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Abstract

We propose a new functional-analytic framework in which the Laplace transform
can be regarded as a Hilbert-Schmidt operator, by using a class of reproducing kernel
Hilbert spaces. We can thus treat the Laplace transform as a compact operator, and the
proposed framework and results are applicable to mathematical and numerical analysis
of the Laplace transform. Results of several numerical experiments of the real inversion
for the Laplace transform are also shown.

Key words. Laplace transform, reproducing kernel Hilbert spaces, real inversion

2010 Mathematics Subject Classification.44A10, 46E22, 46N40.

1 Introduction

In the present research, we shall propose a new approach to analysis of the Laplace trans-
form

L f (p) =
∫ ∞

0
e−pt f (t)dt,

that plays a key role in various fields of mathematics, science and engineering. In particular,
finding f = L

−1 F for a given functionF(p), p > 0 appears in some areas. This is called
the real inversion of the Laplace transform. Elementarily we look up the Laplace transform
table for this purpose, and in applications, numerical computation of the real inversion is
required. Here we should keep in mind thatL

−1 is not stable in standard function spaces
and consequently numerical methods for the real inversion have not been established [4, 1].

In [7] Saitoh has considered an operatorL from a certain reproducing kernel Hilbert
space toL2((0,∞),d p) given by

L f (p) := p ·L f (p),

∗Supported in part by the Grant-in-Aid for Young Scientists (B), No. 20740057.
†JSPS Research Fellow PD (20·6088): Supported by the Japan Society for the Promotion of Science.
‡Supported in part by the Grant-in-Aid for Young Scientists (B), No. 21740104.

1



2 H. Fujiwara, N. Kajino, Y. Sawano

and Fujiwara [2] has succeeded in numerical computation of the real inversion. One of
their key ideas is the compactness ofL in their settings, which yields traditional inverse
analysis such as Tikhonov regularization [5] and singular value decomposition [3]. Another
remarkable point is that they obtain concrete representation of the adjoint operator in the
form of an integral transform based on their reproducing kernel Hilbert space for the sake
of effective numerical computation [2].

Their numerical methods are simple and remarkable though ithas a failure that it is
applicable to only the case where image functions are squareintegrable (with respect to the
Lebesgue measure). For example, their method does not work for the Laplace transforms
of polynomials, which are not square integrable. To overcome the limitation, in this paper
we treat the operatorL on weighted Hilbert spaces and prove thatL is a Hilbert-Schmidt op-
erator, which gives fruitful information for not onlyL but alsoL. Our method is applicable
to functions in a wider class by choosing weights of both its domain and range.

This article is organized as follows. In the next section we introduce the framework
and state the main theorem (Theorem 2.7), and its proof is provided in Section 3. The
proof requires a variant of the well-knownMercer’s theorem on uniform convergence of
the eigenfunction expansion for continuous integral kernels, which we prove in Appendix
for completeness. In Section 4, we discuss the main theorem from the viewpoint of real in-
version of the Laplace transform and its numerical realization on digital computers through
examples.

2 Framework and the main theorem

We first introduce a certain class of reproducing kernel Hilbert spaces, which serve as the
domain of our Laplace transform operator. Throughout this and next sections, all functions
are assumed to beR-valued.

Notation. (1) We follow the convention thatN = {1,2,3, . . .}, i.e. 0 6∈ N.
(2) We writex∧ y := min{x,y} for x,y ∈ R. We also set 0−1 := ∞.

