𝑘=1


ℓ𝑞1

if 𝑞2 < ∞. The case 𝑞2 = ∞ is similar, so (
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞) satisfies (GC)𝑝 .

Finally, we can prove (4.10). Let {𝑢𝑛}𝑛∈N ⊆ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) be a sequence

satisfying lim𝑛→∞ E𝒌
𝑝 (𝑢−𝑢𝑛) = 0. By Proposition 2.3-(1) for (

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞),

we have�����(ˆ𝐾 𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩

)1/𝑝
−

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛⟩

)1/𝑝
����� ≤ ∥𝜑∥1/𝑝

sup E𝒌
𝑝 (𝑢 − 𝑢𝑛)1/𝑝 ,

which together with (4.12) implies that�����𝐼𝑢 (𝜑)1/𝑝 −
(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩

)1/𝑝
�����

≤
�����𝐼𝑢 (𝜑)1/𝑝 −

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛⟩

)1/𝑝
����� +

�����(ˆ𝐾 𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑛⟩

)1/𝑝
−

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩

)1/𝑝
�����

≤ 2 ∥𝜑∥1/𝑝
sup E𝒌

𝑝 (𝑢 − 𝑢𝑛)1/𝑝 −−−−→
𝑛→∞

0.
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Hence we obtain (4.10). ⊓⊔

Thanks to Proposition 2.3-(5) for (
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞), we can show the next

result. See [27, Theorem 4.5 and Proposition 4.6] for further details on Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩ in

the theorem below.

Theorem 4.6 Let 𝑢, 𝑣 ∈ D𝒌 ,𝑏
𝑝,∞. Define Γ𝒌

𝑝 ⟨𝑢; 𝑣⟩ : B(𝐾) → R by

Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩(𝐴) B 1

𝑝

𝑑

𝑑𝑡
Γ𝒌
𝑝 ⟨𝑢 + 𝑡𝑣⟩(𝐴)

����
𝑡=0

for 𝐴 ∈ B(𝐾). (4.14)

Then Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩ is a signed Borel measure on 𝐾 and satisfies Γ𝒌

𝑝 ⟨𝑢; 𝑢⟩ = Γ𝒌
𝑝 ⟨𝑢⟩.

Moreover, for any 𝑢, 𝑣 ∈ D𝒌 ,𝑏
𝑝,∞ and any Borel measurable functions 𝜑, 𝜓 : 𝐾 →

[0,∞],
ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢; · ⟩ : D𝒌 ,𝑏

𝑝,∞ → R is the Fréchet derivative of
1
𝑝

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨ · ⟩ at 𝑢

(4.15)
provided ∥𝜑∥sup < ∞, and

ˆ
𝐾

𝜑𝜓 𝑑
��Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩

�� ≤ (ˆ
𝐾

𝜑
𝑝

𝑝−1 𝑑Γ𝒌
𝑝 ⟨𝑢⟩

) 𝑝−1
𝑝

(ˆ
𝐾

𝜓𝑝 𝑑Γ𝒌
𝑝 ⟨𝑣⟩

) 1
𝑝

. (4.16)

Proof. It is proved in [27, Theorem 4.5] that Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩ is a signed measure. The

statements (4.15) and (4.16) follow from [27, Propositions 4.6 and 4.8]. ⊓⊔

As an important consequence of the strong locality of (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) obtained in

Theorem 3.8-(e), the inequality Γ𝒌
𝑝 ⟨𝑢⟩(𝐾) ≤ E𝒌

𝑝 (𝑢) in Theorems 4.2 and 4.5 turns
out to be an equality as long as 𝑢 ∈ D𝒌 ,𝑐

𝑝,∞. Namely, we have the following proposition,
which is the counterpart for (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) of the well-known equality [14, Lemma

3.2.3] for the strongly local part of a regular symmetric Dirichlet form.

Proposition 4.7 If 𝑢, 𝑣 ∈ D𝒌 ,𝑐
𝑝,∞, then Γ𝒌

𝑝 ⟨𝑢; 𝑣⟩(𝐾) = E𝒌
𝑝 (𝑢; 𝑣).

Proof. Since (Γ𝒌
𝑝 ⟨ · ⟩(𝐾),D𝒌 ,𝑏

𝑝,∞) and (E𝒌
𝑝 , 𝐵

𝒌
𝑝,∞) satisfy (GC)𝑝 by Theorems 4.5

and 3.8-(b), thanks to the linearity of E(𝑢; · ), (2.11) and (2.12) from Proposition
2.5 for (E, F ) = (Γ𝒌

𝑝 ⟨ · ⟩(𝐾),D𝒌 ,𝑏
𝑝,∞), (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) it suffices to consider the case

𝑢, 𝑣 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾). We first show that Γ𝒌

𝑝 ⟨𝑢⟩(𝐾) = E𝒌
𝑝 (𝑢) for any 𝑢 ∈ 𝐵𝒌

𝑝,∞ ∩
𝐶𝑐 (𝐾). Since 𝐾 is locally compact and we assume that 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾) is dense in
(𝐶𝑐 (𝐾), ∥ · ∥sup), by using Proposition 2.3-(2), we can find an open neighborhood𝑈
of the compact subset supp𝐾 [𝑢] of 𝐾 and 𝜑 ∈ 𝐵𝒌

𝑝,∞ ∩𝐶𝑐 (𝐾) so that 0 ≤ 𝜑 ≤ 1 and
𝜑(𝑥) = 1 for any 𝑥 ∈ 𝑈. Then supp𝐾 [𝑢] ∩ supp𝐾 [𝜑− 1𝐾 ] = ∅. By Theorem 3.8-(e),
we have E𝒌

𝑝 (𝑢; 𝑢𝜑 − 𝑢) = 0 and E𝒌
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
= 0. In particular, by (4.6),

Γ𝒌
𝑝 ⟨𝑢⟩(𝐾) ≥

ˆ
𝐾

𝜑 Γ𝒌
𝑝 ⟨𝑢⟩ = E𝒌

𝑝 (𝑢),
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whence we have Γ𝒌
𝑝 ⟨𝑢⟩(𝐾) = E𝒌

𝑝 (𝑢).
Next let 𝑢, 𝑣 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾). The argument in the previous paragraph implies
that for any 𝑡 ∈ (0, 1),

Γ𝒌
𝑝 ⟨𝑢 + 𝑡𝑣⟩(𝐾) − Γ𝒌

𝑝 ⟨𝑢⟩(𝐾)
𝑡

=
E𝒌
𝑝 (𝑢 + 𝑡𝑣) − E𝒌

𝑝 (𝑢)
𝑡

.

By letting 𝑡 ↓ 0 in this equality, we have Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = E𝒌

𝑝 (𝑢; 𝑣) by (4.14) and
(3.9). ⊓⊔

We also have the following expression of
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢; 𝑣⟩ if 𝜑 ∈ 𝐶𝑐 (𝐾). In partic-
ular, we can deduce the analogues of Theorem 3.8-(c),(d) for (

´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞).

Theorem 4.8 For any 𝑢, 𝑣 ∈ D𝒌 ,𝑏
𝑝,∞ and any 𝜑 ∈ 𝐶𝑐 (𝐾),

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩

= lim
𝑛→∞

ˆ
𝐾

ˆ
𝐾

𝛾𝑝
(
𝑢(𝑥) − 𝑢(𝑣)

)
(𝑣(𝑥) − 𝑣(𝑦))𝜑(𝑥)𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥) (4.17)

= lim
𝑛→∞

ˆ
𝐾

ˆ
𝐾

𝛾𝑝
(
𝑢(𝑥) − 𝑢(𝑣)

)
(𝑣(𝑥) − 𝑣(𝑦))𝜑(𝑦)𝑘𝑟𝑛 (𝑥, 𝑦) 𝑚(𝑑𝑦)𝑚(𝑑𝑥). (4.18)

In particular, the following hold:
(a) Let 𝑛1, 𝑛2 ∈ N, 𝑞1 ∈ [1, 𝑝], 𝑞2 ∈ [𝑝,∞], 𝒖 = (𝑢1, . . . , 𝑢𝑛1 ) ∈

(
D𝒌 ,𝑏
𝑝,∞

)𝑛1 ,
𝒗 = (𝑣1, . . . , 𝑣𝑛2 ) ∈ 𝐿0 (𝐾, 𝑚)𝑛2 , and let 𝜓 : 𝐾 → [0,∞] be Borel measur-
able. If there exist 𝑚-versions of 𝒖 and 𝒗 such that ∥𝒗(𝑥)∥ℓ𝑞2 ≤ ∥𝒖(𝑥)∥ℓ𝑞1

and ∥𝒗(𝑥) − 𝒗(𝑦)∥ℓ𝑞2 ≤ ∥𝒖(𝑥) − 𝒖(𝑦)∥ℓ𝑞1 for any (𝑥, 𝑦) ∈ 𝐾 × 𝐾 , then
𝒗 ∈

(
D𝒌 ,𝑏
𝑝,∞

)𝑛2 and
((ˆ

𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑣𝑙⟩

)1/𝑝
)𝑛2

𝑙=1


ℓ𝑞2

≤

((ˆ

𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
)𝑛1

𝑘=1


ℓ𝑞1

. (4.19)

(b) For any 𝑢1, 𝑢2, 𝑣 ∈ D𝒌 ,𝑏
𝑝,∞ and any Borel measurable function 𝜓 : 𝐾 → [0,∞)

with ∥𝜓∥sup < ∞,����ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢1; 𝑣⟩ −

ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢2; 𝑣⟩

����
≤ 𝐶𝑝

[
max
𝑖∈{1,2}

ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢𝑖⟩

] (𝑝−2)+
𝑝

(ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑢1 − 𝑢2⟩

) (𝑝−1)∧1
𝑝

(ˆ
𝐾

𝜓 𝑑Γ𝒌
𝑝 ⟨𝑣⟩

) 1
𝑝

,

(4.20)

where 𝐶𝑝 is the constant in Theorem 3.8.

Proof. Throughout this proof, we fix 𝜑 ∈ 𝐶𝑐 (𝐾). We first show (4.17) in the case
𝑢 = 𝑣. Define
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I𝑛𝜑 ⟨ 𝑓 ⟩ B
ˆ
𝐾×𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦) for 𝑛 ∈ N and 𝑓 ∈ D𝒌 ,𝑏
𝑝,∞.

Fix {𝑢𝑘}𝑘∈N ⊆ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) satisfying lim𝑘→∞ ∥𝑢 − 𝑢𝑘 ∥𝐵𝒌

𝑝,∞
= 0. We easily

have
��I𝑛𝜑 ⟨𝑢⟩1/𝑝 − I𝑛𝜑 ⟨𝑢𝑘⟩1/𝑝 �� ≤ I𝑛𝜑 ⟨𝑢 − 𝑢𝑘⟩1/𝑝 ≤ 𝐶1/𝑝 ∥𝜑∥sup E𝒌

𝑝 (𝑢 − 𝑢𝑘)1/𝑝 ,
where 𝐶 ∈ (0,∞) is the constant in (3.8). By (4.10) and Proposition 2.3-(1) for
(
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨ · ⟩,D𝒌 ,𝑏
𝑝,∞), we see that for any 𝑛, 𝑘 ∈ N,�����(ˆ𝐾 𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢⟩
)1/𝑝

− I𝑛𝜑 ⟨𝑢⟩1/𝑝

�����
≤

�����(ˆ𝐾 𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢⟩

)1/𝑝
−

(ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
����� +

�����(ˆ𝐾 𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝
− I𝑛𝜑 ⟨𝑢𝑘⟩1/𝑝

�����
+

���I𝑛𝜑 ⟨𝑢⟩1/𝑝 − I𝑛𝜑 ⟨𝑢𝑘⟩1/𝑝
���

≤ (1 + 𝐶1/𝑝) ∥𝜑∥1/𝑝
sup E𝒌

𝑝 (𝑢 − 𝑢𝑘)1/𝑝 +
�����(ˆ𝐾 𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢𝑘⟩
)1/𝑝

− I𝑛𝜑 ⟨𝑢𝑘⟩1/𝑝

����� .
Since lim𝑛→∞

��� (´𝐾 𝜑 𝑑Γ𝒌
𝑝 ⟨𝑢𝑘⟩

)1/𝑝 − I𝑛𝜑 ⟨𝑢𝑘⟩1/𝑝
��� = 0 by (4.2) and 𝑘 ∈ N is arbitrary,

we conclude that lim𝑛→∞ I𝑛𝜑 ⟨𝑢⟩ =
´
𝐾
𝜑 𝑑Γ𝒌

𝑝 ⟨𝑢⟩.
Next we consider the general case 𝑢 ≠ 𝑣. By Proposition 2.4 and the convexity of

𝑡 ↦→ I𝑛𝜑 ⟨𝑢 + 𝑡𝑣⟩, for any 𝑡 ∈ (0, 1) and any 𝑛 ∈ N,

I𝑛𝜑 ⟨𝑢 + 𝑡𝑣⟩ − I𝑛𝜑 ⟨𝑢⟩
𝑡

− ∥𝜑∥sup𝑂𝑡 (𝑢; 𝑣) ≤ 𝑑

𝑑𝑠
I𝑛𝜑 ⟨𝑢 + 𝑠𝑣⟩

����
𝑠=0

≤
I𝑛𝜑 ⟨𝑢 + 𝑡𝑣⟩ − I𝑛𝜑 ⟨𝑢⟩

𝑡
,

(4.21)
where𝑂𝑡 (𝑢; 𝑣) = 𝐶𝑝,𝑢,𝑣𝑡 (𝑝−1)∧ 1

𝑝−1 for some constant𝐶𝑝,𝑢,𝑣 ∈ (0,∞) which depends
only on 𝑝, E𝒌

𝑝 (𝑢) and E𝒌
𝑝 (𝑣). Now we obtain (4.17) by noting that

𝑑

𝑑𝑠
I𝑛𝜑 ⟨𝑢 + 𝑠𝑣⟩

����
𝑠=0

=

ˆ
𝐾×𝐾

𝛾𝑝
(
𝑢(𝑥) − 𝑢(𝑣)

)
(𝑣(𝑥) − 𝑣(𝑦))𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)

and letting first 𝑛 → ∞ in (4.21) and then 𝑡 ↓ 0 by using (4.15). The equality (4.18)
can be shown similarly by considering

Î𝑛𝜑 ⟨ 𝑓 ⟩ B
ˆ
𝐾×𝐾

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 𝜑(𝑦) 𝑚𝑛 (𝑑𝑥𝑑𝑦)

instead of I𝑛𝜑 ⟨ 𝑓 ⟩ in the above arguments.
Lastly, let us show (a) and (b).
(a): By Theorem 4.5, (E𝒌

𝑝 ,D𝒌 ,𝑏
𝑝,∞) is a 𝑝-energy form on (𝐾, 𝑚) satisfying (GC)𝑝 .

For each 𝑙 ∈ {1, . . . , 𝑛2}, by the argument in [27, Proof of Corollary 2.4-(c)],
we can find a 1-Lipschitz map 𝑇𝑙 : (R𝑛1 , ∥ · ∥ℓ𝑞1 ) → R satisfying 𝑇𝑙 (0) = 0 and
𝑇𝑙 (𝒖(𝑥)) = 𝑣𝑙 (𝑥) for any 𝑥 ∈ 𝐾 . By applying (GC)𝑝 , we have 𝑣𝑙 ∈ D𝒌 ,𝑏

𝑝,∞ and hence
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𝒗 ∈
(
D𝒌 ,𝑏
𝑝,∞

)𝑛2 . Then the inequality (4.19) in the case 𝜓 ∈ 𝐶𝑐 (𝐾) is immediate from
(4.17), and we can further extend (4.19) to general 𝜓 in exactly the same way as the
second paragraph of the proof of Theorem 4.5.

(b): The estimate (4.20) in the case 𝜓 ∈ 𝐶𝑐 (𝐾) is immediate from (4.17). We can
easily extend it to the desired case since 𝐶𝑐 (𝐾) is dense in 𝐿1 (𝐾, 𝜇) for the finite
Borel measure 𝜇 on 𝐾 given by

𝜇 B
��Γ𝒌
𝑝 ⟨𝑢1; 𝑣⟩

�� + ��Γ𝒌
𝑝 ⟨𝑢2; 𝑣⟩

�� + Γ𝒌
𝑝 ⟨𝑢1⟩ + Γ𝒌

𝑝 ⟨𝑢2⟩ + Γ𝒌
𝑝 ⟨𝑢1 − 𝑢2⟩ + Γ𝒌

𝑝 ⟨𝑣⟩. ⊓⊔

The next theorem states the chain rule for our 𝑝-energy measures.

Theorem 4.9 (Chain rule) Let 𝑛 ∈ N, 𝑢 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾), 𝒗 = (𝑣1, . . . , 𝑣𝑛) ∈(

𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾)

)𝑛, Φ ∈ 𝐶1 (R), Ψ ∈ 𝐶1 (R𝑛) and suppose that Φ(0) = Ψ(0) = 0.
Then Φ(𝑢),Ψ(𝒗) ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑏 (𝐾) and

𝑑Γ𝒌
𝑝 ⟨Φ(𝑢);Ψ(𝒗)⟩ =

𝑛∑︁
𝑘=1

𝛾𝑝
(
Φ′ (𝑢)

)
𝜕𝑘Ψ(𝒗) 𝑑Γ𝒌

𝑝 ⟨𝑢; 𝑣𝑘⟩. (4.22)

Proof. It is immediate from Theorem 3.8-(b) (see also Proposition 2.3-(2)) that
Φ(𝑢),Ψ(𝒗) ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑏 (𝐾). Note that

𝑑𝜇 B 𝑑
��Γ𝒌
𝑝 ⟨Φ(𝑢);Ψ(𝒗)⟩

�� + 𝑛∑︁
𝑘=1

��𝛾𝑝 (Φ′ (𝑢)
)
𝜕𝑘Ψ(𝒗)

�� 𝑑 ��Γ𝒌
𝑝 ⟨𝑢; 𝑣𝑘⟩

��
defines a finite Borel measure 𝜇 on 𝐾 by (4.16). Since 𝐶𝑐 (𝐾) is dense in 𝐿1 (𝐾, 𝜇),
it suffices to prove that for any 𝜑 ∈ 𝐶𝑐 (𝐾),

ˆ
𝐾

𝜑 𝑑Γ𝒌
𝑝 ⟨Φ(𝑢);Ψ(𝑣)⟩ =

𝑛∑︁
𝑘=1

ˆ
𝐾

𝜑𝛾𝑝
(
Φ′ (𝑢)

)
𝜕𝑘Ψ(𝑣) 𝑑Γ𝒌

𝑝 ⟨𝑢; 𝑣𝑘⟩.

Let 𝜑 ∈ 𝐶𝑐 (𝐾) and define 𝐹𝑛 ∈ B(𝐾 × 𝐾), 𝑛 ∈ N, by

𝐹𝑛 B {(𝑥, 𝑦) ∈ 𝐾 × 𝐾 | 𝑑 (𝑥, 𝑦) < 𝛿(𝑟𝑛), 𝜑(𝑥) ≠ 0}.

Note that 𝐹𝑛
𝐾×𝐾 is a compact subset of 𝐾 × 𝐾 for sufficiently large 𝑛 ∈ N since

𝜑 ∈ 𝐶𝑐 (𝐾), lim𝑛→0 𝛿(𝑟𝑛) = 0 and (𝐾, 𝑑) is locally compact. Set

𝑎𝑛 B

ˆ
𝐹𝑛

𝛾𝑝
(
Φ(𝑢(𝑥)) −Φ(𝑢(𝑣))

)
(Ψ(𝑣(𝑥)) − Ψ(𝑣(𝑦)))𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦)

and

𝑏𝑛 B
𝑛∑︁
𝑘=1

ˆ
𝐹𝑛

𝛾𝑝
(
Φ′ (𝑢(𝑥))

)
𝜕𝑘Ψ(𝑣(𝑥))·𝛾𝑝

(
𝑢(𝑥)−𝑢(𝑦)

)
(𝑣(𝑥)−𝑣(𝑦))𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦).



32 Naotaka Kajino and Ryosuke Shimizu

By Theorem 4.8 and (3.6), it suffices to show lim𝑛→∞ |𝑎𝑛 − 𝑏𝑛 | = 0. To estimate
|𝑎𝑛 − 𝑏𝑛 |, we introduce

𝑐𝑛 B

ˆ
𝐹𝑛

𝛾𝑝
(
Φ′ (𝑢(𝑥))

)
· 𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

)
(𝑣(𝑥) − 𝑣(𝑦))𝜑(𝑥) 𝑚𝑛 (𝑑𝑥𝑑𝑦).

We will show that lim𝑛→∞ |𝑎𝑛 − 𝑐𝑛 | = lim𝑛→∞ |𝑏𝑛 − 𝑐𝑛 | = 0. Note that

Φ(𝑢(𝑦)) −Φ(𝑢(𝑥)) =
[
𝑢(𝑦) − 𝑢(𝑥)

] (
Φ′ (𝑢(𝑥)) + 𝑒Φ,𝑢 (𝑥, 𝑦)

)
,

where we set 𝑒Φ,𝑢 (𝑥, 𝑦) B
´ 1

0
[
Φ′ (𝑢(𝑥) + 𝑡 (𝑢(𝑦) −𝑢(𝑥))) −Φ′ (𝑢(𝑥))

]
𝑑𝑡. Let 𝜀 > 0.

Since Φ′ is continuous, ∥𝑢∥sup < ∞ and 𝑢 is uniformly continuous on 𝐹𝑛 for large
enough 𝑛 ∈ N, we can find 𝑁1 ∈ N so that

��𝑒Φ,𝑢 (𝑥, 𝑦)�� < 𝜀 for any (𝑥, 𝑦) ∈ ⋃
𝑛≥𝑁1 𝐹𝑛.

