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Abstract

Given a self-similar Dirichlet form on a self-similar set, we first give an estimate on the
asymptotic order of the associated eigenvalue counting function in terms of a ‘geometric
counting function’ defined through a family of coverings of the self-similar set naturally
associated with the Dirichlet space.

Secondly, under (sub-)Gaussian heat kernel upper bound, we prove a detailed short
time asymptotic behavior of the partition function, which is the Laplace-Stieltjes trans-
form of the eigenvalue counting function associated with the Dirichlet form. This result
can be applicable to a class of infinitely ramified self-similar sets including generalized
Sierpinski carpets, and is an extension of the result given recently by B. M. Hambly for the
Brownian motion on generalized Sierpinski carpets. Moreover, we also provide a sharp
remainder estimate for the short time asymptotic behavior of the partition function.
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1. Introduction

Mathematical analysis on fractal spaces began when Goldstein [19] and Kusuoka
[31] had constructed the Brownian motion on the Sierpinski gasket (Figure 1.1 below),
whose transition density (heat kernel) has proved to be subject to the two-sided sub-
Gaussian estimate by the result of Barlow and Perkins [8]. Since then many results have
been obtained concerning the spectra of Laplacians on self-similar sets. For example,
let {A\3G}, cn be the non-decreasing enumeration of the eigenvalues of the Laplacian
associated with the Brownian motion on the Sierpinski gasket, where each eigenvalue is
repeated according to its multiplicity. The corresponding eigenvalue counting function
is defined by

NSG(Z‘) = #{n eN | )\EG < J,‘} (11)

for each z € [0, 00), where #A denotes the number of all the elements of a set A. By the
results of Fukushima and Shima [18], Kigami and Lapidus [30] and Barlow and Kigami
[10], there exists a log 5-periodic right-continuous discontinuous function G : R — (0, 00)
with 0 < infr G < supyp G < o0, such that

Nsa(z) = 2%/2G(log z) + O(1) (1.2)

as © — 0o, where dg := log 9/ log 5.

This result is in remarkable contrast to Weyl’s theorem [35, 36] for the Dirichlet
Laplacian on bounded open subsets of Euclidean spaces in two important points, as
suggested in the early 1980s by Physicists, e.g. Rammal and Toulouse [34] and Rammal
[33]. First, the ratio 2~%/2Ngq(z) is bounded away from 0 and co but does not converge
as x — oo. Secondly, the number dg, called the spectral dimension of the Sierpinski
gasket, is different from its Box-counting dimension (and the Hausdorff dimension) dy =
log 3/log 2 with respect to the Euclidean distance; ds < dy. By [30, 10], the same kind
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Figure 1.1: The Sierpinski gasket Figure 1.2: The Sierpinski carpet

of result is known to be valid for nested fractals, a class of finitely ramified self-similar
sets.

The purpose of this paper is twofold. First, we give a geometric characterization of
the spectral dimension dg based on a framework due to Kigami [28]. Secondly, we prove
the same kind of asymptotic behavior as in (1.2) of the partition function, the Laplace-
Stieltjes transform of the eigenvalue counting function, for the case of infinitely ramified
self-similar sets such as the Sierpinski carpet (Figure 1.2). All our results are applicable
to a class of infinitely ramified self-similar sets including generalized Sierpinski carpets
(see [6, 7]), but in this introduction we illustrate the main results by treating the case of
the Sierpinski carpet as a particular example.

Let {Fi}ics, S :={1,...,8}, be a family of similitudes on R? as described in Figure
1.3 below, where the whole square denotes [0,1]2. The Sierpinski carpet K is defined
as the self-similar set associated with {F;};cg, that is, the unique non-empty compact
subset of R? such that K = J,cg Fi(K). Let Vg := [0,1]*\ (0,1)?, which should be
regarded as the boundary of K: In fact, V) is the smallest subset of K that satisfies
F,(K) N F;(K) = F;(Vo) N F;(Vp) for any distinct 4,5 € S. As #Vh = oo, K is infinitely
ramified.

Let v be the self-similar measure with weight (1/8,...,1/8). By the results of Barlow
and Bass [1, 2, 3, 4] and Kusuoka and Zhou [32, Section 8], there exists a regular Dirichlet
form (£, F) on L?(K,v) satisfying F C {u | u : K — R, u is continuous}(=: C(K)) and
such that

1
E(u,v) =Z—E(UOE,UOE), u,v € F (1.3)

i€S "
for some r € (0, 1) (note also the recent result [7] on uniqueness of such (€, F)). Moreover,
by looking at [32, Theorems 4.5, 5.4, 6.9 and 7.2], we easily verify that (£,F) is a
resistance form on K whose associated resistance metric is compatible with the original
(Euclidean) topology of K. (See [27, Chapter 2] and [29, Part I] for basic theory of
resistance forms.) Let p be a Borel probability measure on K which is elliptic, i.e. there
exists v € (0,00) such that p(Kwi) > yu(Kw) for any w € U,,enuq0y S™ (= Wi) and
any i € S, where Fy, := Fy, o---0F, and K, := F,(K) for w = w; ... w, € W,.
Then by [29, Corollary 5.4 and Theorem 8.4], (€, F) is a regular Dirichlet form on
L?(K, ). Also, (1.3) implies the strong locality of (£,F). This Dirichlet space (£ :=

(K,S,{Fi}ics), p, €, F,r) is the framework of our study.
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Figure 1.3: The similitudes {F;};cs Figure 1.4: The weight (u;)ics

To explain our first main result, let us define several notions concerning the description
of the geometry of the space (L, p, &, F,r). Let |w| := m for w = wy...wy, € S™,

m € NU{0}. Set g(w) := /rl*Iu(K,) for w € W, and define
As:={wr... wpn € Wy | g(wr... wp—1) >8> glwy...wn)} (1.4)

for s € (0,1], with the convention that g(wj ... wm—1) = 2 when m = 0. g is called
the gauge function and the collection 8 := {As}e(0,1] is called the scale, respectively,
associated with the Dirichlet space (L, u, E, F,r). We regard each K,,, w € A (or strictly
speaking, the union K (A, K,) := J{K, | v € As, K,NK,, # }}) as a ball of radius s.
There may not be an associated distance, but under certain conditions we can associate
a gdistance d adapted to § (see Subsection 2.4 below and [28, Section 2.3]) so that, for
some ¢y, ¢y € (0,00), each K(O(A,, K,), s € (0,1], w € A, is comparable to metric balls
with respect to d of radii ¢;s and cos. It is clear that K = UweAs K,,. Also for distinct
w,v € Ay, we see that K, N K, = F,(Vo)NF,(Vp), that is, K,, and K, intersect only on
their boundaries. In this sense, {K,, | w € A;} may be thought of as a covering of K by
‘balls of radius s’ with small overlaps. Now our first main theorem (Theorem 4.3) together
with Proposition 4.4 yields the following statement. Let Fo := {u € F | u|y, = 0} and
let Hy (resp. Hp) be the non-negative self-adjoint operator on L?(K, i) associated with
(57‘7:) (resp. (€|.7:0><.7:0af0))'

Theorem 1.1 Let Ny (resp. Np) be the eigenvalue counting function of Hy (resp.
Hp). Then there exist ¢1,c2 € (0,00) and § € [1,00) such that for any x € [, 00),

Cl#Aw_1/2 S ND(it) S NN(x) S CQ#AI—1/2. (15)

Note that Hy and Hp have compact resolvents by [29, Lemma 8.6] (we will give a direct
proof of this fact in Section 4). Hence Ny and Np can be defined in the present situation.
The important point about Theorem 1.1 is the generality of the measure p: The
only assumption on i is that it is elliptic, and in particular p need not be a self-similar
measure. With such a weak assumption, we have a geometric description (1.5) of the
asymptotic order of Ny (x) and Np(z) as x — oo. On the other hand, if p is a self-similar
measure on K with weight (u;);cs, then we can easily show the following estimate of

#A,:
s7I5 <HA, <Ts™ %, s5€(0,1], (1.6)
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where ds (€ (0,00)) is the unique d € R that satisfies >, g(rp;)¥/? = 1 and T' :=
(minjes ;) ~%. By (1.5) and (1.6), we may call ds the spectral dimension of the Dirichlet
space (L, p,E,F,r), and we have a geometric characterization (1.6) of ds.

Next we turn to the second purpose of this paper. In the rest of this introduction, u
is assumed to be a self-similar measure on K with weight (u)ics € (0,1)%, 3o i = 1.
Unfortunately, it seems extremely difficult to verify directly an asymptotic behavior
similar to (1.2) of N, for b € {N, D} in the present case, as K is infinitely ramified. But
since it may be possible to make use of arguments on the corresponding diffusion process
and heat kernel estimates, there is some hope of proving a result similar to (1.2) for the
associated partition function Zy : (0,00) — (0,00) defined by

Zy(t) := Tr(e ") = Z e~ = / e " dNy(s), (1.7)

neN [0,00)

where {A\!},.cn is the non-decreasing enumeration of the eigenvalues of Hy, b € {N, D}.
In fact, our second main result (Theorem 5.2) and its corollary (Corollary 5.4) lead us
to the following Theorem. Let ~y; := \/rp; for i € S and let dg be as in (1.6).

Theorem 1.2 Assume the following condition on (u;);cs (see Figure 1.4 above):
p1 = p3 = ps = p7, M2 = pe and pg = Us. (1.8)

Then we have the following statements.
(1) Non-lattice case: If ), ¢ Zlog~; is a dense additive subgroup of R, then for b €

{N, D}, t%/27,(t) converges as t | 0, so does x~%/2Ny(z) as x — oo and

. ds/2 R H ds/2
ltllI?(()lt Zn(t) {elf(r)lt Zp(t) € (0,00), (1.9)
. Nn(z) .. Np(z)
Tlingo oy Tlingo o € (0, 00). (1.10)

(2) Lattice case: If ), 4 Zlog~; is a discrete additive subgroup of R with generator
T € (0,00), then there exists a continuous T-periodic function G : R — (0, c0) such that,
forb € {N, D},
1 1

- o(jun) -

ltllrg 12 Zy(t) — G 5 1ogt 0. (1.11)
This theorem is an extension of Hambly’s recent result [21, Theorem 1.1], which concen-
trates on the case where p; = 1/8 for any i € S. The reason for the condition (1.8) is
that, by [28, Theorems 3.2.3 and 3.4.5], it is equivalent to the following (sub-)Gaussian
heat kernel upper bound (UHK): With some 8 € (1,00) and a distance d on K which is
‘adapted to the scale 8’, for any (¢,z,y) € (0,1]x K X K,

Py (z,y) < m exp(_@(M)ﬁ) (UHK)

where {p{" };c(0,00) is the (unique) jointly continuous heat kernel of {e=*#~},c o) and
B (z,d) :={y € K | d(y,x) < r}. (See [29, Theorem 9.4] for existence and continuity
of the heat kernel, and Definition 5.1 for the precise statement of (UHK).) Note that in



6 Naotaka Kajino

(UHK) we allow the cases with strong spatial inhomogeneity: Unless u; = 1/8 for any
i € S, limsup, o (log u(By/s(x,d))) /logt™" and lim inf, | (log p4(By/s (2, d))) /log t—* de-
pend highly on x € K.

The key part of the proof of Theorem 1.2 is to prove that the difference Zy — Zp is
sufficiently smaller, compared with Zy and Zp. In fact, we have the following estimate.

Theorem 1.3 Assume (1.8). Choose dy € (0,00) so that 2% + (max{vs,v4})% = 1.
Then there exists c3,cq € (0,00) such that for any t € (0,1],

cst™ /2 < Zn(t) — Zp(t) < eqt™%/2, (1.12)
Note that dg admits the following estimate; there exists c5, cg € (0,00) such that
css 0 <H{w e Ay | K NVy #0}) <ces ™, se(0,1]. (1.13)

In this sense we will call dy the cell-counting dimension of Vi with respect to the scale 8.
Since we have a trivial lower bound Zn (t)—Zp(t) > 0,t € (0, 00), the upper inequality
of (1.12) suffices for the proof of Theorem 1.2, and it is a special case of Theorem 5.11.
Note that the lower bound in (1.12) is new even when p; = 1/8 for any i € S, and
essentially as its corollary, the following sharp remainder estimate also follows.

Theorem 1.4 Suppose p; = 1/8 for any i € S and let G : R — (0, 00) be as in Theorem
1.2(2). Then there exist c7,cg € (0,00) such that for any t € (0,1],

1 1
ert™h0/? <26 (S log 5) = Zp(t) < est™/. (1.14)

Theorem 1.3 is a special case of Theorem 7.7, which may be seen as the third main
result of this article. In fact, Theorem 7.7 treats the similar lower bound for the case
with Dirichlet (killing) condition on a general self-similar subset of positive capacity.

Finally, we remark that almost all the arguments illustrated so far apply also to any
generalized Sierpinski carpet, which has been defined in [6, 7]. See Section 8 for details.

The organization of this paper is as follows. In Section 2, we introduce a number
of notions, including that of scales and gauge functions, to describe geometry of self-
similar sets. In Section 3, we introduce the notion of self-similar Dirichlet spaces as
the framework of our spectral analysis. We show our first main result (Theorem 4.3)
in Section 4. Section 5 is devoted to the statement and the proof of our second main
theorem (Theorem 5.2) on an asymptotic expansion of the partition function. The key
for Theorem 5.2 is Theorem 5.11, where the sub-Gaussian heat kernel upper bound plays
a crucial role. As a complement to the results of Section 5, in Section 6 we provide
a practical method of calculating the cell-counting dimension of the boundary of self-
similar sets. In Section 7, we state and prove our ‘third main theorem’ Theorem 7.7,
asserting the sharpness as in (1.12) of the order estimate of the partition functions given
in Theorem 5.11. In Section 8, we apply the results of the previous sections to generalized
Sierpinski carpets. Then the paper is concluded by mentioning related open problems.
Finally, the appendix provides a few easy but important facts playing essential roles in
Section 7, which are not suitable to be included in the main text.

Notation. Throughout this paper, we follow the following notations and conventions.
(1) N={1,2,3,...},ie. 0ZN.
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(2) Given a topological space E, let B(E) denote the Borel o-field of E. A measure p
defined on the measurable space (E, B(E)) is called a Borel measure on E. For f : E — R,
we write || flloe = sup,ep |f(z)| and suppg[f] := {z € E| f(x) # 0}. We also write
CE)={f|f:E — R, fiscontinuous}, Co(E) := {f | f € C(E), |flloc < o0}
and C(E) := {f | f € C(E), {z € E | |f(z)| > 6} is compact for any § € (0,00)}.
Moreover, for A C E, intg A denotes the interior of A in E.

2. Basics on self-similar sets

In this section, we review basic notions on self-similar sets. See Kigami [28, Sections
1.1, 1.2, 1.3 and 2.3] for details and proofs.

2.1. Scales on the shift space

First we define the notion of scales on the shift space and state their basic properties.

Definition 2.1 (Words and shift space) Let S be a non-empty finite set.

(1) We define W, (S) := S™ :={wy...wp, | w; € Sfori=1,...,m} for m € N, and
Wo(S) := {0}, where @ is an element called the empty word. We also set W4 (S) :=
Umen Wi (S) and W, (S) := Wy (S) U {0}. For w € W.(S), the length of w, which is
denoted by |w|, is defined to be the unique m € N U {0} satisfying w € W;,(5).

(2) For w = wy ... wy € Wi(S), v=0v1...0, € W,(5), we set wv := w1 ... wpv1 ...V,
Also for w!, w? € W,(S), we define

w' < w? if and only if w' = w?v for some v € W,(S), and

w' < w? if and only if w! < w? and w! # w?

(3) For w = wy ... wy, € Wg(S), we write wi_1] := w1 ... Wp_1.
(4) The (one-sided) shift space with symbols S is defined by

2(9) := SN :={w = wiwows -+ | w; € S for any i € N}.

For each i € S, we define o; : 3(S) — 2(S5) by 0;(wiwaws . ..) = iwjwows . ... We also
define o : 32(S) — 3(S) by o(wiwows ...) := wawswy .... For w = wy ... w, € W.(9),
we Write 0y := 04, 0. ..00y, and X, (S) := 0, (2(9)).

Note that < is a partial order on W, (S5).

We fix a non-empty finite set S in the rest of this subsection. We will write W,,, Wi,
¥ and so forth instead of W,,(S), W, (S) and ¥(S) when no confusion can occur.

We consider ¥ to be a topological space with the product topology inherited from
the discrete topology of S. With this topology, ¥ is a compact metrizable space.

Definition 2.2 (Partitions) (1) Let A be a finite subset of W,. We call A a partition
of ¥ if and only if ¥, N3, = 0 for w,v € A with w # v, and ¥ = |J,,cp Zw-

(2) Let Ay and Az be two partitions of . Then we say that A; is a refinement of Asg,
and write A; < Ao, if and only if each w! € A; admits an element w? € A, such that
wt < w2,
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Note that the relation <, which is defined on the collection of all partitions of X, is a
partial order. Note also that, for w,v € W, ¥, N X, # 0 if and only if either w < v or
v < w.

Let A; and A, be partitions of 3 with A; < Ay. Then for any w! € A, there exists
a unique w? € A, such that w' < w?. Therefore we can naturally define a mapping
A1 — Ay by w' — w?, with w! and w? as above. This mapping is surjective, hence
#A1 > #As, where # A denotes the number of the elements of a set A.

Definition 2.3 (Scales) Let Ay be a partition of X for any s € (0,1]. Then the family
8 := {As}se(0,1) of partitions of X is called a scale on X if and only if 8 satisfies the
following three properties:

(S1) Ay = Wy, As, < A, for any s1, 82 € (0, 1] with 1 < ss.

(S2) min{|w| | w € As} — o0 as s | 0.

(Sr) For any s € (0,1) there exists € € (0,1 — s] such that Ay, = A, for any s’ € (s,s+¢).

Remark. In Kigami [28], a family § = {As} ¢ (0,17 of partitions satisfying (S1) and (S2)
is called a scale on X, and § is called right-continuous if § satisfies (Sr) in addition. But
since we use only right-continuous scales (in the sense of [28]), we simply call them scales.