Definition 2.1. Let ρ : (0,∞)→ [0,∞) be Borel measurable and suppose that
∫ T

0 ρ(t)dt < ∞
for anyT ∈ (0,∞). We define

Kρ(x,y) :=
∫ x∧y

0
ρ(t)dt for x,y ∈ [0,∞), (2.1)

HKρ :=
{

f
∣

∣

∣
f : [0,∞) → R, f =

∫ (·)

0
h(t)dt for someh ∈ L2((0,∞),ρ(t)−1dt)

}

. (2.2)

Note that
∫ T

0 |h(t)|dt < ∞ for anyh∈ L2((0,∞),ρ(t)−1dt) and anyT ∈ (0,∞), sinceh =
0 a.e. onρ−1(0) andh/

√ρ,
√ρ ∈ L2((0,T ),dt). Therefore everyh ∈ L2((0,∞),ρ(t)−1dt)

determines a continuous functionf ∈ HKρ by f (x) :=
∫ x

0 h(t)dt, x ∈ [0,∞). Conversely for
each f ∈ HKρ , suchh ∈ L2((0,∞),ρ(t)−1dt) as in (2.2) is unique becauseh = f ′ a.e. on
(0,∞) by Lebesgue’s differentiation theorem.

The following proposition is easily verified.
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Proposition 2.2. Let ρ be the same as in Definition 2.1. Forf ,g ∈ HKρ , we define

〈 f ,g〉HKρ :=
∫ ∞

0
f ′(t)g′(t)

dt
ρ(t)

. (2.3)

ThenHKρ is a Hibert space with inner product〈·, ·〉HKρ . Moreover,Kρ is the reproducing

kernel ofHKρ , that is,Kρ is the uniqueR-valued function on[0,∞)2 possessing the follow-
ing two properties:
(RP1) Kρ(·,x)(=: Kx

ρ) ∈ HKρ for anyx ∈ [0,∞).
(RP2) 〈 f ,Kx

ρ〉HKρ = f (x) for any f ∈ HKρ and anyx ∈ [0,∞).

Next we formulate the Laplace transform operator.

Definition 2.3 (Laplace transform). Let

D[L] :=
⋂

p∈(0,∞)

L1((0,∞),e−ptdt). (2.4)

For f ∈ D[L], we define theLaplace transform L f : (0,∞) → R of f by

L f (p) :=
∫ ∞

0
e−pt f (t)dt, p ∈ (0,∞), (2.5)

and also defineL f : (0,∞) → R by

L f (p) := p ·L f (p), p ∈ (0,∞). (2.6)

L f andL f are, of course, real analytic on(0,∞).

Proposition 2.4. Let ρ : (0,∞)→ [0,∞) be Borel measurable and supposeρ ∈D[L]. Then
L2((0,∞),ρ(t)−1dt)∪HKρ ⊂ D[L]. Moreover,L f = L f ′ for any f ∈ HKρ .

Proof. Let T, p ∈ (0,∞). Since
∫ T

0 ρ(t)dt ≤ ∫ T
0 epT e−ptρ(t)dt ≤ epT ∫ ∞

0 e−ptρ(t)dt < ∞,
Kρ andHKρ are defined respectively by (2.1) and (2.2). Ifh ∈ L2((0,∞),ρ(t)−1dt), then

e−p(·)h ∈ L1((0,∞),dt) by e−p(·)√ρ,h/
√ρ ∈ L2((0,∞),dt) and henceh ∈ D[L].

Let f ∈ HKρ and defineF ∈ HKρ by F(x) :=
∫ x

0 | f ′(t)|dt. Then| f | ≤ F on [0,∞). The
integration by parts formula for absolutely continuous functions yields

p
∫ T

0
e−pt | f (t)|dt ≤ p

∫ T

0
e−ptF(t)dt = −e−pT F(T )+

∫ T

0
e−pt | f ′(t)|dt. (2.7)

Since| f ′| ∈ L2((0,∞),ρ(t)−1dt)⊂D[L], lettingT → ∞ in (2.7) together withF ≥ 0 yields

p
∫ ∞

0
e−pt | f (t)|dt ≤ p

∫ ∞

0
e−ptF(t)dt ≤

∫ ∞

0
e−pt | f ′(t)|dt < ∞.

