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ABSTRACT. Liouville Brownian motion (LBM) is the canonical diffusion process on a Liouville quan-
tum gravity (LQG) surface. In this work, we establish upper and lower bounds for the heat kernel
for LBM when v = /8/3 in terms of the 1/8/3-LQG metric which are sharp up to a polylogarithmic
factor in the exponential.
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1. INTRODUCTION

1.1. Background. During the past 15 years, substantial research activity has been focused on the
study a random geometry induced by the two-dimensional Gaussian free field, commonly known
under the banner of Liouville quantum gravity. For an overview, see, for instance, the recent surveys
[17, 89, 42]. Suppose that h is an instance of (some form of) the Gaussian free field (GFF) on a
domain D C C. The Liouville quantum gravity (LQG) surface described by & formally refers to the
random two-dimensional Riemannian manifold with metric tensor

(1.1) ") (dx? + dy?)

where v € (0,2] is a parameter and dx? + dy? denotes the Euclidean metric on D. This expression
does not make literal sense because h is a distribution and not a function. There has been a consid-
erable amount of work in recent years aimed at making rigorous sense of (1.1). The construction
of the volume form of (1.1) is related to Kahane’s theory of Gaussian multiplicative chaos [55] and
appears in a number of places. The approach taken in [36] is to let h.(z) be the average of h on
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0B(z, €) and then take

(1.2) iy = lim 7 /2e7he(2) 1

e—0
where dz denotes Lebesgue measure on D, see [14] for an elementary approach establishing a
universal limit measure for a general class of mollifications of the field.

The metric (i.e., two-point distance function) associated with (1.1) was first constructed in the
case v = +/8/3 in [76, 73, 78, 771, building on [74] and using the tools from [35, 75]. The
construction is indirect and is based on defining a growth process called quantum Loewner evolution
which turns out to describe the growth of metric balls in the resulting metric space. The metric
associated with (1.1) was subsequently constructed for all v € (0,2) as a limit of the type (1.2) in
[31, 34, 48, 47, 50, 49] but with v replaced by ¢ = ~v/d, where d, is the exponent constructed in
[33]. In the present work, we will focus on the case that v = \/% This value is special because it
turns out to be equivalent to the Brownian map [73, 77], which is the Gromov-Hausdorff-Prokhorov
scaling limit of random quadrangulations [63, 69].

Our main focus will be on the relationship between Liouville Brownian motion (LBM) and the
\/8/73—LQG metric. Recall that LBM is the Brownian motion associated with (1.1) and was first
constructed in [39, 13]. It is defined as a time change of a standard planar Brownian motion where
the change of time depends on the underlying LQG surface. By general theory, the LBM turns out
to be symmetric with respect to the Liouville measure p;. In [38] Garban, Rhodes and Vargas also
identified the Dirichlet form associated with the LBM and showed that its transition semigroup is
absolutely continuous with respect to u;,, meaning that the Liouville heat kernel p;(z,y) exists.
Moreover, they observed that the intrinsic metric generated by that Dirichlet form is identically
zero, which indicates some non-Gaussian heat kernel behavior. This degeneracy of the intrinsic
metric is known to occur typically for diffusions on fractals, whose heat kernels indeed satisfy the
so-called sub-Gaussian estimates; see e.g. the survey articles [11, 57] and references therein. The
works [67, 3] establish the continuity of the Liouville heat kernel p;(z, y) in (¢, 2, y) and some upper
and lower bounds on it. The bounds in [3] have successfully identified the order of the on-diagonal
part p;(z, ) for small ¢ as t—!, up to a factor of a power of log ¢~ reflecting the randomness of the
environment and except that the lower bound is proved only for u;-a.e. z. On the other hand, for
the off-diagonal behavior of p;(x,y), the sub-Gaussian upper bounds obtained in [67, 3] are stated
in terms of the Euclidean metric and thereby are expected to be far from being sharp, and the known
sub-Gaussian lower bound due to [67] gives a decay estimate only in ¢, with an exponent which is
also not expected to be sharp, for each fixed x, y. The work [33] is focused on the transition kernel
for a random walk on a certain graph approximation to LQG between fixed points and uses it to
construct the dimension exponent for LQG.

The definition of LBM is further motivated by recent works which have shown that it arises as
the scaling limit of simple random walk on certain graph approximations to LQG. The convergence
was first proved modulo time parameterization in [52] (for the so-called mated-CRT map) and
[51] (for the Poisson-Voronoi tessellation of the Brownian map, equivalently \/%-LQG) using
the invariance principle established in [53]. The convergence was upgraded to obtain the time
parameterization in [15].

Most results in LQG, including the present work, remain specific to two dimensions and have
not yet been extended to higher dimensions, which is mainly due to the critical role of conformal
invariance in two-dimensional results that is not available in higher dimension. Nonetheless, recent
works [22, 32, 30, 29, 19] initiated the study of higher-dimensional analogs of LQG. In this context,
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higher dimensional version of LBM have been constructed in [30, 19], where in [19] the short-time
asymptotics of the heat kernel along the diagonal and the spectral dimension are identified.

1.2. Main results. The main contributions of the present work are sharp off-diagonal upper and
lower bounds for the (continuous) Liouville heat kernel p;(u,v) in the case v = /8/3 in terms of
the \/%—LQG metric, denoted by dj, in the following, which hold for all points simultaneously for
a.e. instance of the 1/8/3-LQG surface and match up to polylog errors in the exponent. We will
state and prove our results in the case that the underlying LQG surface is the \/%-LQG sphere
[35, 28]. By absolute continuity, one can extract similar heat kernel bounds for other LQG surfaces.

Theorem 1.1. There exists a finite constant x > 0 such that the following is true. For a.e. instance
S = (S?, h) of the \/8/3-LQG sphere, there exist random positive constants C; = C;(h), i = 1,2, such

that for all u,v € Sand t € (0,1/2],
e+ 42))

1 t_l K d 4
a3 plun) < DB o (—02 (el
Theorem 1.2. There exists a finite constant x > 0 such that the following is true. For a.e. instance
S = (S%,h) of the \/8/3-LQG sphere, there exists a random constant C = C(h) € (0, 1) such that for
all u,v € Sand 0 < t < Cdy(u,v),

14 )2 op (L0 i (0202) 1),

Moreover, for all u € S and t € (0,1/2], we have that p;(u,u) > Ct~(logt—1)=*.

ol

Remark 1.3. (i) The lower bound in Theorem 1.2 becomes effective in the regime 0 < t < dj, (u, v)?,
which reflects that the LBM needs to travel a sufficiently long distance so that the possibly bad local
geometries around the starting point become irrelevant. A similar phenomenon can be observed,
for instance, for simple random walks on supercritical percolation clusters, where one has to allow
the random walk some random time to exit bad parts of the cluster before Gaussian heat kernel
decay emerges; see [10].

(ii) While we do not discuss here the necessity of the polylogarithmic corrections in the estab-
lished heat kernel bounds, we remark that in many instances of stochastic processes on random
media, in particular for processes in low dimensions and models at criticality, heat kernel fluctua-
tions are known to occur, caused by local irregularities in the random medium, see [2] for a recent
review on this topic.

Off-diagonal upper and lower bounds of the heat kernel similar to (1.3) and (1.4) have been
proved in [26, 27, 12, 7, 6], for the canonical diffusions on various random fractals which are
trees or sufficiently close to being trees so that their heat kernel behavior can be described very
well in terms of the effective resistance metric as established in the general results in [25]. Our
main results, Theorems 1.1 and 1.2 above, are in sharp contrast to those preceding results in that
the effective resistance metric is no longer well-defined since the LBM a.s. does not hit a given
point. To the best of our knowledge, Theorems 1.1 and 1.2 are the first result in the literature
establishing sharp sub-Gaussian heat kernel bounds for diffusions on random fractals which do not
admit well-defined effective resistance metrics.



4 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

1.3. Strategy and outline. The proof of Theorem 1.1 is based on a criterion for off-diagonal sub-
Gaussian heat kernel upper bounds, implied by results in [41, 40], in terms of an exit time estimate
and an on-diagonal heat kernel upper bound. However, since such estimates hold only with poly-
logarithmic corrections in the present context of LQG, in a first step we extend the relevant results
in [41, 40]. More precisely, we derive a perturbed off-diagonal sub-Gaussian heat kernel upper
bound which allows fluctuations in the exit time estimate and in the on-diagonal heat kernel upper
bound to be given by a general class of perturbation functions, including polynomial and polylog-
arithmic corrections. Assuming a similar upper bound on the volumes of metric balls instead of
an on-diagonal heat kernel upper bound, we also deduce a similarly perturbed on-diagonal heat
kernel lower bound by a standard method. These are done in Section 2, which is written in the
framework of a general diffusion (without killing inside) as it might be of independent interest. We
refer to [25] for similar results on heat kernel bounds with fluctuations for local resistance forms
(symmetric diffusions with well-defined effective resistance metrics).

After a review of the Brownian map, LQG and LBM in Section 3, we next establish volume
estimates for /8/3-LQG which hold with polylogarithmic corrections in Section 4. More precisely,
it was shown in earlier work by Le Gall [62] in the context of the Brownian map that for each § > 0
there a.s. exists 9 > 0 so that for all » € (0,ry) the volume of every ball of radius r is between
r4+9 and r*~9. We improve this to show that there exists a constant x > 0 and a.s. exists 79 > 0 so
that the volume of every ball of radius » € (0,7¢) is between 7*(logr~!)~* and r*(logr—1)*. The
proofs in this part of the work are based purely on Brownian map techniques. By the equivalence
of 1/8/3-LQG and the Brownian map, the same estimates hold also for 1/8/3-LQG. We remark that
some of our volume estimates in Section 4 can also be extracted from more recent work of Le Gall
[65] but we have included our proofs since the reader might find them of independent interest.

As a preparation for the proofs of the quenched exit time lower bound for LBM and the off-
diagonal heat kernel lower bound (1.4) in Theorem 1.2, in Section 5 we prove a percolation result
for graphs formed by tilings of M-LQG surfaces by chunks of SLEg (Propositions 5.1 and 5.2).
Roughly speaking, they state that with high probability we can construct a strongly supercritical
configuration of such tiles each of which have a certain prescribed set of properties, under the
assumption that with sufficiently high probability each tile has that set of properties. We first prove
this result in the simpler setting of the half-plane as Proposition 5.2, and then translate it into an
analogous result, Proposition 5.1, for the setting of the disk.

We then proceed in Section 6 to establish the quenched exit time upper and lower bounds for
LBM, which states that there exists a constant x > 0 and a.s. exists o > 0 so that for all » € (0, r)
the conditional expectation (given the underlying LQG surface) of the amount of time it takes
an LBM to exit any ball of radius » when starting from its center is between r*(logr~1)~" and
r*(logr—1)*. The upper bound follows easily by combining the volume upper bound from Sec-
tion 4 with the known two-sided Holder continuity estimate for d;, with respect to the usual spheri-
cal metric due to [73, Theorem 1.2] and the fact that the LBM has the same Green functions as the
Brownian motion on the sphere. The proof of the lower bound is based on an application of Propo-
sition 5.1 with the prescribed property for each tile being that with uniformly positive probability
it takes LBM a certain amount of time to cross. Altogether, this is enough to conclude Theorem 1.1
and the on-diagonal heat kernel lower bound in Theorem 1.2 thanks to the on-diagonal heat kernel
upper bound in [3], the general result from Section 2 and the volume upper bound from Section 4.

We finish by establishing (1.4) in Theorem 1.2 using a chaining argument in Section 7. We will
construct our chains out of annuli consisting of chunks of SLEg by applying Proposition 5.1 in a
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manner similar to the proof of the exit time lower bound above. The special property that the
chunks which make up these annuli will have is an a priori lower bound on the amount of time it
takes the LBM to cross.

Acknowledgements. N.K. was supported in part by JSPS KAKENHI Grant Numbers JP18H01123,
JP22H01128, JP23K22399. J.M. was supported by ERC starting grant 804116 (SPRS) and ERC
consolidator grant ARPF (Horizon Europe UKRI G120614).

2. HEAT KERNEL BOUNDS WITH FLUCTUATIONS FOR GENERAL DIFFUSIONS

The purpose of this section is to give some sufficient conditions for the heat kernel (transition
density) of a diffusion (without killing inside) on a general state space to satisfy a sub-Gaussian type
off-diagonal upper bound and an on-diagonal lower bound which possibly involve some lower order
correction terms that are typically polylogarithmic. The main results of this section (Theorem 2.12
and Proposition 2.18 below), stated in their simplest possible forms that are still applicable to the
case of the \/%—Liouville Brownian motion, yield the following theorem; see [37, Appendix A.2
and Section 4.5] and [24, Appendix A.1] for the basics of Markov processes.

Theorem 2.1. Let (X, d) be a compact metric space with at least two points, let ;1 be a Radon measure
on X with full support, and let X = ({X¢}e[0,00), { P }zex) be a conservative diffusion on X which
admits a (unique) continuous function p = pi(x,y) : (0,00) X X x X — [0,00) such that for any
(t,z) € (0,00) x X,

(2.1) P,[X: € dy] = pe(x,y) u(dy) (as Borel measures on X).

Further set diam X := sup, ,cy d(7,y)(€ (0,00)), B(z,r) := {y € X | d(z,y) < r} for (z,7) €
X % (0,00), T4 :=inf{t € [0,00) | X; € A} (inf ) := c0) for A C X, let a € (0,0), B € (1,00), and
consider the following conditions:
(V)< (Volume upper bound) There exist kv, € [0,00) and Cy € (0, 00) such that for any (z,r) €
X x (0,diam X),
(2.2) u(B(z,r)) < Cyr®*(log(e +r~1))™".

(E) (Mean exit time estimate) There exist ke, keu € [0,00), ae € [1,00) and C, € (0,00) such
that for any (z,7) € X x (0,a;! diam X,

(2.3) Ce_lrﬂ (log(e + 7'_1))7'{61 < Ei[mBem] < Cor? (log(e + 7“_1))'{“.
(DU) (On-diagonal upper bound) There exist kqy, € [0,00) and Cq, € (0,00) such that for any
(t,z,y) € (0, (diam X)%] x X x X,
(2.4) pe(,y) < Caut ™" (log(e +¢71)) ",
(i) (Off-diagonal upper bound) Assume (E) and (DU), set iy, := (2 + 3)(Kel + Ken), let €, € (0, 00)

satisfy epku < 1 and set £}y, := (1 — epin)*(Kau + kuer/B). Then there exist c1,c2 € (0, 00)
such that for any (t,z,y) € (0, (diam X)%] x X x X,

—1\\ Fdu B\ 71 N
R !

t

(ii) (On-diagonal lower bound) Assume (V)S, (E) and that X is p-symmetric, i.e., pi(x,y) =
pi(y, x) for any (t,x,y) € (0,00) x X x X. Set ky := (24 B)(Kel + Keu) and kq) := Kyy + kua/S.
Then there exists c3 € (0,00)
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such that for any (t,) € (0, (diam X)?] x X,
(2.6) pi(@, x) > cgt /8 (log(e + t_l))fndl.

Theorem 2.1 is obtained at the end of this section as a corollary of the main results of this section
(Theorem 2.12 and Proposition 2.18 below), which, for potential future applications, we state and
prove in the general setting of a diffusion without killing inside on a locally compact separable
metric space.

The rest of this section is organized as follows. First in Subsection 2.1, we introduce the gen-
eral setting and suitable generalizations of conditions (V)_, (E) and (DU) of Theorem 2.1. In
Subsection 2.2, we state the generalization of Theorem 2.1—_(1) (Theorem 2.12) and prove it as an
application of [40, Theorems 6.2 and 6.4]. Subsection 2.3 states and proves the generalization of
Theorem 2.1-(ii) (Proposition 2.18), which is a mere adaptation of a well-known argument to our
setting. Then Theorem 2.1 is deduced from Theorem 2.12 and Proposition 2.18 in Subsection 2.4.

2.1. Setting and conditions. Throughout the rest of Section 2, we assume that (X, d) is a locally
compact separable metric space, and that x is a Radon measure on X’ with full support, i.e., a Borel
measure on X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X. We will refer to such a triple (X, d, u) as a metric measure space. For (x,r) €
X x (0,00), we set B(x,r) :={y € X | d(z,y) < r}, and the closure of B(z,r) in X is denoted by
B(z,r). Let Xy := X U {9} be the one-point compactification of X, so that the Borel o-field B(Xj)
of X can be expressed, in terms of that B(X) of X, as B(Xy) = B(X)U{AU {9} | A€ B(X)}. In
what follows, [—o0, co]-valued functions on X are always set to be 0 at 0 unless their values at 0
are already defined: f(0) :=0for f: X — [—00, x].

Let X = (€, M, {X:}1e(0,00> {Pu}eci,) be a diffusion without killing inside on (X, B(X)) with
life time ¢ and shift operators {0; },c[0,~c)- By definition, (©2,M) is a measurable space, {X;}c[o,00]
is a family of M/B(X)-measurable maps X; : Q — Xj such that [0,00) 3 t — X;(w) € Xy is
continuous and X;(w) = 0 for any ¢ € [((w), o] for each w € 2, where ((w) := inf{t € [0,00) |
Xi(w) = 0}, and {0;}1cp0,c] is @ family of maps 0; : Q@ — Q satisfying X, 0 6, = Xy, for any
s,t € [0,00]. The pair X of such a stochastic process (2, M, {Xi}ie,00)) and a family {P,},cx,
of probability measures on (2, M) is then called a diffusion without killing inside on (X, B(X)) if
and only if X is a normal Markov process on (X', B(X')) whose minimum completed admissible
filtration F. = {J}}¢(0,00) is right-continuous and which is strong Markov with respect to J; see
[37, Section A.2, (M.2)—(M.5), the paragraph before Lemma A.2.2, and (A.2.3)] for the precise
definitions of these notions. We set E,[(-)] := [(-) dP, for x € Xj. For each o-finite Borel measure
v on Xj, the function Xy > = — P,[B] is measurable with respect to the v-completion of B(Xj) for
any B € F, by [24, Exercise A.1.20-(i)], and associated with v is a measure P, on ({2, F,) given
by P,[B] := fXa P,[B]dv(z). We also set 6p(w) := inf{t € [0,00) | X;(w) € B} (inf () := o0) and
Tp(w) = dx,\p(w) for B C Xy and w € ), so that 6, 7p are F,-stopping times if B € B(Xj) by
[37, Theorem A.2.3].

The most general form of heat kernel bounds we aim to establish in this section involves three
functions v(r), ¥(r) and h(r) as introduced below, which correspond to the functions ¢, r? and
log(e + 7~ 1) in Theorem 2.1, respectively.

Assumption 2.2. Throughout the rest of Section 2, we fix homeomorphisms v, ¥ : [0, c0) — [0, 00)
and a non-increasing continuous function h : (0,00] — [1,00) with the properties that there ex-
ist positive constants C,, a1, as, Cy, 81, B2, Ch,ep with a1 < as and 1 < 81 < [ such that the
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following hold: for any s,¢ € (0, 00) with s <+,

i/t o(t) a2
. - < N < v\~ 9
(2.7) Co (s) ~u(s) T ¢ (s)
1 E 1 v t) E B2
(28) Cu (s) = U(s) = C‘y(s) ’
h S t €h
(2.9) h((ti <o)
Note that (2.8) is equivalent to the property that for any s,t € (0, 00) with s <,
g (BN _ W) s (BN
(2.10) Cy (s) —Ul(s) © Cy (s) )

Example 2.3. Let o € (0,00) and 8 € (1,00). Then the triple of functions v, ¥ : [0,00) — [0, c0)
and A : (0,00] — [1,00) given by

(2.11) o(r) =r® U(r):=r" and h(r) :=logle+r )

satisfies Assumption 2.2 with oy = ae = «, 51 = P2 = 3, arbitrary ¢}, € (0,00) and C}, = 2—1—6*15,:1.
Indeed, to see (2.9), let ¢, € (0,00) and let s,t € (0,00) satisfy s < t. Then clearly h(s)/h(t) <
log(2e) < 2(t/s)» for s > e~ !, whereas for s < e~! we have

1
log(e +s71) log (¢¢=r) e+s! t
logle oy R(EET) ety )
log(e +t1) log(e +t=1) — +log e+t=1/) — loglet o
2t t t\¢
< 1—|—log§ < 2—|—log; < (2—1—6_16;1)(;) "

For the sake of the applicability of the main results of this section (Theorem 2.12 and Proposi-
tion 2.18 below) to diffusions on random non-compact spaces and to strongly local regular sym-
metric Dirichlet forms, we further introduce the following assumption.

Assumption 2.4. Throughout the rest of Section 2, we fix R € (0, o], a non-empty open subset )
of X, and a Borel subset N of X’ with the property that

(2.12) P.lony =00 =1 forany z € X\ V.

Our conditions (V)_, (E) and (DU) for heat kernel bounds, which we state next, concern the
behavior of the measure x and the diffusion X only within metric balls contained in ) with radii
at most R, and hence can often be verified even for diffusions on random non-compact spaces by
choosing R to be finite and ) to be bounded. The set A/ can be considered as being removed from
the set of starting points of the diffusion X by virtue of (2.12), and is thereby going to play the role
of a set of “capacity zero with respect to X”; we remark that the presence of such N is inevitable
in analyzing symmetric diffusions on the basis of the general theory of regular symmetric Dirichlet
forms presented in [37, 24], as illustrated in Remark 2.8 below.

Definition 2.5 (Volume upper bound). We say that condition (V). holds if there exist constants
kvu € [0,00), ay € [1,00) and Cy € (0,00) such that for any (z,7) € (¥ \ N) x (0, £) with
B(z,ayr) C ),

(2.13) w(B(x,r)) < Cyu(r)h(r)™".
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Definition 2.6 (Mean exit time estimate). We say that the mean exit time estimate (E) holds if
there exist constants ke, keu € [0,0), ae € [1,00) and Ce € (0,00) such that for any (z,r) €

(Y\N) x (0, a—bZ) with B(z,acr) C Y,
(2.14) Co MU (r)h(r) ™" < Eylrp(pm] < Ce¥(r)h(r) .

Definition 2.7 (On-diagonal upper bound). We say that condition (DU) holds if there exist con-
stants K4y € [0,00), aqy € [1,00) and Cqy € (0,00) such that for any (zo,r) € Y x (0, %) with
B(zo,aqur) C Y, any t € (0, ¥(r)) and any Borel subset A of B(xo, ),
Cdu
<
CORETCRI0)

Remark 2.8. Assume that X is y-symmetric and associated with a regular symmetric Dirichlet form
on L?(X, ) (see [37, Sections 1.1, 1.4, 4.1 and 4.2] for the precise definitions of these notions). In
this case, the validity of condition (DU) for some Borel subset N of X satisfying ;(N) = 0 and (2.12)
follows from (DU) with “any x € B(xo,r) \N”in (2.15) replaced by “u-a.e. x € B(xzo,7)”.

Indeed, for each (zg,r) € Y x (0, %) with B(xzg,aqur) C YV, [40, Theorem 5.4] implies the
existence of N, , € B(X) satisfying M(/(/'xw) = 0 and (2.12) such that (2.15) with A, , in place
of N holds for all ¢ € (0, ¥(r)) and all Borel subset A of B(x¢, ). Then, choosing a countable dense
subset ) of ), we see from [37, Theorem 4.1.1] that there exists N' € B(X) with the properties
p(N) =0, (2.12) and U, ey, re (0, R /au)nQ, B(wo,aaur)cy Naor C N. Now it is elementary to see that
(DU) holds with this A/ and the same constants aqy, Cay, Kqu-

(2.15) PlXi € At <7py h(t)*u(A) forany z € B(xo,r) \ N.

2.2. Off-diagonal upper bounds of the heat kernel. The statement of our main result on off-
diagonal upper bounds of the heat kernel (Theorem 2.12 below) requires the following definition.

Definition 2.9. For any x € [0,00), we define a lower semi-continuous function ®, : [0,00) X
(0,00) — [0, 00] by

T t
(2.16) By(r,t) == sup < - >
= SR\ TG s
so that for any r,t € (0,0), ®(-,t) is non-decreasing, ®,(r, -) is non-increasing and ®,(0,¢) = 0 <
®,.(r,t) < oo by the upper inequality in (2.10), $; > 1 and the assumption that £ is [1, co)-valued
and non-increasing.

Example 2.10. Let 3 € (1,00) and assume that ¥(r) = r° for any r € [0, 00). Then an elementary
differential calculus easily shows that for any (r,¢) € [0, 00) x (0, 00),

rﬁ

(2.17) D (r,t) = cg <t>61,

where cg := §79/(0-1) (3 — 1) = g~1/(6=1) _ g=B/(6-1)_ On the other hand, for each x € [0, ), the
effect of the correction term A(s)" in (2.16) can be estimated as

- )Bllh(wr)fl)‘”l = @t 0n((t/n)7T) 7

(2.18) D (r,t) > 05<

(t/0 := o0) for any (r,t) € [0,00) x (0,00). Indeed, noting that (2.18) is obvious for » = 0 and that
h is [1, 00)-valued and non-increasing, let r, ¢ € (0, c0) and set

1= 7 (1)) 7 (/)77 € [(t/r) 7 00).
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so that h(s) < h((t/r)?/(#=V). Then by this last inequality and (2.16),

(bfﬁ (T7 t) Z

proving (2.18).

In fact, the lower bound on the ratio ®,(r,t)/®o(r,t) exhibited in (2.18) extends to the case of
general U, as follows.

Lemma 2.11. Let k € [0, 00). Then there exists Cg, € (0, 00) such that for any (r,t) € [0, 00) % (0, 00),
AL\ AT
(219) (P,{(’I“,t) > C<I>K(I)O(T7 t)h((t/?") P 1) .

Proof. Set ' := (B — 1)"'k. (2.19) is obvious for r = 0, so let r, ¢ € (0, 00), and set r’ := C;l/ﬁlr.
Since {sh(s)™" | s € (0,00)} = (0, 00) and ®y(r’,t) > 0, in view of (2.16) we can choose s € (0, c0)
so that

" — ! > 1<I> (r',t) >0
U-1(sh(s)") sh(s)=" ~ 2 OV '

Then by (2.10), ' = C;l/ﬁlr and k' = (81 — 1)~ 'k we have
r’h(s)_“/ < Cé,/ﬁlr’h(s)f'*/ sh(s)" 1/ _ r
U—1(sh(s)=) = W-1l(sh(s)") \sh(s)~" U 1(sh(s)r)’

and therefore from [80, Lemma 2.10] (see also (2.28) and (2.29) below), (2.20), (2.21) and (2.16)
we obtain

(2.20)

(2.21)

1 81 2 / —K/
K B—1 — —k' - h(s) " ¢
o W o (DR T g S ol L S E—
o(r,t)h(s)™" < Cy (r’> o(r', )h(s)™" < 2Cy U—1(sh(s)=") s
(2.22) coch (T 1) cocmg (r,t)
: =20 A\ nm) s) S S

On the other hand, setting Cj, := (C\I_,l/’gl\lf_l(l))ﬁl/(ﬁl_l) A 1 and noting that

Yoot v U ot o (C(p) o
U—1l(u) uw W l(u)\ ¢t u U l(u) \ ¢ u
for any u € (0, 1] by (2.10), we have

r t t =
) < (Y B1—1 .
(2.23) T w s 0 for any u € <0, Cy (r, A 1) ]
It then follows from (2.23) and (2.20) that s > sh(s)™" > Cy (& A 1)B1/(’81_1), and hence further
from (2.9) that, with Cy j, := Cp, (¥ 1(1) A 1)_5hﬂ1/(51_1),
8

h(s) < {h@&“(t/ﬂ)ﬁfll) = C%hh<(t/7“)f’lil) if 7 > 1,

h(CY) < h(Cy)h(oo)  h((t/r)7T) i <1,
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which together with (2.22) shows (2.19). O

Now we can state the main result of this subsection; note that by Lemma 2.11 we can replace
exp(—c2®@y, (d(z,y) A Ry, t)) in the right-hand side of (2.24) below by

t Blﬁil AT
exp —cqu)Huq)o(d(iﬂ,y)ARyat)h <W> '
) Y

Theorem 2.12 (Off—diagonal upper bound). Assume (E), (DU) and that B(x,r) is compact for any
(1) € V\N) x (0, 5 Ry with B(x,2(ae +1)r) C Y. Set ky := (2 + B2)(Kel + Ken) and assume that
epku < 1. Then there exists a Borel measurable function p = pi(x,y) : (0,00) x (X \N) x Y — [0, 0)
such that the following hold:

(i) For any (t,z) € (0,00) x (X \ N),
Pp[ Xy € dy] = pi(z,y) p(dy).

(ii) There exist c1,co € (0,00) such that, with K}, 1= (1—epkn) " H(Kau+ruaz/Br), forany (t,z,y) €
(0,00) x (XY \N) x Y,

Clh(t/\\ll( ))H“
(W) A Ry)
() := 00) and ¥(o0) := co.

(2.24) pe(z,y) <

exp <—02<I’nu (d(x, y) ARy, t)) )

where Ry := R A inf,cx\y d(y, ) (inf

The proof of Theorem 2.12 is concluded at the end of this subsection. For this purpose, we need
some preliminary results on basic properties of ®,, and on upper bounds on P; [, ) < t]. First, for
®,. we have the following lemma, which asserts that, provided ¢;,x < 1, the function ¥~ (sh(s)")
in (2.16) is comparable to ¥ !(s) for some homeomorphism ¥, : [0,00) — [0, 00) that still satisfies
(2.8) (for some different constants) even though ¥~ (sh(s)*) might not be itself strictly increasing.

Lemma 2.13. Let € [0,¢;, ") and define a homeomorphism ¥, : [0, 00) — [0, o) by

(2.25) \I/_l(t) = sup \I/_l(sh(s)'{) + \I/_l(t),
s€(0,t]

which can be defined since limg)o U~ (sh(s)®) = 0 by epk < 1 and (2.9). Then there exists C' > 0
such that

(2.26) CU () <UL (th(t)®) < W l(t)  foranyt e (0,00),

and VU, satisfies (2.8) with (3, replaced by B2 = (1 — enk) "By and Cy by some Cy . € (0,00).
Moreover, with (1 := f1 and ®,(r,t) := supse(g.o0) (7/ V' (s) — t/s) for (r,t) € [0,00) x (0,00),
there exists C' € (0, 00) such that for any r,t,s € (0,00) with s <,

1 1
(2.27) C'~' min (lpn(r)>ﬁﬁ’] 1 < B, (r,t) < C" max <\Il”(r)>ﬂm’3 1,
j€{1,2} 13 je{1,2} t
B“ii’z & 5;@,1
(2.28) o (B) e < elnt) o (L),
5 Pyi(s,1) §
(2.29) B,.(r, 1) < Bpe(r,t) < C'®y(r,1)
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Proof. Let t € (0,00). Clearly U~1(¢th(t)*) < W_1(¢). By (2.10) and (2.9), for any s € (0,¢], if
sh(s)® > th(t)" then

s\ 1/61 U1 (sh(s)) sh(s)" 1/B1 s iﬁﬂ s 1}3&
2. - <1< ————7-2< <cCprl-=) ™" <cCp(-) ™
@30 (7)) st T (th(t)") _c<th(t)*’~> << (3) «ci(;) ™

and if sh(s)® < th(t)" then

_1/S\ /A _1( sh(s)~f 1/B U—1(sh(s)") sh(s)"® 1/B2 oS 17;;”
231 e (E) s <th(t)“> S Ui (th()R) = C< th(t)“) < G (Z) ‘
In particular, we see from (2.30) and (2.31) that U~ (sh(s)") < cCFU~1(th(t)") for any s € (0, 1]
and hence that W' (t) < 2supgeiy ¥ (sh(s)") < cCp¥~!(th(t)"), proving (2.26). It follows
from (2.30), (2.31) and (2.26) that ¥, satisfies (2.8) with /3, replaced by B2 = (1 —e,x) ! 32 and
Cy by some constant Cy ,, € (0,00). Finally, we have (2.27) by [41, Lemma 3.19] and [40, Lemma
5.7], (2.28) by [80, Lemma 2.10], and then (2.29) by (2.26) and (2.28). O

Next, we prove some upper bounds on P,[7p(,,) < t], which is a key condition for applying [40,
Theorems 6.2 and 6.4] to conclude Theorem 2.12. For any open set U C X we set

EU) = SEI\)NEm[TU].
Te

Lemma 2.14. For any open subset U of X with E(U) < oo and any (t,z) € (0,00) x (X \ N),
E.[mv] t
P, <t <1——= + = .
v T TR

Proof. See [41, Lemma 3.12]. O

Lemma 2.15. Assume that condition (E) holds, and set k1 := ke] + Keu. Then there exist constants
c1,¢2 € (0,00) such that for any (z,r) € (¥ \ N) x (0, 5%) with B(z,(2a. + 1)r) C Y and any
A € [crh(r)?F1 /U (r), o0),

Ey[e MB@n] <1 — coh(r) ™",
Proof. For r and z as in the statement set B := B(z,r). Then, by Lemma 2.14 we have for all
t,A € (0,00),
Ey[e™] < By[e N, cn] + B e o] < Polrp <t +e7

Ey[r5] t -\t
< 1——= = .
hS E(B) + 7(B) +e
Next, note that for any y € B \ N we have B(y,2a.r) C B(z,(2ac + 1)r) C ) and therefore by
condition (E) we obtain E(B) > E,[rg] > C: ¥ (r)h(r)~" and
E(B) = sup Ey[tg] < sup Ey[tpyon] < Ce¥(2r)h(2r)"e
yeEB\W yeB\W

(2.32) < cW(r) h(r)"e < ch(r)tetre B [7p].

