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Abstract: Let Z(¢) be the partition function (the trace of the heat semigroup) of the
canonical Laplacian on a post-critically finite self-similar set (with uniform resistance
scaling factor and good geometric symmetry) or on a generalized Sierpiriski carpet. It
is proved that 2(t) = Y y_, 1%/ Gy (—logt) + O(exp(—ct_ﬁ)) ast | O for
some continuous periodic functions G : R — R and ¢ € (0, 00). Here dy, € (1, 00)
denotes the walk dimension, n = 1 for a post-critically finite self-similar set, n = d for
a d-dimensional generalized Sierpifiski carpet, {d };_, C [0, 00) is strictly decreasing
with d, = 0, Gy is strictly positive and G is either strictly positive or strictly negative
depending on the (Neumann or Dirichlet) boundary condition.

Key words. Self-similar Dirichlet form — Laplacian eigenvalues — Partition function —
Short time asymptotics — Post-critically finite self-similar sets — Generalized Sierpifiski
carpets

Mathematics Subject Classification (2010). Primary 28A80 — 35P20 — 58J50; Sec-
ondary 31C25 — 60J35 — 60K05

1. Introduction

Asymptotic distribution of the eigenvalues is a central topic of analysis of Laplacians
and elliptic differential operators and has been studied by a huge number of people since
Weyl’s initiating work [52,53]. There he proved that for the eigenvalues {kfl] }nen of the
Dirichlet Laplacian —Ay on a (sufficiently regular) bounded non-empty open subset U
of R?, the associated eigenvalue counting function Ny (L) = #{n € N | AV <A
satisfies

Ny () = cg volg(U)A4% + 0(A%?)  as A — oo, (1.1)
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with vol, the Lebesgue measure on R¢ and ¢z := (27)~¢ voly ({x eR? | |x| < 1})
By Karamata’s Tauberian theorem [19, Section XIIL.5, Theorem 2], (1.1) is equivalent
to the asymptotics of the corresponding (spectral) partition function Zy (t) := tre'AU,

o)=Y e = (4n) P volg (U2 4 0(?) ast )0, (12)

neN

which in fact easily follows for any non-empty open subset U of R? with volg (U) < oo
from some estimates of the Dirichlet heat kernel sz (x,y) on U and the expression

Zu(t)=/ pY(x,x)dx, t e (0,00). (1.3)
U

Later in [32] Kac posed his famous question “Can one hear the shape of a drum?”,
meaning whether the knowledge of the eigenvalues {AY },en of —Ay determines the
geometry of the open set U. Although the answer to this original question of Kac is
negative as shown by Urakawa [51] for d > 4 and by Gordon, Webb and Wolpert [25]
for d = 2, his question motivated numerous works on further detailed asymptotics of
Ny (L) — cq volg (U)A4/2 and Zy () — (47)~%/2 vol4 (U )t~?/2. A key observation in
this direction due to [12] is that, if the boundary of U is fractal, then the box-counting
(Minkowski) dimension of the boundary of U, not its Hausdorff dimension, should be
involved in the remainder estimate for the asymptotics (1.1) and (1.2). See e.g. [12,13,
43-47] and references therein for further details in regard to possible refinements of
(1.1) and (1.2) in the settings of Euclidean domains and Riemannian manifolds.

The purpose of this paper is to establish similar detailed asymptotic behavior, beyond
the principal order term, of the partition function of the Laplacian on self-similar sets.
Our main results are stated and proved for two large classes of self-similar sets, known
as post-critically finite self-similar sets (with additional assumption of some geometric
symmetry), which are finitely ramified, i.e. can be made disconnected by removing
a finite subset, and generalized Sierpiriski carpets, which are infinitely ramified, i.e.
not finitely ramified. In this introduction we illustrate our main results by treating the
particular cases of the canonical Laplacians on the Sierpifiski gasket and the Sierpinski
carpet (see Fig. 1 below), which are among the simplest self-similar fractals and have
been intensively studied. Below we will mainly focus on the case of the Sierpifiski
carpet, which is infinitely ramified, hence more difficult, interesting and essential.

We first recall some basics of the canonical Laplacian on the Sierpinski carpet. Let
K¢ denote the Sierpinski carpet and let u be the d¢-dimensional Hausdorff measure on
Ksc with respect to the Euclidean metric p(x, y) := |x — y|, where df := log, 8 is the
Hausdorff dimension of Kgc with respect to p. A natural non-degenerate p-symmetric
diffusion on K¢ was constructed for the first time by Barlow and Bass in [1], and later
Kusuoka and Zhou [42] also obtained one by constructing a self-similar symmetric
regular Dirichlet form on L?(Ksc, ). In fact, it was only very recently that these two
diffusions were proved to be the same, as a consequence of the uniqueness result by
Barlow, Bass, Kumagai and Teplyaev [6]. By the results of [6], together with slight
additional arguments in [31, Proof of Proposition 5.1] and [36, Proposition 5.9], now it
is known that there exists a unique non-zero conservative symmetric regular Dirichlet
form (£, F) on L?(Ksc, i) that is self-similar and invariant under the isometries of
the enclosing unit square. Thus the canonical Laplacian on Kgc is obtained as the non-
positive self-adjoint operator on L2(Ksc, i) associated with (£, F). Furthermore by [4,
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Fig. 1. Sierpinski gasket and Sierpinski carpet

6], the associated heat semigroup has a continuous heat kernel p;(x, y) which satisfies
the following sub-Gaussian estimate

i1 p(x. Y™\ 75 c12 p(x. Y™\ 75
[df/dw GXp(—( ciat ) =< Pt(X, J’) = [df/dw exXp _( C1at )
(1.4)

for any (¢, x, y) € (0, 1] x Ksc x Kgc for some ¢y.1,¢1.2 € (0, 00) and certain specific
dy € (2,00). (1.4) is called sub-Gaussian since the exponent d, the so-called walk
dimension of (Ksc, 1, £, F), is strictly greater than 2, which is known to hold in quite
some generality for Dirichlet forms on fractals. Unfortunately, the exact value of dy
is unknown for the Sierpinski carpet, whereas the canonical self-similar Dirichlet form
on the Sierpiniski gasket, constructed essentially by [24,41,8], satisfies (1.4) with d, =
log, 5 by the famous result of Barlow and Perkins [8, Theorem 1.5].

Recall that the usual boundary VOSC of the unit square enclosing K¢ is considered as
the boundary of Ksc in the sense that any two distinct copies of Kgc can intersect only
on the copies of V€. Now let Z3° be the partition function of the canonical Laplacian
on Kgc, which satisfies the Neumann boundary condition on VOSC in a certain natural
sense, and let ZIS)C be the partition function of the Laplacian with Dirichlet boundary
condition on VOSC. Then our main result for generalized Sierpinski carpets (Theorem
4.10) implies the following asymptotics of Z3°, B € {N, D}.

Theorem 1.1. Set d; := log; 8, let d,, € (2,00) be as in (1.4) for Ksc and set v := 34w,
Then there exist c1.3 € (0, 00) and continuous log t-periodic functions G : R — R,
B € {N,D}, k € {0, 1,2}, such that for any B € {N,D}, as t | 0,

25€(t) = 174/ WGy o(—logt) + 17V Gy 1 (—logt) + Gpa(—logr)
__1
+0(exp(—c1,3t dw—l)). (1.5)

Moreover, Gn,o, Gn,1 are (0, 00)-valued, Gn,o = Gp,o and %GNJ = —%GDJ.

Note that the factor v appearing in the period of Gk is the scaling factor for the
time variable of the heat kernels; see Lemma 3.12, Proposition 5.3 and its proof below.
The principal order term in (1.5) was already obtained by Hambly [29, Theorem
1.1] for the present case and by the author in a more general setting in [33, Theorem
5.2], on the basis of the upper inequality in (1.4) and an argument on the associated
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diffusion. The new results here are the existence of the other only finitely many periodic
functions and the exponentially decaying remainder estimate, and the method of the
proof is essentially a refinement of Hambly’s argument in [29]. Roughly speaking, the
periodic functions Ggk, k € {1,2}, derive from the self-similarity of each “piece” of
the boundary V.SC€. and the order estimates t=9/dw and =/ 4w for these terms result from
their Euclidean box-counting (or equivalently, Hausdorff) dimensions. More precisely,
the self-similarity of the four edges constituting VOSC gives rise to Gp,; of the second
term in (1.5), while another term Gg »(—log?) of constant order arises on account of
the facts that the four edges intersect with each other at vertices of the unit square and
that the three copies of each edge of one third length also intersect with each other. The
same kind of asymptotic expansion will be proved for any d-dimensional generalized
Sierpiriski carpet, where d + 1 log-periodic terms appear with the order estimate of
the k-th term given by the Euclidean box-counting dimension of the intersection of the
fractal with the (d — k + 1)-dimensional faces of the enclosing unit hypercube.

We will prove the same result also for the canonical self-similar Dirichlet form on
post-critically finite self-similar sets with good geometric symmetry, where the bound-
ary set is finite and thereby the asymptotic expansion of the partition function involves
only two log-periodic terms. Taking advantage of the simplicity of the situation, we
give a detailed proof first for this case as a good illustration of the ideas and methods,
since the complete proof for generalized Sierpinski carpets is quite involved, though
still based on exactly the same ideas and methods. In this case, we can also handle
the Laplacian with Dirichlet boundary condition on self-similar subsets, and then three
log-periodic terms appear in the asymptotic expansion with the second term strictly
negative, similarly to (1.5). For example, this result applies to the canonical Laplacian
on the Sierpifiski gasket with Dirichlet boundary condition on the line segment at the
bottom, whose eigenvalue counting function has been recently studied in detail by [48].

Remark 1.2. Here are a few remarks on the limitations of the methods of this paper.
(1) It is very difficult to obtain any further information on the periodic functions in
the asymptotic expansions. It is known that non-constant periodic functions appear in
the principal order term for the canonical Laplacian on post-critically finite self-similar
fractals with good geometric symmetry (see Remark 3.10 below), but this is the only
known case and no other periodic functions in this paper are known to be non-constant.
(2) Unlike the case of post-critically finite self-similar sets studied e.g. in [40,7] and
[37, Chapter 4], only very little is known for the corresponding eigenvalue counting
functions N]Sgc of the canonical Laplacian on the Sierpifiski carpet, and in fact even a
log-periodic principal order term for the asymptotics of N]SSC is not known.

(3) Unfortunately, we have to assume the scaling factors for the self-similar measure
and the self-similar Dirichlet form to be uniform among all the cells (see Definition
3.4 and (SSDF2) below), for the sake of the validity of a refined version of the renewal
theorem (Theorem 2.13). In fact, Fleckinger, Levitin and Vassiliev [21,22] and van den
Berg [9,10] obtained short time asymptotics very similar to Theorem 1.1 of the integral
of the solution to the heat equation on certain von Koch snowflake domains in R? with
initial value 0 and boundary value 1. Since van den Berg [9,10] allowed the domains
to have different scaling factors for different pieces of the Koch curves constituting the
boundary, his method could enable us to relax our assumption of the uniformity of the
scaling factors, which we leave to future studies.

