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Abstract

We propose a new functional-analytic framework in which the Laplacesfoam
can be regarded as a Hilbert-Schmidt operator, by using a classrofiteying kernel
Hilbert spaces. We can thus treat the Laplace transform as a conpeaiatar, and the
proposed framework and results are applicable to mathematical areticahanalysis
of the Laplace transform. Results of several numerical experimétits ceal inversion
for the Laplace transform are also shown.
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1 Introduction

In the present research, we shall propose a new approachlissnof the Laplace trans-
form

Lf(p):/:e*ptf(t)dt,

that plays a key role in various fields of mathematics, sa@@mdl engineering. In particular,
finding f = L~1F for a given functiorF (p), p > 0 appears in some areas. This is called
the real inversion of the Laplace transform. Elementariéyl@ok up the Laplace transform
table for this purpose, and in applications, numerical cataon of the real inversion is
required. Here we should keep in mind tHat® is not stable in standard function spaces
and consequently numerical methods for the real inversiee hot been established [4, 1].

In [7] Saitoh has considered an operatofrom a certain reproducing kernel Hilbert
space td_?((0,),dp) given by

Lf(p) :=p-Lf(p),
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and Fujiwara [2] has succeeded in humerical computatiomefréal inversion. One of

their key ideas is the compactnessLoin their settings, which yields traditional inverse
analysis such as Tikhonov regularization [5] and singugdue decomposition [3]. Another

remarkable point is that they obtain concrete represemtati the adjoint operator in the

form of an integral transform based on their reproducingn&eHilbert space for the sake
of effective numerical computation [2].

Their numerical methods are simple and remarkable thoughsta failure that it is
applicable to only the case where image functions are sduigrable (with respect to the
Lebesgue measure). For example, their method does not wotkd Laplace transforms
of polynomials, which are not square integrable. To overedne limitation, in this paper
we treat the operatdron weighted Hilbert spaces and prove thét a Hilbert-Schmidt op-
erator, which gives fruitful information for not only but alsol. Our method is applicable
to functions in a wider class by choosing weights of both d@mdin and range.

This article is organized as follows. In the next section meoduce the framework
and state the main theorem (Theorem 2.7), and its proof igid®d in Section 3. The
proof requires a variant of the well-knowvercer’s theorem on uniform convergence of
the eigenfunction expansion for continuous integral Kistnghich we prove in Appendix
for completeness. In Section 4, we discuss the main theax@mmthe viewpoint of real in-
version of the Laplace transform and its numerical redbiradn digital computers through
examples.

2 Framework and the main theorem

We first introduce a certain class of reproducing kernel éfillspaces, which serve as the
domain of our Laplace transform operator. Throughout this@ext sections, all functions
are assumed to Hde-valued.

Notation. (1) We follow the convention thaf = {1,2,3,...},i.e. 0¢Z N.
(2) We writex Ay := min{x,y} for x,y € R. We also set 0! := co.

Definition 2.1. Letp : (0,%) — [0, ) be Borel measurable and suppose y@ap(t)dt <o
foranyT € (0,). We define

XAY
Ko (X,y) ::/0 p(t)dt for x,y € [0, ), (2.2)

Hy, == {f ] f:[0,00) >R, f :/OH h(t)dt for someh ¢ Lz((O,m),p(t)*ldt)}. 2.2)

Note thatfoT |h(t)|dt < oo for anyh € L2((0,), p(t)~1dt) and anyT € (0, ), sinceh =
0 a.e. orp~1(0) andh/\/p,/p € L((0,T),dt). Therefore every € L%((0,),p(t) 1dt)
determines a continuous functidne Hy, by f(x) := [3'h(t)dt, x € [0,). Conversely for
eachf € Hk,, suchh € L2((0,),p(t)~1dt) as in (2.2) is unique because= f’ a.e. on
(0,00) by Lebesgue’s differentiation theorem.