Hence, setting k1 := kel + Keu We get
E, [e_/\TB<w)] < 1—c3h(r) ™™ +cgt O(r) "L h(r)fe 4+ e M.

Now choose t such that c3h(r) =" = 2c,t U(r) =1 h(r)", so that

1
E, [B—ATB(QC,T)] < 1- §C3h(7“)_m + 6_)‘t,
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Finally, note that for all A > ¢ h(r)?:t /¥ (r) with ¢; > 0 sufficiently large and ¢ as chosen above we
have e~ < Yegh(r) =", which completes the proof. O

Proposition 2.16. Assume that condition (E) holds, and set ky := (2+ 33)(Kel1+ Keu). Then there exist
Cs,7 € (0,00) such that, for any (z,r) € (¥ \ N) x (0, 5% ) with B(x,r) compact and B(z,2(ae +
1)r) C Y, and for any A € (0, ),

Ex [6 by B(mﬂ“)} S CseXp<_\I]_1()\—1h(A—1)Hu)).

Proof. We follow the arguments in [41, Lemma 3.14].
Step 1. Let A\ > 0, fix some p < r to be specified later and set n = L%J. Further, set 7 := 7p(, )
and

u(y) = Ey [e_’\T], my = sup u, k=1,2,...,n.
B(z,kp)\N
For abbreviation define ¢ := Cyh(p)~"' (cf. Lemma 2.15) and ¢’ := £/2. Let y; be a point in
B(z,kp) \ N such that

(1—&eYmp < ulyr) < my < 1.

For k < n — 1 notice that B(yy,p) C B(z,(k + 1)p) C B(x,r). Consider the function v (y) :=
E,le~™] defined for y € B(y,p) where 7, := 7, ,. Then, since B(z,r) is compact, by the
continuity of [0,00) 3 ¢t — X;(w) € Xy for each w € Q, for all y € B(yk, p) \ N we have X,, €
B(yk,p) C B(z,(k+ 1)p) Py,as. on {r, < oc}. By the strong Markov property [24, Theorem
A.1.21] of X,

&

u(y) _ , [67)\7—;667)\(7—77%)] — Ey [efATkEXTk [67)\7]]

— AT
= E, []I{Tk<oo,X,-k B, (k1)) WEu(Xn, )]
<

&

e swpw = og(y) mps
B(a,(k+1)p)\W

In particular, by choosing y = yx, we get u(yx) < vg(yx)mr+1 and therefore

(2.33) (1 - E/) mg < vk(yk) M1
If additionally
h(p)*
(2.34) A>C )
L u(p)

since B(yg, (2ae + 1)p) C B(x,2(ae + 1)r) C Y we may apply Lemma 2.15 to B(yg, p) and obtain
that vi(yx) < 1 — &, which combined with (2.33) shows that

(1—€&Yymyp < (1 —¢)mypya, Vke{l,...,n—1}.

By iteration we get that

I —g\n-l
ua) < m < (g=5) ™

IA
N
|
||

o
R
N———

3
|
o

< exp<—(n—l)10g (1—!— )) < exp(—(n—l)log(l—l—ZE')),

1—2¢
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where we used in the last step that m,, < 1. Since we may assume that Cy < % and therefore &’ < i
and since n > % — 1, using the definition of ¢ we obtain that
T
(2.35) u(z) < exp < —(n—1)log (1 + 2¢' ) < Cexp ( — 07)
( ) phip)™

provided (2.34) is satisfied.

Step 2: Choice of p. In order to choose an appropriate p € (0,7), set xkp := 2x; and Cy =
Cg' V (C1h(T~1(1))R0), where Cy > 0 is such that U= (¢) > Cy(t'/% A t1/52) for all ¢ > 0. Let
p =V H(CoA"th(A71)"0). We claim that for this choice of p,

h(p)"
SRR TN

in particular, (2.34) holds. To see this, let us first consider the case A > Cy. Then, since 52 > 31 > 1
and

(2.36) p >V CoA™h) > Cy ((chl)l/ﬁl A (coxl)l/@) >CyCoN >\
we have
h(p)ro A 1o A A
= —h(A FOR(p)fo < — < —.
V) G (A7) ""h(p)™ < Co S0
On the other hand, if A < Cj, then
(2.37) p> U HCoA™h > w1
and hence
h(p)"™ A —1(1y\— A
< — h(U7H (1)) "h(p)*o < —.
Gy < e M) Ry <
Thus, (2.34) is satisfied for this choice of p and by (2.35) we have that
2.3 E,[e?Ben] < o "
@38) [een] < Coxp (= Ol

provided p < 7.

Step 3: Conclusion. In order to deduce the desired inequality let us assume first that p :=
UL(CoA"Lh(A71)"0) < r. We need an upper estimate on ph(p)~!.

Let us again consider the case \ > Cj first. Then, by (2.36) we get

ph(p)m < ph(/\_l)m —_ lI,—l(C«O)\—lh(/\—l)'m)h()\—l)m

oo, [ CONRAT)™ N\
< CUTH(Con TR 1)< A ) “h(AThM
CoA~th(A-T)"0m72

(2.39) < CU AT R

with ry := kg + Bok1 = (2 + B2)(Kel + Keu), Where we used that U1 (ry) /T~ (ry) < C(ry/ry) /P2
forany 0 < r; < rg.
On the other hand, if A < Cp, then p > ¥~1(1) by (2.37) and therefore

ph(p)™ < ph(T~H1)"™ = WHCoA™ h(A™H) ) h(T (1))
(2.40) < CUTH(ATTR(ATH)™).
The claim now follows combining (2.38) with (2.39) and (2.40).



14 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER
Now assume that p := U~1(Co A" h(A71)%0) > . Then,
r < UTHCATTR(ATHR) < CUTH(ATTR(ATYY),
and the desired estimate follows from e~ "8 < 1 by adjusting the constants v and Cs. O

Corollary 2.17. Suppose that condition (E) holds, and set ry := (2 + (2)(Kel + Keu). Then there exist
c1, ¢z € (0,00) such that, for any (z,r) € (¥ \ N) x (0, 5% ) with B(x,r) compact and B(x,2(ae +
1)r) C Y, and for any t € (0, c0),

Peltpr) <1t < crexp(—®y, (cor, ).
Proof. For z and r as in the statement and any s, ¢ € (0, c0), by Proposition 2.16

Pac[TB(a:,r) St] = P, [e*TB(z,r)/S Zeft/s] < et/s E, [e*TB(z,r)/s]

e t cr
xpl - —=——F—~—~ ).
5P U—1(sh(s)kn)
Now the assertion follows by taking the infimum in s € (0,00) of the right-hand side of this in-
equality and recalling the definition (2.16) of ®,,. O

IN

Proof of Theorem 2.12. If Y = X and R = oo, then by Lemma 2.13 along with ¢;x, < 1, Corol-
lary 2.17 along with (E), and (DU) along with ¥, < U, all the assumptions of [40, Theorem 6.4]
with U, in place of W are satisfied, and hence [40, Theorem 6.4] together with (2.28) and (2.29)
yields the assertions.

Thus we may assume that either ) # X or R < oo holds, so that R, € (0,00) for any y € ).
Let {yn }nen be a countable dense subset of ). For each y € Y, set Rg/ = Ry/((2adu) V (4ae + 4)),
so that R;, € (0, %), B(y,aquRy) C Y, R;, € (0, %) and B(z,2(ae + 1)r) C Y for any (z,r) €
B(y, R;,/2) x (0, R}). Therefore for each n € N, Lemma 2.13 along with e, < 1, Corollary 2.17
along with (E), and (DU) along with ¥,,, < W together imply that the open subset B(yy, R, /2) of
X and the function ¥, satisfy all the assumptions of [40, Theorem 6.2], and hence we see from
[40, (6.4) and (6.5)], (2.27), (2.28) and (2.29) that for any (¢,z) € (0,00) x (X \ ) and any Borel
subset A of B(yy, R, /4),

exp (B, (c(d(z,y) A R},).1) ) (dy)
ch(t AU, (R, )"

(2.41) < /A @A U (R, ) eXP(—CQ‘I)nu (d(z,y) ARyﬂf)) p(dy).
On the other hand, for any ¢ € (0,00), CY(t) < U, (t)h(¥y,(t))" < ¥(t) by (2.26) and (2.8),
hence h(¥,, (t)) < h(CY(H)h(Vy, (1)) ) < Ch(V,, (t))"h(¥(t)) by (2.9), therefore h(¥,, (t)) <

Ch(W(t)) ™= and thus

ch(t A Wy, (R, )"
Py[X; € A] < /A (Tt AT, (R )))

Yn

(2.42) h(t AWk, (R,)) < Ch(U (V. () A U(R,)) T < C'h(t ANU(Ry)) T

for any y € B(yn, R, /4) by ¥, > ¥, (2.9) and (2.8). Also for any ¢ € (0,00), by ¥;1 > w1,
(2.7), (2.26) and (2.10) we have

() _ L (YEHONT (RSN s
v(\w(t))gc”(w—l(t)) SC(W@)) < C"heyee?,
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and therefore for any y € B(yx, R;, /4) we further obtain

1 C”h(t A \Ijnu (R/yn))HuOAQ//BI _ Cl//h(t A \I/nu (R;n))ﬁu()&/ﬁl
(U (EA Y, (R ) ~ v(Ur () AR, - v(U=1(t) A Ry)
by \I/,;ul > ¥~! and (2.7). Combining (2.41), (2.42) and (2.43), for any (t,z) € (0,00) x (X \ N)
and any Borel subset A of B(y,, It;, /4) we get

(2.43)

(2.44) Pu[Xi € A] < /A qh(sli/\lz)(]iy])%)y)du

which then holds for any Borel subset A of ) since Y = J,,cy B(¥n, Ry, /4). Now the assertions
follow from (2.44) and [40, Proposition 5.6]. O

exp(—c2®s, (d(z,y) A By, 1) ) p(dy),

2.3. On-diagonal lower bounds of the heat kernel. In the present general setting, our result on
on-diagonal lower bounds of the heat kernel is formulated as in the following proposition.

Proposition 2.18 (On-diagonal lower bound). Assume (V). and (E), set ry := (2 + 52)(Kel + Keu)
and assume epk, < 1. Also set Kq) := Kyy + Kuao/f1 and Ky = (1 — epku) 'Ky Then there exist
er € (0,1) and Cy € (0,00) such that, for any (zo,r) € ¥ x (0, =) with B(xo,r) compact and
B(zo, ((ayVae)+2)r) C Y, and for any (t,x) € (0,e¥ (r)h(¥(r)) "] x (B(zo,r/2)\N) with P,[X; €

dy, t < TB(zo,r)) = pfagxo,r) (y) u(dy) for some Borel measurable function pffo’” : B(zg, ) — [0, 00),
To,T C’dl —
(2.45) / pBa(: o) y)? pldy) > ——S——h(t) ",
Blo.r) t, ( ) ( ) ’U(\I’fl(t)) ( )

We need the following lemma for the proof of Proposition 2.18.

Lemma 2.19. Let & € [0,,") and § € (0,1). Then there exists ¢ € (0,1) such that th(t)® < ¥($r)
for any r,t € (0,00) with t < eW(r)h(V(r))~/(1=enk),

Proof. Set k¢ := (1 — epk) " 1k. Let e € (0, 1), which we will choose to be sufficiently small later in
this proof, and let r, ¢t € (0,00) satisfy t < eW(r)h(¥(r))~" . Then, setting s := ¥(r)h(V(r))~"* €
(t,¥(r)], by (2.9) we have

(2.46) sh(s)™ < s(C’hh(‘ll(r))(\If(r)/s)‘sh)H = CpFw(r).
Therefore we see from (2.30), (2.31), t < €5, (2.46) and (2.10) that
UL (th(t)") < O(t)s) /P2 T (sh(s)") < Ce /P21 (CRU(r)) < 't/ Py

for a constant C’ € [1,00) independent of £ € (0,1), and hence the assertion follows by assuming
that ¢ has been chosen to be ¢ := (5/(2C"))%2 € (0,1). O

Proof of Proposition 2.18. We follow the standard argument for proving on-diagonal lower bounds
as presented, e.g., in [41, Proof of Lemma 5.13]. Set x := Ky € [0,5,:1), let § € (0,1), which we
will choose to be sufficiently small later in this proof, let ¢ € (0,1) be as in Lemma 2.19 and set
ey := €. Let (zq,7),(,t) be as in the statement and set p := W' (¢th(t)")/d, so that p € (0, 5]
by the property of e; = ¢ from Lemma 2.19. Then CVU,1(t) < U!(th(t)"™) = dp by (2.26),
hence t < U, (C~19p) < C'6P2W, (cop) by (2.8) for ¥, proved in Lemma 2.13, with ¢ as in
Corollary 2.17, and therefore

1
~ i Brn.g—1 _ Pru2
(2.47) D, (cap,t) > Dy, (cap, t) > C" rr{lin}<'“§f2/))> T > 0" Prua ]
je{l,2
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by (2.29) and (2.27). On the other hand, p < § < %, the compactness of B(xq,r) implies

that of B(z,p) by B(z,p) C B(zo,r), and we also have B(z,2(a. + 1)p) C B(z, (aec + 1)r) C
B(xo, (ae + 2)r) C Y, so that by Corollary 2.17 and (2.47) we get

_ BNU,Q
(2.48) Po[rp@p) < 1] < crexp(—Py, (c2p,1)) < c1exp (—C”’5 Bnu,rl)

with ¢; as in Corollary 2.17. Since ¢;,C" in (2.48) are independent of 4 € (0, 1), we may assume
that § has been chosen to satisfy c; exp(—C’”é_ﬁ“uv?/w“uvrl)) < %, and then by (2.48) we have

N |

Lp)] z,p)

It therefore follows from B(x, p) C B(zo,r) and (2.49) that
L G w2 [
xo,T

B(z,p)

= H(B(lx, p)) </B(m,p) pfﬂgmw) (w) M(dy)) 2

1
= _PX, € B(z,p), t < (s
w(B(z, p)) Xt € Bla,p) Bz

2

Y

mpx[t < TB(:E,p)]
1

= (B, )

Finally, noting that W='(t) < W=!(th(t)™)/6 = p < 5 < £ and that B(z,ayp) C B(wzo, (ay+1)5) C
Y, we see from (V)S’ (2.7) and (2.10) that

(2.50)

u(B(z,p)) < Cyo(p)h(p)™ < Cvcvv@‘l(t))h(‘l"l“””“(w[i(t))az

(251) < CMu (W )R @) b,

Now (2.45) follows from (2.50), (2.51) and the fact that h(¥1(¢)) < h(C’;l/m) < h(C;l/BQ)h(t)
by (2.10) if ¢ > 1 and h(U~1(£)) < h(Cy /P w=1(1)i1/B1) < C""h(t) by (2.10) and (2.9) if ¢ <
1. OJ

2.4. Proof of Theorem 2.1. We conclude this section with deducing Theorem 2.1 from Theo-
rem 2.12 and Proposition 2.18.

Proof of Theorem 2.1. Define v,V : [0,00) — [0,00) and h : (0,00] — [1,00) by (2.11), so that
Assumption 2.2 holds with arbitrary ¢;, € (0,00) by Example 2.3. Set R := 2diam & € (0, 00),
Y := X and N := (), which satisfy Assumption 2.4.

For (i), since Ry = RAinf,cx\y d(y,2) = 2diam X for any y € &, by Theorem 2.12 there exist a
Borel measurable function p = py(x,y) : (0,00) x X x X — [0,00) and ¢y, ¢2 € (0, 00) such that for
each (t,z) € (0, (diam &X)%] x X, for p-a.e. y € X,

(2.52) pi(x,y) = pe(z,y) < et~/ (log(e + t_l))ﬁé“ exp(—cﬂb,{u (d(m, Y), t))

Then by the continuity of p;(z, -) and the lower semi-continuity of ¢, , the upper bound on p;(z, y)
in (2.52) extends to any (¢, z,y) € (0, (diam X)%] x X x X, from which we obtain (2.5) by noting



TWO-SIDED HEAT KERNEL BOUNDS FOR 4/8/3-LIOUVILLE BROWNIAN MOTION 17

that (2.18) in Example 2.10 yields
1 Ku

P, (d(w,y),t) = cs <W>l (10g<g + (d(fﬁt, y))%))‘l

1 Ku

> cg(1— B 1)Ft (W) o~ <log<e + d(i’y)»_ﬁl.

For (ii), note first that for any (o, 7), (x,t) € X x (0, c0) a function pféxo’r)
exists and satisfies pf fco’r) < pi(zx,-) p-a.e. on B(xp,r) by (2.1) and the Radon-Nikodym theorem.
Therefore, choosing any ¢, € (0, c0) with e,k < 1, we immediately see that all the assumptions of
Proposition 2.18 are satisfied and thus that, with xy, e, Cyg as in Proposition 2.18, (2.45) holds for
any (zo,7) € X x (0,a; ' diam X') and any (¢, z) € (0,&¢r” (log(e +r~?)) "™ ] x B(zo,7/2). Now set
ro = ay ' diam X, to := eqrj (log(e + 5 7)) ™™ and let (¢, 2) € (0,49) x X. Then t € (0, (log(e +
r=P)) "] for some r € (0, 7o), and hence from p(z,) = p(-, ) on X, py(z,-) > pff’”
on B(z,r) and (2.45) we obtain

pat(w,w)Z/Xpt(%y)pt(y,w)u(dy)=/Xpt(w7y)2u(dy) 2/ pe(,y)* p(dy)

B(z,r)

o

as in Proposition 2.18

> 0 u-a.e.

> /B ( )pff’r)(y)%(dy) > Ot~/ (log(e + 1)) ™™,

proving (2.6) for (t,z) € (0,2ty) x X. Finally, (2.6) for (t,2) € [2to, (diam X)?] x X follows
since, for each s € (0, 00), we can define a bounded self-adjoint operator Ty : L?(X, ) — L?(X, i)

satisfying T,1 = 1by 7o f := [, ps(-,9) f(y) p(dy), then [ |Tof1>dp = [y|Tof — s [o £ | dp+
ﬁ(fx fd,u)2 for any f € L?(X, 1) and hence for any (¢, ) € (s,00) x X,

— . 2 — . 2 (f;(pt—s(',l’) d,UJ)2 . 1
paten) = [ padu= [ [Tt > PR <

We have thus completed the proof of Theorem 2.1. O

3. BACKGROUND ON THE BROWNIAN MAP AND LIOUVILLE QUANTUM GRAVITY
3.1. A review on the Brownian map.

3.1.1. Definition. The Brownian map is a random metric measure space which was shown by Le
Gall [63] and Miermont [69] to arise as the Gromov-Hausdorff scaling limit of certain types of uni-
formly random planar maps. The name Brownian map was introduced by Marckert and Mokkadem
in [68] who proved a weaker form of convergence of rescaled uniformly random quadrangulations.
The standard (unit area) Brownian map is defined from the Brownian snake using the following
procedure. Let X be a normalized Brownian excursion on [0,1]. Let 7 be the instance of the
continuum random tree (CRT) [1] which is encoded by X. That is, for 0 < s <t < 1, we let

mx(s,t) = Xs+ Xy — 2 inf X,.
re(s,t]

Then mx defines a pseudometric on [0, 1]. We say that s ~ ¢ if mx(s,t) = 0. Then T is given by
the metric quotient of [0, 1] with respect to the equivalence relation ~. Let pcgrr: [0,1] — 7T be the
natural projection map. Given X, we let Y be the mean-zero Gaussian process with

cov(Ys, V) = Tér[gft] X,
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so that E[(Ys — Y;)?] = mx(s,t). In particular, if s ~ ¢ then Y, = Y}, so that Y induces a Brownian
process on the branches of the CRT instance 7, and is called the Brownian snake. We note that
Y is a.s. a-Holder continuous for any o < 1/4. This follows from the usual Kolmogorov-Centsov
argument.

For s,t € [0,1] with s < ¢ and [t,s] = [0,1] \ (s, 1), let

do(s,t)ZYS—l—Yt—QmaX( inf Y, inf YT>

rels,t] relt,s]

For a,b € T, we set
d7(a,b) = min{d°(s,t) : pcrr(s) = a, pcrr(t) = b}.

Finally, for a,b € T, we set

k
d(a,b) = inf ¢ > d5(a;-1,a)
j=1
where the infimum is over all ¥ € N and ag = a,ay,...,a; = bin T. We say that a = b if and only if
d(a,b) = 0. The Brownian map (S, d) is then defined to be the metric quotient 7/ =. Let p: T — S
be the natural projection map associated with this metric quotient and let pgy = p o pcrr. Let v
denote the pushforward of Lebesgue measure from [0,1] to S by ppm so that (S,d,v) is a metric
measure space.

The Brownian map is also naturally marked by two points. The first marked point = is called the
root and is equal to ppn(s*) where s* is the a.s. unique point in [0, 1] at which Y attains its infimum
[68, Lemma 16] (see also [66, Proposition 2.5]). The second marked point y is called the dual root
and is equal to ppMm(0) = pem(1). The reason for this terminology is that x is the root of the tree
of geodesics from every point z € S to x and y is the root of the dual tree, where the tree encoded
by X is called the dual tree and the tree encoded by Y is called the geodesic tree (tree of geodesics
from every point back to x). It turns out that the conditional law of x,y given (S, d,v) is that of
independent picks from v [62, Section 8]. That is, the law of (S,d, v, z,y) is invariant under the
operation of resampling x, y independently using v.

We let ufy; denote the law of (S,d,v, r,y). The superscript A = 1 serves to emphasize that
v(S) = 1 as X is defined on [0,1]. If a > 0 is fixed then we define u{i;,* by replacing X with a
Brownian excursion of length « and in this case we have that v(S) = a.

As we will see later, in many situations it is more convenient to consider the Brownian map with
random rather than fixed (unit) area. The starting point for the definition of the (doubly marked)
Brownian map with random area is the infinite measure on Brownian excursions [82]. We remind
the reader that one can “sample” from this distribution using the following two steps:

e Pick a lifetime ¢ from the measure ct—3/2dt where ¢ > 0 is a constant and dt denotes
Lebesgue measure on R .
e Given t, pick a Brownian excursion X of length ¢.

Recall that a Brownian excursion X of length ¢ can be constructed by first sampling a Brownian
excursion X of unit length and then by setting X, = \/f)?s Jt-

We define upy to be the law of (S, d, v, z, y) where X in the definition of the standard (unit area)
Brownian map is replaced by a sample from the infinite measure on Brownian excursions. Since
the law on Brownian excursions is an infinite measure, so is ugy. However, if we condition ppy
on v(S) = a for a > 0 then we obtain the probability measure p43,2. It is also possible to condition
upm on other events to obtain a probability measure. Another important example which we will
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discuss momentarily in more detail is the event d(z,y) > 1. More precisely, it follows from [77,
Theorem 1.1] that ugy[d(z,y) > 1] € (0, 00). In particular, upy[d(z,y) > 1]! times the restriction
of upm to {d(x,y) > 1} is a probability measure. In fact, we have that upy[diam(S) > 1] € (0, 00).
Indeed, as we noted earlier, the Brownian snake Y used to construct a sample (S, d) from pjy!
is a-Holder continuous for any a@ < 1/4. Also, the Kolmogorov-Centsov argument implies that
Y = maxo<<1 |Yi| € LP for all p € [1,00). Furthermore we have that ppy[diam(S) > 1] =
¢ [ 2, nii [diam(S) > 1]¢t~3/2dt for some constant ¢ € (0,00) which combined with scaling and
change of coordinates implies that ppyi[diam(S) > 1] = 4e [ piiy [diam(S) > s]sds. Fix p > 2.
Since diam(S) < 2Y by construction and v [V > s] < s'? by Markov’s inequality, we obtain
that ppy[diam(S) > 1] 1+ [Z) s Pds < 1.

We now record an estimate for the volume of metric balls in the Brownian map. This result will
involve a polynomial correction, which we will improve later to a polylogarithmic correction.

Lemma 3.1. Suppose that (S,d, v, x,y) is an instance of the Brownian map. For each u > 0 there a.s.
exists o > 0 so that
rt < y(B(z,r)) <7t forall re(0,r9) andall ze€S.

Proof. The upper bound is proved in [62, Corollary 6.2]. The lower bound follows from the Holder
continuity of the Brownian snake. 0

3.1.2. Breadth-first construction. We will now review the basic properties of the breadth-first con-
struction of the Brownian map developed in [77].

Continuous state branching processes. Recall that a continuous state branching process (CSBP) with
branching mechanism 1 is the cadlag Markov process Y on R, whose law is characterized by its
Laplace transforms

(3.1) Elexp(—AY}:) | Ys] = exp(—Ysui—s(A)) for 0<s<t
where 3
S = —0(w (V) for up(X) =\

See [58, Chapter 10] or [61] for an introduction to CSBPs. There is a correspondence between
CSBPs and Lévy processes via the so-called Lamperti transform [59]. In particular, if Y is a Lévy
process stopped upon hitting (—oo,0) with only upward jumps and Laplace exponent ¢ and we
define the time-change

(3.2) s(t) =inf{r >0: /T 1 du >t}
0o Yu

then the process Y, is a CSBP with branching mechanism 1. Conversely, if Y is a CSBP with
branching mechanism ¢ and we set

(3.3) s(t) =inf{r > 0: /r Y, du >t}
0

then the time-changed process Y, ;) is a Lévy process stopped upon hitting (—oo,0) with only up-
ward jumps and Laplace exponent ).

In this work, we will be primarily interested in the case that ¢)(\) = cA® where « € (1,2) and
¢ > 0 is a constant. We will call the corresponding CSBP an «-stable CSBP since the associated Lévy
process is a-stable. In this case, we have the explicit formula

(3.4) w(N) = (N0 + et)/0=a),



20 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

Note that the explicit form of u; combined with (3.1) implies that the following is true. If Y is an
a-stable CSBP starting from Y, > 0 then for each ¢ > 0 we have that ¢ — Y_«-1, has the same law
as cY, up to a change of starting point.

Let Y be an a-stable CSBP and let ¢ = inf{t > 0 : ¥; = 0} be its extinction time. The for-
mula (3.1) yields an explicit formula for the distribution of ¢, which is as follows

(3.5) P[¢ > ] =P[¥; > 0] =1 lim E[e ] = 1 — exp(—ct"/1=)Yy).
—00

Boundary length and conditional independence of inside and outside of filled metric balls. Suppose
that (S, d, v, z,y) is distributed according to upy;. For each r > 0, we let B*(x, r) be the complement
of the y-containing component of S \ B(z,r), where we set B(xz,0) = (. We call B*(z,r) the filled
metric ball of radius r centered at x. In other words, B*(x, r) is defined as the closure of the union
of B(z,r) together with all of the components of S \ B(z,r) which do not contain y.

On the event {d(z,y) > r}, it is shown in [77] how to associate with 0B*(x,r) a boundary
length L, in a manner which is measurable with respect to (S,d,v,z,y). It turns out that the
marginal law on L, can be “sampled” from by first “picking” a 3/2-stable CSBP excursion from the
infinite measure on such excursions and then taking the cadlag modification of the time-reversal.
The infinite measure on 3/2-stable CSBP excursions can be described as follows. Recall from [20,
Chapter VIII, Section 4] that the infinite measure on 3/2-stable Lévy excursions with only upward
jumps can be sampled from as follows.

e Pick a lifetime ¢ from the measure ct~°/3d¢t where ¢ > 0 is a constant and d¢ denotes
Lebesgue measure on R..
e Given t, pick a 3/2-stable Lévy excursion with only upward jumps of time-length ¢.

The infinite measure on 3/2-stable CSBPs can be sampled from by first sampling from the infinite
measure on 3/2-stable Lévy excursions and then applying the Lamperti transform (3.2).

For each » > 0, we can view B*(z,r) as a metric measure space which is marked by = and
equipped with the restriction of v to B*(z,r). The metric that we put on B*(z,r) is the interior-
internal metric, which is defined by setting the distance between points u,v € B®(z,r) to be the
infimum of the d-length of paths which connect u,v and stay in the interior of B*(x,r) except
possibly at their endpoints. We can similarly view S \ B®(x,r) as a metric measure space which is
marked by y and equipped with the interior-internal metric.

It is shown in [77] that L, is a.s. determined by B®(z,r), that L, is a.s. determined also by
S\ B*(z,r) and, moreover, that B*(x,r) and S \ B*(z,r) are conditionally independent given L,.
On the event that {d(z,y) > r}, the same also holds if we replace r by s = d(z, y)—r. In this case, S\
B*(z, s) is the region which has been explored after performing r units of reverse metric exploration.
It is also shown in [77] that for each r > 0 the metric measure spaces corresponding to S \ B(z,r)
are conditionally independent given their boundary lengths. The conditional law of the components
of S\ B(z,r) which do not contain y are given by L3¢ (where / is the hole boundary length) and
the conditional law of the component which contains y is given by ,uégfw (where / is again the

hole boundary length); here p55¢ and Méﬁ{w denote the law of a Brownian disk with boundary
length equal to ¢ and that of a Brownian disk weighted by its area, respectively, introduced below
at the end of Subsection 3.1.2. This in fact follows from the conditional independence of B*(x,r)
and S\ B*(z,r) and a re-rooting argument. These statements hold more generally if r is replaced
by a stopping time 7 for the boundary length process of the whole collection of components of
S\ B(z,s), s > 0.
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Metric bands. The inside-outside independence of filled metric balls allows us to decompose an
instance of the Brownian map into conditionally independent metric bands. More precisely, suppose
that we have fixed 7o =0 < r; <7y < --- <1, and we let s; = d(x,y) —r; foreach 0 < j < k.
Then we can view each B; = B*(z,s;—1) \ B*(z,s;), 1 < j < k, as a metric measure space with
its interior-internal metric ds, and measure vg, = v|g;, where we set B(z,r) = B*(z,r) = () for
r < 0. Note that each B; is either a topological disk or annulus. Its inner (resp. outer) boundary
is the component of 0B; whose distance to x is equal to s;_; (resp. s;). We will denote the inner
(resp. outer) boundary of 0B; by 01, B; (resp. doutB;). We also note that 0y, 3; is naturally marked
by the point visited by the a.s. unique geodesic connecting « and y. The width of B; is sj_1 — s; =
r; —rj—1. We note that the independence property for the reverse metric exploration implies that
B; is conditionally independent of 5,. .., B;_1 given the boundary length of 0i,8;. Moreover, the
conditional law of B; given that its inner boundary length is equal to ¢ depends only on ¢ and the
width T —Tj—1.