We close the introduction by mentioning a possible physical application of the main
results of this paper. Recently there have been attempts to study mathematical physics
on fractals by analyzing the poles of the spectral zeta function of the Laplacian on the
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basis of detailed information on the eigenvalues and the heat kernel. Obviously, the
first step of any such analysis should be to show that the spectral zeta function admits a
meromorphic extension to the whole complex plane C. In fact, this step can be achieved
as an application of our main results by using the expression of the spectral zeta function
as the Mellin transform of the partition function; see [14, 18,50] and references therein
for details, and see [44,45] for basic theory of spectral zeta functions.

The rest of this paper is organized as follows. In Section 2, we collect preliminary
facts and lemmas for the proofs of our main results. The key fact is Proposition 2.7,
which along with Lemma 2.12 makes it possible to extract lower order terms by formal
calculations of the heat kernels with Dirichlet boundary conditions on different subsets.
In Section 3, after recalling basics of self-similar Dirichlet forms on post-critically finite
self-similar sets, we state and prove the result (Theorem 3.9) for the partition function
of the Laplacian on post-critically finite self-similar sets with Neumann and Dirichlet
boundary conditions on the canonical boundary V. We also give a natural extension
(Theorem 3.19) to the case with Dirichlet boundary condition on general self-similar
subsets at the end of Section 3 without proof. In Section 4, we first collect important
facts concerning generalized Sierpifiski carpets and their canonical self-similar Dirich-
let form and then state the main result for them (Theorem 4.10). In fact, Theorem 4.10
is essentially a special case of Theorem 4.14 on more detailed information on the lower
order terms. Finally, Section 5 is devoted to the proof of Theorems 4.10 and 4.14.

Notation. In this paper, we adopt the following notation and conventions.
(HN={1,2,3,...},ie.0 ¢ N.

(2) The cardinality (the number of elements) of a set A is denoted by #A.

(3) We set sup @ := max @ := 0, inf@ := min @ := oo and set a vV b := max{a, b} and
a A'b :=min{a, b} for a,b € [—o00, o0]. All functions in this paper are assumed to be
[—0o0, co]-valued.

(4) For d € N, R? is always equipped with the Euclidean norm | - |.

(5) Let E be a topological space. The Borel o-field of E is denoted by B(E). We set
C(E):={u|u: E — R, uiscontinuous} and suppg[u] := {x € E | u(x) # 0} for
u € C(E).For A C E, intg A denotes its interior in E.

(6) Let Ebeaset,p: Ex E — [0,00) and x € E. We set p(x, A) := infyeq p(x, y)
for A C E and B, (x,p) :={y € E | p(x,y) <r}forr € (0, 00).

2. Preliminaries

In this section, we prepare preliminary facts concerning the heat kernel and the eigen-
values of the Laplacian in a general framework. At the end of this section, we also state
and prove a version of the renewal theorem which involves log-periodic reminder terms.

Throughout this section, we fix a compact metrizable topological space K, a finite
Borel measure p on K satisfying w(U) > 0 for any non-empty open subset U of K,
and a symmetric regular Dirichlet form (£, F) on L?(K, 1); see [23, Section 1.1] for
basic notions concerning symmetric regular Dirichlet forms.

Definition 2.1. Let U be a non-empty open subset of K. We define uu|y := u|gw),

Fu:={ue FNCK)|suppgu] CU} and EY :=E|ryxry,  (2.1)

where the closure is taken in the Hilbert space F with inner product & (u,v) =
E(u,v) + [ uvdp. (EY, Fy) is called the part of the Dirichlet form (£, F) on U.
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Since u = 0 p-a.e. on K\ U for any u € Fy, we can regard Fy as a linear subspace
of L?(U, j|y) in the natural manner. Under this identification, (Y, Fy) is a regular
Dirichlet form on L2(U, it|y) by [23, Theorem 1.4.2-(v) and Lemma 1.4.2-(ii)].

Definition 2.2 (CHK). We say that (K, u, &, F) satisfies (CHK), or simply (CHK)
holds, if and only if the Markovian semigroup {7} }se(0.00) On L?(K, 1) associated with
(€, F) admits a continuous integral kernel p,i.e. a continuous function p = p,(x, y) :
(0,00) x K x K — R such that for any u € L?(K, i) and any ¢ € (0, 00),

T = [ piComdnG)  acon k. 22)

Clearly, such p, if it exists, is unique and satisfies p;(x,y) = p;(y,x) > 0 for any
(t,x,y) € (0,00) x K x K. p is called the (continuous) heat kernel of (K, jt, E, F).

The next lemma introduces a Hunt process X associated with (K, i, £, F) and its
part X U on U, which will be used in some of the proofs in this section; see [23, Section
A.2] and [15, Section A.1] for details on Hunt processes. For each non-empty open
subset U of K, let Uy := U U {0y } denote its one-point compactification.

Lemma 2.3. Suppose that (CHK) holds and that

liin/ pr(x, y)du(y) =1  forany open subset U of K and any x € U.  (2.3)
tl0 Ju

(1) There exists a Hunt process X = (QM { Xt} eef0,00] {Px}xeK;,) on K such that
P.[X; € A] = jA pr(x, y)du(y) for any (¢, x) € (0,00) x K and any A € B(K).

(2) For A € B(Kj), set 64(w) := inf{t € [0,0) | X;(w) € A}, € Q, and t4 =
Ok.\4- Let U be a non-empty open subset of K. Fort € [0,00] and w € R, define
XtU(a)) = Xy (w) ift < y(w) andXtU(a)) =0y ift > ty(w). Also set Py, =Py,
Then XY = (Q,M, {XtU}te[O,oo]a {Px}xEUa) is a Hunt process on U. Moreover, the
Markovian semigroup {TtU}te(O,oo) on L2(U, u|v) associated with (Y, Fy) admits
a unique continuous integral kernel pY = th(x,y) :(0,00) x U xU — R, and
P, [XV € A] = fA pY (x,y)du(y) for any (t,x) € (0,00) x U and any A € B(U).

Proof. Set P;(x, A) := [, p:(x,y)du(y) for (t,x) € (0,00) x K and A € B(K), so
that {P;};e(0,00) is a sub-Markovian transition function on (K, B(K)). Then P,u :=
fK u(y)P;(-.dy) € C(K) for any u € L'(K, i) by the compactness of K and (CHK),
and (2.3) means that for any u € C(K), lim, o P;u(x) = u(x) for each x € K, where
the convergence is in fact uniform in x € K by [11, Chapter I, Exercise 9.13]. Now the
assertions follow in exactly the same way as [33, Proof of Lemma 7.11]. O

Throughout the rest of this section, we assume that (CHK) and (2.3) hold.

Definition 2.4. Let U be a non-empty open subset of K. The integral kernel pY of
{TtU}te(O,oo) as in Lemma 2.3-(2) is called the Dirichlet heat kernel on U. We extend

pY 10 (0,00) x K x K by setting pY|(0,00)x(k x K\UxU) := 0.
We also set p?(x, y) := 0 forany (¢, x,y) € (0,00) x K x K.

Clearly 0 < pY(x,y) = pY(y,x) < pi(x, ) forany (t,x,y) € (0,00) x K x K.
Note that for ¢ € (0, 00), p,U : K x K — [0, 00) may not be continuous on K x K.
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Lemma 2.5. Let U be a non-empty open subset of K. If U is arcwise connected, then
Y(x,y) > 0forany (t,x,y) € (0,00) x U x U.

Proof. This follows from Lemma 2.3-(2), pY < p and [33, Proposition A.3-(2)]. [0

Recall that (€, F) is called local if and only if £(u, v) = 0 forany u,v € FNC(K)
with suppg [u] Nsuppg[v] = @; see [23, Section 1.1 and Theorem 3.1.2]. The following
lemma can be easily verified by using [23, Theorem 1.4.2-(ii) and Exercise 1.4.1].

Lemma 2.6. Assume that (5 F)is local Let U,V be open subsets of K withU NV =
@. Then pYVV (x,y) = pY (x,y) + pY (x,y) forany (t,x,y) € (0,00) x K x K.

The following proposition plays essential roles in the proofs of our main theorems.
For A C K, the closure of 4 in K is denoted by A.

Proposition 2.7. Let U be an open subset of K, let Jo be a finite set and let U; be an
open subset of K for each j € Jy. Set Uy := ﬂiel Uj for J C Jo (Uy := K) and
define '

pY Ly Usien) = D (=D* p/ "% (x.y) (2.4)

JCJo

for (t,x,y) € (0,00) x K x K. Then we have the following statements.
(1) 0 < p? (x, y{Uj}jen,) < p/ (x.y) forany (t,x,y) € (0,00) x K x K.
(2) Assume that (£, F) is local. Let k € Jy. Then for any (t, x,y) € (0,00) x Ug x Uy,

Pl y{Uljes) < sup sup ps(x,2)+ sup  sup ps(z,y). (25)
s€t/2,t] zeU \Uy s€[t/2,t] zeU \Ug

Proof. Let(t,x,y) € (0,00)xKxK.Ifx € Uory ¢ U then pY (x, y|{U;};es,) = 0.

Suppose x,y € U and set Jy , :={j € Jo | x,y € U;}. Then pY (x, y|{U;}jes,) =

Pl (x, y[{U;}jes. ) since p? "% (x,y) = 0 for J C Jo with J ¢ Jy,y, and for

each J C Jxy, x,y € U N Uy and hence p,UnU’ (x,-) is continuous at y. Therefore

choosing a metric p on K compatible with the original topology of K, following the
notation in Lemma 2.3 and noting tyny, = ty Aminjey w; for J C Jx,y, we obtain

Y (x, y|{U,-},-eJo> = pl (x, y{Uj}jess )
e / PP (. 2)du(z)
B (y,0)

=00 (B, (y ) Z

JCJx,

—1— ~D)*"P.[X, € Bs(v,p), t <ty Amin; 4
i o o) Z( ) PelX; € Bo(y.p). 1 < Ty Aminjes Tu;]

JCUx.
P.[X; € Bs(ywo)v t <ty|—Px[X: € Bs(y,p), t <ty Amaxjey, , ;]

m
510 w(Bs(y, p))
P.[X; € Bs(y, p), maxjey, , tw; <1 < 144

= lim (2.6)
510 w(Bs(y,p))
U
P.[X; € B x,2)du(z
Sllm X[ t € s(y’P),t <TU] = lim ,/‘Bs(y,p)pt ( ) M( ) :pl{](x,y),
540 w(Bs(y,p)) 540 w(Bs(y, p))

where we used the inclusion-exclusion formula for the equality in the fourth line. The
expression (2.6) also shows that p,U (x,y{U;}jer,) = 0, proving (1).
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For (2), let k € Jy. Since Py ( Ux, y|{Uj}jeJO) =0ifx g U ory ¢ U, we may
assume that x,y € U.If x € Uy \ Uy or y € Uy \ Ug, then D; U(x, YHUj}jesy) <

(x, y) < p:(x,y), which is obviously bounded by the right-hand side of (2.5). Now
suppose x,y € Ug. Then k € J , and hence by (2.6),

PX[XZ € BS(yv p)’ TU = l]
w(Bs(y, p))

which is bounded by the right-hand side of (2.5) by [27, Theorem 5.1] (or [26, Theorem
10.4]) together with the continuity of p, that of pUs and the compactness of Uy. 0

U,
= pi(x,y) = p F(x.y),

pY (x.y{Uj}jes,) < lim
530

Definition 2.8. For a non-empty open subset U of K, the non-positive self-adjoint
operator on L2(U, u|y) associated with (€Y, Fy) (the generator of {TtU}te(O,oo); see
[23, Section 1.3]) is denoted by Ay, and its domain is written as D[Ay].