Thus f ∈ D[L]. By the dominated convergence,f (0) = 0 and integration by parts again,

L f ′(p)−L f (p) = lim
T→∞

∫ T

0
e−pt( f ′(t)− p f (t))dt = lim

T→∞
e−pT f (T ),

which has to be equal to 0 since
∫ ∞

0 e−pt | f (t)|dt < ∞. HenceL f = L f ′. �
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To state the main theorem, we put the following assumption(HS):

ρ : (0,∞)→ [0,∞) is Borel measurable and satisfiesρ ∈D[L] andLρ(1) > 0, µ
is a positive Borel measure on(0,∞) andA(ρ,µ) :=

∫

(0,∞) Lρ(2p)dµ(p) < ∞. (HS)

Remark 2.5. (1) For a[0,∞)-valued Borel measurable functionρ ∈ D[L], the condition
Lρ(1) > 0 fails if and only ifρ = 0 a.e. with respect to the Lebesgue measure.
(2) (HS) implies thatµ(K) < ∞ for any compact subset of(0,∞) sinceLρ(2p) is (0,∞)-
valued, continuous inp ∈ (0,∞) and belongs toL1((0,∞),µ). In particular,µ is σ -finite.

Proposition 2.6. Assume(HS). Then L defines a bounded linear operatorL : HKρ →
L2((0,∞),µ).

Proof. Let f ∈ HKρ andp ∈ (0,∞). Then by Proposition 2.4 and Hölder’s inequality,

|L f (p)|2 = |L f ′(p)|2 =

∣

∣

∣

∣

∫ ∞

0
e−ptρ(t)1/2 f ′(t)

√

ρ(t)
dt

∣

∣

∣

∣

2

≤ Lρ(2p)‖ f‖2
HKρ

. (2.8)

Integrating (2.8) with respect todµ(p) yields‖L f‖L2(µ) ≤
√

A(ρ,µ)‖ f‖HKρ . �

In fact, the same assumption(HS) implies thatL is a Hilbert-Schmidt operator and that
LL∗ admits an integral kernelLρ(p+q), which is the main theorem of this paper.

Theorem 2.7. Assume(HS). ThenL : HKρ → L2((0,∞),µ) is a Hilbert-Schmidt operator

with Hilbert-Schmidt norm
√

A(ρ,µ). Moreover, for anyϕ ∈ L2((0,∞),µ),

LL∗ϕ(p) =
∫

(0,∞)
Lρ(p+q)ϕ(q)dµ(q), p ∈ (0,∞), (2.9)

whereLL∗ϕ is seen as a real analytic function on(0,∞) given by (2.6)with f = L∗ϕ.

Since every Hilbert-Schmidt operator is compact, we have the following corollary.

Corollary 2.8. Assume(HS). ThenL : HKρ → L2((0,∞),µ) is a compact operator.

The next section is devoted to the proof of Theorem 2.7.

3 Proof of Theorem 2.7

We first show the equality (2.9). Letϕ ∈ L2((0,∞),µ) and t ∈ (0,∞). We may assume
ϕ ≥ 0 without loss of generality. By the reproducing property ofKρ (Proposition 2.2),
Proposition 2.4,(Kt

ρ)′ = ρ1(0,t) and Fubini’s theorem,

L∗ϕ(t) = 〈L∗ϕ,Kt
ρ〉HKρ = 〈ϕ,LKt

ρ〉L2(µ) =

∫

(0,∞)
ϕ(q)L[ρ1(0,t)](q)dµ(q)

=
∫

(0,∞)
ϕ(q)

(

∫ t

0
e−qsρ(s)ds

)

dµ(q) =
∫ t

0

(

∫

(0,∞)
e−qsρ(s)ϕ(q)dµ(q)

)

ds.
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Therefore(L∗ϕ)′(t) =
∫

(0,∞) e−qtρ(t)ϕ(q)dµ(q), and then for anyp ∈ (0,∞),

LL∗ϕ(p) = L[(L∗ϕ)′](p) =
∫ ∞

0
e−pt

(

∫

(0,∞)
e−qtρ(t)ϕ(q)dµ(q)

)

dt

=
∫

(0,∞)
ϕ(q)

(

∫ ∞

0
e−(p+q)tρ(t)dt

)

dµ(q) =
∫

(0,∞)
Lρ(p+q)ϕ(q)dµ(q).