We let ué;féwzw be the law on metric bands (B, dg, v, z) with inner boundary length ¢, width
w, and marked by a point z on the inner boundary of B. We note that if (B,dg,vp,z) has law

ué:fc’lwzw, a > 0 and we rescale distances by a, boundary lengths by a?, and areas by a*, then we

. L=a?¢,W=
obtain a sample from 5% 5" =",

Brownian disks and the metric net. The metric net of (S,d,v,x,y) is defined as MetNet(S) :=
U, >0 0B*(z,7). The components of S \ MetNet(S) are each topological disks. They correspond to
the downward jumps of the boundary length process L, where the magnitude of a given downward
jump gives the boundary length of the component. The components are conditionally independent
given their boundary lengths and are instances of the Brownian disk with the given boundary length
(equipped with their interior-internal metric). For ¢ > 0, we let u55¢ denote the law of a Brow-
nian disk with boundary length equal to /. We also let ,uégfw denote the law of a Brownian disk
weighted by its area. In other words, the Radon-Nikodym derivative of u{5", with respect to ufp"
is equal to a normalizing constant times the area of the surface. If » > 0, we have that S \ B*(z, r)
has the law uégfw where ¢ = L,.

It turns out that the law of the area of a sample from ,uégfw is equal to the law of the amount
of time it takes a standard Brownian motion on R starting from 0 to hit —¢ [21]. Recall that the
density for this law with respect to Lebesgue measure on R, at «a is given by

(3.6) ¢ ex (_52)
' Varad P\ 2a)

The law of the area of a sample from u5p thus has density with respect to Lebesgue measure on
R, at a given by

03 02
(3.7) exp <—> .
V2mab 2a
We note that the Brownian disk can be constructed using a variant of the Brownian snake and this
perspective is developed in [21]. We will not describe this construction further here because in what
follows we will only need to know that Brownian disks arise as the complementary components

when performing a metric exploration of the Brownian map. The equivalence between these two
perspectives was proved in [64].
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3.1.3. Explorations of Brownian disks. Recall from the above that if (S, d, v, z,y) has distribution
upm and r > 0 then the conditional law of S\ B*(x,r) given L, is equal to Mégﬁf{/- This implies
that there is a natural exploration of an instance (D, d,v,y) sampled from pf5y, £ > 0, which is
given by considering for each » > 0 the y-containing complementary component D, of the (closed)
r-neighborhood of 9D. The boundary length L, of 0D, is then well-defined and evolves in the
same manner as in the case of a metric exploration of the Brownian map. Moreover, the successive
components disconnected from y correspond to the downward jumps of L, and are conditionally
independent Brownian disks with boundary length equal to the size of the corresponding down-
ward jump. Finally, for each » > 0, the conditional law given L, of the metric measure space given

by D, and marked by vy, the restriction of v to D,,, and the interior-internal metric in D, is equal to
L=L,
HBp,w-

In the case of (D,d,v) sampled from pkn¢, there is another exploration which is natural to
consider and is called the center exploration in [77]. It is analogous to the targeted exploration
described just above except that it always continues into the complementary component with the
largest boundary length. It can more precisely be constructed as follows. Suppose that y € D is
picked according to v/v(D) independently of everything else. Then one can consider the metric
exploration starting from 9D and targeted at y up until the first time a component D; is discon-
nected from y with boundary length larger than the y-containing component. At this time, we pick
a point y; in D; from v/v(D;) independently of everything else and then continue the exploration
inside of D; towards y; until the first time a component Ds is disconnected from y; with boundary
length larger than the y;-containing component. We then continue iterating the above procedure
to have a sequence {D,}; of components inside of which we continue the exploration at each step,
until the boundary length of the target component first hits 0. We note that this time R is a.s. finite
since it is at most the diameter of D, and that a.s. the sequence {D;,}; is infinite but only finitely
many of them appear by exploration time r for any r < R.

Let us now record some important properties of the center exploration. By the target component
of the center exploration at exploration time r» we mean the component in which the exploration
continues after r units of exploration, and each component which remains after the termination of
the exploration is called a component cut off by the center exploration. Let M, denote the boundary
length of the target component at exploration time r. Then the downward jumps of M, correspond
to components which are disconnected from the target component. Moreover, the components are
conditionally independent Brownian disks (given the realization of M) where the boundary length
of the disk is given by the length of the corresponding jump. Furthermore, the conditional law of
the target component given M, is given by uéBMT.

Let (a;) denote the sequence of downward jumps made by the center exploration run until M,
hits 0 and let o > 0. Then it is shown in [77, Section 4.6] that

Zaf‘] for a>2

where both expectations are under the law uége . Moreover, by the scale invariance of the Brownian
disk we note that the value of E[>,(a;/¢)*] does not depend on ¢. The first equality in (3.8) can
be seen because the conditional expectation of the amount of area inside of D given the center
exploration up to some time evolves as a martingale and, as explained above, the complementary
components are conditionally independent Brownian disks. The inequality in (3.8) can be seen by
a direct calculation with the jump law for M, (which is explicitly identified in [77]).

(3.8) P =E !Z a§] and (*>E




TWO-SIDED HEAT KERNEL BOUNDS FOR +/8/3-LIOUVILLE BROWNIAN MOTION 23
3.2. Liouville quantum gravity review.

3.2.1. Basic definitions. Suppose that h is an instance of (some form of) the Gaussian free field
(GFF) on a domain D C C (e.g., with Dirichlet or free boundary conditions, defined on the whole-
plane, any of the above plus a harmonic function). The Liouville quantum gravity surface described
by h refers to the random two-dimensional Riemannian manifold with metric tensor

(3.9) ) (da? + dy?)

where v € (0,2) is a parameter and dz? + dy? denotes the Euclidean metric on D. This expression
does not make literal sense because h is a distribution and not a function. The volume form
associated with (3.9) was constructed in [36]. The construction proceeds by letting h.(z) be the
average of h on 0B(z,¢) and then taking

(3.10) Lbh m €7 /2e7he(2) g,

=1l

e—0
where dz denotes Lebesgue measure on D. In the case that D has free boundary conditions on a
linear segment L, one can similarly define a boundary length measure on L by setting

(3.11) vy, = lim €1 /4e7he(2)/2 4
e—0

where dz denotes Lebesgue measure on L. The limiting procedure (3.10) implies that the measures
up, satisfy the following change of coordinates formula. If ¢: D — D is a conformal transformation
and

L

(3.12) h=hop+Qlog|y| where Q= ;

= |

then yi;:(A) = up(p(A)) for all Borel sets A. The same is also true with v, in place of py. In
particular, this gives a way to define v, on boundary segments which are not necessarily linear
because we can conformally map to such a domain and then compute the boundary length there.

We say that two domain/field pairs (D, k) and (D, h) are equivalent as quantum surfaces if h, h
are related as in (3.12). A quantum surface is an equivalence class of domain/field pairs under this
equivalence relation. An embedding of a quantum surface is a particular choice of representative,
and a quantum surface with an embedding (D, h) for a domain D C C is said to be parameterized
by D. We will also discuss marked quantum surfaces which refer to quantum surfaces with extra
marked points and the equivalence relation (3.12) is generalized so that the map ¢ must also
take the marked points associated with the surface described by h to the marked points associated
with the surface described by h. It is not always immediate that two domain/field pairs describe
equivalent quantum surfaces, so there is some subtlety to this definition. For example, two very
different looking constructions of the quantum sphere have been given in [35] and [28] and proved
to be equivalent in [8].

3.2.2. Quantum disks, spheres, and wedges. We will now describe the construction of a quantum
disk and a quantum sphere, as introduced in [35]. The precise definitions will not be important for
what follows, but we include them here for completeness. Throughout Subsection 3.2.2, v € (0, 2)
is arbitrary, and for functions f, g with L? gradients we define the Dirichlet inner product by

(3.13) (f.0)v = 5 / Vf(x) - Vg(x) da.

Let || - ||v be the associated norm.
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The starting point for the definition of the quantum surfaces which we will discuss is the excur-
sion measure for a Bessel process, which we recall is defined as follows. Suppose that 6 € (—o0, 2).
Then one can sample from the measure on Bessel excursions using the following procedure:

() Pick a lifetime 7 from the measure ¢s7%/2~2 dT where dT denotes Lebesgue measure on R
and ¢s > 0 is a constant.
(ii) Sample an independent normalized excursion Z: [0,1] — R, of a Bessel process of dimension
d.
(iii) Take Z to be t — TY2Z(t/T).
We note that the Bessel excursion measure is an infinite measure (as the measure c¢s7%/2~2dT is
an infinite measure). It is also defined even for § < 0, although in this case it is not possible to
concatenate a Poisson point process of such Bessel excursions to obtain a continuous process.
While reading what follows, the reader may find it helpful to look at [35, Figure 1.2].

Quantum disks. We will now describe the construction of a quantum disk. This is a finite volume
quantum surface which is homeomorphic to the unit disk D and is naturally marked by two points.
It is easiest to give the definition of the quantum disk when the surface is parameterized by the
infinite horizontal strip . = R x [0, 7]. We let H () be the closure of the C*° functions on .
with L? gradient with respect to || - ||y, viewed modulo additive constant. Then #(.#) admits the
orthogonal decomposition H;(.) & Ha(.) where H, () (resp. Hz2(.#’)) contains those functions
in #(.#) which are constant (resp. have mean-zero) on vertical lines.
A quantum disk is a quantum surface (., h, —oo, +00) whose law can be sampled from using the
following steps:
e Take the projection of h onto H;(.¥) to be given by % log Z where Z is a Bessel excursion
of dimension 3 — ;%, reparameterized to have quadratic variation 2 dt.
e Take the projection of i onto Hz(.¥) to be independently given by the corresponding pro-
jection of a GFF on . with free boundary conditions.

The above specifies the embedding of the surface modulo one free parameter (since as we will
explain below, the points at +oco are marked), which corresponds to the horizontal translation.
There are various ways of fixing the horizontal translation. One possibility is to let X denote the
projection of i onto #;(.#’) and then choose the horizontal translation so that sup,,cgr X, is attained
atu = 0.

Since the measure on Bessel excursions of dimension 3 — % is an infinite measure, this defines
an infinite measure on quantum surfaces which we denote by nqp. One can obtain a probability
measure by conditioning, for example, on the boundary length v/, (0.7) or area p(-#) being equal
to a given value. We let Mé:DE denote the probability measure obtained when we condition on the
boundary length v, (9.%) being ¢ > 0.

The two marked points at +o0o0, —oc are uniformly random given the quantum surface structure
[35, Proposition A.8]. This means that the law of (., h, —oo, +00) is invariant under the operation
of sampling x, y independently from vy, letting ¢: . — .¥ be a conformal transformation which
takes +oo to x and —oo to y, and then replacing h with h o ¢ + Qlog |¢|.

We will often refer to the law on quantum disks which is obtained by weighting the law ué:DZ by
its total volume p;,(.#’) and then adding an extra marked point in the interior chosen at random
from the quantum measure y;,. We let ,uészw denote this probability measure.

Quantum spheres. We will now describe the construction of the quantum sphere. This is a finite
volume surface which is homeomorphic to the two-dimensional sphere S? and is naturally marked
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by two points. It is easiest to give the definition of the quantum sphere when parameterized by the
infinite cylinder ¥ = R x [0, 2] with the top and bottom identified. Let H (%) be the closure of the
C*>°(¥) functions with respect to || - |y, defined modulo additive constant. Then #(%) admits the
orthogonal decomposition H (%) & H2(¢') where H, (%) (resp. H2(%')) contains those functions in
‘H (%) which are constant (resp. have mean-zero) on vertical lines.

Let h be the field on ¥ whose law can be sampled from as follows:

e Take its projection onto H1(%) to be given by %logZ where Z is a Bessel excursion of
dimension 4 — %, reparameterized to have quadratic variation dt.

e Take its projection onto Hz(%) to be independently given by the corresponding projection
of a whole-plane GFF on %.

As in the case of the quantum disk, this specifies the embedding of the surface modulo one free
parameter. One possible way of fixing it is to let X denote the projection of h onto (%) and then
choose the horizontal translation so that sup,cg X, is attained at u = 0.

We emphasize that since the Bessel excursion measure is an infinite measure, the measure on
quantum spheres that we have just defined is also an infinite measure. We let qspu denote this
infinite measure. One can obtain a probability measure by conditioning on its total volume.

The two marked points at 00, —oo turn out to be uniformly random given the quantum surface
structure [35, Proposition A.13]. This means that the law of (¢, h, —oo, +0) is invariant under the
operation of sampling z, y independently from py, letting ¢: ¥ — % be a conformal transformation
which takes 400 to 2 and —oco to y, and then replacing h with h o ¢ + Q log |¢/|.

Quantum wedges. We will now describe the construction of a quantum wedge. This is a doubly-
marked infinite volume surface which is homeomorphic to the upper half-plane H and is naturally
marked by two points (an “origin” point and an “infinity” point). Bounded neighborhoods of the
origin point a.s. have a finite amount of mass and neighborhoods of the infinity point a.s. have an
infinite amount of mass. It can be convenient to describe a quantum wedge parameterized either
by H (as this is the setting in which SLE is easiest to describe) or by . (as in this case the field is
easiest to describe).

Let us first describe the sampling procedure in the case of H. We let 7 (H) be the Hilbert space
closure of the C* functions on H with L? gradient with respect to || - ||v, viewed modulo addi-
tive constant. Then we can write H(H) = #;(H) & Ha(H) where H;(H) (resp. H2(H)) denotes
the subspace of functions which are radially symmetric (resp. have zero mean on origin-centered
semicircles). The law of the quantum wedge (H, &, 0, co) parameterized by H where 0 is the origin
point and oo is the infinity point can be sampled from using the following procedure.

First, we define a process A; as follows. For s > 0, we let A; = By + s where B is a standard
Brownian motion with By = 0. For s < 0, we let A, = E_gs + ~vs where B is a standard Brownian
motion independent of B with By = 0 conditioned so that By, + (Q — ~v)u > 0 for all u > 0.

e We take the projection of h onto #;(H) to be the function whose common value on
0B(0,e~%) N H is given by A, as described above.

e We take the projection of h onto Ho(H) to be independently given by the corresponding
projection of a GFF on H with free boundary conditions.

We note that if we have a quantum wedge parameterized by H, then taking the origin point
to be 0 and the infinity point to be oo specifies the embedding up to one free parameter which
corresponds to the scaling. In the above construction, we have taken the free parameter so that if
we let 7 = sup{s > 0 : hs(0) + Qlog s = 0}, where h,(0) denotes the average of h on 9B(0, s) N H,
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then r = 1. This is sometimes called the circle average embedding. There are other ways of fixing
this scaling, but the circle average embedding is often convenient because then the restriction of h
to D N H has the same law as the corresponding restriction to ID N H of a free boundary GFF on H
plus —vylog | - | with the additive constant fixed so that its average on 0D N H vanishes.

We can sample from the law of a quantum wedge parameterized by . using the following
procedure:

e Take the projection of h onto H;(.¥) to be given by % log Z, Z a Bessel process of dimension
14+ %, parameterized to have quadratic variation 2dt.

e Take the projection of h onto Hz(.¥) to be independently given by the corresponding pro-
jection of a free boundary GFF on .7

We will use the notation (., h, —oo, +00) where —oo (resp. +00) denotes the origin (resp. infinity)
point. This actually specifies the embedding of the surface into . modulo horizontal translation.
It is often convenient to take the horizontal translation so that if X denotes the projection of ~ onto
H1() then inf{u e R: X,, =0} = 0.

We let ug\;? denote the law of a quantum wedge. The reason for the superscript W = 2 is that
one can in fact consider variants of the quantum wedge which are obtained using a Bessel process
of dimension 1 + %W and the parameter W > 0 is called the weight. In this article, we will only
need the W = 2 quantum wedge so we will not discuss the other variants in further detail.

The weight-2 quantum wedge has the special feature that it is invariant under the operation of
translating its boundary point by a fixed amount of quantum length. More precisely, suppose that
(H, h,0,00) is a quantum wedge, L > 0, and = > 0 is such that 4, ([0,z]) = L. Then (H, h, z, 00) is
again a quantum wedge.

3.2.3. Review of the metric. A metric for /8/3-Liouville quantum gravity which is isometric to the
Brownian surfaces is constructed in [76, 73, 78] using the process QLE(8/3,0) first defined in [74].

If we have a quantum surface described by the field 4 on the domain D, we will let d;, denote
the corresponding metric and Bj(z,r) the metric ball with respect to dj, centered at z of radius r.
If we have a marked point y, then we will let B (z,r) denote the filled metric ball relative to y
with respect to dj. In other words, B,;y(z, r) is the complement of the y-containing component of

D\ Bp(z,7).

If (¢,h,—00,+00) is a quantum sphere, then the associated doubly-marked metric measure
space (€, dp, up, —00, +00) has distribution upy;. Moreover, the field A which describes the quan-
tum sphere can be measurably recovered from the metric measure space structure. Similarly, if
(&, h,—00,4+00) is a quantum disk then the associated metric measure space (-, d, 1) has the
law of a Brownian disk.

There are also infinite volume versions of this, whereby the so-called quantum cone is equivalent
to the Brownian plane and a quantum wedge is equivalent to the Brownian half-plane.

3.2.4. SLEg explorations of quantum wedges, disks and spheres. We will now review the basic prop-
erties of SLE explorations of quantum disks and spheres when v = /8/3. These results come
from [35] and [75].

Suppose that (H, h,0,00) is a weight-2 quantum wedge. Let ' be an independent SLE¢ on H
from 0 to co. We assume that 7’ is parameterized according to quantum natural time. Recall
that this is not the standard capacity parameterization but rather a time parameterization which
comes from the quantum surface structure defined by h. It is the continuum analog of the time
parameterization of an interface from a statistical mechanics model on a random planar map where



TWO-SIDED HEAT KERNEL BOUNDS FOR 4/8/3-LIOUVILLE BROWNIAN MOTION 27

7' (t)

\

FIGURE 1. Shown is a chordal SLEg¢ process n’ (red) on H from 0 to oo drawn up to
time ¢. The hull K; of n/([0,t]) is the set of points disconnected from oo by 7/ ([0, t]).
The top of K, is the part of 0K, in H. The left (resp. right) side of the top of K; is
the part of the top which is to the left (resp. right) of »/(¢) and shown in teal (resp.
orange). The bottom of K; is the part of 0K; in OH. The left (resp. right) side of
the bottom of K, is the part which is to the left (resp. right) of 0 and is shown in
blue (resp. dark green). We set L; to be the quantum length of the top left minus
the bottom left and R; to be the quantum length of the top right minus the bottom
right. The quantum length of the top left is L; —infy<s<; Ls and the quantum length
of the bottom left is — info<s<t L.

the interface is explored one edge at a time. Suppose that ¢ > 0 and that H; is the unbounded
component of H \ #/([0,¢]) and let K; = H \ H; be the associated hull. The top of K, is K; N 0H; =
OK; NH and the bottom is OK; N OH. We let L; = L;(n') denote the difference in the quantum
length of the part of the top which is to the left of 7/(¢) and the part of the bottom which is to the
left of 0. We similarly let R, = R;(n)’) denote the difference in the quantum length of the part of the
top which is to the right of 7/(¢) and the part of the bottom which is to the right of 0. See Figure 1
for an illustration of these definitions. Then L, R evolve as a pair of independent 3/2-stable Lévy
processes with only downward jumps occurring whenever 7’ disconnects a bubble from oo on its
left (resp. right) side. The magnitude of the downward jump corresponds to the boundary length
of the bubble.

Moreover, for each a.s. finite {FY }e[o,00)-Stopping time 7 (with FV denoting the o-field gener-
ated by the quantum surfaces disconnected by 7/ ¢ from oo and 33} := (s o) T3" ) we have that
the quantum surface parameterized by the unbounded component of H \ #'([0, 7]) and marked by
n'(7) and cc is a weight-2 quantum wedge independent of 5, . The quantum surfaces parameter-
ized by the bounded components of H \ 7' ([0, 7]) correspond to the downward jumps of L|jy ,; and
R|j,;] (depending on whether they are to the left or right of ') and are conditionally independent
quantum disks given L -, Rljo,-) with boundary length given by the size of the corresponding
jump. Here and in what follows, for a quantum surface with an embedding (D, ), we consider
each open subset Dy of D as parameterizing a quantum surface by equipping D, with the field
h|py-

Suppose that (S, z,y) is a doubly marked quantum sphere. Let ' be a whole-plane SLEg from «
to y which is sampled independently of S and then reparameterized by quantum natural time, and
set t,y := inf(n’) ! (y), so that ¢,, < co a.s. Fort € [0, co), we let L, be the quantum boundary length
of the connected component of S \ 7/([0,¢]) containing y and let 3} denote the o-field generated
by the quantum surfaces disconnected by 7|4 from y, and set FP, = ﬂse(t,oo) F5. Then, [75,
Proposition 6.4] implies that for each {F}, }elo,00)-Stopping time 7 with 7 < ¢,/ a.s., conditionally
given 35, the quantum surface parameterized by the y-containing component of S \ 7/([0, 7))
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has law ,ué:DLVTV and the location of 7/(7) on its boundary is uniformly random from the quantum

boundary measure. Moreover, the boundary length process {Lt}te[o,tn/) evolves as the time-reversal
of a 3/2-stable Lévy excursion. The same facts apply if ¢ > 0 is fixed and we explore an instance of
/ﬁészw using a radial SLEg¢ starting from a uniformly random boundary point according to quantum
boundary length measure and targeted at the marked interior point.

In the case of the quantum sphere, the distribution of the amount of time that it takes ' to go
from x to y is the same as the lifetime distribution for the infinite excursion measure on 3/2-stable
Lévy excursions with only upward jumps. Recall from just after (3.5) that this distribution is given
by a constant times ¢ ~5/3dt where dt denotes Lebesgue measure on R

3.3. Review of Liouville Brownian Motion. The Liouville Brownian motion has been constructed
in [39, 13] as the canonical diffusion process under the geometry induced by the measure p,, where
h is a zero-boundary GFF on a planar domain D C C. It is defined for any choice of the parameter
v € (0,2) as the time change of the planar Brownian motion on D in terms of the right-continuous
inverse of the positive continuous additive functional (PCAF) associated with y,.

More precisely, let B = (B;):>0 be the planar Brownian motion on D defined as the coordi-
nate process on the Wiener space (C([0,00), D), (Gt)i>0, (Pr)zep) With transition kernel denoted
by ¢:(x,y), t > 0, z,y € D. In [39], Garban, Rhodes and Vargas constructed a PCAF F' = {F}};>
of B with the Liouville measure p;, as the associated Revuz measure, that is

[ 1w =t [ B[ [ smie)

for any non-negative Borel function f on D. Similarly as yuj,, the PCAF F can be obtained via a
regularization procedure from the circle average A, i.e. for all x € D,

t
F, = lim €712 7he(Bs) gg in P,-probability
e—0 Jo
in the space C(]0,00),R) equipped with the topology of uniform convergence on compact sets
(cf. [39, Theorem 2.7]). Moreover, for all x € D, P,-a.s., F is strictly increasing and satisfies
limt%oo Ft = Q.

Then the (v-)Liouville Brownian motion (X:):>o, abbreviated as (vy-)LBM, is defined as X; =
B Fol By the general theory of time changes of Markov processes we have the following properties
of the LBM: First, it is a recurrent diffusion on D by [37, Theorems A.2.12 and 6.2.3]. Further-
more by [37, Theorem 6.2.1 (i)] (see also [39, Theorem 2.18]), the LBM is uj-symmetric, i.e. its
transition semigroup (P;)¢~o given by

Pi(z, A) := E,[X; € Al

fort € (0,00), x € D and a Borel set A C D, satisfies

/Ptf'gdﬂh:/f'Ptgdﬂh
D D

for all Borel measurable functions f,g: D — [0, o0]. By [38, Theorem 0.4] the Liouville semigroup
(P;)¢>o is absolutely continuous with respect to the Liouville measure, so there exists the Liouville
heat kernel p = pi(x,y) : (0,00) x D x D — [0,00) so that

Puf(x) = Bulf(X))] = / (e y)f@) dunly),  zeD.

D
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Furthermore, by [3, Theorem 1.1] the Liouville heat kernel admits a jointly continuous version is
(0, 00)-valued, in particular the LBM is irreducible (cf. [67] for similar results). Moreover, the tran-
sition semigroup (F;)¢~o is strong Feller, i.e. P.f is continuous for any bounded Borel measurable
f + D — R. We note that the aforementioned properties of the LBM still hold if we replace & by
a random field on D whose law is locally absolutely continuous with respect to the law of h. We
also note that the fields that we are considering in this paper are locally absolutely continuous with
respect to the zero-boundary GFF.

The killed Liouville Brownian motion. Let U be a non-empty open subset of D and let U U{dJy } be its
one-point compactification. We denote by 7y := inf{s > 0: By ¢ U} the exit time of the Brownian
motion B from U and by 7y := inf{s > 0 : X, ¢ U} that of the LBM X, where inf ) := co. Since
by definition X; = B Pt t >0, and F is a homeomorphism on [0, c0), we have 7y = Fr,,. Let now
BY = (BY);>0 and XY = (XV);>( denote the Brownian motion and the LBM, respectively, killed
upon exiting U. That is, they are diffusions on U defined by

BU .- {Bt %ft<TU, XU .= {Xt %ft<TU,

8U lftZTU, aU lftZTU.

Then for ¢ € (0, 00), the semigroup operator PV associated with the killed LBM XV is expressed
as P f(z) := E,[f(X{)], € D, for each Borel function f : U — [—o0,oc] with the convention
f(0u) = 0 for which the expectation exist. By [3, Proposition 5.1] there exists a (unique) jointly
continuous function pV = p¥ (z,y) : (0,00) x U x U — [0, 00) such that for all (¢,z) € (0,00) x U,
P.[XV € dy] = p¥Y(x,y)dun(y), which we refer to as the Dirichlet Liouville heat kernel on U.
Furthermore, the semigroup operator P is strong Feller, i.e. it maps Borel measurable bounded
functions on U to continuous bounded functions on U.

If U is bounded, as a time change of BY the killed LBM XV has the same integral kernel for its
Green operator GU as BY, namely for any non-negative Borel function f : U — [0,00] and = € D,

Ty

G1 @B ] = B[ rB)aR] = [ aniedew

0

Here gy denotes the Euclidean Green kernel given by
o
(3.15) gu(z,y) =/ g (x,y)dt,  z,yeR?
0

for the heat kernel ¢ (z,y) of BV: ¢V = ¢V (z,y) : (0,00) xU x U — [0, <) is the jointly continuous
function such that P,[BY € dy] = ¢V (z,y)dy for t > 0 and = € U, and we set ¢” (z,y) := 0 for
t > 0and (z,y) € (U x U)°. Again we note that the aforementioned properties still hold if we
replace h by a a random field whose law is locally absolutely continuous with respect to the law
of h. Finally, we recall (see e.g. [37, Example 1.5.1]) that the Green function gp(,, ry over a ball
B(zo, R) is of the form

1 1
(3.16) gB(:EO,R)(xv y) = ; log m + \Pxo,R(may)> T,y € B($07 R)a

for some continuous function ¥, r : B(zg, R) x B(zo, R) — R.
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4. QUENCHED ESTIMATES ON THE VOLUME GROWTH

For an instance (S, d, v) of the Brownian map, it was shown by Le Gall [62, Corollary 6.2] that
v(B(z,r)) is of order r* up to a polynomial correction for all » > 0 small enough and every x (recall
also Lemma 3.1). We will now improve this estimate to polylogarithmic corrections.

Theorem 4.1. Suppose that (S,d,v) is an instance of the unit area Brownian map. For each u > 0
there a.s. exists o € (0,1) so that

rt(log 1) < v(B(z,r)) < r*(log 1)*t, vr e (0,79), x € S.
The proofs of the lower and upper bounds will be presented separately in Sections 4.1 and 4.2,
respectively. In what follows, we will use several times the following standard concentration result
for Poisson random variables. Namely, if Z is Poisson with mean A > 0 then we have (cf. [73,

Lemma 2.9])
(4.1) P[Z < a)] < eMomalga=) -y e (0, 1),
(4.2) P[Z > a)] < eMeeloge=1) vy e (1, 00).

4.1. Lower bound. We will begin by working towards proving the lower bound in Theorem 4.1.
The starting point is Lemma 4.3, which is a pointwise lower bound for the volume in a metric ball
when we condition on the event that the filled metric ball boundary length process is not too small.
We will then extend this in Lemma 4.5 when we condition instead on the event that the distance
between x and y is at least 1, from which the lower bound in Theorem 4.1 easily follows. First,
we will state the following lemma which allows us to compare the laws of a weighted quantum
disk and a quantum wedge when both restricted in a small metric neighborhood around the point
chosen uniformly according to the quantum boundary length measure. Its proof is essentially the
same as the proof of [44, Proposition 4.2].

Lemma 4.2. Fix {,aq1,a5 > 0 with a1 < «ag and let (H, d) be a Brownian disk with area « and
boundary length ¢ (in the sense of [44, Section 3.5]), where o € [aq, ] is fixed. Let x € OH
be sampled uniformly according to the boundary length measure induced by (H,d). Let (H, c?) be a
Brownian half-plane (equivalently weight-2 quantum wedge). Then, for each ¢ € (0,1) there exists
a > 0 depending only on ¢,{, a1, and «w, and a coupling of (H, d) and (H, c?) so that the following is
true. With probability at least 1 — ¢, we have that the metric spaces By(z,a) and B30, &) agree in the
sense of [44].

Proof. It follows from the argument used to prove [44, Proposition 4.2]. O

Lemma 4.3. Let r > 0, and suppose that (S, d, v, z,y) is distributed according to upn conditioned so
that if Y denotes the boundary length of 9B*(x, d(x,y) —s) then sup( Yy > r2. There exist constants
co, My > 0 which are independent of r so that

Plv(B(z,7)) < r*/c'] < coexp(—=Moc??)  forall ¢>1.

Proof. Let ¢ > 1.