The following proposition is easily verified.
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Proposition 2.2. Let p be the same as in Definition 2.1. Foig € Hk,,, we define

dt
p(t)
ThenH, is a Hibert space with inner produ@t~>HKp. MoreoverK, is the reproducing

kernel ofH,,, that is,K, is the uniqueR-valued function oro, ©)? possessing the follow-
ing two properties:

(RPY Ko (+,x)(=: Kj) € Hk,, for anyx € [0, ).

(RP2 (f,Kp)me, = f(x) foranyf € Hy, and anyx € [0, ).

(1.9, = [ P0G @3)

Next we formulate the Laplace transform operator.

Definition 2.3 (Laplace transform)Let

DL]:= [ LY(0,),e Pdt). (2.9)
p<(0,e0)

For f € D[L], we define the.aplacetransform L f : (0,00) — R of f by

Li(p) = [T id pe (0) (2.5)
and also defin& f : (0,00) — R by
Lf(p):=p-Lf(p), pe(0,). (2.6)

L f andLf are, of course, real analytic @0, ).

Proposition 2.4. Letp : (0,0) — [0,%) be Borel measurable and supppse D[L]. Then
L2((0,e),p(t)~*dt) UHk, C DIL]. MoreoverLf =L f' for any f € H,,.

Proof. Let T, p e (0,%). Sincef, p(t)dt < [y eTe Pp(t)dt < €T [ e Pp(t)dt < oo,
Kp andHg, are defined respectively by (2.1) and (2.2) hig L?((0,), p(t)'dt), then
e Phe LY((0,),dt) by e P0),/p,h/,/p € L?((0,),dt) and hencér € DIL].

Let f € Hk, and define= € Hy, by F(x) := [5|f'(t)|dt. Then|f| <F on|[0,). The
integration by parts formula for absolutely continuousdiimns yields

p/OT e P f(t)|dt < p/OT e PFE(t)dt — —e PTE(T) +/c;T e M)d.  (2.7)

Since| f’| € L?((0,0), p(t)~1dt) c D[L], lettingT — = in (2.7) together withF > 0 yields
p/owe*pt|f(t)|dt < p./o.me*ptF(t)dt < ./:e’pt|f’(t)|dt <.

Thusf € D[L]. By the dominated convergenci0) = 0 and integration by parts again,

£ ()L (p) = Jim, [ &1~ pr©)t = Jim e 1(T),

which has to be equal to 0 sing§ e ™| (t)|dt < . HenceLf =L f'. [ |
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To state the main theorem, we put the following assumpd8):

p: (0,00) — [0, ) is Borel measurable and satisfigs D[L] andL p(1) >0,
is a positive Borel measure @0, ) andA(p, 1) 1= [ig..) L P(2p)dU(p) < . (HS)
Remark 2.5. (1) For a[0,«)-valued Borel measurable functigne D[L], the condition
L p(1) > 0Ofails if and only ifp = 0 a.e. with respect to the Lebesgue measure.

(2) (HS) implies thatu(K) < o for any compact subset 00, ) sincel p(2p) is (0, w)-
valued, continuous ip € (0,») and belongs ta((0,), u). In particular,u is o-finite.

Proposition 2.6. Assume(HS). ThenL defines a bounded linear operator Hg, —
L?((0,00), ).
Proof. Let f € Hk, andp € (0,). Then by Proposition 2.4 anddttler’s inequality,

f(t)
LiEE =R = [Te ow e Do "< Lol (2.8)
Vp(t) A
Integrating (2.8) with respect @y (p) yields [Lf || 2 ) < /A(p, 1) fllH, - |

In fact, the same assumpti¢HRIS) implies thatl is a Hilbert-Schmidt operator and that
LL* admits an integral kerndl p(p—+ q), which is the main theorem of this paper.