Thus (2.9) follows.
We next prove thatLL∗ is a Hilbert-Schmidt operator. Letk(p) :=

√

Lρ(2p). Then
k ∈ L2((0,∞),µ) and‖k‖2

L2(µ)
= A(ρ,µ) by (HS), and for anyp,q ∈ (0,∞),

Lρ(p+q) =

∫ ∞

0
e−(p+q)tρ(t)dt ≤

√

∫ ∞

0
e−2ptρ(t)dt

∫ ∞

0
e−2qtρ(t)dt = k(p)k(q).

Therefore,
∫

(0,∞)2
|Lρ(p+q)|2d(µ ×µ)(p,q) ≤

∫

(0,∞)2
k(p)2k(q)2dµ(p)dµ(q) = ‖k‖4

L2(µ) < ∞,

i.e. LL∗ has an integral kernel belonging toL2((0,∞)2,µ × µ). HenceLL∗ is a Hilbert-
Schmidt operator and in particular it is compact.

SinceLL∗ is compact and self-adjoint, it admits the following spectral decomposition:

LL∗ =
N

∑
n=1

λn〈·,ϕn〉L2(µ)ϕn (convergent in operator norm), (3.1)

whereN ∈N∪{0,∞}, {ϕn}N
n=1 is a complete orthonormal system of(kerLL∗)⊥, {λn}N

n=1 ⊂
(0,∞) is non-increasing, and limn→∞ λn = 0 if N = ∞. For eachn, ϕn = λ−1

n LL∗ϕn in
L2((0,∞),µ). Thereforeϕn is uniquely determined as a continuous function on

supp[µ ] := {p ∈ (0,∞) | µ(V ) > 0 for any open neighborhoodV of p in (0,∞)},

which is the smallest closed subset of(0,∞) whose complement has 0µ-measure. Since
µ((0,∞)\supp[µ ]) = 0 we may regardµ as a positive Borel measure on supp[µ ] andLL∗

as a compact operator onL2(supp[µ ],µ). By a version of so-calledMercer’s theorem (see
Theorem A.1 and its proof below for details), the integral kernelLρ(p+q) of LL∗ admits
the eigenfunction expansion

Lρ(p+q) =
N

∑
n=1

λnϕn(p)ϕn(q), p,q ∈ supp[µ ], (3.2)

where the series is uniformly absolutely convergent on every compact subset of supp[µ ]×
supp[µ ]. Then by (3.2) and the monotone convergence,

A(ρ,µ) =
∫

supp[µ]
(Lρ)(2p)dµ(p) =

N

∑
n=1

λn

∫

supp[µ]
ϕn(p)2dµ(p) =

N

∑
n=1

λn.

On the other hand, let{ψm}M
m=1 (M ∈ N∪{0,∞}) be a complete orthonormal system of

kerLL∗ (note thatL2((0,∞),µ) is separable sinceµ is σ -finite and the Borelσ -field of
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(0,∞) is countably generated). Then{ϕn}N
n=1∪{ψ}M

m=1 is a complete orthonormal system
of L2((0,∞),µ). Hence

‖L‖2
HS = ‖L∗‖2

HS =
N

∑
n=1

‖L∗ϕn‖2
L2(µ) +

M

∑
m=1

‖L∗ψn‖2
L2(µ)

=
N

∑
n=1

〈LL∗ϕn,ϕn〉L2(µ) +
M

∑
m=1

〈LL∗ψn,ψn〉L2(µ) =
N

∑
n=1

λn = A(ρ,µ) < ∞,

where‖ · ‖HS denotes the Hilbert-Schmidt norm. Thus the proof is complete. �Theorem 2.7

4 Examples

Now we present some results of numerical real inversion of the Laplace transform, that
is, numerical computation ofL−1 F for a given functionF . Our numerical schemes rely
heavily on the compactness ofL as well as the explicit expression (2.9) ofLL∗. Let us first
exhibit some examples, under which we have performed real inversion.