By Lemma 3.7, there exists 𝐶𝑝 ∈ (0,∞) depending only on 𝑝 such that for any
𝑛 ≥ 𝑁1 and (𝑥, 𝑦) ∈ ⋃

𝑛≥𝑁1 𝐹𝑛,��𝛾𝑝 (Φ(𝑢(𝑥)) −Φ(𝑢(𝑦))
)
− 𝛾𝑝

(
Φ′ (𝑢(𝑥))

)
· 𝛾𝑝

(
𝑢(𝑥) − 𝑢(𝑦)

) ��
≤ 𝐶𝑝𝜀 (𝑝−1)∧1𝐴𝑢,Φ (𝑥, 𝑦) (𝑝−2)+ |𝑢(𝑥) − 𝑢(𝑦) | (𝑝−1)∧1 ,

where 𝐴𝑢,Φ (𝑥, 𝑦) B |Φ(𝑢(𝑦)) −Φ(𝑢(𝑥)) | ∨ |Φ′ (𝑢(𝑥)) (𝑢(𝑦) − 𝑢(𝑥)) |. By Hölder’s
inequality, we have

sup
𝑛≥𝑁1

|𝑎𝑛 − 𝑐𝑛 |

≤ 𝐶𝑝𝜀 (𝑝−1)∧1
[
𝐶Φ,𝑢

(
∥Φ(𝑢)∥𝐵𝒌

𝑝,∞
+ ∥𝑢∥𝐵𝒌

𝑝,∞

) ] (𝑝−2)+
∥𝑢∥ (𝑝−1)∧1

𝐵𝒌
𝑝,∞

∥𝑣∥𝐵𝒌
𝑝,∞
,

where𝐶Φ,𝑢 B 1+∥Φ′∥sup, [−∥𝑢∥sup ,∥𝑢∥sup ] . In particular, we get lim𝑛→∞ |𝑎𝑛 − 𝑐𝑛 | = 0.
Similarly, we can find 𝑁2 ∈ N so that for any (𝑥, 𝑦) ∈ ⋃

𝑛≥𝑁2 𝐹𝑛,����� (Ψ(𝑣(𝑥)) − Ψ(𝑣(𝑦))
)
−

𝑛∑︁
𝑘=1

𝜕𝑘Ψ(𝑣(𝑥)) (𝑣(𝑥) − 𝑣(𝑦))
����� ≤ 𝜀 |𝑣(𝑥) − 𝑣(𝑦) | .

Then we easily see that

sup
𝑛≥𝑁2

|𝑏𝑛 − 𝑐𝑛 | ≤ 𝜀 ∥Φ′∥ 𝑝−1
sup,[−∥𝑢∥sup ,∥𝑢∥sup ]

∥𝑢∥ 𝑝−1
𝐵𝒌
𝑝,∞

∥𝑣∥𝐵𝒌
𝑝,∞
,

whence lim𝑛→∞ |𝑏𝑛 − 𝑐𝑛 | = 0. ⊓⊔

The following image density property of 𝑝-energy measures is a consequence of
the chain rule. We note that the proof below does not rely on specific representations
of Γ𝒌

𝑝 like (4.7) and (4.17).

Theorem 4.10 (Image density property) For any 𝑢 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾), the Borel

measure Γ𝒌
𝑝 ⟨𝑢⟩ ◦𝑢−1 onR defined by Γ𝒌

𝑝 ⟨𝑢⟩ ◦𝑢−1 (𝐴) B Γ𝒌
𝑝 ⟨𝑢⟩(𝑢−1 (𝐴)), 𝐴 ∈ B(R),

is absolutely continuous with respect to the 1-dimensional Lebesgue measure on R.
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Proof. This is proved, on the basis of Theorem 4.9, in exactly the same way as [43,
Proposition 7.6], which is a simple adaptation of [11, Theorem 4.3.8], but we present
the details because in [43] the underlying topological space 𝐾 is assumed to be a
generalized Sierpiński carpet, a self-similar compact set in the Euclidean space. It
suffices to prove that Γ𝒌

𝑝 ⟨𝑢⟩ ◦𝑢−1 (𝐹) = 0 for any 𝑢 ∈ 𝐵𝒌
𝑝,∞∩𝐶𝑏 (𝐾) and any compact

subset 𝐹 of R such that L 1 (𝐹) = 0, where L 1 denotes the 1-dimensional Lebesgue
measure on R. Let {𝜑𝑛}𝑛∈N ⊆ 𝐶𝑐 (R) satisfy |𝜑𝑛 | ≤ 1, lim𝑛→∞ 𝜑𝑛 (𝑥) = 1𝐹 (𝑥) for
any 𝑥 ∈ R and

ˆ ∞

0
𝜑𝑛 (𝑡) 𝑑𝑡 =

ˆ 0

−∞
𝜑𝑛 (𝑡) 𝑑𝑡 = 0 for any 𝑛 ∈ N.

We define Φ𝑛 (𝑥) B
´ 𝑥

0 𝜑𝑛 (𝑡) 𝑑𝑡, 𝑥 ∈ R, and 𝑢𝑛 B Φ𝑛 ◦ 𝑢 for any 𝑛 ∈ N. Then we
easily see that Φ𝑛 ∈ 𝐶1 (R) ∩ 𝐶𝑐 (R), Φ𝑛 (0) = 0, and Φ′

𝑛 = 𝜑𝑛 for any 𝑛 ∈ N. Also,
𝑢𝑛 converges to 0 in 𝐿 𝑝 (𝐾, 𝑚) as 𝑛 → ∞ by the dominated convergence theorem.
By Proposition 2.3-(2), we deduce that {𝑢𝑛}𝑛∈N is bounded in 𝐵𝒌

𝑝,∞. Since 𝐵𝒌
𝑝,∞ is

reflexive by Theorem 3.6 and 𝐵𝒌
𝑝,∞ is continuously embedded in 𝐿 𝑝 (𝐾, 𝑚), there

exists a subsequence {𝑢𝑛𝑘 }𝑘∈N weakly converging to 0 in 𝐵𝒌
𝑝,∞. By Mazur’s lemma,

there exist 𝑁 (𝑙) ∈ N and {𝑎𝑙,𝑘}𝑁 (𝑙)
𝑘=𝑙

⊆ [0, 1] with 𝑁 (𝑙) > 𝑙 and
∑𝑁 (𝑙)
𝑘=𝑙

𝑎𝑙,𝑘 = 1 for
each 𝑙 ∈ N such that

∑𝑁 (𝑙)
𝑘=𝑙

𝑎𝑙,𝑘𝑢𝑛𝑘 converges to 0 in 𝐵𝒌
𝑝,∞ as 𝑙 → ∞. Let us define

Ψ𝑙 ∈ 𝐶1 (R) by Ψ𝑙 B
∑𝑁 (𝑙)
𝑘=𝑙

𝑎𝑙,𝑘Φ𝑛𝑘 . Then Ψ𝑙 (0) = 0, Ψ′
𝑙
→ 1𝐹 and, by Fatou’s

lemma, Theorem 4.9 and Proposition 4.7,

Γ𝒌
𝑝 ⟨𝑢⟩ ◦ 𝑢−1 (𝐹) =

ˆ
R

lim
𝑙→∞

��Ψ′
𝑙 (𝑡)

��𝑝 (
Γ𝒌
𝑝 ⟨𝑢⟩ ◦ 𝑢−1) (𝑑𝑡)

≤ lim inf
𝑙→∞

ˆ
𝐾

��Ψ′
𝑙 (𝑢(𝑥))

��𝑝 Γ𝒌
𝑝 ⟨𝑢⟩(𝑑𝑥)

= lim inf
𝑙→∞

Γ𝒌
𝑝 ⟨Ψ𝑙 (𝑢)⟩(𝐾) = lim inf

𝑙→∞
E𝒌
𝑝

(
Ψ𝑙 (𝑢)

)
= 0,

which completes the proof. ⊓⊔

Now we can obtain the strongest possible forms of the strong locality of Γ𝒌
𝑝 ⟨ · ; · ⟩

as in the following theorem, which is an easy consequence of Theorem 4.10, the
triangle inequality for Γ𝒌

𝑝 ⟨ · ⟩1/𝑝 and (4.14); see [27, Theorem 4.17] for a proof.

Theorem 4.11 (Strong locality of 𝑝-energy measures) Let 𝑢, 𝑢1, 𝑢2, 𝑣 ∈ 𝐵𝒌
𝑝,∞ ∩

𝐶𝑏 (𝐾), 𝑎, 𝑎1, 𝑎2, 𝑏 ∈ R and 𝐴 ∈ B(𝐾).
(a) If 𝐴 ⊆ 𝑢−1 (𝑎), then Γ𝒌

𝑝 ⟨𝑢⟩(𝐴) = 0.
(b) If 𝐴 ⊆ (𝑢 − 𝑣)−1 (𝑎), then Γ𝒌

𝑝 ⟨𝑢⟩(𝐴) = Γ𝒌
𝑝 ⟨𝑣⟩(𝐴).

(c) If 𝐴 ⊆ 𝑢−1
1 (𝑎1) ∪ 𝑢−1

2 (𝑎2), then

Γ𝒌
𝑝 ⟨𝑢1 + 𝑢2 + 𝑣⟩(𝐴) + Γ𝒌

𝑝 ⟨𝑣⟩(𝐴) = Γ𝒌
𝑝 ⟨𝑢1 + 𝑣⟩(𝐴) + Γ𝒌

𝑝 ⟨𝑢2 + 𝑣⟩(𝐴), (4.23)

Γ𝒌
𝑝 ⟨𝑢1 + 𝑢2; 𝑣⟩(𝐴) = Γ𝒌

𝑝 ⟨𝑢1; 𝑣⟩(𝐴) + Γ𝒌
𝑝 ⟨𝑢2; 𝑣⟩(𝐴). (4.24)
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(d) If 𝐴 ⊆ (𝑢1 − 𝑢2)−1 (𝑎) ∪ 𝑣−1 (𝑏), then

Γ𝒌
𝑝 ⟨𝑢1; 𝑣⟩(𝐴) = Γ𝒌

𝑝 ⟨𝑢2; 𝑣⟩(𝐴) and Γ𝒌
𝑝 ⟨𝑣; 𝑢1⟩(𝐴) = Γ𝒌

𝑝 ⟨𝑣; 𝑢2⟩(𝐴). (4.25)

Using Theorem 4.11, we can extend Proposition 4.7 as follows.

Corollary 4.12 Let 𝑢, 𝑣 ∈ D𝒌 ,𝑏
𝑝,∞. If {𝑢, 𝑣}∩D𝒌 ,𝑐

𝑝,∞ ≠ ∅, then Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = E𝒌

𝑝 (𝑢; 𝑣).

Proof. Similar to the proof of Proposotion 4.7, it suffices to consider the case
𝑢, 𝑣 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑏 (𝐾) with {𝑢, 𝑣} ∩ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾) ≠ ∅. Let 𝑓 , 𝑔 ∈ {𝑢, 𝑣} satisfy

{ 𝑓 , 𝑔} = {𝑢, 𝑣} and 𝑓 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾). Similar to the proof of Proposition 4.7,

we can find an open neighborhood 𝑈 of the compact subset supp𝐾 [ 𝑓 ] of 𝐾 and
𝜑 ∈ 𝐵𝒌

𝑝,∞ ∩ 𝐶𝑐 (𝐾) so that 0 ≤ 𝜑 ≤ 1 and 𝜑(𝑥) = 1 for any 𝑥 ∈ 𝑈. Then
supp𝐾 [ 𝑓 ] ∩ supp𝐾 [𝑔(𝜑 − 1𝐾 )] = ∅, so we have

E𝒌
𝑝 (𝑢; 𝑣) =

{
E𝒌
𝑝 ( 𝑓 ; 𝑔𝜑) if 𝑓 = 𝑢,

E𝒌
𝑝 (𝑔𝜑; 𝑓 ) if 𝑓 = 𝑣,

by Theorem 3.8-(e) and

Γ𝒌
𝑝 ⟨𝑢; 𝑣⟩(𝐾) =

{
Γ𝒌
𝑝 ⟨ 𝑓 ; 𝑔𝜑⟩(𝐾) if 𝑓 = 𝑢,

Γ𝒌
𝑝 ⟨𝑔𝜑; 𝑓 ⟩(𝐾) if 𝑓 = 𝑣,

by Theorem 4.11-(c),(d). Since 𝑓 , 𝑔𝜑 ∈ 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑐 (𝐾), we obtain Γ𝒌

𝑝 ⟨𝑢; 𝑣⟩(𝐾) =

E𝒌
𝑝 (𝑢; 𝑣) by Proposition 4.7. ⊓⊔

5 𝒑-Energy forms on 𝒑-conductively homogeneous spaces

In this section, we verify (WM)𝑝,𝒌 for the family of kernels 𝒌 = 𝒌𝑠𝑝 defined by
(3.26) and (3.27) on 𝑝-conductively homogeneous compact metric spaces equipped
with Ahlfors regular measures. We also show some estimates on localized versions
of Korevaar–Schoen 𝑝-energy forms, and construct, on the basis of Korevaar–Schoen
𝑝-energy forms, self-similar 𝑝-energy forms on 𝑝-conductively homogeneous self-
similar sets as well. We refer to [33, Sections 4.3–4.6] for many concrete examples
covered by this framework.

5.1 𝒑-Conductively homogeneous spaces

Les us recall the notation and terminology in [32, 33] by following [27, Section 8.1].
We fix a locally finite (non-directed) infinite tree (𝑇, 𝐸𝑇 ) in the usual sense (see [33,
Definition 2.1] for example), and fix a root 𝜙 ∈ 𝑇 of 𝑇 . (Here 𝑇 is the set of vertices
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and 𝐸𝑇 is the set of edges.) For any 𝑤 ∈ 𝑇 \ {𝜙}, we use 𝜙𝑤 to denote the unique
simple path in 𝑇 from 𝜙 to 𝑤.

Definition 5.1 ([33, Definition 2.2])
(1) For 𝑤 ∈ 𝑇 , define 𝜋 : 𝑇 → 𝑇 by

𝜋(𝑤) B
{
𝑤𝑛−1 if 𝑤 ≠ 𝜙 and 𝜙𝑤 = (𝑤0, . . . , 𝑤𝑛),
𝜙 if 𝑤 = 𝜙.

Set 𝑆(𝑤) B {𝑣 ∈ 𝑇 | 𝜋(𝑣) = 𝑤} \ {𝑤}. Moreover, for 𝑘 ∈ N, we define 𝑆𝑘 (𝑤)
inductively as

𝑆𝑘+1 (𝑤) =
⋃

𝑣∈𝑆 (𝑤)
𝑆𝑘 (𝑣).

For 𝐴 ⊆ 𝑇 , define 𝑆𝑘 (𝐴) B ⋃
𝑤∈𝐴 𝑆

𝑘 (𝐴).
(2) For 𝑤 ∈ 𝑇 and 𝑛 ∈ N ∪ {0}, define |𝑤 | B min{𝑛 ≥ 0 | 𝜋𝑛 (𝑤) = 𝜙} and

𝑇𝑛 B {𝑤 ∈ 𝑇 | |𝑤 | = 𝑛}.
(3) Define Σ B {(𝜔𝑛)𝑛≥0 | 𝜔𝑛 ∈ 𝑇𝑛 and 𝜔𝑛 = 𝜋(𝜔𝑛+1) for all 𝑛 ∈ N ∪ {0}}. For

𝜔 = (𝜔𝑛)𝑛≥0 ∈ Σ, we write [𝜔]𝑛 for 𝜔𝑛 ∈ 𝑇𝑛. For 𝑤 ∈ 𝑇 , define Σ𝑤 B
{(𝜔𝑛)𝑛≥0 ∈ Σ | 𝜔 |𝑤 | = 𝑤}. For 𝐴 ⊆ 𝑇 , define Σ𝐴 B

⋃
𝑤∈𝐴 Σ𝑤.

We introduce a partition parametrized by a rooted tree (see [32, Definition 2.2.1]
and [42, Lemma 3.6]).

Definition 5.2 (Partition parametrized by a tree) Let 𝐾 be a compact metrizable
topological space without isolated points. A family of non-empty compact subsets
{𝐾𝑤}𝑤∈𝑇 of 𝐾 is called a partition of 𝐾 parametrized by the rooted tree (𝑇, 𝐸𝑇 , 𝜙)
if and only if it satisfies the following conditions:
(P1) 𝐾𝜙 = 𝐾 and for any 𝑤 ∈ 𝑇 , #𝐾𝑤 ≥ 2 and 𝐾𝑤 =

⋃
𝑣∈𝑆 (𝑤) 𝐾𝑣.

(P2) For any 𝑤 ∈ Σ,
⋂
𝑛≥0 𝐾[𝜔 ]𝑛 is a single point.

In the rest of this section, we fix a compact metrizable topological space without
isolated points 𝐾 , a locally finite rooted tree (𝑇, 𝐸𝑇 , 𝜙) satisfying #{𝑣 ∈ 𝑇 | {𝑣, 𝑤} ∈
𝐸𝑇 } ≥ 2 for any 𝑤 ∈ 𝑇 , a partition {𝐾𝑤}𝑤∈𝑇 parametrized by (𝑇, 𝐸𝑇 , 𝜙), a metric 𝑑
on 𝐾 with diam(𝐾, 𝑑) = 1, and a Borel probability measure𝑚 on 𝐾 . In the following
definition, we collect some basic pieces of the notation used in [32, 33].

Definition 5.3 For 𝑛 ∈ N ∪ {0} and 𝐴 ⊆ 𝑇𝑛, define

𝐸∗
𝑛 B

{
{𝑣, 𝑤}

�� 𝑣, 𝑤 ∈ 𝑇𝑛, 𝑣 ≠ 𝑤, 𝐾𝑣 ∩ 𝐾𝑤 ≠ ∅
}
,

and 𝐸∗
𝑛 (𝐴) =

{
{𝑣, 𝑤} ∈ 𝐸∗

𝑛

�� 𝑣, 𝑤 ∈ 𝐴
}
. Let 𝑑𝑛 be the graph distance of (𝑇𝑛, 𝐸∗

𝑛).
For 𝑀 ∈ N ∪ {0}, 𝑤 ∈ 𝑇𝑛 and 𝑥 ∈ 𝐾 , define

Γ𝑀 (𝑤) B {𝑣 ∈ 𝑇𝑛 | 𝑑𝑛 (𝑣, 𝑤) ≤ 𝑀} and 𝑈𝑀 (𝑥; 𝑛) B
⋃

𝑤∈𝑇𝑛;𝑥∈𝐾𝑤

⋃
𝑣∈Γ𝑀 (𝑤)

𝐾𝑣.
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To state geometric assumptions in [33], we need the following definition (see [32,
Definitions 2.2.1 and 3.1.15].)

Definition 5.4 (1) The partition {𝐾𝑤}𝑤∈𝑇 is said to be minimal if and only if 𝐾𝑤 \⋃
𝑣∈𝑇|𝑤|\{𝑤} ≠ ∅ for any 𝑤 ∈ 𝑇 .

(2) The partition {𝐾𝑤}𝑤∈𝑇 is said to be uniformly finite if and only if sup𝑤∈𝑇 #Γ1 (𝑤) <
∞.

We also use the following notation for simplicity.

Definition 5.5 For 𝑛 ∈ N∪{0} and𝑈 ⊆ 𝐾 , define𝑇𝑛 [𝑈] B {𝑤 ∈ 𝑇𝑛 | 𝐾𝑤∩𝑈 ≠ ∅}.

Now we describe basic geometric conditions in [33]. The conditions (1), (2) and
(5.6) in (3) below are important to follow the rest of this paper.

Assumption 5.6 ([33, Assumption 2.15]) Let (𝐾,O) be a connected compact
metrizable space, {𝐾𝑤}𝑤∈𝑇 a partition parametrized by the rooted tree (𝑇, 𝜙), 𝑑
a metric on 𝐾 that is compatible with the topology O and diam(𝐾, 𝑑) = 1 and 𝑚 a
Borel probability measure on 𝐾 . There exist 𝑀∗ ∈ N and 𝑟∗ ∈ (0, 1) such that the
following conditions (1)–(5) hold.
(1) 𝐾𝑤 is connected for any 𝑤 ∈ 𝑇 , {𝐾𝑤}𝑤∈𝑇 is minimal and uniformly finite, and

inf𝑚≥0 min𝑤∈𝑇𝑚 #𝑆(𝑤) ≥ 2.
(2) There exist 𝑐𝑖 > 0, 𝑖 ∈ {1, . . . , 5}, such that the following conditions (2A)–(2C)

are true.

(2A) For any 𝑤 ∈ 𝑇 ,
𝑐1𝑟

|𝑤 |
∗ ≤ diam(𝐾𝑤, 𝑑) ≤ 𝑐2𝑟

|𝑤 |
∗ . (5.1)

(2B) For any 𝑛 ∈ N and 𝑥 ∈ 𝐾 ,

𝐵𝑑 (𝑥, 𝑐3𝑟
𝑛
∗ ) ⊆ 𝑈𝑀∗ (𝑥; 𝑛) ⊆ 𝐵𝑑 (𝑥, 𝑐4𝑟

𝑛
∗ ). (5.2)

(2C) For any 𝑛 ∈ N and 𝑤 ∈ 𝑇𝑛, there exists 𝑥 ∈ 𝐾𝑤 satisfying

𝐾𝑤 ⊇ 𝐵𝑑 (𝑥, 𝑐5𝑟
𝑛
∗ ). (5.3)

(3) There exist 𝑚1 ∈ N, 𝛾1 ∈ (0, 1) and 𝛾 ∈ (0, 1) such that

𝑚(𝐾𝑤) ≥ 𝛾𝑚(𝐾𝜋 (𝑤) ) for any 𝑤 ∈ 𝑇 , (5.4)

and
𝑚(𝐾𝑣) ≤ 𝛾1𝑚(𝐾𝑤) for any 𝑤 ∈ 𝑇 and 𝑣 ∈ 𝑆𝑚1 (𝑤). (5.5)

Furthermore, 𝑚 is volume doubling with respect to 𝑑 and

𝑚(𝐾𝑤) =
∑︁

𝑣∈𝑆 (𝑤)
𝑚(𝐾𝑣) for any 𝑤 ∈ 𝑇 . (5.6)

(4) There exists 𝑀0 ≥ 𝑀∗ such that for any 𝑤 ∈ 𝑇 , 𝑘 ≥ 1 and any 𝑣 ∈ 𝑆𝑘 (𝑤),
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Γ𝑀∗ (𝑣)∩𝑆𝑘 (𝑤) ⊆
{
𝑣′ ∈ 𝑇|𝑣 |

���� there exist 𝑙 ≤ 𝑀0 and (𝑣0, . . . , 𝑣𝑙) ∈ 𝑆𝑘 (𝑤)𝑙+1

such that (𝑣 𝑗−1, 𝑣 𝑗 ) ∈ 𝐸∗
|𝑣 | for any 𝑗 ∈ {1, . . . , 𝑙}

}
.