Recall that D[Ay] C Fy and that foru € Fy and f € L2(U, u|y),

u € D[Ay]and —Ayu = f ifand only if E(u,v) = / fvdu forany v € Fy.
U

2.7
Our main interest is in short time asymptotic behavior of the partition function,
which is defined as follows.

Definition 2.9. Let U be a non-empty open subset of K. Noting that Ay has discrete
spectrum and that tr TV < oo for t € (0, 00) by [16, Theorem 2.1.4], let {AY}"Y be
the non-decreasing enumeration of all the eigenvalues of —Ay, where each elgenvalue
is repeated according to its multiplicity and ny := dim L?(U, u|y) € N U {oo}. The
eigenvalue counting function Ny and the partition function Zy on U (or of the Dirichlet
space (U, |y, EY, Fy)) are defined respectively by, for A € R and ¢ € (0, 00),

NU()L) =#neN|n<ny,AY <A}, (2.8)
2u@t) =Tl = Ze—* ‘=[ _“dNU()L)szp,U(x,x)du(x). (2.9)

We also set Ng(4) := 0 for A € R and Zy(¢) := 0 for ¢ € (0, 00).

In the situation of Definition 2.9, Ny (1) < oo for any A € R since lim, oo AY =
oo whenny = oo, and Zy is (0, co)-valued and continuous. Moreover, we have the fol-
lowing basic facts for {A,[l] 1nZ, and Zy . Recall that by [17, Theorems 4.5.1 and 4.5.3],

the smallest eigenvalue AV of —Ay is given by AV = inf,e 7, \(0y €, u)/ Ju udu,
which easily implies that )L%’ is non-increasing in U and that for u € Fy,

u € D[Ay]and —Ayu = AVu ifand only if E(u,u) < A?/ w?dp.  (2.10)
U

Lemma 2.10. Let U be an arcwise connected non-empty open subset of K and let gol
be an eigenfunction of — Ay with eigenvalue )LU Then ¢y Uy e C(U), (pf] |U is either
(0, 00)-valued or (—o0, 0)-valued, and {u € D[AU] | —Ayu = AVu) = Re?.

. U
Proof. Since e 1 o = TVl = [, ri Yeonel duy) p-ae., of v € C(U)
by 0 < pf] < p1 and the continuity of pj U|yxu. By virtue of Lemma 2.5, o Ul is
(0, 00)-valued if <pf] > 0 p-a.e., and the claims follow from [49, Theorem XII1.44]. [
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Lemma 2.11. Let U be a non-empty open subset of K. Then
M < 2u(0) < 2uer e 1 e[l 00). @.11)

Proof. Let {A,?}Z‘Z’I be as in Definition 2.9. Then for ¢t € [1,00), 1 < ethU(Z) =
oY, O =21 < Y, M M = Z,U(l)e)‘? since AY — AV <0 foreachn. O

At the last of this section, we present two fundamental tools for the proofs of our
main results. The first lemma is used to relate differences of heat kernels with different
boundary conditions to alternating sums of the form (2.4). The second tool is a version
of the renewal theorem which yields log-periodic asymptotic behavior of functions.

Lemma 2.12. Let Jy be a finite set and let ay € R for each J C Jy. Then

ap =y Y (=D"a 4. 2.12)

JcJyACT

Proof. For each J C Jy, the coefficient of the term @y in the summation in (2.12) is
Y ac s (=D*YD whichis 1 for J = Jo and 0 for J & Jo, proving the lemma. [

Theorem 2.13. Let g € R, y € (1,00) and n € N. For each k € {1,...,n}, let
ar € (—00,p) and let G : R — R be bounded and log y-periodic. Assume that
Z:(0,00) > Rand R : (0,1] — [0, 00) satisfy

2(1) — y*2yt) = Y 7% Gr(=logt)| < R(t) <ct™™F e (0.1] (2.13)

k=1

and |Z(t)] < ct=*7¢ forany t € [1,00) for some c,e € (0,00). Then there exists a
unique log y-periodic function Gy : R — R such that for any t € (0,y],

" 7% Gy (—logt
2(1)—1"Go(~log )+ Y T Gy(Zlogt)

k=1

<> Ry Rergy (1). (2.14)

yroO—%k — 1 ya()j

jeN

Moreover, G is bounded, and if Z is continuous then so is Gy.

Proof. We follow [37, Proofs of Theorems 4.1.5 and B.4.3]. Define f, g : R — R by
f(s):=e%Z(e™) and  g(s) := e % (L(e™) — y*°Z(ye™)),

sothat f = f(-—logy) + g. Then the assumptions easily imply that the series Go :=
> i€z g(-—j log y) is uniformly absolutely convergent on any compact subset of R and
defines a bounded log y-periodic function, which is continuous if Z is continuous. Since
lims—»_oo f(s) = O by the latter assumption, a repeated use of f = f(-—1logy) + g
shows f = 3 cnugoy 8 — jlogy). Thus Go — f = 3 g(- + j logy), and then
(2.14) easily follows by using the log y-periodicity of Gy for k € {1,...,n} to sum up
(2.13), or more precisely, |g(s)—> j_; e~ @o—e)s Gy (s)| < e *0R(e79), s € [0, 00).

Finally, the uniqueness of G is immediate from its log y-periodicity and the bound
Rag.y () < c(ye—1)"1t*0%¢ ¢ € (0, y] implied by the upper inequality of (2.13). O
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3. Post-critically finite self-similar sets

In this section, we first introduce our framework of a post-critically finite self-similar
set equipped with a self-similar Dirichlet form, and then state and prove our main result
(Theorem 3.9) on asymptotic expansion of the partition function in this framework. We
also present a natural extension (Theorem 3.19) to the partition function with Dirichlet
boundary condition on general self-similar subsets at the end of this section without
proof. The case of generalized Sierpiniski carpets is studied later in Sections 4 and 5.

Let us start with standard notions concerning self-similar sets. We refer to [37, Chap-
ter 1] and [38, Section 1.2] for details. Throughout this section, we fix a compact metriz-
able topological space K with #K > 2, a non-empty finite set S and a continuous
injective map F; : K — K foreachi € S. Weset L := (K, S, {F;}ies).

Definition 3.1. (1) Let W, := {0}, where @ is an element called the empty word,
let Wy, == 8™ = {wy...wy, | wj € Sfori € {l,...,m}} for m € N and let
Wi := Umenugoy Wm- For w € Wi, the unique m € N U {0} satisfying w € Wy, is
denoted by |w| and called the length of w.

) Weset ¥ := SN = {wjwows ... | w; € S fori € N}, which is always equipped
with the product topology, and define the shift map o : ¥ — X by o (w1003 ...) =
Wrw3wy ....Fori € § wedefine o; : ¥ - X by gj(w1003...) := iwwws .. ..
For w = wjwws ... € ¥ and m € N U {0}, we write [w];, := w1 ...0n € Wy,
B)Forw = wy...wy, € Wy, weset Fyy, := Fy, 0o---0 Fy, (Fp :=1idg), Ky =
Fy(K), 0y 1= 0y, 0+ 00y, (0g :=ids) and Xy, := 0y (X).

Definition 3.2. L is called a self-similar structure if and only if there exists a continuous
surjective map 7 : ¥ — K such that F; o r = m o 0; for any i € S. Note that such a
map 7, if it exists, is unique and satisfies {7 ()} = (), en K[w],, for any w € X.

In what follows we always assume that £ is a self-similar structure, so that #S > 2.

Definition 3.3. (1) We define the critical set C and the post-critical set P of L by
C:= n_l(Ui’jes’i# KiNK;) and P :=J,en0" (). 3.1

L is called post-critically finite, or p.-c. f. for short, if and only if P is a finite set.
(2) We set Vo := 1(P), Vin := Uyew,, Fw (Vo) form € Nand Vi := ey Vin-

(3) Weset K := K\ Vpand Kl := F,,(KT) for w € W,.

Vo should be considered as the “boundary” of the self-similar set K; recall that
Ky N Ky, = Fyu(Vo) N Fy(Vp) for any w,v € W, with ¥, N X, = @ by [37,
Proposition 1.3.5-(2)]. According to [37, Lemma 1.3.11], V;;,—1 C V}, forany m € N,
and if Vy # @ then V, is dense in K. Furthermore by [33, Lemma 2.11], K,f) is open in
K and Kul, c K! for any w € W.

Note that by [37, Theorem 1.6.2], K is connected if and only if any i, j € S admit
n € Nand {ix};_, C S withip =i and i, = j such that K;, _, N K;, # @ for any
k €{1,...,n}, and if K is connected then it is arcwise connected.

Definition 3.4. A Borel probability measure p on K is called a self-similar measure on
L with uniform weight if and only if u = % Y ies Mo Fi_l (as Borel measures on K).

Such a measure u always exists. Indeed, if v is the Bernoulli measure on ¥ with
weight (#I_S)i cso thenvo w1 is a self-similar measure on £ with uniform weight; see

[37, Section 1.4] for details. Moreover by [38, Theorem 1.2.7 and its proof], if K # Vo
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and p is a self-similar measure on £ with uniform weight, then u(K,) = m and

w(Fy (Vo)) = 0 for any w € Wi. In particular, if K # Vjp, then a self-similar measure
w on £ with uniform weight is unique and satisfies u = (#5)/%!110 F,, for any w € Wi.

In the rest of this section, we assume that £ = (K, S, {F;}ies) is a post-critically
finite self-similar structure with K connected and #K > 2. In particular, 2 < #V < 00
and Vi is countably infinite and dense in K, so that K # Vy = V}. Before stating the
main theorem of this section, we briefly recall the construction and basic properties of
a self-similar Dirichlet form on such £; see [37, Chapter 3] for details.

Let D = (Dxy)x,yev, be areal symmetric matrix of size #V (which we also regard
as a linear operator on R"0) such that

(D1) {u € RY | Du = 0} = Rly,,
(D2) Dy, > Oforany x,y € Vo with x # y.

We define €@ (u, v) := — > xyevy Dayu()v(x) foru,v e RY0, so that (@, RY0) is
a Dirichlet form on L?(Vp, #) with # denoting the counting measure on Vj. Furthermore
let r € (0, 00) and define

1
EMuv)i=— 3 EOQWo Fylyy.voFyly). uveR™ (32
r

weW,,

for each m € N. We assume that (D, r) is a harmonic structure on L, i.e. (D, r) satisfies
5(0)(u,u) = inf{(‘!(l)(v, v)|ve R"1, vly, =u} foranyu e R0,

Then £ (u,u) = minveRyn,Ule —u EM (v, v) forany m,n € NU {0} withm < n
and any u € R"” by [37, Proposition 3.1.3], and r € (0, 1) by [37, Proposition 3.1.8].
In particular, {€ (m)(uh/m , U|V,,) tmenu{oy is non-decreasing and hence has the limit in
[0, oo] for any u € C(K), and we define

Fi={u e C(K) | limpy oo E™ (uly,,. uly, ) < oo},

3.3)
E,v) := limpy 0o E™ (uly,,. vly,) €R,  u,veF.