Definition 2.4 (Gauge functions) A function g : W, — (0,1] is called a gauge func-
tion on W, if and only if g has the following two properties:

(G1) g(wi) < g(w) for any w € W, and any ¢ € S.

(G2) max{g(w) | w € Wy} — 0 as m — cc.

There is a natural bijection between the collection of all scales on ¥ and that of all gauge
functions on W, as in the following theorem.

Theorem 2.5 (1) Let g be a gauge function on W,. For each s € (0, 1], define
As(g) i=A{w e Wi | g(wi_y)) > 5 > g(w)}, (2.1)

with the convention that g(wi_y)) = 2 when w = (). We also set 8(g) := {As(g)}se(0,1)-
Then 8(g) is a scale on . We call 8(g) the scale induced by the gauge function g.

(2) Let 8 = {As}se(0,1] be a scale on ¥.. Then there exists a unique gauge function ls on
W, such that 8§ = 8(lg). We call ls the gauge function of the scale 8.

By this theorem, we can identify a scale on ¥ with its gauge function.
Next we define some regularity conditions for scales.

Definition 2.6 (Elliptic scales) Let 8 = {As},c(0,1) be a scale on ¥ and [ be its gauge
function. We consider the following two conditions on &:
(EL1) There exists 81 € (0,1) such that {(wi) > B1l(w) for any w € W, and any i € S.
(EL2) There exist f2 € (0,1) and k& € N such that [(wv) < fal(w) for any w € W, and
any v € Wy,.

8 is called elliptic if and only if its gauge function [ satisfies both (EL1) and (EL2).

The following proposition, which asserts a doubling property of the function (0,1] 3 s +—
#A for a scale {As}se(0,1), is fundamental for the results in Section 4.
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Proposition 2.7 Let 8§ = {A }c(0,1] be a scale on ¥ whose gauge function | satisfies
(EL2) and let 32 € (0,1) and k € N be as in (EL2). Then #Agp,s < (#S)*#As and

#As < (#Ap,)s™ @ for any s € (0,1], where a := —(klog #5)/ log B2 (€ [0, 00)).

Proof. Let s € (0,1]. For any w € Ay and any v € Wy, we have {(wv) < fBal(w) < fas
by (EL2) and Theorem 2.5. Therefore there is a unique 7 € Ag,s such that wv < 7.
Thus we can define a mapping 7 : A;x Wi, — Ag,s by n(w,v) := 7, with w, v, T as above.

Let 7 € Ag,s. Since Ag,s < A; we can choose w € A; and v € W so that 7 = wv. If
|| > k+1, then I(7[_q]) = l(wvj_1)) < Bol(w) < B2s, which contradicts 7 € Ag,,. Hence
|v| < k. This shows that 7 is surjective, and #Ag,s < (#5)*#A; follows.

Let £ := max{j € NU{0} | s < #}. Then B < f;%s < 1. Therefore £ <
(log 5)/ log B2 and #A, < (#9)F 4, < (#5)F198 /108 P2y "= (HD,)s0. W

Finally we define the notion of self-similar scales and prove a basic asymptotic prop-
erty of these scales.

Definition 2.8 (Self-similar scales) Let a = (;)ics € (0,1)°. Define a gauge func-
tion go on Wi by go(w) := auy, where auy, . aw,, := Quy, - - - Qup,,, for wy ... wy,, € W,. Also
let 8(ar) = {As()}se(0,1) be the scale induced by go. We call §(cx) the self-similar scale
with weight c.

Clearly, any self-similar scale is elliptic.

Proposition 2.9 Let a = (a;)ies € (0,1)° and let d(c) (€ [0,00)) be the unique d € R
that satisfies Y, g af = 1. Set a := min;eg ;. Then for any s € (0,1],

57U < #A (o) < a”H) gmdle) (2.2)

Proof. We will write As; and d instead of As(a) and d(e) in this proof. Let u be the
Bernoulli measure on ¥ = SN with weight (a?);cs. Let s € (0,1]. By Theorem 2.5,

Qup_y > § > uy, hence as < ayy < s, for any w € A;. Since X = UwGAS Y. (disjoint),
(as)i#A, = Z (as)? < Z ad (z Z p(Eyw) =p(X) = 1) < Z st = s,
wEAg wEAg wEAg wEAg

and (2.2) is immediate from this. W

2.2. Self-similar structures and measures

In this subsection we introduce the notion of self-similar structures and recall related
definitions and results.

Definition 2.10 (Self-similar structures) (1) Let K be a compact metrizable space,
S be a non-empty finite set and F; : K — K be a continuous injection for each ¢ € S.
The triple (K, S,{F;}ics) is called a self-similar structure if and only if there exists a
continuous surjection 7 : 3 = X(5) — K such that moo; = Fyom for each i € S.

(2) Let £ = (K,S,{F;}ics) be a self-similar structure. For w = wy ... w,, € W, we
set By = Fy,0...0F,  and K, := F,(K), where Fy := idg for w = 0. We define
the critical set Cz and the post critical set Py of L by Cp := 71'_1(U7;7jes7i¢j (K; N KJ))
and Pg = UX_,0™(Cr), respectively. We also set Vy := Vo(L) := m(Pr). Note that
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P e B(X) and V) € B(K).
(3) We say that L is strongly finite if and only if sup, ¢ x #(7~*(z)) < oo, and that L is
post critically finite (or simply p.c.f.) if and only if #P, < oo.

Given a self-similar structure £ = (K, S, {F; }ics), we always assume #K > 2, and hence
#S > 2, to exclude the trivial case where K is just a one-point set. The set V; is
regarded as the ‘boundary’ of K. In fact, by [27, Proposition 1.3.5 (2)], if w,v € W, and
Y NX, =0 then K, N K, = F, (Vo) N F, (Vo).

We fix a self-similar structure £ = (K, S, {F;}ics) in the rest of this subsection. The
following easy lemma is fundamental for our study.

Lemma 2.11 Assume K # Vj. Set KT := K\ V and K% := F,,(K") for each w € W.,.

Then K[ is an open subset of K and K. c K! for any w € W.,. Moreover, let A be a

partition of ¥ and set Kj§ :=J,ep K& Then K\ Ki = Uy, Fu(Vo)-

Proof. The first two statements follow from Kigami [28, Proof of Theorem 1.2.7], but
we include the proof for ease of the reading. Let w € W, and set m := |w|. Since
K\ K =F,(Vp) U Uvew,\fwy Ko 2 Upew,, Fo(Vo) D Vo, K! is an open subset of K
and Vo C K\ KI. Therefore K ¢ K\ V, = K.

Next let w € A. Then clearly F,, (Vo) C K\ K}, hence F,,(Vo) = F,(Vo) C K\ K} =
K \ K{ by the compactness of K. Therefore |J,c, Fi(Vo) C K \ Ki. The converse
inclusion follows from K = J,,cp Kw = Uper (Kb, U Fu(Vo)) = KA UUyen Fu(Vo). B

The following easy lemma is used (only) in Subsection 7.2.

Lemma 2.12 Assume that K # V. Let A be a partition of 3 and I' C A. Then for any
we AT, Ky, Nintg (Uyer Ko) = 0.

Proof. Let w € A\ T and suppose K, Nintg K(T') # 0. Then U := F; ' (intg K(I)) =
Fujl(Kw N intKK(F)) is a non-empty open subset of K. We have U C Vj since K, N
intg K(T') C Uper(KwNKy) = Uyer (Fu(Vo)NFy (Vo)) C Fu (Vo). Therefore intg Vo # 0,
which contradicts K # Vo by [27, Theorem 1.3.8]. Hence K, Nintx K(I') = (. W

Next we consider some classes of Borel probability measures on K.

Definition 2.13 (1) We define a collection M(K) of Borel probability measures by

M(K) :={u| 1 is a Borel probability measure on K, pu({z}) = 0 for
any € K, u(Ky) > 0 and p(F,(Vp)) =0 for any w € W,}. (2.3)

(2) A Borel probability measure p on K is called elliptic if and only if the following holds:
(ELm) There exists v € (0,00) such that pu(Ky;) > vu(K,y) for any (w,i) € W, xS.

By [28, Theorem 1.2.4], if K # Vj then every elliptic Borel probability measure on K
belongs to M(K).

Definition 2.14 (Self-similar measures) Let (u;)ics € (0,1)% satisfy > ,cq i = 1.
A Borel probability measure p on K is called a self-similar measure with weight (u;)ics
if and only if the following equality (of Borel measures on K') holds:

p=> pipoFy . (2.4)
€S
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Let (pi)ics € (0,1)9 satisfy >°,c g i = 1. If v is the Bernoulli measure on ¥ with weight
(1i)ies, then vor =1 is a self-similar measure on K with the same weight. Therefore there
does exist a self-similar measure with the given weight. See [27, Section 1.4] for details.

Let i be a self-similar measure with weight (u;);cs. If K # Vp, then by [28, Theorem

1.2.7 and its proof], u(Ky) = py and p(Fy, (Vo)) = 0 for any w € W,. In particular, a
self-similar measure with given weight is unique and elliptic in this case.

2.8. Systems of neighborhoods associated with scales
Let £ = (K, S,{F;}ics) be a self-similar structure. In this subsection, we define a
fundamental system of neighborhoods {Us(n) (7,8)}se(0,1) of # € K associated with a scale

8 = {As}se(o,1)- Intuitively, Ut (z,8) is a union of K,,’s over w € Ag which are around

Z. Us(") (z,8) is regarded as a ‘ball of radius s’, although there may not be an associated
distance. See [28, Chapter 2] for existence of such distances. We then introduce the
notion of the volume doubling property with respect to a scale defined in [28, Section 1.3].
This property is closely related with (sub-)Gaussian heat kernel estimate, and will be
mentioned again in Section 5.

In the rest of this subsection, we fix a self-similar structure £ = (K, S, {F;}ics) and
a scale 8 = {As} (0,1 on X.

Definition 2.15 Let I' C W, and A C K.
(1) We set W(I'A) :={w el | KyNA#0} and K(T') :=U,er Ko

(2) Define WO, A) := W(T, A), and inductively, K™(T, A) := K(W™(T, A)) and
W, A) .= W(T, K™(T, A)) forn=0,1,2,....

The following lemma is immediate by the above definitions.

Lemma 2.16 Let A C K.

(1) Let A be a partition of .. Then A C intx (K (A, A)), and for any n € N U {0},
KM (A, A) Cintg (KMHD(A, A)) and WM (A, A) € WEHD(A, A).

(2) Let A;, i = 1,2, be partitions of ¥ with Ay < Ay. Then for any n € N U {0},
K(n) (Al,A) C K(n) (AQ, A)

Definition 2.17 For z € K, s € (0,1] and n € NU{0}, we define A?  := WM (A,, {z})
and US(")(;B,S) = KM(A,, {2}). We write Ay, = AY,, Ki(z,8) = US(O)(x,S) and

s,T)?

Us(x,8) := Ugl)(x, 8). We also set Ag ., := W(Ay, Kyy) for s € (0,1] and w € W,

Clearly, {Us(n)(a:,S)}se(O,l] is decreasing as s | 0 and forms a fundamental system of
neighborhoods of x in K.

Definition 2.18 (Locally finite scales) We say that § is locally finite with respect to
L, or simply (£, 8) is locally finite, if and only if sup{#(As.») | s € (0,1],w € A} < 0.

Definition 2.19 (Volume doubling property) Let p € M(K). For n € NU {0},
(L£,8, 1) is said to satisfy (VD),, if and only if there exist « € (0,1) and ¢y € (0,00)
such that p( m (2)) < eyul m (x)) for any (s,z) € (0,1]x K. We say that p is volume
doubling with respect to 8, or simply (L, 8, ) satisfies (VD), if and only if (£, 8, p1) satisfies
(VD),, for some n € N.
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2.4. Qdistances adapted to scales and cell-counting dimension

Next we introduce the notions of qdistances and cell-counting dimension. We continue
to fix a self-similar structure £ = (K, S, {Fi}ics) and a scale § = {A,}s¢(0,1) on X.

Definition 2.20 (Qdistances) Let E be a set, o € (0,00) and d : ExE — [0,00).
Then d is said to be an a-gdistance on E if and only if d* :=d(-,-)® is a distance on F.
Also d is called a qdistance on E if d is an a-qdistance for some « € (0, 00).

If d is an a-qdistance on E, then E is regarded as being equipped with the topology
given by the distance d*.

Notation. Let d : K x K — [0,00). Then we set B,(z,d) := {y € K | d(z,y) < r} for
any r € K and any r € (0,00). We also set diamgA := sup, ¢ 4 d(y, z) and distq(z, A) :=
infyeca d(z,y) for any x € K and any non-empty A C K.

Definition 2.21 A qdistance d on K is said to be adapted to § if and only if there exist
B1, B2 € (0,00) and n € N such that for any (s,z) € (0,1]x K,

Bg,s(x,d) C U™ (z,8) C Bg,s(z, d). (2.5)

If d is adapted to 8, then {Usn)(x, 8)}se(0,1],0ex May be thought of as real balls. Since

{US(") (7,8)}se(0,1) is a fundamental system of neighborhoods of x, the topology deter-
mined by d is the same as the original one of K in this case.

Lemma 2.22 Let p € M(K), let d be a qdistance on K adapted to 8§ and let n € N be
as in Definition 2.21. Then (L, 8, ) satisfies (VD),, if and only if there exists ¢y € (0, 00)
such that for any (r,z) € (0,00)x K,

1(Bar(z, d)) < cv (B (z, d)). (2.6)

Proof. Note that inf,ec g p(Br(z,d)) > 0 for a fixed r € (0, 00), since z — pu(By(z,d)) is
a (0, 0o)-valued lower semicontinuous function on a compact space K. Now the statement
is straightforward from (2.5). W

Definition 2.23 (Cell-counting dimension) Let n € [0,00) and A C K. We say that
the cell-counting dimension of A with respect to 8 is bounded from above (resp. below) by
n, and write dimg A <7 (resp. dimg A > 1), if and only if sup ¢ (g 1) 8"#W (As, 4) < o0
(resp. inf,e(o,1) 8"#W (As, A) > 0). We call 5 the cell-counting dimension of A with
respect to 8, and write dimg A = 7, if and only if both dimg A < n and dimg A > 7 hold.
Note that n € [0, 00) satisfying dimg A = 1, if exists, is unique.

The notion of cell-counting dimension corresponds to that of box-counting dimension in
the settings of metric spaces. In fact, we have the following proposition.

Proposition 2.24 Let d be a qdistance on K adapted to 8, let A C K and 7 € [0, 00).
For r € (0,00), let N,.(A) be the smallest number N of balls {B,(x;,d)}~; of radius
r that can cover A. Suppose that (L,8) is locally finite. Then dimg A < n (resp.
dimg A > n) if and only if sup,¢ (g1 7"N»(A) < oo (resp. inf,.¢(o1)"N:-(4) > 0).
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Proof. Take 31,2 > 0 and n € N so that (2.5) holds. We may assume that 8; < 1 < (3.
Let s € (0,1]. We choose z,, € K,, for each w € W(A,, A). Then

Ac | Kec U UM@ws)c | Baslwwd),

wEW (Ay,A) wEW (Ay,A) weW (A, A)

50 N3a,s(A) < #W(As, A). Therefore

S inf r"N.(A) < inf s Ag, A), 2.

B WA S it S A) (27)
sup 7"N(A) < 3] sup s"#W (A, A). (2.8)
r€(0,82] s€(0,1]

By (2.8), dimg A < 7 implies sup,.¢ (o 7"N;(A) < oo. Suppose inf,¢ (g 1) 7" N;-(A) > 0
Then A # 0 and N,.(A) > 1 for any r > 0. Therefore inf,cy g, r"N,.(A) > 1 and
inf,.¢ (0,3, 7"Nr»(A) > 0. Now this and (2.7) implies dimg A > 1.

For the converse implications, let M := sup{#A"Jrl | s € (0,1],z € K}. Since (L, 8)
is locally finite, M < oo by [28, Lemma 1.3.6]. Let s € (0,1] and N := N3, 5(A4) and
choose {z;}}¥., C K so that A C va 1 Bgs(@i, d)(C Ui\; U™ (:,8)). If w € W(A,, A),
U™ (2;,8) N Ky # 0, hence w € A7t for some i € {1,..., N}. Therefore W(As, A) C
U VAT and #W (A, A) < 27 1 #A"+1 < MN = MN3g,s(A). This yields

M™1B7 inf s"#W (A, A) < inf  rTNL(A), 2.9
B Jnf S"H#W(As,A) < inf  rNo(A) (2.9)
sup s"#W(As, A) < MpBT" sup r"N,(A). (2.10)

s€(0,1] r€(0,61]

If dims A > 7, then A # 0 and inf,c(g, 1] 7"N;-(A) > 3], which together with (2.9)
implies inf,.c(g,1)7"N;(A4) > 0. On the other hand, by (2.10), sup,¢ 1) r"N-(4) < o0
implies dimg A < . This completes the proof. B

3. Framework: Self-similar Dirichlet spaces

In this section, we introduce our framework of spectral analysis on self-similar struc-
tures, which we call self-similar Dirihlet spaces. See Fukushima, Oshima and Takeda
[17] for basic notions concerning Dirichlet forms on locally compact separable metrizable
spaces.

The following lemma is immediate from the results of Subsection 2.2.

Lemma 3.1 Let (K, S,{F;}ics) be a self-similar structure, p € M(K) and w € W,.
(1) The Borel probability measure u* on K defined by pu* = u(K,)~'poF,, belongs to
M(K), and fK wo Fydu® = pu(Ky)™ ! fK udp for any u : K — [0, 00] Borel measurable.
In particular, if we set pyu = uoF,, for u: K — [—00,00|, then p,, defines a bounded
linear operator p,, : L*(K, u) — L*(K, u%).

(2) If pu is a self-similar measure and K # Vj, then u® = p.