(5) For any 𝑤 ∈ 𝑇 , 𝜋(Γ𝑀∗+1 (𝑤)) ⊆ Γ𝑀∗ (𝜋(𝑤)).

Note that if a Borel probability measure 𝑚 on 𝐾 satisfies (5.6), then we have

𝑚(𝐾𝑣 ∩ 𝐾𝑤) = 0 for any 𝑣, 𝑤 ∈ 𝑇 with 𝑣 ≠ 𝑤 and |𝑣 | = |𝑤 |; (5.7)

see [27, Proposition 8.7] for a proof of this fact.
Next we introduce conductance, neighbor disparity constants and the notion of

𝑝-conductive homogeneity in Definitions 5.9, 5.7 and 5.10. We also recall the notion
of a covering system in Definition 5.8, which is used in the definition of neighbor
disparity constants. See [33, Sections 2.2, 2.3 and 3.3] for further details on these
topics. In the rest of this section, we fix 𝑝 ∈ (1,∞) unless otherwise stated. We will
state some definitions and statements below for any 𝑝 ∈ [1,∞), but on each such
occasion we will explicitly declare that we let 𝑝 ∈ [1,∞).

Definition 5.7 ([33, Definitions 2.17 and 3.4]) Let 𝑝 ∈ [1,∞), 𝑛 ∈ N ∪ {0} and
𝐴 ⊆ 𝑇𝑛.
(1) Define E𝑛

𝑝,𝐴
: R𝐴 → [0,∞) by

E𝑛𝑝,𝐴( 𝑓 ) B
∑︁

{𝑢,𝑣}∈𝐸∗
𝑛 (𝐴)

| 𝑓 (𝑢) − 𝑓 (𝑣) |𝑝 , 𝑓 ∈ R𝐴.

We write E𝑛𝑝 ( 𝑓 ) for E𝑛
𝑝,𝑇𝑛

( 𝑓 ).
(2) For 𝐴0, 𝐴1 ⊆ 𝐴, define cap𝑛𝑝 (𝐴0, 𝐴1; 𝐴) by

cap𝑛𝑝 (𝐴0, 𝐴1; 𝐴) B inf
{
E𝑛𝑝,𝐴( 𝑓 )

�� 𝑓 ∈ R𝐴, 𝑓 |𝐴𝑖 = 𝑖 for 𝑖 ∈ {0, 1}
}
.

(3) (Conductance constant) For 𝐴1, 𝐴2 ⊆ 𝐴 and 𝑘 ∈ N ∪ {0}, define

E𝑝,𝑘 (𝐴1, 𝐴2, 𝐴) B cap𝑛+𝑘𝑝
(
𝑆𝑘 (𝐴1), 𝑆𝑘 (𝐴2); 𝑆𝑘 (𝐴)

)
.

For 𝑀 ∈ N, define E𝑀,𝑝,𝑘 B sup𝑤∈𝑇 E𝑝,𝑘 ({𝑤}, 𝑇|𝑤 | \ Γ𝑀 (𝑤), 𝑇|𝑤 | ).

Definition 5.8 ([33, Definitions 2.26-(3) and 2.29]) Let 𝑁𝑇 , 𝑁𝐸 ∈ N.
(1) Let 𝑛 ∈ N ∪ {0} and 𝐴 ⊆ 𝑇𝑛. A collection {𝐺𝑖}𝑘𝑖=1 with 𝐺𝑖 ⊆ 𝑇𝑛 is called

a covering of (𝐴, 𝐸∗
𝑛 (𝐴)) with covering numbers (𝑁𝑇 , 𝑁𝐸) if and only if 𝐴 =⋃𝑘

𝑖=1 𝐺𝑘 , max𝑥∈𝐴 #{𝑖 | 𝑥 ∈ 𝐺𝑖} ≤ 𝑁𝑇 and for any (𝑢, 𝑣) ∈ 𝐸∗
𝑛 (𝐴), there exists

𝑙 ≤ 𝑁𝐸 and {𝑤(1), . . . , 𝑤(𝑙 + 1)} ⊆ 𝐴 such that 𝑤(1) = 𝑢, 𝑤(𝑙 + 1) = 𝑣 and
(𝑤(𝑖), 𝑤(𝑖 + 1)) ∈ ⋃𝑘

𝑗=1 𝐸
∗
𝑛 (𝐺 𝑗 ) for any 𝑖 ∈ {1, . . . , 𝑙}.

(2) Let J ⊆ ⋃
𝑛∈N∪{0}{𝐴 | 𝐴 ⊆ 𝑇𝑛}. The collection J is called a covering

system with covering number (𝑁𝑇 , 𝑁𝐸) if and only if the following conditions
are satisfied:
(i) sup𝐴∈J #𝐴 < ∞.
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(ii) For any𝑤 ∈ 𝑇 and 𝑘 ∈ N, there exists a finite subset N ⊆ J ∩𝑇|𝑤 |+𝑘 such
that N is a covering of

(
𝑆𝑘 (𝑤), 𝐸∗

|𝑤 |+𝑘 (𝑆
𝑘 (𝑤))

)
with covering numbers

(𝑁𝑇 , 𝑁𝐸).
(iii) For any𝐺 ∈ J and 𝑘 ∈ N∪{0}, if𝐺 ⊆ 𝑇𝑛, then there exists a finite subset

N ⊆ J ∩𝑇𝑛+𝑘 such that N is a covering of
(
𝑆𝑘 (𝐺), 𝐸∗

𝑛+𝑘 (𝑆
𝑘 (𝐺))

)
with

covering numbers (𝑁𝑇 , 𝑁𝐸).
The collection J is simply said to be a covering system if J is a covering
system with covering numbers (𝑁𝑇 , 𝑁𝐸) for some (𝑁𝑇 , 𝑁𝐸) ∈ N2.

Definition 5.9 ([33, Definitions 2.26 and 2.29]) Let 𝑝 ∈ [1,∞), 𝑛 ∈ N and 𝐴 ⊆ 𝑇𝑛.
(1) For 𝑘 ∈ N ∪ {0} and 𝑓 : 𝑇𝑛+𝑘 → R, define 𝑃𝑛,𝑘 𝑓 : 𝑇𝑛 → R by

(𝑃𝑛,𝑘 𝑓 ) (𝑤) B
1∑

𝑣∈𝑆𝑘 (𝑤) 𝑚(𝐾𝑣)
∑︁

𝑣∈𝑆𝑘 (𝑤)
𝑓 (𝑣)𝑚(𝐾𝑣), 𝑤 ∈ 𝑇𝑛.

(Note that 𝑃𝑛,𝑘 𝑓 depends on the measure 𝑚.)
(2) (Neighbor disparity constant) For 𝑘 ∈ N ∪ {0}, define

𝜎𝑝,𝑘 (𝐴) B sup
𝑓 : 𝑆𝑘 (𝐴)→R

E𝑛
𝑝,𝐴

(𝑃𝑛,𝑘 𝑓 )
E𝑛+𝑘
𝑝,𝑆𝑘 (𝐴) ( 𝑓 )

.

(3) Let J ⊆ ⋃
𝑛≥0{𝐴 | 𝐴 ⊆ 𝑇𝑛} be a covering system. Define

𝜎
J

𝑝,𝑘,𝑛
B max{𝜎𝑝,𝑘 (𝐴) | 𝐴 ∈ J , 𝐴 ⊆ 𝑇𝑛} and 𝜎

J

𝑝,𝑘
B sup

𝑛∈N∪{0}
𝜎

J

𝑝,𝑘,𝑛
.

Definition 5.10 ([33, Definition 3.4]) Let 𝑝 ∈ [1,∞). The compact metric space 𝐾
(with a partition {𝐾𝑤}𝑤∈𝑇 and a measure 𝑚) is said to be 𝑝-conductively homoge-
neous if and only if there exists a covering system J such that

sup
𝑘∈N∪{0}

𝜎
J

𝑝,𝑘
E𝑀∗ , 𝑝,𝑘 < ∞. (5.8)

Theorem 5.11 (A part of [33, Theorem 3.30]) Let 𝑝 ∈ [1,∞) and suppose
that Assumption 5.6 holds. If 𝐾 is 𝑝-conductively homogeneous, then there exist
𝑐1, 𝑐2, 𝜎𝑝 ∈ (0,∞) and a covering system J such that for any 𝑘 ∈ N ∪ {0},

𝑐1𝜎
−𝑘
𝑝 ≤ E𝑀∗ , 𝑝,𝑘 ≤ 𝑐2𝜎

−𝑘
𝑝 and 𝑐1𝜎

𝑘
𝑝 ≤ 𝜎J

𝑝,𝑘
≤ 𝑐2𝜎

𝑘
𝑝 . (5.9)

The following weak monotonicity is a key consequence of the 𝑝-conductive
homogeneity.

Lemma 5.12 (Weak monotonicity) Let 𝑝 ∈ [1,∞) and suppose that Assumption
5.6 holds. If 𝐾 is 𝑝-conductively homogeneous, then there exists 𝐶 ∈ (0,∞) such
that for any 𝑘, 𝑙 ∈ N, any 𝐴 ⊆ 𝑇𝑘 and any 𝑓 ∈ 𝐿1 (𝐾, 𝑚),

𝜎𝑘𝑝E𝑘𝑝,𝐴(𝑃𝑘 𝑓 ) ≤ 𝐶𝜎
𝑘+𝑙
𝑝 E𝑘+𝑙

𝑝,𝑆𝑙 (𝐴) (𝑃𝑘+𝑙 𝑓 ), (5.10)
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where 𝜎𝑝 is the constant in (5.9).

Proof. This follows immediately by combining [33, Lemma 2.27] and (5.9). ⊓⊔

We also recall the “Sobolev space” W 𝑝 introduced in [33, Lemma 3.13].

Definition 5.13 Let 𝑝 ∈ [1,∞). Suppose that Assumption 5.6 holds and that 𝐾 is
𝑝-conductively homogeneous. Let 𝜎𝑝 be the constant in (5.9).
(1) For 𝑛 ∈ N ∪ {0}, 𝑤 ∈ 𝑇𝑛, 𝐸 ∈ B(𝐾) with 𝐸 ⊇ 𝐾𝑤 and 𝑓 ∈ 𝐿1 (𝐸, 𝑚 |𝐸), define

𝑃𝑛 𝑓 (𝑤) B
ffl
𝐾𝑤

𝑓 𝑑𝑚.
(2) We define N𝑝 : 𝐿 𝑝 (𝐾, 𝑚) → [0,∞] and W 𝑝 ⊆ 𝐿 𝑝 (𝐾, 𝑚) by

N𝑝 ( 𝑓 ) B
(

sup
𝑛∈N∪{0}

𝜎𝑛𝑝E𝑛𝑝 (𝑃𝑛 𝑓 )
)1/𝑝

, 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

W 𝑝 B
{
𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚)

�� N𝑝 ( 𝑓 ) < ∞
}
.

Note that N𝑝 ( 𝑓 ) = 0 if and only if 𝑓 is constant on 𝐾 (see [27, Section 8.1] for
details). We also equip W 𝑝 with the norm ∥ · ∥W𝑝 defined by

∥ 𝑓 ∥W𝑝 B
(
∥ 𝑓 ∥ 𝑝

𝐿𝑝 (𝐾,𝑚) + N𝑝 ( 𝑓 ) 𝑝
)1/𝑝

, 𝑓 ∈ W 𝑝 .

(3) For 𝑛 ∈ N ∪ {0}, 𝐴 ⊆ 𝑇𝑛, 𝐸 ∈ B(𝐾) with 𝐸 ⊇ ⋃
𝑤∈𝐴 𝐾𝑤 and 𝑓 ∈ 𝐿1 (𝐸, 𝑚 |𝐸),

we define
Ẽ𝑛𝑝,𝐴( 𝑓 ) B 𝜎𝑛𝑝E𝑛𝑝,𝐴(𝑃𝑛 𝑓 ).

We also set Ẽ𝑛𝑝 ( 𝑓 ) B Ẽ𝑛
𝑝,𝑇𝑛

( 𝑓 ) for 𝑓 ∈ 𝐿1 (𝐾, 𝑚).

Now we can introduce a framework to construct a 𝑝-resistance form on 𝐾 .

Assumption 5.14 Let (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚) satisfy Assumption 5.6. In addition,
(𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) satisfies the following conditions:
(1) The measure 𝑚 is Ahlfors regular with respect to 𝑑. (Recall (3.21).)
(2) 𝐾 is 𝑝-conductively homogeneous.
(3) 𝜎𝑝 > 1, where 𝜎𝑝 is the constant in (5.9).

Remark 5.15 (1) By [32, Theorem 4.6.9], Assumption 5.14-(3) is equivalent to
𝑝 > dimARC (𝐾, 𝑑), where dimARC (𝐾, 𝑑) denotes the Ahlfors regular conformal
dimension of (𝐾, 𝑑). (See, e.g., [33, (1.1)] for the definition of dimARC (𝐾, 𝑑).)

(2) It is highly non-trivial in general to verify that a given compact metric space
𝐾 is 𝑝-conductively homogeneous. In [33, Sections 4.3–4.6] and [34], the 𝑝-
conductive homogeneity for 𝑝 > dimARC (𝐾, 𝑑) has been proved for various
large classes of self-similar sets 𝐾 in R𝑛 equipped with the Euclidean metric 𝑑.

In the following theorem, we recall a fundamental result on W 𝑝 .
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Theorem 5.16 ([33, Lemmas 3.16, 3.19, 3.24 and Theorem 3.22], [27, Theorem
8.16]) Let 𝑝 ∈ [1,∞). Suppose that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚) satisfies Assumption 5.6 and
that 𝐾 is 𝑝-conductively homogeneous. ThenW 𝑝 equipped with the norm ∥ · ∥W𝑝 is
a Banach space. If 𝑝 > 1, then W 𝑝 is reflexive and separable. If 𝑝 > dimARC (𝐾, 𝑑),
or equivalently 𝜎𝑝 > 1, then W 𝑝 ⊆ 𝐶 (𝐾) and W 𝑝 is dense in (𝐶 (𝐾), ∥ · ∥sup).

Let us introduce an important exponent, which we call the 𝑝-walk dimension, to
describe the main result in this section.

Definition 5.17 Suppose that Assumption 5.6 holds, that 𝑚 is Ahlfors regular and
that 𝐾 is 𝑝-conductively homogeneous. Let 𝑟∗ ∈ (0, 1) be the constant in (5.1), let
𝜎𝑝 be the constant in (5.9) and let 𝑑f be the Hausdorff dimension of (𝐾, 𝑑). Define

𝑑w, 𝑝 B 𝑑f +
log𝜎𝑝
log 𝑟−1

∗
. (5.11)

We call 𝑑w, 𝑝 the 𝑝-walk dimension of (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚).

The next proposition states a suitable capacity upper bound in this framework.

Proposition 5.18 ([27, Proposition 8.21]) Suppose that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) sat-
isfies Assumption 5.14. Then there exists 𝐶 ∈ (0,∞) such that for any (𝑥, 𝑠) ∈
𝐾 × (0, 1],

inf
{
N𝑝 ( 𝑓 ) 𝑝

��� 𝑓 ∈ W 𝑝 , 𝑓 |𝐵𝑑 (𝑥,𝑠) = 1, supp𝐾 [ 𝑓 ] ⊆ 𝐵𝑑 (𝑥, 2𝑠)
}
≤ 𝐶𝑠𝑑f−𝑑w, 𝑝 .

(5.12)

We also consider the following setting to deal with the case 𝑝 ≤ dimARC (𝐾, 𝑑).

Assumption 5.19 Let (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚) satisfy Assumption 5.6. In addition,
(𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) satisfies the following conditions:
(1) The measure 𝑚 is Ahlfors regular with respect to 𝑑.
(2) 𝐾 is 𝑝-conductively homogeneous.
(3) There exists 𝐶 ∈ (0,∞) such that for any (𝑥, 𝑠) ∈ 𝐾 × (0, 1],

inf
{
N𝑝 ( 𝑓 ) 𝑝

��� 𝑓 ∈ W 𝑝 ∩ 𝐶 (𝐾), 𝑓 |𝐵𝑑 (𝑥,𝑠) = 1, supp𝐾 [ 𝑓 ] ⊆ 𝐵𝑑 (𝑥, 2𝑠)
}

≤ 𝐶𝑠𝑑f−𝑑w, 𝑝 . (5.13)

Note that Assumption 5.14 implies Assumption 5.19 by Proposition 5.18.
The same argument as in [39, Lemma 6.26] yields a good partition of unity under

Assumption 5.19 as given in Lemma 5.20 and thus we obtain the regularity of W 𝑝

in Corollary 5.21.

Lemma 5.20 Suppose that Assumption 5.19 holds. Let 𝜀 ∈ (0, 1) and let 𝑉 be a
maximal 𝜀-net of (𝐾, 𝑑). Then there exists a family of functions {𝜓𝑧}𝑧∈𝑉 that satisfies
the following properties:
(i)

∑
𝑧∈𝑉 𝜓𝑧 ≡ 1.
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(ii) 𝜓𝑧 ∈ W 𝑝 ∩ 𝐶 (𝐾), 0 ≤ 𝜓𝑧 ≤ 1, 𝜓𝑧 |𝐵𝑑 (𝑧,𝜀/4) ≡ 1 and supp𝐾 [𝜓𝑧] ⊆
𝐵𝑑 (𝑧, 5𝜀/4) for any 𝑧 ∈ 𝑉 .

(iii) If 𝑧 ∈ 𝑉 and 𝑧′ ∈ 𝑉 \ {𝑧}, then 𝜓𝑧′ |𝐵𝑑 (𝑧,𝜀/4) ≡ 0.
(iv) There exists 𝐶 ∈ (0,∞) such that N𝑝 (𝜓𝑧) 𝑝 ≤ 𝐶𝜀𝑑f−𝑑w, 𝑝 for any 𝑧 ∈ 𝑉 .

Corollary 5.21 Suppose that Assumption 5.19 holds. Then W 𝑝 ∩𝐶 (𝐾) is dense in
(𝐶 (𝐾), ∥ · ∥sup).

5.2 Localized energy estimates

In this subsection, we show localized energy estimates on Korevaar–Schoen 𝑝-energy
forms, which will imply (WM)𝑝,𝒌 with the family of kernels 𝒌𝑠𝑝 (recall (3.26)) and
the equality 𝑠𝑝 = 𝑑w, 𝑝/𝑝. Estimates in this subsection are very similar to [39, Section
7] although the setting of “partitions” in [39] is slightly different from ours.

We start with the following lemma giving a Poincaré-type estimate.

Lemma 5.22 ([27, Lemma 8.22]) Suppose that Assumption 5.19 holds. Then there
exists a constant 𝐶 ∈ (0,∞) such that for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚) and any 𝑤 ∈ 𝑇 ,

ˆ
𝐾𝑤

�� 𝑓 (𝑥) − 𝑓𝐾𝑤

��𝑝 𝑚(𝑑𝑥) ≤ 𝐶𝑟 |𝑤 |𝑑w, 𝑝
∗ lim inf

𝑛→∞
Ẽ𝑛+|𝑤 |
𝑝,𝑆𝑛 (𝑤) ( 𝑓 ). (5.14)

The next proposition shows an upper bound on localized Korevaar–Schoen energy
functionals.