(€, F) is easily seen to satisfy the following two self-similarity properties (note that
F N C(K) = F in the present setting):

(SSDF1) FNC(K)={ue C(K)|uoF; € Fforanyi € S}.
(SSDF2) For any u € F N C(K),

Eu,u) = 1zg(uoﬂ,uoﬂ). (3.4)
r ieS
By [37, Theorem 3.3.4], (£, F) is a resistance form on K whose resistance metric R :
K x K — [0, 00) is compatible with the original topology of K, and then [39, Corollary
6.4 and Theorem 9.4] imply that (£, F) is a non-zero symmetric regular Dirichlet form
on L2(K, u), where i denotes the self-similar measure on £ with uniform weight. (See
[37, Definition 2.3.1] or [39, Definition 3.1] for the definition of resistance forms and
their resistance metrics.) (£, F) is local by [33, Lemma 3.4], and it easily follows from
[39, (3.1)] and [23, Theorem 1.4.2-(iv)] that Fy = {u € F | u|g\y = 0} for any non-
empty open subset U of K. Moreover, (CHK) and (2.3) hold by [39, Theorem 10.4] (or
by [37, Section 5.1 and Proposition 5.2.6-(2)]).
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The following condition (UHK),,, is required for the main theorem of this section.
We set v := #S/r and d; := 2log, #S and call them the time scaling factor and the
spectral dimension of (L, u,E, F,r), respectively. T naturally appears as the scaling
factor for the time variable of the heat kernels; see Lemma 3.12 below.

Definition 3.5. Let dy, € (1, 00). We say that (K, i, £, F) satisfies (UHK) 4, , or simply
(UHK)g,, holds, if and only if there exist a metric p on K compatible with the original
topology of K and c3.1, c3.2 € (0, 00) such that for any (¢, x, y) € (0,1] x K x K,

d 1
— X, Y Tw=
pi(x.y) = c3at d*”em(‘“l(%)d 1)' (3.5)

In fact, (UHK),4, is always satisfied in the present setting, as follows.

Proposition 3.6. Set dR := log, /r T- Then (UHK) & holds with the metric p given by
the resistance metric R of (€, F).

Proof. This is a consequence of [39, Theorem 15.10], whose assumptions can be easily
verified by using [37, Lemmas 3.3.5 and 4.2.4]; see [35, Lemma 2.5] for details. O

Remark 3.71. The power ﬁ in (3.5) with d,, = dvf, which appears in (UHK) g, is
not best possible in general; see [30] for a sharp two-sided estimate of p;(x, y) in the
present setting and see [28, Section 6] for a generalization of such an estimate in the
framework of a metric measure space. We have introduced the condition (UHK),4, to
state and prove our main results with the best exponent in the remainder estimates.

We also need the following definition for the main theorem of this section.

Definition 3.8. We define the symmetry group G of (L, (D, r), i) by

g is a homeomorphism from X to itself, g(Vp) = Vo, pog = .,

G:= {g uoguog e FandE(uog,uog) = E(u,u) forany u e]—‘}’ (3.6)

which clearly forms a subgroup of the group of homeomorphisms of K.

The following is the main theorem of this section. The subscripts y and p stand for
the Neumann and Dirichlet boundary conditions on Vj, respectively.

Theorem 3.9. Let g € Vy, dy € (1,00) and suppose {g(q) | g € G} = Vy and that

(UHK)g, holds. Set Zx = Zi, Zp := Zg1, ny 1= DB apd pyy = —HT1AV0)
(note that ny > 0 > np). Then there exist c3.3 € (0, 00) and continuous log t-periodic

functions Go, Gy : R — (0, 00) such that for any B € {N,D}, ast | 0,
25(t) = 1742Go(—logt) + ngG(—logr) + O(exp(—c”l_ﬁ)). 3.7

Remark 3.10. (1) G in Theorem 3.9 can be easily constructed from [40, Theorem 2.4
and Corollary 2.5] or [37, Theorem 4.1.5], where the log-periodic principal term in the
asymptotic behavior of Ny := Nk and Np := N has been obtained. Moreover, G
is easily seen to be non-constant under certain mild conditions on G by [7, Theorem
4.4 and Section 5] or [37, Theorem 4.3.4 and Section 4.4] (see also [35, Lemma 3.5])
together with Karamata’s Tauberian theorem [19, Section XIII.5, Theorem 2].

(2) The strict positivity of G in Theorem 3.9 could be derived from the author’s general
result [33, Theorem 7.7], but we provide an alternative simpler proof of this fact; see
the proof of Proposition 3.15 below.
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B)If L = (K, S,{F;}ies) is an affine nested fractal satistying #(F; (Vo) N F; (Vp)) < 1
forany i, j € S withi # j, then there exists a unique harmonic structure (D, r) on £
compatible with its spatial symmetry, and {g(q) | g € G} = Vp holds. Thus Theorem
3.9 applies, and if #V, > 3 in addition then Gy is non-constant; see [37, Sections 3.8
and 4.4], [35, Section 4] and references therein for details. Moreover, in this situation
it has been proved in [20, Theorems 5.7 and 6.1] that there exist dy, € (1,00) and a
metric p on K compatible with the original topology of K such that (UHK),,, and the
matching lower bound hold, so that d,, is the smallest for (UHK),, to be valid.

In the rest of this section, we give the proof of Theorem 3.9, which requires a few
intermediate steps. We start with the following easy lemmas. Recall (see Definition 2.9)
that )&? denotes the smallest eigenvalue of —Ag for a non-empty open subset U of K.

Lemma 3.11. Let U, V be non-empty open subsets of K. If V is connected and U G V,
then \V > AV. In particular, if U # K, then AV > 0.

Proof. The latter assertion follows from the former since K is connected and AX = 0.
Suppose V' is connected and U & V. Note that then V is arcwise connected since
K is locally arcwise connected by [37, Proposition 1.3.6] and the connectedness of
K. Suppose AV < A7 and let ¥ be an eigenfunction of —Ay with eigenvalue AV.

Then ¢V € Fy and E(pY,¢Y) < A} [, (¢Y)?du by U C V, so that oY would
be an eigenfunction of —Ay with eigenvalue )L}/ on account of (2.10). Now Lemma
2.10 would imply that either <pf] > 0onV or (pf] < 0 on V, which would contradict
(plUe]-"U={ue]—'|u|K\U=0}sinceU§V.Thus)h§]>A}/. O

Lemma 3.12. Let U be a non-empty open subset of K and let w € Wy. Then
2y (") = 2p, @) (@), 1 € (0,00). (3.8)
Proof. This is proved in exactly the same way as [36, Lemma 3.4]. O

Definition 3.13. For m € N U {0} and x € V,,, we define

Wiz i={w € Wy | x € Ky}, nym:=#Wyp, and U :={x}U UweW KL

note that U}} is open in K. We also set U? := Ug =K' U{g)forq e V.

Proposition 3.14. Let g € Vy and suppose {g(q) | g € G} = Vo. Let m € NU {0} and
x € Viu. Then for any t € (0, o0),

o (1) = Zua (@) + (am — DZp(T"1). (39)

Proof. For each U € {U4, K"}, let {¢pY },en be a complete orthonormal system of
L2(U, j|y) consisting of eigenfunctions of —Ay with eigenvalues {)L,(l] }nen, which
we use below to write down all the eigenfunctions of —Ayx. Let {aj }Z;’l" C RWm.x,
ak = (ag,w)weW,, »» be an orthonormal basis of R"m.x with a; = n;,l,,ﬁzlwm'x. For
eachw € Wy, x, x € Ky NV, = Fyy (Vo), and hence by {g(q) | g € G} = Vo we can
choose g, € G so that x = Fy,(gw(g)). Now for n € N, we define ¢, : K = R,
ke{l,....nxm} by @nrlx\vy = 0and

e #S)"20Y" 0 gl o Fyllgr yy itk = 1

3.10
Gk #SK" 0 gl o Fllpy k=2 O

‘Pn,k|K{uU{x} = {
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for each w € W, x; note that the value at x of the right-hand side of (3.10) is inde-

pendent of w € W, » by go,{( ! (g) = 0. Then the expression (3.10) of ¢, x extends to
K for each w € Wy, x, hence ¢, x € C(K), and it follows from {gy }wew,, , C G,
(SSDF1) and ¢, k |g\ux = 0 that ¢, x € Fyx.

Next we prove that {@, i }neN, ke{l,....nyn) 1S @ complete orthonormal system of
L2(UE, ilyz)- Indeed, it is easily seen to be orthonormal in L2(Ur, ilyz) by adirect
calculation using & = (#S)/%!j o F,, and {g, YweWm C G. Letu € L2(U, plyz)
and suppose that ny),cl U@y rdp = 0 for any (n,k) € N x {1,...,nx,,}. Then for

any n € N, 0 = n}/p #SY"? [y ugnrdp = [yq 0% (Cpem,, 4 © Fu © gu)dp,
and hence ZweWm L uo Fyogy =0 p-ae. by the completeness of {go,?q }nen. On
the other hand, for eachn € N, fU');l upprdp = 0,k € {2,..., 0y}, implies that
#S)" wa(gofI ogyto Fpylyudu = [r(uo Fyo gw)gofld,u is independent of
w € Wy x,sothatu o Fyy o gyy = uo Fy og, p-ae. forany w,v € W, » by the
completeness of {gofl }nen. Thus 0 = n;’lm ZveWm.x uoFyog, =uokF,ogy u-ae.
for any w € W, x and hence u = 0 p-a.e. on U,

Finally, we show that for n € N, @, x is an eigenfunction of —Ayx with eigenvalue
r'”)tf,]q for k = 1 and rmkfl fork € {2,...,nxm}. Let n € N. By using (SSDF2),
{gwwew,, . C G and the fact that p¥* € D[Ayq] and —Ayap¥? = AY*@V? (recall
(2.7)), we easily see that £(@,,1,u) = rmkgq fU,’y‘, @n,1udu for any u € Fyx . For the
proof for k € {2,...,nx m}, foreachu : U;, — R we define Pu : U, — Rby

-1

Pulgr iy 7= Nim uoF,og,0g," OF,;1|K‘LU{X}, w e Wy x, (3.11)

vEWimn . x

so that Pu(x) := u(x) regardless of choices of w € W,  in (3.11). Identifying each
u € Fyy with ulyx € C(Uy), we have P(Fyx) C Fyx by virtue of (SSDFI)
and {gwjwew,,, C G. Now let k € {2,...,nxm} and u € Fyx. (SSDF2) and
{gw}weWm,x cg yield g(‘/)n,kqu) =0 = ny)rC, (pn,kPud/'Ls hence 5(<,0n,k7u) =
E(@n k. u—Pu)and fUri‘, O pudp = fU,ﬁ ©n i (u—Pu)d i, which together with gofl €
I 1 1 . . 1

D[Agr], —=Agron = AKX, easily imply E(@np.u) = T"A% [yx @niudp
since (u—Pu)o Fy € Fgi forany w € Wy, x by u—Pu € Fyx and (u—Pu)(x) = 0.