Definition 3.2 For u: K — R, w € W,, define u* : K — R by u% := {“Olg’“ o K<(Kw

Clearly, if u is Borel measurable then so is u® for any w € W,.
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Now we introduce the notion of self-similar Dirichlet spaces. Note that under the
situation of the next definition, we can regard F N C(K) as a subspace of C(K), hence
uoF; (€ C(K)) as an element of L2(K, u) for u € FNC(K).

Definition 3.3 (Self-similar Dirichlet spaces) Let £ = (K, S,{F;}ics) be a self-
similar structure satisfying K # Vp and let x4 be an elliptic Borel probability measure on
K. A (symmetric) regular Dirichlet form (€, F) on L?(K, u) is called self-similar with
resistance scaling ratio v = (r;);es € (0,00)° if and only if the following four conditions
are satisfied:

(SSDF1) uoF; € FNC(K) for any u € FNC(K) and any i € S.

(SSDF?2) For any u,v € F NC(K),

E(u,v) = Z;E(UOE,UOE). (3.1)

,
ies *

(SSDF3) u* € FNC(K) for any i € S and any u € F N C(K) with suppg[u] C K!(:=
K \ Vg, recall Lemma 2.11), where u' is as in Definition 3.2.
(SSDF4) The function g : W, — (0,00) defined by g(w) := /ropu(Ky) is a gauge
function on W, and the scale induced by g is elliptic.

If (£,F) is a self-similar regular Dirichlet form on L?(K, p) with resistance scaling
ratio r = (1;):es, then we call (£, u, &, F,r) a self-similar Dirichlet space.

Remark. (1) For a self-similar Dirichlet space (£ = (K, S, {F; }ies), pt, €, F,x = (r:)ics),
(i) u € M(K) (by [28, Theorem 1.2.4]).

(ii) 1 € F (by the compactness of K and the regularity of (£, F)).

(2) If p is a self-similar measure with weight (;)ics, then (SSDF4) is equivalent to the
condition that r;u; < 1 for any i € S.

In the rest of this section, (£ = (K, S, {F;}ics), 1, &, F,r = (r;)ies) is assumed to be
a self-similar Dirichlet space.

Notation. Set g(w) := \/ryu(Ky) for w € W, and let § = {As}s¢(0,1) be the scale on
% induced by the gauge function g. We write & (u,v) := £(u,v) + [, uvdp for u,v € F.
Also for A € B(K), we write p|a := p|p(a)-

We state several preliminary results on (£, u, €, F,r) needed in the following sections.

Lemma 3.4 (£, F) is a local Dirichlet form.

Proof. Let u,v € FNC(K) with u,v # 0 and supp g [u] Nsuppg[v] = 0. Since supp [u]
and suppg[v] are compact, we can choose m € N so that for each w € W,,, either
K, Nsuppg[u] = 0 or K,y Nsuppg[v] = @ holds. Then by (3.1) we have

E(u,v) = Z i<S'(u0Fw,v0Fw) =0.

rU}

wEW,,

Now the local property of (€, F) follows by [17, Problem 1.4.1 and Theorem 3.1.2]. B
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Definition 3.5 Let U be a non-empty open subset of K. Define
Cu:={ue FNC(K)|suppglu] CU} and Fy:=_Cp, (3.2)

where the closure is taken in the Hilbert space (F,&;). We also set EV 1= &|x,x7,. We
call (€Y, Fy) the part of the Dirichlet form (£, F) on U.

Since u = 0 p-a.e. on K \U for any u € Fyr, we can regard Fyy as a subspace of L2(U, p|y)
in the natural way. Then by [17, Theorem 1.4.2 (v) and Lemma 1.4.2 (ii)], we easily see
that (€Y, Fy) is a local regular Dirichlet form on L2(U, u|y).

Lemma 3.6 Let w € W.. Then u" € Cg: for any u € Cx: and pw(CKi) =Cgi1.

Proof. p,(Ck1) C Cgr is clear by (SSDF1). Conversely if u € Ck 1, then using (SSDF3)
repeatedly, we have u" € Ck:. Hence u =u"oF, € py(Cx:). B

The following lemma is used (only) in Subsection 7.2.

Lemma 3.7 There exist ¢, € (0,00) such that cu(K,,) > s* for any s € (0,1], w € As.

Proof. Since the scale 8 = {As},¢c(0,1) is assumed to be elliptic by (SSDF4), we easily
see that there exists 31 € (0,1) such that g(w) > B1s for any s € (0,1] and any w € As.
It is also easy to show that there exist ¢; € (0,00) and B2 € (0, 1) such that g(w) < clﬁ‘gw‘
for any w € W,. Since p is also assumed to be elliptic, we can choose v € (0,1) so that
p(Kowi) > yu(Ky) for any w € W, and any i € S. Then u(K,) > ~*! for any w € W,.
Now set « := (log~)/log B2 (€ (0,00)) and let s € (0,1] and w € A;. Then

Bis < g(w) < e By = eyl <oKL) Ve

Thus (¢1/61)*u(Ky) > s> R

4. Spectral and geometric counting functions

Now we start to study spectral properties of self-similar Dirichlet forms. In this
section, we state and prove our first main result (Theorem 4.3). Throughout this section,
let (£ = (K,S,{Fi}tics), i, E,F,xr = (7i)ies) be a self-similar Dirichlet space and § =
{As}se(0,1) be the scale induced by the gauge function g : w +— /7 u(Ky).

First we define the eigenvalue counting and partition functions of a non-negative self-
adjoint operator on a Hilbert space. Note that, in the present setting, L?(U, u|y) is an
infinite-dimensional separable Hilbert space for any U C K non-empty open.

Definition 4.1 (Eigenvalue counting and partition functions) Let H be a non-
negative self-adjoint operator on an infinite-dimensional separable Hilbert space H.

(1) The partition function Zg of H (or of the contraction semigroup {e~"},c (g «) or of
the corresponding closed form on H) is defined by Zy(t) := Tr(e~ '), t € (0, 00).

(2) Suppose that H has compact resolvent and let {\2}, cy be the non-decreasing enu-
meration of the eigenvalues of H, where each eigenvalue is repeated according to its
multiplicity. The eigenvalue counting function Ny of H is defined by

Np(z):=#({neN| X <z}), 2€]0,00), (4.1)
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and then we have the following equalities for Zp:

Zg(t) = Tr(e ) = Z e~ = / e "dNy(s), te(0,00). (4.2)

neN [0,00)

Note that Ny (z) < oo for any = € [0, o0) since lim, o, A2 = oo, and that Zy is (0, 00)-

valued, strictly decreasing and continuous provided Zp(t) < oo for any ¢ € (0, 00).

Notation. Let Hy (resp. Hp) be the non-negative self-adjoint operator associated with
the closed form (€, F) on L2(K, p) (vesp. (EX", Fyr) on L2(K!, pu|g1)). For b € {N, D},
if Hy, has compact resolvent, then we write A\’ := Ao and N, := Ng,.

Definition 4.2 (Uniform Poincaré inequality) We say that (€, F) satisfies Uniform
Poincaré inequality, (PI) for short, if and only if there exists Cpr € (0, 00) such that

2dut, € po(FNCK)) (PI)

E(u,u) > CpI/ ‘u — "
K

for any w € W,, where @ := [ ¢ udv for a Borel probability measure v on K.

Uniform Poincaré inequality yields the following estimate for the eigenvalue counting
functions Ny and Np, which is the main theorem of this section.

Theorem 4.3 Assume that (£, F) is conservative, i.e. £(1,1) = 0, and satisfies (PI).
Then there exist ¢1,c2 € (0,00) and 0 € [1,00) such that for any x € [, 00),

Cl#Am—1/2 S ND(it) S NN(it) S CQ#Am—1/2. (43)

Remark. In the arguments below, we will prove that Hy and Hp have compact resol-
vents under the situation of Theorem 4.3.

We provide a few simple sufficient conditions for (PI) before proving Theorem 4.3.

Proposition 4.4 (PI) holds for each of the following two cases.

(1) F C C(K), (£,F) is a resistance form on K and its associated resistance metric R
is compatible with the original topology of K.

(2) p is a self-similar measure and there exists Cpr € (0,00) such that

E(u,u) > Cpl/ lu —ﬂ“\zd,u, ue FNC(K). (4.4)
K

Proof. (1) This is immediate by [28, Proof of Lemma B.2]. (See Kigami [27, Chapter
2] and [29, Part I] for the definition and basic properties of resistance forms.)
(2) trivially yields (PI) since p,(FNC(K)) C FNC(K) and p* = p for any w € W,. B

The rest of this section is devoted to the proof of Theorem 4.3. The proof is split into
several lemmas and is based on the so-called minimazx principle or the variational formula
for the eigenvalues of non-negative self-adjoint operators. See Davies [15, Chapter 4] for
details about the minimax principle. We first show the upper inequality of (4.3).
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Lemma 4.5 Suppose that (£,F) is conservative and satisfies (PI). Define
ML) := sup{é’(u, u) ‘ u € L,/ lu|?dp = 1}, L ¢ FNC(K) subspace, (4.5)
K

= inf{\(L) | L is an n-dimensional subspace of F N C(K)}. (4.6)
Let A be a partition of . Then

—1
Agat1 > Opr (ggfrwu(KwD : (4.7)

In particular, Hy has compact resolvent, so does Hp and A, = A for any n € N.

Proof. The statements of the final sentence follows from (4.7) in view of the minimax
principle, Cxr € F N C(K) and (SSDF4), so it suffices to show (4.7). Note that we
may regard p,,(F N C(K)) as a subspace of L?(K,u®) for w € W,. Also, regarded as
subspaces of C(K), p,,(FNC(K)) C FNC(K) by (SSDF1). Under these identifications,
we define

Fnoai={uc L*(K,p) | uoFy, € pu(FNC(K)) for any w € A},

1
ENA(u,v) == Z —E&(uoFy,voFy), u,v€ Fna. (4.8)
rﬂ)
weA
Similarly to (4.5) and (4.6), we set
ML) = sup{é’N’A(u, u) ‘ u € L,/ lu|?dy = 1}, L C Fn, subspace, (4.9)
K
= inf{\(L) | L is an n-dimensional subspace of Fn }. (4.10)

FNC(K) C Fn.a by definition, and ENA coincides with £ on (FNC(K))x(FNC(K))
by (SSDF2). Hence A, > A2 for any n € N.

Let Lo := {> ,cauwlk, | aw € Rforeach w € A}. Note that Lo is a #A-
dimensional subspace of Fy a and SN’A|L0M0 = 0. Let L C Fna be a (#A+ 1)-

dimensional subspace and set L := L + Ly. Then the bilinear form ENA on L is
naturally associated with a non-negative self-adjoint operator A on L by the equality
ENA(u,v) = [; Au-vdp, u,v € L. By the theory of finite-dimensional real symmetric
matrices, the (#A + 1)-th smallest eigenvalue A4 of A is given by

=inf{\(L') | L' is a (#A + 1)-dimensional subspace of L}

where A(L') is as in (4.9). Moreover, the eigenfunction u € L corresponding to A4 is
orthogonal to Ly, that is, fK wo Fdp® = (K, fK udp = 0 for any w € A. We can
normalize u so that [, [u|*du = 1. Then by (PI)

/\(L) > A= EN’A(U,,U) = Z T_E(UOEIMU'OFU) > Cp1 Z / |UOEU| d,uw
weA Y wed

1 Cp1
=0 — 2dp > .
Plig\rwu(Kw) /Kwu o= maXypeA er(Kw)

Taking the infimum over L yields (4.7). B
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Lemma 4.6 Assume that (£,F) is conservative and satisfies (PI). Then there exists
o € (0,00) such that for any x € [1,00),

NN({E) § CQ#Am—l/Q. (411)
Proof. Let s € (0,1]. By (4.7), )‘gl\ﬁ-l > Cp1 (maxwe,\s rwu(Kw))fl > Cprs~2, hence
Ny (Cp1s~2/2) < #A,. We may assume 1 > Cpr/2(=: a). Let x € [1,00) and set

s := a/x (e (0,1]). Then Ny(x) < #A /5,-1/2. Proposition 2.7 implies that there
exists c2 > 0 such that #A 5, < co#fA; for any t € (0, 1]. Thus the result follows. B

Next we prove the lower bound of (4.3).
Lemma 4.7 There exists Cp € (0,00) such that for any w € Wi,

f E(u,u) < Cp .
ueCpruz0 [ |ul2dp = Ty p(Ky)

M (KLY := (4.12)

Proof. Take v € W, so that K, C K!. By the regularity of (£, F) and [17, Problem
1.4.1], there exists u € Cyr such that « > 0 on K and u =1 on K,. Let w € W,. Then
Lemma 3.6 implies that u* € Cg1. By (SSDF2) and the ellipticity of 1,

E(u,u) 1

E(u,u™) E(u,u) E(u,u)
Iy < <
Al(K ) 7‘U| TU)/-‘L(KU)),

v fK |Uw|2dﬂ B Tw fK |uw|2dl/v - rw,u(Kuw)

where v is the constant given in (ELm) (Definition 2.13 (2)). Since u € Cgr and v € W,
is independent of w € W, (4.12) has been proved. B

<

Lemma 4.8 Assume that Hp has compact resolvent. For each w € W, let H,, be the
non-negative self-adjoint operator on L*(K [, |1 ) associated with (5Ki , Frr). Let A

be a partition of ¥ and let Hy be the non-negative self-adjoint operator on L*(K¥, 1l k1)

associated with (5K/I\ , Fi1) (recall Lemma 2.11). Then H,, and Hy have compact resol-
vents. Moreover, if we set Ni1 := Ny, and NKII\ := Npy,, then for any x € [0, 00),

S Nii (#) = Nyt (&) < Np (). (4.13)
weN

Proof. If w € A, then by Fg:1 C .7:K11\ C Fgr and the minimax principle, H,, and Hy
have compact resolvents and the inequality in (4.13) holds. So we show the equality in
(4.13). The self-similarity of (£, F) implies that £(u1,u2) = 0 for any w; € A, i = 1,2
with wy # we and any w; € Fgr ,i=1,2.

Let w € A and u € Fgr. Since K\ Kl = F,(Vp) U Ureafuy Kro (Lw ==)Kw N
suppg[u] C K. Therefore u-1xr € C(K) and suppglu-1x:] C L, C K. Since
Ly, is compact and K is open in K, we may take ¢, € F N C(K) such that ¢, > 0,
Pwlr, =1 and @u|g\ g1 = 0 by [17, Problem 1.4.1]. Then u-1g: = u-¢p, € F by [17,
Theorem 1.4.2. (ii)], hence u-1x1 € Crei . It follows that Cxr = €D, Cxz, Where Ckr,
w € A are orthogonal to each other with respect to both £ and the inner product of
L?(K, ). Therefore taking the closure of both sides in the Hilbert space (F,&;) leads
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to the equality FK/{ =DP,ea Fr1 and again Fgr, w € A are orthogonal to each other
with respect to both £ and the inner product of L?(K, u). This fact immediately implies
that each eigenspace of Hy is the direct sum over w € A of those of H,, with the same
eigenvalue. Now the desired equality is obvious. B

Lemma 4.9 Suppose that Hp has compact resolvent. Then there exist ¢; € (0,00) and
d € [1,00) such that for any x € [§, 00),

Cl#Awfl/z S ND(QT) (414)

Proof. Since the gauge function g of 8§ = {A},c(0,1] is assumed to satisfy (EL1), we
may choose 3 € (0,1) so that g(w) > Bs for any s € (0,1] and any w € A,. Let s € (0,1].
Then by Lemma 4.7, we have

Cp Cp Cp

M(KD) < = <
1Bw) < Tt (Kw) g(w)? = B2s?

for any w € As. Note that under the assumption of this lemma, A (K.) is the smallest
eigenvalue of H, for any w € W,. Now let § := max{CpB=2,1}, € [§,00) and
52 1= §/x. Since x > Cp/B%s*, \(KL) < x and N,(x) > 1 for any w € A;. Hence by
Lemma 4.8,
Np(z) = Y Nu(z) = #As = #A 5,100
weEANAg

By Proposition 2.7, there exists ¢; > 0 such that ¢;#As 1/2 < #A; for any ¢ € (0, 1].
Thus the result follows. B

Proof of Theorem 4.3. Hy and Hp have compact resolvents by Lemma 4.5. Since
Frr C F, the minimax principle shows that Np(z) < Ny(x) for any x € [0,00). Now
the statement is immediate from Lemmas 4.6 and 4.9. Brheorem 4.3

5. Short time asymptotics of the partition function

In this section we assume that (£ = (K, S, {F;}ics), 4, E, F,r = (r;)ics) is a self-
similar Dirichlet space and that 8 = {As},c(0,1) is the scale induced by the gauge function
g w = /ryu(Ky). We also assume throughout this section that p is a self-similar
measure with weight (u;);cs. In particular, 8§ is a self-similar scale with weight v =
(7i)ies, where 7; := \/Tijt;. We set ds := d(v), where d(v) is as in Proposition 2.9 with
a =~. We have ds > 0 since #S > 2, and dimg K = dg by (2.2).

Notation. Let {T¥};c(0,00) and {T{”}1e(0,00) be the strongly continuous contraction
semigroups associated with the closed forms (£, F) on L?(K,u) and (SKI,}"KI) on
L*(KT, p|g1), respectively. For b € {N, D}, let Z, denote the partition function as-
sociated with {T}};e(0,00) (recall Definition 4.1). Note that if {77}1e(0,00) is ultracon-
tractive (see Definition A.1(1)) then by [14, Theorem 2.1.4] H, has compact resolvent
and Zy(t) € (0,00) for any ¢ € (0, 00).

In our case, the (sub-)Gaussian heat kernel upper bound is formulated as follows.
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Definition 5.1 (UHK) We say that the (sub-)Gaussian heat kernel upper bound holds
for (£, u, &, F,r), or simply (UHK) holds, if and only if the following conditions are valid:
The semigroup {7/ };(0,00) has a heat kernel {p} };c(0,00), and there exist 8 € (1, 00),
a (2/8)-qdistance d adapted to 8§ and ¢1, o € (0,00) such that for each ¢ € (0,1],

%e){p(—@(w)ﬁll) pxp-a.e. (z,y) € KxK. (5.1)

N
Py (r,y) <
! (B t
If dimg Vo < dg for some dp € [0,ds), then (UHK) leads us to the following asymptotic
behavior of Z;, which is the main theorem of this section.