Step 1. We will first argue that with high probability under P there exists s € [0,r] so that
the boundary length of dB*(z,s) is at least 7%/c?, i.e., supsc(o,, Yid(w,y)—s)vo = 7°/c* with high
probability. We note that it follows from [20, Chapter IV, Section 4] that if 7 is the first time
that Y enters [r?, o0), then the conditional law of Y;,, given 7 < oo is that of a 3/2-stable CSBP
starting from Y;. Also, it is not difficult to see from the scaling properties of the 3/2-stable Lévy
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process that the distribution of the supremum under the 3/2-stable Lévy excursion measure is
given by a constant times ¢t~2 dt; see, e.g., [83, Corollary 1] for a careful proof. In particular,
we have that upy[r < oo] € (0,00). Next, we define stopping times as follows. We let 79 =
inf{s > 0 : sup,ejq Yu > r°, Ys < r?/c*}. Given that 7,...,7, have been defined, we let
Tey1 = inf{s > 7+7/c: Ys <1r?/c?}. Let K = max{k € N : 7, < ¢}, where { = inf{s > 0: Y, = 0}.
Note that 7 < 7 P-a.s. and that Y,, < r?/c? for each k > 1 P-a.s. on the event that 7, < co while
Y,, = r?/c? since Y has only upward jumps. It follows that conditionally on 7, < co and Ylo,m5
the random variable 7 ; — 7}, is stochastically dominated from above by 7 — 7. Set fft =C _1Y01 /24
with C' = 72/¢2. Then the scaling property of Y implies that Y has the law of a 3/2-stable CSBP
starting from 1. Moreover, by (3.5), we have that

P11 < 00|71 < 00] <Pl < o0] < P[¢ > 1/c] = po

where py € (0,1) is a constant which does not depend on r or c¢. Therefore we obtain that K is
stochastically dominated by a geometric random variable with parameter py. It follows that there
exists a universal constant M, > 0 so that

(4.3) P[K > ] < e ?Mo¢ forall ¢ > 1.

As the event that sup,c(y ) Y(a(z,y)—s)vo < 7°/¢* and d(z,y) > r implies K > [c—|, where [c—| :=
max(Z N (—oo, c)), we thus see from (4.3) that
4.4 P[ sup Yid(z,y)—s)vo < r2/02, d(z,y) >r] < e Moc forall ¢> 1.

s€[0,r]
We note that d(z,y) < r implies that sup,c(o ) Y(d(z,y)—s)v0 = SUPs>0 Ys > r? > r?/c?. Combining
this with (4.4), we thus have

(4.5) P[ sup Yia(
s€[0,r]

2y)—s)V0 < r2/c?] < e Mo¢ forall ¢> 1.

Step 2. We emphasize that Y has upward but no downward jumps. Therefore it hits points at
its running infimum continuously. We now let (o = inf{s > 0 : sup,¢o 4 Yu > 7%, Y = r?/c*} and
& = inf{s > (o : Ys = r?/(2¢%)}. Given that (y, &, ..., (r, & have been defined, we let (1 =
inf{s > & : Ys >12/c?} and &,y = inf{s > Cpy1: Vs = 72/(2¢%)}. Let N = max{k > 0: (x < oo}.
Note that P41 < 00| ¢ < 0o] = 1-P[X7 = —1], where X has the law of a 3/2-stable Lévy process
starting from 0 with only upward jumps and 7 = inf{t > 0: X; ¢ [—1, 3]}. This follows by scaling
and the strong Markov property of a 3/2-stable CSBP, together with the Lamperti transform. Also,
[20, Chapter VII, Theorem 8] implies that P[X> = —%] > 0. In particular, there exists a universal
constant p; € (0,1) so that N is stochastically dominated by a geometric random variable with
parameter p;. Thus, there exists a universal constant M; > 0 such that

(4.6) PN >n] < e Min forall neN.

By (4.5), off an event with probability at most e~0¢, there exists k£ > 0 so that d(z,y) — r <
&k < oo and so that Vi, ¢, where &, = inf{s > & : Yy = 7?/(4c?)}, describes the boundary length
evolution of 0B*(z, s) for some interval of s € [0, r].

Step 3. Let Z be a 3/2-stable Lévy process with only upward jumps starting from 72/(2¢?) (run
even after hitting (—oc,0)) and let & = inf{t > 0 : Z; = r?/(4¢?)}. For each k > 0, by the
Lamperti transform, conditionally on the event {(; < oo} = {{; < oo} we have for each « > 0 that
the number of upward jumps made by Y\[&“g;} with size at least u is equal in distribution to the
number of jumps that Z||y ;) makes of size at least u.
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Let t > 0. Recalling the form of the Lévy measure for Z, we know that the number of upward
jumps of size at least u made by Z|(y ;3.3 is Poisson with parameter given by co(tr3/c®)u=3/2 for
a constant ¢y > 0. In particular, if we fix A > 1 and let u = (%)2/ 3 then by (4.1) the probability
that Z|( 43 /.s) makes fewer than \/2 such jumps is at most

(4.7) exp(—agA) for ap=1+3logs—1>0.

Note that P[¢ < 13 /c3] = P[T(r?/(4c?)) < tr3/c?], where T(r?/(4c?)) is the first time that a 3/2-
stable Lévy process with only upward jumps and starting from 0 hits —r2/(4c?). Set ¢ = c1(tr/c) 3
for ¢; > 0 sufficiently small (to be chosen). Then, the proof of [20, Chapter VII, Corollary 2] implies
that

(4.8) P[T(r?/(4c?)) < tr3 /3] = Plexp(—qT(r?/(4¢?))) > exp(—qtr3/c?)] < exp(—ait™?),

where we choose ¢; sufficiently small so that a; = cf/ 3(% — c}/ 3) > 0.
Take t = A\~/2 so that t~2 = \. By decreasing the value of a; > 0 if necessary and combin-
ing (4.7) and (4.8), we see for each k > 0 that conditionally on {(; < oo} = {& < o0} = {N >k}

the probability that Y|}, ;) makes fewer than \/2 jumps of size at least u is at most

(4.9) 2e" M

Note that with the choice t = A\~1/2, we have that u = ¢; A\~ 'r2/c? where ¢; = 03/3.

By a union bound and combining (4.9) with (4.6) we have that, the probability that there exists
0 < k < N such that Y’[Ekvfﬁ makes fewer than \/2 upward jumps of size at least u, is for each
n € N at most

n—1
(4.10) 2 M1A Z P& < o] + e Min < pemmA 4 g~ Min
k=0
with M; > 0 as in (4.6) and c; = 2(1 — e~™1)~! and is thus at most cye~®* by letting n — oo
in (4.10).

Combining this with (4.5) implies that the probability that the metric exploration started from x
and targeted at y run for time r disconnects fewer than \/2 components with boundary length at
least c; A2 /c? is at most coe™ A + e~ Mo¢, We take \ = (&1)c for some constants c3,c4 > 0 (to be
chosen) so that the holes have boundary length at least c3r2/c>.

Step 4. Next we consider the components with boundary length at least c3r?/c?, disconnected
by the metric exploration started from 2 and targeted at y run for time r. Then there exists py €
(0,1) which does not depend on r, ¢ so that conditionally on their boundary lengths each such
component independently has probability at least p, of having area at least r*/c5 within distance
r from its boundary. Indeed, each component is a Brownian disk conditionally given its boundary
length which is at least c3r?/c3. So the claim becomes that there exists p, € (0,1) which does
not depend on r, ¢ such that conditionally on the boundary lengths of the above holes, each such
hole independently has probability at least p, of having area at least r*/c® within metric distance
from the boundary. By the scaling properties of Brownian disks this is equivalent to the statement
that a Brownian disk with boundary length ¢ € [c3, 00) has area at least 1 in the ¢3/2-neighborhood
of its boundary, which is further equivalent to the statement that a Brownian disk with boundary
length 1 has area at least /2 in the ¢*/2¢~/2-metric neighborhood of its boundary, where ¢ >
cs and ¢ > c3. We will first prove the claim for a sample from Méﬁfw- Note that we have the

disintegration ufi5hy[] = [°, pian = s \/;7 exp(—1/(2a))da. Thus it suffices to prove the

«
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claim for a sample from Mggc{;\f:l where the constant ps can be made to uniform in « € [1,2]. Fix

a € [1,2],£ > c3,¢ > ¢4 and let & be as in Lemma 4.2 with a; = 1,a = 2 and € = % Suppose

that we have a coupling between a sample (H, /) from Még%’\]Lzl and a quantum wedge of weight

2 (H,E, 0, c0) such that with probability at least %, the metric spaces By, (w, &) and By, (0, ) agree
in the sense of Lemma 4.2, where w is chosen uniformly with respect to the boundary length
measure v, on H and suppose that this event holds. Hence, it suffices to prove the corresponding
claim for Bq. (0, @) with high probability if we take cs, ¢4 sufficiently large. To show this, first we

assume that 03/ 2¢=1/2 < § and note that (H, A, 0, oo) is scale invariant in the sense that (H, 1,0, 00)
and (H, h+ C 0, oo) have the same law for each C' € R (see [35, Proposmon 4.7]1). Note that
adding a constant C to the field scales areas by ¢7C and distances by 1074, We pick C' € R such
that ¢3/2¢~1/2¢7C/4 = 1, and so the statement for (H, &, 0, c0) becomes equivalent to the statement
that the 1-metric neighborhood of 0 has area at least ¢=5. Note that the LQG metric induces the
Euclidean topology on H (see [54, Theorem 1.3]) and that pg, gives positive mass to every open
subset of H a.s. Hence, we can pick ¢4 > 0 sufficiently large such that with probability at least 2/3,
we have that the 1-metric neighborhood of 0 with respect to d; has area at least c~%, which implies
that the claim holds for (H, ) with probability at least 1/6. Suppose now that ¢3/2¢~1/2 > @ > 0. In
that case, we need to bound from below the probability of the even that the a-metric neighborhood
of 0 with respect to d; has area at least ¢=2. Then it suffices to bound from below the probability
that the a-metric neighborhood of 0 with respect to d; has area at least c3 2, Therefore, using
the scale invariance of (H,}VL, 0,00) and arguing as before, we obtain that we can choose ¢3 > 0
sufficiently large (depending only on «) such that the probability of the latter event is at least
2/3. It follows that the claim holds for Még%’\f:l with probability at least 1/6, for each o € [1,2],
and hence the same is true for Méﬁlw by possibly taking the lower bound on the probability to be

smaller. Finally, to deduce the claim for 55!, we note that

p— p— _1 j—
ks = ([ vO)uts") vD)dnks!

and that (D) has finite moments of all orders under u55!. Therefore, the claim holds by combining
with Holder’s inequality.

Step 5. Note that the event v(B(x,2r)) < r*/c® implies that either there are fewer than \/2 =
c1c/(2c3) disks of boundary length at least c3r2/c? cut off by the metric exploration started from =
and targeted at y run for time r or there are at least A\/2 disks cut off and each of them has area
less than 7#/c% at distance r from its boundary. As we showed above in Step 3, the former event
has probability at most coe~* 4 e~Mo¢, Since the disks are conditionally independent given their
boundary length, the conditional probability that all of the disks cut off have area less than r*/c®
each at distance r from their boundary given there are at least \/2 of them is at most e~%* for a
constant ay > 0. Altogether, this gives that

Plv(B(z,2r)) < r4/06] < cgexp(—aqc) + exp(—azc) + exp(—Myc).
Replacing ¢ with ¢?/3 and r with /2 implies the result. O

Lemma 4.4. Fix ¢ > 0 and suppose that Y is a 3/2-stable CSBP starting from Yy € [0,c]. Let
= inf{r > 0: Y, = 0}. There exists a constant co > 0 so that

P[squr <c (> T] < exp(—cocl%) forall T > /2,
T
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Proof. Let ¢ = 1. Let 7, = o(Y; : s < r). Then there exists py € (0, 1) so that

P¢ <7+ 1| F] Loy, <1y = Po Lyesry,<iy-

Iterating this implies the desired bound for ¢ = 1. The general case ¢ > 0 follows from the case
¢ = 1 and the scaling property of 3/2-stable CSBPs (see just after (3.4)). O

Lemma 4.5. Suppose that (S,d,v,x,y) is sampled from upy conditioned on D = {d(x,y) > 1}.

Suppose that u € S is picked independently from v/v(S) and let M, . = {v(B(u,r)) < r*/c*} for
€ (0,1) and ¢ > 1. For each p € (0,1) there exist constants cy, My, M1 > 0 such that for all
€(0,1)and ¢ > 1,

P[M, ., v(B(u,1/8))/v(S) < p] < cor_Q(log %)2 eXp(—M()CQ/g) + exp(—M; (log %)2)

Proof. In the proof, we will work under the measure ug); and denote it conditioned on an event
E with ppm[E] € (0,00) by upml-| E]. Let (y;) be an i.i.d. sequence in S picked from v/v(S).
Let D; = {d(u,y;) > 1/8}. Let Y7 be the boundary length process associated with the metric
exploration from u targeted at y; and let E; be the event that sup,> YJ > r2. For each n € N we
have that

piM [Myc, v(B(u,1/8))/v(S) < p| D]

<u [MmmUD \D] +uBM[ﬂ (4, 1/8))/(S) <p\D]
j=1 Jj=1
<> pem[M..ND;NES|D] Z psm [ My N Ej | D]
Jj=1 =1
(411 + e () D5, v(Blu,1/8)/m(S) < | D.
j=1

To bound the first term in the right hand side of (4.11), we let Ej;, = {e "' < sup,> ve < ek}
and let ¢; be the lifetime of Y7. With ¢y = 1/up\m[D], we note that

00
4.12) UBM [Mr,c N Dj N E; | D] < UBM [Dj N E]c ‘ D] < ¢ Z UBM [Dj | Ej,k] UBM [Ej,k],
k=N

where N = logr~2. For € € (0,1) small, we set Te; = inf{s > 0: Y > €}. Then, for each j, k € N,
we have that

pem (D N Ej k| ¢ > 1/100]
= lim gy [Dj N Ejx N {¢ —Tej > 1/8}| G > 1/100, 75 < 1/100,Y7 < e,
e— ’
Fix € € (0,e~%~1) small. Then it holds that
e [Dj N Ej i N{¢ —7ey > 1/84 ¢ > 1/100, 75 < 1/100,V7 < e 1]

<M |G — Tey > 1/8, sup Y;?M <e k¢ >1/100,7; < 1/100,Y7 . < e F1
s :
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Also, the resampling property of the Brownian disk combined with Lemma 4.4 imply that

LBM [cj —Te; > 1/8, sup YSQTGJ <eF[¢ > 1/100,7; < 1/100,Y] . < e ™!
5>

<P [squsj <k, ¢ > 1/8]¢ 2 1/100
s>0

< P[¢; >1/100] 'P[sup Y < e7F, ¢ > 1/8]
s>0

< crexp(—co(1/8)e"/?)

with ¢; = (P[¢; > 1/100])~! and ¢ the constant in Lemma 4.4. Therefore, combining with (4.12)
we obtain that there exist universal constants a1, as > 0 so that

HBM [Mm ND;N Eﬂ <a exp(—agrfl).
We turn to bound the second term in (4.11). We have that
(4.13) UBM [Mr,c N Ej ‘ D] = Co UBM [Mr,c N Ej N D] < ,U‘BM[MT',C | Ej] ,LLBM[EJ'].

After possibly decreasing the value of ap > 0, Lemma 4.3 gives that upm[M,.. | Ej] < ¢1 exp(—a202/3)
for a constant ¢; > 0. Recall that under gy we have that Y/ is distributed as a 3/2-stable CSBP
excursion. By the Lamperti transform, the amount of mass that the 3/2-stable CSBP excursion mea-
sure puts on excursions with maximum in a given interval is the same as the amount of mass that
the 3/2-stable Lévy excursion measure (with only upward jumps) puts on such excursions. Recall
that the distribution of the supremum under the 3/2-stable Lévy excursion measure is given by a
constant times ¢t ~2 dt. Therefore the same is also true for the 3/2-stable CSBP excursion measure.
Hence we have that upm[E;] = bor~2 for a constant by > 0. Combining, we have that (4.13) is at
most a constant times r~2 exp(—axc?/?).

The last term in (4.11) is at most p", since on the event {v(B(u,1/8))/v(S) < p} the v-
probability of Df is at most p and (DY), are independent. Taking n = (log%)2 completes the
proof. O

Proof of Theorem 4.1, lower bound. It suffices to prove the assertion for a sample (S, d, v, x,y) from
ppym conditioned on {d(z,y) > 1}, since (S, éd, §*v, x, ) is then a sample from ppy; conditioned on
{d(z,y) > 6} for each § € (0,00) and ppwm [¥(S) > 0]d(z,y) > 1] = 1. Let (z;) be an i.i.d. sequence
chosen from v. Fix p € (0,1) and let E, be the event that sup,.sv(B(2,1/8))/v(S) < p. Note
that P[E,] — 1 as p increases to 1. Fix v/ > u > 0. Lemma 4.5 implies that P{v(B(z;,r)) <
r/(log 1)57*  E,] decays to 0 faster than any power of r for every j € N. Moreover, since
peM[v(S) < ocold(z,y) > 1] = 1, it is a.s. the case under ppm| - |d(z,y) > 1] that there ex-
ists 1o € (0,1) such that v(B(z,7))/v(S) > r**% for each r € (0,79),z € S, by the corresponding
property of the unit area Brownian map. Suppose that the above holds and pick z € S uniformly
sampled from v/v(S) and independent of (z;). Set N = v+ % and A = S\ Ué-V:lB(xj,r/2),ﬁ =
S\ UX.|B(xj,r). Then, the probability under v/v(S) that z ¢ UY. B(x;,r/2) is at most (1 —
(r/2)* )N < exp(—r*~% /24+%), In particular, we have that v(A)/v(S) < exp(—r*~% /2*+%). Sup-
pose that A # () and fix w € A. Then v(B(w,r/2)/v(S) > (r/2)*T*. If B(w,r/2) C A, then
(r/2)4" < exp(—r"~% /24t%) and that is a contradiction for > 0 sufficiently small. Hence there
exists 1 < j < N and w € B(zj,r/2) N B(w,r/2) which implies that d(w,z;) < r, and that is a
contradiction. Therefore, we have that S = ijle(:pj, r) with high probability if » > 0 is chosen suf-
ficiently small. Suppose that both of the events {S = U, B(x;,r)} and E, N (NI, {v(B(z;,7)) >
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r*log(r~')757“}) hold. Then for each w € S, there exists 1 < j < N such that w € B(z;,r) and so
B(zj,r) C B(w,2r). In particular, we have that v(B(x,2r)) > v(B(zj,7)) > rtlog(r—1)=6=“. The
proof is then complete since the probability of £, N (NI, {v(B(z;,7)) > r*log(r~')~%7*}) can be
made to be arbitrarily close to that of E, if » > 0 is sufficiently small. O

4.2. Upper bound. We will prove the upper bound in Theorem 4.1 by dominating the amount of
area inside of the metric ball from above using a subcritical Galton-Watson tree with geometric
offspring distribution. The branching structure will come from a metric exploration on the Brow-
nian map or Brownian disk. We will begin in Lemma 4.6 by bounding the tail of the maximum
of the boundary length of a filled metric ball explored up to radius » and then deduce from this
in Lemma 4.7 an upper bound on the maximum boundary length of any of the complementary
components a metric ball explored up to radius ». We will then proceed in Lemma 4.8 to prove a
bound for the amount of area near the boundary of a Brownian disk, which will eventually be used
to show that the dominating Galton-Watson tree is subcritical.

Lemma 4.6. Suppose that (S, d, v, z,y) has distribution ugm. Let v > 0, and let M, = sup,c(o,] Ls
where Ly is the boundary length of 0B*(x, s). There exist constants cy, mo > 0 which are independent
of r so that

pM[M, > cr?] < mge” ™2 forall c> 1.

Proof. Let Y; be the boundary length of 0B*®(x, s) where s = d(z,y) — ¢ so that Y; evolves as a
3/2-stable CSBP excursion. Let 7y = inf{t > 0:Y; > ¢r?} and 01 = inf{t > 7 : Y; = cr?/2}. Given
that 71,01, ...,7j,0; have been defined, let 71 = inf{t > 0, : ¥; > ¢r?} and 041 = inf{t > 741 :
Y; = er?/2}. Let J = max{j : 0; < 0o} (J = 01if 0y = o0) and ¢ = inf{t > 0 : ¥; = 0}. Note that
the event that M, > cr? implies that J > 1 and that ¢ — o; < r. Therefore it suffices to give an
upper bound for upy[J > 1, ( — oy < r].

By the scaling properties of a 3/2-stable CSBP (recall just after (3.4)), we note that there exists
po € (0,1) which does not depend on ¢ or r so that pupm([7j41 = 0o |o; < oo] > pg. Therefore J
under upm[- | o1 < o0] is stochastically dominated by a geometric random variable with parameter
po. Moreover, by (3.5), we have for a constant ¢y > 0 that

UBM [C —0j<r|o; < oo] = e~ ¢,

Therefore

pemlJ > 1, (= oy <] <Y ppul 24, (— o <] =) e upy[J > ]
j=1 j=1

= e ©0¢ /Jd,U,BM < mpe” “upmlor < o),

where my is the mean of a geometric random variable with parameter py. We note that upy[o1 <
oo] = ppMm[m1 < oo] is the same as the measure under the infinite measure on 3/2-stable Lévy
excursions that the maximum is at least cr?. This, in turn, is equal to a constant times ¢~ 72 as
shown in the paragraph of (4.13). O

Lemma 4.7. Suppose that (S, d,v,x,y) is distributed according to upn. Fix w > 0. The pupn-measure

of the event that there exists s € (0, 7] such that some component of S \ B(z, s) has boundary length
larger than r?(log %)H“ decays to 0 as r — 0 faster than any polynomial of r.



TWO-SIDED HEAT KERNEL BOUNDS FOR 4/8/3-LIOUVILLE BROWNIAN MOTION 37

Proof. Let 7 be the first s > 0 such that S \ B(z, s) has a component with boundary length at least
r?(log %)H“. On 7 < r, we let D be such a component, breaking ties in a measurable manner, and
we let ¢ be the boundary length of 9D. Then we know that the conditional law of D given ¢ is given
by pk5t if y ¢ D and is given by Mﬁﬁfw if y € D. By (3.7), (3.6), and the strong Markov property of
the metric exploration, conditionally on 7 < r, the probability that v(D) < r* decays to 0 as r — 0
faster than any polynomial of r. Next, we note that 0 < ppm[s < 7 < r| < ppm[diam(S) > s] < oo
for each r > 0, s € (0,7) and the above imply that gy [v(D) < 7' |s <7 < r] <  foreach r > 0
sufficiently small, uniformly in s € (0, 7). Thus, we have that

ppm[s <7 <r] =ppumls <7 < ru(D) <1t + ppm[s < T < (D) > 1t

IN
N |

pem[s <7 < 7]+ ppumls <7 < ru(D) >,

for all r € (0, 1) sufficiently small, and all s € (0, 7). Sending s — 0 gives that

1
peM [T < 7] < spem[T < 7] 4 pem [T < 7 v(D) >7“4]

2
which implies that ppnv [T < r] < 2upm|r < 7,v(D) > r] for all » € (0, 1) sufficiently small. Let
p > 0 and recall that the ugy mass of the event that v(S) > »~P is O(rP/?) (as it is the same as the
mass put by the infinite measure on Brownian excursions on those excursions with length at least
r~P). OnT < r,v(S) <r~Pand v(D) > r*, the conditional probability that y € D is at least r**? as
the conditional law of y given (S, d, v) is v normalized to be a probability measure (i.e., v/v(S)).
Let M, be as in Lemma 4.6. Altogether, we have shown that

peM[T < 7] < 2upMm(T < 7 v(S) < P u(D) > Y + 2upm[T < 1 v(S) > 1P
< 2upm[r < r,v(S) < rP u(D) > 1] + O(rP/?)
< 2 4 Pupylr <1 w(S) < 7P w(D) >ty € D+ O(rP/?)
< 2 Pupy[M, > r¥(log 1)) + O(rP?).

This completes the proof as Lemma 4.6 implies that pugm[M, > r%(log 1)1] decays to 0 as r — 0
faster than any polynomial of r and p > 0 was arbitrary. O

Lemma 4.8. There exist co > 1 and § € (0,1) such that the following is true for all ¢ € (0,1] and
¢ > co. Suppose that (D, d,v) has law given by L3¢ conditioned on having area at least c. Consider
the center exploration from 0D run for one unit of time. Let p. be the probability that this exploration
cuts off a component with area at least ¢. Then p. < 1 — J. The same also holds if we instead
suppose that (S,d, v, z,y) has law upy conditioned on having area at least ¢ and consider the metric
exploration starting at x and targeted at y.

Proof. First, let £ € (0, 1] and let (D, d, v) have law given by 155¢ conditioned on having area at least
c. Let E. denote the event that the center exploration from 9D which is targeted at y and run for
one unit of time cuts off a component from y with area at least c. Note that p. = pL5 [ F.]/p55t Al
where A. = {v(D) > c}. By (3.7), for each € > 0 there exists ¢y > 1 so that ¢ > ¢y implies that

V26

(4.14) pESA) > (1 - E)W.
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Let (a;) be the set of downward jumps made by the center exploration. It follows from a union
bound, (3.7), and (3.8) (with o = 3) that there exists 0 < § < 1 so that

3 _ 3
(4.15) PESIE <E (Y V2, ] < (1=20)v2l

3y/mc3/2 3y/mc3/2

Combining (4.14) and (4.15), we have that
_ NéBK[EC] < 1-26
ppp [Ad — 11—«

Thus, by taking € € (0, 1) sufficiently small such that 11*—_265 < 1—46, we obtain that there exists ¢y > 1
sufficiently large such that p. < 1 — §, for each ¢ > c.

Next, let (S,d,v,z,y) have law upy conditioned on having area at least c¢. Let E. denote the
event that the metric exploration starting at z, targeted at y and run for one unit of time cuts off

a component from y with area at least ¢. Then recalling that ppm[-] = [;° i [coa™? da as
explained in Subsection 3.1.1, we obtain
416)  po=poulEe | v(S) > d < pupulv(B*(2.1)) > ¢ | v(S) >
_ LS (B (2, 1) > a2 da
B [2a=32 da
1

2

proving the assertion for (S, d, v, z,y) with law upy;. O

= / v [V(B'(x,cfl/zl)) > 1]1)73/2 db <=2 0,
1

In the following two lemmas and the completion of the proof of the upper bound of Theorem 4.1
given below, we will consider the following exploration. Suppose that » € (0,1/¢], ¢ > 1 and
u > 0. Fix £ € [0,7%(logr~1)3+4]. If £ > 0, we suppose that we have a Brownian disk (D, d,v)
with boundary length ¢ conditioned on having area at least cr*(logr~1)%*8“, Consider the center
exploration from 0D. Let 7 be the first time that the center exploration has cut off a component
with area at least cr*(log r—1)5+8%, Given that 7, .. ., 75, have been defined, let 7, be the first time
after 7, that the center exploration cuts off another component with area at least cr*(log 7—1)6+8%, If
¢ = 0, we suppose that we have a Brownian map instance (S, d, v, z,y) conditioned on having area
at least cr*(logr—1)%+8* and define the exploration analogously except starting at x and targeted
aty.

Lemma 4.9. Suppose that we have the setup described just above. Let

E, = { sup Ly < 7“2(logr_1)3+4“}
s€0,r]
denote the event that the boundary length L of the metric exploration is at most 72 (logr1)3+4* for
all s € [0,r]. There exist co > 1 and § € (0, 1) which are independent of r, u, £ so that for all ¢ > ¢y and
r € (0,1/¢] the following is true. With N, = sup{k : 7, < r} (sup () := 0) we have that the probability
of E. N {N, > n} is at most (1 — §)p2~! where p. € (0,00) depends only on c and satisfies p. — 0 as
¢ — 0.

Proof. Recall that by rescaling boundary lengths by (r2(log7—1)3+4%)~! areas by (r*(log r—1)6+8%)~1
and distances by (r(logr—1)3/2+24)=1/2_we obtain a sample from the law p55" with ¢, given by
0. = L(r?(logr~1)3+4)~1 ¢ (0, 1] conditioned on having area at least c if £ > 0, and a sample from
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the law gy conditioned on having area at least ¢ if £ = 0. Under this rescaling, the event E, and
the random variable N, become
4.17) E,. = { sup L < 1} and N, =sup{k: 7 < 1o},
s€[0,r0]

respectively, where ro = (logr~1)~3/2-2¢  and we are to prove the assertion for these E, and N,
instead.

Set By = {supycjo,-,) Ls < 1} for each k& > 1. For each t € [0,00), let F; be the o-algebra
generated by {L;},¢[o and the components cut off by the exploration up to time ¢. Then for each
k > 1, a.s. on the event {7, < oo}, the conditional law given F,, of the target component at time

T 1S MEELT’“ if ¢ > 0 and NEE,LV(/]“ if £ = 0, and therefore by (3.6) and (3.7) we have, a.s.,
Plris1 < 7o, Er | Fr] < Plrgs1 <o, Egt1 | Frl < Plrir < ro, Ex | Fr]

< P[v(the target component at 7)) > ¢ | Fo, | L7, <r3nE,

L=L, .
< {NBD "[v(D) = Vp<poinE, i L>0,
S\ L=L. .

tepw V(D) = ] Uir <rgynp, =0,

(418) < ﬁc ]l{rkgro}ﬂEkv

where p. = ¢~1/2v ¢3/2, Therefore, taking ¢, € [1,00) and § € (0, 1) as in Lemma 4.8 and applying
(4.18) and Lemma 4.8, for any n > 1 and any ¢ > ¢y we get

PN, > n, E;] = Plr, < ro, B <Plr, <o, En] <P~ Pln < 1o, B
<P Pl < rol < prH(1-6),
completing the proof. O

Lemma 4.10. Suppose we have the same setup as in Lemma 4.9. Let A, denote the sum of the areas of
the components which are cut off by the exploration within exploration time r and have area at most
crt(log r—1)6+8% each. The probability of the event E,. N{A, > r*(logr—1)7T12“} decays to 0 as r — 0
with a decay rate independent of ¢ and faster than any polynomial of r.

Proof. Set
R = r3(log r—1)3+4u and R/ — r24(10g T—1)36+54u‘

Step 1. Let Z be a 3/2-stable Lévy process with only upward jumps and let A = {(t,u)} be
the set of pairs consisting of the jump times and sizes for Z. That is, (¢,u) € A if and only if
u = Z; — Z;— > 0. Then A is a Poisson point process with intensity measure given by a constant
times u~°/? du dt where du, dt both denote Lebesgue measure on R,. Let f denote the density
function for the area of a sample from pi5! as given in (3.7). We associate with each upward
jump of Z an independent random variable a with density given by f. Then Ay = {(¢t,u,a)} is
a Poisson point process with intensity measure given by a constant times dt ® v~%/2du ® f(a)da
where dt, du, and da all denote Lebesgue measure on R;. Thus [35, Lemma 4.19] implies that
A = {(t,u2a)} = {(t,v)} is a Poisson point process with intensity measure given by a constant times
dt ® v~7/*dv where again dt and dv denote Lebesgue measure on R,. Note that u2a is equal in
distribution to the area of a Brownian disk with boundary length w.

Fix S € (0,R'). For k € Z, the number of elements (¢,v) € A with ¢ € [1 — 5,1 + S] and
v € (27%1 27%] is distributed as a Poisson random variable with mean m;, given by a constant
times S23%/4, Let ko € Z be the smallest k € Z so that S~'/2m;, > 1/2. For k > ko, (4.2) with a =
(log 2)1+uS~1 implies that the probability that there are more than (log +)!**S~1m, such elements
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is at most exp(—(log 1)1 S~1my,), which decays to 0 as S — 0 faster than any power of S when
r > 0 is small enough and fixed. It likewise decays to O faster than any power of r as » — 0 provided
S € (0, R'). Let ky be the smallest k so that 27% < r4(log 1)6+%. By (4.2) with a = (log 2)1+%/my,
for each p > 0 there exists ryp > 0 so that for all » € (0,79) and for each k € [k;, ko] N Z, the
probability that we have more than (log 1)!*“ elements (t,v) € A with t € [1 — 5,1+ S] and

€ (271 27% is O(SP) as S — 0. Likewise, it tends to 0 as » — 0 faster than any power of
r provided S € (0, R’). Altogether, we see that for each p > 0 there exists ry > 0 so that for all
r € (0, 7o) the probability that 37, 5. :ci1 g115] y<ert(logr—1yo+su U €Xceeds 7 (log 1)+ js O(SP)
as S — 0. Likewise, it tends to 0 as » — 0 faster than any power of r provided S € (0, R’). We also
see that for each ¢ € [0, 00), the probability that ) (1) ERete (g AR)VO,q-+AR], v<crd (log r—1)6+8u U exceeds

(log L)7+11u tends to 0 as » — 0 faster than any power of r, by the argument in this paragraph
with my, a constant times R2%%/4, kg = min{k € Z : m), > 1/2} and (4.2) used with o = (log 1)1+
for k > k.