Thus it follows that {A, k }nen, ke1,...nx m}» Ana := ™AV and A, 4 = rmkf[,
k € {2,...,nxm}, gives an enumeration of all the eigenvalues of —Ayx with each
eigenvalue repeated according to its multiplicity, and hence (3.9) follows. O

Proposition 3.15. Let g € Vy, dy, € (1,00) and suppose {g(q) | g € G} = Vo and
that (UHK)g,, holds. Then there exist ¢34 € (0,00) and a continuous log t-periodic
function G1 : R — (0, 00) such that, ast | 0,

Zua(t) — Zo(t) = G1(—logt) + o(exp(—cg,fﬁ)). (3.12)

Remark 3.16. The periodic function G in the conclusion of Theorem 3.9 is nothing but
G given by Proposition 3.15 as above; see the end of the proof of Theorem 3.9 below.

Proof. Let us verify the assumptions of Theorem 2.13 with ¢p = O and y = t for
Zya — Zp. Since ng,; = 1 by [35, Remark 6.4], Wi, = {i} and Uf = Kl.I U {q} for
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somei € S,andg € K;NV; = F;(Vy). Lett € (0, 00). Recalling (2.4), by Proposition
3.14, Lemma 3.12, Ulq C U1 and Proposition 2.7-(1) we have

Zya(1) = Zp(1) = (Zya(et) = Zp(t1)) = Zya (1) = Zp(t) = Ly (1) + 21 (1)
= /Kth,, (x.x[{K \ {g}.U{})du(x) > 0. (3.13)
Let p be the metric on K in (UHK)4, andlet x € K. Since p(x, q)Vvp(x, F; (Vo)\{q}) >

p(g. F; (Vo) \ {g})/2 and (K \ K;) U (F; (Vo) \ {g}) C K \ U{, Proposition 2.7, (3.5)
and d < 2 imply that for ¢ € (0, 1],

0 < p¢" (x.x[{K \ {g}. U{'}) (3.14)
wy o1
4ozt b2 exp(—c&z(W) dW”) ifx € K;
1
des gt/ eXP(—Ca.z(w) dw_‘) ifxe K\ K;
< dcz ™2 (’«XP(—CBAI_‘{W]—l ).

dw
where ¢34 := C3_2(p(q, K\ Ulq)/2) 4w=1_ Now (3.13) and (3.14) together imply that
(2.13) holds for Zye — Zp withag =0,y = t,n = 1,07 = —1, Gy = 0and R(¢) :=
—d,/2
t

1 . 1
4e31 exp(—C3.4t dw—1 ) Moreover ZJ-GN R(x™t) <c35 exp(—C3,4t dw—T ) for

any t € (0, 7] for some ¢35 € (0,00), 0 < Zya(t) — Zp(t) < ZUq(l)qu e_wq’
for any t € [1,00) by pKI < pY and Lemma 2.11, and Aﬁjq > 0 by Lemma 3.11.
Hence Theorem 2.13 applies to Zyy« — Zp to yield a continuous log t-periodic function
G : R — R satistying (3.12).

It remains to show that G is (0, co)-valued. Note that U is connected since K/ is
connected by {g(q) | g € G} = Vo and [37, Proposition 1.6.9]. Therefore )L{(I > Aﬁjq
by Lemma 3.11, so that Zy«(t) — Zp(t) > 0 for any ¢ € [T, 00) for some T € [1, 00)
in view of Lemma 2.11. Now since Zyq () — Zp(t) > Zya(tt) — Zp(rt) for any

t € (0,00) by (3.13), infre(0,c77(Zva (1) —Zp (1)) = min;efz,.71(Zve (t)—Zp (1)) > 0,
which together with (3.12) shows that G is (0, co)-valued. O

Proposition 3.17. Let g € Vy, dy, € (1,00) and suppose {g(q) | g € G} = Vo and
that (UHK)g,, holds. Then there exists c¢3.6 € (0, 00) such that, ast | 0,

Zn(0) = Zp(t) = Vo) (Zua (1) = Zp(0)) + O (exp(—es.60™®1)), (.15
Zp(t) — #S)Zp(rr) = #(V1 \ Vo)(Zua (1) — Zp (1)) + O(exp(—c&ﬁt_ﬁ)).
(3.16)

Proof. Let p be the metric on K in (UHK)4, and set§ := minyey, p(x, K\U{)/2 > 0,
so that p(z,x) V p(z,y) > § forany z € K and any x,y € V; with x # y. Let
t € (0,00). Since Zyx = Zyaq for any x € Vy by Proposition 3.14, we see from
Lemma 2.12, Proposition 2.7 and (3.5) that

Zn(1) — Zp(t) — #Vo) (Zya (1) — Zp(1)) (3.17)

=fK(pz(y,y)—pf{'(y,y)— Z(thx(y,y)—pf‘l(y,y)))du(y)

x€Vp
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- /K ( S K I ) 3 X(y,yI{K\{x}}))du(y)

DAV CVy ACV xeVy
=/( S oK Y G lK fther) — 3 pt"(y,yHK\{x}}))du(y)
K B£V CVy xeVy

= ZVCVO,#VEZ/KptK'UV(y,yI{K \ {(x})xer)dp(y) (= 0)

= ZVCVO’#VZZ/Kz’r‘I’IEI‘I}{se[SSE,,] Ps(X,y)}du(y)

< 2#V0+2C3.1Z_d5/2 exp(—C3,2(8dW/t)ﬁ)
where the inequality in the last line of (3.17) is valid only for ¢ € (0, 1].

On the other hand, (#S)Zp(tt) = D ;cg L1 (1) = Zg\y, (1) and ny 1 Zp(tt) =
Zier L Rgr(t) = Zle\{x}(t) for any x € V7 by Lemmas 3.12 and 2.6, and hence
Zya(tt) —Zp(tt) = Zle (t)— ZU]x\{x}(t) for any x € V7 by Proposition 3.14. There-

fore similarly to (3.17), setting KIV = (K\ Vi) UV foreach V C Vi \ Vp, from
Lemmas 2.12, 2.6, Proposition 2.7 and (3.5) we obtain

Zp(1) — (#S)Zp(vt) — #(Vi \ Vo) (Zua(tt) — Zn(tt)) (3.18)

=/(pf<l(y,y)—pf\v‘(y7y)— > (pf]ir(y,y)—pf]‘x\m(y,y)))du(y)
K xeVi\Vo

V\A x

[ T e om - X ook )duo)
K \gtvevi\VoAcV xeVi\Vo

=/( > pf(‘v(y,yI{K\{x}}xev)— > p,Uir(y,le\{x}))du(y)
K \gtveviv xeVi\Vo

= Yoo o P G MK N e di(s) (2 0

SZVCVI\VO,#sz/szmel‘l}{ sup Ps(X,y)}du(y)

s€ft/2,t]

< M\ F205 (=2 eXP(—Cs,z(fgdw/f)ﬁ)

where again the inequality in the last line of (3.18) follows only for ¢ € (0, 1].
dw
Now with ¢3¢ := ¢326%—1/2, (3.15) is immediate from (3.17), whereas (3.16)
dw
follows from (3.18), (3.13) and (3.14) since ¢34 > ¢3.28 &1 for ¢34 asin (3.14). O
Proof of Theorem 3.9. (3.16) and Proposition 3.15 together yields (2.13) for Zp with
ag = ds/2,y = t,n = 1,01 = 0, —np(#S — 1)G; in place of Gy, and R(¢) :=
1
¢3.7exp(—(c3.4 Ac3e)t” @=T) for some c3.7 € (0, 00). Moreover, A{(I > 0 by Lemma
1 1

311 and 0 < Zp(?) < ZD(I)eAIK e M1 for any t € [l,00) by Lemma 2.11.
Hence we can apply Theorem 2.13 to Zp to conclude that there exists a continuous

log t-periodic function Gy : R — R such that (3.7) holds for B = D with G; as in
Proposition 3.15 and ¢33 := ¢3.4 A ¢3.6. Then (3.7) for B = N follows from that for
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B = D, (3.15) and Proposition 3.15. Finally, since 2y« —Zp > 0 by Proposition 2.7-(1),
2Zp(t) = (#S)Zp(tt) and hence 1%/225 (1) > (v1)%/2Zp(tt) for any ¢ € (0, 00) by
(3.18), and it follows that inf,e(g,111%/22Zp(t) = min,ep;—1 111%/?Zp(t) > 0, which
together with (3.7) shows that Gy is (0, co)-valued. O

In fact, by a very similar argument we can also prove the following theorem.
Definition 3.18. Let m € N and let X C W, be non-empty. We set dy := % log, #X,

[X]:={w e I | [0"™"(@)lm € X foranyn e NU{0}} and K[X]:= m(Z[X]).

Theorem 3.19. Let g € Vy, dy, € (1,00), suppose {g(q) | g € G} = Vo and that
(UHK)g, holds, and let ny,np, Go, Gy be as in Theorem 3.9. Let m € N, let X &
Wi be such that #X > 2 and set ZXN = ZK\K[X] ZX,p = Z’K’\K[X]’ nyN =
EXHKIXOVO)HKIXINV) gy o — FEEXDOT\VO) (ot that my > 0 > nyp).
Then there exzst c3g € (0,00) Whlch is independent of m and X and a continuous
m log t-periodic function Gx : R — (0, 00) such that for any B € {N,D}, ast | 0,

Zxp(t) = t_dS/zGO(— logt) — t_dX/ZGX(— logt) 4+ (ng —nx)G1(—logt)
1
+ 0(exp(=c3s(emx/DTT)). (3.19)

— . . dy .
where ¢y x =T " A (mmerm\K[X] p(x, K[X]) A minyey,, p(x, Vin \ {x})) with
p the metric on K given in (UHK)g4, .

The following proposition is the core of the proof of Theorem 3.19.

Proposition 3.20. Let g € Vi and suppose {g(q) | g € G} = Vo. Let m € N and let
X G Wi be non-empty. Then for any t € (0, 00),

Zn (1) = Zx (1) = (Zo(t) — Zx,p(1)) — #(K[X] N Vo) (Zua (1) — Zp())

=2, ZVCVV%Km/K” KOV (3, UK\ KIXTF UK\ {xbeer)dp(y), (3.20)

Zp(1) — Zx,p(1) — (#X)(Zp(x™1) — Zx p(z™1))
—#(K[X]N (Vin \ V0))(Zya (t™1) — Zp(z™1)) (3.21)

K\Vim)UV
=% v [ AP 0K KX UK () e)du().
#V>20r VZK[X]
Proposition 3.20 follows from Lemmas 2.6, 2.12, 3.12 and Proposition 3.14 very
similarly to (3.17) and (3.18). Theorem 3.19 can be proved by using Propositions 2.7,
3.15, 3.20 and (UHK)4,, to apply Theorem 2.13 to Zp — Zx,p. We omit the details.

4. Sierpinski carpets

Our main concern in the rest of this paper is the case of generalized Sierpinski carpets,
which are among the most typical examples of infinitely ramified self-similar fractals
and have been intensively studied e.g. in [1-6,42,38,29,33,31].

In this section, we first collect fundamental facts concerning generalized Sierpifiski
carpets and their canonical self-similar Dirichlet form and then state our main theorems
(Theorems 4.10 and 4.14) of asymptotic expansion of the partition function for them.
The proof of Theorems 4.10 and 4.14 is given in the next section.