Proposition 5.23 Suppose that Assumption 5.19 holds. Then there exists𝐶 ∈ (0,∞)
such that for any 𝐸 ∈ B(𝐾), any open neighborhood 𝐸 ′ of 𝐸𝐾 and any 𝑓 ∈
𝐿 𝑝 (𝐸 ′, 𝑚 |𝐸′ ),

lim sup
𝑟↓0

ˆ
𝐸

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤ 𝐶 lim sup
𝑟↓0

lim inf
𝑛→∞

Ẽ𝑛
𝑝,𝑇𝑛 [ (𝐸 )𝑑,𝑟 ] ( 𝑓 ), (5.15)

Furthermore, with 𝐶 ∈ (0,∞) the same as in (5.15), for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

sup
𝑟>0

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≤ 𝐶N𝑝 ( 𝑓 ) 𝑝 . (5.16)

Proof. Let 𝑟∗ ∈ (0, 1) and 𝑀∗ ∈ N be the constants in Assumption 5.6. Let 𝑟 > 0
and choose 𝑛(𝑟) ∈ N satisfying 𝑐3𝑟

𝑛(𝑟 )+1
∗ < 𝑟 ≤ 𝑐3𝑟

𝑛(𝑟 )
∗ , where 𝑐3 is the constant

in (5.2). Then, for any 𝑤 ∈ 𝑇𝑛(𝑟 ) and 𝑥 ∈ 𝐾𝑤, we have 𝐵𝑑 (𝑥, 𝑟) ⊆ 𝑈𝑀∗ (𝑥; 𝑛(𝑟)) ⊆
𝑈𝑀∗+1 (𝑤). Let 𝑓 ∈ 𝐿 𝑝 (𝐸 ′, 𝑚 |𝐸′ ), where 𝐸 ′ is an open neighborhood of 𝐸𝐾 . Set
𝑐 B (𝑀∗ + 2)𝑐2 (𝑐3𝑟∗)−1 ∈ (0,∞), where 𝑐2 is the constant in (5.1). Then, by
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(5.1),
⋃
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ] 𝑆

𝑘 (Γ𝑀∗+1 (𝑤)) ⊆ 𝑇𝑘+𝑛(𝑟 ) [(𝐸)𝑑,𝑐𝑟 ] for any 𝑘 ∈ N and there exists
𝑟0 ∈ (0,∞) such that (𝐸)𝑑,𝑐𝑟 ⊆ 𝐸 ′ for any 𝑟 ∈ (0, 𝑟0). By using | 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝 ≲�� 𝑓 (𝑥) − 𝑓𝐾𝑤

��𝑝 + �� 𝑓 (𝑦) − 𝑓𝐾𝑣

��𝑝 + �� 𝑓𝐾𝑣 − 𝑓𝐾𝑤

��𝑝 and Lemma 5.22, we see that for any
𝑟 ∈ (0, 𝑟0),

ˆ
𝐸

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤ 𝑟−𝑛(𝑟 )𝑑f
∗

∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ],𝑣∈Γ𝑀∗+1 (𝑤)

ˆ
𝐾𝑤

ˆ
𝐾𝑣

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≲
∑︁

𝑤∈𝑇𝑛(𝑟 ) [𝐸 ],𝑣∈Γ𝑀∗+1 (𝑤)

(
lim inf
𝑘→∞

Ẽ𝑘+𝑛(𝑟 )
𝑝,𝑆𝑘 (𝑣) ( 𝑓 ) + lim inf

𝑘→∞
Ẽ𝑘+𝑛(𝑟 )
𝑝,𝑆𝑘 (𝑤) ( 𝑓 )

)
+

∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ],𝑣∈Γ𝑀∗+1 (𝑤)

𝜎
𝑛(𝑟 )
𝑝

�� 𝑓𝐾𝑣 − 𝑓𝐾𝑤

��𝑝
≲

∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ]

lim inf
𝑘→∞

Ẽ𝑘+𝑛(𝑟 )
𝑝,𝑆𝑘 (Γ𝑀∗+1 (𝑤) )

( 𝑓 ) +
∑︁

𝑤∈𝑇𝑛(𝑟 ) [𝐸 ]
Ẽ𝑛(𝑟 )
𝑝,Γ𝑀∗+1 (𝑤) ( 𝑓 ). (5.17)

Since the partition {𝐾𝑤}𝑤∈𝑇 is uniformly finite, we have∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ]

lim inf
𝑘→∞

Ẽ𝑘+𝑛(𝑟 )
𝑝,𝑆𝑘 (Γ𝑀∗+1 (𝑤) )

( 𝑓 ) ≤ lim inf
𝑘→∞

∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ]

Ẽ𝑛+𝑛(𝑟 )
𝑝,𝑆𝑘 (Γ𝑀∗+1 (𝑤) )

( 𝑓 )

≲ lim inf
𝑘→∞

Ẽ𝑘
𝑝,𝑇𝑘 [ (𝐸 )𝑑,𝑐𝑟 ] ( 𝑓 ). (5.18)

We also have from Lemma 5.12 that∑︁
𝑤∈𝑇𝑛(𝑟 ) [𝐸 ]

Ẽ𝑛(𝑟 )
𝑝,Γ𝑀∗+1 (𝑤) ( 𝑓 ) ≲ Ẽ𝑛(𝑟 )

𝑝,𝑇𝑛(𝑟 ) [ (𝐸 )𝑑,𝑐𝑟 ] ( 𝑓 ) ≲ lim inf
𝑛→∞

Ẽ𝑛
𝑝,𝑇𝑛 [ (𝐸 )𝑑,𝑐𝑟 ] ( 𝑓 ).

(5.19)
By (5.17), (5.18) and (5.19), there exists𝐶 ∈ (0,∞) (depending only on the constants
associated with Assumption 5.6) such that for any 𝑟 ∈ (0, 𝑟0),
ˆ
𝐸

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≤ 𝐶 lim inf

𝑛→∞
Ẽ𝑛
𝑝,𝑇𝑛 [ (𝐸 )𝑑,𝑐𝑟 ] ( 𝑓 ), (5.20)

whence we obtain (5.15) by letting 𝑟 ↓ 0 in (5.20). If 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚), then we have
(5.16) by letting 𝐸 B 𝐾 in (5.20). ⊓⊔

Before proving inequalities in the converse direction matching (5.15) and (5.16),
let us introduce a localized version of W 𝑝 .

Definition 5.24 Let𝑈 be a non-empty open subset of𝐾 . We define a linear subspace
W 𝑝

loc (𝑈) of 𝐿0 (𝑈, 𝑚 |𝑈) by

W 𝑝

loc (𝑈) B
{
𝑓 ∈ 𝐿0 (𝑈, 𝑚 |𝑈)

���� 𝑓 = 𝑓 # 𝑚-a.e. on 𝑉 for some 𝑓 # ∈ W 𝑝 for
each relatively compact open subset𝑉 of𝑈

}
.
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The following lower bound on localized Korevaar–Schoen energy functionals can
be shown in a similar way as [6, Theorem 5.2].

Proposition 5.25 Suppose that Assumption 5.19 holds. Then there exists𝐶 ∈ (0,∞)
such that for any 𝐸 ⊆ 𝐾 , any open neighborhood 𝐸 ′ of 𝐸𝐾 and any 𝑢 ∈ W 𝑝

loc (𝐸
′),

lim sup
𝑛→∞

Ẽ𝑛
𝑝,𝑇𝑛 [𝐸 ] (𝑢) ≤ 𝐶 lim

𝛿↓0
lim inf
𝑟↓0

ˆ
(𝐸 )𝑑,𝛿

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥).

(5.21)
Furthermore, with 𝐶 ∈ (0,∞) the same as in (5.21), for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

N𝑝 ( 𝑓 ) 𝑝 ≤ 𝐶 lim inf
𝑟↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥). (5.22)

Proof. Let 𝑟 ∈ (0, 1), let 𝑁𝑟 be a maximal 𝑟-net of (𝐾, 𝑑), and let {𝜓𝑧,𝑟 }𝑧∈𝑁𝑟 be a
partition of unity as given in Lemma 5.20. Define 𝐴𝑟 : 𝐿 𝑝 (𝐾, 𝑚) → W 𝑝 ∩ 𝐶 (𝐾)
by 𝐴𝑟 𝑓 B

∑
𝑧∈𝑁𝑟 𝑓𝐵𝑑 (𝑧,𝑟/4)𝜓𝑧,𝑟 for 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚). Then we can easily see that

lim𝑟→0 ∥𝐴𝑟 𝑓 − 𝑓 ∥𝐿𝑝 (𝐾,𝑚) = 0 and sup𝑟>0 ∥𝐴𝑟 ∥𝐿𝑝 (𝐾,𝑚)→𝐿𝑝 (𝐾,𝑚) < ∞. For any
large 𝑛 ∈ N so that 4𝑐2𝑟

𝑛
∗ < 𝑟 , where 𝑐2 is the constant in (5.1), a similar argument

as in [39, Lemma 7.4] shows that there exists𝐶1 > 0 depending only on the constants
associated with Assumption 5.6 such that

Ẽ𝑛
𝑝,𝑇𝑛 [𝐵𝑑 (𝑧,5𝑟/4) ] (𝐴𝑟 𝑓 )

≤ 𝐶1
∑︁

𝑤∈𝑁𝑟∩𝐵𝑑 (𝑧,11𝑟/4)

ˆ
𝐵𝑑 (𝑤,3𝑟 )

 
𝐵𝑑 (𝑥,9𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥). (5.23)

Let us fix 𝛿 > 0 and define 𝑁𝑟 (𝐸) B {𝑧 ∈ 𝑁𝑟 | 𝐸 ∩ 𝐵𝑑 (𝑧, 𝑟) ≠ ∅}. Then, for any
small enough 𝑟 > 0 so that 𝑟 < 𝛿/7, we have 𝐸 ⊆ ⋃

𝑧∈𝑁𝑟 (𝐸 ) 𝐵𝑑 (𝑧, 5𝑟/4) and⋃
𝑧∈𝑁𝑟 (𝐸 )

⋃
𝑤∈𝑁𝑟∩𝐵𝑑 (𝑧,11𝑟/4)

𝐵𝑑 (𝑤, 3𝑟) ⊆ (𝐸)𝑑, 𝛿 ,

whence we see that for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

Ẽ𝑛
𝑝,𝑇𝑛 [𝐸 ] (𝐴𝑟 𝑓 )

≤
∑︁

𝑧∈𝑁𝑟 (𝐸 )
Ẽ𝑛
𝑝,𝑇𝑛 [𝐵𝑑 (𝑧,5𝑟/4) ] (𝐴𝑟 𝑓 )

(5.23)
≤ 𝐶1

∑︁
𝑧∈𝑁𝑟 (𝐸 )

∑︁
𝑤∈𝑁𝑟∩𝐵𝑑 (𝑧,11𝑟/4)

ˆ
𝐵𝑑 (𝑤,3𝑟 )

 
𝐵𝑑 (𝑥,9𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≲

ˆ
(𝐸 )𝑑,𝛿

 
𝐵𝑑 (𝑥,9𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥), (5.24)
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where we used the metric doubling property of (𝐾, 𝑑) in the last inequality. (Here,
we consider small enough 𝑟 > 0 so that 𝑟 < 𝛿/7 and large enough 𝑛 ∈ N so that
4𝑐2𝑟

𝑛
∗ < 𝑟.)

To prove the desired estimate (5.21) for 𝑢 ∈ W 𝑝

loc (𝐸
′), we fix a relatively compact

open subset 𝑉 of 𝐸 ′ and 𝑢# ∈ W 𝑝 satisfying 𝑉 ⊇ 𝐸
𝐾 , 𝑢# ∈ W 𝑝 and 𝑢 = 𝑢# 𝑚-a.e.

on 𝑉 . Also, fix a sequence {𝑟𝑘}𝑘∈N ⊆ (0,∞) such that 𝑟𝑘 ↓ 0 as 𝑘 → ∞ and

lim
𝑘→∞

𝑟
−𝑑w, 𝑝
𝑘

𝐽𝑝,𝑟𝑘 (𝑢# | (𝐸)𝑑, 𝛿) = lim inf
𝑟↓0

𝑟−𝑑w, 𝑝 𝐽𝑝,𝑟 (𝑢# | (𝐸)𝑑, 𝛿) ≤ N𝑝 (𝑢#) < ∞,

where 𝐽𝑝,𝑟 (𝑔 | 𝐴) B
´
𝐴

ffl
𝐵𝑑 (𝑥,𝑟 )

|𝑔 (𝑥 )−𝑔 (𝑦) | 𝑝
𝑟𝑑w, 𝑝 𝑚(𝑑𝑦)𝑚(𝑑𝑥) for 𝑔 ∈ 𝐿 𝑝 (𝐾, 𝑚) and

𝐴 ∈ B(𝐾). Set 𝑢𝑘 B 𝐴𝑟𝑘/9𝑢
# for each 𝑘 ∈ N. By combining (5.24) with 𝐸 = 𝐾 and

(5.16), for all large 𝑘 ∈ N, we have

N𝑝 (𝑢𝑘) 𝑝 ≲
ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟𝑘 )

��𝑢# (𝑥) − 𝑢# (𝑦)
��𝑝

𝑟
𝑑w, 𝑝
𝑘

𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≲ N𝑝 (𝑢#) 𝑝 < ∞, (5.25)

which implies that {𝑢𝑘}𝑘∈N is bounded in W 𝑝 . Since W 𝑝 is reflexive by Theorem
5.16, we can assume that 𝑢𝑘 converges weakly in W 𝑝 to some function 𝑢∞ ∈ W 𝑝

as 𝑘 → ∞. Since W 𝑝 is continuously embedded in 𝐿 𝑝 (𝐾, 𝑚), we have 𝑢∞ = 𝑢#.
Hence, by Mazur’s lemma and (5.24), we obtain

lim sup
𝑛→∞

Ẽ𝑛
𝑝,𝑇𝑛 [𝐸 ] (𝑢

#) ≤ lim
𝛿↓0

lim inf
𝑟↓0

𝑟−𝑑w, 𝑝 𝐽𝑝,𝑟 (𝑢# | (𝐸)𝑑, 𝛿). (5.26)

Note that, by (5.1),
⋃
𝑤∈𝑇𝑛 [𝐸 ] 𝐾𝑤 ⊆ 𝑉 for all large enough 𝑛 ∈ N and (𝐸)𝑑,𝑟+𝛿 ⊆ 𝑉

for all small enough 𝛿, 𝑟 ∈ (0,∞). For such 𝑛, 𝛿 and 𝑟 , we have Ẽ𝑛
𝑝,𝑇𝑛 [𝐸 ] (𝑢

#) =

Ẽ𝑛
𝑝,𝑇𝑛 [𝐸 ] (𝑢) and 𝐽𝑝,𝑟 (𝑢# | (𝐸)𝑑, 𝛿) = 𝐽𝑝,𝑟 (𝑢 | (𝐸)𝑑, 𝛿), whence we obtain (5.21).
We next consider the case𝐸 = 𝐾 . Let 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚) and set 𝐽𝑝,𝑟 ( 𝑓 ) B 𝐽𝑝,𝑟 ( 𝑓 |𝐾)

for 𝑟 > 0. Similar to the previous case, we assume that {𝑟𝑘}𝑘∈N is a sequence of
positive numbers such that 𝑟𝑘 ↓ 0 as 𝑘 → ∞ and

lim
𝑘→∞

𝑟
−𝑑w, 𝑝
𝑘

𝐽𝑝,𝑟𝑘 ( 𝑓 ) = lim inf
𝑟↓0

𝑟−𝑑w, 𝑝 𝐽𝑝,𝑟 ( 𝑓 ) < ∞,

which together with (5.24) implies that {𝐴𝑟𝑘/9 𝑓 }𝑘∈N is a bounded sequence in
W 𝑝 . A similar argument using Mazur’s lemma as in the previous paragraph yields
(5.22). ⊓⊔

5.3 Weak monotonicity and Poincaré inequality

Now we can prove the main theorem of this section, which verifies (WM)𝑝,𝒌 for the
family of kernels 𝒌 = 𝒌𝑠𝑝 defined by (3.26) and (3.27) for the first time in the setting
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of a 𝑝-conductively homogeneous compact metric space equipped with an Ahlfors
regular measure. This also solves a part of [33, Section 6.3, Problem 4].

Theorem 5.26 Suppose that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) satisfies Assumption 5.19, and
let 𝑠𝑝 , 𝒌 B 𝒌𝑠𝑝 and KS1, 𝑝 be as defined in Example 3.14. Then 𝑠𝑝 = 𝑑w, 𝑝/𝑝,
W 𝑝 = KS1, 𝑝 , W 𝑝 ∩ 𝐶 (𝐾) is dense in W 𝑝 , and (WM)𝑝,𝒌 holds. Moreover, there
exists 𝐶 ∈ [1,∞) such that

𝐶−1 sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) ≤ N𝑝 ( 𝑓 ) 𝑝 ≤ 𝐶 lim inf
𝑟↓0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚). (5.27)

Proof. By (5.16) and (5.22), we have W 𝑝 = 𝐵
𝑑w, 𝑝/𝑝
𝑝,∞ and (5.27). (Recall Example

3.14 for the definition of 𝐵𝑠𝑝,∞.) In particular, 𝑠𝑝 ≥ 𝑑w, 𝑝/𝑝. To show the opposite
inequality, let 𝑠 > 𝑑w, 𝑝/𝑝 and let 𝑓 ∈ W 𝑝 \ R1𝐾 . (Note that W 𝑝 contains a
non-constant function by (5.12).) Let 𝐴𝑟 : 𝐿 𝑝 (𝐾, 𝑚) → W 𝑝 ∩ 𝐶 (𝐾) be the same
operator as in the proof of Proposition 5.25 for each 𝑟 ∈ (0, 1). Then, by (5.24) with
𝐸 = 𝐾 ,

𝑟𝑑w, 𝑝

𝑟𝑠𝑝
Ẽ𝑛𝑝 (𝐴𝑟 𝑓 ) ≤ 𝐶

ˆ
𝐾

 
𝐵𝑑 (𝑥,9𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑠𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥) (5.28)

for any 𝑛 ∈ N and 𝑟 ∈ (0, 1) with 4𝑐2𝑟
𝑛
∗ < 𝑟 , where 𝑐2 is the constant in (5.1) and

𝐶 > 0 is a constant independent of 𝑓 , 𝑟 , and 𝑛. As in the proof of [33, Theorem
3.21], let {Ẽ𝑛𝑘𝑝 }𝑘∈N be a Γ-converging subsequence of {Ẽ𝑛𝑝}𝑛∈N and define Ê𝑝 as its
Γ-limit. Since Ê𝑝 is lower semicontinuous with respect to the 𝐿 𝑝 (𝐾, 𝑚)-topology
(see [13, Proposition 6.8]) and Ê𝑝 ≍ N𝑝 ( · ) 𝑝 (see [33, pp. 45–46]), we see that

0 < N𝑝 ( 𝑓 ) 𝑝 ≲ Ê𝑝 ( 𝑓 ) ≤ lim inf
𝑟↓0

Ê𝑝 (𝐴𝑟 𝑓 ) ≤ lim inf
𝑟↓0

lim inf
𝑘→∞

Ẽ𝑛𝑘𝑝 (𝐴𝑟 𝑓 ),

which together with (5.28) and lim𝑟→0 𝑟
𝑑w, 𝑝−𝑠𝑝 = ∞ implies that 𝑓 ∉ 𝐵𝑠𝑝,∞. Since

𝑠 > 𝑑w, 𝑝/𝑝 is arbitrary, we conclude that 𝑑w, 𝑝/𝑝 ≥ 𝑠𝑝 . In particular, we obtain
W 𝑝 = KS1, 𝑝 and (WM)𝑝,𝒌 . The inclusion W 𝑝 ⊆ W 𝑝 ∩ 𝐶 (𝐾)W

𝑝

follows from
(5.25) and Mazur’s lemma, so we complete the proof. ⊓⊔

Corollary 5.27 Suppose that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) satisfies Assumption 5.14. Then
any Korevaar–Schoen 𝑝-energy form (EKS

𝑝 ,W 𝑝) on (𝐾, 𝑑, 𝑚), which exists by
Theorems 5.26 and 3.8 (recall Example 3.14), is a 𝑝-resistance form on 𝐾 , and there
exist 𝛼0, 𝛼1 ∈ (0,∞) such that for any such (EKS

𝑝 ,W 𝑝),

𝛼0𝑑 (𝑥, 𝑦)𝑑w, 𝑝−𝑑f ≤ 𝑅EKS
𝑝
(𝑥, 𝑦) ≤ 𝛼1𝑑 (𝑥, 𝑦)𝑑w, 𝑝−𝑑f for any 𝑥, 𝑦 ∈ 𝐾 . (5.29)

Proof. Define 𝒌 B 𝒌𝑠 by (3.26) with 𝑠 = 𝑑w, 𝑝/𝑝. Then by Theorem 5.26, Proposi-
tion 5.18 and [6, Theorem 3.2], the assumptions of Proposition 3.13 with 𝑑f , 𝑑w, 𝑝 in
place of𝑄, 𝛽𝑝 hold under Assumption 5.14, so (EKS

𝑝 ,W 𝑝) is a 𝑝-resistance form on
𝐾 . The estimate (5.29) follows from the 𝑑f-Ahlfors regularity of 𝑚 and Proposition
3.13. ⊓⊔
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We also have a Poincaré-type inequality in terms of the localized versions of
(E𝒌

𝑝 ,W 𝑝). (For the Vicsek set, such a Poincaré-type inequality was proved in [7,
Corollary 4.2].)

Proposition 5.28 Suppose that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 , 𝑚, 𝑝) satisfies Assumption 5.19.
Then there exist 𝐶 ∈ (0,∞) and 𝐴 ∈ [1,∞) such that for any (𝑧, 𝑠) ∈ 𝐾 × (0, 1] and
any 𝑓 ∈ W 𝑝

loc (𝐵𝑑 (𝑧, 𝐴𝑠)),ˆ
𝐵𝑑 (𝑧,𝑠)

�� 𝑓 (𝑦) − 𝑓𝐵𝑑 (𝑧,𝑠)
��𝑝 𝑚(𝑑𝑦)

≤ 𝐶𝑠𝑑w, 𝑝 lim inf
𝑟↓0

ˆ
𝐵𝑑 (𝑧,𝐴𝑠)

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥). (5.30)

Proof. Throughout this proof, 𝑀∗ ∈ N and 𝑟∗ ∈ (0, 1) are the same constants as in
Assumption 5.6. We assume that 𝑓 ∈ W 𝑝 for simplicity. Let (𝑧, 𝑠) ∈ 𝐾 × (0, 1] and
choose 𝑛 ∈ N satisfying 𝑐3𝑟

𝑛
∗ ≥ 𝑠 > 𝑐3𝑟

𝑛+1
∗ , where 𝑐3 is the constant in (5.2). Let 𝑓 ∈

𝐿 𝑝 (𝐾, 𝑚) and set Γ𝑀∗ (𝑧; 𝑛) B {𝑣 ∈ 𝑇 | 𝑣 ∈ Γ𝑀∗ (𝑤) for some 𝑤 ∈ 𝑇𝑛 with 𝑧 ∈ 𝐾𝑤}.
Then we see that

ˆ
𝑈𝑀∗ (𝑧;𝑛)

�� 𝑓 (𝑦) − 𝑓𝑈𝑀∗ (𝑥;𝑛)
��𝑝 𝑚(𝑑𝑦)

≤
∑︁

𝑤∈Γ𝑀∗ (𝑧;𝑛)

ˆ
𝐾𝑤

�� 𝑓 (𝑦) − 𝑓𝑈𝑀∗ (𝑥;𝑛)
��𝑝 𝑚(𝑑𝑦)

≤ 2𝑝−1
∑︁

𝑤∈Γ𝑀∗ (𝑧;𝑛)

(ˆ
𝐾𝑤

�� 𝑓 (𝑦) − 𝑓𝐾𝑤

��𝑝 𝑚(𝑑𝑦) + 𝑚(𝐾𝑤)
�� 𝑓𝐾𝑤 − 𝑓𝑈𝑀∗ (𝑥;𝑛)

��𝑝)
≲

∑︁
𝑤∈Γ𝑀∗ (𝑧;𝑛)

(
𝑠𝑑w, 𝑝 lim inf

𝑘→∞
Ẽ𝑛+𝑘
𝑝,𝑆𝑘 (𝑤) ( 𝑓 ) + 𝑠

𝑑f
�� 𝑓𝐾𝑤 − 𝑓𝑈𝑀∗ (𝑧;𝑛)

��𝑝) . (5.31)

Since min𝑣∈Γ𝑀∗ (𝑧;𝑛) 𝑓𝐾𝑣 ≤ 𝑓𝑈𝑀∗ (𝑧;𝑛) ≤ max𝑣∈Γ𝑀∗ (𝑧;𝑛) 𝑓𝐾𝑣 , for any 𝑤 ∈ Γ𝑀∗ (𝑧; 𝑛)
there exists 𝑤′ ∈ Γ𝑀∗ (𝑧; 𝑛) \ {𝑤} such that

�� 𝑓𝐾𝑤 − 𝑓𝑈𝑀∗ (𝑧;𝑛)
�� ≤ �� 𝑓𝐾𝑤 − 𝑓𝐾𝑤′

��, which
together with Hölder’s inequality yields that�� 𝑓𝐾𝑤 − 𝑓𝑈𝑀∗ (𝑧;𝑛)

��𝑝 ≲ E𝑛
𝑝,Γ2𝑀∗ (𝑤)

( 𝑓 ) ≲ 𝑠𝑑w, 𝑝−𝑑f lim inf
𝑘→∞

Ẽ𝑛+𝑘
𝑝,𝑆𝑘 (Γ2𝑀∗ (𝑤) )

( 𝑓 ), (5.32)

where we used (5.9) and [33, (2.17)] in the last inequality. Note that sup𝑣∈𝑇 #Γ𝑀 (𝑤) ≤
𝐿𝑀∗ by (5.2) and the volume doubling property of 𝑚. This observation together with
(5.31) and (5.32) implies that
ˆ
𝑈𝑀∗ (𝑧;𝑛)

�� 𝑓 (𝑦) − 𝑓𝑈𝑀∗ (𝑥;𝑛)
��𝑝 𝑚(𝑑𝑦)

≲ 𝑠𝑑w, 𝑝 lim inf
𝑘→∞

∑︁
𝑤∈Γ𝑀∗ (𝑧;𝑛)

Ẽ𝑛+𝑘
𝑝,𝑆𝑘 (Γ2𝑀∗ (𝑤) )

( 𝑓 ) ≲ 𝑠𝑑w, 𝑝 lim inf
𝑘→∞

Ẽ𝑘
𝑝,𝑇𝑘 [𝐵𝑑 (𝑧,𝐴𝑠/2) ] ( 𝑓 )
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(5.21)
≲ 𝑠𝑑w, 𝑝 lim inf

𝑟↓0

ˆ
𝐵𝑑 (𝑧,𝐴𝑠)

 
𝐵𝑑 (𝑥,𝑟 )

| 𝑓 (𝑦) − 𝑓 (𝑥) |𝑝

𝑟𝑑w, 𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥),

which yields (5.30) in the case 𝑓 ∈ W 𝑝 since
ˆ
𝑈𝑀∗ (𝑧;𝑛)

�� 𝑓 (𝑦) − 𝑓𝑈𝑀∗ (𝑥;𝑛)
��𝑝 𝑚(𝑑𝑦) ≳

ˆ
𝐵𝑑 (𝑧,𝑠)

�� 𝑓 (𝑦) − 𝑓𝐵𝑑 (𝑧,𝑠)
��𝑝 𝑚(𝑑𝑦).