Step 2. We are now going to transfer the result of Step 1 about 3/2-stable Lévy processes to the
setting of 3/2-stable Lévy excursions. Let Z be a 3/2-stable Lévy process and set S; = sup{0 V Z;
0 < s < t}foreacht > 0. Let also L = (L;):>0 be a local time of S — Z at 0 in the sense
of [20, Chapter IV, Sections 2-4] and let L~' be the right-continuous inverse of L. Note that
we can choose L by setting Ly = —inf{OA Zs : 0 < s < t} for each ¢ > 0 (see [20, Chapter
VI]). By [20, Chapter VIII, Lemma 1], we have that L~! is a stable subordinator of index 1 /3. Let
A =sup{t <1:Z;—info<s<t Zs = 0} and B = inf{t > 1 : Z;—info<s<; Zs = 0}. Then B— A is equal
to the length of the interval in the complement of the range of L~! which contains 1. In particular,
by [20, Chapter III, Proposition 2 (i)], the probability that B — A € [s,2s] is of order s'/3 as s — 0
and is of order s~'/3 as s — oo. By [20, Chapter VIII, Proposition 15], the conditional law of the
process (B — A)_2/3(ZA+(B Ay — info<s<1 Zs) is that of a unit length 3/2-stable Lévy excursion. By
Step 1, the probability that 37, 5. .cii g1+, vert(logr—1)s+su U exceeds r*(log 2)"H11" decays to 0
as S — 0 faster than any ﬁxed power of S provided r > 0 is sufficiently small and fixed. Therefore,
combining with the above description of the unit length 3/2-stable Lévy excursion with the scaling
property of a 3/2-stable Lévy process, we obtain that the same is true if Z is a 3/2-stable Lévy
excursion of time length S € (0, R') and we sum v over all of the associated jumps. Similarly, for
a 3/2-stable Lévy excursion Z of time length S € [R',c0) and for each p > 0, the probability that
the sum of v over all the jumps within some time interval I C [0, S] of length at most R exceeds

r(log 1 L)7+11u decays to 0 as 7 — 0 with a decay rate determined solely by « and p and faster than
any power of r provided R’ < S < r~P,

Step 3. We are now going to deduce the result in the setting of upy from the above estimates.
We will subsequently explain how to transfer the result to the setting of the Brownian disk in
Steps 4 and 5 below. Suppose that (S,d, v, z,y) has distribution upy and let Y; be the time-
reversal of the boundary length process so that Y; is a 3/2-stable CSBP excursion. By the Lamperti
transform (3.3), if we let s(¢) = inf{r’ > 0 : f(;"/ Yyds' > t} then we have that 7 = Yy is
a 3/2-stable Lévy excursion. Let E, denote the event that the sum of v over all the jumps of Z
within some time interval I of length at most R exceeds r*(log 2)"*11*. For each ¢, ¢’ € [0, c0) with
0 <q —q <r,let Ay, denote the sum of the areas of the components which are cut off by the
metric exploration within time interval [g, ¢'] and have area at most cr*(logr—1)%+8“ each. If such
¢, ¢ satisfy supye(, o Ls < r*(logr~")*", then the amount of Z,-time which corresponds to the
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metric exploration over time interval [q, ¢'] is

/

q
/ Yid(wy)-svods < (¢' = q)r’(logr= 134 < R,
q

and therefore

(4.19) U { sup L < r?(logr—1)3Tv, Agq > T4(logr_1)7+nu} Cc E,.
4.0/ €[0,00) ~*€[04]
0<¢'—q<r

On the other hand, since the distribution for the time length Z of Z is given by a constant times

s75/3ds, we see that MBM[ r] decays to 0 as r — 0 faster than any polynomial of r, by choosing
arbitrarily large p > 0 and integrating our upper bound on ugym[E; | (= s] from Step 2 with respect
to s~°/3ds on (0, R'), [R’,rP) and [rP, o) separately. In particular, the assertion of the lemma in
the case of gy follows from this estimate on MBM[ET] and (4.19).

Step 4. The result of Step 3 can be extended to the setting of an instance sampled from uégfw
(with the same exploration). Indeed, let Z’ denote the Lamperti transform of the time-reversal
of the boundary length process under p55" ‘w» and let £} denote the event that the sum of v over
all the jumps of Z’ within some time interval I of length at most R exceeds r(log 1)1, so
that (4.19) with E/ in place of E, holds as events under pE55y- If we start with a Brownian map
instance and explore the filled metric ball until the first time 7 it has boundary length ¢, then by
the strong Markov property of the metric exploration the conditional law of the complement D,
given 7 < oo is ,uégfw, and {7 < oo, D, satisfies E/} C E, as events under upm. Recall also that
1Epw (D) > ert(logr=1)0+8u] > 0/(3¢*/?r2(logr—1)3+%) by (3.6) and £ € (0,r%(logr1)3+4]
and that upm|[T < 00] = puBM[Sups>¢ Ls > ¢] = bo/¢ for a constant by > 0 as shown in the paragraph
of (4.13). Combining these facts, we get the following upper bound independent of ¢ on the
probability of E/:

pEpwlEy | V(D) > ert(logr™") %]

UBM []1{7_<Oo},uBM[DT satisfies E;‘ ‘ T < OO]]
= iplr < ool /(D) = ert(log 1)
< 3b5101/2r2(logr D34 pm[r < oo, D; satisfies E]
(4.20) < 3by e 22 (log r= )3t gy (B

for each ¢ € (0,72 log(r—1)3+4u),

Step 5. On the basis of Steps 3 and 4, we can now obtain the result in the case of the center
exploration of an instance (D, d,v) with law p55¢ as follows. Let D; denote the target component
of the center exploration at time ¢ for each ¢ > 0 and set 7 = inf{t > 0 : v(D;) < r*(logr—1)6+84},
so that on the event {r > 0} we have v(D,) < r#(log )57 < y(D,_), where D,_ = Meepo,r) Dt
Pick a random marked point y € D according to v/v(D) independently of the center exploration.
Then on the event {7 > 0}, the conditional probability of {y € D,_} given a realization of D and
the center exploration is at least v(D;—)/v(D) > r*(log 2)6*8¢/y(D), and on {r > 0,y € D,_}
the center exploration agrees with the exploration targeted at y over the time interval [0, 7). Set

= {V( ) > ert(log 1)578} C {7 > 0}, and recall that duf5'y = ([ v(D )duége)_ly(l)) duks?,
that Jv( duBD = €2 by (3.7) and that MBDW[ 1/ RESE V] < 967 2ert (log 2)0+8% by (3.6), (3.7)
and ¢ € (0,r?(log 1)374“]. Now, keeping writing E,, 4, for the event and the sum of the areas as
in the statement for the metric exploration targeted at y and letting ES", AS®™ denote those as in
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the statement for the center exploration, we see from (4.19) with E/ in place of E, for instances of
Héﬁfw and from (4.20) that the following holds:

(log )6+8u L= Z[V mEcen N {Acen > r (log )7+12u}]

<

L=¢
/ v(D) dugp
VrmEgenm{As‘en >,,.4 (log r—1 )7-9—1221,7 yEDT_ }

— [ VD) duk5" - ikelVi N EE 0 A > r(log )7,y € Dy
< kst wlVenE.N{A. >r Ylog 1yt y e D, 7 > 1}
+ 2kt wlVe NEF N {AF > Ylog L)1 y e Do, 7 < 7}]
< CugpawlVe N E- N {A, > r*(log 1)1}
+ KQ,uéE’ZW [VT N { sup Ly <r (log Ly3+du A > (log LyrHle 7 < TH
s€[0,7]
< 252#%#\“‘/ NE;] = 2€2MBB{W[V]MBD wlEr | Vil
< 18cr?(log 1)+8u pfH" [V]Méﬁfwwﬁ« | Vil
< 540, %0 (log 1) ub Vil e [ B );
here, to bound the second term of the fourth line from above by that of the fifth line we used
the following two facts. First, sup,cjo - Ls = supep, T) L on the event {7 > 0} since L, has
only downward jumps. Second, on the event {A%" > rt(log2)™12* y € D,_, 0 < 7 < r}, the
components cut off by the center exploration within the time 1nterval [T, ] contribute to AS" by at

most the sum of v(D ) and the area of the component cut off at time 7, where the latter is counted
only if it is at most cr*(log 1)%™8“, and hence by y € D,_ and 0 < 7 < r,

Ajor) = AF" = v(Dy) — ert(log 1)** ™
> r(log %) T2 _ (e 1)r (log L)6+8u > 14 (log %)7“1“.
Consequently, we obtain
N]%Be[Eﬁen N {Aien > r4(10g )7+12u} | V] < 54b 1 3/2 2(10g )3+4UMBM[E’I‘]7

which has been already shown in Step 3 to decay to 0 as » — 0 with a decay rate (independent of
¢ € (0,7%log(r—1)3+4*) and) faster than any polynomial of r. O

Proof of Theorem 4.1, upper bound. Suppose that (S, d, v, z,y) has the law pp); conditioned on hav-
ing area at least cr (log 1)6+8u  As we mentioned earlier, we will prove the upper bound by domi-
nating the amount of area in B(x,r) from above using a subcritical Galton-Watson tree.

Fix ¢ > 1. We will adjust its value later in the proof Let Ey, denote the event that any compo-
nent of S \ B(z, s) has boundary length at most 7%(log 1)3*4“ for any s € (0,7 (log 2)1*¥], so that
M| (Eo,r)¢] decays to 0 as » — 0 faster than any polynom1a1 of r by Lemma 4.7. Let E, be as in
the statement of Lemma 4.9. Moreover, arguing as in the paragraph after (4.13) implies that

M [V(S) > ertlog(r™)0T8"] = cg/ t72dt = coc tr*log(r—) 68w
>crtlog(r—1)6+8u

for some universal constant ¢y € (0, c0). Combining the above, we obtain that gy [(Eo, ) | v(S) >
crtlog(r=1)%84] decays to 0 as  — 0 faster than any polynomial of r. Furthermore, apply-
ing Lemma 4.6 with ¢ = log(r~1)3*** implies that gy [(Er)¢] < mgexp(—colog(r=1)3t4u)r—2
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for all » € (0,1) sufficiently small, for some universal constants mg,cy € (0,00). It follows that
M [(Er)¢ [ v(S) = crtlog(r=1)%8“] decays to 0 as » — 0 faster than any polynomial of r. Next,
we consider the exploration described just above Lemma 4.9 and let P be the probability measure
given by conditioning yp); on the positive probability event {v(S) > crtlog(r—1)6*8¢}. Lemma 4.9
implies that the number N of components cut off by B(z,r) with area at least cr*log(r—!)6+8«
satisfies P[E, N {N > n}] < (1 —0)pp~! for each n € N, ¢ > ¢y, where ¢y > 1,6 € (0,1) are
as in the statement of Lemma 4.9. We assume that we have chosen ¢ sufficiently large so that
S>> n(l—8)pr~! < 1. Note that each of these N holes are conditionally independent given their
boundary lengths. If the boundary length of such a hole is ¢, then we recall that its law is given
by pi5t conditioned on having area at least cr* log(r~1)5+8%. We then branch the exploration into
each of these holes by performing the center exploration and then proceed as in Lemma 4.9. Then
Lemma 4.9 implies that inside of each hole, the number of additional holes which are cut off and
have area at least cr?log(r—1)%+8" is stochastically dominated by a random variable with mean
strictly smaller than 1 and with an exponential tail. We have thus shown that the number of holes
discovered in the entire branching exploration is dominated from above by a Galton-Watson pro-
cess with offspring distribution given by a distribution with mean strictly smaller than 1 and with
an exponential tail. By our choice of ¢, this Galton-Watson process is subcritical, so that the law of
the total progeny exhibits exponential tails. Therefore, the probability that the Galton-Watson tree
has more than log(r~!)!*“ nodes decays to 0 as r — 0 faster than any power of r.

Next, we note that [77, Lemma 4.12] implies that the metric net U,>¢0B*(z,r) has v-measure
zero for upy-a.e. instance of (S, d, v, x,y). We claim that the same is true if (S, d, v, z, y) is sampled
from ,uéﬁfw instead, for each ¢ > 0. Indeed, we fix » > 0 and perform the metric exploration from a
sample (S, d, v, z,y) from upy starting from 2 and targeted at y. Then we know that the conditional
law of S\ B*(z,r) given L, is equal to NéB,L\f/' Also, the metric net of S\ B*(z, r) is contained in the
metric net of (S,d, v, z,y) and so the claim follows for a sample from NEE,LVT\'/' Combining with the
rescaling property of the Brownian map, we obtain that the claim is true for Héﬁzw for each ¢ > 0.
Furthermore, observing that the probability measures uéﬁfw and uéﬁ‘ are mutually absolutely
continuous for each ¢ > 0, and combining with the scaling property of the Brownian disk, we
obtain that the metric net of a sample from pL5* has area zero pk5t-a.e. for each ¢ > 0. Therefore,
combining everything we obtain that on the event that Ey , N E, holds and the Galton-Watson tree
has at most log(r~1)!™“ nodes, we see from Lemma 4.9 that the total mount of area in B(x,r) is at
most r* log(r~1)8*13% off an event whose probability decays to zero as r — 0 faster than any power
of r under P. It follows that the probability that v(B(xz,r)) > cr?log(r—1)813 under P decays to

zero as r — 0 faster than any power of r. Hence, by picking i.i.d. points from ﬁ and arguing as

in the proof of the lower bound of the theorem, we obtain that v(B(z,r)) < ertlog(r=1)8t14¢ for
each z € S, off an event whose probability under P decays to zero as » — 0 faster than any power
of r. Therefore the proof is complete by observing that

—3/2, A=t
P = fthr‘l log(r—1)6+8u t=3/ pin dt
14 1og (r—1)6+8u

and combining with the scaling property of the Brownian map. O

Remark 4.11. Alternatively, the upper bound in Theorem 4.1 can be deduced directly from a re-
sult in [65]. In fact, for a “typical point” x, meaning a point z chosen uniformly according to the
volume measure, it has been shown in [65, Proposition 11] that the k-th moment of v(B(z,r))
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is bounded above by Cé“ k!r** where Cj is a constant. Hence, for any A\ € (0,Cy) the expecta-
tion of exp(Av(B(z,r))/r?)) is finite, so the probability that v(B(z,)) is at least a constant times
r*log(r~!) decays to zero faster than any polynomial, and the upper bound in Theorem 4.1 follows
by a union bound. However, we decided to include the above proof based on a branching argument
since it is different from the proof in [65] and it does not rely on such precise moment estimates,
so may be of independent interest.

5. PERCOLATION EXPLORATION

Later in this work, we are going to use SLEg chunks in percolation style arguments as illustrated
in Proposition 5.1 below, the proof of which is the purpose of this long section. As necessary prepa-
rations for its statement, in Subsection 5.1 we introduce a suitable state space MSV for random
quantum surfaces and certain M$TV-valued random variables defined through SLEg explorations
of quantum disks and wedges considered in Subsection 3.2.4. In Subsection 5.2 we state the main
result of this section (Proposition 5.1), which formulates a percolation argument in the setting of
a quantum disk weighted by its area, and its analog in the simpler setting of a quantum wedge
(Proposition 5.2). We first prove the latter in Subsection 5.3, and then the former in Subsection 5.4
on the basis of the latter.

5.1. Preliminaries: SLEg hulls as random curve-decorated quantum surfaces. Throughout, we
consider a radial SLEg process 7 on D targeted at 0. Let ¢ € [0,inf(1/)~1(0)). In the same way as in
Subsection 3.2.4 (see also Appendix A), we define the hull K; of ([0, t]) as the complement in D
of the 0-containing component of D \ ([0, ¢]), and we divide the boundary JK; of K; into the top
0K, ND of K; and the bottom 0K; N 0D of K,. On the event {0K,; NJD # 0D}, i.e., that the bottom
of K is not the whole of the unit circle 9D, we can further divide the top (resp. bottom) into its
left and right sides: the left (resp. right) side of the top is the part which is to the left (resp. right)
of 1/(t), and the left (resp. right) side of the bottom is the part which is to the left (resp. right) of
7 (0).

Moreover, we also consider below the space MSTV of curve-decorated quantum surfaces with two
marked boundary points, following [43, Subsection 2.2.5]. It is defined as the set of equivalence
classes modulo conformal maps of quintuples (D, u,n, z,y) of a simply connected domain D C C,
a Radon measure p on D, a continuous map 7 : [0,00] — D U oD with n(0) € oD, and z,y €
dD \ {n(0)} with z # y and 5(0) € [z, y]gD, where 9D denotes the set of prime ends of D and

[z, y]gD the counterclockwise arc of D from x to y. Noting that each equivalence class K € MSPUY

has a unique representative of the form (ID, ux, nc, —v/—1,v/—1) with 7, (0) = 1 by the Riemann
mapping theorem, we equip MSTV with the conformal Prokhorov-uniform metric dSTV given by

(5.1 dSTY(KCr, K2) = db (ke pic,) + A (i, 1, ) K1, Ko € MSPY,

where db is a complete metric on the space of Radon measures on D compatible with the vague
topology and dp (11, 72) 1= Y _peq 27" supe(o,y M1 (t) — m2(t)], so that MFTY becomes a complete
separable metric space. Note that a quantum surface (D, h,n,z,y) parameterized by a simply
connected domain D C C and equipped with a continuous map 7 : [0, o] — DUAD with n(0) € oD
and two marked boundary points z,y € 9D\ {n(0)} with z # y and 5(0) € [z, y]gD can be identified
with an almost-surely defined random element (D, jup,,n, x,y) of MSPY, since h is a measurable
function of yuy, by [18, Theorem 1.1 and Remark 1.2].
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SLEg explorations of quantum surfaces as introduced in Subsection 3.2.4 naturally define MS*V-
valued random variables as follows. Let o be an MSTV-stopping time, i.e., a function o : MSTV —
[0, oo] which is a stopping time with respect to the filtration generated by the M$TV-valued stochas-
tic process {K;}i>0 on MSTY given by Ki(D, i, n, z,y) := (D, u,n(- At),z,y). We define a Borel
subset E,, of MSTY, considered as an event for w € M§STY, by

cru | 7(@) € (0,1,), 0K, NOD, # 0D,
Nw(o(w)) € 9D,

where ¢, := inf 5, (n,(c0)) and, for ¢ € [0,,,), K denotes the complement in D,, of the compo-
nent of Dy, \ 1.,(]0,¢]) whose closure in D,, U dD,, contains 7,,(cc) and dK¥ denotes its boundary
in D, UdD,,. Now let ¢ > 0, suppose that D = (D, h,0) has law uészw, let ’ be an independent
radial SLEg on D starting from a uniformly random point on 9D, targeted at 0 and parameterized
by quantum natural time, let zp (o), Y,y (0) € 9D\ {n'(0)} be such that 7' (0) € [zp (o), me/(O)]gD
and vy, ([zp 1y (0), 7' (0)I5p) = va([7(0), yp,y (0)]5p) = /4, and set op := (D, i, 1, T 1y (0) YD,17(0))-
Then we have 7/ ([t,y, oc0]) = {0} and ¢,y = inf(n)~!(0) < oo a.s., and it follows from Proposition A.1

that, a.s. on the event

i

(52) Ea = {w = (Dwaﬂwanwvxwayw) eM

E? = {(D7 Hhs 77/7 x'D,n’(O)? yD,n’(O)) € EU}
= {op € (0,ty), Koy, NOD # 0D, 1/ (0p) € OD},

K., \ 0K, is a Jordan domain in C with boundary 0K,,, /([0,0p]) C Ks, U9K,,, and the
bottom 0K,, NID of K,,, is a compact interval in 9D containing »'(0) in its interior. In particular,
letting z,,, and y,,, denote the endpoints of the left and right sides, respectively, of the bottom of
K, other than 7/(0), we see that

(54) ./\/:,D = (KUD \ 6KaDaMh|KUD\8KUD777,(' A O'D)a -To'Daya'D)

is an M$*TV-valued random variable defined a.s. on EP.

We remark that the construction in the last paragraph can be applied also to a weight-2 quantum
wedge W = (H, h,0,00), an independent chordal SLEg n' on H from 0 to oo parameterized by
quantum natural time, and zyy, yyy € OH with zyy < 0 < yy and pp([zw,0]) = pr([0,yw]) =
1. In this case we have 7/(c0) = oo and t,; = inf(’)"!(c0) = oo a.s. and, as introduced in
Subsection 3.2.4, the hull K; of 1/([0,¢]), its top and bottom are defined for any ¢ € [0, ) in the
same way as above with the 0-containing component replaced by the unbounded component. Also
for each M§TV-stopping time o, thanks to Proposition A.2 an M$FU-valued random variable N}
is defined a.s. on the event

(55) E;/V = {(H7 :uh777/7$W7yW) € EG} = {JW € (07 OO), ?7/(0')/\}) € aW}

by (5.4) with oyy in place of op, where oy := o(H, un, ', ), yw)-

(5.3)

5.2. Statement of percolation exploration. To state the main result of this section (Proposi-
tion 5.1 below), for each § € (0, 00) we define an MS*V-stopping time o5 by

(5.6) o5(w) := inf{t € [§,00) | t < t,,, IKY N DDy, # 0Dy, nu(t) € DD}
for w = (Dyy, teos My Teos Yoo) € MSTY (recall that ¢, := inf 531 (n.(00))).

Proposition 5.1. There exist Ay € [2,00) and comax € (0,00) such that for any A € [Ag,c0) and
any co € (0, Co max] the following is true with €y := coA=%/3. Let § > 0, set o := o5/4 N6 and let E
be any Borel subset of M"Y such that pu¢yG° [EYY N {N)Y € E} | 0 < 6] > 1 — €. Suppose that
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D = (D, h,0) has law ,ué:D}W, and consider the following exploration of D by radial SLEg curves. Set
Dy :=D, Dy := D, let n;, be a radial SLEg on Dy starting from a uniformly random point on 0Dy and
targeted at 0, and set = := (). We then inductively define a sequence {(D; = (Dj, h|p;,0),7;,E;)}j>0
of triples of a quantum disk D; weighted by its area, a radial SLEg 7];» on D; starting from a uniformly
random point 77;-(0) on 0D; and targeted at 0, and a 22000.9)_yalued random variable =, as follows.
o Set g := O'(Dj,ﬂh‘Dj,ﬂ;,xpjm;(o),ypj’n;(o)) and E; := EY N {o; < 6, NP e E}.
0j = by, set Djy1 = Dj, Dj1 := Dy, 0j4q = m; and Ejiq = Ej. If 05 < by let Djq be
the O-containing component of D; \ 7;([0, o;]), set ng := Dj \ Dj1, and let Nj and Dj1 be
the quantum surfaces parameterized by K7, \ 0K}, and Dj 1, respectively. If E; occurs, we
also say that E occurs for N;.
o Ifo; < tn;, we take an independent radial SLEg n}- 41 on Dj; targeted at 0, choosing its
initial point 1; ,,(0) and Z;11 according to the following rule:
(W If Ej occurs, let 1, 1(0) be the leftmost point of O(D; \ Djt1) N ID; and set Ejy1 =
{i}U{i € Ej | 9Dj11 NON; # 0}
(b) If E; does not occur, 8K] N 8D # 8D and Uze__(ﬁD]H N ON;) # (), noting that
[aj, bi15p = UZE_ (ODJH N ON;) for unique aj,b; € 9D;j+1, let nj,1(0) be the first
point on [a;, b;|$p ., from a; that belongs to

(5.7) N,

{bj} U Uz € =5, 0Dj4+1 N ON; has quantum length at least 9d?/3
and set Zj,1 := {i € Ej | 0 # D11 NON; C [1,,(0), bj]gsz+l}, where [bj, bj]gpj+1 =
{b;}. o B

(¢) If E; does not occur; 0K}, N dD; # dD; and |, icx _(BD]H NON;) = 0, let n;,,(0) be
the rightmost point of 8(2) \ D]H) N OD; and set =1 := (.

(d) If E; does not occur and 8K] N 8D = 8D], let 7;,1(0) :=n;(0;) and set Ej41 := ().

Noting for any j > 0 that {o; < ty, 0Djs1 C Uses, ON;} C E; and that on E; the bottom left of

Dj \ Dj41 can be written as [a:apj , n}(O)]gNj with Top, AS in (5.4), set

0j < ty, ODjr1 C Usez,,, N (2o, 11;(0)]Gy, ﬁ}

5.8 Ns :=min< j >
(>.8) ’ mm{j 20 (0D;NON;) has quantum length at least en6%/>

1€ES;
Let w > 0 and define an event E,, 5 by

5.9) B, {for any j € ZN[0,6~%/3 %] and any t € (0, 0], the boundary length}
' “ of the 0-containing component of D; \ 1([0, t]) is at least §2/3~"
Then there exist c1, ca,a € (0, 00) determined solely by A, ¢y, u such that the following hold:
(D) P[EyusN{Ns > 6_2/3_“}} < 1 exp(—c26™9).
(ii)
foreach 0 < i < Nj there exist n € ZN[0,6 *] and
(5.10) P Eu75 \ {ij}?zl C {0, ey N(s} such that 8/\/’ N oDy # 0, <c eXp(—CQ(Sia).
i1 = i and ON;; N 0N, #@foreach 1<j<n

The first step in the proof of Proposition 5.1 is a related result in the setting of the half-plane. This
setting will be slightly easier to prove because the law of a weight-2 quantum wedge is invariant
under the operation of exploring a chordal SLEg curve for a given amount of quantum natural
time.
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FIGURE 2. Left: Ilustration of the setup of Proposition 5.1. The embedding of
D into D is taken so that the interior (resp. boundary) marked point is 0 (resp.
—i). Chunks for which the event E occurs (resp. does not occur) are shown in
green (resp. red). We will choose the event E so that the N; for which it occurs are
necessarily homeomorphic to D, which is why the green chunks have this property
while the red chunks do not. Shown is the event that the chunks for which F occurs
disconnects 0D from 0. Right: Illustration of the setup for Proposition 5.2, with the
same color scheme as on the left.

Proposition 5.2. There exist Ay € [2,00) and c¢o max € (0, 00) such that for any A € [Ap, c0) and any
co € (0, co.max] the following is true with €y := coA~*/3. Set o := oy/4 A 1 and let E be any Borel
subset of M§™Y such that ugyg? [EY N{N}¥ € E} | o0 < 1] > 1 — eo. Suppose that W = (H, h, 0, o0)
has law ug\ﬁ, and consider the following exploration of W by chordal SLE¢ curves. Set Hy := H,
Wo := W and let |, be a chordal SLEg on W, from 0 to co. We then inductively define a sequence
{W; = (Hj, hlu;,m;(0),00),n}) }j>0 of pairs of a quantum wedge VW; and a chordal SLEg 7 on W
as follows.

o Setoj:= O‘(Hj,/th‘Hj,n;,ZUWj,ij) and E; := Ec],/vj N{o; <1, ,/\/';/VJ' € E}. Let Hj,1 be the
unbounded component of H; \ 7;([0, 0;]), set K}, := H; \ Hj;1, and let Nj and W1 be the
quantum surfaces parameterized by Kﬁ}j \ 8K§j and Hj1, respectively. If E; occurs, we also
say that E occurs for Nj.

e Let 1, be an independent chordal SLEg on W; to oo whose initial point 7; ,,(0) is chosen
according to the following rule. If E; occurs, let 13,1 (0) be the leftmost point of 0(W;\W;11)N
OW;. If E; does not occur, let 77}“(0) be the first point on W, that is to the right of the
rightmost point of 0(W; \ Wj4+1) N OW; and belongs to

g

(5.11) (@i nowy) ulJ

0 <4 < 4, OWj1 N ON; has quantum length at least €g

Let L; denote the quantum length of the top left of Wy \ W; (i.e., the part of O(Wy \ W;) N Wy
which is to the left of 1;(0)) minus the quantum length of the bottom left of Wy \ W; (i.e., the part
of 0Wo \ W;) N OW, which is to the left of 0). Equivalently, set Lo := 0 and let Lj; — L; be the
quantum length of the part of OW;1 from ;1 (0) to the leftmost point of O(W; \ Wj11) N OW; minus
the quantum length of the bottom left of W; \ Wj1 (i.e., the part of 9(W; \ Wj41) N OW; which is
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to the left of 77;(0) ). Also let R]]?’Ot denote the quantum length of the bottom right of Wy \ W; (i.e., the
part of 9(Wo \ W;) N OW, which is to the right of 0). Then the following hold:

(i) There exist constants c1,co € (0,00) determined solely by A,cy such that P[Ly > —ciN] <
exp(—caN) for any N € N. More precisely, ¢; can be chosen as ¢; = 1=cA=?/3log A with
¢ € (0, 00) the constant in Proposition B.3.
(ii) For each u € (0, 3), there exists a constant cs € (0, c0) determined solely by u such that P[RR >
N/10] < e3N*~1/2 for any N € N.
(iii) There exist constants cy, c5,c¢ € (0,00) determined solely by A, cqy such that for any u € [2,00)
and any N € N,

for each i € Z.N [0, N] there exist n € NN [1, cqu?]
(5.12) P |and {i;}7_, C ZN[0,N] such that iy = i, ON;, N| > 1 — csN? exp(—ceu).
OWp # 0 and ON;;NON;; ., # 0 foreach1 < j <n

(iv) There exist constants c7,cg,c9 € (0,00) determined solely by A,co such that, with oWV =
(—00,0) C OW, for any u € [2,00) and any N € NN [c7u3, 00),

for each i € ZN [0, N| there exists j € ZN [0, N) such

(5.13) P that |]—'L| S C7U3, ﬂEij =1 and a./\/_’]ﬁaLW 7£ (Z)

>1— cgN2exp(—cou).
j+1
5.3. Proof of Proposition 5.2. The proof of Proposition 5.2 is long and divided into several steps.
Until the end of Subsection 5.3, we fix the situation of the statement of Proposition 5.2, with
A € [2,00) and ¢y € (0,00) arbitrary and the way of choosing Ay, comax specified in the course
of the proof, and we also fix the following setting. Recall that for each j > 0, W; is a weight-
2 quantum wedge independent of {(W; \ Wit1, hhwawi,s %il0,045 Ei)}0§i<j by the properties of
quantum wedges described in Subsections 3.2.2 and 3.2.4, where L; denotes the quantum length
of the part of OW;,1 from 7, ,(0) to the leftmost point of d(W; \ Wit1) N OW;. Let {L >0
(resp. {Ri +i>0) be the left (resp. right) boundary length process associated with (Wj,n}) as in-
troduced in Subsection 3.2.4, let 77 denote the quantum length of the top d(W; \ Wj41) N W,
of W; \ Wj41 and BJL.' (resp. B}%) the quantum length of the bottom left (resp. bottom right) of
W; \ Wj41. Then ({L]}1>0, {R] }1>0) is a pair of independent 3/2-stable Lévy processes with only
downward jumps and is independent of {({L}};c(0,0,)s { R} }tejo,0:]) o<i<; for each j > 0, the se-
quence {({L]}ic(0,0,> { R }iefo,0,])}j—0 18 i.1.d., and we have

(5.14) 0 < T’ = (L}, —infocsco; LL) + (R}, — infocscq; RY),
(5.15) 0< B) = —infocses, LI,  0< Bj = —infocss, RY,
(5.16) o; = (inf{t € [1/A,00) [ j(t) € OW;}) AL = (t] A7) A1

(for (5.16) recall (5.6)), where TjL = inf{t € [1/A,0) | L = info<s<t LZ} and TJR = inf{t €
[1/A,00) | R} = info<s<; RL}. Also, following Appendix B, let X', X2 be i.i.d. 3/2-stable Lévy
processes with only downward jumps and starting from 0, and set I := info<s<t X1, 77 = inf{t €
[1,00) | X} = I} for j = 1,2 and 7 := 71 A 72, so that (5.16) and the scaling property of X!, X2
imply that ({LZ/A}QO, {Rf/A}tzo, A(tFATER)) and ({A72/3X} }0, {A7%3 X} }i>0, 7) have the same
law for any j > 0.