We fix the following setting throughout this and the next sections.
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Fig. 2. Sierpifiski carpet, some other generalized Sierpifiski carpets with d = 2 and Menger sponge

Framework 4.1. Let d,] € N, d > 2,1 > 2 and set Q¢ := [0, l]d. Let S C
{0,1,...,1 — 1}¢ be non-empty, and for each i € S define f; : R? — R< by
fitx) == 174 + 17x. Set Q1 := U;es fi(Qo), which satisfies Q1 C Q. Let
K be the self-similar set associated with { f; }ies, i.e. the unique non-empty compact
subset of R? such that K = Uies fi(K), and set F; 1= fi|g fori € S, so that
GSC(d,!1,S) := (K, S,{F;}ies) is a self-similar structure. Also let p be the Euclidean
metric on K given by p(x, y) := |x — y|, set d; := log; #S and let i be the self-similar
measure on £ with uniform weight.

Recall that df is the Hausdorff dimension of (K, p) and that y is a constant multiple
of the di-dimensional Hausdorff measure on (K, p); see e.g. [37, Theorem 1.5.7 and
Proposition 1.5.8].

The following definition is essentially due to M. T. Barlow and R. F. Bass [5].

Definition 4.2 (Generalized Sierpinski carpets, [6, Subsection 2.2]). GSC(d, 1, S) is
called a generalized Sierpiriski carpet if and only if S satisfies the following conditions:

(GSC1) (Symmetry) f(Q1) = Q; for any isometry f of R? with f(Qo) = Q.

(GSC2) (Connectedness) Q1 is connected.

(GSC3) (Non-diagonality) intga (Q1 ﬂ]_[gzl [(ix—ex)] 7L, (ix+ l)l_l]) is either empty
or connected for any (ik)z:1 € 7% and any (Sk)Z=1 € {0,1)9.

(GSC4) (Borders included) {(x1,0,...,0) € R¢ | x; € [0,1]} C O;.

As special cases of Definition 4.2, GSC(2, 3, Ssc) and GSC(3, 3, Sus) are called the
Sierpiriski carpet and the Menger sponge, respectively, where Ssc := {0, 1,2}2\{(1, 1)}
and Syis := {(i1.12.3) € {0, 1,2}> | 33_, L1y (ix) < 1} (see Fig. 2 above).

We remark that there are several equivalent ways of stating the non-diagonality con-
dition, as in the following proposition.

Proposition 4.3 (34, §21). Ser x|, == Y¢_, x| for x = (x)?_, € RY. Then
(GSC3) is equivalent to any one of the following three conditions:

(ND)y intga (Q1 N szl [ —DIT™, (ix + l)l_’"]) is either empty or connected for
any m € N and any (ik),‘f:1 efl,....Im—1)4.

(ND), The case of m = 2 of (ND)y holds.

(NDF) Foranyi,j € § with f;(Qo) N f;(Qo) # @ there exists {n(k)}z;é‘1 cS
such that n(0) = i, n(|i — j|l1) = j and |n(k) — n(k + 1)|; = 1 for any
ke{0,....]i —jh1 —1}

Remark 4.4. Only the case of m = 1 of (ND)y was assumed in the original defini-
tion of generalized Sierpiriski carpets in [5, Section 2], but Barlow, Bass, Kumagai and
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Teplyaev [6] have recently realized that it is too weak for [5, Proof of Theorem 3.19]
and has to be replaced by (ND)y (or equivalently, by (GSC3)).

In the rest of this section, we assume that £ := GSC(d, [, S) = (K, S,{Fj}ies) is
a generalized Sierpiniski carpet. Then we easily see the following proposition.

Proposition 4.5. Set S, 1= {(in)%_, € S | ix = (I — e} fork € {1,2,...,d} and
e €{0,1). Then P = J{_,(SY, U SY,) and Vo = Vo = K\ (0,1)¢ # K.

There are two established ways of constructing a non-degenerate p-symmetric dif-
fusion on K, or equivalently, a non-zero conservative local regular Dirichlet form on
L?(K, i), one by Barlow and Bass [1,5] using the reflecting Brownian motions on the
domains approximating K, and the other by Kusuoka and Zhou [42] based on graph
approximations. It had been a long-standing problem to prove that the constructions in
[1,5] and in [42] give rise to the same diffusion on K, which Barlow, Bass, Kumagai
and Teplyaev [6] have finally solved by proving the uniqueness of a non-zero conserva-
tive symmetric regular Dirichlet form on L2(K, 1) possessing certain local symmetry.
As a consequence of the results in [6], after some additional arguments in [31,36] we
have the following unique existence of a canonical self-similar Dirichlet form (&, F)
on L2(K, it). Recall the discussion following (3.3) for (SSDF1) and (SSDF2).

Definition 4.6. We define Gy := { f|x | f is an isometry of R with f(Q¢) = Qo},
which forms a subgroup of the group of homeomorphisms of K by virtue of (GSC1).

Theorem 4.7 ([6, Theorems 1.2 and 4.32], cf. [31, Proposition 5.1], [36, Proposition
5.91). There exists a unique (up to constant multiples of £) non-zero conservative sym-
metric regular Dirichlet form (£, F) on L*(K, u) satisfying (SSDF1), (SSDF2) for
some r € (0, 00) and the following condition:

(GSCDF) Ifu e FNC(K)and g € Gy thenuog € FandE(wog,uog) = E(u,u).
Moreover, r € (0, 00) for which (SSDF2) holds is unique and satisfies r < [ 72#S.

(€, F) is local by [33, Lemma 3.4], and (K, u, &£, F) also satisfies (CHK) and (2.3)
by the following theorem. As before we define the time scaling factor T and the spectral
dimension ds of (L, u,E, F,r) by v :=#S/r and d; := 2log, #S, respectively.

Theorem 4.8 ([5, Theorem 1.3], [6, Theorem 4.30 and Remark 4.33]). (K, u,&,F)
satisfies (CHK) and there exist c4.1,ca.2 € (0,00) such that, with d,, := log; T (note
that d,, > 2 and that d¢/dy, = ds/2), for any (t,x,y) € (0,1] x K x K,

Ca pex. )™\ @ Ca2 P )M\ @

l‘df/dw exp( ( C4,1t ) Spt(x7y)§ [dt/dw €Xp ( C4_2t ) .
4.1)

Remark 4.9. The strict inequality dy, > 2 holds if #S < [¢. In the case of d = 2,

this estimate follows from [3, Proof of Proposition 5.2] (see also [4, (2.5)]), whereas for
d > 3 this fact is stated in [5, Remarks 5.4-1.] just without proof.

Now we are in the stage of stating our main theorems of asymptotic expansion of the
partition function on generalized Sierpifiski carpets. Recall that we set K/ := K \ V.

Theorem 4.10. Set dy. := log; #(S N (Z97% x {0}%)) for k € {0, 1,....d} (do = dp),
#(i.J)eSxS||i—j|=1}
2#(S\Z7—Tx{0})

2N = 2k, Zp = Zg1, AN = and np = ny — 2d (note that
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nN > 0 > np). Then there exist c4.3 € (0, 00) and continuous log t-periodic functions
Gpr:R—R Be{N,D}, k €{0,...,d}, such that for any B € {N,D}, ast | 0O,

d
Zg(t) = Z t_dk/dWGB,k(— logt) + O(exp(—64,3t_ﬁ)). 4.2)
k=0

Moreover, Gn o, Gn,1 are (0, 00)-valued, Gn,o = Gp,o and nglGN’l = nglGD,l.

Note that d;_; = 1 and d; = 0by (GSC4) and that foreachk € {0, 1,...,d}, dy is
the box-counting and Hausdorff dimensions of K N (R=* % {0}¥) with respect to p by
[33, Propositions 2.24 and 6.7] and [37, Corollary 1.5.9] in view of K N(RZ~* x{0}¥) =
K[S N (Z%7% x {0}*)] with the notation of Definition 3.18. Note also that dj > dj 1

(Z2=*=1 5 {0}k 1) by (GSC4) and (GSC1).
Remark 4.11. (1) As remarked after Theorem 1.1 in the introduction, Gp o in Theorem
4.10 was obtained by Hambly [29, Theorem 4.1] where it was proved that

2p(t) = %W dGp o(—logr) + O~ /4y ast |0, (4.3)

and similarly for Zn by a slight modification of [29, Proof of Theorem 4.1] (or by [33,
Theorem 5.11]). Unfortunately, however, a log-periodic principal order term similar to
(4.3) for the asymptotics of NN := Nk and Np := Ng1 is not known when #S < 4.
(2) The strict positivity of Gy, (the strict negativity of Gp ;) in Theorem 4.10 follows
from [33, Theorem 7.7] (see [33, Theorem 8.5]), but we give an alternative simpler
proof of this fact in the next section as a special case of Theorem 4.14 below.

Remark 4.12. 1t should be possible to prove asymptotics analogous to (3.19) of Theo-
rem 3.19 for generalized Sierpiriski carpets, but the statement and the proof would get
much more complicated than for Theorem 3.19 because of the possible complexity of
the boundary set K [X] which does not arise in the setting of the previous section. Since
the simplest case of the Neumann and Dirichlet boundary conditions on Vj treated in
Theorem 4.10 is already quite involved, we content ourselves with just this case.

In fact, the assertion of Theorem 4.10 for Zp, is a special case of the following more
general theorem, which requires the following definition.
Definition 4.13. Lete = (sx)¢_, € {0, 1}?,m e NU {0} and i = (ix)?_, € R%.
(1) We set |e| := Zzzl ek, e W(j) =k e{l,...,d} | s = jiforj €{0,1}, S, :=
SN@ZET O x {0y W), The = ((kig + jI7™ ") |k € e71(0), j € {1,....[ — 1},
Ti(J) :={(k,ix) | k e Jyfor J C{l,...,d},and Z; ;. := Z; (¢~ 1(1)).
(2) We define R} := ]_[,‘le[ik — el ™™ i + 17", Up® := K Nintga Ry, Wyy® i=
{w € Wy | Ky C RES), RES .= RO » [Meee—1ylic =17 " ix + 17" "] and
Usf := K Nintga (RyE N REE). Note that UL # @ if and only if W, # 0.
(3) We set Hy s := {(x1,...,xq) € R? | xp = s} fork € {1,...,d}and s € R and
Hz := U.syez Hi.s for T C{1,...,d} xR Recalling (2.4), for ¢ € (0, 00) we define

ZhE(t) = Z (—1)#ZZU;1‘1.8\HI(Z) = /l.g Pf]"i (x, x{K \ Hg s}k,s)ez; ) (x).
ICT;, Uni
“4.4)
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Theorem 4.14. Let ¢ € {0,1}¢, m € NU {0}, i € [™™Z¢ and assume W # 0.
Then there exist c4.4,c4.5 € (0,00) which are independent of e, m, i, and continuous

log t-periodic functions G;,’,s’k ‘R—>R k e{lel,...,d}, such that for any t € (0, 7],

d
ZHEET) = Y 1T NG (—logh)| < caa exp(—C4,5t_ﬁ). 4.5)
k=le|

Moreover, G,i,’,s’ls‘ is (0, 0o)-valued, and G:,’,alsHl is (—o00, 0)-valued if |¢| < d.
Remark 4.15. (1) Only finitely many periodic functions Gﬁ,f’k arise in Theorem 4.14.
Indeed, according to Lemma 5.2 and Proposition 5.3 below, for each & € {0, 1} there
exists B, C UmeNU{O}(l_mZd x {m}) with #8, < 22! such that for any m € NU{0}
andanyi € [7"Z9 we can choose (j,n) € B, so that 25 (t™™1) = 25 (t™"¢) for any
t € (0, 00). In particular, the set of all continuous log t-periodic functions appearing in
Theorem 4.14 is given by {Gi™* | € € {0,134, (i,m) € Be, k € {Jél,....d}}, which
has at most (d + l)2d+2d elements.