Theorem 2.7. Assume(HS). ThenL : Hg, — L2((0,), u) is a Hilbert-Schmidt operator
with Hilbert-Schmidt norm/A(p, 1). Moreover, for anyp < L2((0,), ),

LL"¢(p) = /(0_00) Lp(p+a)¢(a)du(a), pe(0,2), (2.9)

wherelLL* ¢ is seen as a real analytic function @) given by(2.6) with f =L*¢.
Since every Hilbert-Schmidt operator is compact, we hagddhowing corollary.
Corollary 2.8. Assume(HS). ThenL : Hgx, — L2((0,), 1) is a compact operator.

The next section is devoted to the proof of Theorem 2.7.

3 Proof of Theorem 2.7

We first show the equality (2.9). Let € L?((0,),u) andt € (0,00). We may assume
¢ > 0 without loss of generality. By the reproducing propertykof (Proposition 2.2),
Proposition 2.4(K},)’ = p1(q;) and Fubini’s theorem,

L*(t) = (L", Kb, = (&, LK) 12 = 0w )¢( a) LlpLoy(a)du(a)
t

_mﬁw%g%dwu /e%)MW@w

0
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Therefore(L*¢)"(t) = fio.00 e ®p(t)¢(q)du(q), and then for any € (0, ),
LU9(p) = L[ 9))p) = [ e ([ e Tpo(@an(a)et
_ " e (p+a) _
= [y, 0@ ([ e @ pwd)auta = [ Lo(p+ag(@an().
Thus (2.9) follows.

We next prove thatL* is a Hilbert-Schmidt operator. Lé&ip) :

= /£ p(2p). Then
k€ L2((0,00), ) and K%, = A(p, 1) by (HS), and for anyp,q € (0,),

Lp(pra) = [ e P o< ¢ | ezmpat [“e2mpa = kip)kia).

Therefore,

/ | p(p+a)[Pd(p x 1) (p,a) < / k(p)?k(a)?dp(p)dp(a) = [[KI[z ) < o,
(0,00)2 (0,00)2 (1)
i.e. LL* has an integral kernel belonging k3((0,)2, u x u). HencelLL* is a Hilbert-
Schmidt operator and in particular it is compact.

SincelLL* is compact and self-adjoint, it admits the following spakttecomposition:

LL* = z An{", ¥n)L2( @0 (convergent in operator norm), (3.1)
=1

whereN € NU{0,0}, {¢n}N_, is a complete orthonormal system(&erLL*)*, {A,}N
(0,00) is non-increasing, and lig, A, = 0 if N = 0. For eachn, ¢, = A;1LL*¢p in
L2((0,), u). Thereforep, is uniquely determined as a continuous function on

supp] :={p € (0,) | u(V) > 0 for any open neighborhood of pin (0,)},

which is the smallest closed subset(6f«) whose complement has@measure. Since
1 ((0,00) \ supdu]) = 0 we may regarg: as a positive Borel measure on sippandLL*
as a compact operator as(supgdu], u). By a version of so-calleercer’s theorem (see
Theorem A.1 and its proof below for details), the integrane¢L p(p+ q) of LL* admits
the eigenfunction expansion

p(p+q) = Z Andn(p P, q € supr], (3-2)

where the series is uniformly absolutely convergent onyeeempact subset of sufy x
supdu]. Then by (3.2) and the monotone convergence,

A(p, 1 :/ Lp)(2p)du(p A/ (p)2du(p An.
)= J i Zl sup PV AH(P) = 3 An

On the other hand, lefym}M_; (M € NU{0,}) be a complete orthonormal system of
kerLL* (note thatL?((0,),u) is separable sincg is o-finite and the Borel-field of
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(0,00) is countably generated). Thég,}N_, U{@}M , is a complete orthonormal system
of L2((0,00), ). Hence

N M
ILEs =L T = 3 1L nlfagy+ 3 1L whlEzy,
n=
N
= z LL*¢n,¢n L2 + z LL LI.’n,Lpn L2 Z )\n— 007
n=1

where| - ||ns denotes the Hilbert-Schmidt norm. Thus the proof is conepBirneorem 2.7

4 Examples

Now we present some results of numerical real inversion eflLiiplace transform, that
is, numerical computation of “1F for a given functionF. Our numerical schemes rely
heavily on the compactness lofas well as the explicit expression (2.9)ldf*. Let us first
exhibit some examples, under which we have performed reafsion.