We first prove Proposition 5.2-(ii), which is an easy consequence of the properties mentioned in
the previous paragraph, Proposition B.5 and (B.10).
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Proof of Proposition 5.2-(ii). Setting RE° := 0 =: Ry’® and letting R;Op denote the quantum length
of the part of OW; from 7;(0) to the rightmost point of d(Wo \ W;) N OW, for each j > 1, we easily
see from the definition of the exploration that for any j > 1,

7—1
(5.17) RV = RY°Y 4+ (B, ' — RPN < RYY + BT <) B
k=0

As noted in the first paragraph of Subsection 5.3, {({Ri/A}tE[O,AJJ,],Aoj)};io is i.i.d. with the

same law as ({A"?3X?}icjo-na, 7 A A), and therefore {B} j—o is i.i.d. with the same law as

—A~%312, , by (5.15). Moreover, letting p € (1, 3), by the scaling property of X? and [20, Chapter
VIII, Proposition 4] we have

(5.18) E[(BR)?] = E[(A*|12, 4] < E[(AT*PI31)7] = E[|IF ] < oo,
which further implies that for any s € (0, o),

(5.19) sP[By > s] < s' PE[(BR)*] < s'PE[|I7[F],

(5.20) E[Bg] — E[Bplipy <] = E[Brlpy.q] < s PE[(BR)] < s PE[|I7|].

It follows from (5.20) with p = %, a version [90, Exercise 1.2.11] of the weak law of large numbers

with an explicit remainder estimate and (5.19) that for any N € N and any s € R with s >
N-VAR[|IEP],

N-1
P||> " B} - NE[BR]| > Ns]
7=0
N-1
<P||~ > B, -E[BI | > s — NTVAE[|17]5/1]
= N R RYBYI<IN}| = 1
j=0

N
<2N7!(s— N‘1/4E[\112\5/4])2/ t'PE[|IEP] dt + N'"PE[|I}|P]
0
(5.21) = (2(2 —p) (s — NTYE[IIZPA) P+ 1>E[|I§yp] NP,

Finally, by Proposition B.5 and (B.10), as long as A is large enough, E[B%] = E[-A"2/312, ,] <
1/20, and for any such A and any N € Nwith N > 40E [|112]5/4]4 we see from (5.17), E[B%] < 1/20
and (5.21) with s = 1/20 that P[RRt > N/10] < csN'P with ¢ == (3200(2 — p)~! + 1)E[|I2]"],
completing the proof. O

In order to prove Proposition 5.2-(i), we will consider a slightly modified exploration, illustrated
in Figure 3, for which the analog of {L;}%,,, denoted by {L’}%,, dominates {L;}22, in the sense
that Ly < L'y forany N > 1. Moreover, L, = Zévz_ol(L;»H—L;) and the increments {L ; —L’}22,
form a sequence of i.i.d. random variables with negative mean and such that (L’ ; — L))" has
a finite exponential moment. Then Proposition 5.2-(i) can be derived from the following large
deviation bound. This rather explicit large deviation estimate is required in order to prove that the

constants ¢y, co in Proposition 5.2-(i) can be chosen to be dependent only on A, cy.

Lemma 5.3. Let {Y,,}°°, be i.i.d. real random variables, let 3,5, K,M € (0,00), p € (1,00) and
assume that E[eﬁyf] < K, E[(Y; )P] < M and E[Y1] < —4. Then there exists A € (0, 00) which is an
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FIGURE 3. Top: Shown on the left is the exploration in the statement of Propo-
sition 5.2 when the first chunk satisfies the event F. The exploration continues
starting from the orange dot. Shown on the top middle is the exploration when
the second chunk also satisfies the event F and the exploration continues from the
orange dot. On the top right, the second chunk does not satisfy £ and the explo-
ration starts from the orange dot. Bottom: Shown is the exploration in the proof
of Proposition 5.2, which is more to the right than the exploration described in the
statement of Proposition 5.2. Whenever a chunk for which E occurs is discovered,
the exploration continues from the point which is ¢y units of boundary length from
the leftmost intersection of the chunk with the surface boundary (orange dot, bot-
tom middle). Whenever a chunk for which E does not occur is discovered, the
exploration continues from the rightmost intersection of the chunk with the surface
boundary (orange dot, bottom right).

explicit function of 3,6, K, M, p such that

(5.22) P

1
Z Y, > —4(571] < e /8 forany n € N.

Proof. Set a := (2M/5)P%1 and b := E[(Y; + a)*], so that b < E[Y;*] + a < 87'K + a. Then by
Holder’s and Markov’s inequalities,

b—a—EYi] =E[(Yi +a)7] <E[Y, Iy—s,] <E[07)] PPy > 0] 7"
<a"PE[(Y; )] <a'PM = 35,
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and hence a — b > —E[Y;] — 16 > 15. Therefore, setting Y; := (Yj +a)t — b for j € N and noting
that E[Y;] = 0, we see that for any n € N and any \ € (0, 5],

P;szfm <P ;l/jz(ab45)n <P Z;szz;‘;”]
< 6—5>\n/4IE exp()\zy) —5>\n/4 [ )\ffl])n

<o (1Y s o )

< e*&n/4(1 + (A/ﬁ) E[eﬁlm])”

(5.23) < eXp<—5)\n/4 +n(M/B)2E[eAN] )

Now since |Y;| < YiF+a+b<Y]" +2a+ 71K and thus E[eﬁ‘m] < Ke?BetK (5.22) follows by
choosing A := (§682K e 2977 K) A Bin (5.23). 0
Proof of Proposition 5.2-(i). We define {L/}22 by L := 0 and

(5.24) i1 — L= (eo — B] ), + (T7 — BY ).

Then since {(W; \ Wjt1, hlw,\ w15 Ml [0,05)) 520 i 14.d. and g, TV, Bi, Bf'% are measurable with
respect to (W; \ WJH,h!W \W]+1777§|[0 »;)) by (5.5), (5.4), (5.14) and (5.15) for any j > 0, we
have that {(1g,,77, B] BJ) o is i.i.d. and thus {1}, — L;}22, is also i.i.d. Note that {L’}2
defined by (5.24) has the law of the analog of {L;}52, for another exploration in which 7 +1(O)
is instead chosen on the event £ to be the point on 8Wj+1 which is ¢y boundary length units to
the right of the leftmost point of d(W; \ W;j+1) N 0W; and on the event EY to be the rightmost
point of (W, \ Wj41) N OW;; see Figure 3 for an illustration. This is because W, is a weight-
2 quantum wedge independent of {(W; \ Wit1, hlw,\wi,rs 7 L;)}o<i<; for each j > 0 for
either of the ways of choosing {7 ,(0)}32,, by the properties of quantum wedges described in
Subsections 3.2.2 and 3.2.4.

We claim that Ly < Ly for any N > 1. Indeed, let j > 0, set

]:0:

cluded in the part of 9)V; from the rightmost point of 9(WV;\
W;11) N OW; to the rightmost point of d(Wy \ Wjt1) N OWy

let 7% denote the quantum length of OW;1 N AN for i € I;, set IJQ :=( on E; and

OW;i+1 N ONj is included in the part of 8Wj+1 from
the rightmost point of O(W;\W;11)NOW; to 1, 1(0)

0 <1 < j, OWjt1 N ON; has at least two elements and is in-
(5.25) I = { }

(5.26) 19 := {z € I

on Ef. Then we easily see from the definition of {(W;,n;)}22, that 1p, = 1 for any i € I;, that
1) C{iel; | T" < e}, that I N I} = () for any k& > j, that the part of 9, from the rightmost
point of d(W; \ W,1) N OW; to the rightmost point of d(Wy \ Wj41) N Wy (is a singleton or)
consists of closed intervals {OW;1 N ON;}ie 1; with disjoint interiors in 0W; 1, and thus that

Lyvi =Ly =—Blg, + (T = Bj+ Y _ T )lp
(5.27) S Z’elﬂo ’
< -Bjlg, + (T’ - B} + eO#IQ)nE;;
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here # A denotes the number of elements of a set A. It follows from (5.24), (5.27), the disjointness
of{]0 0andI0 c{ieZn]0,j)]| 1g, = 1} that for any N > 1,

N-1 N-1
(5.28) Ly - Ly =Y ((Ljt1 - Lj) = (L1 — L)) <> (—eolp, + eo#1))
=0 =0

<e(—#{j €ZN[O,N) |1, =1} +#{j € ZN[0,N —1) | 1g, = 1}) <0,

proving that Ly < Lly. It thus suffices to prove (i) for {L’}32, instead of {L;}72,.
Recall that the sequence {({Lt/A}tE[O Ao)s {Rt/A}te[o Ao]s Aa])}] , is i.i.d. with the same law

as ({A723 X} eprna, {A™3 X2 e rna, ™ A A). It thus follows from (5.24), (5.14), (5.15),
Propositions B.3 and B.4 that

E[L} — L]
= eP[Eo] + E[T°1g¢] — E[B}]

]
< e+ E[T0p0cinm] + E[T 1501y — BY]
= e+ E[T Ny crp\mo) + ATPE[(XA — T4 + X5 — ) Lrsay + I24]
(5.29) < e+ E[T 1515 ) + A 232 — clog A),
where ¢’ 1= sup 4/¢(1 o) E[(X} — )Il{T> Ary] < oo and c is the constant in Proposition B.3. More-

over, setting Z7 := supg<,<1 (X7 — I7) for j = 1,2, we have E[e*T’] < E[e®(Z'+7))] = E[e azl] <
oo for some a € (0,00) by (5.14) and Proposition B.7, and therefore by Jensen’s inequality and
PIES | 09 < 1] < g we get
E[T15y<c1pm,] = o 'P[{o0 < 1} \ Eo|E[aT? | {00 < 1} \ Eo)
< a 'P[{og < 1} \ Eo) log E[e?T” | {09 < 1} \ Ey]

/

< a—lp[{go <13\ Eo] log IP’[{O’O <a1} \ Eo]

(5.30) < alg log(a’ /€o)

provided ¢y < o /e, where o/ := E[eazl]Q. Combining (5.29), (5.30) and ¢y = cgA~%/3, we
conclude that

/

rTt —-2/3 -1 @
(5.31) E[L; — L) < A <CO +a Teolog coA—2/3

+2c — clog A)

provided coA~%/% < o//e, and hence we obtain E[L} — L] < —%cA‘Qﬂ)’ log A < 0 from (5.31)
by choosing ¢ arbitrarily from (0,ca] and taking A large enough so that caA=%/? < o//e and
Slog A > a+2d /c+]log(d//(ca)). Finally, by (5.24) and [20, Chapter VIII, Proposition 4] we also
have

E[eawﬁ%ﬁ] < E[eo‘(6°+T0)] < e E[eo‘zl]2 = e/ < o0,
E[((Z) - Lo) )] <E[(B1)"] <E[|L[] < oo,
where p € (1,3) is arbitrary. Altogether, we thus have shown that the sequence {L/, o~ Lie,
of real random variables is i.i.d. and satisfies the assumptions of Lemma 5.3 with g := «, 0 :=

1cA™3log A, K = e*©qa/, M = E[|I}|>/*] and p := 2, which are all determined solely by (the
law of (X!, X?2) and) A, cg. Therefore by Lemma 5.3 there exists A € (0, 00) which is an explicit
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function of 3,0, K, M,p and hence determined solely by A, ¢y such that Ly, = Z;y:’ol(L;- 1 L})
satisfies
1 1
(5.32) ]P’{L?V > —451@ < exp<—§5)\]\7> for any N € N,
which together with Ly < L’N proves Proposition 5.2-(i). O

We now turn to the proof of Proposition 5.2-(iii). We briefly describe its main steps before
proceeding to the actual proof. First, in Lemma 5.4 we show that the quantum length of the top
right of Wy \ W; minus the quantum length of the bottom right of W, \ W;, with the influences
of the slides of {7}(0)}o<i<; to the right caused by (5.11) neglected, grows linearly in j with high
probability, on the basis of some moment analysis similar to the proof of Proposition 5.2-(i) above.
Next, in Lemma 5.5 we prove by using Lemma 5.4 and a comparison argument similar to (5.28)
that for any j > 0, with some probability uniformly positive in j the event E; occurs, IN; N OW, 11
has quantum length greater than 3¢y and the chunks {A}>;41 never enter the rightmost interval
of quantum length ¢y in ON; N OW;41 or the part of 9W;; to the right of this interval. Then
in Lemma 5.6 we deduce from Lemma 5.5 that, with probability exponentially high in u, at most
u of the subintervals {ON; N OW,41 | 0 < j < n, E; occurs} of 0W, 1 with quantum length in
(0,€0) can consecutively align for any 0 < n < N, so that the slides of {7}(0)}o<;<n to the right
caused by (5.11) have quantum lengths at most ¢yu. Finally, we combine Lemmas 5.5 and 5.6 to
show that, with probability exponentially high in u, for any 0 < j < N with ON; N (—o0,0) # 0
we have (Uycp<cy2 ONjr) N (—00,0) # 0, which is easily seen to imply the property stated in
Proposition 5.2-(iii).

Lemma 5.4. Let j > 0 and set S;; := 0 and

k k
(5.33) Sik:= Y _ ((T"= Bp)lg, — BRllge) = Y (T'lg, — B) for k> j.
i=j+1 i=j+1

Let ¢, c,a,a’ € (0,00) be the constants as in the proof of Proposition 5.2-(i) above, fix an arbitrary
A € [2,00) satisfying caA™?/3 < o/ Je and 5log A > 2¢ /e + log(a’/(ca)), and for each ng € N set
Siivn 1
: o i=P| inf ZHEE > = A=28]0g A
(5.34) Qno [kglno r 2 120 og Al,
which is independent of j > 0. Then, as long as ¢y € (0, cal,

) with a rate of convergence determined solely
. 1 o = 1 .
(5.35) no a6 110 by A (and thus independent of ¢y and E).

Proof. {(1g,,T", BE)}2°,, isiid. since {(Wi\Wi1, R\ Wg 15 Tl [0,04]) o 18 141.d. and g, T, BY
are measurable with respect to (Wi, \ Wii1, Alw,\wy 1> Tklj0,04]) DY (5.5), (5.4), (5.14) and (5.15)
for any £ > 0, and therefore ¢,, is independent of j.

We first show that, as long as ¢y € (0, ca],

(5.36) E[T° — By] € [cA™231og A, 00) and E[TO]IES] < ch*Q/?’ log A.

Indeed, noting that ¢y = coA~2/3 < caA=%/3 < o/ /e and that Llog A > 2 /e +log(d//(car)), we
see from (5.30), which requires ¢y < o//e, and the calculations made in (5.29) for E[TOIIES] that
E[T%1g:] = E[T 1 (pyciy\m] + E[T%N50-1}] < o teglog(a/eo) +2¢ A72/3
< A_2/3(%clog A+ clog(a'/(ca)) +2¢') < %CA_2/3 log A.
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Next, for E[T? — B}], note that T° — BY, = L) + B} + R)_ by (5.14) and (5.15) and that, since
({L?/A}tz()a {R?/A}tzo,AO’o) and ({A=23X}}i>0, {A723X2}50, 7 A A) have the same law, so do
(LS, BY, RS ,BY) and A=2/3(X2, 4, —1}, 4, X2, 4, —1%, ). Further, for j = 1,2, for any ¢ € [0, 00)
we have E[|th || < oo by [20, Chapter VII, Corollary 2-(i) and Chapter VIII, Proposition 4] and
IE[th ] = 0 by the stationarity and the scaling property of X7, and hence the Markov property of
X (see, e.g., [20, Chapter I, Proposition 6]) implies that X/ is a martingale with respect to the
completed filtration generated by X7. It thus follows from the optional sampling theorem and the
independence of {X7,737} that E[|X?, ,|] < co and E[X?, ,] = 0. Also, recalling that c is the
constant from Proposition B.3, by [20, Chapter VIII, Proposition 4], the scaling property of X' and
Proposition B.3 we have

oo > APE[|I}|] = B[|T4[] > E[-I}p4] > E[-I} ;o] > clog A.

Combining the facts mentioned above in this paragraph, we see that E[|7° — B%|] < oo and that
E[T° — BY] = A72PE[-1I}, ,] > cA~%/31og A, proving (5.36).

Turning to the proof of (5.35), we define partial sums {S} }x>1, {S7}x>1 of i.i.d. real random
variables by S} = Y_F | (T% — By) and S} = Yf Tl for k € N, so that Spj, = Sp — S7
by (5.33). Then since the law of TV — BY, is determined solely by A, the strong law of large
numbers together with the first half of (5.36) yields

with a rate of convergence

. U §
. ks 2o /3 _
(5.37) lim P[ nf - 12CA log A4 1 determined solely by A.

no—00 k>no

On the other hand, E[(T°)*] < 240 E [eO‘TO] < 240~ *a/ < oo by the choice of «, o/ specified just
before and after (5.30), and hence for any a € (0,00) and any k£ € N, by Markov’s and Hoélder’s
inequalities we have

p[sf?

k
From this inequality with a = ;cA~2/31log A and the second half of (5.36) we get

E[|S2 — kE[T 1 g [*
za]< (157 = KE[T gg]|*] _ 48

11520/
0\4

< _
(ka)4 — k2a4E[(T ) :|

~ k2q%at’

— E[T°15]

<[ SE 5 1270/ AP N1
. P Zk > ZeA"23 00 A < — —.
(5.38) [U { k=6 °8 ~ ot (log A)4 k2
k=ng k=ng
Now (5.35) follows by Sy, = S} — S2, (5.37) and (5.38). O

Lemma 5.5. Let j > 0, [ > 7, let {Sj,k}io:j be as in Lemma 5.4, and define events EJJ, Ej by

l
(5.39) Ej,l = Ej N {T] > 360} N mk:j+1{5j’k_1 — B% > (2(]{3 — j) - 3)60},
(5.40) E; = E;n{T% > 3¢} N ﬂ:;ﬂ{sj,k,l — BE: > (2(k — j) — 3)eo

Also let zj € (W \ Wji1) N OWj41 be such that the quantum length of the part of d(W; \ Wj41) N
OW; 11 from its leftmost point to z; is (2¢9) A T7. Then

(5.41) B {O(Wk\WkH) does not intersect the part OfaWj+1}
' ol which is to the right of z; for any k € NN (j,] ’
(5.42) B {O(Wk \ Wka1) does not intersect the part of}
' J OWj41 which is to the right of z; for any k > j
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and, provided A=' V ¢ is small enough, there exists G € (0, 1) determined solely by A, co such that
(5.43) P[E;] = P[Eo] > 1 — §.

Proof. It is clear that (5.42) follows from (5.41) by taking the intersection over [ € Z N (j,00). We
show (5.41) by a comparison argument similar to (5.28). Let y; denote the rightmost point of
OWy \ Wt1) N OWy, for each k£ > 0, and fix any instance of the exploration for which Ejyl holds,
so that the quantum length of the part of d(W; \ W;41) NOW, 1 from z; to y; is T7 — 2¢q € (€, 00).
Set ko := j, Vp := 0 and k,, := inf{k > k,_1 | 1, = 0} for n > 1. Also for each n > 1, set

keZn(j,kn)\{ki|i>1}, OWg,+1 NON} has at least two ele-
ments and is included in the part of 9W},, 1 from yy, to ;. 1 (0)

(5.44) JIn = {k:

if k, < oo and J, := () if k,, = oo, let T%*» denote the quantum length of OWy,, 1 NON}, for k € J,,,
set Uy == ) pes. Th*n and V,, := "% | Uj, so that the definition of the exploration easily implies
that T%*» < ¢ for any k € J,, by Ig, =0 (recall (5.11)) and that J, N J; = () for any i > n. In
particular, V,, < ey > i #Ji < (kn — j — n)eo for any n > 0.

To show (5.41) by induction, let n > 0 satisfy k,, < [ and suppose that (W} \ Wi.4+1) does not
intersect the part of WV, which is to the right of z; for any k € Z N (j, k,,|, that nk +1( 0) is located
to the left of z; in W, 11 and that the quantum length of the part of oW}, 41 from n, ,(0) to z;
is given by 2¢o + S; k, — V;,; note that this supposition holds for n = 0 since 7, (0) is the leftmost
point of d(W; \ Wj 1) NOW; by 1, = 1. Then an inductive argument on k based on the definition
of the exploration and the third part of (5.39) easily shows for any &k € Z N (ky, kn1 A [] that
O(W) \ Wi+1) does not intersect the part of 9WW;;1 which is to the right of z; and that the quantum
length of the part of 9Wj. 1 from yy, to z; is given by 2¢ + 5, 1 — BY, — V;, and hence greater than
(2k—kp—j+n—1)eg > (n+1)eo by (5.39) and V;, < (k,, —j —n)ep. Moreover, suppose further that
kny1 < 1. Then since the definition of the exploration implies also that the part of OW,,, 1 from
Yk, t0 zj involves only OWy, ., 11 NON, for k € ZN[j, kpy1) \{ki | i > 1} and has quantum length
greater than (2k,,+1—kn,—j+n—1)eg > (knt+1—7)€o, there exists j,+1 € ZN[j, kn+1)\{ki | © > 1} such
that OWy, . ,+1 N ONj, ., has quantum length greater than . It thus follows from 1 By, ., = 0 and
the way of choosing n;nﬂ +1(0) (recall (5.11)) that the quantum length of the part of OWj,, 11
from yy,., to n;ﬂﬂﬂ +1(0) is given by U1, thereby that ngnﬂ +1(0) is located to the left of z; in
OWk,..1+1 and that the quantum length of the part of OW, ., 11 from n;nﬂ +1(0) to z; is given by
260 + Sjkpii—1 — BZ"H — Vi = Upy1 = 260 + 5
proves (5.41) and thereby (5.42).

Jkns1 — Vny1. This completes the induction and

Next, for (5.43) we begin by noting that, since W;, Wy, W, are weight-2 quantum wedges, W,
is independent of (Wo \ Wi, hlywo\w, > hlj0,00]) and 1g,, T° are measurable with respect to (W \
W1, hlwewn s Mol[o,00]) in view of (5.5), (5.4) and (5.14),

P[E;] = P[Eo]
(5.45) =P[Ey N {T° > 3eo}] - P[Sok—1 — B > (2k — 3)eo for any k > 1].

Therefore it suffices to prove that the last two probabilities in (5.45) are bounded from below by
positive constants determined solely by A, ¢y as long as A~! V ¢, is small enough. To this end, recall
that X!, X2 are i.i. d. 3/2-stable Lévy processes with only downward jumps and starting from 0, and
that we have set I} := infocyey XI, 79 := inf{t € [1,00) | X = I} for j = 1,2 and 7 := 7' A 72. By
Ey C {O’o < 1} and (5.14),

(5.46) Eon{T°>3e} = EoN{LY, ,  —infoceco, ., LS+ Ry

: 0
T1/4.0 1nf0§s§0'1/A70 Rs > 360},

J1/A,0
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where oy/40 = 0 /4(H, ptn, ), 0,00). Since ({L?/A}tzo, {R?/A}tzmAUl/A,o) has the same law as
({A23X [} im0, {A"Y3 X2} 150, 7), we see in view of ¢y = cgA~%/3 that

0 : 0, po

P[Lal/A’o - lnfoﬁsﬁgl/A,o Ls + Ral/A70

—P[X! — I 4 X2 12> 3c)] XS PIX! T 4 X2 12> 0] =1,

— infocsco, 4 1Y > 3e0]
(5.47)

where the last equality follows by the independence of X!, X2, (B.1) and (B.3). Moreover, the
assumption on the Borel subset E of MSTV and (B.3) together imply that there exists ¢’ € (0, o0)
determined solely by the law of (X!, X?) such that

(5.48) P[Eo] > (1 — €0)Plog < 1] = (1 — €0)P[r < A] > (1 — cgA™2/3)(1 = " A72/3).

It thus follows that P [EO N{T° > 360}] > 1/2 > 0, by choosing first ¢y € (0, 1] small enough on the
basis of (5.47) so that P[X} — Il + X2 — I? > 3co| > 3/4, then taking A large enough on the basis
of (5.48) so that P[Fy] > 3/4, and combining these with (5.46) and (5.47).

To see that the last probability in (5.45) is bounded from below by a positive constant determined
solely by A, ¢y, assume that ¢y € (0, ca] and that A is large enough so that caA=%/3 < o//e and
LlogA > (2d/c + log(e//(car))) V (4). Then LcA=2/3log A > dea A2 > 4cgA7Y? = 4e
and hence ¢y, as in (5.34) satisfies P[infy>n, k™' Sox > 3€o] > gn, for any ng € N. Also, since
P[B! > k10 < k79E[(BET)Y4] < k798E[|1}|°/1] < oo for any k € N by (5.15) and [20,
Chapter VIII, Proposition 4], for any ny € NN (e, ', 00) we have

k+1
(5.49) P[sup 2 < 6[):| >P

k>ng

ﬂ {BEJA < k9/10}] >1 —E[|]11|5/4] Z L—9/8

k>ng k=ng

Thus by (5.35) and (5.49) there exists ny € N determined solely by A such that P[inf>n, k™1 So % >
3¢0] > @no > L and P[supjs,, K 'BE™ < €] > I, and then since {B%}%°, is ii.d. with the
law determined solely by A, we can further take M € (0,00) depending only on A so that
Pmaxi<p<n, k15, By < M] > 3. It follows from these inequalities and Sox_1 — Bf, >

— 3% | B, for k € N that

So & Bt Sox_1 — Bk 1
5.50 P| inf —2£ >3 i in 2 TR > Af| > .
(5.50) komo k00 AP T S0 BEL 2 = =9

On the other hand, let ¢; € (0,00) be the constant from Proposition B.6 and assume that A >
(2/e1)?/? and ¢y < 1. Then by €y = cgA™2/3 < Leicy and (B.16) we have

P[T°1g, > 4e, BY < €

=P[Eo N{T" > 4ep, By, < €o}]
(5.51) =Plog < 1, T° > 4e, By < €0] — P[{o0 < 1, T° > 4eo, B} < €0} \ Eo)

>Plr < A, X! — 1! > 4o, IP > —cy] — P[E§ | 00 < 1]

> C100 — €9 = %Clccy

Setting n1 := min(N N [(2¢,' M + 4)ng, 00)), which is determined solely by A, ¢, as a function
of ng, M,e9 = coA~%?, and recalling (5.33) and that {(1g,,T*, B%)}22, is i.i.d., from (5.50)
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and (5.51) now we obtain

P[Sok—1 — B > (2k — 3)eq for any k > 1]

. Sm ni+k B?%l—i—k—’—l . Snl ni+k—1 7 B?%H_k
) J >
>p| 0 T p 730 s = <o, min K z—M,
Tk, > 4ep and BY < ¢y forany k € {1,...,n1}
ni

(552) > (01002/2) >0

provided A~V ¢q is small enough. Here we have the first inequality in (5.52) since the event in the
first line of (5.52) is seen to hold on the event in the second line as follows: for any k£ € {1,...,n1}

we have Sy ;1 — BE > 3ep(k — 1) — €9 > (2k — 3)eg, for any k € NN (ny,ny + ny) we see from
ny > (2¢5'M + 4)ng that

So—1 — By = Sony + Sny k-1 — Bl > 3egni — M (k —n1)
> 2egn1 + 60(2661M + 4)n0 — Mng > 2(77,1 + no)é() > (Qk — 3)60,
and for any k£ € NN (n; + ng, co) we obtain

807]{,1 — BE = S()JL1 + Snl’kfl — B% > 3egny + (360 — 60)<k —ny — 1) > (Qk — 3)60.

Thus by (5.45), (5.52) and the discussion following (5.48) we conclude that P[Ej] = P[Ey] >
%(clco /2)™ provided A~! V ¢y is small enough, proving (5.43). O
N

Lemma 5.6. Let u € [2,00). For each N € N, let E’N = E%N be the event that there exists 0 < n <
so that for some m € NN (u,00) and 0 < j; < --- < jm, < n the following hold:

(D Ej, occurs forany 1 <i < m.

(ii) The boundary length of Z;, ,, := ONj, N OWy41 isin (0, €) forany 1 < i < m.

(ii) Zj, n NZLj, ,m # 0 and T;, , 5, is located to the left of Tj, ,, in OWy, 41 forany 1 <i <m — 1.
(Note that {Z;, ,}I", are closed subintervals of OW,1 with disjoint interiors under (i) and (ii) by
Proposition A.2.) Assume further that A=' V/ ¢q is small enough so that (5.43) holds, let § be as
in (5.43) and set ¢ := $log(¢~'). Then for any N € N,

(5.53) P[Ey] < §'N exp(—éu).

Proof. Let j > 0. On the event F;, we consider a random tree rooted at j with the set of vertices
T; C ZN[j,00), defined as follows. Given k € T;, we say that [ € NN (k, c0) is a child of £ in the
tree if the following three conditions are satisfied:

() E; occurs.

(I The boundary length of Zj,; := ONj, N W41 is in (0, €).
(IID) Zy; N ON; # 0 and 0N is located to the left of Z; ; in OW41.
Recall that 77 denotes the quantum length of the top ON; N W; of W; \ W;41. We claim that,
provided A=! V ¢p is small enough so that (5.43) holds, the conditional law of the cardinality
#T; of T; given E; and TV is stochastically dominated by a geometric distribution whose success
probability is explicit in ¢, with ¢ as in (5.43). Indeed, for each k£ > 0 let §; denote the o-algebra
generated by {(WV; \ Wis1, hlwaw,, 1 110,045 Ei)}ogz‘gk, and for ¢ > 0 let m; denote the (i + 1)-th
smallest element of 7; C Z N [j, 00) on the event {#7; > i} and set m; := oo on {#7; < i} U EY, so
that m; is a {G }-stopping time. Let i > 0. Then setting E, 1 := Ukenuioy (Bgs1 N {m; = k}), on
Emﬁl we have T+ > 3¢, by (5.40), hence see from (5.42) and the definition of the exploration
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that (II) with & = m; + 1 and (III) with any k& € {my, ..., m;} fail to hold for any | € NN [m; +2, 00),
and thus obtain 7; C {my, ..., m;,m; + 1} and in particular #7; < i + 2. Therefore

Plmit2 < 00 | Gm,] < Lmicoo} = P[Emit1 | Gimi)
= (1 = P[Bo]) L, <o0} < @liims<o0}s

where the equality holds by the facts that Emi+1 N{m; =k} = Ek+1 N{m; =k}, Ekﬂ is independent
of G and P[Ex41] = P[Ey] for any k£ > 0. It thus follows by an induction on ¢ based on (5.54) that
for any i > 0,

(5.55) P[#T; > 2i | §]1g, = Plma; < oo | §;]1g, < §'1g,,

(5.54)

which implies the desired claim.