) Zi,f(f_mt) is independent of ¢ € {0, l}d m € N U {0} andl e 1779 as long as
le| = 1 and Wit + 9, and G, = nnGLE! and Gp,1 = npGp/’ 1 for any such e,m, i;
see Proposition 5.7 and (5.13) below.

The proof of Theorems 4.10 and 4.14 is given in the next section.

5. Proof of Theorems 4.10 and 4.14

Throughout this section, we fix the setting of Framework 4.1 and assume that £ :=
GSC(d,[,S) = (K, S,{F;}ies) is a generalized Sierpiriski carpet and that (£, F) is
the Dirichlet form on L2(K, i) given by Theorem 4.7. As in the previous section, we
set7 :=#S/r,dy 1= log; v and di := log; #(Sﬂ(Zd_kx{O}k)) fork € {0,1,...,d}
(do = dy), and we also follow the notation introduced in Definitions 4.6 and 4.13.
Similarly to the proofs of Theorems 3.9 and 3.19, we need several intermediate steps
to prove Theorems 4.10 and 4.14. We start with some discussion on the scaling property

between open subsets of K of the form U, be,

DeﬁnltlonS 1. Lete € {0, 13, mn e NU{0},i € I7"Z% and j € I7"7Z%. Define

:R? — R? by F%(x) := j 4 ™" (x — i), so that Fy, (R5E) = R)*. We say
that (1 m) is e-equivalent to (j,n), and write (i, m) < (j Jj,n), if and only if there exists
a bijection ¢ : W5¢ — W, such that iz, |k, = w(w) © Fy! for any w € Wii°.

Clearly, ~ is an equivalence relation on Umenu o “m74 x {m)).

Lemma 5.2. Let ¢ € {0, 1}%. Then there exists B, C UmeNU{O}(l_’”Zd x {m}) with

#H, < 22! such that whenever m € N U {0} and i € I7"Z2, (i,m) ~ (j,n) for some
(j,n) € B,

Proof. Form e NU {0} andi = (ik)g=l el™m74 set

d _8k
1_[|: lk+ [m iICQm}a

5.1

Abe = {(8k),‘j=1 e {0} @ 10, 1)
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where Om = Uy, . w,,ew,, fwi ©**+© fu,, (Qo). Then it is easy to see that form,n €
NU{0},i € I7™Z% and j € [7"Z4, (i, m) ~ (j,n) if and only if AL = A}°. Thus the
set (Umenuioy 74 x {m}))/ < has at most 22" elements and hence the assertion

follows by choosing a representative from each of the equivalence classes under ~. []

Proposition 5.3. Ler ¢ € {0,1}, m,n e NU{0}, i € I7Z% and j € I7"Z2. If
(i,m) ~ (j,n), then Zy (z"™t) = Zpii (U)(t)for anyt € (0, 00) and any non-empty

open subset U of U, and in particular Zi,’f(t”_mt) = Zf;’s(t)for anyt € (0, c0).

Proof. Note that F,f;";(Hk gp) = Hpj forany k € {1,...,d}, where i = (ik)g=l
and j (jk)k .- By (i,m) < (j,n) there exists a bljeCtIOIl ¢ WEE > W)E
such that Fil |k, = w(w) © F! for any w € W;*, then F,’n’n(U ewie Ky) =
UveW”K and hence Fy’y (USS) = U If W* = 0, then UL® = Ul = 0
and thus Z55(z"™1) = 25°(t) = 0 for any 1 € (0,00). Assume W,;* # 0, let U
be a non-empty open subset of U5¢ and set (Ful)Vu := u o (Fu, Y w for
u:U — [—o00,00], so that [, [uldp = (#S)"~"™ fF,,;l,{;,(U)|(F,i,,’n)iju|d/L if u is Borel
measurable. Then (F,i,’,j;,)i] defines a bijective linear map (F,’,,’,,)*U : L2(U, ply) —
L2( L), u|F,- J (U)) Moreover, regarding {u € F N C(K) | suppgu] C V} =:
Cy and Fy as subsets of L?(V, ju|y) for each non- empty open subset V' of K, we
have (Fyh)V (Fu) = Frid @y and EQ.u) = r"~ mE((Fh)¥u, (Faih)¥ u) for any
u € JFy, since the same are valid with Cy, CF, ) in place of Fy, ]:Fz i) by
(SSDF1) and (SSDF2). Now it follows from the above facts and [23, Lemma 1 3 4-(1)]
that (Fyh) Y TY ., =T, Fo ”(U)(F,L’n)U for any ¢ € (0, oo) which together with the
uniqueness of pU implies that pY,_,.,(x, y) = #S)" ™" p Foi ”(U)( Fun (%), Fiu ()
for any (¢, x,y) € (0,00) x U x U. Thus for ¢ € (0, c0), Z,U(t"_”’t) = ZF” (U)(t)
which with U = U* \ Hz, sy, J C e71(1), yields 20 F(t" M) = 2 ®(t) by virtue of
m,n(Hk,lk) - Hk,]k»k €e& 1(]) D

Lemma 54. Lete € {0,1}, m € NU {0} and i € I7™Z%. Then for any j € S,
(i,m) ~ (i +17™ ), m + 1). Moreover,

Oke\ Hype = UjeS Uit e disjoint). (5.2)
Proof. These assertions are immediate from Definition 4.13 and (GSC1). ]

Recall (see Definition 2.9) that )\? denotes the smallest eigenvalue of —Ay for a
non-empty open subset U of K.

Lemma 5.5. Let ¢ € {0, 1}, m e NU{0},i € [7™Z2 and assume Wie # 0. Then
A?’l"" > 0, and 0 < Zﬁ,’,s(t) < ZU;‘V;S(t) < 2%c4, forany t € [t™™, 00). Moreover,
there exists Ty;® € [1,00) such that Zy; (t) > 0 forany t € [T,;%, 00).
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Proof. Since Oga € S, by (GSC4), we have (i, m) 2 (i,m+2) by Lemma 5.4, then
ie Ul £
Zyie(T?1) = ZUi'i (¢) fort € (0, 00) by Proposition 5.3 and hence tzkﬁj’" =1,
m m—+2
by Lemma 2.11. On the other hand, Theorem 4.8 easily shows that (£, F) is irreducible,
sothat {u € F | E(u,u) = 0} = Rlg by [15 Theorem 2.1.11], and 1x & Fji.c
m—+2

Ui,s
since (K \ UL%,) > 0by (GSC4). Thus A, Univa 0 and /\U’" =1720,"" > 0.
Next let t € [t7™, 00). Since p(,(x, x) 1s non-increasing for any x € K by [16,
(2.1.4)], it follows from Proposition 2.7-(1), Theorem 4.8 and #W,;* < 29 that

0= 20 =20 = [ psnan@ = [ pentnduo
< can(TT™) W W (ULE) = B#WF)car < 2%¢40.

For the last assertion, by Z;;7 = chzm (—1)#IZUIZE\HI and Lemma 2.11 it suf-

fices to show that /\?’I’ig\HI > /X?’I’ig for Z C Z;, with Z # @. Suppose /\U’I’ig\HI <

)Lij’ln's and let ¢ be an eigenfunction of —A Ui 5‘\ H with eigenvalue )LU’” Az Then
of € Fy vievs, C Fyie and E(pt, o) < A, Uni® fo.s(<p1) du, so that ¢f would

be an eigenfunction of —AUririg with eigenvalue /\1 it in view of (2.10). Furthermore
from (GSC1), (GSC2) and (GSC4) we can easily verify that U,l;,s is arcwise connected
and hence Lemma 2.10 would imply that there would exist a j-version of <p1 satlsfy—
ing @3 |Ul e € C(U’ ?) and that then either 97 > 0 on UL® or ¢f < 0 on Uy®. On
the other hand let Cap, denote the 1-capacity associated with (K, ., £, F) defined by
CapS(A) = il’lfUCK openin K, ACU infue]—',uzl p-a.e.on U 51 (u, u) foreach 4 C K (see
[23, Section 2.1]). Then Capg(U,’;,’23 N Hz) > 0by [33, Lemma 7.14 and Theorem 7.18],
but Capg(Ui’a NHz) = Caps({x € U N Hz | pF(x) # 0}) = 0by ¢f #0on U%E,

I c Fu Ui\ Hy and [23, Corollary 2.3.1], a contradiction. Thus AU’" \Hz )LU’” O

The key step for the proof of Theorems 4.10 and 4.14 is the following proposition,
which together with Lemma 5.5 allows us to apply Theorem 2.13 repeatedly to conclude

(4.5) and then to verify the strict positivity of G5*¢' and —GL&€IT1,

Proposition 5.6. Let ¢ € {0,1}¢, m € NU {0} and i € I7™7Z%. Then there exist
¢5.1,¢5.2 € (0, 00) which are independent of ¢, m, i, such that for any t € (0, c0),

B8y _ djol/dw ity _ i+H—m=l)g
02250 =W RTEED = Do e emrngsry 2gery Tmrt O
< es.1 exp(—es o (x"1) @), (53)
where Jo5 :=1{0,....1 =137 @ s 11— 1) On5=H1D) 5 gope™" (1),

Proof. Set Ty := T.;f and let 1 € (0, 0c0). Noting that t%/9 = #S, by (GSC1), we
see from Proposition 5.3, Lemmas 5.4 and 2.6 that

Z'i;«,s(t) _ ‘Ed‘g‘/dWZi”ls(Tt) — Z,;’ls(l) . Z Zin_:{szlj,a([) 5.4)

JESe
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gitim e

— 2 - Y /K P e KN Hes) ey, i)

JESe

; ULA\H
=250 = [ oK Hi e ()
Uje Uje
= /U’V*? (Pt (e, UK\ Hi s}k,s)ez; ) — pe™ (6, XK\ Hy s }ksyez; )

U5 Ui \H
+ o™ (5 xHK N\ HisYkosyez; ) — Pe O (x, x{K \ Hk,s}(k,s)ez,-.g))du(X)-

Let x € K. Since Uy;® = Ug® Nintga REE, Proposition 2.7 and Theorem 4.8 yield

Uhe Ui€
pe" (XK N\ HisYksyez; ) — e ™ (6, XK\ Hi s}kos)ez; L) (5.5)
Uririg . A
= p/" (v, x[{K Nintga Ry;7} UK\ His}ik,s)ez; ) (= 0)
2¢42 (P(X» K\ intga Ry) v max syez; . P, K N His)\ e
< —————exp| — )
([/z)df/dw (c4'2[)1/dw