The case 𝑓 ∈ W 𝑝

loc (𝐵𝑑 (𝑥, 𝐴
′𝑠)), where 𝐴′ > 𝐴 (set, e.g., 𝐴′ = 2𝐴), is similar. ⊓⊔

5.4 Self-similar 𝒑-energy forms based on Korevaar–Schoen 𝒑-energy
forms

In this subsection, we construct a self-similar 𝑝-energy form by improving [33,
Theorem 4.6]. We need some preparations before constructing such a good self-
similar 𝑝-energy form. We first review basic notation and terminology on self-similar
structures. In particular, we recall the notion of a post-critically finite self-similar
structure introduced by Kigami [28], which is mainly dealt with in the next section.
See [29, Section 1] and [30, Chapter 1] for further details. Throughout this section,
we fix a compact metrizable space 𝐾 , a finite set 𝑆 with #𝑆 ≥ 2 and a continuous
injective map 𝐹𝑖 : 𝐾 → 𝐾 for each 𝑖 ∈ 𝑆. We set L B (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆).

Definition 5.29 (1) Let 𝑊0 B {∅}, where ∅ is an element called the empty word,
let 𝑊𝑛 B 𝑆𝑛 = {𝑤1 . . . 𝑤𝑛 | 𝑤𝑖 ∈ 𝑆 for 𝑖 ∈ {1, . . . , 𝑛}} for 𝑛 ∈ N and let
𝑊∗ B

⋃
𝑛∈N∪{0}𝑊𝑛. For 𝑤 ∈ 𝑊∗, the unique 𝑛 ∈ N ∪ {0} with 𝑤 ∈ 𝑊𝑛 is

denoted by |𝑤 | and called the length of 𝑤.
(2) We set Σ B 𝑆N = {𝜔1𝜔2𝜔3 . . . | 𝜔𝑖 ∈ 𝑆 for 𝑖 ∈ N}, which is always equipped

with the product topology of the discrete topology on 𝑆, and define the shift map
𝜎 : Σ → Σ by 𝜎(𝜔1𝜔2𝜔3 . . . ) B 𝜔2𝜔3𝜔4 . . . . For 𝑖 ∈ 𝑆 we define 𝜎𝑖 : Σ → Σ

by 𝜎𝑖 (𝜔1𝜔2𝜔3 . . . ) B 𝑖𝜔1𝜔2𝜔3 . . . . For𝜔 = 𝜔1𝜔2𝜔3 . . . ∈ Σ and 𝑛 ∈ N∪{0},
we write [𝜔]𝑛 B 𝜔1 . . . 𝜔𝑛 ∈ 𝑊𝑛.

(3) For 𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑊∗, we set 𝐹𝑤 B 𝐹𝑤1 ◦· · ·◦𝐹𝑤𝑛 (𝐹∅ B id𝐾 ), 𝐾𝑤 B 𝐹𝑤(𝐾),
𝜎𝑤 B 𝜎𝑤1 ◦ · · · ◦ 𝜎𝑤𝑛 (𝜎∅ B idΣ) and Σ𝑤 B 𝜎𝑤(Σ).

(4) Let 𝑤, 𝑣 ∈ 𝑊∗, 𝑤 = 𝑤1 . . . 𝑤𝑛1 , 𝑣 = 𝑣1 . . . 𝑣𝑛2 . We define 𝑤𝑣 ∈ 𝑊∗ by 𝑤𝑣 B
𝑤1 . . . 𝑤𝑛1𝑣1 . . . 𝑣𝑛2 (𝑤∅ B 𝑤, ∅𝑣 B 𝑣). We write 𝑤 ≤ 𝑣 if and only if 𝑤 = 𝑣𝜏 for
some 𝜏 ∈ 𝑊∗.

(5) A finite subset Λ of 𝑊∗ is called a partition of Σ if and only if Σ𝑤 ∩ Σ𝑣 = ∅ for
any 𝑤, 𝑣 ∈ Λ with 𝑤 ≠ 𝑣 and Σ =

⋃
𝑤∈Λ Σ𝑤.

(6) Let Λ1,Λ2 be partitions of Σ. We say that Λ1 is a refinement of Λ2, and write
Λ1 ≤ Λ2, if and only if for each 𝑤1 ∈ Λ1 there exists 𝑤2 ∈ Λ2 such that 𝑤1 ≤ 𝑤2.

Definition 5.30 L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) is called a self-similar structure if and only if
there exists a continuous surjective map 𝜒 : Σ → 𝐾 such that 𝐹𝑖 ◦ 𝜒 = 𝜒 ◦𝜎𝑖 for any
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𝑖 ∈ 𝑆. Note that such 𝜒, if it exists, is unique and satisfies {𝜒(𝜔)} = ⋂
𝑛∈N 𝐾[𝜔 ]𝑛 for

any 𝜔 ∈ Σ.

Definition 5.31 Let L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) be a self-similar structure.

(1) We define the critical set CL and the post-critical set PL of L by

CL B 𝜒−1 (⋃
𝑖, 𝑗∈𝑆, 𝑖≠ 𝑗 𝐾𝑖 ∩ 𝐾 𝑗

)
and PL B

⋃
𝑛∈N 𝜎

𝑛 (CL).

L is called post-critically finite, p.-c.f. for short, if and only if PL is a finite set.
(2) We set 𝑉0 B 𝜒(PL), 𝑉𝑛 B

⋃
𝑤∈𝑊𝑛 𝐹𝑤(𝑉0) for 𝑛 ∈ N and 𝑉∗ B

⋃
𝑛∈N∪{0} 𝑉𝑛.

The set 𝑉0 should be considered as the “boundary" of the self-similar set 𝐾;
indeed, 𝐾𝑤 ∩ 𝐾𝑣 = 𝐹𝑤(𝑉0) ∩ 𝐹𝑣 (𝑉0) for any 𝑤, 𝑣 ∈ 𝑊∗ with Σ𝑤 ∩ Σ𝑣 = ∅ by [29,
Proposition 1.3.5-(2)]. According to [29, Lemma 1.3.11], 𝑉𝑛−1 ⊆ 𝑉𝑛 for any 𝑛 ∈ N,
and 𝑉∗ is dense in 𝐾 if 𝑉0 ≠ ∅.

Definition 5.32 (Self-similar measure) Let L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) be a self-similar
structure and let (𝜃𝑖)𝑖∈𝑆 ∈ (0, 1)𝑆 satisfy

∑
𝑖∈𝑆 𝜃𝑖 = 1. A Borel probability measure

𝑚 on 𝐾 is said to be a self-similar measure on L with weight (𝜃𝑖)𝑖∈𝑆 if and only if
the following equality (of Borel measures on 𝐾) holds:

𝑚 =
∑︁
𝑖∈𝑆

𝜃𝑖 (𝐹𝑖)∗𝑚. (5.33)

Next we introduce the notion of self-similarity for 𝑝-energy forms and 𝑝-
resistance forms.

Definition 5.33 (Self-similar 𝑝-energy/𝑝-resistance form) LetL = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆)
be a self-similar structure and let 𝑚 be a Radon measure on 𝐾 with full topolog-
ical support. Let (𝜌𝑝,𝑠)𝑠∈𝑆 ∈ (0,∞)𝑆 and define 𝜌𝑝,𝑤 B 𝜌𝑝,𝑤1 · · · 𝜌𝑝,𝑤𝑛 for each
𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑊∗. A 𝑝-energy form (E𝑝 , F𝑝) on (𝐾, 𝑚) (with F𝑝 ⊆ 𝐿 𝑝 (𝐾, 𝑚))
is called a self-similar 𝑝-energy form on (L, 𝑚) with weight (𝜌𝑝,𝑠)𝑠∈𝑆 if and only if
the following hold:

F𝑝 ∩ 𝐶 (𝐾) = {𝑢 ∈ 𝐶 (𝐾) | 𝑢 ◦ 𝐹𝑠 ∈ F𝑝 for any 𝑠 ∈ 𝑆}, (5.34)

E𝑝 (𝑢) =
∑︁
𝑠∈𝑆

𝜌𝑝,𝑠E𝑝 (𝑢 ◦ 𝐹𝑠) for any 𝑢 ∈ F𝑝 ∩ 𝐶 (𝐾). (5.35)

If F𝑝 ⊆ 𝐶 (𝐾) and (E𝑝 , F𝑝) is a 𝑝-resistance form on 𝐾 satisfying (5.34) and (5.35),
then (E𝑝 , F𝑝) is called a self-similar 𝑝-resistance form on L with weight (𝜌𝑝,𝑠)𝑠∈𝑆 .

We will focus on self-similar structures having rationally related contraction
ratios as in [33]. In the next definition, we introduce a good partition parametrized
by a rooted tree.

Definition 5.34 ([33, Definition 4.2]) Let L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) be a self-similar
structure, let 𝑟 ∈ (0, 1) and let ( 𝑗𝑠)𝑠∈𝑆 ∈ R𝑆 . Define
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𝑗 (𝑤) B
𝑛∑︁
𝑖=1

𝑗𝑤𝑖 and 𝑔(𝑤) B 𝑟 𝑗 (𝑤) for 𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑊𝑛.

Define �̃�(𝑤1 · · ·𝑤𝑛) B 𝑤1 · · ·𝑤𝑛−1 for 𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑊𝑛 and

Λ
𝑔

𝑟 𝑘
B {𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ 𝑊∗ | 𝑔(�̃�(𝑤)) > 𝑟𝑘 ≥ 𝑔(𝑤)}.

Set 𝑇 (𝑟 )
𝑘
B {(𝑘, 𝑤) | 𝑤 ∈ Λ

𝑔

𝑟 𝑘
} and 𝑇 (𝑟 ) B

⋃
𝑘∈N∪{0} 𝑇

(𝑟 )
𝑘

. Moreover, define
𝐸𝑇 (𝑟 ) ⊆ 𝑇 (𝑟 ) × 𝑇 (𝑟 ) by

𝐸𝑇 (𝑟 ) B
{
((𝑘, 𝑣), (𝑘 + 1, 𝑤)) ∈ 𝑇 (𝑟 )

𝑘
× 𝑇 (𝑟 )

𝑘+1

��� 𝑘 ∈ N ∪ {0}, 𝑣 = 𝑤 or 𝑣 = �̃�(𝑤)
}
.

We introduce the following assumption in order to construct a self-similar 𝑝-
energy form on (L, 𝑚). (Recall that we have fixed 𝑝 ∈ (1,∞).)
Assumption 5.35 Let L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) be a self-similar structure such that #𝑆 ≥
2 and 𝐾 is connected. There exist 𝑟∗ ∈ (0, 1), ( 𝑗𝑠)𝑠∈𝑆 ∈ N𝑆 and a metric 𝑑 giving
the original topology of 𝐾 with diam(𝐾, 𝑑) = 1 such that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 (𝑟∗ ) , 𝑚, 𝑝)
satisfies Assumption 5.19, where 𝑑f ∈ (0,∞) is such that

∑
𝑠∈𝑆 𝑟

𝑗𝑠𝑑f
∗ = 1 and 𝑚 is

the self-similar measure on 𝐾 with weight (𝑟 𝑗𝑠𝑑f
∗ )𝑠∈𝑆 . (The collection {𝐹𝑖}𝑖∈𝑆 is said

to have rationally related contraction ratios (𝑟 𝑗𝑠∗ )𝑠∈𝑆 .)

Under Assumption 5.35, we have 𝑉0 ≠ ∅ since 𝐾 is connected and #𝑆 ≥ 2 (see
[29, Proposition 1.3.5-(3)] or [29, Theorem 1.6.2]). Also, we can easily show that
𝑚 is 𝑑f-Ahlfors regular as stated in the following proposition (see [33, Proposition
4.5]).

Proposition 5.36 Suppose that L is a self-similar structure and that there exist
𝑟∗ ∈ (0, 1), ( 𝑗𝑠)𝑠∈𝑆 ∈ N𝑆 and a metric 𝑑 giving the original topology of 𝐾 with
diam(𝐾, 𝑑) = 1 such that (𝐾, 𝑑, {𝐾𝑤}𝑤∈𝑇 (𝑟∗ ) , 𝑚) satisfies Assumption 5.6. Let 𝑑f ∈
(0,∞) be such that

∑
𝑠∈𝑆 𝑟

𝑗𝑠𝑑f
∗ = 1 and let 𝑚 be the self-similar measure on 𝐾 with

weight (𝑟 𝑗𝑠𝑑f
∗ )𝑠∈𝑆 . Then 𝑑f is the Hausdorff dimension of (𝐾, 𝑑) and 𝑚 is 𝑑f-Ahlfors

regular with respect to 𝑑.

To construct a self-similar 𝑝-energy form, we need to take care of the pre-self-
similarity condition (see [39, Theorem 8.12]). We can easily verify this condition in
the case 𝜎𝑝 > 1 by modifying [33, Proof of Theorem 4.6]; see [27, Section 8.2] for
details.

Proposition 5.37 Suppose that Assumption 5.35 holds and that 𝜎𝑝 > 1. Then (5.34)
with W 𝑝 in place of F𝑝 holds and there exists 𝐶 ∈ [1,∞) such that for any 𝑛 ∈ N
and any 𝑢 ∈ W 𝑝 ⊆ 𝐶 (𝐾),

𝐶−1
∑︁
𝑤∈𝑊𝑛

𝜎
𝑗 (𝑤)
𝑝 N𝑝 (𝑢 ◦ 𝐹𝑤) 𝑝 ≤ N𝑝 (𝑢) 𝑝 ≤ 𝐶

∑︁
𝑤∈𝑊𝑛

𝜎
𝑗 (𝑤)
𝑝 N𝑝 (𝑢 ◦ 𝐹𝑤) 𝑝 .

Now we can present an improvement of [33, Theorem 4.6] in the following
formulation.
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Theorem 5.38 Suppose that Assumption 5.35 holds, that (5.34) with W 𝑝 in place
of F𝑝 holds, and that there exists 𝐶0 ∈ [1,∞) such that for any 𝑛 ∈ N and any
𝑢 ∈ W 𝑝 ∩ 𝐶 (𝐾),

𝐶−1
0

∑︁
𝑤∈𝑊𝑛

𝜎
𝑗 (𝑤)
𝑝 N𝑝 (𝑢 ◦ 𝐹𝑤) 𝑝 ≤ N𝑝 (𝑢) 𝑝 ≤ 𝐶0

∑︁
𝑤∈𝑊𝑛

𝜎
𝑗 (𝑤)
𝑝 N𝑝 (𝑢 ◦ 𝐹𝑤) 𝑝 . (5.36)

For each 𝑛 ∈ N, define 𝒌 (𝑛) = {𝑘 (𝑛)𝑟 }𝑟>0 by

𝑘
(𝑛)
𝑟 (𝑥, 𝑦) B 1

𝑛 + 1

𝑛∑︁
𝑙=0

∑︁
𝑤∈𝑊𝑙

𝑟
− 𝑗 (𝑤) · (𝑑w, 𝑝+𝑑f )
∗

1𝐴𝑤,𝑟 (𝑥, 𝑦)
𝑟𝑑w, 𝑝+𝑑f

, 𝑥, 𝑦 ∈ 𝐾,

where 𝐴𝑤,𝑟 B
{
(𝑥, 𝑦) ∈ 𝐾𝑤 × 𝐾𝑤

�� 𝑑 (𝐹−1
𝑤 (𝑥), 𝐹−1

𝑤 (𝑦)) < 𝑟
}
. Then 𝒌 (𝑛) is

asymptotically local, (WM)𝑝,𝒌 (𝑛) holds, 𝐵𝒌 (𝑛)
𝑝,∞ = W 𝑝 , and for any sequence

{(E𝒌 (𝑛)
𝑝 ,W 𝑝)}𝑛∈N with (E𝒌 (𝑛)

𝑝 ,W 𝑝) a 𝒌 (𝑛) -Korevaar–Schoen 𝑝-energy form on
(𝐾, 𝑚) for each 𝑛 ∈ N, there exists a sequence {𝑛 𝑗 } 𝑗∈N ⊆ N with 𝑛 𝑗 < 𝑛 𝑗+1 for any
𝑗 ∈ N such that the following limit exists in [0,∞) for any 𝑢 ∈ W 𝑝:

ĔKS
𝑝 (𝑢) B lim

𝑗→∞
E𝒌 (𝑛𝑗 )

𝑝 (𝑢). (5.37)

Moreover, for any such {E𝒌 (𝑛)
𝑝 }𝑛∈N and {𝑛 𝑗 } 𝑗∈N, the functional ĔKS

𝑝 : W 𝑝 → [0,∞)
defined by (5.37) satisfies the following properties:
(a) (ĔKS

𝑝 ,W 𝑝) is a self-similar 𝑝-energy form on (L, 𝑚) with weight (𝜎 𝑗𝑠𝑝 )𝑠∈𝑆 .
(b) For any 𝑢 ∈ W 𝑝 ,

(𝐶𝐶0)−1N𝑝 (𝑢) 𝑝 ≤ ĔKS
𝑝 (𝑢) ≤ 𝐶𝐶0N𝑝 (𝑢) 𝑝 , (5.38)

where 𝐶,𝐶0 ∈ [1,∞) are the constants in (5.27) and in (5.36) respectively.
(c) (ĔKS

𝑝 ,W 𝑝) satisfies (GC)𝑝 . Furthermore, for any𝑢, 𝑣 ∈ W 𝑝 , {E𝒌 (𝑛𝑗 )
𝑝 (𝑢; 𝑣)} 𝑗∈N

is convergent in R and

ĔKS
𝑝 (𝑢; 𝑣) = lim

𝑗→∞
E𝒌 (𝑛𝑗 )

𝑝 (𝑢; 𝑣). (5.39)

(d) Theorem 3.8-(c),(d),(e) with (ĔKS
𝑝 ,W 𝑝) in place of (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) hold.