Example 1([7, 2]) If p(t) =te ' andu is the Lebesgue measui@ on (0, ), then the
assumptior(HS) is satisfied withA(p, u) = 1/2. This gives

Lo) = [ {1 P p+ D+ Jo(prdp
and
o= [ MY dg
o (I+p+g? "

Example 2 Setp(t) = (t+ 1)% for a fixedd € N anddu(p) = exp(—p— %) dp. Then
this couple satisfiefHS) and gives

/ ¢(p p2d+1 eZd(p) erd(p(1+t))e—p(1+t)}e_%dp

and
_p_1
LL* / ¢ p+q 2d+l eZd(p+q)e P pdpa

where
p? p¢
&(p) —1+I0+*+ +E
We haveA(p, ) ~ 0.38(d = 1), 6.39(d = 2), 82895(d = 3), 45866107 (d = 4). Note
that any polynomial vanishing at 0 with degree less than aaktpd belongs toH,, in
this case. Therefore this example is applicable to the casearthe original function is a
polynomial with degree less than or equatito
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Figure 1: Decay of singular values bfin examples

Example 3 Let p(t) = eV anddu(p) = exp(—p— %) dp. This couple again satisfies
(HS) with A(p, u) ~ 0.2463. We have

t):/ooo ¢(pp) [1 e‘tp+‘/+\/lﬁ{Erf< f>+Erf<ﬁf) }] e‘p‘%dp

and

1 1 1 1
1+ e4lr+a) Erfc (—)}
p+q{ VvP+q 2\/p+q

Lo(p) = [ () e P b dp,

where « "
Erf(x):/ e dt, Erfc(x):/ e dt.
0 X

This example is interesting in thili, contains all polynomials vanishing at 0.

For each setting, the singular valugs, }ney Of L decay as shown in Figure 1 and Table
1. Figure 2 (a) and (b) show the singular functids }nexy and{¢n}nen for Example 1
respectively. Numerical computation is done by multiptegision arithmetic with 250
decimal digits precision.

We can consider a real inversion fiof = F € L(Hk, ) through the spectral cut-off (i.e.
the cut-off of the singular value decomposition) of the @perL, as described in [3]; note
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n Example 1 Example 2 Example 2 Example 3
(d=2) d=3)

1 0633851 220972 256401 0461443

2 0264109 105542 115005 0166329

3 0135979 0535993 52578 00679611

4 0.0777156 78896 267786 00297729

5 0.0474348 0145443 137678 00136621

10 000676128 (0582987 (699739 (000041063

100 272037x10°° 1.80121x 1023 8.35375x 10722 1.05223x 1023
200 32122x 10713 4.9574x 1043  3.79503x 104! 6.54885x 1042
500 46898x 10721 1.21975x 1079 1.90012x 1079 9.83059x 1091

Table 1: Singular values @f in examples

1 ‘ ‘ ‘ ‘ 16
,,,,,,,,,, 14|
o 1.2
1
0.8 i
06 il

e 04 fi}
02 i
0

SS3533
NI T
ARWNP
53333
TTT T
[GENATNT

02 e g [T CTmmmmmee

0.4 1

0.6 . . . .
10 0 2 4 6 8 10

(@) gn € H, (b) ¢n € L2((0,0),dp)

Figure 2: Singular functions of Example 1

that we can only treat cases wifli0) = 0 (recall the definition ofH, in (2.2)). Figure 3
shows numerical spectral cut-off inversion fbft) = t3/3— 3t in Example 2 withd = 2

ord = 3. Polynomials of degree 3 are not includedi, for Example 2 withd = 2 thus
oscillation appears in the setting @f= 2 (the solid curve in Figure 3). On the other hand,
Hk, for Example 2 withd = 3 includes polynomials of degree 3 and oscillation is reduce
in the dotted curve in Figure 3. Similarily, Figure 4 showgadral cut-off in Example 2
with d = 3 for the polynomialf (t) = t>/120, which is not included ik, in this setting.