< 21+df/dwc’4_2l_df/dw eXp(—(ZdWC4.2‘L'm+lt)_ﬁ)
where we have the inequality in the third line of (5.5) only for ¢ € (0, 1].
On the other hand, setting J{ := {0,....] — 1571@ (0} and Jls =

(0 O (1, 1—1} O 5 fo1e™ D for § € {0, 13 with e 1(1) S 67 (1),
by using Lemmas 2.12 and 2.6 we get

Ol* Upi®\H.
pe" (X, x[{K \ Hi s} k.s)ez; ) — Pi O (x, x{K \ His}k5)eT; ) (5.6)
Uyi\Hz, U5 \Hzouz,
C T o (g Vi)

Jce~1(1)

Z (_1)#J Z Z(—l)#Ap?’iig\H(Io\I)UAUIi(J)(x,x)

Jce1(1) P#£ICLyACT

Upi®\H
S (e

P#ICTy ACIVI;

Ty
> o O xRN Hesdwyezuz, )
P#ICLy

Z Uﬁ;E\Hzo\z
TCZo, H(ZN{k}xR))>2 for some k€&~ (0) Pt

ﬁrl;z’g\Hz \Z;L;
O et D Po XK\ His) e o)
eTl(gs— () &8

(x, x{K \ Hg s}k,s)ezuz; )

_ Z 0;;1'8\1—110\1
TCTo, HZN{k}xR))>2 for some kee—1(0) Pr

(O \Hz 1, ; )\RITP
+ ) > (Pz o (x, x{K \ Hi s} (k.s)eTi 4 5)

sefo, 139 jel—m=1J1
e N ST (D) '

(¢, x{K \ Hi s} k.s)ezuT; )
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Uf+j+./0.5
+1
+ Zjoel—m—ug pe” (x, x[{K\ Hk,s}(k,s)ez,-ﬂﬂova))-

Then from (5.6), Proposition 2.7-(2) and Theorem 4.8 we conclude that

Oie Uif\H
pe" (0, XK\ Hi s hkos)ez; ) — Pr O (x, x{K \ Hy.s}k5)eT; ) (5.7)
Ui-:ll_m_lj’&
- Z SE{O,I}d ZjEJ s Pt " ('x’ .)C|{K \ HksS}(kss)EI,‘_,_l—m—lj’tg)
elmssTlay Y
_ 0};1'8\1{10\1
- ZICIo,#(Iﬂ({k)XR))ZZ for some k€e—1(0) Pt (. ¥[{K Hk’s}(k’s)GIUIi‘s)
U5 \Hzo\z,, ; H\RT?
+ > o o (x, x{K'\ His}k,5)€Zi 4 ;.5)

sefo, 139  jel—m-1Jyl
e S () '

sup sup  ps(x, Z)}
s€t/2,t] zeKNHy 5

+2 1 AiJrjAY(x) min { sup sup p (X’Z)}
Se{Ozl}d jel—,;,n KK (a0eTit /5 \selt/2, ] ceKnHy
1S (1) o

<2 Z min {
TCTo, #ZN({k}xR))=>2 for some k€e—1(0) (k,u)eTUT; ,

__1
< pdU=D+1tdr/dy ., p=difdy exp(_(zdwc4.2,[m+1t) )

where the inequality in the last line of (5.7) is valid only for ¢ € (0, 1].
Now (5.4), (5.5), (5.7) and Proposition 2.7-(1) immediately show the lower inequal-
1
ity in (5.3) and also the upper inequality in (5.3) with ¢5» = 471 (2¢427)" @1 for
t € (0,1] by virtue of w(Uy®) = #S)™#W,;° < 2¢4¢=m4/dw Finally, the second
assertion of Lemma 5.5 yields the upper inequality in (5.3) for ¢ € [1, 0c0). O

Proof of Theorem 4.14. The proof is by induction in d — |¢|. Suppose first |¢] = d.
Then 0 < ZLE(x™™M1) — ZLE(r™™t) < ¢s4 exp(—cs_zt_ﬁ) for any ¢t € (0, 00)
by Proposition 5.6, which together with Lemmas 5.5 and 2.11 implies that Theorem
2.13 applies to Z;7(t™™(-)) withag = 0,y = 7,n = 1l,a; = —1,G; = 0
and R(t) := ¢5.1 exp(—cs.zt_ﬁ). Therefore there exists a continuous log t-periodic
function G,i,’,g’d : R — R such that |Zi;f(r_mt) — Gf,f’d (—log t)| < ZjeN R(z7/t) <
€5.1C5.3 exp(—cs.z(rflt)_ﬁ) for any ¢ € (0, 7], where ¢s53 € (1,00) is explicit in
terms of t, dy, c5.2, proving (4.5) with c4.4 = ¢4 := ¢5.1¢5.3 and c4.5 := cs_ztﬁ.
Next assume |¢| < d and suppose that (4.5) for ¢+ € (0, ] holds with §,n, j in
place of e,m, i and with c4.4 = ¢|gj41 and c4.5 = cs,ztﬁ for some cg|+1 € (0, 00)
whenever § € {0,1}¢,n e NU{0} and j € [7"Z satisfy |§| > |¢| + 1 and an’8 # 0.
For§ € {0,1}¢,n e NU {0} and j € [7"Z? with |§| > |¢| + 1 and an"s =0, we
set G,{’S’k =0,k € {|8,...,d}, so that (4.5) trivially holds. Then Proposition 5.6

implies that (2.13) holds for Zy; (7™ (-)) with ¢g = dje|/dw, y = T,n = d — |¢],
A—jg| = di/dy and

_ i+I—m=1j 8 k
Gr—je) = T %/ G, (58
e—lel ZSe{o,l}d,s-'a)gs—'(l),|8|sk Zjefe,s m+1 5-8)
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fork € {|le| + 1,....d)}, and R(t) := (cs5.1 + (2l)d(:|g\+1)exp(—cs_zfdwl—l). Now
from this fact and Theorem 2.13 together with Lemmas 5.5 and 2.11, we conclude that

there exists a continuous log t-periodic function Gy, Leslel : R — R such that (4.5) for
t € (0, 7] holds with G#% .= —(c@er=di)/dw — 1)~ Gk_|6| fork € {le] +1,...,d},
Cas = Clg| = C53(Cc51 + (21)dc\8\+1) and c4.5 = cs,zrﬁ, where Gi_|g| is as in
(5.8). Thus the induction procedure in d — || is completed and (4.5) is proved.

It remains to prove the strict positivity of Gi =0l and Gi’g"‘?“rl By Proposition 5.6

and Proposition 2.7-(1), rdiel/dw 21 s (t) > (tt)dlf\/dWZm (rt) for any ¢ € (0, 00), and
hence

inf A/ dZbe(y = min e/ DZEE(r) > 0 (5.9)
t€(0,7T5,;°1 te[T);%,xT;°]
with T,;° € [1, 00) as in Lemma 5.5. Now (5.9) and (4.5) together imply that G5*!®! i
(0, 00)-valued. Moreover, suppose |¢| < d, choose § € {0, 1}9 so that e~ (1) G 6~ 1(1)
and |8] = |e| + 1, and let j := (L1yns—1y(K))i, Then j € Jo5 with Js
as in Proposition 5.6, and we easily see from W,;* # @, (GSC1) and (GSC4) that
W,;ill j8 # @. Hence by Proposition 5.6, Proposition 2.7-(1) and (5.9),

. . ; —m—1 ;
infye (o, g 1411/ D (2158 (1) — vhel/ v Zle (21)) > infreqp g 198/ N2 "0 (1) > 0,

iele|+1

which together with (4.5) immediately shows that G, is (—o0, 0)-valued. O

Next we prove Theorem 4.10, for which we need the following two propositions.
Proposition 5.7. Let §,¢ € {0,1}9 satisfy |8| = |e| = 1, let j € {0,1}, m € NU {0},
i € 1774 and suppose Wiy;® # @. Then for any t € (0, 00),

e (1) = ZU(_)/(S,S(T’"[)+(#W,Z’8—1)ZD(I’"[) and  ZLE(r) = 21%% (1), (5.10)

Proof. Note that #W,f,’s € {1,2}. Since Lemma 3.12 is valid with the same proof also
in the present setting, 2y, (1) = Zyi.e(t) — (#Wp*)Zp(z™1) for any ¢ € (0,00) by
Lemmas 2.6 and 3.12, so that the two equalities in (5.10) are equivalent. Thus it suffices

to show the former equality, which can be proved in exactly the same way as Proposition
3.14 on the basis of (SSDF1), (SSDF2) and (GSCDF). O

Proposition 5.8. There exist c5.4,c5.5 € (0, 00) such that for any t € (0, 00),

; 1
0 < 2n(t) — Zp(t) — Za,je{o,l}d,\alzl Z(J)’s(f) < csqexp(—csst”T). (5.11)
s~y

Proof. SetZy:={l,...,d}x{0,1} andlett € (0, c0). We see from Lemma 2.12 that
K\Hz,
Zn(t) — 2o(r) = / (pee. ) = p 0 () () (5.12)

= [ X E e o e dute)

P#ICToACT
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K\H.
S [ K Hdrendi )

P#ICZy

Z K\Hz,\z
ICTo, (k.0),(k.1)€Z for some ke{l,....d} [ Pt

v
+ Zﬁ,je{o,l}d,\5|21,8—1(0)Cj_1(0) /K ot (XK Heshesrez; ) dp(x)

_ Z K\Hz,\1
= Zuzczy, (k,0),0, 1) for some ke{1,....d} Jx P!

78
+ Za,je{o,l}d, 181=1,8—1(0)C,j—1(0) Zo" (1),

which together with Proposition 2.7 and Theorem 4.8 easily implies (5.11), similarly to
the proof of Proposition 5.6. O

(x, xHK \ Hk,s}(k,s)el’)d//«(x)

(x, xHK \ Hk,s}(k,s)eI)d//«(x)

Proof of Theorem 4.10. (4.2) for Zp with strictly positive Gp,o, —Gp,1 1S just a special
case of Theorem 4.14 withi = ¢ = O« and m = 0. Theorem 4.14 and Proposition 5.8

together imply (4.2) for 2w, lim, o £9%/9% (Zx () —2Zp(¢)) = 0 and hence Gy,o = Gpp.

To prove ny'Gn.1 = n5'Gp g, let § € {0, 1}9 satisfy |§| = 1 and let j € {0,1}.
Then in view of (4.2) (with Gn,0 = Gp,o) and Theorem 4.14, we easily see from
Propositions 5.7 and 5.8 that Gn1 = Gp,1 + 2d G(’)“’l, and from Proposition 5.6
with i = ¢ = Oge and m = 0 and Proposition 5.7 that Zp(¢) — tdo/dvg(v1) —
nl,ozg‘g"g(n) = o(t=4/4) ast | 0, whence (z%/% — r0/dw)Gp | = nl,oGé‘s"g’l;
hereny o :=#{F,(KNHys) |ieS, ke{l,...,d},s €{0,1}, F;(KN Hy) ¢ Vo}
which is easily seen to be equal to —np#(S \ (Z9~! x {0})). Thus we obtain

Gpi =npGy""  and Gy = Gpy +2dGJ0" = nnGP (5.13)

so that ng'Gn,1 = Gé”’l = n5'Gp,1, completing the proof of Theorem 4.10. O
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