Now we can conclude the assertion as follows. Let N € N, and for each j > 0 let Ey j be the
event that (i), (11) and (iii) as in the statement hold for some m € NN (u,o00) and j = j; < -+- <
jm < n, sothat Ey C UJ 20 EN] Then since {j1,...,jm} C 7; for such m and ji, ... ,jm,nby the

definition of the tree 7; given at the beginning of the previous paragraph, we have En j C Ein
{#7; > u}, hence P[EN]] < P[E; N {#T; > u}] <" exp(—¢u) by (5.55), where & := ;log(q 1),
and thus P[Ey] < YN P[En ;] < §'N exp(—éu). O

Proof of Proposition 5.2-(iii). Assume that A~! V ¢y is small enough so that Proposition 5.2-(i)
and (5.43) hold with ¢, 9, ¢ as stated in these places. Recalling that W = (H, h,0,00) is the
original quantum wedge on which the exploration is defined, set oW := (—00,0) C OW. Let
Sk denote the o-algebra generated by {(W; \ Wit1, hhwawiy s Mil0,04)5 Ei)}ogigk for each k& > 0, set
mp := 0 and inductively m; := inf{i > m;_; | ON;NO, W # 0} for each j > 1, so that for any j > 0,
m; is a {Gy, }-stopping time and Proposition 5.2-(i) easily implies that m; < oo a.s. Also let N € N
and set Jy := min{j > 0 | m; > N}, so that Jy < N. Then we easily see from the definition of the
exploration that for any j > 0 and any ¢ € ZN[m;, mj;1] there exist i1, ..., i, € ZN[m;, m;41] with
n < mjy1 —mj and i; = i such that ON;, NOLW # 0 and ON;, NON;, ., ;é () foreachl <k <n-1,
i.e., the number of adjacent chunks necessary to get from N to 0p,)V is at most m; 1 — m;. It
therefore suffices to bound maxo< <.y (Mmjy1 — m;).

Let Ej be as in (5.40) for j > 0, let u € [2,00) and let EN = E%N be as in Lemma 5.6. Let j > 0,
define G, ,-measurable random variables R;,¢; by R; := 0 on {m; = oo},

(5.56) R; =1+ max{m >1

(i), () and (iii) in the statement of Lemma 5.6
hold with n = m; forsome 0 < j; < -+ < jp, <M

on {m; < oo} (max® :=0) and t; := T™ g = > 2, Tk]lE;;m{mj:k}, and set n, := max(N N
; ;
[1,u]) and 72, := (2€0/c1)
We claim that

(5.57) P[mj+1 —m; > ﬁuRJ ’ 9mj} ﬂ{mj<N,tj§€0nu} < (qnu,—l + 6_C2ﬁu)]1{mj<N,tj§€0nu}'

To see this, set 7; := m; — 1 and inductively 7;,, := inf{k > 7,1 | 7},,(0) & Uf:mj ON;} for
each n > 1, so that 7;,, is a {9 }-stopping time for any n > 1; note that 7;,, is the n-th smallest
k > my; such that Ej does not occur and the process of deciding the location of 7, (0) according
to (5.11) involves skipping some of the intervals {OW),11 N 6./\/}}0§l-<m]. in OWy1 whose quantum
lengths are in (0,¢p). Then for any n > 1 we have {7,41 < oo} C Upeo({7jn = K} \ Eji1)
by (5.40) and (5.42), hence P[7;, 11 < o0 | G, ] < Gl <00} by the independence of Ekﬂ and
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Gk and (5.43) with j = k£ + 1 for k > 0, thus P[r;,, < oo | Smj] < (j”‘l]l{mj<oo} and in particular
Pl7jn, < 00| Gm;] < qnu_lﬂ{mj<oo}. Therefore, to show (5.57) it suffices to prove instead that

(5.58) ]P[mj+1 —mj; > ﬁuRja Tjm, = O | 9mj] ]l{m]-<N, t;<eonu} < e e ]l{mj<N,t]-§eonu}'

For this purpose, for each n > 1 let s; , denote the quantum length of the part of 9V, 1 between
77/rjn+1(0) and the rightmost point of U:J:’;nj ON; N OWx, .11, so that s;, < Rje by (5.11) and
(5.56). Then since, conditionally on {m; < oo},

/ = [e’e}
{(Wi+1+mj \ Wi+2+mj’ h‘Wz'+1+m]- \Witam; o it 1+m; |[070i+1+mj]’ Lmj»i+1+mj) }i:O’

where Emj,i+1+mj = EHHmj - >, S.jvn:[l{Tj,n:i“Fl“!‘mj}’ is independent of G, and has the
same law as {(W; \ Wit1, hlwawi, 1 10,045 Ei)}fio, it follows that, conditionally on {m; < oo},
{Liv14m; — Liym; — Yooy Sjnlim, <1, <htm,} } peg 1S independent of §,,,; and has the same law
as {Lx}3Z,- On the other hand, noting that ¢; + s;11(;, ,—,,} is the quantum length fmj of
the part of 9Wi,,,, between 7} +m, (0) and the leftmost point of d(Wp; \ Wijm,) N OWn,;, we
see from the definition of m;, m;; that the quantum length of 9(Wy \ Wit.,,) N 0LV is given
by —(Li4m; — tj — sj11fr, ,=m,)) and that on the event {m;1 —m; > n,R;} we have (W) \
WﬁuRj+1+mj) NoLW = 8(W0\W1+mj) N oL and hence LﬁuRj+1+mj > Ll—i—m]- —t;—8j1 ]I{Tj,1=mj}'
Recalling the §,,,;-measurability of R; and ¢; = 7™ ]lgrcnj , from the facts in the last two sentences,
sjn < Rjeo and Proposition 5.2-(i) we get

]P)[mj+1 —mj > n“RJ7 Tjng = ‘ 9m]] ]l{mj<Nvtj§€0n"}

< P[Li, gy +14m; = Lism; —tj — Siilir 1 =m;} Tim, = 00 | Sim, ] U, <N, t<eonu}

L p G o P | .
i+14+m; 1+m =1 °3nHm; <1 n <Ny Rj+m;
S]PJ uily J J n {m;j<7jn<nuR; it 9mj ]l{mj<N,tj§60nu}

Z —Rjeonu — tj

- (P[Lk Z —(Gonu/ﬁu)k - t”(k,t)Z(ﬁuRj,tj))ﬂ{m]‘<N,tj§€0nu}
< (P[Ly = —(2€0mu /M) K Ik, Ry ) Wi, <N, 1, <conu}
= (P[Lr > —c1kllk=rur,) Wm; <N, t;<cona} < € " D, <N, 1, <cona}s

proving (5.58) and thereby (5.57).
Finally, we give similar upper bounds on P[m; < N, R; > u+ 1] and P[m; < N, t; > eyny] to
conclude the proof. Indeed, {m; < N, R; > u+1} C EN by (5.56) and hence

(5.59) P[m; < N, R; > u+1] <P[EN] < G N exp(—cu)

by Lemma 5.6, where ¢ := 3 log(§~!). For the latter, noting that t; = 7™ 1g. < maxo<g<ny 7" on
; <

the event {m; < N}, that {T*}o<x<n is ii.d. and that T° is stochastically dominated by Z! + Z2
with Z% := supg<;< (X — I}) for i = 1,2 by (5.14) and o < 1, we see from Proposition B.7 that

IP’[mj <N, t; > eonu] < IP’[maxOSk<N TF > eonu] < N]P’[TO > eonu]

(5.60)
< N]P[Zl + 272> eonu] < QNP[ZI > %eonu] < 2cgN exp(—%64eonu)
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for some c3, ¢4 > 0 determined solely by the law of X'. Combining (5.59) and (5.60) with (5.57),
we now obtain

P[maxo<j<y (mj1 —mj) > (3eo/c1)u’]

< P[maxo<jcy (M1 — mj) > Ry (u +1)]

N-1
Z ]P’[mj < N, mjy1 —mj > Ny (u + 1)]

<
=0
N-1
< E(}P’[mj < N, mjy1 — My > ﬁuRJ] +P[mj < N, Rj >u+ 1])
=0
N-1 ~
< Z (E[]l{mj<N:thﬁonu,mj+1*mj>ﬁuRj}] +P[m; <N, t; > eony] +P[EN])
=0
< N(qmu_1 + e 4 23N exp(—3caeony) + G IN exp(—¢cu))

(5.61) < 5 N? exp(—cgu),

where ¢5 1= ¢ 2+e%0%/14-2¢5¢%4<0/2 4G~ and ¢ := min{2epc2/c1, Sca€o, ¢} Then Proposition 5.2-
(iii) follows from the first paragraph of this proof and (5.61). O

Finally, in the rest of this subsection we prove Proposition 5.2-(iv), on the basis of the following
strategy. We first prove in Lemma 5.7 that for each j > 0 and n € N, with probability tending to 1
as n — oo, the amount of quantum length occupied by {ON; | j < i < j +n, 1g,ng,, = 0} in the
part of OW; to the left of 7}(0) is at most a constant multiple of A=2/3p, This is expected to be much
smaller than the quantum length of the part of 9(W; \ W) N OW) to the left of 7}(0) provided
A is large enough, since Proposition 5.2-(i) indicates that the latter length should typically be at
least (%cA‘Q/ 3log A)n. While this expectation is not true with arbitrarily high probability because
of the possible slides of the exploration to the right caused by {N; | 0 < i < j} (recall (5.11)),
we show in Lemma 5.8 that it is true with some probability, thanks to the fact that with some
probability {N; | 0 < i < j} causes no slide to the right by Lemma 5.5. As a consequence,
with some probability the part of O(W; \ Wiin) N dW; to the left of 7;(0) cannot be covered
by {ON; | j <i<j+n, 1gng,, =0} and hence intersects ONj; for some i € Z N [j,j + n) with
1g,ng,,, = 1. By taking n large enough, we can further assume that this O\ is sufficiently far away
to the left from 7(0), and then dA; is going to intersect I,V = (—o0,0) provided the quantum
length of the part of (W, \ W;) N OW; to the left of 7;(0) is reasonably bounded. Now since, with
very high probability, this boundedness holds for any j € Z N [0, N] with ON; N LW # 0 by (5.59)
and (5.60) and such j appears sufficiently often by (5.61), we can make trials for sufficiently many
j € Z N[0, N], each with some probability of success, to find i € Z N [j,j + n) with 1g,ng,,, =1
and ON; NI W # () for fixed n large enough, which turns out to yield (5.13).

1+1
Lemma 5.7. Let j > 0 and set

=1
(5.62) =Y Biligap,,):  fork>j

i=j

Then for any p € (1, %), there exist c, 1, cp2 € (0,00) determined solely by p (cp,1 can be chosen so as
to be independent of p) such that, as long as ¢y € (0, 1], for any n € N,

(5.63) IP’[S;-J-_HL > cpylA_2/3n] = P[S{m > cp71A_2/3n] < cp,2A2/3n1_p.
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Proof. Since {(1g,, BE) 2, is i.i.d. as noted after (5.24), the equality in (5.63) holds, and we may
therefore assume that j = 0. We set S5 := Zﬁz_ol Bi1 pe and Si = Z?:_Ol Bilgn re,, forn €N, so
that S, = S5 + S, and we will apply to {B} 1g:}7— and {Bj lg,n E§+1}?:_01 separately a version
[90, Exercise 1.2.11] of the weak law of large numbers with an explicit remainder estimate.
Let p € [1, 3). We first prove that, as long as ¢, € (0, 1],
(5.64) E[(B)Plgg) < cpsA™2®  and  E[(BY))P1p,np] < cpzA=/?
for some ¢, 3 € (0, 00) determined solely by p. Recall that E[(BY?)?] < E[|I}|P] < oo by (5.15), (5.16)
and [20, Chapter VIII, Proposition 4], that P[ES | o9 < 1] =1 —P[Ey | 00 < 1] < €9 = cgA~%/3 by
the assumption on the Borel subset E of MSTV and hence that P[Ef] = P[E§] = Plog = 1]+ P[{oo <
1Y\ Eo) < P[r > Al 4+ ¢gA2/3 < (" 4 ¢9)A=%/3 for some ¢ € (0, 00) determined solely by the law
of (X', X?) by (B.3). By the independence of (B{)P1,, 1z we have
(5.65) E[(BY)1pyneg] = E[(B])" 1, JP[ET] < B[] [P](¢" + co) A7
For E[(BY)r1 Eg], we decompose it as
(5.66) E[(B1)"1pg] = E[(B})P Ligo=13] + El(BL) Lgy<1)\mo):
and then since I} = I{ a.s. on {r > A}, for the first term we have
(5.67) E[(B)) 1igy=1)] = E[[AT*PIA P15 4y < APPE[1P] < AT2PE[ 1],
For the last term in (5.66), setting ¢ := 3 + 2p~! € (1, 3p~!), by Hélder’s inequality, P[E§ | oo <
1] < cpA~%/3 and Proposition B.5 we get
E[(BL)" Ngyarpm,) < Pl{oo < 13\ Eo]' " IE[(BL)" 15 <1y] "/
= P[{o0 < 1} \ Eo]' VIE[| AT AL P g)Me
< (cQAT3YIVa(ATa/3 ¢, A2(Pa—1)/3)1/a

(5.68) R
where ¢, € (0,00) is as in Proposition B.5 with pq in place of p. Thus (5.64) follows by combining
(5.65), (5.66), (5.67) and (5.68).

Now setting E? := E¢ and E} := E; N Ef,_, fori >0 and letting p € (1,3),n € N, I € {3,4} and
s € (0, 00), we see from [90, Exercise 1.2.11] applied to { B% 1 }?:_01 and (5.64) that

2 n
B[S}, — nEIBY gy <l| 2 ns] < ns?/o tP(B) 1y > t] dt +nP[B) 1 > 1)

2 n
(5.69) < (2 / P dt + n1p>E[(B%)p]1Eé] <ntP(4s72 4 1)e, 3475,
ns 0

to be precise, { B% 14 ?:_01 is not independent as assumed in [90, Exercise 1.2.11], but the inequal-
ity in the first line of (5.69) still holds since the covariance of By Ipinpi <y, BF1 Bin{BE<n} 18 0
for i,k > 0 with |¢ — k| > 2 by the independence and at most O for i,k > 0 with |i — k| = 1
by Tgaripi <nylpingss<ny = 0 and By A B} > 0. Finally, noting that Sy, = S; + S, and that

E[Bginp9<ny] < E[BY1g] < c13A72/3 by (5.64), we conclude from (5.69) with s = A~2/3 that
P[Sh, > 2(c13+ 1)An] <P[S3 > (c15+ 1) A7 n] + P[S} > (13 + 1)A7 0]
< 2 P(4AY3 4 1), 34723 < 9¢, 3AY3017P,
proving (5.63). O
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The essence of Proposition 5.2-(iv) consists in the following lemma.

Lemma 5.8. Let ¢ € (0,00) be the constant from Proposition B.3, let c5,4; € (0,00) be as in
Lemma 5.7 with p = %, define {L;‘}(;io by Li, := 0 and (5.24), and let {S k}]>0 k>j be as in (5.62).
Let j > 0, and for each n > 2, let y; ,, € 8W be the point to the left of77 (0) in OW; such that the
quantum length of the part of OW; from 1;(0) to yj,, is (6%1014_2/3 log A)n, and define an event E;n
by

L/

~ ~ L/ 1
— + —2/3
(570) E§7n = Ej7j+n71 N {njn ECA / IOg A,

Sl
g+ -2
J;L =< 5414 /3},

where qurn_l is as defined in (5.39) with | = j +n — 1. Then, provided A=' V cq is small enough,
there exist ny > 2 and ¢’ € (0,1) determined solely by A, ¢y such that for any n > ny,

(5.71) E’ there exists [ € Z.N [j,j +n) such that 1g,ng,,, = 1 and
. ON, intersects the part of 9W; which is to the left of y;,
572 PIE),) = PlE)l > 1- 7.

Proof. Assume that A > exp(64cs/q1/c), that ¢o € (0,1] and that A~ V ¢ is small enough so
that (5.32) and (5.43) hold with § = icA‘2/3 log A, \, G as stated in these places. Let c5 /45 € (0,00)
be as in Lemma 5.7 with p = 2, and set

, 8 4 4
(5.73) ny = mln(Nﬂ [max{ 5)\ -3 (05/42A /3 T —(j) },oo)),

so that ny is determined solely by A, ¢y and satisfies exp(—£6An;) < $(1—¢§) and 05/4,2A2/3n1_1/4 <
1(1 = g). Now let n > ny. Then since {(1g,,T*, B}, B})}32, is i.i.d. as noted just after (5.24),
the equality in (5.72) holds, and we easily see from (5.43), (5.32) and (5.63) with p = that
PE),) > 1— ¢ with§ = $(1+§).

To show (5.71), fix any instance of the exploration for which E;n holds, and for each k& > 0, as
in the proof of Proposition 5.2-(i) define I C Z N [0, k) by I} := 0 on E}, and by (5.26) with k in
place of j on E (recall (5.25) for I},), so that I) C {i € ZN[0,k) | 1g, = 1} and I) N I = 0 for
any [ > k. Then since Ujffl I,g CZnN (3,7 +n—1) by (5.41), it follows from (5.27) in the same
way as (5.28) that

(Lj4n — Lj) = (Ljyn — Lj)
j+n—1 Jj+n-1
G749 = > ((Ben = L) = (Lha = LR) £ 3 (—ollm, + ot })
k=j k=j
<e(-#{keZnlj,j+n) |l =1} +#{keZn(j,j+n—1)|1g =1}) <0.

Recalling that g;cA™2/3log A > c5/41A"%/3 by A > exp(64cs,4,1/c), from (5.74) and the latter part
of (5.70) we obtain

j+n—1
1
Lj—Litn— Y. Bilimom,. - <@CA 2/3 Jog A)n
k=
1 1
(5.75) > L;- J+n Sl,j+n — (6—40/1_2/3 log A)n > (3—20A_2/3 logA)n > 0.

Note that the part of 9(W;\W;,)NOW; which is to the left of }(0) has quantum length at least L; —
Lj, and equals Uii?_l (the bottom left of W, \ Wi41)NOW;. Now these facts and (5.75) together
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imply that y; ,, belongs to the interior of this part of 9(W; \ Wj,,) NOW; and that the part of 9(WV; \
W;j1n) N OW; which is to the left of y;,, has quantum length greater than Z] -l gk T EnE, )
and hence intersects (J,; <y, P _, (the bottom left of Wi, \ Wy11) NOW;. ThlS last property

means that the event in the right-hand 51de of (5.71) holds, proving (5.71). O

Proof of Proposition 5.2-(iv). Assume that A~! V ¢ is small enough so that ¢y € (0, 1] and Propo-
sition 5.2-(i), (5.43), (5.71) and (5.72) hold with ¢y, c2,q,n1,q as stated in these places. Let
u € [2,00) and set n,, := max(NN[1,u]) and 7, := ny V min(NN [256¢ " n,, 00)), where ¢ € (0, o)
is the constant from Proposition B.3. Following the proof of Proposition 5.2-(iii), set W :=

(—00,0) C OW, let ), denote the o-algebra generated by {(W; \ Wi1, by, AW 0il10,0:) Li) Yo<i<k
for each k > 0, set my := 0 and inductively m; := inf{i > mj_1 + 70, | ON; N W # 0}
for each j > 1, so that m; is a {G;}-stopping time for any j > 0. Let Ej’ﬁ be as in (5.70)
ri1a, N {m; = k}) for each j > 0.
Then since m; + n, < mj41 < oo for any j > 0 a.s. by Proposition 5.2-(i) and E;mu is measur-
able with respect to {(1g,,7%, B%, B} )}k+ﬁ“ and hence independent of G4_q for any £ > 1, we
have E~ 11, € S and therefore see from (5.72) that { F’ }0‘; o is independent and that

with n = 7, for j > 0, and set E A, = UkeNU{O}(

m+1n

P[E! LA = ]P’[E[’)ﬁu] > 1— ¢ for any j > 0. It thus follows that, with & := log(1/¢’), for any
N e N
1 (k+1)n,—1 N—1 (k+1)ny—1 i
SO TV IRCHNSE R ol | (SRR
k=0 j =knqy k=0 j:knu

Furthermore let m;, R;,t; be as in the proof of Proposition 5.2-(iii) for each j > 0, let N € N and
set Jy :=min{j > 0 | m; > N}, so that Jy < N. Then by (5.59) and (5.60) we have

P[{max0§j<JN R; > ny + 1} U {maxo<jcjy t; > eonu}]

< ]P’[maxogKJN R]‘ > Ny + 1] + P[max0§j<JN t; > egnu}
N-1
< Z(P[mj < N, Rj > Ny, + 1] —HP’[mj < N, t; > EonuD

(5.77) < N2( "exp(—cu) + 2c3 exp(—3caeony)),

where ¢ := %log(q”l) and c3, ¢4 € (0,00) are as in (5.60). Thus from (5.61), (5.76) and (5.77) we
obtain

m U Er/n]-l-l Ty,

P[{m3+1—m] (3e0/c1)u?, Rj < my+1
Jj=kny

N—1 (k+1)n.—1
and t; < egn,, forany j € ZN[0, Jy }

> 1 — s N2 exp(—cgu) — Ne @™ — N? (G~ " exp(—éu) + 2c3 exp(—3cacony))
(5.78) > 1 — cgN? exp(—cou),

where c5, ¢ € (0,00) are asin (5.61), cg := ¢35 +e +G 1 +2¢3ec4/2 and ¢ 1= min{cG, a,c, %6460}.
It therefore remains to verify that the event in (5.78) is included in that in (5.13) as long as
N > cyu, for some ¢; € (0,00) determined solely by A, ¢y. To this end, fix any instance of the
exploranon for which the event in (5 78) holds, set JN = min{j > 0 | m; + 7, > N} and
JN := max(Z N[0, JN/nu]) so that JN < Jn/nu < Jy < N. Then since mji1 —my < (3eo/cr)u’
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for any j € Z N[0, Jy), we easily obtain
(5.79) i1 —mj < (3ep/ci)u’ +7n,  foranyjeZn|0,Jy).

Leti € ZN|0, jN), set j :=m; +1 < N and let y;5, € 0W; be as in Lemma 5.8 with n = 7,,. Then
m; = my, for some k € ZN [0, Jy), hence Ry, < n, + 1, t, < €ony, and thus by ON;—1 N oW # 0,
(5.11), (5.56) and t;, = ijlllE;_l, the part of 9(Wy \ W;) N OW; to the left of 7;(0) has quantum
length at most eg(Ry, — 1) + t; < 2¢gn,. Moreover, 2¢gn,, in turn is less than (écﬁl_w3 log A)7iy,
the quantum length of the part of 9W); from 7/(0) to y;,, by €0 = c0A™/%, A > 2, ¢p < 1 and
Ny > 256¢'n,. It follows therefore that y;;, € 8,1V and hence by n,, > ny and (5.71) that,

(5.80) if ﬂﬁ%m,au = 1, then we have ]lElmf’“~: 1 ind

ON; N AW # () for some I € Z N (m;, m; + M.
On the other hand, for any £ € Z N [0, j]’\,), by the latter part of the event in (5.78) there exists
i € ZN[kny, (k+1)n,) such that 1, = 1, which together with ZN[kn,, (k+1)n,) C ZN[0, Jyx)

1,7

and (5.80) implies that lgng,, = 1 and ON; N LW # () for some | € Z N (m;, m; + ] C
Z N (M, mi1) C Z N (Mkny, , M(kt1)n, ). Combining these observations with (5.79), we have thus
proved the following:

for any k € ZN|0, jj’v), M (ot 1)ny — Mkny, < nu((3eo/cl)u2+ﬁu), and there

5.81
(5.81) exists | € ZN(Myn,,, M(j41)n, ) Such that Igng,, = 1 and ONNOLW # 0.

Suppose for the moment that jj’v > 2, or equivalently, JN > 2n,. Then the left and right ends in Z
of the sequence {Z N (Mgn, s ﬁm(kﬂ)nu)}iﬁo—l of intervals appearing in (5.81) are given by mo = 0

and ’Fflj;vnu, respectively, and we see from Jj, + 1 > jN/nu, (5.79) and ﬁsz + 7, > N that

<SN-—mj _, . <N—mj +(n,— 1)((3eo/c1)u® + 7

(5.82) T R Y o
<7y + (ny — 1) ((3eo/c1)u” +7y) < nu((3eo/c1)u® + 7).

Moreover, for any k € Z N [0, jg\, — 2] we also have

(5.83) ﬁl(k+1)nu < m(jj'\,fl)nu < ﬁljj\,nufl < mfol <N —-mn, <N.

Since 2nu((360/01)u2 + ﬁu) < cyu with ¢7 1= 6eg/c1 + 2(ny V (256¢7! + 1)), it follows from (5.81),
(5.82) and (5.83) that with this choice of ¢7 the event in (5.13) occurs for the present instance of the
exploration. Finally, we conclude this proof by deducing our supposition .Jy > 2n,, from (5.79) and
the requirement N > c;u?; indeed, an induction on j based on N > c7u® > 2n,((3eo/c1)u? + 7iy,)
and (5.79) easily shows that m; < j((3eo/c1)u® +ny) < N —n,, for any j € Z N [0, 2n,), whence
Man,—1 + Ny < N, namely Jn > 2n,. O

5.4. Proof of Proposition 5.1. The proof of Proposition 5.1 requires Lemma 5.9 below in addition
to Proposition 5.2. For eachn € N, we set Dgn := {w | w = (w1,...,wy): [0,00) = R", w is cadlag},
let {J7'}1c[0,00) denote the filtration in Dg~ generated by the coordinate process, and set F7, :=
ﬂse(tm) F2 fort € [0, 00).

Lemma 5.9. Let a € (0,00), and let Z be a 3/2-stable Lévy excursion with only upward jumps. Set
Zy = Z¢c—y)- for each 0 < t < (, ie., the cadlag modification of the time-reversal of Z, where
denotes the lifetime of Z. We also set T' := inf{t > 0 : Z >a}and Y, = ZJFT, where we set Y; == 0
for t € [Cy,00) with (y denoting the lifetime of Y. Then, conditional on the event {T < oo}, we have
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that ¢y < oo a.s., Y; > 0foranyt € [0,(y) a.s. and limy¢, Y; = 0 a.s. Moreover, let X be a 3/2-stable
Lévy process with only downward jumps with Xy = a, and set 1y := inf{t € [0,00) | X; < 0}. Then
for any {F}, }e[o,00)-StOppIng time 7,

w(7)

(5.84) PIY € dw, 7(Y) < (yls1, = ( )_1/219[)( € dw, 7(X) < ]l

a

Proof. Let Z, Z be as in the statement of the lemma and let n denote the law of Z. Let also 7
denote the law of Z under n. Then [23, Theorem 4, part 2] implies that ﬁ[Z € At < (| ]-"514,] =
prt,S(ZS, x)dx n-a.e.on F), foreach 0 < s <t, A € F},, where py(2,y) = (%)qut(w, y) for each
t,x,y > 0, and ¢; denotes the semigroup of X killed at the first time that it exits (0, co), where X is
as in the statement of the lemma. Let p (resp. v) denote the law of Y (resp. X). It follows that

M[Y eAt< Cy] = /Apt(a,x)d:c = /A(w(t))—l/th(a’ x)dx

a

for each A € F},. This proves (5.84) for deterministic times. To prove the result for general
stopping times, we first note that it is easy to see that M; := (@)_l/ 2 ;<) is a non-negative
supermartingale under v. Fix an (F/, )-stopping time 7 as in the statement of the lemma, and set
T, := inf((27"Z) N (1, 00)) for each n € N. Note that 7,, decreases to 7 as n — oo v-a.e. Moreover,
we have that 4[Y € A, 7,(Y) < ¢y| = [, My,dv for each A € }'Tl+,n € N. Note also that the
optional stopping theorem implies that E[M, |‘7:rli] < M,, v-a.e., for each 1 < m < n, and so
(—M,, ) is a backwards submartingale under (]:Tl,t>”21' Also, E[ — M, | > —Mj = —a, and so [56,
Problem 3.11] implies that M, is a uniformly integrable martingale under v. It follows that for
each A € F!,, we have that

plY e A,r(Y) <y = li_>m plY € A, (Y) < ¢y = / M, dv
n—oo A
and this completes the proof. O

We need the following lemma to prove Lemma 5.11 below.

Lemma 5.10 ([45, Theorem 1.2]). Let ¢ € (0,00), a € (0,1), suppose that D = (D, h) has law
ué:]f, let © € OD be chosen uniformly from the boundary measure vy, and let y be the point of 0D so
that vy ([z,9]$p) = (1 — a)l. Let ' be an independent chordal SLEg on D from z to y parameterized
according to quantum natural time, set t,, := inf(n’) " (y), Ly := 0 =: Ry for t € [t,y, 00), and for each
t € [0,t,y) let L; (resp. R;) denote the boundary length of the clockwise (resp. counterclockwise) arc of
5]D)y¢ from 1/ (t) to y, where D, ; denotes the component of D \ 7/([0, t]) with y € 9D ;. Then t,; < oo
a.s. and limgy , (L¢, Ry) = (0,0) a.s. Moreover, let X', X? be independent 3/2-stable Lévy processes
with only downward jumps and with X} = af = ¢ — X2, and set 7y := inf{t € [0,00) | X} A X? < 0}.
Then for any {J? '+ }te[0,00)-StOpping time T,

P[(L.,R) € d(wi,wn), 7(L., R.) < 1]

7L

(5.85) _ (wl (T) 4+ wa(T)
L

Proof. The first assertion and (5.85) for constant 7 follow from [45, Theorem 1.2] combined with

the resampling property of the quantum disk [35, Proposition A.8]. Then (5.85) for general 7 can

be verified in exactly the same way as in the proof of Lemma 5.9 above. O

)_5/2IP’[(X1,X2) € d(wi,wa), T(X*, X?) < 79

|52, -
52,

Combining Lemma 5.10 with Proposition B.7, we obtain the following lemma.
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Lemma 5.11. Let ¢ € (0,00), a € (0,1), suppose that D = (D, h,0) has law ,ué:D‘jw, let x € 0D be
chosen uniformly from the boundary measure vy, and let y be the point of 9D so that vy, ([, y]gp) =
(1 — a)l. Let ' be an independent radial SLE¢ on D from x targeted at 0 parameterized according
to quantum natural time, set t,, := inf(n’)~'(0), let T} denote the quantum length of 0K; N D for
t € [0,ty), set Ty == 0 for t € [t,y,00), and set 7 := inf{t € [0,t,y) | y € K;}, where K; denotes
the complement in D of the 0-containing component of D \ 7/([0,t]). Then 7 < t,; a.s., and there
exist constants cy,ca,c3 € (0,00) independent of ¢,a such that for any 6,u € (0,00), as long as
¢ < 5%3 exp(e30~") or a € [1/10,9/10],

(5.86) P| sup T; > 523wl < ¢y exp(—cad ™).
te[0,7AS]

Proof. Note that by the locality of SLEs (see, e.g., [86, Theorem 31), 7'[j ;) has the same law as
7|0, for an independent chordal SLE¢ 77’ on D from x to y parameterized according to quantum
natural time and 7 := inf{t € [0,t7) | 0 € K;}, where t; := inf(7)~'(y) and K; denotes the
complement in D of the component of D \ 77/([0, t]) whose boundary contains y. Then since 7 < t;
a.s. by [16, Proposition 11.7] and 0 ¢ 7/([0, 7]) a.s. by [16, Theorem 11.2-(b)], we have 0 & /([0, 7])
a.s. and thus 7 < ¢,/ a.s.