(e) For any isometric map 𝑇 : (𝐾, 𝑑) → (𝐾, 𝑑) preserving 𝑚, 𝑢 ◦ 𝑇 ∈ W 𝑝 and
ĔKS
𝑝 (𝑢 ◦ 𝑇) = ĔKS

𝑝 (𝑢) for any 𝑢 ∈ W 𝑝 .
(f) If in addition 𝜎𝑝 > 1, then (ĔKS

𝑝 ,W 𝑝) is a 𝑝-resistance form on 𝐾 , and
there exist 𝛼0, 𝛼1 ∈ (0,∞) independent of particular choices of {E𝒌 (𝑛)

𝑝 }𝑛∈N and
{𝑛 𝑗 } 𝑗∈N such that

𝛼0𝑑 (𝑥, 𝑦)𝑑w, 𝑝−𝑑f ≤ 𝑅 ĔKS
𝑝
(𝑥, 𝑦) ≤ 𝛼1𝑑 (𝑥, 𝑦)𝑑w, 𝑝−𝑑f for any 𝑥, 𝑦 ∈ 𝐾 . (5.40)
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Proof. Set 𝒌 = {𝑘𝑟 }𝑟>0 by 𝑘𝑟 (𝑥, 𝑦) B 𝑟−𝑑w, 𝑝−𝑑f 1𝐵𝑑 (𝑥,𝑟 ) (𝑦). Recall that 𝐵𝒌
𝑝,∞ =

KS1, 𝑝 since 𝑝𝑠𝑝 = 𝑑w, 𝑝 and 𝑚 is 𝑑f-Ahlfors regular (see Example 3.14, Theorem
5.26 and Proposition 5.36). By using (5.2), we can easily see that 𝒌 (𝑛) is asymptoti-
cally local. Let us show (WM)𝑝,𝒌 (𝑛) . Note that for any 𝑟 > 0 and any 𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚),
we have

𝐽𝒌
(𝑛)
𝑝,𝑟 (𝑢) = 1

𝑛 + 1

𝑛∑︁
𝑙=0

∑︁
𝑤∈𝑊𝑙

𝜎
𝑗 (𝑤)
𝑝 𝐽𝒌𝑝,𝑟 (𝑢 ◦ 𝐹𝑤), (5.41)

where we used (𝐹𝑤 × 𝐹𝑤)−1 (𝐴𝑤,𝑟 ) = {(𝑥, 𝑦) ∈ 𝐾 × 𝐾 | 𝑑 (𝑥, 𝑦) < 𝑟} and
𝑚 = 𝑟

𝑗 (𝑤)𝑑f
∗ (𝐹𝑤)∗𝑚. By combining (5.41), Theorem 5.26 and (5.36), we obtain

(WM)𝑝,𝒌 (𝑛) . Moreover, for any 𝑛 ∈ N and any 𝑢 ∈ W 𝑝 ,

(𝐶𝐶0)−1 sup
𝑟>0

𝐽𝒌
(𝑛)
𝑝,𝑟 (𝑢) ≤ N𝑝 (𝑢) 𝑝 ≤ 𝐶𝐶0 lim inf

𝑟→0
𝐽𝒌

(𝑛)
𝑝,𝑟 (𝑢), (5.42)

where 𝐶,𝐶0 ∈ [1,∞) are the constants in (5.27) and in (5.36) respectively. In
particular, 𝐵𝒌 (𝑛)

𝑝,∞ = W 𝑝 and {E𝒌 (𝑛)
𝑝 (𝑢)}𝑛∈N is bounded for each 𝑢 ∈ W 𝑝 . Since W 𝑝

is separable and E𝒌 (𝑛)
𝑝 ≍ N𝑝 ( · ) 𝑝 by (5.42), a standard diagonal argument implies

that there exists {𝑛 𝑗 } 𝑗∈N ⊆ Nwith 𝑛 𝑗 < 𝑛 𝑗+1 such that the limit lim 𝑗→∞ E𝒌 (𝑛𝑗 )
𝑝 (𝑢) C

ĔKS
𝑝 (𝑢) exists for any 𝑢 ∈ W 𝑝 . From this definition, (5.42) and Theorem 3.8-(b),

we immediately see that (5.38) holds and that (ĔKS
𝑝 ,W 𝑝) satisfies (GC)𝑝 .

(a): Since we assume that W 𝑝 satisfies (5.34), it suffices to show the following
equality for any 𝑢 ∈ W 𝑝:

ĔKS
𝑝 (𝑢) =

∑︁
𝑠∈𝑆

𝜎
𝑗𝑠
𝑝 ĔKS

𝑝 (𝑢 ◦ 𝐹𝑠). (5.43)

From Theorem 3.8 together with a diagonal argument, we can choose a sequence
{𝑟𝑙}𝑙∈N ⊆ (0,∞) with lim𝑙→∞ 𝑟𝑙 = 0 such that E𝒌 (𝑛𝑗 )

𝑝 (𝑢) = lim𝑙→∞ 𝐽𝒌
(𝑛𝑗 )
𝑝,𝑟𝑙

(𝑢) for any
𝑗 ∈ N and any 𝑢 ∈ W 𝑝 . Using (5.41), we easily see that for any ( 𝑗 , 𝑙) ∈ N2 and any
𝑢 ∈ 𝐿 𝑝 (𝐾, 𝑚), ∑︁

𝑠∈𝑆
𝜎
𝑗𝑠
𝑝 𝐽

𝒌 (𝑛𝑗 )

𝑝,𝑟𝑙
(𝑢 ◦ 𝐹𝑠) +

1
𝑛 𝑗 + 1

𝐽𝒌
(𝑛𝑗 )

𝑝,𝑟𝑙
(𝑢)

= 𝐽𝒌
(𝑛𝑗 )

𝑝,𝑟𝑙
(𝑢) + 1

𝑛 𝑗 + 1

∑︁
𝑤∈𝑊𝑛𝑗+1

𝜎
𝑗 (𝑤)
𝑝 𝐽𝒌

(𝑛𝑗 )

𝑝,𝑟𝑙
(𝑢 ◦ 𝐹𝑤).

Letting 𝑙 → ∞ and 𝑗 → ∞, we obtain (5.43) by (5.42) and (5.36).
(c): Similar to the proof of (3.9), by using Proposition 2.4 and the convexity of

𝑡 ↦→ E𝒌 (𝑛𝑗 )
𝑝 (𝑢 + 𝑡𝑣), we can prove (5.39).

(d): This is clear from Theorem 3.8-(c),(d),(e) for (Ĕ𝒌 (𝑛)
𝑝 ,W 𝑝) and (5.39).

(e): If 𝑇 : (𝐾, 𝑑) → (𝐾, 𝑑) is an isometric map preserving 𝑚, then for any 𝑛 ∈ N,
𝒌 (𝑛) is clearly 𝑇-invariant, and hence by Theorem 3.8-(f) and 𝐵𝒌 (𝑛)

𝑝,∞ = W 𝑝 we have
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𝑢 ◦ 𝑇 ∈ W 𝑝 and E𝒌 (𝑛)
𝑝 (𝑢 ◦ 𝑇) = E𝒌 (𝑛)

𝑝 (𝑢) for any 𝑢 ∈ W 𝑝 , which together with
(5.37) implies that ĔKS

𝑝 (𝑢 ◦ 𝑇) = ĔKS
𝑝 (𝑢) for any 𝑢 ∈ W 𝑝 .

(f): In the case 𝜎𝑝 > 1, we easily see that (ĔKS
𝑝 ,W 𝑝) is a 𝑝-resistance form

on 𝐾 satisfying (5.40) by combining Proposition 3.13, 𝑑f-Ahlfors regularity of 𝑚,
𝑑w, 𝑝 > 𝑑f by 𝜎𝑝 > 1, Theorem 5.16, Proposition 5.18 and [33, Lemma 3.34]. ⊓⊔

We collect properties of the 𝑝-energy measures associated with (ĔKS
𝑝 ,W 𝑝) in

the following theorem. See also [27, Sections 4 and 5] for other basic properties. Let
us emphasize that we do not know whether Theorem 5.39-(c) below holds in a more
general setting of self-similar 𝑝-energy forms like that of [27].

Theorem 5.39 Suppose the same assumptions as in Theorem 5.38, let (E𝒌 (𝑛)
𝑝 ,W 𝑝)

be any 𝒌 (𝑛) -Korevaar–Schoen 𝑝-energy form on (𝐾, 𝑚) for each 𝑛 ∈ N, let
{𝑛 𝑗 } 𝑗∈N ⊆ N be any sequence as in Theorem 5.38, and let (ĔKS

𝑝 ,W 𝑝) be the
𝑝-energy form on (𝐾, 𝑚) defined by (5.37). Then for any 𝑢 ∈ W 𝑝 ∩ 𝐶 (𝐾), there
exists a unique positive Radon measure Γ̆KS

𝑝 ⟨𝑢⟩ on 𝐾 such that
ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢⟩

= ĔKS
𝑝 (𝑢; 𝑢𝜑) −

(
𝑝 − 1
𝑝

) 𝑝−1
ĔKS
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)

for any 𝜑 ∈ W 𝑝 ∩ 𝐶 (𝐾). (5.44)

Moreover, the following hold:
(a) For any 𝑢 ∈ W 𝑝 , there exists a unique positive Radon measure Γ̆KS

𝑝 ⟨𝑢⟩ on 𝐾
such that for any {𝑢𝑛}𝑛∈N ⊆ W 𝑝 ∩ 𝐶 (𝐾) with lim𝑛→∞ N𝑝 (𝑢 − 𝑢𝑛) = 0 and
any Borel measurable function 𝜑 : 𝐾 → [0,∞) with ∥𝜑∥sup < ∞,

ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢⟩ = lim

𝑛→∞

ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢𝑛⟩, (5.45)

and Γ̆KS
𝑝 ⟨𝑢⟩ further satisfies Γ̆KS

𝑝 ⟨𝑢⟩(𝐾) = ĔKS
𝑝 (𝑢). Moreover, for each such 𝜑,

(
´
𝐾
𝜑 𝑑Γ̆KS

𝑝 ⟨ · ⟩,W 𝑝) is a 𝑝-energy form on 𝐾 satisfying (GC)𝑝 .

(b) Theorem 4.6, with W 𝑝 and Γ̆𝒌
𝑝 in place of D𝒌 ,𝑏

𝑝,∞ and Γ𝒌
𝑝 respectively, holds. In

particular, for any 𝑢, 𝑣 ∈ W 𝑝 ,

Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐴) B 1

𝑝

𝑑

𝑑𝑡
Γ̆KS
𝑝 ⟨𝑢 + 𝑡𝑣⟩(𝐴)

����
𝑡=0
, 𝐴 ∈ B(𝐾), (5.46)

defines a signed Borel measure on 𝐾 such that Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = ĔKS

𝑝 (𝑢; 𝑣) and
Γ̆KS
𝑝 ⟨𝑢; 𝑢⟩ = Γ̆KS

𝑝 ⟨𝑢⟩. Furthermore, for any 𝑢, 𝑣 ∈ W 𝑝 and any 𝜑 ∈ 𝐶 (𝐾),
ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩ = lim

𝑗→∞

ˆ
𝐾

𝜑 𝑑Γ𝒌 (𝑛𝑗 )

𝑝 ⟨𝑢; 𝑣⟩. (5.47)
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(c) Theorem 4.8-(a),(b), with W 𝑝 and Γ̆KS
𝑝 in place of D𝒌 ,𝑏

𝑝,∞ and Γ𝒌
𝑝 respectively,

hold.
(d) Theorems 4.9, 4.10 and 4.11, withW 𝑝∩𝐶 (𝐾) and Γ̆KS

𝑝 in place of 𝐵𝒌
𝑝,∞∩𝐶𝑏 (𝐾)

and Γ𝒌
𝑝 respectively, hold.

Proof. Fix {𝑛 𝑗 } 𝑗∈N ⊆ N so that ĔKS
𝑝 = lim 𝑗→∞ E𝒌 (𝑛𝑗 )

𝑝 . Let 𝑢 ∈ W 𝑝∩𝐶 (𝐾). Letting
𝑗 → ∞ in (4.6) with E𝒌 (𝑛𝑗 )

𝑝 in place of E𝒌
𝑝 and using (5.39), we have

0 ≤ Ψ𝑝 (𝑢; 𝜑) B ĔKS
𝑝 (𝑢; 𝑢𝜑) −

(
𝑝 − 1
𝑝

) 𝑝−1
ĔKS
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
≤ ∥𝜑∥sup ĔKS

𝑝 (𝑢)

for any 𝜑 ∈ W 𝑝 ∩ 𝐶 (𝐾) with 𝜑 ≥ 0. Since W 𝑝 ∩ 𝐶 (𝐾) is dense in 𝐶 (𝐾), we can
get the desired positive Radon measure Γ̆KS

𝑝 ⟨𝑢⟩ (in the case 𝑢 ∈ W 𝑝 ∩ 𝐶 (𝐾)) by
using the Riesz–Markov–Kakutani representation theorem as done in the proof of
Theorem 4.2. Also, we easily see that

ˆ
𝐾

𝜓 𝑑Γ̆KS
𝑝 ⟨𝑢⟩ = lim

𝑗→∞

ˆ
𝐾

𝜓 𝑑Γ𝒌 (𝑛𝑗 )

𝑝 ⟨𝑢⟩ for any 𝜓 ∈ 𝐶 (𝐾), (5.48)

whence
(´
𝐾
𝜓 𝑑Γ̆KS

𝑝 ⟨ · ⟩,W 𝑝 ∩ 𝐶 (𝐾)
)

is a 𝑝-energy form on (𝐾, 𝑚) satisfying
(GC)𝑝 . Then we can prove (a) by following the same argument as in the proof of
Theorem 4.5.

The property (b) except for Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = ĔKS

𝑝 (𝑢; 𝑣) and for (5.47) follow from
[27, Theorem 4.5 and Proposition 4.6]. The equality (5.47) can be shown in the
same way as the proof of (3.9) by using (5.48), Proposition 2.4 and the convexity of
𝑡 ↦→

´
𝐾
𝜑 𝑑Γ̆KS

𝑝 ⟨𝑢 + 𝑡𝑣⟩. We have Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = ĔKS

𝑝 (𝑢; 𝑣) from Proposition 4.7,
(5.37) and (5.47).

The statement (c) and the chain rule (4.22) with Γ̆KS
𝑝 in place of Γ𝒌

𝑝 are immediate
from (5.47) and the corresponding properties of Γ𝒌 (𝑛𝑗 )

𝑝 . Since we can follow the
proofs of Theorems 4.10 and 4.11 by using the chain rule of Γ̆KS

𝑝 , we complete the
proof of (d). ⊓⊔

Remark 5.40 There is another way to construct the 𝑝-energy measures associated
with (ĔKS

𝑝 ,W 𝑝), which is based on the self-similarity (5.43); see [27, Section 5.2]
for the details of this construction (see also Proposition 6.12 below). The resulting
𝑝-energy measures turn out to satisfy (5.44) and therefore coincide with the ones
{Γ̆KS
𝑝 ⟨𝑢⟩}𝑢∈W𝑝 constructed in Theorem 5.39 (see [27, Proposition 5.12]).

6 𝒑-Resistance forms on p.-c.f. self-similar structures

In this section, we verify (WM)𝑝,𝒌 for a family of kernels 𝒌 corresponding to
the (1, 𝑝)-Korevaar–Schoen–Sobolev space under the assumption of the existence
of a good 𝑝-resistance form on a post-critically finite self-similar structure. (See
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[9, Theorem 4.2] or [27, Section 8.3] for the existing construction of self-similar
𝑝-resistance forms in this setting.)

6.1 Geometry under the 𝒑-resistance metric

We first present the setting of this section. Throughout this section, we presume the
following assumption.

Assumption 6.1 Let 𝑝 ∈ (1,∞) and L = (𝐾, 𝑆, {𝐹𝑖}𝑖∈𝑆) be a p.-c.f. self-similar
structure with #𝑆 ≥ 2 and 𝐾 connected. Let (E𝑝 , F𝑝) be a self-similar 𝑝-resistance
form on L with weight (𝜌𝑝,𝑖)𝑖∈𝑆 ∈ (0,∞)𝑆 such that

min
𝑖∈𝑆

𝜌𝑝,𝑖 > 1. (6.1)

Let 𝑑f, 𝑝 ∈ (0,∞) be such that
∑
𝑖∈𝑆 𝜌

−𝑑f, 𝑝/(𝑝−1)
𝑝,𝑖

= 1, and let 𝑚 be the self-similar

measure on L with weight
(
𝜌
−𝑑f, 𝑝/(𝑝−1)
𝑝,𝑖

)𝑖∈𝑆 .

Remark 6.2 (1) The condition (6.1) corresponds to the condition (R) in [9, p. 18].
(2) Assumption 6.1 is equivalent to the existence of a 𝑝-eigenform on 𝑉0 with

respect to the renormalization operator with weight (𝜌𝑝,𝑖)𝑖∈𝑆 ∈ (1,∞)𝑆 , i.e., a
𝑝-resistance form E (0)

𝑝 on 𝑉0 such that

inf

{∑︁
𝑖∈𝑆

𝜌𝑝,𝑖E (0)
𝑝 (𝑣 ◦ 𝐹𝑖)

����� 𝑣 ∈ R𝑉1 , 𝑣 |𝑉0 = 𝑢

}
= E (0)

𝑝 (𝑢) for any 𝑢 ∈ R𝑉0 ;

see [27, Proposition 6.19 and Theorem 8.42] for a detailed proof of this equiva-
lence. In the case 𝑝 = 2, this is nothing but the existence of a regular harmonic
structure on L as defined in [29, Definition 3.1.2].

(3) Any self-similar 𝑝-resistance form constructed in [33, Theorem 4.6] must satisfy
𝜌𝑝,𝑖 = 𝜎

𝑛𝑖
𝑝 for some 𝑛𝑖 ∈ N, where 𝜎𝑝 is the constant in (5.9). This restriction

excludes the self-similar 𝑝-resistance forms with weight (𝜌𝑝,𝑖)𝑖∈𝑆 ∈ (1,∞)𝑆
satisfying (log 𝜌𝑝,𝑖)/log 𝜌𝑝, 𝑗 ∉ Q for some 𝑖, 𝑗 ∈ 𝑆, whereas they are covered
by [9]; as proved in [27, Proposition B.2], they do exist abundantly on plenty of
typical affine nested fractals.

(4) It is easy to see that 𝑑f, 𝑝 ≥ 1 by using (6.1) and (6.3) below.

In this subsection, we will show the Ahlfors regularity of 𝑚, the capacity upper
bound and the Poincaré inequality in terms of the 𝑝-resistance metric of (E𝑝 , F𝑝),
which is defined as follows.

Definition 6.3 (𝑝-Resistance metric; [27, Definition 6.33]) We define the 𝑝-
resistance metric 𝑅𝑝,E𝑝 : 𝐾 × 𝐾 → [0,∞) of (E𝑝 , F𝑝) by
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Fig. 1 Some examples of affine nested fractals

𝑅𝑝,E𝑝 (𝑥, 𝑦) B 𝑅E𝑝 (𝑥, 𝑦)
1
𝑝−1 , 𝑥, 𝑦 ∈ 𝐾 (6.2)

(recall (3.18)). For simplicity, we write 𝑅𝑝 B 𝑅𝑝,E𝑝 .

We record some properties of 𝑅E𝑝 and 𝑅𝑝 .

Proposition 6.4 ([27, Proposition 7.2 and Corollary 6.32])
(1) For any 𝑤 ∈ 𝑊∗ and any 𝑥, 𝑦 ∈ 𝐾 ,

𝑅E𝑝 (𝐹𝑤(𝑥), 𝐹𝑤(𝑦)) ≤ 𝜌−1
𝑝,𝑤𝑅E𝑝 (𝑥, 𝑦). (6.3)

(2) 𝑅𝑝 is a metric on 𝐾 giving the original topology of 𝐾 . In particular, 𝑉∗
𝑅𝑝

= 𝐾 .
(3) For any 𝑢 ∈ F𝑝 and 𝑥, 𝑦 ∈ 𝐾 ,

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 ≤ 𝑅E𝑝 (𝑥, 𝑦)E𝑝 (𝑢).

In particular, F𝑝 ⊆ 𝐶 (𝐾).

In the next definition, we introduce the symmetry on 𝐾 with respect to (E𝑝 , F𝑝).

Definition 6.5 We define

G B
{
𝑇

���� 𝑇 : 𝐾 → 𝐾 , 𝑇 is a homeomorphism preserving 𝑚, and
𝑢◦𝑇, 𝑢◦𝑇−1 ∈ F𝑝 and E𝑝 (𝑢◦𝑇) = E𝑝 (𝑢) for any 𝑢 ∈ F𝑝

}
, (6.4)

which forms a subgroup of the group of surjective isometries of (𝐾, 𝑅𝑝) by (3.18)
and (6.2).

Let us introduce natural scales {Λ𝑠}𝑠∈ (0,1] with respect to 𝑅𝑝 . (See [26, Defini-
tions 6.12 and 6.13] for the case 𝑝 = 2.)

Definition 6.6 (1) We define Λ1 B {∅},

Λ𝑠 B
{
𝑤

��� 𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑊∗ \ {∅}, (𝜌𝑝,𝑤1...𝑤𝑛−1 )−1/(𝑝−1) > 𝑠 ≥ 𝜌
−1/(𝑝−1)
𝑝,𝑤

}
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for each 𝑠 ∈ (0, 1). (Note that {Λ𝑠}𝑠∈ (0,1] is the scale associated with the weight
function 𝑔(𝑤) B 𝜌

−1/(𝑝−1)
𝑝,𝑤 ; see [32, Definition 2.3.1].)

(2) For each (𝑠, 𝑥) ∈ (0, 1] × 𝐾 , we define Λ𝑠,0 (𝑥) B {𝑤 ∈ Λ𝑠 | 𝑥 ∈ 𝐾𝑤},
𝑈0 (𝑥, 𝑠) B

⋃
𝑤∈Λ𝑠,0 (𝑥 ) 𝐾𝑤, Λ𝑠,1 (𝑥) B {𝑤 ∈ Λ𝑠 | 𝐾𝑤 ∩ 𝑈0 (𝑥, 𝑠) ≠ ∅} and

𝑈1 (𝑥, 𝑠) B
⋃
𝑤∈Λ𝑠,1 (𝑥 ) 𝐾𝑤.

Similar to the case 𝑝 = 2 in [26, Section 6.1], it is easy to see that lim𝑠↓0 min{|𝑤 | |
𝑤 ∈ Λ𝑠} = ∞, that Λ𝑠 is a partition of Σ for any 𝑠 ∈ (0, 1], and that Λ𝑠1 ≤ Λ𝑠2

for any 𝑠1, 𝑠2 ∈ (0, 1] with 𝑠1 ≤ 𝑠2. By [32, Proposition 2.3.7], for any 𝑥 ∈ 𝐾 ,
each of {𝑈0 (𝑥, 𝑠)}𝑠∈ (0,1] and {𝑈1 (𝑥, 𝑠)}𝑠∈ (0,1] is non-decreasing in 𝑠 and forms a
fundamental system of neighborhoods of 𝑥 in 𝐾 . Moreover, {𝑈1 (𝑥, 𝑠)}𝑠∈ (0,1] can
be used as a replacement for the metric balls {𝐵

𝑅𝑝
(𝑥, 𝑠)} (𝑥,𝑠) ∈𝐾×(0,diam(𝐾,𝑅𝑝 ) ] in

(𝐾, 𝑅𝑝) by virtue of the following lemma, which was obtained in [26, Lemma 6.14]
in the case 𝑝 = 2.