Theorem 5.2 (Short time asymptotics of the partition function) Letdy € [0, ds)
and suppose that dimg Vy < dy and (UHK) hold. Then we have the following statements.
(1) Non-lattice case: If 3, g Zlog~; is a dense additive subgroup of R, then t%/2Zy (t)
and t%/2Zp(t) converge ast | 0 and

: ds /2 1 ds /2

lim ¢ 12Zn(t) = lim? 12Zp(t) € (0,00). (5.2)
(2) Lattice case: If ), g Zlog~y; is a discrete additive subgroup of R, let T' € (0, 00) be
its generator. Define m; := —log~;/T (€ N) and p; := 'yfs for eachi € S and let QQ be the
polynomial defined by Q(z) := (1=, g piz™)/(1—2). Set ¢ := min{|z| | z € C,Q(z) =
0} (q:= o0 if @ = 1), m := max{the order of zero of Q at w | w € C,|w| = ¢, Q(w) = 0}
and dy; := ds — T~ 'logq. Then there exists a continuous T-periodic function G : R —
(0, 00) such that, for any b € {N,D}, ast | 0,

O(t*da/Q) if elds—da)T q

B 172G (Log T) = 4 0@ (1og(t™)") if el =g, (53)
O(t—dM/Q (10g(t_1))m_1) if e(ds—da)T > q.

Remark. In the lattice case we have ¢ > 1, and therefore dy € (dy, dg) if elds—do)T - q.
In fact, Q(1) = D> ,cgmipi > D ;egpi = 1. If 3, gpiz™ =1 for z € C with |z = 1,
then the triangle inequality implies that z™¢ = 2™ for any 7,5 € S. Hence z = 1. Also
clearly |, cqpiz™ | <3 ,cqpilz| =|2] <1if z € C and |z| < 1. Thus ¢ > 1.

As a special case of the above theorem, we have the following.

Corollary 5.3 Let dy € [0,ds) and suppose that dimgVy < dp and (UHK) hold. If
i = 7 for any i € S for some v € (0,1), then there exists a continuous log(y~!)-periodic
function G : R — (0, 00) such that, for any b € {N,D}, ast | 0,

Zy(t) — fds/%:(% log %) =O(t™%/?), (5.4)

Proof. Since Y, ¢ Zlogv; = Zlog(y~ '), we are in the lattice case of Theorem 5.2 and
Q = 1 in the notation there. As ¢ = oo > e~ (4=2)1°87 the corollary follows by (5.3). W

In the non-lattice case, we have the similar asymptotic behavior of Ny and Np.
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Corollary 5.4 Let dp € [0,ds) and suppose that dimgVy < dp and (UHK) hold. If
> icg Llog~y; is a dense additive subgroup of R, then x~9/2Ny(x) and 2= %/2Np(x)
converge as ¢ — oo and

. Nn(x) . Np(x)
Jm —o e = im —os

€ (0, 00). (5.5)

Proof. This is immediate from Theorem 5.2 (1) and Karamata’s Tauberian theorem (see
Feller [16, p.445, Theorem 2]). W

The rest of this section is devoted to the proof of Theorem 5.2. The proof is split
into several propositions and lemmas. We first give an easy lemma on the structure of

(&, F).

Lemma 5.5 (SSDF1) and (SSDF2) are valid with F in place of F N C(K). Moreover,
if w € Wi then u € Fgr for any u € Frr and py(Fg1) = Fir.

Remark. If u,v: K — R are Borel measurable and v = v p-a.e., then for any w € Wy,
it easily follows from p* = p that u* = v* p-a.e.

Proof. Let w € W,. Since u = u, p,, defines a bounded linear operator on L?(K, p),
and also on (FNC(K), &) by (SSDF1) and (SSDF2). Let u € F and choose {uy, }nen C
FNCO(K) so that u, — win (F,&). Then u,oF, — uoF, in L?(K, u). Also in (F, &),
{unoFy tnen is a Cauchy sequence and converges to some f € F. Hence uoF,, = f € F
and upoF,, — uokF, in (F, &), which also immediately yields (3.1) for u,v € F.

By the equalities p,(Cx1) = Cxr (by Lemma 3.6), fK{u [ulPdp = p 51 luo FoPdp
for u € L*(K[,pulx1) and E(uoFy,uoFy) = ry&(u,u) for u € Cxr, we easily see that
Pw (.7'}%) = Fgr. Finally, let u € Fgr and choose {uy}nen C Cgr so that u, — u in
(F,&1). Then {u¥}nen C Cxr by Lemma 3.6 and [ [u® —u [Pdp = pu [5 [u—un|*dp —
0 as n — oo. Since 7,€(uY — u¥, uf, —u¥) = E(Um — Un, Uy — Uyp) for any m,n € N,

I
{uy fnen converges to some g € Fi: in (]—'Ki,glK“’) and then v =g € Fg:. B

Lemma 5.6 Suppose that Hy has compact resolvent and let A be a partition of X.
Then
Ngi(x) =) Np(yax) < Np(z) < Ny(z) < > Nu(yaz) (5.6)
weA wEA
for any x € [0, 00). Moreover, there exist c¢1,c2 € (0,00) and § € [1,00) such that for any
x €[4, 00),
crxts/? < Np(z) < Ny(z) < cox®s/2, (5.7)

Proof. Noting Proposition 2.9, Lemma 4.8 and that u(K,, N K,) =0 for w,v € A with
w # v, the same arguments as in [30, Sections 2 and 6] immediately show the lemma. B

Now we turn to estimates of partition functions. We need the following notations.

Notation. (1) We set A°:= K\ A for A C K.

(2) Let U C K be non-empty open. The contraction semigroup on L2(U, u|yy) associated
with (€Y, Fu) is denoted by {T{¥ }1e(0,00)- Suppose {T}¥ }1e (0,00 is ultracontractive. Then
its heat kernel, which exists by [14, Theorem 2.1.4] and is unique up to pxu-a.e., is denoted
by {p{ }ic(0,00)- We always set pf := 0 on K x K\ UxU. Also, Zy(t) := Tr(TY) =
Jrewre (pgj/z)zd(,uxu) (€ (0,00)) denotes the associated partition function.
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Lemma 5.7 Suppose that {TtN}tE(Om) is ultracontractive and let A be a partition of

Y. Then
Zr(h) =Y ZD( ) < Zn(t) < Zn(t Z ZN( ) (5.8)

weA w

for any t € (0,00). Moreover, there exist c1,cz € (0, 00) such that for any t € (0,1],
et™ /2 < Zp(t) < Zn(t) < cat™%/2, (5.9)

I
Proof. By [28, Proposition C.1], {TtD}tE(O,oo) and {TtKA}(tE(O o) ATC also ultracontrac-

tive. Therefore (5.8) is an immediate consequence of (5.6) and (4.2). For ¢t € (0, 1], using
Proposition 2.9, letting A := A ; in (5.8) immediately leads to (5.9). B

In the propositions below we establish important consequences of (UHK).

Remark. In the following Proposition 5.8, Lemma 5.9, Proposition 5.10 and Theorem
5.11 and their proofs, we do not use the assumption that u is a self-similar measure.

Proposition 5.8 Suppose that (UHK) holds. Then

(1) The semigroup {T{ }1e(0,00) I8 ultracontractive.

(2) (L, 8, n) satisties (VD).

(3) (L£,8) is locally finite.

(4) Let d be the qdistance as in Definition 5.1. Then there exists ¢y > 0 such that
cypu(Bs(x,d)) > p(Uys(x,8)) for any (s,z) € (0,1]x K.

Proof. (1) Let t € (0,1]. Since x + u(B, ;(z,d)) is a (0, 1]-valued lower semicontinuous
function on a compact space K, n(t) := infyex u(B s4(x,d)) € (0,1] By (UHK), p{ <
c1n(t)™ uxp-a.e. on Kx K, hence we easily see that || TN |20 < c1n(t)~! for t € (0,1].
Also for ¢ € (1,00), TN o o0 = ITNTY 30 < 1T sl T, oz < T 3—oc
Hence the semigroup {7} }te(0,00) is ultracontractive.

(2) This is proved in exactly the same way as [28, Proofs of Lemma 3.5.5 and Theorem
C.3], based on Lemma 4.7 and with a few slight modifications.

(3) Since 8 is (assumed to be) elliptic, (2) and [28, Theorem 1.3.5] imply the statement.
(4) We may choose n € N, §1 € (0,1] and 5 € [1,00) so that (2.5) holds. Then (2) and
[28, Theorem 1.3.5] imply (VD),,. Therefore there exists ¢y > 0 such that

ev By, d)) 2 ev (U (2,8)) = p(U) (,8) = u(Us(z,))

for any (s,x) € (0,1]x K. This completes the proof. B

Lemma 5.9 Suppose that (UHK) holds and let 8 € (1,00) and a (2/3)-qdistance d be
as in Definition 5.1. Let F and L be closed subsets of K such that F g L C K. Then
there exist ¢1,co € (0,00) such that, with

m exp(—cz(w) [—) (t,2) € (0,1]x K, (5.10)

for any t € (0,1],
0<pf (z,y) —pr (z,y) < B(t,z) + B(t,y) pxp-ae (v,y) € FCxF°, (5.11)

0 < Ze(t) — Zpe(t) < /F (¢, 2)dp(). (5.12)

O(t,x) =
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Proof. By Proposition 5.8 (1) and [28, Proposition C.1], {T}" }1¢(0,00) and {TF }ie(0,00)
are ultracontractive. Therefore the heat kernels {pf’ C}te(o,oo) and {pth}te(o,oo) exist and
Zpe and Zg. are (0, 00)-valued and continuous on (0, 00). Note that 0 < pF* < pf'™ < pl¥
ux p-a.e. for any t € (0, 00), which follows by [28, (C.2)] and a monotone class argument.

Let § > 0 and set Us := {x € F° | distq(x, L\ F) < §}. Then Us is an open subset of
Fe satistying L \ F' C Us. Note that L\ F includes the (topological) boundary of L€ in
Fe. Since (EF°, Fpe) is a local regular Dirichlet form by Lemma 3.4, Grigor’yan’s result
[20, Theorem 10.4] implies that for each ¢ € (0, 00), for ux p-a.e. (z,y) € L°x L¢,

pfc (z,9) —pth(x, y) < sup u—esssuppfc (z,u)+ sup ,u—esssuppfc (v,y). (5.13)
t/2<s<t €U, t/2<s<t vEUs
seQuU{t/2,t} seQuU{t/2,t}

(In fact, [20, Theorem 10.4] may not be true when the right-hand side of [20, (10.12)] is es-
sentially unbounded on some compact subset. It is, however, actually valid in the present
setting, since the function ¢ +— g X p-esssup jey e P ‘s [0, 00)-valued and non-increasing
by [20, Lemmas 3.1 and 3.2].) Moreover, (UHK), Proposition 5.8 and [28, Theorem
1.3.5] imply that there exist ¢y, cyp € [1,00) such that ey p(Bs(z,d)) > p(Us(z,8)) and
evpi(Usya(,8)) > w(Us(x,8)) for any (s, z) € (0, 1] x K.

Let ¢t € (0,1] and s € [t/2,¢]. By (UHK), with ¢1, ¢z € (0,00) as in Definition 5.1, for
ux p-a.e. (r,u) € L°xUs,

0< pf‘“(x,u) < pév(x,u) < mexp<—02(d(%@oz)ﬁ>
S?R%fﬁggiieXp(‘@(§§Eﬁfﬁéﬂi)f1)<=:@@,aan,

which yields p-esssup,, ¢y, pI(x,u) < ®(t, x,0) for p-a.e. x € L. Thus we conclude that

sup p-esssup pl (z,u) < ®(t,x,0) p-ae x € LC.
t/2<s<t,seQU{t/2,t} uEUs

Fe

Also, by the symmetry of pf; i.e. pI'(z,y) = pI* (y,z) for px p-a.e. (z,y) € K x K,

sup u—esssuppfc (v,y) < ®(t,y,0) p-ae ye L.
t/2<s<t,seQU{t/2,t} vEUSs

These estimates together with (5.13) imply pf" (z,y) — pF* (z,y) < ®(t,z,68) + ®(t,y,0)
for puxp-a.e. (x,y) € L°xLc. Now we define ®(t, z) by (5.10) with ¢; replaced by ¢icyevp.
Then limgs o ®(¢,2,8) = ®(t,z) for any x € K. Therefore setting 6 := n~! with n € N
and letting n — oo, we see that (5.11) holds for ux p-a.e. (x,y) € L¢x L. On the other
hand, for px u-a.e. (z,y) € Fx(L\ F),

0<pf (x,y) —pf (2,y) =pf (2,y) < m P <_62(d(x;y)2)ﬁll>

<j%§§%fm(w4§ﬂﬁ%ﬂfly”):¢m@<@wm+¢wm.



24 Naotaka Kajino

Therefore by the symmetry of pf and pZ, (5.11) follows also for u x p-a.e. (z,y) €
Fex Fe\ L¢x L¢. Moreover, (5.11) and the symmetry of pf/cz yield

0< Zre() = Zie®) = [ (ol = plsle ) dlex ()

= /F . (P2 9) + pia(2,9)) (P (@, y) — pia (. y))d(px 1) (,y)
<2 [ Bl (Blt/20) + B(/2.9))dnx 0 ,0)
FexFe

=i [ [ ez <4 [ a/2)dutz),
where we used the fact that [. pf};(-,y)du(y) <1 p-ae. on F°. Now u(U 4(z,8)) <
cVD,u(U\/t/—2(x,8)) leads to (5.12). B

Proposition 5.10 Assume that (L,8) is locally finite. Let dy € [0,00), § € (1,00) and d
be a (2/0)-qdistance adapted to 8. Let A C K be non-empty and suppose dimg A < dg.
Let ¢1,co € (0,00). Then there exists ¢ € (0,00) such that for any t € (0,1],

Jo e (Ce (P Yt <artn sy

Combining Proposition 5.10 with Proposition 5.8 (3) and (5.12), we have the following
estimate, which is the key for the proof of Theorem 5.2.

Theorem 5.11 (Key estimate) Suppose that (UHK) holds. Let F and L be closed
subsets of K such that F C L G K. Let dp € [0,00) and suppose dimg(L \ F)) < da.
Then there exists ¢ € (0,00) such that for any t € (0, 1],

0< Zpe(t) — Zpe(t) < ct=%/2, (5.15)

Proof of Proposition 5.10. First let s € (0,1] and w € Ag. Choose g € Ky \
F,(Vo) (# 0). Then for any € K, \ Fiy (Vo), Ks(,8) = Ky = Ky(x0,8) and Us(z, 8) =
Uvea, , Kv = Us(wo,8). Since u(Fy, (Vo)) = 0, we have

1 2) = 1 . :,u(Ks(a:O,S))
J. ey /K,i,\Fu,%) WUa0, ) M) = U @0.9)

Choose n € N, 81 € (0,1] and B2 € [1,00) so that (2.5) holds. Let s € (0,1] and
set €4 1= SUPge(q 1] s%o#W (As, A) (< 0o by dimg A < dy) and M := sup{#As . |
s € (0,1],w € As} (< oo by the local finiteness of (£,8)). For 0 < k < n, we set
AQA = W) (A, A) (recall Definition 2.15(2)). Then for 0 < k < n — 1, since A];;l =
W (As;Unenr , Kuw) = Upenr , Assws we have #ATE < M#AL 4. Therefore

<1 (5.16)

H#AT 4 < MPH#AD 4 = M"#W(Ay, A) < caM™s™%. (5.17)
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Let K (A) = UweAg‘A Ku(=U,ea S(")(x,S)). If z € K and distq(z, A) < Bis, then
d(z,y) < f1s for some y € A. Hence x € Bg,5(y,d) C Ul (y,8) C K4(A). Therefore
distq(z, A) > fis, z € K\ Ks(A). (5.18)

Recall that § is (assumed to be) elliptic. Therefore we may choose cs € (1,00) so
that g(w) < s < csg(w) for any s € (0,1] and any w € A;. We also easily see that there
exists c4,7 € (1,00) such that g(wv) < eqy~1Ylg(w) for any w,v € W,. Moreover, by
Proposition 2.7 there exist cs, « € (0,00) such that

#A; <css™,  s€(0,1]. (5.19)

Let N := N(s) := max{k € NU{0} | 2¥s < 1}, and for 0 < k < N let ¢¥ : Ay — Ay,
be the natural surjection, so that w < ¢§(w) for any w € A;. Let 0 < k< N and w €
Agig. To estimate #((¢5) 71 (w)), let v € (¥) 7 (w). Then v < w, g(w) < 2%s < cag(w),
g(v) < s < e3g(v) and g(v) < egy”WI=1wDg(w). Therefore yI*I=1*l < ¢yg9(w)/g(v) <
cs2Psc3s™! = c3¢42%, hence |v| — |w| < |(klog2 + logcscy)/logv|(=: £1), where |a] :=
max{j € Z | j < a} for a € R. Hence by setting c5 := (#5)'Togcsca)/logv /(4G _ 1)
and T := 2008 #9)/1087 we have # ((¢F)"H(w)) < (#9)*+1/(#S — 1) < 5T for any
w € Agkg. Then by (5.17),

#((d}g)_l( g’“s,A)) = Z # )) < C5F #AQICS A
wEAzk A (520)
< C5chAM"(2ks)_d8 = C5CAM”(2_d8I‘)ks_d8.