Example 1 ([7, 2]) If ρ(t) = te−t andµ is the Lebesgue measured p on (0,∞), then the
assumption(HS) is satisfied withA(ρ,µ) = 1/2. This gives

L∗ϕ(t) =
∫ ∞

0

1
(p+1)2

{

1− e−t(p+1)
(

t(p+1)+1
)

}

ϕ(p)d p

and

LL∗ϕ(p) =
∫ ∞

0

ϕ(q)

(1+ p+q)2 dq.

Example 2 Setρ(t) = (t +1)2d for a fixedd ∈ N anddµ(p) = exp
(

−p− 1
p

)

d p. Then

this couple satisfies(HS) and gives

L∗ϕ(t) =
∫ ∞

0
ϕ(p)

(2d)!
p2d+1

{

e2d(p) e−p − e2d
(

p(1+ t)
)

e−p(1+t)
}

e−
1
p d p

and

LL∗ϕ(p) =
∫ ∞

0
ϕ(q)

(2d)!
(p+q)2d+1 e2d(p+q) e−p− 1

p d p,

where

ek(p) := 1+ p+
p2

2!
+ · · ·+ pk

k!
.

We haveA(ρ,µ) ≈ 0.38(d = 1), 6.39(d = 2), 828.95(d = 3), 458661.07(d = 4). Note
that any polynomial vanishing at 0 with degree less than or equal to d belongs toHKρ in
this case. Therefore this example is applicable to the case where the original function is a
polynomial with degree less than or equal tod.
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Figure 1: Decay of singular values ofL in examples

Example 3 Let ρ(t) = e
√

t anddµ(p) = exp
(

−p− 1
p

)

d p. This couple again satisfies

(HS) with A(ρ,µ) ≈ 0.2463. We have

L∗ϕ(t) =
∫ ∞

0

ϕ(p)

p

[

1− e−t p+
√

t +
e

1
4p

√
p

{

Erf

(

1
2
√

p

)

+Erf

(√
t p− 1

2
√

p

)}

]

e−p− 1
p d p

and

LL∗ϕ(p) =
∫ ∞

0
ϕ(q)

1
p+q

[

1+
1√

p+q
e

1
4(p+q) Erfc

(

− 1
2
√

p+q

)]

e−p− 1
p d p,

where

Erf(x) =
∫ x

0
e−t2

dt, Erfc(x) =
∫ ∞

x
e−t2

dt.

This example is interesting in thatHKρ contains all polynomials vanishing at 0.

For each setting, the singular values{µn}n∈N of L decay as shown in Figure 1 and Table
1. Figure 2 (a) and (b) show the singular functions{gn}n∈N and{ϕn}n∈N for Example 1
respectively. Numerical computation is done by multiple-precision arithmetic with 250
decimal digits precision.

We can consider a real inversion forL f = F ∈ L(HKρ ) through the spectral cut-off (i.e.
the cut-off of the singular value decomposition) of the operatorL, as described in [3]; note
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n Example 1 Example 2 Example 2 Example 3
(d = 2) (d = 3)

1 0.633851 2.20972 25.6401 0.461443
2 0.264109 1.05542 11.5005 0.166329
3 0.135979 0.535993 5.42578 0.0679611
4 0.0777156 0.278896 2.67786 0.0297729
5 0.0474348 0.145443 1.37678 0.0136621

10 0.00676128 0.00582987 0.0699739 0.00041063
100 2.72037×10−9 1.80121×10−23 8.35375×10−22 1.05223×10−23

200 3.2122×10−13 4.9574×10−43 3.79503×10−41 6.54885×10−42

500 4.6898×10−21 1.21975×10−95 1.90012×10−93 9.83059×10−91

Table 1: Singular values ofL in examples
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(a) gn ∈ HKρ
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(b) ϕn ∈ L2((0,∞),d p)