In the case of Example 3k, includes any polynomials vanishing at 0, thus we can get

inversions shown in Figure 5 for bott{t) =t3/3— 3t and f (t) = t%/120. In the numerical
computation, the truncation numblt of the spectral cut-off is chosen as the maximum
number satisfyingsy > 10790 (recall thaty, denotes the-th largest singular value df).
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Example 2 (d=2) for t3/3 - 3t

Example 2 (d=3) for t*3/3 - 3t ——-

Figure 3: Real inversion for a polynomial of degree 3 in Exi$p

Example 2, d=3 for t"5/120 ———
2000 |

1000 r

-1000 r

-2000 r

Figure 4: Real inversion for a polynomial of degree 5 in Exén
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Example 3 for t"3/3 - 3t

Example 3 for t"5/120 -

Figure 5: Real inversion for polynomials in Example 3

A Appendix — Uniform convergence of the eigenfunction
expansion of integral kernels

In the proof of Theorem 2.7, we have used the fact that then&igetion expansion of an

integral kernel is uniformly absolutely convergent on gxampact subset of the domain of
the kernel. If the underlying topological space is compaatistiorff, this assertion is well-

known asMercer’s theorem (see [6,598] for example). A version of Mercer’s theorem
applicable to non-compact spaces is found in Sun [8]. WedchaVe applied his result to

our case in the proof of Theorem 2.7, but instead we providenaptete proof of such a

version of the theorem in this appendix for easiness of thding.

Notation. (1) Throughout this sectiorf denotes any one of the two fieldsandR and
all functions are assumed to Bevalued. Ifa € F or ais anF-valued function, its complex
conjugate is denoted k3

(2) Given a topological spack, %(X) denotes its Borev-field. Also for two measurable
spacegX,.%) and(Y,¥), the produco-field of # and¥ is denoted by % .

Theorem A.1. Let X be a topological space which liscally compact (i.e. whose every
point admits a compact neighborhood), andudbe ac-finite positive Borel measure on
X satisfyingu(U) > 0 for any non-empty open subdétof X. Suppose that a continuous
functionK : X x X — IF possesses the following five properties:

(K1) K(x,y) = K(y,x) for anyx,y € X.
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2) K is B(X)®%(X)-measurable and € L2(X x X, u x ).

3) K(x,-) € L?(X, ) for anyx € X.

4) A f:= [ K(-,y)f(y)du(y) defines a continuous function dnfor any f € L2(X, ).
5) (A f, f)2(x ) = O forany f € L3(X, ).

oting thatAx is a non-negative self-adjoint Hilbert-Schmidt operatot.d(X, i) by
, (K2) and(K5), let

=
=
=z

N
AK = ZlAn<'7¢n>|_2(u)¢n (Al)

be its spectral decomposition, whéfes NU{0,} andA, > 0 for anyn € N withn <N.
Then for anyx,y € X,

N
X,y) = z An®n(X)dn(y), (A.2)
n=1

where the series is uniformly absolutely convergent onyegempact subset of x X.

Remark A.2. Under the assumption of Theorem A.1, we have the followiatestents.
D) 1A |12 = |\K||L2 () = SN A2, where|| - ||us denotes the Hilbert-Schmidt norm.

(2) Each¢n € L?(X, u) is represented by a continuous function since (iar.e.x € X,
300 = 2™ | KOxY)gn(y)(y) (A3)

where the right-hand side is continuous (#§4). Such a representation ¢f, € L?(X, )
by a continuous function is unique since every non-empty@et inX has strictly positive
y-measure. Therefore we may assume #aalh ¢, is continuous and that (A.3)svalid for
any x € X. The convergence of the series in (A.2) is on the basis ofsgsmption.