Note also that

Kpo(A)= | Ku= |J U K= U Ko.  (5.21)

wEA, A weAD, - ve(PE) T (w) we(¢Pk)- 1(A2,Cé A)

Now let ¢ € (0,1], N := N(v/t) and let ®(¢,z), (t,x) € (0,1]x K, be the integrand in

the left hand side of (5.14). Since 2V*1/t > 1, the observations (5.16), (5.17), (5.18),
(5.20), (5.21) and (5.19) yield the following estimate:

| att.o)inta)

K

[ etaa@+ Y [ Ot a)du(e) + [ Blta)dula)
K ;(A) 0<k<N Y Kok g (A\Ksk—1 5(A) K\K,N 7(A)

Fog k=t
/ c exp(—czﬁf’% —1)
(

Ko p(ANEgi 1 (1) U (,8))

C1
< ——————du(x) +
/Kﬂ(A) M(U\/z(ffas)) 0<§£N

C1 ) +1 %11
+/K\K2N\H(A) me@(_@(gl/m t7 )dﬂ(x)

c1 ex czﬁf%lll%
Z /K dule) + 2 / u (U (@.9)) )d“(‘”)

weAT, w H U\f z,8) ) 0<k<N
we@hs) " (AL 7 )
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+ 3 / D] exp(—cz(ﬁf/z;)ﬁ%t%)dﬂ(x)

wGA\/—

Sa#Al; ,+ Z c1 exp(—czﬂszlé%i)#(wiﬂ/i)fl([\gkﬁﬁ))

0<k<N
+c1 exp (-Cz(ﬂ%/4)"+lt%) #A

< creaMm /2 Z clc5cAM"(27daF)kexp( CQQT = )t do/2
0<k<N

T exp(—02 (55/4)[%1”%)

—ds/2
< ct~d0/?,

where ¢ € (0,00) is a constant determined solely by the constants given in the assump-
tions. Thus the proof is complete. BMp oposition 5.10

Proof of Theorem 5.2. Since Zy = Zx = Zyc and Zp = Zgr = Z(%)C’ Theorem
5.11 implies that there exists ¢y € (0, 00) such that for any ¢ € (0, 1],

0< Zn(t) — Zp(t) < ct—d/2, (5.22)

Let v := min;e5 ;. By (5.8), for any t € (0,72],
02200 S n() £ () ~20()) 2wt

On the other hand, 0 < Zp(t) = Y,c5 Zp(t7; )<ZD (t) < Zp(v?) for any t € [2, o).

<.

Therefore if we set ¢z = max{co(#S), Zp(v?*)}, then
t
0< Zp(t ZZD(? gt/ e (0,1]. (5.23)

€S

Define ¥ p(z) := max{0, Zp(z~!) — Zp(1)} for each z € (0,00). Then ¥p(x) = 0 for
any z € (0,1]. Moreover, by (5.23) we easily see that

0<¥p(x Z\IID Vi) < cxdo/? (5.24)
i€S
for any x € (0, 00), with a different constant ¢ € (0, c0).

We closely follow [27, Proof of Theorem 4.1.5] in the rest of this proof. Define f(t) :=
eI (e?!) and u(t) = e B (Up(e?) — 3,cs Un(y2e?)) for t € R. f and u are

bounded and continuous. Letting p; := *yl‘.is for i € S, so that ) ,_¢p; = 1, we have the
following renewal equation

t)=> pif(t—log(h ") +u(), teR. (5.25)
i€S

We have f(t) = u(t) = 0 for any t € (—o0,0], and (5.24) yields 0 < u(t) < ce~(ds—da)t
for any ¢ € [0, 00). Since we assume that dg — dy > 0, all the conditions required for the
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renewal theorem [27, Theorems B.4.2 and B.4.3] are satisfied (see also Feller [16, Chapter
XI] for the renewal theorem). Thus, for the non-lattice case, we have

i 1) = (X 107) [ uloe (e ®)
€S

t—o0

and this means that t%/2Zp(t) converges as t | 0. limgot95/2Zp(t) € (0,00) by (5.9).
(5.22) implies that t9s/2Zy(t) also converges to the same limit as ¢ | 0.

For the lattice case, it is clear that the series } ., u(- + jT') is uniformly absolutely
convergent on every compact subset of R, hence the function G on R defined by G(t) :=
szez u(t + 47T), t € R, where (]\7)_1 i= Y _icg Mipi, is T-periodic and continuous.
By [27, Theorem B.4.3], lim;.o |G(t) — f(¢t)] = 0, and this is clearly equivalent to
limy g [t%/2Zp(t) — G(27 log(t™1))] = 0. Then (5.9) implies that G is (0, oc)-valued.
Moreover, [27, Theorem B.4.3] leads also to the following estimate of | f(t) — G(¢)|:

O(ef(dsfda)t) if elds—do)T ~ q
Ast — o0, |f(t)—G()| = O(tme=lds=do)t)  jf elds=do)T — ¢, (5.26)
O(tm_lq_t/T) if elds=do)T ~ ¢

Now all the statements for the lattice case are obvious from (5.22) and (5.26). BTheorem 5.2

6. Rational boundary and cell-counting dimension

This and the next sections are devoted to giving some complementary statements
concerning the main result of the previous section (Theorem 5.2) and its proof. In this
Section 6, we provide a practical method of calculating the cell-counting dimension of
self-similar subsets with respect to a self-similar scale. We also see that the inequality
dimg Vj < dg is valid for all typical examples.

Let S be a non-empty finite set.

Definition 6.1 Let X be a non-empty finite subset of Wy (= W, \ {0}).
(1) We write w = (w)1 ... (w)y| for any w € Wy. We define tx : X(X) — X = X(5)
and oY : W.(X) — W, = W.(S) to be the natural identifications, that is,

tx(mize...) = (21)1. . (21))2y (T2)1 - (22) |2 oo ,
L‘)}(V(arl e Z) = (1)1 -+ (xl)m‘ coi(@m)1 - (xm)m”.
(2) We set B[X] 1= 1x(X(X)) and X, [X] := 0, (Z[X]).
(3) X is called independent if and only if tx is injective. Clearly, If X is independent

then (¥ is also injective. Accordingly, when X is independent, we will often identify
Ty ... Ty € Wo(X) with Y (z1...2,,) € W, and %(X) with X[X] through ¢x.

Note that, for X C Wy non-empty finite, 3[X] is compact since ¢x is continuous.
Below we collect basic facts on X[ X], where X C W is non-empty finite and x € W,.

Definition 6.2 (1) Let ¥y C ¥ be non-empty and x € W,. For each w € X, we define
Oz .0(w) := #({n € NU{0} | 0"w € 0,(20)}), where we allow oo as a value of Ox, o (w).
(2) Let X C Wy be non-empty finite and let x € Wy. We define
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Ax o (w) == {(z, 20,21, ..., 2m) | m e NU{0}, z € W,,z0 =z,

Tlyeooy Tm € X, 22021 ... Ty S W < ZTQTY - . Typ—1}
for each w € W,, with the convention that zzgxy...2,_1 =: 2 when m = 0.

Definition 6.3 A subset X of W is called separated if and only if it is non-empty,
finite and independent and satisfies O x),,(w) < oo for any w € ¥ for some y € W.
By [28, Lemma 1.6.3], sup,,cw. #(Ax,y(w)) < oo in this case.

The following lemma is useful for concrete examples, and is easily proved.

Lemma 6.4 Let Sy & S be non-empty, let X C Wx(S1) be non-empty finite and
x € Wx(S\ S1). Then supcyx, Os(x] (w) = 1.

Lemma 6.5 Let 8§ = {A },c(0,1] be a scale on ¥ with gauge function I, let X C Wy be
separated with y € Wy as in Definition 6.3 and set M := sup,cy, #(Ax,y(w)) (< 00).
For s € (0,1], define

A;[X] = {w € A | X QE[X] # @},

6.1
A(X)i={z1...xpm e Wu(X) | U1 . Ti—1) > s > U1 ... 20) } (6.1)

with the convention that l(x1 ...%m—1) = 2 when m = 0. Then for any s € (0, 1],
B0,[X] < #0,(X) < M#A[X]. (6.2

Proof. Let s € (0,1] and let = 21 ... 2, € As(X). Since l(z) < s, there exists a unique
o(x) € As such that z < p(z). Clearly p(x) € As[X], and we have a map ¢ : As(X) —
As[X]. Let w € Ag[X]. Choose x1x2 - -+ € X, NE[X] and let mg := min{m | m > 0, |w| <
|z1...2m|}. Then we see that x1...xm, € As(X) and p(z1...2m,) = w. Hence ¢ is
surjective and #A[X] < #A4(X). Next let 21 ...2,, € ¢~ H(w). Then 1 ...z, < w and
l(w) <s<l(xy...xm-1). Hence w < x1...xpm—1 and yxy ... Tpm < yw < YT1 ... Tm—1,
namely (0,y,21,...,2,) € Ax,y(yw). Thus we have an injection ¢! (w) — Ax ,(yw)
defined by z1...2m — (0,y,21,...,2m). Hence #¢~1(w) < #(Ax,,(yw)) < M and
#A:(X) = ZwEAS[X] #oH(w) < M#A[X]. B

Proposition 6.6 Let X C Wy be separated, o = (;)ies € (0,1)° and let d(a, X) (€
[0,00)) be the unique d € R that satisfies y_ .y al = 1. For each s € (0,1] let A;[X]
be as in (6.1) with As := As(a) (recall Definition 2.8). Then there exist ¢1,ca € (0,00)
such that for any s € (0,1],

ers”UX) < A [X] < eps™ 4@, (6.3)

Proof. Let | := go (recall Definition 2.8), and for s € (0,1] let A4(X) be as in (6.1).
Since {As(X)}se(o,1] is a self-similar scale on X(X) with weight (o ).cx, Proposition
2.9 implies the existence of ¢z € [1,00) such that g—d(eX) < #A,(X) < cos— U X) for
any s € (0,1]. Then Lemma 6.5 implies the assertion. W

Let £ = (K,S,{F;}ics) be a self-similar structure in the rest of this section.
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Notation. Let 7 : ¥ = 3(5) — K denote the canonical projection associated with L.
For non-empty finite X C W and w € W,, we set K[X] := 7(2[X]) and K, [X] :=
m(Zw[X]).

Proposition 6.7 Let N € N and let X}, C W4 be separated and wy, € W, for each k =
1,...,N. Set T := Jp_, By, [Xi] and L := Ur_, Ku, [Xi] (= 7(D)). Let a = (i)ics €
(0,1)° and set dy(c) := d(a, X},) fork =1,...,N and dr(a) := maxieqi,... N} dr(c).
(1) If either (£, 8(cx)) is locally finite or 7~ '(L) = I, then dimg(a) L = dr(a).

(2) Let vo be the Bernoulli measure on X with weight (a?(a))ies. Then dr(a) < d(cx)
if and only if vo,(T') = 0.

In most typical cases, Vo = w(P,) is written in the form of T in Proposition 6.7. Con-
sidering such situations, we set the following definition.

Definition 6.8 (Rational boundary) We say that L is of rational boundary, or simply
(RB) holds, if and only if there exist N € N and a separated set X, C Wy and wy, € W,

for each k =1,..., N, such that P, = Uﬁzl Yo [ Xk]-

Roughly speaking, (RB) says that the boundary V; is a finite union of self-similar sets.
(RB) implies that Vp = Uf;l K., [Xk], which is clearly compact, hence that Vg = V.
When (RB) holds, we can explicitly calculate dimg ) Vo as in the following theorem.

Theorem 6.9 (Cell-counting dimension for rational boundaries) Assume (RB).
Let a = (a)ies € (0,1)% and dp(x) := maxi<p<n d(c, X)) with N, X}, as in Definition
6.8. Then dimgq) Vo = da(ax). Moreover, dy(cr) < d(a) if and only if K # V.

Kigami [28, Definition 1.5.10] has introduced the notion of rationally ramified self-
similar structures as a class of self-similar sets with sufficiently good ramification struc-
ture, in order to argue the volume doubling property and the (sub-)Gaussian estimate
of heat kernels on self-similar sets in a general framework. For example, any p.c.f. self-
similar structure and any generalized Sierpinski carpet ([6, 7], see also [28, Section 3.4]
and [25, §2]) are rationally ramified. By [28, Proof of Proposition 1.5.13 (1)], any ra-
tionally ramified self-similar structure satisfies (RB). See [28, Sections 1.5 and 1.6 and
Chapter 2] for details about rationally ramified self-similar structures.

Proof of Theorem 6.9. 7(P;) = Vp by definition, and 7~!(Vy) = P, by [27, Propo-
sition 1.3.5(1)]. Therefore dimg) Vo = da(cx) by Proposition 6.7 (1). If K = V; then
by Proposition 2.9, dp(a) = dimg(e) Vo = dimge) K = d(a). Conversely, assume
K # Vo (= Vo). Let vq be the Bernoulli measure on 3 with weight (a?(a))ieS' Then
veom ! is a self-similar measure on K with the same weight. [28, Theorem 1.2.7] implies
0 =vaom (V) = va(Pr). Now Proposition 6.7 (2) yields dy(a) < d(cx). Brheorem 6.9

Proof of Proposition 6.7. We write 8, Ag, d, dg, dr, v and p instead of $(a), As(cx),
d(ax), di(o), dr(a), Vo and pe in this proof. Set o := min;es a;, aw = minj<p<ny Qu,
and Ay [Xy] i={w € Ay | 2y NX[Xy] #0} for k=1,...,N and s € (0,1], as in Lemma
6.5. Then Proposition 6.6 implies that there exist ¢i,ca € (0,00) such that for any
ke{l,...,N},

c1s” M < #A Xy < cos™ i, se (0, 1]. (6.4)
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(1) Since 1 < sTdr < a;vdr and 1 < #W (A, L) < #As < a dsmd < o daW for
s € [aw, 1], we may assume that s € (0,aw]. Let s € (0, ay]. Then

WA, L) D{we A; | 2, NT # 0}
N N (6.5)
—U{wGA | S Ny, [Xk] # U {wrv|veA,, [Xk]}
k=1 k=1

Choose J € {1,...,N} so that d; = dr. By (6.4) and dr = dy,
#W (Mg, L) > #{wyv [veEA, - XJ} #A,, [XJ]>010¢ s, (6.6)

To estimate #W (A, L) from above, let M := 1if 7=}(L) = I and otherwise let M :=
sup{#Arw | t € (0,1],w € A¢} (< 0o by the assumption). Then we have #W (A,, L) <
M#{w € Ag | B, NT # 0}. Indeed, if 7=1(L) = T then clearly W(As,L) = {w €
As | By NT # 0} and #W (A5, L) = #({w € As | By NT # 0}). If m=1(L) # T, let
v € W(As, L). Choose x € K, NL, w € TN7w (x) and w € A, so that w € ¥,,. Then
z € KyNK, #0, hence v € Ag 4, and w € B, NT # 0. Therefore W (Ay, L) C [J{As,w |
w € Ag, Xy T #£ 0} and #W(Ag, L) < M#({w € As | XML # 0}). Now by (6.4), (6.5),

#W(# <Z#{wkv|veA Z#Am;l X;] < chdks di < gmdr

k=1

where ¢ := Zk L c2adr and dimg L = dr follows from this and (6.6).

(2) Let k € {1,...,N}. Note that Xs[Xi] := U,ea.[x,) Zw: s € (0,1], is decreasing as
s | 0 and that ﬂse(OJ] Y[ Xk] = 2[Xx]. Also, v(3[Xk]) = a;%(Zw, [Xk]). Now since

W

cratst—d < adsd#As[Xk] < Z ot = v(3s[Xg]) < sd#AS[Xk] < o5t

w
wWEA[Xy]

we have  limsupcia?s? % < v(3[Xy]) = a;fu(Zwk [Xx]) < limﬁ)nf o8t
s|0 ) s

Hence di, < d if and only if v(X,, [Xx]) = 0, and the statement follows. Bproposition 6.7

7. Sharpness of the key estimate

In this section, we prove a better lower bound for (5.15) in Theorem 5.11 in terms of
the cell-counting dimension of L\ F', under the condition that L\ F includes a self-similar
subset of positive capacity. This shows a sharpness of the upper bound in (5.15).

For this purpose, we need the notion of intersection type introduced by Kigami [28,
Section 2.2]. Subsection 7.1 is devoted to a brief description of basic facts on intersection
type. The statement and the proof of sharpness of the key estimate is provided in
Subsection 7.2 (Theorem 7.7). The proof of Theorem 7.7 relies heavily on strict positivity
of heat kernels and of hitting probabilities, which is separately argued in the appendix
in the framework of a general regular Dirichlet form. In Subsection 7.3 we establish a
reasonable sufficient condition for the positivity of capacity (Theorem 7.18), which plays
an essential role in applying Theorem 7.7 to generalized Sierpinski carpets in Section 8.
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7.1. Intersection type

Throughout this subsection, we fix a self-similar structure £ = (K, S, {F;}ics) and a
scale 8 = {As}se(0,1] on X = X(S). We state basic definitions on intersection type only
briefly. See Kigami [28, Section 2.2] for basic facts about intersection type.

Definition 7.1 (1) Define ZP (L) := {(w,v) | w,v € Wy, K, N K, # 0,3, N X, = 0}.
Each (w,v) € TP(L) is called an intersection pair of L.
(2) Set A :={(A,B,p) | A, B C V, non-empty compact, : A — B homeomorphism}.
For each (w,v) € ZP(L), we define ®z7((w,v)) € A by

D7 ((w,0)) = (Fy  (Kuw N Ky), Fy H(Kw N Ky), Fy o Ful gt (i, miy)) -
Definition 7.2 (Intersection type) (1) We set Z7 (L) := ®z7(ZP(L)). Each element
of Z7 (L) is called an intersection type of L.
(2) We define ZP(L,8) := {(w,v) | w,v € Ay for some s € (0,1] and (w,v) € ITP(L)}
and Z7 (L, 8) := @77 (ZTP(L,8)). We say that 8 is intersection type finite with respect to
L, or simply (L, 8) is intersection type finite, if and only if #Z7 (L,8) < co.

Definition 7.3 (1) A non-empty finite subset I" of W, is said to be a sub-partition of
if and only if ¥, N3, = 0 for any w,v € I with w # v.

(2) Let I'1,I's C W, be sub-partitions of ¥. A bijection ¢ : I'1 — TI's is called an £-
isomorphism if and only if ¢ possesses the following two properties:

(i) For w,v € T'1, (w,v) € ITP(L) if and only if (p(w), p(v)) € ZP(L).