Figure 2: Singular functions of Example 1

that we can only treat cases withf (0) = 0 (recall the definition ofHKρ in (2.2)). Figure 3
shows numerical spectral cut-off inversion forf (t) = t3/3−3t in Example 2 withd = 2
or d = 3. Polynomials of degree 3 are not included inHKρ for Example 2 withd = 2 thus
oscillation appears in the setting ofd = 2 (the solid curve in Figure 3). On the other hand,
HKρ for Example 2 withd = 3 includes polynomials of degree 3 and oscillation is reduced
in the dotted curve in Figure 3. Similarily, Figure 4 shows a spectral cut-off in Example 2
with d = 3 for the polynomialf (t) = t5/120, which is not included inHKρ in this setting.
In the case of Example 3,HKρ includes any polynomials vanishing at 0, thus we can get
inversions shown in Figure 5 for bothf (t) = t3/3−3t and f (t) = t5/120. In the numerical
computation, the truncation numberM of the spectral cut-off is chosen as the maximum
number satisfyingµM > 10−60 (recall thatµn denotes then-th largest singular value ofL).
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Figure 5: Real inversion for polynomials in Example 3

A Appendix — Uniform convergence of the eigenfunction
expansion of integral kernels

In the proof of Theorem 2.7, we have used the fact that the eigenfunction expansion of an
integral kernel is uniformly absolutely convergent on every compact subset of the domain of
the kernel. If the underlying topological space is compact Hausdorff, this assertion is well-
known asMercer’s theorem (see [6,§98] for example). A version of Mercer’s theorem
applicable to non-compact spaces is found in Sun [8]. We could have applied his result to
our case in the proof of Theorem 2.7, but instead we provide a complete proof of such a
version of the theorem in this appendix for easiness of the reading.

Notation. (1) Throughout this section,F denotes any one of the two fieldsC andR and
all functions are assumed to beF-valued. Ifa ∈ F or a is anF-valued function, its complex
conjugate is denoted bya.
(2) Given a topological spaceX , B(X) denotes its Borelσ -field. Also for two measurable
spaces(X ,F ) and(Y,G ), the productσ -field of F andG is denoted byF⊗G .

Theorem A.1. Let X be a topological space which islocally compact (i.e. whose every
point admits a compact neighborhood), and letµ be aσ -finite positive Borel measure on
X satisfyingµ(U) > 0 for any non-empty open subsetU of X . Suppose that a continuous
functionK : X ×X → F possesses the following five properties:
(K1) K(x,y) = K(y,x) for anyx,y ∈ X .
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(K2) K is B(X)⊗B(X)-measurable andK ∈ L2(X ×X ,µ ×µ).
(K3) K(x, ·) ∈ L2(X ,µ) for anyx ∈ X .
(K4) AK f :=

∫

X K(·,y) f (y)dµ(y) defines a continuous function onX for any f ∈ L2(X ,µ).
(K5) 〈AK f , f 〉L2(X ,µ) ≥ 0 for any f ∈ L2(X ,µ).

Noting thatAK is a non-negative self-adjoint Hilbert-Schmidt operator on L2(X ,µ) by
(K1), (K2) and(K5), let

AK =
N

∑
n=1

λn〈·,ϕn〉L2(µ)ϕn (A.1)

be its spectral decomposition, whereN ∈ N∪{0,∞} andλn > 0 for anyn ∈ N with n ≤ N.
Then for anyx,y ∈ X ,

K(x,y) =
N

∑
n=1

λnϕn(x)ϕn(y), (A.2)

where the series is uniformly absolutely convergent on every compact subset ofX ×X .

Remark A.2. Under the assumption of Theorem A.1, we have the following statements.
(1) ‖AK‖2

HS = ‖K‖2
L2(µ×µ)

= ∑N
n=1 λ 2

n , where‖ · ‖HS denotes the Hilbert-Schmidt norm.