Lemma 6.7 There exist 𝛼1, 𝛼2 ∈ (0,∞) such that for any (𝑠, 𝑥) ∈ (0, 1] × 𝐾 ,

𝐵
𝑅𝑝

(𝑥, 𝛼1𝑠) ⊆ 𝑈1 (𝑥, 𝑠) ⊆ 𝐵
𝑅𝑝

(𝑥, 𝛼2𝑠). (6.5)

Proof. By (5.35), we have diam(𝐾𝑤, 𝑅𝑝) ≤ 𝜌
−1/(𝑝−1)
𝑝,𝑤 diam(𝐾, 𝑅𝑝) for any 𝑤 ∈ 𝑊∗,

which implies the latter inclusion in (6.5) with 𝛼2 ∈ (2 diam(𝐾, 𝑅𝑝),∞) arbitrary.
(In particular, diam(𝐾𝑤, 𝑅𝑝) < 𝛼2𝑠 for any 𝑤 ∈ Λ𝑠 .) We will show the former
inclusion in (6.5) in the rest of this proof. To this end, it suffices to prove that there
exists 𝛼1 ∈ (0,∞) such that 𝑅𝑝 (𝑥, 𝑦) ≥ 𝛼1𝑠 for any 𝑠 ∈ (0, 1], any 𝑤, 𝑣 ∈ Λ𝑠 with
𝐾𝑤 ∩ 𝐾𝑣 = ∅ and any (𝑥, 𝑦) ∈ 𝐾𝑤 × 𝐾𝑣. Let 𝜓𝑞 B ℎ

E𝑝
𝑉0

[
1𝑉0
𝑞

]
for any 𝑞 ∈ 𝑉0, where

ℎ
E𝑝
𝑉0

denotes the E𝑝-harmonic extension operator from 𝑉0, that is, 𝜓𝑞 is the unique
function inF𝑝 such that𝜓𝑞 |𝑉0 = 1𝑉0

𝑞 andE𝑝 (𝜓𝑞) = min
{
E𝑝 (𝑣)

�� 𝑣 ∈ F𝑝 , 𝑣 |𝑉0 = 1𝑉0
𝑞

}
(see [27, Theorem 6.13]). Fix 𝑤 ∈ Λ𝑠 and let 𝑢𝑤 ∈ 𝐶 (𝐾) be such that, for 𝜏 ∈ Λ𝑠 ,

𝑢𝑤 ◦ 𝐹𝜏 =


1 if 𝜏 = 𝑤,∑
𝑞∈𝑉0;𝐹𝜏 (𝑞) ∈𝐹𝑤 (𝑉0 ) 𝜓𝑞 if 𝜏 ≠ 𝑤 and 𝐾𝜏 ∩ 𝐾𝑤 ≠ ∅,

0 if 𝐾𝜏 ∩ 𝐾𝑤 = ∅.
(6.6)

Since Λ𝑠 is a partition of Σ, we have 𝑢𝑤 ∈ F𝑝 by (5.34), and

E𝑝 (𝑢𝑤) =
∑︁
𝜏∈Λ𝑠

𝜌𝑝,𝜏E𝑝 (𝑢𝑤 ◦ 𝐹𝜏)

=
∑︁

𝜏∈Λ𝑠\{𝑤};𝐾𝜏∩𝐾𝑤≠∅
𝜌𝑝,𝜏E𝑝 ©«

∑︁
𝑞∈𝑉0;𝐹𝜏 (𝑞) ∈𝐹𝑤 (𝑉0 )

𝜓𝑞
ª®¬ (6.7)

by (5.35). Set 𝜌𝑝 B max𝑖∈𝑆 𝜌𝑝,𝑖 ∈ (1,∞) and 𝑐1 B max𝑞∈𝑉0 E𝑝 (𝜓𝑞) ∈ (0,∞).
Then 𝜌−1

𝑝,𝜏 ≥ (𝜌𝑝)−1𝑠𝑝−1 for any 𝜏 ∈ Λ𝑠 . Since #{𝜏 ∈ Λ𝑠 | 𝐾𝜏 ∩ 𝐾𝑤 ≠ ∅} ≤
(#CL) (#𝑉0) by [29, Lemma 4.2.3], (6.7) together with Hölder’s inequality implies
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that
E𝑝 (𝑢𝑤) ≤ (#CL) (#𝑉0)𝜌𝑝𝑠−𝑝+1 (#𝑉0) 𝑝−1𝑐1 C (𝛼1𝑠)−(𝑝−1) . (6.8)

For any 𝑣 ∈ Λ𝑠 with 𝐾𝑤 ∩ 𝐾𝑣 = ∅ and any (𝑥, 𝑦) ∈ 𝐾𝑤 × 𝐾𝑣, we clearly have
𝑢𝑤(𝑥) = 1 and 𝑢𝑤(𝑦) = 0. Hence

𝑅𝑝 (𝑥, 𝑦) ≥ E𝑝 (𝑢)−1/(𝑝−1) ≥ 𝛼1𝑠,

which proves the desired result. ⊓⊔

Now we can show that 𝑚 is 𝑑f, 𝑝-Ahlfors regular (see [26, Lemma 6.8] for the
case 𝑝 = 2).

Lemma 6.8 There exist 𝑐1, 𝑐2 ∈ (0,∞) such that for any 𝑥 ∈ 𝐾 and any 𝑠 ∈
(0, 2 diam(𝐾, 𝑅𝑝)],

𝑐1𝑠
𝑑f, 𝑝 ≤ 𝑚(𝐵

𝑅𝑝
(𝑥, 𝑠)) ≤ 𝑐2𝑠

𝑑f, 𝑝 . (6.9)

Proof. This is immediate from (6.5), #{𝜏 ∈ Λ𝑠 | 𝐾𝜏 ∩ 𝐾𝑤 ≠ ∅} ≤ (#CL) (#𝑉0) (see
[29, Lemma 4.2.3]) and 𝑚(𝐾𝑤) = 𝜌−1/(𝑝−1)

𝑝,𝑤 (see [29, Corollary 1.4.8]). ⊓⊔

The proof of Lemma 6.7 includes the following capacity upper bound in terms of
the 𝑝-resistance metric 𝑅𝑝 .

Proposition 6.9 There exists 𝐶 ∈ (0,∞) such that for any 𝑥 ∈ 𝐾 and any 𝑠 ∈
(0, 2 diam(𝐾, 𝑅𝑝)],

inf
{
E𝑝 (𝑢)

�� 𝑢 ∈ F𝑝 , 𝑢 |𝐵
𝑅𝑝

(𝑥,𝛼1𝑠) = 1, supp𝐾 [𝑢] ⊆ 𝐵
𝑅𝑝

(𝑥, 2𝛼2𝑠)
}
≤ 𝐶𝑠−(𝑝−1) ,

(6.10)
where 𝛼1, 𝛼2 are the constants in (6.5).

Proof. Let 𝑢𝑤 ∈ F𝑝 be the same function as in the proof of Lemma 6.7 for each 𝑤 ∈
Λ𝑠 . Then 𝜑 B max𝑤∈Λ𝑠,1 (𝑥 ) 𝑢𝑤 satisfies 𝜑|𝑈1 (𝑥,𝑠) = 1. Since diam(𝐾𝑤, 𝑅𝑝) < 𝛼2𝑠,
we see from (6.5) that supp𝐾 [𝜑] ⊆ 𝐵

𝑅𝑝
(𝑥, 2𝛼2𝑠). By (2.3) for (E𝑝 , F𝑝), (6.8) and

[29, Lemma 4.2.3], we have 𝜑 ∈ F𝑝 and

E𝑝 (𝜑) ≤
∑︁

𝑤∈Λ𝑠,1 (𝑥 )
E𝑝 (𝑢𝑤) ≤ (𝛼1𝑠)−(𝑝−1) (#CL) (#𝑉0) C 𝐶𝑠−(𝑝−1) . ⊓⊔

Similar to Lemma 5.20 and Corollary 5.21, we can easily show the next lemma
as a consequence of (6.10), and obtain the regularity of F𝑝 .

Lemma 6.10 Let 𝜀 ∈ (0, 1) and let 𝑉 be a maximal 𝜀-net of (𝐾, 𝑅𝑝). Then there
exists a family of functions {𝜓𝑧}𝑧∈𝑉 that satisfies the following properties:
(i)

∑
𝑧∈𝑉 𝜓𝑧 ≡ 1.

(ii) 𝜓𝑧 ∈ F𝑝 , 0 ≤ 𝜓𝑧 ≤ 1, 𝜓𝑧 |𝐵
𝑅𝑝

(𝑧,𝜀/4) ≡ 1 and supp𝐾 [𝜓𝑧] ⊆ 𝐵
𝑅𝑝

(𝑧, 5𝜀/4) for
any 𝑧 ∈ 𝑉;
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(iii) If 𝑧 ∈ 𝑉 and 𝑧′ ∈ 𝑉 \ {𝑧}, then 𝜓𝑧′ |𝐵
𝑅𝑝

(𝑧,𝜀/4) ≡ 0.

(iv) There exists 𝐶 ∈ (0,∞) such that E𝑝 (𝜓𝑧) ≤ 𝐶𝜀−(𝑝−1) for any 𝑧 ∈ 𝑉 .

Corollary 6.11 (E𝑝 , F𝑝) is regular, i.e., F𝑝 is dense in (𝐶 (𝐾), ∥ · ∥sup).

Next, in order to state a Poincaré-type inequality in this context, we introduce
the associated self-similar 𝑝-energy measures in Proposition 6.12 and a localized
version of F𝑝 in Definition 6.13. Thanks to (5.35), we can define the 𝑝-energy
measures associated with (E𝑝 , F𝑝) by using Kolmogorov’s extension theorem. We
recall fundamental results on the 𝑝-energy measures constructed in this way in the
following proposition. See [39, Section 9] and [27, Section 5.2] for further details
and properties of them.

Proposition 6.12 (Self-similar 𝑝-energy measures) For each 𝑢 ∈ F𝑝 , there exists
a unique positive Radon measure ΓE𝑝 ⟨𝑢⟩ on 𝐾 satisfying

ˆ
𝐾

𝜑 𝑑ΓE𝑝 ⟨𝑢⟩ = E𝑝 (𝑢; 𝑢𝜑)−
(
𝑝 − 1
𝑝

) 𝑝−1
E𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)

for any 𝜑 ∈ F𝑝 . (6.11)

Moreover, the following hold:
(i) ΓE𝑝 ⟨𝑢⟩(𝐾𝑤) = 𝜌𝑝,𝑤E𝑝 (𝑢 ◦ 𝐹𝑤) for any 𝑢 ∈ F𝑝 and any 𝑤 ∈ 𝑊∗.
(ii) ΓE𝑝 ⟨ · ⟩(𝐴)1/𝑝 is a seminorm on F𝑝 for any 𝐴 ∈ B(𝐾).
(iii) ΓE𝑝 ⟨𝑢⟩(𝐾𝑤 ∩ 𝐾𝜏) = 0 for any 𝑢 ∈ F𝑝 and any 𝑤, 𝜏 ∈ 𝑊∗ with Σ𝑤 ∩ Σ𝜏 = ∅.
(iv) ΓE𝑝 ⟨𝑢⟩(𝐴) = ΓE𝑝 ⟨𝑣⟩(𝐴) for any 𝑢, 𝑣 ∈ F𝑝 and any 𝐴 ∈ B(𝐾) with (𝑢−𝑣) |𝐴 ∈

R1𝐴.

Proof. For the construction of a candidate for ΓE𝑝 ⟨𝑢⟩, see [39, Section 9] or [27,
Section 5.2]. Then the properties (ii), (iii) and (iv) follow from [39, Proposition 9.3,
Corollaries 9.8 and 9.9] since #(𝐾𝑤 ∩ 𝐾𝜏) < ∞ by #𝑉0 < ∞ and [29, Proposition
1.3.5-(2)]. We obtain (i) by combining (iii) and [39, Proposition 9.4]. The equality
(6.11) is proved in [27, Proposition 5.12], and the uniqueness of a positive Radon
measure on 𝐾 satisfying (6.11) follows from Corollary 6.11 and the uniqueness part
of the Riesz–Markov–Kakutani representation theorem (see, e.g., [41, Theorems
2.14 and 2.18]). ⊓⊔

Definition 6.13 Let𝑈 be a non-empty open subset of𝐾 . We define a linear subspace
F𝑝,loc (𝑈) of 𝐶 (𝑈) by

F𝑝,loc (𝑈) B
{
𝑓 ∈ 𝐶 (𝑈)

���� 𝑓 |𝐴 = 𝑓 # |𝐴 for some 𝑓 # ∈ F for each
relatively compact open subset 𝐴 of𝑈

}
. (6.12)

For each 𝑓 ∈ F𝑝,loc (𝑈), we further define a positive Radon measure ΓE𝑝 ⟨ 𝑓 ⟩ on 𝑈
as follows. We first define ΓE𝑝 ⟨ 𝑓 ⟩(𝐸) B ΓE𝑝 ⟨ 𝑓 #⟩(𝐸) for each relatively compact
Borel subset 𝐸 of 𝑈, with 𝐴 ⊆ 𝑈 and 𝑓 # ∈ F𝑝 as in (6.12) chosen so that 𝐸 ⊆ 𝐴;
this definition of ΓE𝑝 ⟨ 𝑓 ⟩(𝐸) is independent of a particular choice of such 𝐴 and 𝑓 #

by Proposition 6.12-(iv). We then define ΓE𝑝 ⟨ 𝑓 ⟩(𝐸) B lim𝑛→∞ ΓE𝑝 ⟨ 𝑓 ⟩(𝐸 ∩ 𝐴𝑛)
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for each 𝐸 ∈ B(𝑈), where {𝐴𝑛}𝑛∈N is a non-decreasing sequence of relatively
compact open subsets of 𝑈 such that

⋃
𝑛∈N 𝐴𝑛 = 𝑈; it is clear that this definition

of ΓE𝑝 ⟨ 𝑓 ⟩(𝐸) is independent of a particular choice of {𝐴𝑛}𝑛∈N, coincides with the
previous one when 𝐸 is relatively compact in𝑈, and gives a Radon measure on𝑈.

Now we can prove a Poincaré-type inequality in terms of the 𝑝-resistance metric.

Proposition 6.14 ((𝑝, 𝑝)-Poincaré inequality) There exist 𝐶, 𝐴 ∈ (0,∞) with 𝐴 ≥
1 such that for any (𝑥, 𝑠) ∈ 𝐾 × (0, diam(𝐾, 𝑅𝑝)] and any 𝑢 ∈ F𝑝,loc (𝐵𝑅𝑝 (𝑥, 𝐴𝑠)),
ˆ
𝐵
𝑅𝑝

(𝑥,𝑠)

���𝑢(𝑦) − 𝑢𝐵
𝑅𝑝

(𝑥,𝑠)

���𝑝 𝑚(𝑑𝑦) ≤ 𝐶𝑠𝑑f, 𝑝+𝑝−1ΓE𝑝 ⟨𝑢⟩(𝐵𝑅𝑝 (𝑥, 𝐴𝑠)). (6.13)

Proof. For simplicity, we consider the case 𝑢 ∈ F𝑝 . Note that, since𝑚(𝐾𝑣∩𝐾𝑣′ ) = 0
for any 𝑣, 𝑣′ ∈ 𝑊∗ with Σ𝑣 ∩ Σ𝑣′ = ∅ (see [29, Corollary 1.4.8]),

ˆ
𝐵
𝑅𝑝

(𝑥,𝛼1𝑠)

���𝑢 − 𝑢𝐵
𝑅𝑝

(𝑥,𝛼1𝑠)

���𝑝 𝑑𝑚 ≤
∑︁

𝑤∈Λ𝑠,1 (𝑥 )

ˆ
𝐾𝑤

��𝑢 − 𝑢𝑈1 (𝑥,𝑠)
��𝑝 𝑑𝑚.

Let 𝑤 ∈ Λ𝑠,1 (𝑥). For any (𝑦, 𝑧) ∈ 𝐾𝑤 ×𝑈1 (𝑥, 𝑠), there exist 𝑣1, 𝑣2, 𝑣3 ∈ Λ𝑠,1 (𝑥) such
that 𝑣1 = 𝑤, 𝑧 ∈ 𝐾𝑣3 and 𝐾𝑣𝑖 ∩𝐾𝑣𝑖+1 ≠ ∅ for each 𝑖 ∈ {1, 2}. Let us fix 𝑥𝑖 ∈ 𝐾𝑣𝑖 ∩𝐾𝑣𝑖+1

and 𝑞𝑖 ∈ 𝑉0 so that 𝑥𝑖 = 𝐹𝑣𝑖 (𝑞𝑖). Then

|𝑢(𝑦) − 𝑢(𝑧) |𝑝 ≤ 3𝑝−1
(��𝑢(𝑦) − 𝑢(𝑥1)

��𝑝 + ��𝑢(𝑥1) − 𝑢(𝑥2)
��𝑝 + ��𝑢(𝑥2) − 𝑢(𝑧)

��𝑝)
≤

(
3 diam(𝐾, 𝑅𝑝)

) 𝑝−1
3∑︁
𝑖=1

𝜌−1
𝑝,𝑣𝑖

ΓE𝑝 ⟨𝑢⟩(𝐾𝑣𝑖 )

≤ 𝐶𝑠𝑝−1ΓE𝑝 ⟨𝑢⟩
( 3⋃
𝑖=1

𝐾𝑣𝑖

)
≤ 𝐶𝑠𝑝−1ΓE𝑝 ⟨𝑢⟩(𝐵𝑅𝑝 (𝑥, 𝛼2𝑠)).

Therefore, noting that 𝑚(𝐾𝑤) ≲ 𝑠𝑑f, 𝑝 by (6.5) and (6.9), we have
ˆ
𝐾𝑤

��𝑢(𝑦) − 𝑢𝑈1 (𝑥,𝑠)
��𝑝 𝑚(𝑑𝑦) ≤

ˆ
𝐾𝑤

 
𝑈1 (𝑥,𝑠)

|𝑢(𝑦) − 𝑢(𝑧) |𝑝 𝑚(𝑑𝑥)𝑚(𝑑𝑦)

≲ 𝑠𝑑f, 𝑝+𝑝−1ΓE𝑝 ⟨𝑢⟩(𝐵𝑅𝑝 (𝑥, 𝛼2𝑠)),

which together with sup(𝑥,𝑠) ∈𝐾×(0,1] #Λ𝑠,1 (𝑥) < ∞ (see [29, Lemma 4.2.3]) yields
(6.13). ⊓⊔



60 Naotaka Kajino and Ryosuke Shimizu

6.2 Estimates on self-similar 𝒑-energy measures and weak
monotonicity

In this subsection, we show localized energy estimates on Korevaar–Schoen 𝑝-
energy forms in terms of their associated self-similar 𝑝-energy measures and verify
(WM)𝑝,𝒌 . We continue to follow the setting in the previous subsection, i.e., we
suppose that Assumption 6.1 holds. We consider E𝑝 as a [0,∞]-valued functional
defined on 𝐿 𝑝 (𝐾, 𝑚) by setting E𝑝 ( 𝑓 ) B ∞ for 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚) \ F𝑝 .

Similar arguments as in Propositions 5.23 and 5.25 yield an upper bound on
localized Korevaar–Schoen energy functionals in Proposition 6.15 and a lower bound
on them in Proposition 6.16 below.

Proposition 6.15 There exists 𝐶 ∈ (0,∞) such that for any 𝐸 ∈ B(𝐾), any open
neighborhood 𝐸 ′ of 𝐸𝐾 and any 𝑢 ∈ F𝑝,loc (𝐸 ′),

lim sup
𝑠↓0

ˆ
𝐸

 
𝐵
𝑅𝑝

(𝑥,𝑠)

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≤ 𝐶ΓE𝑝 ⟨𝑢⟩
(
𝐸
𝐾 )
. (6.14)

Moreover, with 𝐶 ∈ (0,∞) the same as in (6.14), for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

sup
𝑠>0

ˆ
𝐾

 
𝐵
𝑅𝑝

(𝑥,𝑠)

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≤ 𝐶E𝑝 ( 𝑓 ). (6.15)

Proof. Let𝑉 be a relatively compact open subset of 𝐸 ′ with𝑉 ⊇ 𝐸
𝐾 and let 𝑢# ∈ F𝑝

satisfy 𝑢# = 𝑢 𝑚-a.e. on𝑉 . Similar to [39, (7.2)], by using (6.9) and (6.13), we easily
see that for any 𝑠 ∈ (0,∞),

ˆ
𝐸

 
𝐵
𝑅𝑝

(𝑥,𝑠)

��𝑢# (𝑥) − 𝑢# (𝑦)
��𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥) ≤ 𝐶ΓE𝑝 ⟨𝑢#⟩
(
(𝐸)

𝑅𝑝 ,2𝐴𝑠
)
, (6.16)

where 𝐴 ∈ [1,∞) is the constant in (6.13) and 𝐶 ∈ (0,∞) is independent of 𝑥, 𝑠 and
𝑓 . We get (6.14) by letting 𝑠 ↓ 0 since ΓE𝑝 ⟨𝑢#⟩

(
(𝐸)

𝑅𝑝 ,2𝐴𝑠
)
= ΓE𝑝 ⟨𝑢⟩

(
(𝐸)

𝑅𝑝 ,2𝐴𝑠
)

for any 𝑠 ∈ (0,∞) with (𝐸)
𝑅𝑝 ,2𝐴𝑠 ⊆ 𝑉 by Proposition 6.12-(iv). The estimate (6.15)

for 𝑓 ∈ F𝑝 is easily implied by ΓE𝑝 ⟨ 𝑓 ⟩(𝐾) = E𝑝 ( 𝑓 ) and (6.16) with 𝐸 = 𝐾 . For
𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚) \ F𝑝 , (6.15) is obvious by E𝑝 ( 𝑓 ) = ∞, so the proof is completed. ⊓⊔

Proposition 6.16 There exists 𝐶 ∈ (0,∞) such that for any 𝐸 ∈ B(𝐾), any open
neighborhood 𝐸 ′ of 𝐸𝐾 and any 𝑢 ∈ F𝑝,loc (𝐸 ′),

ΓE𝑝 ⟨𝑢⟩(𝐸) ≤ 𝐶 lim
𝛿↓0

lim inf
𝑠↓0

ˆ
(𝐸 )

𝑅𝑝,𝛿

 
𝐵
𝑅𝑝

(𝑥,𝑠)

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥).