(il) Pz7((w,v)) = Pz ((w(w), p(v))) for any w,v € T'; with (w,v) € TP(L).

(3) Let ¢ : Ty — Ty be an L-isomorphism between sub-partitions 'y, Ty of X. We
define F, : K(I'1) — K(I'z) (recall Definition 2.15 (1)) by Fy |k, := Fy@)oF, " for any
w € I'1. Fy, is a well-defined homeomorphism. We call F, the L-similitude associated
with ¢. Moreover, if p is a self-similar measure on K and K # Vj, define a bounded
linear operator p,, : LQ(K(FQ), u|K(p2)) — L? (K(Fl), u|K(p1)) by peu = uoF,. Also for

u: K — R, we define u¥ : K — R by u? := {uoz'(p_l Zz KI\<I((F(2F)2).

Definition 7.4 Let n € NU{0}. For (s1,21), (s2,22) € (0,1]x K, we write (s1,x1) 548

s

(s2,72) if and only if there exists an L-isomorphism ¢ : AY . — AY, . such that

@(Aflm) = Afmm for any ¥k = 0,...,n. Such ¢ is called an (n, L, 8)-isomorphism
between (s1,x1) and (s2,x2). Clearly, 548 is an equivalence relation on (0, 1]xK. Moreover,

)

we write (s1,21) LN: (s2,22) if and only if ¢ : AT, — AL, .. is an (n, £, 8)-isomorphism

between (s1,21) and (s2, z2).

The following lemma is used in the next subsection.
Notation. For n € NU{0} and (s,z) € (0,1]x K, we set 1AL (z,8) :=intg (Ug") (z,8)).
Lemma 7.5 Let n € NU {0} and (s1,21), (s2,22) € (0,1]x K. If (s1,21) n}ls’w (s2,2),

then F,, (Vg(ln) (z1,8)) = Vi (22, 8), where F,, is the L-similitude associated with .
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Proof. For i = 1,2, let U; := s(i"H)(xi,S). Then Us(?')(xi,S) C intgU; by Lemma
2.16 (1). Therefore Vi™ (z;,8) = inty, (Ug") (2i,8)). Since F, : Uy — Us is a homeomor-
phism and F( g(f) (21,8)) = s(f)(xg, 8), the assertion is now immediate. l

7.2. Sharpness of the key estimate

Throughout this subsection, (£ = (K, S, {F;}ics), tt, €, F,r = (r;)ics) is a self-similar
Dirichlet space with p a self-similar measure with weight (1;)ics, 8 = {As}sc(0,1) is the
self-similar scale with weight v := (v;)ies, 7i = \/Tilti, and ds := d(v) (= dimg K > 0).
We follow the notations introduced in Section 5.

The following conditions are required to verify a sharp lower bound for (5.15).

Definition 7.6 (1) We say that (£, u, €, F,r) satisfies the strong domain self-similarity
(SSDF3S), or simply (SSDF3S) holds, if and only if F has the following property:
(SSDF3S) For any sub-partitions I'y, I'y of ¥, any L-isomorphism ¢ : I'y — I'; and any
u € FNC(K) with suppg[u] C intg K(T'1), if u? € C(K) and suppy[u?] C intx K (I'2)
then u¥ € FNC(K), where u? is as in Definition 7.3 (3).

(2) We say that (£, u, &, F,r) is local weight type finite, or simply (LWTF) holds, if and
only if {ry/ry | (w,v) € TP(L,8)} and {pw /e | (w,v) € TP(L,8)} are finite.

Clearly, (SSDF3S) is stronger than (SSDF3) (let I'y = {0} and 'y = {3}, i € S).
The following is the main theorem of this section. See Definition A.1(3) for the
condition (CHK), and Definition A.4 for the definition of Capg.

Theorem 7.7 (Sharpness of the key estimate) Assume that K is connected and
that (£,F) is conservative. Suppose that (L,8) is intersection type finite and that
(LWTF), (SSDF3S), (CHK) and (UHK) hold. Let F C K be a closed subset of K, let
w € W, and let X C Wy be separated and satisfy Capg (K[X]) > 0. Set L := FUK,,[X]
and dp := d(v, X) (recall Proposition 6.6) and suppose F'G L G K. Then there exist
¢1,¢2 € (0,00) such that for any t € (0, 1],

ext™0/% < Zpe(t) = Zpe(t) < ext~ /2, (7.1)

Remark. (1) If K is a generalized Sierpinski carpet, then we can construct a conservative
self-similar Dirichlet space satisfying (SSDF3S) and (CHK). In this case, (UHK) implies
(LWTF) and that (£, 8) is intersection type finite. See Section 8 for details.

(2) We have dimg(L \ F) = dp in the situation of Theorem 7.7. In fact, since (£, 8)
is locally finite by (UHK) and Proposition 5.8 (3), Propostion 6.7 (1) implies that for
any v € W, dimg K,[X] = dy. As K,[X] ¢ F, we can choose z € W,(X) so that
K| X]NF =0. Then K,,[X] C L\ F C K,[X]. Hence dimg(L \ F') = dy follows.

(3) The lower bound in (7.1) is the essence of Theorem 7.7. In fact, since dimg (L \ F) =
da, the upper bound in (7.1) follows from (UHK) and Theorem 5.11.

As a corollary of Theorem 7.7, we have a sharp estimate for the reminder term in
(5.4) under the condition (RB), as follows. Recall that (RB) implies Vp = V, (# K).

Corollary 7.8 Assume that K is connected and that (£,F) is conservative. Suppose
that (L, 8) is intersection type finite and that (LWTF), (SSDF3S), (CHK) and (UHK)
hold. Suppose also that v; = ~ for any i € S for some v € (0,1) and that L satisfies
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(RB) with N € N and X, C Wy for k € {1,...,N} as in Definition 6.8. Let dy :=
maxi<k<n d(v, Xi) (= dimg Vy € [0,ds) by Theorem 6.9) and let G be the continuous
log(y~1)-periodic function given in Corollary 5.3. If Capg(K[X,]) > 0 for some J €
{1,..., N} satisfying d(v,X ) = ds, then there exist c¢1,co € (0,00) such that for any
t € (0,1],

1 1
01t_(18/2 < t—ds/QG(ilog ;) _ ZD(t) < CQt_da/Q- (72)

The rest of this subsection is devoted to the proofs of Theorem 7.7 and Corollary 7.8.
First we prepare easy consequences of the assumptions. In the proofs below, {p¥ He(0,00)
always denotes the jointly continuous heat kernel of {T}¥},¢(9,00) when (CHK) holds.

Remark. In the following Lemmas 7.9-7.12 and their proofs, we do not use the as-
sumption that p is a self-similar measure.

Lemma 7.9 Suppose that (CHK) and (UHK) hold and let (3, d, ¢i and ¢y be as in
Definition 5.1. Then (5.1) is valid for any (t,z,y) € (0,1]x K X K.

Proof. This is immediate by the lower semicontinuity of  + u(B, 4(z,d)) on K. B

See Definition A.2 for the definitions of Feller and strong Feller properties.

Lemma 7.10 Suppose that (€, F) is conservative and that (CHK) holds. Set P;(x, A) :=
JapY (@,y)du(y) for (t,2) € (0,00)xK and A € B(K). Then {Pt}1e(0,00) I8 a pi-symmetric
conservative strong Feller Markovian transition function on (K, B(K)) whose associated
Markovian semigroup on L*(K, ) is {T}N }1(0,00)- Moreover, if (UHK) holds in addition
then {P;}ic(0,00) is Feller.

Proof. Let t € (0,00). Then P;(-,K) = TN1 = 1 p-a.e. since (€, F) is conservative,
and Py(-, K) = [ p (-,y)du(y) € C(K). Therefore Py(z,K) = 1 for any x € K. Now
since {p} }1e(0,00) C C(K x K) and it is a heat kernel of {T{};c(0,0), it is clear that
{Pt}te(0,00) Is @ p-symmetric conservative strong Feller Markovian transition function on
(K, B(K)) whose associated Markovian semigroup on L?(K, ) is {T{" }1e(0,00)-

Next, suppose that (UHK) holds in addition. Let ¢,a € (0,00) be as in Lemma
3.7 and let 8, d, ¢c1 and ¢z be as in Definition 5.1. By Proposition 5.8 (4), there exists
cy € (0,00) such that cyu(B ;(x,d)) > u(U ;(x,8)), hence cey (B 4(z, d)) > /2 for
any (t,z) € (0,1]x K. Therefore by (UHK) and Lemma 7.9 we see that

d(z,y)?

_1_
0< p;‘N(xvy) < CCICVtia/2 exXp <_CQ<T) o >7 (ta Z, y) € (07 ]-] XK XK. (73)

Now for f € C(K), by [, p (-,y)du(y) = 1 on K, (7.3) and the uniform continuity of f
we easily see that lim¢ o [P+ f — flloc = 0, proving the Feller property of {P;};c(0,00). W

Notation. As in the appendix, for a non-empty open subset U of K, let Ua := UU{Ay}
denote the one-point compactification of U.

Lemma 7.11 Suppose that (€, F) is conservative and that (CHK) and (UHK) hold.
(1) Let {Pi}ie(0,00) be as in Lemma 7.10. Then there exists a conservative diffusion
X = (Q, M, { X+t }eelo,00 {P.’L‘}.’L‘EKA) on K whose transition function is {Pt}1e(0,00)-
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(2) For A € B(Ka) and w € , define 04(w) := inf{t € [0,00) | X¢(w) € A} (inf :=
o0) and Tao(w) := og\a(w). Let U be a non-empty open subset of K and define

XY (w) == {XA(:) ;Z;:ﬁg:g for t € [0,00] and w € Q. Also set Pa,, := Pa,. Then the

process XV = (Q,M, {XtU}tE[O,oo]a {Pm}r{:EUA) is a diffusion on U with p|y-symmetric
strong Feller transition function {PY }te(0,00) Whose associated Markovian semigroup on
L2(U, plv) is {T¥ }1e(0,00). Moreover, (€Y, Fy) satisfies (CHK) with jointly continuous
heat kernel {p{}ic(0,00) C Co(U xU), PY(x,A) = [, p¥ (x,y)du(y) for any (t,z) €
(0,00)xU and any A € B(U), and Zy(t) = [,; pf (z,x)dp(z) for any t € (0, 00).

Proof. (1) By [9, Chapter I, Theorem 9.4] and the Feller property of {P:}+c(0,00), there
exists a Hunt process X = (Q, M, { X+t }eelo,00 {P.’L‘}IIJGKA) on K with transition function
{Pt}te(0,00)- Since (€, F) is local by Lemma 3.4, [17, Theorem 4.5.4 (ii)] implies that X is
a diffusion, and it is conservative since P, [X; € K| = P(x, K) = 1 for (t,z) € (0,00)x K.
(2) By [17, Theorems 4.4.2 and 4.4.3], XY is a Hunt process on U with pu|y-symmetric
transition function {P¥ };¢(0,00) Whose associated Markovian semigroup on L?(U, p|v) is
{TtU}te(o,oo)~ The definition of XY immediately implies that XY is a diffusion. Since the
transition function {P:}1e(0,00) of X is both Feller and strong Feller, [13, p.69, Section
1, Proof of Theorem] implies that {?E}te(om) is strong Feller. By Proposition 5.8 (1)
and [28, Proposition C.1], {Tf,U}te(o,oo) is ultracontractive. Therefore Proposition A.3 (1)
implies that (Y, Fy) satisfies (CHK) with jointly continuous heat kernel {p{ };e(0,00) C
Cy(UxU) and that P{ (z,A) = [, p¥ (x,y)du(y) for any (¢,z) € (0,00)xU, A € B(U).
Then we have Zy(t) = [, pij/Q(x,y)Qd,u(y)dﬂ(x) = [, ¥ (z,x)dp(x) for t € (0,00). W

Convention. In the situation of Lemma 7.11 (2), we set p¥ (z,y) := 0 for ¢t € (0, 00) and
(z,y) € Kx K\ UxU, as stated in Notation before Lemma 5.7. Note that, with this
convention, p¢ may not be continuous on K x K, although it is continuous on UxU. We
also set p?(x,y) := 0 for any (t,z,y) € (0,00) x K x K.

Lemma 7.12 Suppose that (£, F) is conservative and that (CHK) and (UHK) hold.
Let U, V' be non-empty open subsets of K. Then for any (t,z,y) € (0,00)x KX K,

oY (2,y) — pY (z,y) > pf (z,y) — pi "V (2, ). (7.4)

Proof. Let t € (0,00). By Lemma 7.11, p¥, p/ and p/™V are continuous on U x U,
VxV and (UNV)x(UNV), respectively. Since pl¥ > p¥ and pY¥ > p/ on K x K, (7.4)
is trivial if either t U NV or y U NV. Let x,y € UNV. Then

oY (z,y) — Y (z,y) — pY (z,y) + " (2,y)

I fUS(y,S) (p]{\/'(x, Z) _ply(xa Z) _p},/(xvz) +pgﬁv(x,z))d,u(z)
= 11m

510 1(Us(y, $))
— lim P.[X: € Us(y,8),7v <t] —P,[X; € Us(y,8), tuny <t < 7v]
sl0 M(U;(Q,S))
. Pw[Xt S Us(y,S),’TU < t] — Pw[Xt S Us(y,S),’TU <t< Tv]
= lim
sl0 M(Ue(yvs))
. PLX: €Ug(y,8), 70 <t,7v <t
= lim > 0.
510 /J‘(Us(yas)) -

Thus the result follows. B
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The following Lemma is the key for the proof of the lower bound of (7.1).

Lemma 7.13 Under the assumption of Theorem 7.7, let yo € W,.(X) and set A¥%°[X] :=
{ve Ay | Sy N By [X] # 0} for s € (0,1]. Then (recall Definitions 2.15 and 2.17)

inf{/ " )(piv(x,x) _pf(\Kw[X] (z,2))dp(z) ’t € (0,72, v € Ai”[?tm [X]} > 0. (7.5)
Vv

The proof of Lemma 7.13 is given later. We first complete the proof of Theorem 7.7
using Lemma 7.13.

Proof of Theorem 7.7. We follow the notations in Lemmas 7.10 and 7.11 above. Let
B € (1,00) and a (2/3)-qdistance d be as in Definition 5.1. Since FF & L = F U K,[X],
K, [X] ¢ F and we may choose y € W, (X) so that K,y N F = 0. If F # 0, let ¢1,¢2 €
(0,00) and ®(t, z) be as in Lemma 5.9 with F and L replaced with () and F, respectively,
let ¢, € (0,00) be as in Lemma 3.7 and let § := 27 infye g, distq(z, F) (€ (0,00)).
Similarly to Lemma 7.9, by (5.11) and Lemma 7.11(2), pN (z,z) — pf" (x,z) < 2®(t,z)
for any (¢,z) € (0,1]x K. Therefore, with ¢z := 2cc; and ¢4 := 025%, for any ¢ € (0, 1]
and any « € K satisfying distq(z, Kuy) < (22/8 —1)8/25,

pN(z,x) — pl (z,2) < 20(t, x) < cst™/? exp(—04t_ﬁ%1) (7.6)

since distq(z, F) > 8. If F = () then pN (x,x) = pf' (x,z) for any (¢,2) € (0,00)x K and
(7.6) is trivially valid with some a, 6, c3, ¢4 € (0,00). We set &5 := (22/8 —1)8/25.

For each s € (0,1], set Ay[X] :={v € A | £, N E[X] # 0}, and, as in Lemma 7.13,
AYX] = {v € Ay | B, N Tyy[X] # 0}. By Proposition 6.6, there exists cx € (0,00)
such that #A [X] > exs™9 for any s € (0,1]. Let s € (0,74y]. Then we easily see that
A[X] = {wyv |veEA, 71 X]}. Therefore #A¥Y[X] = Ao [X] > exvyidg s,

Choose t. € (0,75,] so that diamg K, < 277/255 for any v € A i, and let t € (0,t.].
We easily see that distq(z, Kwy) < dg for any = € UUEA%[X] K(A\/iv). Since pL° <

K\ K.,

pf" < pN and pF* < p, X < pN on K x K, using (7.6) and Lemma 7.13 we see that

Zrelt) — Z0.(t) = /K (0 (2 2) — b (2, 2))dulz)

> | " (2,2) — pF (2. 2))dp(z)
{diStd('»Kwy)S‘Sﬂ}
> | () (e, ) — pF (e, 2))dule) — st~/ exp(—eat™ =)
istq(+, Kwy)<dg}
= / (P (@, ) = pi PN @, ) dp(e) — est ™ exp(—est™57)
U{K~ ‘TEA\/{U,HUGAHW[X]}
1
> — Z / (x,2) — pK\K“’[X] (z,z))dp(z) — cgt™/? exp(—04t7ﬁ)
M < K(A
A"y VEw)
C)uéy wyly —a/2 -5 —da/2 —a/2 -5t
> #A [ ] —est exp(—04t f’—l) > Qest %0/ — cst exp(—64t ff—l),
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where M := sup{#A;., | s € (0,1],v € A;}(< oo since (£, 8) is locally finite by Proposi-
tion 5.8 (3)), Cx¥ € (0,00) is the infimum in (7.5) and ¢5 := CYYexv43,/(2M). Choose
to € (0,t,] so that c3t=/? exp(—64t_ﬁ%1) < cst~%/2 for any t € (0,ty]. Then we have
Zpe(t) — Zpe(t) > cst=%/2 for any t € (0, to].

To consider the case t € [tg, 1], let {\"},en (resp. {A:"},en) be the eigenvalues
of the non-negative self-adjoint operator associated with (£, Fpc) (vesp. (EL°, Fre)),
similarly to Definition 4.1 (2). Then A% ‘< )\,LLC for any n € N by the minimax principle,
and M < AL for some n € N since Y neN et = Zpe(t) > Zpe(t) = 2, en et
for t € (0,t9]. Therefore Zpc(t) > Zp(t) for any t € (0,00), and Zpe — Zpc is a
(0, 00)-valued continuous function on (0, 00). Hence we can choose ¢g € (0,00) so that
Zpe (t) —ZpLe (t) > Cﬁt_da/Q for any t € [th 1] Brheorem 7.7

Therefore it suffices for us to prove Lemma 7.13. We need to prepare a few easy
lemmas. The following lemma is stated in [24, p.600] and is easily proved by using
Lemma 5.5.