(2) Eachϕn ∈ L2(X ,µ) is represented by a continuous function since, forµ-a.e.x ∈ X ,

ϕn(x) = λ−1
n

∫

X
K(x,y)ϕn(y)dµ(y) (A.3)

where the right-hand side is continuous by(K4). Such a representation ofϕn ∈ L2(X ,µ)
by a continuous function is unique since every non-empty open set inX has strictly positive
µ-measure. Therefore we may assume thateach ϕn is continuous and that (A.3)is valid for
any x ∈ X . The convergence of the series in (A.2) is on the basis of thisassumption.

Proof of Theorem A.1. We follow the argument in [6,§98]. Let n ∈ N, n ≤ N and set
Kn(x,y) := ∑n

i=1 λiϕi(x)ϕi(y). An easy calculation yields

‖K −Kn‖2
L2(µ×µ) = ‖K‖2

L2(µ×µ) −
n

∑
i=1

λ 2
i

{

= 0 if N < ∞, n = N,
n→∞−−−→ 0 if N = ∞.

(A.4)

If N < ∞, then (A.4) implies thatK = KN µ×µ-a.e., from which (A.2) immediately follows
sinceK andKN are continuous onX ×X .

Therefore we may now assume thatN = ∞. Then (A.4) means that inL2(X ×X ,µ ×µ)
we haveK(x,y) = ∑∞

i=1 λiϕi(x)ϕi(y) andK(x,y)−Kn(x,y) = ∑∞
i=n+1 λiϕi(x)ϕi(y). Hence

for any f ∈ L2(X ,µ),
∫

X×X
(K(x,y)−Kn(x,y)) f (x) f (y)d(µ ×µ)(x,y)

=
∞

∑
i=n+1

λi

∫

X

∫

X
ϕi(x)ϕi(y) f (x) f (y)dµ(x)dµ(y) =

∞

∑
i=n+1

λi|〈 f ,ϕi〉L2(µ)|2 ≥ 0.
(A.5)

Let x ∈ X and supposeK(x,x) < Kn(x,x). By the continuity ofK andKn, there exists
an open neighborhoodU of x in X such thatK < Kn on U ×U . Then µ(V ) > 0, and
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sinceµ is σ -finite we can chooseV ∈ B(X) so thatV ⊂ U and 0< µ(V ) < ∞. Now
for f := 1V (∈ L2(X ,µ)), the integral in the first line of (A.5) is strictly negative,which
contradicts (A.5). ThusK(x,x) ≥ Kn(x,x) and lettingn → ∞ leads to

∞

∑
i=1

λi|ϕi(x)|2 ≤ K(x,x) < ∞ for anyx ∈ X . (A.6)

Then for any compact subsetW of X , by the Cauchy-Schwarz inequality and (A.6),

sup
y∈W

∣

∣

∣

∣

n

∑
i=m+1

|λiϕi(x)ϕi(y)|
∣

∣

∣

∣

2

≤ sup
y∈W

( n

∑
i=m+1

λi|ϕi(x)|2
n

∑
i=m+1

λi|ϕi(y)|2
)

≤ sup
y∈W

K(y,y)
n

∑
i=m+1

λi|ϕi(x)|2
m,n→∞−−−−→ 0.

Hence for eachx ∈ X the series∑∞
i=1 λiϕi(x)ϕi of continuous functions onX is uniformly

absolutely convergent on every compact subset ofX , and the limit, which we callHx, is
again a continuous function onX sinceX is locally compact.

On the other hand, ifψ ∈ kerAK then
∫

X K(x,y)ψ(y)dµ(y) = 0 for µ-a.e.x ∈ X , and the
same is ture forany x ∈ X since

∫

X K(·,y)ψ(y)dµ(y) is continuous. Now letx ∈ X . Then

〈ϕn,K(x, ·)〉L2(µ) =
∫

X
K(x,y)ϕn(y)dµ(y) = λnϕn(x), n ∈ N, (A.7)

〈ψ,K(x, ·)〉L2(µ) =

∫

X
K(x,y)ψ(y)dµ(y) = 0, ψ ∈ kerAK . (A.8)