(6.17)
Furthermore, with 𝐶 ∈ (0,∞) the same as in (6.17), for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),
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E𝑝 ( 𝑓 ) ≤ 𝐶 lim inf
𝑠↓0

ˆ
𝐾

 
𝐵
𝑅𝑝

(𝑥,𝑠)

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥). (6.18)

Proof. Let 𝑠 ∈ (0, 1) and fix a maximal 𝑟-net 𝑁𝑠 of (𝐾, 𝑅𝑝). Let {𝜓𝑧,𝑠}𝑧∈𝑁𝑠 be
a partition of unity as given in Lemma 6.10 and define 𝐴𝑠 : 𝐿 𝑝 (𝐾, 𝑚) → F𝑝 by
𝐴𝑠 𝑓 B

∑
𝑧∈𝑁𝑠 𝑓𝐵𝑅𝑝 (𝑧,𝑠/4)𝜓𝑧,𝑠 for 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚). Then we can easily see that

lim𝑟→0 ∥𝐴𝑟 𝑓 − 𝑓 ∥𝐿𝑝 (𝐾,𝑚) = 0 and sup𝑟>0 ∥𝐴𝑟 ∥𝐿𝑝 (𝐾,𝑚)→𝐿𝑝 (𝐾,𝑚) < ∞. Using
Proposition 6.12-(iv), we can show that there exists 𝐶1 > 0 that is independent
of 𝑥, 𝑠 and 𝑓 such that

ΓE𝑝 ⟨𝐴𝑠 𝑓 ⟩
(
𝐵
𝑅𝑝

(𝑧, 5𝑠/4)
)

≤ 𝐶1
∑︁

𝑤∈𝑁𝑠∩𝐵𝑅𝑝 (𝑧,11𝑠/4)

ˆ
𝐵
𝑅𝑝

(𝑤,3𝑠)

 
𝐵
𝑅𝑝

(𝑥,9𝑠)

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥),

(6.19)

for any small enough 𝑠 > 0. Let us fix 𝛿 > 0 and define 𝑁𝑠 (𝐸) B {𝑧 ∈ 𝑁𝑠 |
𝐸 ∩𝐵

𝑅𝑝
(𝑧, 𝑠) ≠ ∅}. Since

⋃
𝑧∈𝑁𝑠 (𝐸 )

⋃
𝑤∈𝑁𝑠∩𝐵𝑅𝑝 (𝑧,11𝑠/4) 𝐵𝑅𝑝 (𝑤, 3𝑠) ⊆ (𝐸)

𝑅𝑝 , 𝛿
for

all small enough 𝑠 > 0 and (𝐾, 𝑅𝑝) is metric doubling by Lemma 6.8, we have

ΓE𝑝 ⟨𝐴𝑠 𝑓 ⟩(𝐸) ≤
∑︁

𝑧∈𝑁𝑠 (𝐸 )
ΓE𝑝 ⟨𝐴𝑠 𝑓 ⟩

(
𝐵
𝑅𝑝

(𝑧, 5𝑠/4)
)

(6.19)
≤ 𝐶

ˆ
(𝐸 )

𝑅𝑝,𝛿

 
𝐵
𝑅𝑝

(𝑥,9𝑠)

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑠𝑑f, 𝑝+𝑝−1 𝑚(𝑑𝑦)𝑚(𝑑𝑥), 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

(6.20)

where 𝐶 ∈ (0,∞) is independent of 𝑥, 𝑠 and 𝑓 . Once we get (6.20), the argument
in the proof of Proposition 5.25 with minor modifications proves (6.17). Indeed,
for 𝑢 ∈ F𝑝,loc (𝐸 ′), a relatively compact open subset 𝑉 of 𝐸 ′ with 𝑉 ⊇ 𝐸

𝐾 and
𝑢# ∈ F𝑝 satisfying 𝑢# = 𝑢 𝑚-a.e. on 𝑉 , we have from Proposition 6.12-(iv) that
ΓE𝑝 ⟨𝐴𝑠𝑢#⟩(𝐸) = ΓE𝑝 ⟨𝐴𝑠𝑢⟩(𝐸) if 𝑠 is sufficiently small. Then similar arguments
using Mazur’s lemma as in the proof of Proposition 5.25 implies (6.17) and (6.18).

⊓⊔

Now we can identify F𝑝 as the (1, 𝑝)-Korevaar–Schoen–Sobolev space.

Theorem 6.17 Let 𝑠𝑝 , 𝒌 B 𝒌𝑠𝑝 and KS1, 𝑝 (𝐾, 𝑅𝑝 , 𝑚) be as defined in Example
3.14 with 𝑅𝑝 in place of 𝑑. Then 𝑠𝑝 = (𝑑f, 𝑝 + 𝑝 − 1)/𝑝, F𝑝 = KS1, 𝑝 (𝐾, 𝑅𝑝 , 𝑚), and
(WM)𝑝,𝒌 holds. Moreover, there exists 𝐶 ∈ [1,∞) such that

𝐶−1 sup
𝑟>0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) ≤ E𝑝 ( 𝑓 ) ≤ 𝐶 lim inf
𝑟↓0

𝐽𝒌𝑝,𝑟 ( 𝑓 ) for any 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚). (6.21)

Proof. We have F𝑝 = 𝐵
(𝑑f, 𝑝+𝑝−1)/𝑝
𝑝,∞ and (6.21) by (6.15) and (6.18). In particular,

𝑠𝑝 ≥ (𝑑f, 𝑝 + 𝑝 − 1)/𝑝. Let 𝑠 > (𝑑f, 𝑝 + 𝑝 − 1)/𝑝 and let 𝑓 ∈ F𝑝 \ R1𝐾 , which
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exists by (6.10). Let 𝐴𝑟 : 𝐿 𝑝 (𝐾, 𝑚) → F𝑝 be the same operator as in the proof of
Proposition 6.16 for each 𝑟 ∈ (0, 1). Then, by (6.20) with 𝐸 = 𝐾 , for any 𝑟 ∈ (0, 1)
and 𝑓 ∈ 𝐿 𝑝 (𝐾, 𝑚),

𝑟𝑑f, 𝑝+𝑝−1

𝑟𝑠𝑝
E𝑝 (𝐴𝑟 𝑓 ) ≤ 𝐶

ˆ
𝐾

 
𝐵
𝑅𝑝

(𝑥,9𝑟 )

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑝

𝑟𝑠𝑝
𝑚(𝑑𝑦)𝑚(𝑑𝑥), (6.22)

where 𝐶 > 0 is independent of 𝑓 and 𝑟 . Clearly, sup𝑟>0 E𝑝 (𝐴𝑟 𝑓 ) > 0 and
𝑟𝑑f, 𝑝+𝑝−1−𝑠𝑝 → ∞ as 𝑟 ↓ 0. Hence we obtain 𝑠 ≥ 𝑠𝑝 since 𝑓 ∉ 𝐵𝑠𝑝,∞ by (6.22). This
implies that (𝑑f, 𝑝 + 𝑝 − 1)/𝑝 ≥ 𝑠𝑝 . In particular, we obtain F𝑝 = KS1, 𝑝 (𝐾, 𝑅𝑝 , 𝑚).
Also, (WM)𝑝,𝒌 follows from (6.15) and (6.18). ⊓⊔

Unfortunately, it is not clear whether Korevaar–Schoen 𝑝-energy forms (EKS
𝑝 , F𝑝)

on (𝐾, 𝑅𝑝 , 𝑚), which exist by Theorems 6.17 and 3.8 (recall Example 3.14), are self-
similar or not. However, we can construct a self-similar 𝑝-resistance form on L by
the same argument as in the proof of Theorem 5.38. Recall that F𝑝 ∩ 𝐶 (𝐾) = F𝑝 is
dense both in (𝐶 (𝐾), ∥ · ∥sup) and in F𝑝 by Proposition 6.4-(3) and Corollary 6.11.

Theorem 6.18 For each 𝑛 ∈ N, define 𝒌 (𝑛) = {𝑘 (𝑛)𝑟 }𝑟>0 by

𝑘
(𝑛)
𝑟 (𝑥, 𝑦) B 1

𝑛 + 1

𝑛∑︁
𝑙=0

∑︁
𝑤∈𝑊𝑙

𝜌
(2𝑑f, 𝑝+𝑝−1)/(𝑝−1)
𝑝,𝑤

1𝐴𝑤,𝑟 (𝑥, 𝑦)
𝑟2𝑑f, 𝑝+𝑝−1 , 𝑥, 𝑦 ∈ 𝐾,

where 𝐴𝑤,𝑟 B
{
(𝑥, 𝑦) ∈ 𝐾𝑤 × 𝐾𝑤

�� 𝑅𝑝 (𝐹−1
𝑤 (𝑥), 𝐹−1

𝑤 (𝑦)) < 𝑟
}
. Then 𝒌 (𝑛)

is asymptotically local, (WM)𝑝,𝒌 (𝑛) holds, 𝐵𝒌 (𝑛)
𝑝,∞ = F𝑝 , and for any sequence

{(E𝒌 (𝑛)
𝑝 , F𝑝)}𝑛∈N with (E𝒌 (𝑛)

𝑝 , F𝑝) a 𝒌 (𝑛) -Korevaar–Schoen 𝑝-energy form on
(𝐾, 𝑚) for each 𝑛 ∈ N, there exists a sequence {𝑛 𝑗 } 𝑗∈N ⊆ N with 𝑛 𝑗 < 𝑛 𝑗+1
for any 𝑗 ∈ N such that the following limit exists in [0,∞) for any 𝑢 ∈ F𝑝:

ĔKS
𝑝 (𝑢) B lim

𝑗→∞
E𝒌 (𝑛𝑗 )

𝑝 (𝑢). (6.23)

Moreover, for any such {E𝒌 (𝑛)
𝑝 }𝑛∈N and {𝑛 𝑗 } 𝑗∈N, the functional ĔKS

𝑝 : F𝑝 → [0,∞)
defined by (6.23) satisfies the following properties:
(a) (ĔKS

𝑝 , F𝑝) is a self-similar 𝑝-resistance form on L with weight (𝜌𝑝,𝑖)𝑖∈𝑆 .
(b) For any 𝑢 ∈ F𝑝 ,

𝐶−1E𝑝 (𝑢) ≤ ĔKS
𝑝 (𝑢) ≤ 𝐶E𝑝 (𝑢),

where 𝐶 ∈ [1,∞) is the constant in (6.21).
(c) For any 𝑢, 𝑣 ∈ F𝑝 , {E𝒌 (𝑛𝑗 )

𝑝 (𝑢; 𝑣)} 𝑗∈N is convergent in R and

ĔKS
𝑝 (𝑢; 𝑣) = lim

𝑗→∞
E𝒌 (𝑛𝑗 )

𝑝 (𝑢; 𝑣). (6.24)

(d) Theorem 3.8-(c),(d),(e) with (ĔKS
𝑝 , F𝑝) in place of (E𝒌

𝑝 , 𝐵
𝒌
𝑝,∞) hold.
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(e) ĔKS
𝑝 (𝑢 ◦ 𝑇) = ĔKS

𝑝 (𝑢) for any 𝑢 ∈ F𝑝 and any 𝑇 ∈ G (recall (6.4)).

In addition, we obtain the 𝑝-energy measures associated with the 𝑝-resistance
form (ĔKS

𝑝 , F𝑝) in the same way as in Theorem 5.39. (See also [27, Sections 4 and
5] for other basic properties. As mentioned before Theorem 5.39, we do not know
whether Theorem 6.19-(c) below holds for general self-similar 𝑝-resistance forms.)

Theorem 6.19 Let (E𝒌 (𝑛)
𝑝 , F𝑝) be any 𝒌 (𝑛) -Korevaar–Schoen 𝑝-energy form on

(𝐾, 𝑚) for each 𝑛 ∈ N, let {𝑛 𝑗 } 𝑗∈N ⊆ N be any sequence as in Theorem 6.18, and
let (ĔKS

𝑝 , F𝑝) be the 𝑝-resistance form on 𝐾 defined by (6.23). Then for any 𝑢 ∈ F𝑝 ,
there exists a unique positive Radon measure Γ̆KS

𝑝 ⟨𝑢⟩ on 𝐾 such that for any 𝜑 ∈ F𝑝 ,

ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢⟩ = ĔKS

𝑝 (𝑢; 𝑢𝜑) −
(
𝑝 − 1
𝑝

) 𝑝−1
ĔKS
𝑝

(
|𝑢 |

𝑝

𝑝−1 ; 𝜑
)
. (6.25)

Moreover, the following hold:
(a) Let 𝜑 : 𝐾 → [0,∞) be a Borel measurable function with ∥𝜑∥sup < ∞. Then

(
´
𝐾
𝜑 𝑑Γ̆KS

𝑝 ⟨ · ⟩, F𝑝) is a 𝑝-energy form on (𝐾, 𝑚) satisfying (GC)𝑝 .

(b) Theorem 4.6, with F𝑝 and Γ̆𝒌
𝑝 in place of D𝒌 ,𝑏

𝑝,∞ and Γ𝒌
𝑝 respectively, holds. In

particular, for any 𝑢, 𝑣 ∈ F𝑝 ,

Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐴) B 1

𝑝

𝑑

𝑑𝑡
Γ̆KS
𝑝 ⟨𝑢 + 𝑡𝑣⟩(𝐴)

����
𝑡=0
, 𝐴 ∈ B(𝐾), (6.26)

defines a signed Borel measure on 𝐾 such that Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩(𝐾) = ĔKS

𝑝 (𝑢; 𝑣) and
Γ̆KS
𝑝 ⟨𝑢; 𝑢⟩ = Γ̆KS

𝑝 ⟨𝑢⟩. Furthermore, for any 𝑢, 𝑣 ∈ F𝑝 and any 𝜑 ∈ 𝐶 (𝐾),
ˆ
𝐾

𝜑 𝑑Γ̆KS
𝑝 ⟨𝑢; 𝑣⟩ = lim

𝑗→∞

ˆ
𝐾

𝜑 𝑑Γ𝒌 (𝑛𝑗 )

𝑝 ⟨𝑢; 𝑣⟩. (6.27)

(c) Theorem 4.8-(a),(b), with F𝑝 and Γ̆KS
𝑝 in place of D𝒌 ,𝑏

𝑝,∞ and Γ𝒌
𝑝 respectively,

hold.
(d) Theorems 4.9, 4.10 and 4.11, with F𝑝 and Γ̆KS

𝑝 in place of 𝐵𝒌
𝑝,∞ ∩ 𝐶𝑏 (𝐾) and

Γ𝒌
𝑝 respectively, hold.

A Appendix: An alternative family of kernels in Example 3.14

In this Appendix, we give a simple sufficient condition for 𝐵𝒌#
𝑝,∞ = KS1, 𝑝 and

(WM)𝑝,𝒌# where 𝒌# = {𝑘#
𝑟 }𝑟>0 is defined by (3.28). As in Example 3.14, we fix

𝑝 ∈ (1,∞) and assume that (𝐾, 𝑑) is a connected separable metric space with
#𝐾 ≥ 2 and that 𝑚 is a Borel measure on 𝐾 with full topological support satisfying
𝑚(𝐵𝑑 (𝑥, 𝑟)) < ∞ for any (𝑥, 𝑟) ∈ 𝐾 × (0,∞).
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Proposition A.1 Let 𝑠 ∈ (0,∞) and let 𝒌𝑠 = {𝑘𝑠𝑟 }𝑟>0 be the family of kernels defined
by (3.26). Assume that 𝑚 is volume doubling, and that the following Poincaré-type
inequality holds: there exist 𝐶 ∈ (0,∞) and 𝜆 ∈ [1,∞) such that for any 𝑢 ∈ 𝐵𝒌𝑠

𝑝,∞
and any (𝑧, 𝑟) ∈ 𝐾 × (0,∞),

ˆ
𝐵𝑑 (𝑧,𝑟 )

��𝑢 − 𝑢𝐵𝑑 (𝑧,𝑟 ) ��𝑝 𝑑𝑚
≤ 𝐶𝑟 𝑝𝑠 lim inf

𝛿↓0

ˆ
𝐵𝑑 (𝑧,𝜆𝑟 )

 
𝐵𝑑 (𝑥, 𝛿 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝛿𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥). (A.1)

Then there exists 𝐶′ ∈ [1,∞) such that for any 𝑢 ∈ 𝐵𝒌𝑠
𝑝,∞,

sup
𝑟>0

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤ 𝐶′ lim inf
𝑟↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑟 𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥). (A.2)

In particular, if (A.1) with 𝑠 = 𝑠𝑝 holds, then the family of kernels 𝒌# = {𝑘#
𝑟 }𝑟>0

defined by (3.28) satisfies 𝐵𝒌#
𝑝,∞ = KS1, 𝑝 and (WM)𝑝,𝒌# .

Remark A.2 If (𝐾, 𝑑, 𝑚) supports the 𝑝-Poincaré inequality in terms of upper
gradients, then the estimate (A.2) with 𝑠 = 1 follows from [37, Corollaries 6.3 and
6.5]. For 𝑝-conductively homogeneous compact metric spaces and post-critically
finite self-similar sets as in the settings of Sections 5 and 6, we can verify (A.2) with
𝑠 = 𝑠𝑝; see Propositions 5.28, 6.14 and 6.16.

Proof of Proposition A.1. Since 𝑚 is volume doubling and (𝐾, 𝑑) is connected, we
have the following reverse volume doubling property of 𝑚 (see, e.g., [8, Corollary
3.8] or [21, Exercise 13.1]): there exist 𝑐1, 𝛼 ∈ (0,∞) depending only on the doubling
constant 𝐶D of 𝑚 such that

𝑚(𝐵𝑑 (𝑥, 𝑟))
𝑚(𝐵𝑑 (𝑥, 𝑅))

≤ 𝑐1

( 𝑟
𝑅

)𝛼
for any 𝑥 ∈ 𝐾 and any 0 < 𝑟 ≤ 𝑅 < diam(𝐾, 𝑑).

(A.3)
Let 𝑟 ∈ (0,∞). We have
ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

(A.3)
≤

∞∑︁
𝑗=0

𝑐1

2𝛼 𝑗

ˆ
𝐾

ˆ
𝐵𝑑 (𝑥,2− 𝑗𝑟 )\𝐵𝑑 (𝑥,2−( 𝑗+1) 𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠𝑚(𝐵(𝑥, 2− 𝑗𝑟)) 𝑚(𝑑𝑦)𝑚(𝑑𝑥).

Let 𝑗 ∈ N ∪ {0}, and let 𝑁 𝑗 ⊂ 𝐾 be a 2− 𝑗𝑟-net in (𝐾, 𝑑), i.e., a maximal subset of
𝐾 such that 𝑑 (𝑧1, 𝑧2) ≥ 2− 𝑗𝑟 for any 𝑧1, 𝑧2 ∈ 𝑁 𝑗 with 𝑧1 ≠ 𝑧2; such 𝑁 𝑗 exists and
is countable since 𝐵𝑑 (𝑥, 𝑅) is totally bounded for any (𝑥, 𝑅) ∈ 𝐾 × (0,∞) thanks to
the metric doubling property of 𝑑 implied by the volume doubling property of 𝑚.



Korevaar–Schoen 𝑝-energy forms and associated 𝑝-energy measures on fractals 65

Then we see that
ˆ
𝐾

ˆ
𝐵𝑑 (𝑥,2− 𝑗𝑟 )\𝐵𝑑 (𝑥,2−( 𝑗+1) 𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠𝑚(𝐵𝑑 (𝑥, 2− 𝑗𝑟)) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤
∑︁
𝑧∈𝑁 𝑗

ˆ
𝐵𝑑 (𝑧,2− 𝑗𝑟 )

ˆ
𝐵𝑑 (𝑥,2− 𝑗𝑟 )\𝐵(𝑥,2−( 𝑗+1) 𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠𝑚(𝐵𝑑 (𝑥, 2− 𝑗𝑟)) 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤
∑︁
𝑧∈𝑁 𝑗

𝐶2
D (2

−( 𝑗+1)𝑟)−𝑝𝑠

𝑚(𝐵𝑑 (𝑧, 2− 𝑗𝑟))

ˆ
𝐵𝑑 (𝑧,2− 𝑗𝑟 )

ˆ
𝐵𝑑 (𝑥,2− 𝑗𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤
∑︁
𝑧∈𝑁 𝑗

2𝑝𝐶2
D (2

−( 𝑗+1)𝑟)−𝑝𝑠

𝑚(𝐵𝑑 (𝑧, 2− 𝑗𝑟))

¨
𝐵𝑑 (𝑧,2− 𝑗+1𝑟 )2

��𝑢(𝑥) − 𝑢𝐵𝑑 (𝑧,2− 𝑗+1𝑟 )
��𝑝 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

(A.1)
≤ 2𝑝+2𝑝𝑠𝐶3

D

∑︁
𝑧∈𝑁 𝑗

lim inf
𝛿↓0

ˆ
𝐵𝑑 (𝑧,𝜆2− 𝑗+1𝑟 )

 
𝐵𝑑 (𝑥, 𝛿 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝛿𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤ 𝑐2 lim inf
𝛿↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥, 𝛿 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝛿𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥),

where 𝑐2 depends only on 𝑝, 𝑠, 𝜆, 𝐶D and𝐶 in (A.1). Combining the above estimates,
we obtain

ˆ
𝐾

 
𝐵𝑑 (𝑥,𝑟 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝑑 (𝑥, 𝑦) 𝑝𝑠 𝑚(𝑑𝑦)𝑚(𝑑𝑥)

≤ 𝑐1𝑐2

∞∑︁
𝑗=0

2−𝛼 𝑗 lim inf
𝛿↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥, 𝛿 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝛿𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥)

= 𝑐1𝑐2 (1 − 2−𝛼)−1 lim inf
𝛿↓0

ˆ
𝐾

 
𝐵𝑑 (𝑥, 𝛿 )

|𝑢(𝑥) − 𝑢(𝑦) |𝑝

𝛿𝑝𝑠
𝑚(𝑑𝑦)𝑚(𝑑𝑥),

which shows (A.2). ⊓⊔
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