Lemma 7.14 Capg(F,,(A)) > min{ry?', p, }Capg(A) for any w € W, and any A C K.

Notation. For n € NU{0} and (s,z) € (0,1]x K, we set Cg@ = CV(n)(w 5) and .7-"5(:;) =

Fym, g We also abbreviate 2 to ~ and " to "% in the rest of this subsection.
s (,8) c L,8

)

Lemma 7.15 Suppose that (SSDF3S) holds. Let n € NU {0} and (s1,21), ($2,22) €
(0, 1<K satisfy (s1,21) "~ (s2,22). Then p, (C%,) = C%, and py(Fii,) = Fi'hy,

where we regard an)T and .7:9(”)7« as subspaces of L* (Vg(in) (4,8), ,u|v(_n)(m_ 8)) fori=1,2.

Proof. Recall that the L-similitude F, associated with ¢ induces a homeomorphism
F, : V;(l") (z1,8) — S(Zn) (22,8) by Lemma 7.5. Let u € cé?;’xl. Then we easily see that
u? € C(K) and suppg[u?] C VQE”)(J;Q,S). (SSDF3S) implies u¥ € F N C(K), hence
u? € CEZ)TQ Therefore v = p,u¥ € py, (ng)rg), and it follows that Cg?)“ C py (CEZ)T2)
By CEZ)TQ C -1 (Cg?)“) and p,—1 = p;l, we conclude that p, (ng)m) = Cg?)ﬁ Since
Ky, N Vs(i") (x,8) =0 for w € Ay, \ A? . by Lemma 2.12, i = 1,2, it easily follows from

(SSDF2) and the self-similarity of p that there exist c1, ¢z € (0,00) such that
c1&1(pott, pou) < E1(u,u) < a1 (pou, pou), u e CM (7.7)

52,T2°

Now p, (]—'S(:',)m) = Fs(?,)xl follows from (7.7) by taking the closures in the Hilbert space
(F, &) for the equality p, (Cé?,)m) = Cg?,)xl. [

Definition 7.16 Let n € NU{0}. For (s1, 1), (s2,22) € (0,1]x K, we write (s1,z) '~

(s2,22) if and only if p : AT, — AL, ., is an (n, £, 8)-isomorphism between (s1,z1)
and (s2,72) such that 7y,/7y = 7o) /Tew) a0d fw/le = Pew)/ e for any w,v €
A%, .- We also write (s1,21) ~ (s2,x2) if and only if (sq,z1) "y (s2,22) for some

(n, £,8)-isomorphism ¢ : A" _ — A7 _ between (s1,21) and (s2,22). Clearly, ~ is an

equivalence relation on (0, 1] x K.
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Lemma 7.17 Suppose that (L,8) is both locally finite and intersection type finite and
that (LWTF) holds. Then for any n € NU {0}, ((0,1]xK)/ ~ is a finite set.

Proof. Let n € NU{0}. As (£, 8) is locally finite, £ is strongly finite (recall Definition
2.10(3)) by [28, Lemma 1.3.6]. Since (£, 8) is also intersection type finite, [28, Theorem
2.2.13] implies that the quotient ((O, 1] x K)/ % is a finite set. Therefore there exist
J € Nand (s;,2;) € (0,1]xK,i=1,...,J, such that for any (s,z) € (0, 1] we can choose
i€{l,...,J} sothat (s,x) < (s;, ;).

Let My := #{rw/r | (w,v) € TP(L,8)} and M, := #{ptw/t | (w,v) € IP(L,8)}.
M,, M, € Nby (LWTF). Let i € {1,...,J}, w; € A, , and let (s,z) € (0,1]x K satisfy
(si,25) * (s,x). Then for w € A” _ | there are at most M7+ (resp. M) possibilities
for the value 7, (w)/Tp(w:) (XeSP. te(w)/He(w,)). Therefore the cardinality of the set

50,0

{(W(w)/np(wi),Hga(w)/%p(wi))U)EA?‘W | ¢ is an (n, £, §)-isomorphism
between (s;, z;) and some (s,z) € (0,1]x K}

is bounded from above by M, := (MrM,t)("H)#A:Ni. Hence each equivalence class of
~ contains at most M; equivalence classes of ~, which implies that #(((O, 1] xK)/ 7\3) <
S M <o W

Proof of Lemma 7.13. We follow the notations in Lemmas 7.10, 7.11 and 7.15 and
Definition 7.16 above. We fix n € N\ {1} throughout this proof. By Proposition 5.8 (3)
and Lemma 7.17, there exist J € N and (s;,z;) € (0,1]x K, i = 1,...,J, such that

for any (s,z) € (0,1] x K we can choose i € {1,...,J} so that (s, ) oy (si, ;). For
ie{l,...,J}, fix w; € A, 5, and set U; := U, (x;,8) and V; := Vg(in)(xi,S). Asn > 2,
Ku,[X] C Ky, C K(As, ) CU; C Vi

Let t € (0,75)1/0] and v € A%O[X]. Then 7, < Vvt < v~ 1, where v := min;eg ;.
Since X, N Ly, [X] # 0, we may choose y1yz--- € X(X) so that wyoyiyz--- € .
Set j := min{k | k € NU{0},wyo...yx < v}, Yo = Yo...y; and s, := Yyuy,. Fix
Ty € Ky, \ Fuy, (Vo) and set U, := Us, (20, 8) and V,, := Vs(f) (zy,8). We easily see that
wy, € Ag, and 1 < 572t < 4 2(Mx+1) where My := maX.ex |z]. Asn > 2, we have
Ky, [X] C Kuy, C K(Asywy,) =U, C V.

Choose i € {1,...,J} and @ : ATt — AT so that (s,,z.) i (si,z;). Then
since {p(wyy)} = (As, 2,) = Ns, 20 D Wi, we see that Ag, 5, = {w;} and p(wy,) = w;.
By (SSDF3S), Lemmas 7.5 and 7.15 and (s,,z,) n—%w (siyzi), Fo : V, — Viis a
homeomorphism,

pe (L (Vi plv,)) = L*(Va, plv,) and  py(Fv,) = Fu,.
ok, [ ool =gt [ fuPdnw e BVl (78)

rwyvg(Pwuypwu) = rw,ig(u; U)y u e .7:\/1

Since |1 AL, — Al . isan L-isomorphism and Fy|f,,, = Fu,oF,, , it follows

Su,Ty 84,5 WYy

that F,, (Usﬂ (xU,S)) = Us,(x;,8) and that F, (VU \ Kuwy, [X]) = V; \ Ky,[X]. Therefore
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(7.8) together with (CHK) of (€Y, Frs) for a non-empty open subset U of K implies that
for any (s,z,y) € (0,00) XV, xV,,

Py, Py (€,9) = pw,p s (Fy(@), Fy(y)),

Vo\ Ky, [X Vi\ Ko, [X] (7.9)

Hugopre " N @ y) = 3 (Fp (@), Fa(w)).

Since wy, < v and sy = Yy, < V/t we have U, = K(Asv,wyv) C K(A\/;m). Therefore
Lemma 7.12 and (7.9) imply that

/ (N (2, ) — pr N (2, 2)) du(a)
KA z,)

> / (oY (z, 2) — p Ve X (4 2)) dp(a) > / (0¥ (2, 2) — V" v X (3, ) ()

U, Uy
_ g Vi\ K, [X]
— M’wiy’wglh, / (p:gs;%(F‘”(x)’ Fcp (fE)) - p'ya,s;2t (Fcp (fE); Fcp (x)))dﬂ(x)

v

i Vi\Kw, [X]
:‘/U (p}y/ﬁ)79;2t(xax) _p"YQ S;2t ({E,{E))d//,(:r).

w;

Recall that 1 < syt < By, where Bx := 7 2(Mx+1 hence 42 s;%t € [v2 , Bx72,]-
Therefore for the proof of Lemma 7.13 it suffices to prove that for any a,b € (0, 00) with
a < band for any i € {1,...,J} satisfying A, », = {w;},

Vi\ Ko, [X
) \Ku, [X]

inf (pz/ (z,z) —

relm (z,x))dp(x) > 0. (7.10)
€la, U;

Let a,b € (0,00), a < b and let i € {1,...,J} satisfy A, », = {w;}. Since K is
assumed to be connected, it is also arcwise connected by [27, Theorem 1.6.2], and any
non-empty open subset of K is locally arcwise connected. Let V., be the connected
component of V; containing x;. Then V. ; is an arcwise connected open subset of K. By
Lemma 7.11(2) and Proposition A.3(2), py(z,y) > py“’i(x,y) > 0 for any (t,z,y) €
(0,00) x Ve ; x Ve ;. On the other hand, we have U; C V., since U; is connected and
x; € K, C U; CV;. Hence by (CHK) of (Y, Fyv.),

qi == inf{pyi (z,y) | (t,z,y) € [a/2,b]xU; xUs } > 0. (7.11)

We write Va,; := (Vi)a and define o (w) := inf{¢ € [0,00) | XVi(w) € A} (inf0 :=
00) and 74 (w) := oy, na(w) for A € B(Va,) and w € Q. Capg(K[X]) > 0 and Lemma
7.14 imply Capg (K, [X]) > 0. Since K, [X] C V; and K, [X] is compact, [17, Theorem
4.4.3 (ii)] implies that Capgv; (K, [X]) € (0,00). Therefore by Theorem A.5, there exist
a |y, -regular closed subset F; of V;, z; € K,,,[X] N F; and an open neighborhood G; of
z; in V; such that

;= inf P,[od <a/2 . 12

h' meg};ﬂFi - [UK“’i[X] - Cl/ } >0 (7 )

Let A; := F; N G; NintgU;. Note that G; NintxU; is an open neighborhood of z; in V;
since z; € Ky, [X] C Ky, C intgU;. Therefore p(A4;) > 0 by the p|y,-regularity of F;.
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Now let t € [a,b] and = € A;. Since (€Y, Fyy) satisfies (CHK) for U = V; \ Ky, [X], Vi,

Sty PV ) = N ) duy)

Vi V\Kw [ ] 4
) = 1
Pt ( ) by ( Qf) sll() M(Us ((E, 8))
P.[X} € Us(x,8)] — Po[X)" € Us(2,8),t < o (]
= 1 =
510 1(Us(,8))
P, (X! € U(x,8),0% x <1]
= lim & (7.13)
510 w(Us(z,8))

As x € intxU;, we may choose 6 € (0,1] so that Uy(z,8) C intx U; for any s € (0,4]. Let
€ (0,0]. In the calculation below, we write Xi(t,w) := X} (w) for each (t,w) € [0, 00]xQ
and i =0 ] Since X(0;(w),w) € Ky, [X] for w € {o; < o}, by the strong Markov

property of the diffusion XV (see [26, Corollary 2.6.18], for example), (7.11) and (7.12),
P.[X) € Us(2,8),0; < t] > P, [X}" € Us(,8),0: < a/2]

_ / Py (os(1.0) [X Vg, o) € Us(,8)] dP (w)
{o:<a/2}

— V; (o (). w (w
a ~/{GiSa/2} [~/Us(m,8)ptm(w)(X ( l( )’ )’y)dﬂ(y) dp ( )
>/{m<a/2} [/ ) qidu(y)} dP,(w) = ¢iP.[os < a/2)u(Us(2,8)) > qihip(Us(z, 8)).

Hence the limit in (7.13) is bounded from below by ¢;h;, that is,

g Vi Ku,
pVi(z,z) — py M @ 2y > e, () € a, b x A (7.14)

Therefore for any ¢ € [a, ], since A; C U,

| @t = aua) > [ ) - w0 du)

i

> qihip(4;) (> 0),
proving (7.10). This completes the proofs of Lemma 7.13 and of Theorem 7.7. MLemma 7.13

Proof of Corollary 7.8. As ¥,,,[X ;] C P, for some w; € W, by (RB), we also have
Y[X ;] C Pz and hence K[X ;] C V. By K # V; (= Vg) we may choose w € W4 so that
KyNVy = 0. Let £ := |w| and Vp := U,ey, Fo (Vo). Then () #) Ky, = Ve € K = Vi by
Lemma 2.11, hence Vo C V; S K. Since (L, 8) is locally finite, Proposition 6.7 (1) implies
that dims V; = dy = dimg K [Xs]. Therefore dimg(V; \ Vo) = ds by K,[X] C Vi \ V.
By Theorem 7.7 there exists c3 € (0,00) such that Zgr(t) — Zgn g, 1x,](t) > cyt—0/?
for any t € (0,1]. Also Theorem 5.11 implies that there exists ¢4 € (0, 00) such that 0 <
Zyr(t) — ZK&/[ (t) < cst=4/2 for any t € (0,1]. Note that ZKI = Zve < ZgnKo (X,

that Zx: = Zp and that Zgr, (1) = (#9)' Zp(ty=%) < Zp(t ) for any ¢t € (0,00) by
4

Lemma 5.7. Hence we conclude that

st 00 < Zp(0) — (#8) Zn( ) e te U (1)
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Since Capg(Vp) > 0 by Vp D K[X,] and Capg(K[Xs]) > 0 (or by Theorem 7.18,
which is presented in the next section), [17, Corollary 2.3.1] implies that 1 ¢ Fgr. By
[27, Theorem 1.6.2], Lemma 7.11 (1) and Proposition A.3(2), (£, F) is irreducible. [12,
Theorem 2.1.11] implies that &(u,u) > 0 for any u € Fg1\{0}. Hence AP := A\ (K1) > 0
(recall (4.12)). Let Z}(t) := eMTZp(t), t € (0,00). Then Z}, is clearly (0, c0)-valued
and non-increasing. Therefore

0< ZD(t)—(#S)eZD(%) < Zp(t) = ZL(M)e Mt < ZL1)e Mt te[l,00). (7.16)

Now by (7.15) and (7.16), we can follow the arguments of [27, Proofs of Theorems
4.1.5 and B.4.3] to prove that there exists a continuous log(y~*)-periodic function Gy :
R — (0,00) and ¢1,¢2 € (0,00) such that (7.2) holds for any ¢t € (0, 1], with G replaced
by G,. But then Gy = G since G, and G are both log(y~¢)-periodic. Bcorollary 7.8

7.3. Positivity of capacity for subsets of the boundary

As in the previous subsection, in this section (£ = (K,S,{F;}ics), 1, &, F,r =
(ri)ies) is assumed to be a self-similar Dirichlet space with p a self-similar measure with
weight (ui)ies and 8 = {As}se(0,1) to be the self-similar scale with weight v := (7;)ies,
¥i = \/Tifli- As usual, let 7 : ¥ — K denote the canonical projection.

The purpose of this subsection is to state and prove the following Theorem 7.18, which
asserts that every subset of V with non-empty interior in Vj has positive capacity. This
kind of statement is indispensable when we apply Theorem 7.7 to concrete examples.

Notation. For each u € F, its quasi-continuous modification, which exists and is unique
up to &-q.e., is denoted by 4. Note that Fy = {u € F | @ =0 E-q.e. on K \ U} for any
non-empty open subset U of K by [17, Corollary 2.3.1]. See [17, Chapter 2] for details.

Theorem 7.18 Assume that K is connected, that (€, F) is conservative and that (CHK)
and (UHK) hold. Then Capg(G) > 0 for any non-empty open subset G of V.

Remark. Since #S > 2, the connectivity of K implies that Vo # 0.

Proof. Let G be a non-empty open subset of V. Then we may choose an open subset O
of K so that G = ONV,. Also there exists z € ONVp. Let w € 7~ (). Then w € P, since
71 (Vo) = P, by [27, Proposition 1.3.5 (1)]. Therefore there exist w = wy ... w,, € Wy
and j € S\ {w:} such that F,,(z) € K\, NKj (recall Definition 2.10(2)). Since F,, : K —
K, is a homeomorphism, F,,(O) is an open subset of K,, and we can choose an open
subset O,, of K so that F,(O) = O, NK,,. Then F,(x) € F,(ONVy) = OyNE, (Vp). Let
U, be the connected component of O,, containing F,(x) and set U := F;1(U,)(3 z).
Then F,(x) € Uy, N K,y N K; # 0, and as in the proof of (7.10), U, is an arcwise
connented open subset of K. Also, F,(UNVy) = Uy, N Fy(Vo) C Oy N Fy(Vo) =
F,(0)N Fy(Vo) = Fuy(G) and therefore U NV, C G. Since intx Vo = () by [28, Theorem
122, UNK!I = U\Vy # 0 and U, N KL = F,(UN K') # (. Similarly, since
ijl(Uw) is also a non-empty open subset of K, ijl(Uw) NK! = ijl(Uw) \ Vo # 0 and

Upw N K = Fj(F;7 ' (Uw) N KT) #0.

Now suppose Capg(G) = 0. Then Capg(U \ (U N K')) = Capg (U NV,) = 0 and
therefore Fy = Fyngr. Let uw € Fy,,. Then ¢ =0 &E-q.e. on K\ U,,. Using Lemma 7.14,

w
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we see that 4o F, is a quasi-continuous modification of uoF,, € F. As F,,({y € K\ U |
woFy,(y) #0}) Cc {y € K\ Uy | 4(y) # 0}, Lemma 7.14 yields

min{r,", t, }Capg ({y € K\ U | o Fy(y) # 0})
< Capg (Fu({y € K\ U | aoFy(y) # 0})) < Capg ({y € K\ Uy | a(y) #0}) = 0.

Therefore 4o F,, = 0 £-q.e. on K \ U, hence uoF,, € Fy = Fyngr C Fxr. By Lemma
5.5, Uy = u-1g, = (uoFy,)¥ € Frr, which implies 4, = 0 E-q.e. on K \ Ki Since
Uy =ulg, =u=1p-ae on KL [17, Lemma 2.1.4] yields u, = @ E-q.e. on KL. Also,
@ =0 &-qe. on K\ Uy, by u € Fyy,, and therefore u,, = @ = 0 £-q.e. on KL \ U,. Thus
Uy = 0 E-q.e. on K\ (UpNKL), hence w1y, nr, = wlk, = Uy € Fu.nxt (C Fu,) and
w1y \k, = u—uly,nk, € Fu,. Recalling [w| = m, it follows that, for any u,v € Fy

w w w*® w?