K(x, ·) ∈ (kerAK)⊥ by (A.8), and then (A.7) yields the series expansion

K(x, ·) =
∞

∑
i=1

λiϕi(x)ϕi (A.9)

in L2(X ,µ) since{ϕn}n∈N is a complete orthonormal system of(kerAK)⊥. We may choose
a subsequence{nk}k∈N of N so that∑nk

i=1 λiϕi(x)ϕi(y) converges toK(x,y) ask → ∞ for
µ-a.e.y ∈ X , and it converges toHx(y) for any y ∈ X by the previous paragraph. Thus
K(x, ·) = Hx µ-a.e. and hence everywhere onX by the continuity ofK(x, ·) andHx. In other
words, for eachx ∈ X , the expansion (A.9) is valid both inL2(X ,µ) and in the sense of
uniform absolute convergence on every compact subset ofX . In particular,

K(x,x) =
∞

∑
i=1

λi|ϕi(x)|2 for anyx ∈ X , (A.10)

where the convergence is monotonically non-decreasing. Since the limitK(x,x) and each
termλi|ϕi(x)|2 in the series of (A.10) are continuous inx ∈ X , Dini’s theorem implies the
uniform convergence of the expansion (A.10) on every compact subset ofX .

Now letΓ be a compact subset ofX×X and setΓ1 := {x∈X | (x,y)∈Γ for somey∈X}
andΓ2 := {y ∈ X | (x,y) ∈ Γ for somex ∈ X}. ThenΓ1 andΓ2 are compact subsets ofX
andΓ ⊂ Γ1×Γ2. Therefore

sup
(x,y)∈Γ

∣

∣

∣

∣

∞

∑
i=n

|λiϕi(x)ϕi(y)|
∣

∣

∣

∣

2

≤ sup
(x,y)∈Γ

( ∞

∑
i=n

λi|ϕi(x)|2
∞

∑
i=n

λi|ϕi(y)|2
)
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≤ sup
x∈Γ1

∞

∑
i=n

λi|ϕi(x)|2 · sup
y∈Γ2

∞

∑
i=n

λi|ϕi(y)|2 n→∞−−−→ 0.

This completes the proof sinceK(x,y) = ∑∞
i=1 λiϕi(x)ϕi(y) for anyx,y ∈ X by (A.9). �

References

[1] COHEN, M.: Numerical methods for Laplace transform inversion (2007) Springer.

[2] FUJIWARA, H.: Numerical real inversions of the Laplace transform by multiple-
precision arithmetic (in Japanese),RIMS Kokyuroku 1566(2007), 181–195.

[3] FUJIWARA, H., MATSUURA, T., SAITOH , S. and SAWANO , Y.: The real inversion
of the Laplace transform by numerical singular value decomposition, J. Anal. Appl. 6
(2008), 55–68.

[4] K AIPIO J. P. and SOMERSALO E.: Statistical and Computational Inverse Problems
(2005) Springer.

[5] M ATSUURA, T., AL-SHUAIBI , A., FUJIWARA, H. and SAITOH , S.: Numerical real
inversion formulas of the Laplace transform by using a Fredholm integral equation of
the second kind,J. Anal. Appl. 5 (2007), 123–136.

[6] RIESZ, F. and NAGY, B. SZ.:Functional Analysis (1955) Frederick Ungar Publ.

[7] SAITOH , S.: Approximate real inversion formulas of the Laplace transform,Far East
J. Math. Sci. 11 (2003), 53–64.

[8] SUN, H.: Mercer theorem for RKHS on noncompact sets,J. Complexity 21 (2005),
337–349.

Hiroshi Fujiwara
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
fujiwara@acs.i.kyoto-u.ac.jp

Phone: +81-75-753-3383
Fax: +81-75-753-3381

Naotaka Kajino
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
kajino.n@acs.i.kyoto-u.ac.jp

Phone: +81-75-753-3351
Fax: +81-75-753-3381

Yoshihiro Sawano
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
yosihiro@math.kyoto-u.ac.jp

Phone: +81-75-753-4263
Fax: +81-75-753-3711