Proof of Theorem A.1. We follow the argument in [6§98]. Letn € N, n < N and set
Kn(x,Y) == S 1 Aidi(X)@i(y). An easy calculation yields

n =0 if N<o,n=N
2 ) )
K= KalBaguy = Iz~ S A { o " (A4

If N < o0, then (A.4) implies thaK = Ky ¢ x p-a.e., from which (A.2) immediately follows
sinceK andKy are continuous oiX x X.

Therefore we may now assume tihat= . Then (A.4) means that i?(X x X, u x )
we haveK (x,y) = 53 Aigi(X)8i(y) andK (xy) —Kn(x,Y) = 30,1491 (X)9i(y). Hence
forany f € L2(X, u),

[ (K063) = Knlxy) TOOF(9)d(h ) ()
A i d Ail(F, i) 2 0.
.%1//"’ TR = Y AT 0 >

i=n+1

(A.5)

Let x € X and suppos&(x,X) < Kn(x,x). By the continuity ofK andK, there exists
an open neighborhood of x in X such thatK < K, onU xU. Thenu(V) > 0, and
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since i is o-finite we can choos¥ € #(X) so thatV c U and 0< u(V) < o. Now
for f := 1y (€ L?(X,u)), the integral in the first line of (A.5) is strictly negativehich
contradicts (A.5). Thu&(x,x) > Kn(x,x) and lettingn — o leads to
Z/\i 19 (X)|> <K(x,x) <0 foranyxe X. (A.6)
i=

Then for any compact subsat of X, by the Cauchy-Schwarz inequality and (A.6),

2<sup( S AL S Aoy )

i=mH-1 i=m+1

sup
yeW

S A6

i=m+1

< SUpK (y.y) Z Al (x)[2 B
i=m+1
Hence for eaclx € X the seriesy;> ; Ai¢i(x)@; of continuous functions o is uniformly
absolutely convergent on every compact subseX,aind the limit, which we calHy, is
again a continuous function ofisinceX is locally compact.
On the other hand, iy € kerAk then [y K(x,y)@(y)du(y) =0 for p-a.ex € X, and the
same is ture foany x € X since [y K(-,y)@(y)du(y) is continuous. Now lex € X. Then

(00 KONz = [ KOYOMARD) = Mo, nEN. (A7)
(W, K(x /K XY WY)AU(Y) =0, ¥ € kerAg. (A.8)

K(x,-) € (kerAg)* by (A.8), and then (A.7) yields the series expansion
X)) = _ZI/\id’i (X) i (A.9)

in L2(X, ) since{dn}nen is @ complete orthonormal system(&erAx )+. We may choose
a subsequencfn ken of N so thaty ™, Ai¢i(X)$i(y) converges tK(x,y) ask — o for
p-a.e.y € X, and it converges téiy(y) for anyy € X by the previous paragraph. Thus
K(x,-) = Hy p-a.e. and hence everywhereXiby the continuity oK (x,-) andHy. In other
words, for eachx € X, the expansion (A.9) is valid both i?(X, u) and in the sense of
uniform absolute convergence on every compact subs¢t bf particular,

K(x,x) = ‘i}\i |¢i(x)|?> foranyxe X, (A.10)

where the convergence is monotonically non-decreasingceShe limitK(x,x) and each
term A;|¢;(x)|? in the series of (A.10) are continuousyire X, Dini’s theorem implies the
uniform convergence of the expansion (A.10) on every coinpagset ofX.

Now letl" be a compact subset¥fx X and sef 1 := {xe X | (x,y) €' for somey € X}
andl ;= {y e X | (x,y) € I' for somex € X}. Thenl"; andl"; are compact subsets ¥f
andl" C 1 x I',. Therefore

sup |5 NG0B

(xy)erli=n

2 > 200 2
Ai| @i Ai| @i
%fyﬁ‘fr(izn B0 3 Al ) )
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<sup2/\ i (X supZ)\ i ()2 == 0.

xel1i= yerai=

This completes the proof siné&(x,y) = 321 Ai¢i(X)9i(y) for anyx,y € X by (A.9). N
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