1
E(u-1y,nK,, v lu,\K,) = Z T—g((u'lmeKw)OFn (v-1y\k,)oFy) =0,
TE€Wm T

hence E(u,v) = E(u-1y,nk,,v-lu,nk,) + (W 1y \k,,v 1y, Kk, ) (7.17)
Since u(Uyp N Ky) > p(Up N KL) > 0 and p(Uy \ Ky) > w(Uy N KJI) > 0, (7.17)

together with [17, Theorem 1.6.1] contradicts the fact that (€Y« Fys, ) is irreducible by
Proposition A.3 (2) and the arcwise connectivity of U,,. Thus Capg(G) > 0 follows. B

8. Examples: Sierpinski carpets

In this section, we illustrate the results of the previous sections by applying them to
a class of infinitely ramified self-similar sets called generalized Sierpinski carpets, whose
definition was originally given by Barlow and Bass [6, Section 2] but has recently been
modified by Barlow, Bass, Kumagai and Teplyaev [7], Hino [23] and Kigami [28, Section
3.4]. We follow the formulation of Hino [23] in the argument below, but their formulations
of generalized Sierpinski carpets are all equivalent, as stated in Kajino [25, Section 2].

Definition 8.1 (Generalized Sierpinski carpets) Let d € N and set Qo := [0,1]%.
Let L € N, L > 2 and set Q; := {H?Zl (ki = D)LY kLY | by, ka € {1,..., L}
Let S C Q; be non-empty, and for each ¢ € S we define F, : R — R? by F,(z) =
L~ 'z+29 where 27 € R is chosen so that F,(Qo) = ¢ (C Qo). We alsoset Q7 := Uges ¢
Let GSC(d, L, S) be the self-similar set associated with {F}},es, that is, the unique
non-empty compact subset K of R? that satisfies K = Uges Fo(K). We call GSC(d, L, S)
a generalized Sierpinski carpet if and only if S satisfies the following four conditions:
(GSC1) (Symmetry) Qf is preserved by all the isometries of Q.
(GSC2) (Connectedness) Q7 is connected.
(GSC3) (Non-diagonality) If B is a d-dimensional rectangle with each side length L1 or
2L~! which is the union of elements of Qy, intga(B N Q7) is either empty or connected.
(GSC4) (Borders included) {(z1,0,...,0) | 1 € [0,1]} C Q5.

In particular, we call GSC(2, 3, Ssc) the Sierpinski carpet (see Figure 1.2), where Ssc :=
{[(kl - 1)/37 /{1/3] X [(kQ - 1)/3a k2/3] | (klv kQ) € {]-a 2, 3}2 \ {(27 2)}}

In the rest of this section, we fix a generalized Sierpinski carpet GSC(d, L, S). Let
K :=GSC(d, L, S) and £ := (K, S, {F,}4es) be the self-similar structure associated with
{Fy}qes. The following proposition is immediate by the assumptions.
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Proposition 8.2 (1) K is connected (by (GSCj), j = 1,2,4 and [27, Theorem 1.6.2)).
(2) Let k € {1,...,d}. Set Hys = {(x1,...,24) € R | 2y = s} and Sy s := {qg € S |
qNHy, s # 0} for s € [0,1] and let Ry, : R? — R? be the reflection in the hyperplane Hy 10
Then Ry, induces natural bijections Sio — Sk,1 and Sk,1 — Sk given by ¢ — Ri(q).
(3) L satisfies (RB) with Py = |Ji_, (S[Sk.0] UX[Ska]), and Vo = K \ (0,1)4 # K.

Next we discuss self-similar Dirichlet forms on K. We follow the arguments in [28,
Section 3.4]. Let v be the self-similar measure on K with weight ((#5)7, ..., (#S)™1).
By combining the arguments of Barlow and Bass [5, 6] and Kusuoka and Zhou [32], as in
Hambly, Kumagai, Kusuoka and Zhou [22] (note also the recent result [7] on uniqueness
of the Dirichlet form on generalized Sierpinski carpets), we have a conservative self-
similar Dirichlet space (in the sense of Definition 3.3) (£,v, &, F,r = (14)4es) satisfying
(SSDF3S), (CHK) and (UHK) and with ry = r for any ¢ € S for some r € (0, 00).

Now let 41 be a self-similar measure on K with weight (uq)qes satisfying ru, < 1 for
any ¢ € S. By a result of Barlow and Kumagai [11, Lemma 2.5], i is smooth with respect
to (€, F), that is, u(A) = 0 for any A € B(K) with Capg(A) = 0. By [17, Theorem
6.2.1], we can construct the time changed Dirichlet space (E*,F,) of (€,F) with respect
to p, which is a regular Dirichlet form on L?(K, u1). Since the whole space K is a quasi-
support of u by [11, Proposition 2.6] and [17, (5.1.22) and Theorem 5.1.5], [17, Theorem
1.5.2(iii) and (6.2.22)] yield 7, N C(K) = FNC(K) and E*(u,v) = E(u,v) for any
u,v € FNC(K). Therefore (L, u,EH, F,,r) is a conservative self-similar Dirichlet space
satisfying (SSDF3S). Moreover, by the discussions of [11] (see also [28, Section 3.4]),
we can verify (CHK) and the assumptions of [28, Theorem 3.2.3] for (L, pu, ¥, Fy,r).
Finally, let v := \/Tfq for ¢ € S, v := (7} )qes and 8" = {Al'} ¢ (0,1 be the self-similar
scale with weight v#. Then by [28, Theorems 3.2.3, 3.4.5 and Proof of Lemma 3.5.16],
we have the following criterion for (UHK), (LWTF) and (£, 8#) being intersection type
finite (see also [25, Proposition 3.3 and Theorem 3.5] for a short self-contained treatment
of (VD)).

Proposition 8.3 The following four conditions are equivalent.
(0) (pq)qes is weakly symmetric, i.e. g = pg, (q) for any k € {1,...,d} and any q € S 0.
(1) (£,8*) is locally finite.
(2) (L,8*, u) satisfies (VD).
(3) (UHK) holds for (L, 1, E*, Fp, ).

Moreover, if any one of these four conditions holds, then (L£,8*) is intersection type
finite and (L, u, E*, F,,, 1) satisfies (LWTF).

Hence we conclude that if (ug)qes is weakly symmetric then all the statements of
Theorem 5.2 are valid for (L,p, ", F,,r) with dp = df = max{d(y*,Sko) | k €
{1,...,d}}(= dimgx Vj < dimgx K in view of Theorem 6.9).

Moreover, suppose that (uq)qes is weakly symmetric. Then Theorem 7.18 implies
that Capg, (K [Sk,;]) > 0 for any k € {1,...,d} and any j € {0,1}. Therefore Theorem
7.7 implies the following reminder estimate. For U C K non-empty open, let Zy;,, denote
the partition function associated with ((€1)V, (F.)v), Znyu = Zk,u and Zp p, i= Zgr .

Theorem 8.4 Assume that (uq)qes 1s weakly symmetric. Let k € {1,...,d}, j € {0,1}
and d} := d(y", Sk,0). Then there exist c1,cs € (0,00) such that for any ¢ € (0,1],

et/ < Zn u(8) — Ziovsreisyu(t) < cat /2, (8.1)
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On the other hand, if y1, = (#S)~! for any ¢ € S, i.e. u = v, then dg,?*/? is a (2/dy)-
qdistance adapted to 8”, where dgy. is the Euclidean distance and d,, := logy (#S/r).
Hence by Proposition 2.24, dimg» K = 2dy/d,, and dimg» Vj = 2d;/d,, in this case, where
dy = log; (#S) and dy := logy (#51,0). Therefore Corollary 7.8 implies the following
sharp reminder estimate for Zp ,.

Theorem 8.5 Let G be the log(#S/r)!/?-periodic function given by Corollary 5.3 for
(L,v,E,F,r). Then there exist cs,cs € (0,00) such that for any t € (0,1],

1

03t*d1’/d"“ < t*df/d’“’G<% log .

) — Zpo(t) < cqt—d/dw (8.2)

9. Concluding remarks

We conclude the present paper with a brief discussion of open problems.

Consider the situation of Theorem 5.2. In the non-lattice case, we have shown an
asymptotic behavior of the eigenvalue counting functions (Corollary 5.4) by virtue of
Karamata’s Tauberian theorem. Unfortunately, in the lattice case we do not have any
similar result for the eigenvalue counting functions. The main difficulty here is that the
T-periodic function G given in Theorem 5.2 may be non-constant. In this case, it seems
hopeless to verify the so-called ‘Tauberian conditions’ on G.

It also seems extremely difficult to apply the renewal theorem directly to the eigen-
value counting function, since we cannot use probabilistic arguments to estimate Ny (z)—
Np(z). This is why Hambly [21] and this article have treated the partition function
mainly and not the eigenvalue counting function.

A. Appendix — Miscellaneous lemmas for Section 7

In this appendix, we present basic results on continuity and positivity of heat kernels
and positivity of hitting probabilities for regular Dirichlet forms. Those results play es-
sential roles in the proof of Theorem 7.7. Let E be a locally compact separable metrizable
space and let Ea := F U {Ag} denote its one-point compactification. Throughout this
appendix, we assume that u is a Borel measure on E satisfying u(F) < oo for any com-
pact F' C E and p(O) > 0 for any non-empty open O C E, that (£,F) is a (symmetric)
regular Dirichlet form on L?(E, 1) and that H and {Tt}1e(0,00) are the non-negative self-
adjoint operator with domain D[H] and the strongly continuous contraction semigroup,
respectively, associated with the closed form (€, F) on L*(E, ).

The following definition is just a reminder for the readers.

Definition A.1 (1) {Ti}1e(0,00) I8 called ultracontractive if and only if Ty(L?(E, 1)) C
L>®(E,p) and Ty : L*(E, u) — L*(E, p) is a bounded linear operator for any ¢ € (0, c0).
(2) A family {p;}+e(0,00) of R-valued B(E x E)-measurable functions on E'x E is called a
heat kernel of {T;}ie(0,0) if and only if for each ¢ € (0,00) and for any f € L*(E, u),

T.f = /E pe(9)f(W)duly) pae. on E. (A1)

Clearly, for t € (0,00), such an integral kernel p; of T}, if exists, is unique up to puxp-a.e.
and satisfies pi(z,y) = pe(y, ) > 0 px p-a.e. on K x K. See [20, Section 2] for details.



44 Naotaka Kajino

(3) We say that (£, F) satisfies (CHK), or simply (CHK) holds, if and only if {T}}c(0,00)
admits a heat kernel {p;};c(0,00) Which is jointly continuous, i.e. such that p = p;(z,y) :
(0,00) x Ex E — R is continuous. Clearly, such {pt}:e(0,00), if exists, is unique.

By [14, Theorem 2.1.4], if u(E) < oo then the ultracontractivity of {7} };e(0,00) implies
the existence of a heat kernel {p;}ie(0,00) C L (E X E, pux ).

Next let us recall the following definitions. See [17, Section 1.4] for the definitions of
(sub-)Markovian transition functions, their p-symmetry and the Markovian semigroup
on L?(E,u) associated with a u-symmetric (sub-)Markovian transition function.

Definition A.2 Let {P;}c(0,00) be a (sub-)Markovian transition function on (£, B(E)).
(1) {Pt}ee(0,00) is called conservative if and only if Py (z, E) = 1 for any (¢, z) € (0, 00)xE.
(2) We say that {P;}ic(0,0) has the Feller property, or simply it is Feller, if and only if
P(Cx(E)) C Coo(E) for any t € (0,00) and limy | ||Pru — ul|oo = 0 for any u € Coo (E).
(3) We say that {P;}ic(0,00) has the strong Feller property, or simply it is strong Feller,
if and only if P,u € Cy(E) for any bounded Borel measurable v : E — R.

The following proposition provides a sufficient condition for (CHK) and for strict posi-
tivity of the jointly continuous heat kernel.

Proposition A.3 Assume p(E) < oo and suppose that {T}}¢c(0,00) is ultracontractive.
Let {Pt}ie(0,00) be a p-symmetric strong Feller (sub-)Markovian transition function on
(E,B(E)) whose associated Markovian semigroup on L?(E, j1) is {T}}+e(0,00)- Then

(1) (CHK) holds with jointly continuous heat kernel {p;}ic(0,00) C Cp(E x E), and
Pi(x,A) = [, pe(x,y)du(y) for any (t,x) € (0,00)x E and any A € B(E).

(2) Suppose that E is arcwise connected and that there exists a Hunt process X =
(Q,M, {Xt}tE[O,oo]v{P.T}IEEA) on E whose transition function is {Pt}ic(0,00). Then
pe(x,y) € (0,00) for any (t,z,y) € (0,00) x Ex E. In particular, (€, F) is irreducible.

Proof. (1) Let ¢ € D[H] and X € [0, 00) satisfy Hyp = Ap. By the ultracontractivity of
{Tt}e,00), T10 = e Mo € L=(E, i), and we may choose a bounded Borel measurable
version of . Since ¢ = e’ = e*P1p p-a.e. on E and P € Cy(E) by the strong
Feller property of {P;};e(0,00), We may assume that ¢ € Cy(E). Now as in [14, Proof of
Theorem 2.1.4], for any T' € (0, 00), the eigenfunction expansion [14, (2.1.4)] of the heat
kernel defines an absolutely norm-convergent series in the Banach space Cy ([T, 00)xEXE).
Hence the heat kernel {p;};c(0,00) defined by [14, (2.1.4)] is jointly continuous, proving
(CHK). Moreover, if t € (0,00) and A € B(E) then P;14, [, p:(-,y)du(y) € Cp(E) and
both of them are equal to T;14 p-a.e. on E| hence they are equal at every point of F.
(2) Suppose pi(x,x) = 0 for some (t,x) € (0,00) x E. Then py/s(x,y) = 0 for any y € £
since 0 = py(z,2) = prt/g(x,z)Qd,u(z). Inductively, for each n € N, p;/on(x,y) = 0
for any y € E and hence P,[X;/on € E] = Pyjon(z,E) = [, pejon(z,y)du(y) = 0.
Therefore X, on = A for any n € N P-a.s., which then implies that Xo = Ag P,-a.s.
since X, /90 (w) =3 Xo(w) in Ea for any w € Q. This contradicts P,[Xo = 2] = 1.
Therefore pi(x,x) € (0,00) for any (t,z) € (0,00) x E. Now based on the arcwise
connectivity of E, the positivity of p; follows in exactly the same way as in [28, Proof of
Theorem A.4]. Finally, for A € B(E), (f(E\A)XA ped(px p) =) fE\A T;14dp = 0 implies
uxp((BE\ A)xA) = u(E\ A)pu(A) = 0, which is sufficient for (£, F) to be irreducible, by
[17, pp.46-48, Section 1.6]. W
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In the theorem below, we deduce a uniform positivity of short time hitting probabilities
by assuming the positivity of capacity. Recall the following definitions.

Definition A.4 (1) A closed subset F' of F is called p-regular if and only if, for any
open subset U of E, either uf(UNF) >0o0r UNF = 0.
(2) We define, with the convention that inf @) := oo,

capg(U) := inf{& (u,u) |u € F,u > 1 p-a.e. on U} for U C E open, (A.2)
Capg(A) := inf{capg(U) |U C E open, AC U} for AC E. (A.3)

Capy is clearly an extension of capg. Moreover, let A C E and let .%(x) be a statement
on x for each x € A. Then we say that . holds £-q.e. on A if and only if Capg ({x €
A | . (z) fails}) = 0. When A = E we simply say *¥ holds £-q.e.” instead.

Theorem A.5 Let X = (Q, M, {X¢}ie(0,00) {Pa}ecrs) be a p-symmetric Hunt process
on E whose Dirichlet form on L*(E, i) is (€, F). For A € B(Ea) and w € €, define

oa(w) :=1inf{t € [0,00) | X¢(w) € A}  (inf ) := o0). (A4)

If A € B(E) and Capg(A) € (0,00), then there exists a p-regular closed subset F of E
with the following properties: AN F # (), and for any xy € ANF, any ¢t € (0,00) and
any s € (0,1) there exists an open neighborhood U of xg in E such that
inf Puloa <t] >s. (A.5)
zeUNF
Proof. Let o (w) := inf{t € (0,00) | Xy(w) € A} (inf() := o0) for w € Q, and set
Na = {z € E | Pyloa = o] # 1}. Then Capg(N4) = 0 by [17, Theorems 4.1.3,
4.2.1(ii) and A.2.6(i)]. Let ply(z) := Ey[e=74] and pi(z) := E,[e=4] for « € E.
Then p} = p4t on E\ Na. Since p4 is quasi-continuous by [17, Theorem 4.2.5] and
Capg(N4) = 0, ply is also quasi-continuous. By [17, Theorem 2.1.2 (i)] there exists a u-
regular closed subset F' of E such that Capg(A) > Capg(E\ F) and (p} )| is continuous.
This F possesses the required properties. Indeed, AN F # () follows from Capg(A4) >
Capg(E\F). Let 1o € ANF, t € (0,00) and s € (0,1) and set My ; := s+(1—s)e™ " (< 1).
Since (ph) |F is continuous and p!y(xg) = 1, we may choose an open neighborhood U of
zo in E so that pYy(x) > M, for any z € UN F. Now let x € U N F. Then since

My < pa(z) = Eole™ "] = Eo[e 7" 15, <j] + Eu[e 7" 15, 51)]
< PQJ[UA < t] + eitPI[UA > t] = PQJ[UA < t] + eit(l - PQJ[UA < t]),

we conclude that P [og <t] > (Mgt —et)/(1 —e™t) = s. Therefore (A.5) follows. B
Remark. The author has been taught the idea of using E, [e~74] to deduce lower bounds
for P,[oa < t] by Prof. Masanori Hino.
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