To prove (5.86), let T, denote the quantum length of OK,ND fort [0,t5), set T, := 0 for
t € [ti,00), and let Ly, Ry, X}, X7, 7 be as in Lemma 5.10 with 77’ in place of 7. Let §,u € (0, c0).
Then by 75 < limy-ps T3 (since both of L and R have downward jumps), the locality of SLEg
mentioned above, and (3.7),

(5.87) ugDﬂjW[ sup Tt>52/3_“}
te[0,7AS]

= ,uéwa[ sup 1 > 52/3_“] = N5D€W|: sup T, > 52/3_@
te[0,7AS) te[0,7A0)
luh(D) d/.LL:DK
Fise2-wy [ (D) dpkg! @
1 —\4/5
]5 (J (DY dpilsst)"
[ 11(D) dué!

< ,ULDZW[SUP T, > §2/3-u :/
Qb te[0,0] {Supte[o,s]

1

~ 5
= 04/15]{{ sup T; > 62/374|
te[0,0]

< uéDe[ sup Ty > §%/3~¢
te[0,9]

where ¢4 = ([;7(2m)~1/2575/4e1/(29) ds)4/5.
Since (5.86) is obvious for § € [1,00), we may assume that § € (0,1). Noting that 7, = L; —
infyep, Ls + Rt — infepo g R for any ¢ € [0, 00), define an {F7, }1¢(o «)-Stopping time 75 by

T5(wr,we) 1= inf{t € [0, 00) ’ wi(t) — Sér{})fﬂ wi(s) + wa(t) — Sér[hft] wa(s) > 52/3_”}.
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Then by Lemma 5.10 with 7 = 75, the scaling property of X', X2 and Proposition B.7, with the
constants ¢y, ¢z € (0,00) as in Proposition B.7 we have

uéD‘{ sup 1 > 52/3—“] = uép' (L, R) < 6, 75(L., R.) < ty]
te[0,6]

—5/2
— E[£5/2 (Xl (Xl X2) "‘ XT(;(XI X2)) / ]I{Té(XlaXQ)<5y76(X17X2)<TO}]
§€5/2((52/3 ’lL) /2P[ (Xl X2) <5]

< 55/255/3]?[ sup (X — inf X!+ X?— inf Xg) > 5“]
te[0,1] s€[0,t] s€[0,t]

(5.88) < 2010%/267%/3 exp(—c26 7" /2).

It thus follows from (5.87) and (5.88) that (5.86) with (2¢;, ¢2/3) in place of (¢1, c2) holds as long
as £ < 62/3 exp(cad™"/15).

Next, assume that ¢ > §%/3 exp(c26~“/15) and that a € [1/10,9/10], and define an {F7, },c(0.00)-
stopping time 7’ by

(5.89) 7' (w1, we) = inf{t € [0,00) | wi(t) Awa(t) < £/20}.

Then 7/(L.,R.) < t a.s. since limgpy, (Ly, Re) = (0,0) a.s. by Lemma 5.10, and we also have
Xi,(leXQ) + X2 ’(X1 x2) > X1 (X1, X2) v X2 Z(XT,X2) > (/20 a.s. on {7(X', X?) < 75} by noting
that (X} — limgyy X1)(X? — limgpe X ) = 0 for any t € (0,00) a.s. by the independence of X!, X2
Therefore by Lemma 5.10 with 7 = 7/, 75, the last inequality in (5.88), X} A X2 > £/10, the scahng
property of X', X2, [20, Chapter VIII, Proposition 4] and 6~2/3¢ > exp(co6~*/15) we obtain

,ué:DE sup T, > 52/3_“}
te[0,d]

< uGp [T (L., R) < 0] + ugp' Ls%pa] T, > 6" (L, R) > 5]
(S

S /,LQD T(L R) < 6] +,LLQD [75(.[/ R) < 5/\t77 y LT(;(L R) +R’T§(L R >€/20}
< 20°2(Plr (X', X?) < 8] + Plrs(X', X?) < 9])

14
<2 5/2 P f Xk < _ —2/3 £ 9 B /g
=20 < [kgﬁnQ} telf(l) 1]( 0) <0 20 + 2c1 exp(—c20™ " /2)

(5.90) < 20°/? (cs(8 ~2/30/20)73/% 4 2¢; exp(— c207"/2)) < cgexp(—cad~"/10)

for some constants cs, cg € (0, 00) determined solely by the law of X' — X&. Thus (5.87) and (5.90)
yield (5.86) when £ > §%/3 exp(c26~*/15) and a € [1/10,9/10], completing the proof. O

Suppose now that we have the setup of Proposition 5.2. We scale time by § € (0, 1) and lengths
by 6%/3 so that each chunk N is drawn by a chordal SLEg curve stopped at a stopping time which
is at most 6 and note that the setup is scale invariant. For every j € Ny, we let (L7, R7) be the
pair of 3/2-stable Lévy processes describing the boundary length evolution of the quantum surface
parameterized by A;. We also define a process X = (X;):>¢ as follows. First, we set X; = LY+ RY
for each ¢ € [0,0¢]. Fix j € N and suppose that we have defined X, for each ¢ € [0,0;_1]. Then
we set Xy = X, | + L{ + R{ for each t € [0;_1,0;] and we proceed inductively. Since both of L
and L’ are 3/2-stable Lévy processes, the sequences (L7);>0, (R’);>0 are i.i.d. and the exploration
is constructed in a Markovian way, we obtain that X has the law of a 3/2-stable Lévy process.
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We note that X has only downward jumps and a jump occurs whenever a curve 77§~ either finishes
tracing an SLEg bubble whose boundary is bounded away from OH or it disconnects points of
OH from co. In either case, we have that the size of the jump of X is equal to the quantum
boundary length of the quantum surface parameterized by the region that 7, disconnects from oo.

Moreover, we define inductively a collection of quantum surfaces W = (VNVt)tZO as follows. First,
for t € [0,00], we let W, be the quantum surface parameterized by the unbounded connected
component of H \ ([0, t]). Fix j € N and suppose that we have defined W, for ¢ € [0,0,_;]. Then

for t € [oj_1,0}], we let W, be the quantum surface parameterized by the unbounded connected
component of H \ (779([0, t]) U (UQ&M)). Then for each ¢ > 0, we have that X, is equal to the

boundary length of OW, \ W, minus the boundary length of 9W, \ .

Let us now briefly describe the main strategy for proving Proposition 5.1. First, we will show in
Lemma 5.12 that with positive probability (uniform in ¢ > 0,6 € (0, 1)), we have that the chordal
exploration in Proposition 5.2 disconnects from oo at least //2 units of quantum boundary length
in (—o0,0) starting from 0 during the first |¢6~2/3=%/3| 4 1 number of steps and using only good
chunks, without disconnecting from oo too many units of quantum area. Next, in Lemma 5.13,
we show that the same is true if we consider the chordal SLEg exploration on top of a quantum
disk instead. For this, we are going to use Lemma 5.10 in order to compare the laws of the two
explorations on top of the quantum wedge and the quantum disk respectively. Moreover, using
Lemma 5.9, we show in Lemma 5.14 that the statement of Lemma 5.13 still holds if we consider
the radial SLEg exploration instead. Finally, we complete the proof of Proposition 5.1 by applying
Lemma 5.14 iteratively.

Lemma 5.12. Suppose that we have the setup of Proposition 5.2 and the setup described in the previous
paragraphs. Fix 0 < u; < u < 1/3, £ € [0?/37%,67"1] and set N = |£5=2/3~%/3] 4 1. Let b > 0 (resp.
b > 0) be such that vy, ([—b,0]) = /2 (resp. vy(]—b,0]) = 3¢/4). We let E be the event that the
following hold.

() There exists 1 < j < N/2 such that the first j number of chunks in the exploration disconnect
[—b, 0] but not [—b, 0] from oo, and OW); intersects the boundaries of only good chunks.

(ii) We have that supg.;qus1/3-uss | Xi| < £6%/2% and info<i<5 LY > —£5"/2°0. Moreover, the total
amount of quantum area disconnected from oo by the first N number of chunks is at most a
constant times 6*/'8 where the implicit constant depends only on co, A, u and u,.

(iii) The chunk N is good and the top of ON is not disconnected from oo by the first N number of
chunks of the exploration. Moreover, the boundary length of the part of ONy contained in the
boundary of the unbounded connected component of H \ U N is at least eg6%/>.

(iv) For each i € Z.N [0, N], there exists n € [1,log(6~")*] NN and {i;}}_, C Z N[0, N] such that
i1 =1 > iy > - > ip, ON;, NOWy # 0 and ON;; NON;,,, # 0, foreach 1 < j < n.

Then there exist q, 6y € (0,1) depending only on A, ¢y, u and u; such that for each § € (0, ), we have
that PlE] > 1 —gq.

Proof. Step 1. (i) holds with high probability. First we note that part (i) of Proposition 5.2 implies
that there exist constants cy,c > 0 depending only on A, ¢y such that P[L|y/s) > —c1N §%3] <
e~ where L; is defined as in the statement of Proposition 5.2. Note that if L| /5| < —c1N§2/3,
then we have that the first | N/2| number of chunks of the exploration have disconnected from
oo at least ¢; N0%/3 units of quantum boundary length in (—co, 0) starting from 0. Note also that
c1N6%/3 > ¢05="/3 > (/2 for each § € (0, 1) sufficiently small. In particular, the first | N/2]| chunks
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of the exploration disconnect [—b, 0] from oo off an event with probability at most e=2V, Moreover,

[20, Chapter VIII, Proposition 4] implies that P[info<;<s L < —05%/100/16] < ¢3/251-3u/200 for
each j, with the implicit constant being universal. It follows by taking a union bound over all
0 < j < N and since ¢ > §2/3- that
P[ inf L < —5%/1%9 /16 for some 0 < j < N] < §e(w)
0<t<6

where a(u) > 0 depends only on u and the implicit constant is universal. Also, part (iv) of Proposi-
tion 5.2 implies that there exist constants cs, ¢4 > 0 depending only on A, ¢y such that off an event
with probability at most ¢3 N2 exp(—c46~%/200) the following holds. For each i € Z N [0, N] there
exists j € Z N[0, N) such that |j — i| < 6~/ 1g g, , = 1 and OIN; NOW,, # 0.

Suppose that all of the events described in the previous paragraph hold and let i be the smallest
i € ZN[0,N/2] such that the first « number of chunks of the exploration disconnect [—b, 0] from
oo. Then there exists j > i such that [j — i| < 267%/2% 1 p ., = 1 and ON; N O, # 0. Since
infocics Lt > —£5%/190/16 > —£/16, we obtain that IN; N OWL, C [~by,0], where b; > 0 is such
that v, ([—b1,0]) = ¢/2 + ¢/16. Furthermore, the boundary length of 9(W; \ W;) N oLV is at most
— S i infocpes LY < 06420 /8 < £/8, and so we obtain that IN;NAHLW C [~bs, 0] where by > 0
is such that vy, ([—b2,0]) = 11¢/16 < 3¢/4. It follows that there exist a > 0,y € (0,1) depending
only on A, ¢y and u such that for each 6 € (0, dp), we have off an event with probability at most §*
that there exists 1 < j < N/2 such that E; occurs and the chunks discovered during the first j steps
of the exploration disconnect [—b, 0] but not [—b, 0] from co. Moreover, it follows from the way that
we have defined the exploration that \,, is good for each 0 < m < j such that N, N OW; # 0.
Therefore (i) holds with high probability.

Step 2. (ii) holds with high probability. Fix p € (1,3/2). Then [20, Chapter VII,Corollary 2]
combined with [20, Chapter VIII, Proposition 4] imply that E|supg<,<; |X¢[’] < co. Thus, the
maximal inequality for martingales combined with scaling imply that

E| swp X <E

1/p
sup [ Xy
0<t<2051/3-u/3

0<t<2051/3-u/3

1/
— (2051/3-u/3Y2/3R [ sup Ithp} r_ 02/352/9-2u/9.
0<t<1 ~

Hence, Markov’s inequality implies that

P sup ‘Xt’ > Eéu/QOO < 6—15—11,/200[2/362/9—211/9 < 5u/9—u/200
O§t§2f1/3_“/3

since we also have that ¢ > §2/3~%, We note that during the first N steps of the exploration, we
have that at most 2¢5'/3~%/3 units of time elapsed for X. Also, the expectation of the sums of
squares of the jumps of X of size at most £ made in the time interval [0, 2¢56/3~%/3], is given by
c2081/3~u/3 fgf:o 22279 2dy = 4c03/251/3-u/3 where ¢ > 0 is a universal constant. Furthermore, the
number of jumps of size larger than ¢ made by X in [0, 2¢6'/3~%/3] has the law of a Poisson random
variable with mean 2¢(6/3~%/3 [*° 275/2dx = 4c0=1/251/3-4/3 /3. It follows that the probability
of having a jump of size at least £ in [0,2(6'/37%/3] is given by 1 — exp(—4ct~1/25'/3-%/3 /3) which
is at most 4c0%/6/3 since recall that £ > §2/3~%. Suppose that we are working on the event that
we don’t have a jump of size at least ¢ in [0,205'/3%/3]. Then [35, Theorem 1.16] implies that
the conditional expectation of the total quantum area disconnected from oo by the first N number



70 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

of chunks given the sizes of the jumps of X in [0, 2£5'/3~%/3] is at most 4¢¢3/25/3=4/3_ It follows
from the Markov property that the conditional probability that more than ¢3/251/3=4/2+u/9 ynits of
quantum area is disconnected from oo by the first N number of chunks of the exploration is at most
4C£—3/25—1/3+u/2—u/9€3/251/3—u/3/3 — 465u/18/3. Note that g3/251/3—u/2+u/9 < 5—3u1/2+1/3—7u/8
since ¢ < 6~ "t. Therefore, possibly by taking the constant a in Step 1 to be smaller, we can assume
that (ii) holds off an event with probability at most 6% for all 6 € (0, 1) sufficiently small (depending
only on A, ¢, u; and u).

Step 3. Conclusion of the proof. We note that Lemma 5.5 implies that provided A~! V ¢; is small
enough, we have that there exists ¢ € (0, 1) depending only on A, ¢y such that with probability at
least 1 — g, the following holds. The chunk A is good and the top of N is never disconnected
from oo by the exploration. Note also that if the latter occurs, we have that the boundary length of
the part of N contained in the boundary of the unbounded connected component of H \ UY (A}
is at least €y0%/®. This proves (iii). Finally, for (iv), we note that part (iii) of Proposition 5.2
combined with the fact that / < §~*“! imply that there exist constants c5,cg > 0 depending only
on A, ¢y, u and u; such that for all § € (0, 1) sufficiently small (depending only on A, ¢y, v and 1),
we have that off an event with probability at most c5 exp(—cg log(6~1)3/2) the claim in part (iv) of
the statement of the lemma holds. Therefore, possibly by taking ¢ € (0, 1) to be smaller and for all
d € (0,1) sufficiently small (depending only on A, ¢y, w and u;), we can assume that parts (i)-(iv)
hold simultaneously with probability at least . This completes the proof of the lemma. O

Next, we will prove that the statement of Lemma 5.12 still holds if we perform the analogous
exploration using chordal SLEg chunks on top of a quantum disk instead. This is the content of the
following lemma.

Lemma 5.13. Fix 0 < u; < u < 1/3and 6%/*~* < £ < 6~ for § € (0,1). Suppose that D = (D, h) is
a sample from ,u,QD and let x € 0D be chosen uniformly according to vy,. Let also y be the point which
is antipodal to x (with respect to quantum boundary length), z be the point on the clockwise arc of 0D
from x to y such that the boundary length of the clockwise arc of D from x to z is equal to ¢/4, and
let w (resp. zZ) be the point on the clockwise (resp. counterclockwise) arc of 9D from x to y such that
the boundary length of the clockwise (resp. counterclockwise) arc of OD from x to w (resp. from x to
z) is equal to 3¢/8 (resp. £/4). Suppose that we perform the exploration on top of D in the same way
that we did on top of the quantum wedge except that each chunk is formed by a chordal SLEg starting
from the marked point of the chunk and targeted at y. We stop the exploration at the first time that
we discover a chunk which contains y, so that the corresponding chordal SLEg curve hits y before the
chunk is formed. Let F; be the event that the following hold.

(i) There exists 1 < j < N/2 such that the first j number of chunks of the exploration disconnect
from booth y and 0 the clockwise arc of 0D from x to z without disconnecting from y either
the clockwise arc of 0D from x to w or the counterclockwise arc of 0D from x to z. Also, if
No, ... ,./\ij are the corresponding chunks of the exploration, we have that the boundary of the
connected component of D \ Uj,0/\7 containing 0 intersects the boundaries of only good chunks.

(ii) Ny is good and the top of ONj is not disconnected either from 0 or y and the boundary length of
the part of ANy contained in the boundary of the connected component of D\ UJ_ N containing
0 is in [egd?/3, £54/200],

(iii) For each 0 < i < N/2, we let D; be the connected component of D \ Uinzoﬁ/m whose boundary
contains y. Then, we have that the boundary length of DNOD; is at most £/100 plus the boundary
length of 0D \ OD;.
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(iv) For each 0 < i < j, there exist {i;}_; CZN[0,j]and 1 < n < log(6—1)3, such that i = iy >
Qg > - > iy, ON;, N D, and@./\/;m+1 NON;,, # 0 foreach0<m <n— 1

Then, there exist p1,d0 € (0,1) depending only on A, cy,u1 and u, such that for each ¢ € (0,d), we
have that P[E1]| > p;.

Proof. Suppose that we have the setup of Lemma 5.12. Let E be the event defined in the same way
as E but with ¢/2 in place of ¢ and for the exploration with respect to the quantum disk D instead
and the marked points 0 and oo replaced by x and y respectively. Fix j € N. Then Lemma 5.10
implies that conditional on the event that the exploration in D has not ended during the first j — 1
steps and on the boundary length _, (resp. ER 1) of the clockwise (resp. counterclockwise) arc of

dD;_1 from 7;(0) to y, we have that the Radon Nikodym derivative of the law of /\/J with respect
5, +R —5/2
to the law of \V; (when both viewed as quantum surfaces) is given by (% + 1) 15,50}
1 j—1
where 7 is the first time ¢ such that either L < —l% | or Rl < —(% ,. Llet jo € N be the
smallest integer for which condition (i) of Lemma 5.12 is satisfied. Therefore, the Radon-Nikodym

derivative of the law of the quantum surfaces (/%, . ,Kfjo) with respect to the law of the quantum
&R\ —5/2
surfaces (N, ...,\j,) is given by <;> . Note that £ + (% < 20 and £ + (5 > ¢/2if

& +e8 N\ =5/2 : L . .
E occurs which implies that (#> = 1 with the implicit constants being universal. Thus,

combining with Lemma 5.12, there exist dp, p € (0,1) depending only on A, ¢y, v and u; such that
P[E] > p for each § € (0, o).

Next, conditionally on &, we sample w € D independently according to the probability measure
H:f(hD) on D, and set i := ho ¢! + Qlog|(¢~!)'| where ¢ : D — D is the conformal transformation

such that ¢(w) = 0 and ¢'(w) > 0. Then the marginal law of (D,ﬁ) is given by Mé:Dljw- Sup-
pose that E occurs. Then we have that the quantum area of U/ (N with respect to h is at most
(3/2§1/3—u/24u/9  Also, by scaling, we have that the probability that s, (ID) is at least £25%/1® tends
to 1 as § — 0, at a rate which is uniform in 6. Hence, by possibly taking p, dy € (0,1) to be smaller,
we can assume that the probability of £ N {yu;,(D) > ¢26*/18} under pgp' s at least p. Note that
if N {un(D) > £26/18} occurs, then we have that conditional on h, the probability that w lies in
Ul \N; is at most Wﬁ;;z# < §%/18, Therefore, by possibly taking p, 5y € (0, 1) to be smaller,
we can assume that :uQD,W [El] > p, Where E’l is the event defined in the same way as the event
E; of Lemma 5.12 except that we consider the exploration with respect to i instead of h. It follows
that

N o ~ (f (D 5/4dML 4)4/5 ~
P < pGpow [B1] < 1o’ [E1]1/5 [ 1n(D)dpsf < nGp' [El]m,

where the implicit constant is universal. This completes the proof of the lemma. O

Now that we have stated and proved Lemma 5.13, we can state and prove the analogous version
for the exploration using radial SLEg chunks instead.

Lemma 5.14. Fix 0 < u; < u < 1/3and §%/3~* < ¢ < §~" for § € (0,1). Suppose that D = (D, h,0)
has law given by ué:DfW. Suppose also thgt we perform the exploration using radial SLEg chunks as
in the statement of Proposition 5.1. Let Ey be the event defined in the same way as the event E; of
Lemma 5.13 except that we consider the radial SLEg exploration. Then, there exist py,dy € (0,1)
depending only on A, co,u1 and u such that P[Ey| > py for each & € (0, dp).
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Proof. First, we note that the radial SLEg curves used to construct the chunks (/\7]) for the radial ex-
ploration can be coupled with chordal SLE¢ curves starting from the same point so that they agree
up until the first time that they disconnect y from 0. Moreover, let X be the overall boundary length
process for the radial exploration. Then, by [75, Theorem 7.3], the exploration is determined by
X, the conditionally independent family of quantum disks which are cut out, and the orientations
of their boundaries. We note that the boundaries are oriented i.i.d. with equal probability % given
X. We can use these orientations in order to determine the boundary length process L (resp. R)
from the tip of the exploration clockwise (resp. counterclockwise) to y, up until the first time that
the radial exploration disconnects y from 0. Indeed, this is because L (resp. R) is equal to the
process which is formed by applying the deterministic function which recovers a 3/2-stable Lévy
process from its jumps to the downward jumps of X which correspond to quantum disks whose
boundaries have a counterclockwise (resp. clockwise) direction. This implies that the following is
true. Fix j € N and suppose that we are working on the event that the first j — 1 chunks of the
exploration do not disconnect y from 0. Let also ¢;_; be the boundary length of the component
containing 0 after j — 1 steps of radial exploration. Then, it follows by combining Lemmas 5.9
and 5.10 that the Radon-Nikodym derivative of the law of \/; on the event that A/; does not dis-

0 \?
57_1 4

connect y from 0 with respect to the law of /\N/'] where /\N/'] is as in Lemma 5.13, is given by ( -

where /; is the boundary length of the connected component of D \/\7]- containing 0. It follows that
on the events E1, E1, if j is as in Lemma 5.13, then the Radon-Nikodym derivative of the law of

N . - ~ 2 ~
N, ..., Nj,) with respect to the law of (Nj,...,N,) is given by (%) , where ¢ is the boundary
jo jo 7

length of the component of D\ U{(’:O/\Z containing 0. Since % = 1 on F; with the implicit constants
being universal, the proof of the lemma is complete. O

Now we are ready to prove Proposition 5.1. The main idea of the proof is to apply Lemma 5.14
iteratively up until we find the desired chain of good chunks as in the statement of Proposition 5.1.
The conditions in the definition of the event E; in Lemma 5.14 will guarantee that it is possible to
construct the desired chain with high probability since the probability of E; is bounded from below
by a constant which is uniform in 4.

Now, we proceed to the details of the proof. Suppose that we have the setup of the statement of
Proposition 5.1. Fix u; € (0,u/3) and let E‘uh(g be the event that for each j € Z N [0,6~2/37%] and
eacht € [0, 0;], the boundary length of the 0-containing connected component of D; \ ([0, ) is at
most 6~ 1. We define sequences of marked points {Z;};>0, {¥;};>0, {Z;} ;>0 and domains {ﬁj}jzo
as follows. First, we pick 2 € 9D uniformly according to the boundary length measure and let y be
the point on D which is antipodal to x with respect to the boundary length measure.. Let also z be
the point on the clockwise arc of 9D from x to y such that the clockwise arc of 9D from z to z has
boundary length equal to 1/4. Then we set 2y = x,79 = y and zp = z. We also set Dy=D= Dy.
Fix j € N and suppose that we have defined marked points {(z;, v, Zz)}z o and domains {D; H o
Let /; be the boundary length of 9D; and set N; = |£;62/37%/3| 4 1. Let also F; be the event that
the event E; defined in Lemma 5.14 occurs for the quantum surface parameterized by D We also
let w; be the point on the clockwise arc of D, from Z; to g/; with boundary length d1stance on dD;
from z; equal to 3¢;/8. Suppose that F; occurs. Then, we let jo € Ny be the first 0 < m < N; for
which we can find the desired sequence of good chunks in the definition of F; during the ﬁrst m
steps of the exploration and starting after the last chunk discovered during the formation of 815j.
Then, we let z;,; be the marked point of the exploration in Ej after we have performed it for jy
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times. Suppose that F; does not occur. Then, at least one of the following has to occur for the
exploration in D; before w; is disconnected from 0 for the first time.

(i) There is a chunk which cannot be connected to 8l~?j by at most log(6~!)? number of chunks
discovered before that chunk.
(ii) z; is not disconnected from 0 by good chunks.
(iii) The first chunk is not good.
(iv) The first chunk is good but it is disconnected from 0 before Z; is disconnected from 0.
(v) N; number of chunks have been explored.
(vi) z; and w; are disconnected from 0 simultaneously.

If (i) occurs, we let 7, be the marked point of the exploration after we discover the first chunk
which cannot be connected to dD by at most log(5~!)3 number of chunks discovered before that
chunk. If either (ii) or (vi) occurs, we let z;;; be the marked point of the exploration after we
discover the first chunk N which disconnects z; from 0. If (iii) occurs, we let 7, be the marked
point of the exploration after we discover the first chunk of the exploration in f)j. If (iv) occurs, we
let ;1 be the marked point of the exploration after we discover the first chunk which disconnects
from 0 the first chunk of the exploration in 1~)j. Finally, if (v) occurs, we let z;;; be the marked
point of the exploration in f)j after V; number of steps. In any case, we let _ﬁj+1 be the connected
component containing 0 in the exploration in l~)j whose boundary contains ;1. Also, we let ;41
be the point on OINDJH with boundary length distance from z;; in 8l~)j+1 equal to ¢;;1/2, where
41 is the boundary length of c’*)f)jﬂ. Moreover, we let z;; (resp. w;;1) be the point on the
clockwise arc of 8_5j+1 from z ;41 to y;4+1 with boundary length distance from z;;, equal to ¢;,/4
(resp. 3(;11/8), and set Nji1 := [£;416~2/37%/3| + 1. We then let F};; be the event that the event
E defined in Lemma 5.14 occurs for the quantum surface parameterized by f)jH.

Proof of Proposition 5.1. Suppose that we have the setup described in the above paragraphs. For
each j € Ny, we let G} be the event that the boundary length of D, is at least 6~2/3~* and G? the
event that the boundary length of 815]- is at most 6. Let also F; be the s-algebra generated by
the chunks discovered up until 8l~)j is formed. Lemma 5.14 implies that there exists py € (0,1)
depending only on A, ¢p,u and u; such that IP’[F]- ]]—"j] lg; > polg, for each j € N a.s., where
Gj = G} N Gj?. Thus, by iterating and possibly taking py € (0,1) to be smaller (depending only on
A, co, v and u;), we can assume that ]P’[fj | Fi]1a, > pollg, for each j € N a.s., where ]5]- = UfifF,
Suppose that ﬁj NE,sN Eul,g occurs for some 0 < j < §~%/3. Then, we will show that the required
events in the statement of Proposition 5.1 occur as well. Indeed, first we note that it is easy to
see that the exploration disconnects z; from 0 using only good chunks. Also, since F; occurs, if N/
is the first chunk discovered in the exploration in l~)j, then the boundary length of the part of N/
contained in D; is in [egd%/3, £;6%/20]. Thus, possibly by taking py € (0,1) to be smaller (depending
only on A, ¢p, u and ug), we can assume that the aforementioned part of 9N is disconnected from
0 by the exploration in ﬁj. It follows that both of the conditions in the definition of N5 hold and
that N5 < 5(1 4 §2/3-uo—u/3) < §=2/3-% for all § € (0,1) sufficiently small (depending only on
A, co,u and up). Furthermore, every chunk discovered in the exploration in 15]- up until 8l~)j+1 is
formed can be connected to aﬁj using at most log(6~1)? number of chunks. Since the definition
of the D,’s implies that for each i, we have that every chunk discovered in the exploration in D;
up until 815,;“ is formed can be connected to 8151- using at most 2log(5~!)? number of chunks, we
obtain that every chunk discovered in up until D, is formed can be connected to dD using at
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most 106~*/31og(6~1)? number of chunks and the latter is at most 6% for § € (0, 1) sufficiently
small (depending only on A, ¢y, u; and u). Therefore, the events in (i) and (ii) occur.

Finally, to complete the proof, we F' be the event that Fi; occurs for some 0 < j < §~%/3/5 1. It
follows from the previous paragraph that there exist constants ¢, co > 0 depending only on py such
that P[F°NE, sNE,, 5] < c1exp(—c20~"/3). Therefore, it suffices to give appropriate upper bounds
for P[Eﬁl, 5]. But the latter follows by combining Lemma 5.9 with Proposition B.7. In particular,
we obtain that there exist universal constants c3, ¢4 > 0 such that P [Ef“ 5] < czexp(—c407"1). This
completes the proof. O

6. QUENCHED BOUNDS FOR THE EXPECTED EXIT TIME FROM A METRIC BALL

In this section we will prove one main ingredient which is used to prove the upper bound in
the heat kernel estimate, namely quenched upper and lower bounds for the exit time of a Liouville
Brownian motion from a ball. For a set A C S, we let 74 be the exit time of the Liouville Brownian
motion from A. Let uqspu denote the law of the infinite quantum sphere.

Theorem 6.1. There exists a deterministic constant x > 0 so that the following is true. For puqspu-a.e.
instance (S, h, x,y) there exists ro > 0 random such that for every z € S and r € (0,7) we have that
(6.1) r*(logr™) ™" < E.lrp, (2] < r'(logr )",

where the expectation is over just the Brownian motion and the Brownian map instance is fixed.

We note that (6.1) is equivalent to proving that
6.2) 105 < [ Gy (220 din(w) < 1 1o

where G, (. is the Green’s function on the ball By (z,r). To establish (6.1) we will in fact estab-
lish (6.2). Also, we note that [73, Theorem 1.2] implies that there exists a deterministic constant
a € (0,1) such that uggpn-a.e. there exists a random constant C' > 1 such that for all u,v € S we
have that

(6.3) C Y d(u, v)V* < dp(u,v) < Cd(u,v)?,

where we recall that d denotes the Euclidean metric on S? and we assume that (S, x, y) is parame-
terized by S2.

The proof of the upper bound in Theorem 6.1 is straightforward and short and given in Subsec-
tion 6.1. The proof of the lower bound is much more involved and given in the remainder of this
section; see Figure 4 for an illustration of the proof.

6.1. Proof of the exit time upper bound. The upper bound in Theorem 6.1 follows from (6.3)
and the upper volume growth estimate in Theorem 4.1 by the following argument.

Proof of Theorem 6.1, upper bound. Let B = By,(z,r) be fixed. By (6.3) we have B C B(z,c;r®) for
some finite random constant c;. Therefore,

Ez[TB] = /BGB(ZaU)th(U) < /BGB(ZQQTO‘)(Z?u)d:U'h(u)'

On the other hand, recall that by (3.16)
1
d(u,v)

1
Gpo,/2)(w,v) = glog + F(u,v)
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for some continuous function F' : B(0,1/2) x B(0,1/2) — R. Hence, for all u € B,

GB(Z,chT‘O‘)(Z7u) = GB(O,chro‘)(Oau_Z> = GB(0,1/2)(0’4121;751)

1 deir®
T 0g d(z,u) + ( Y 4eqr )

(0%
< llogL + sup F(0,-) = 1 log(radh(z,u)_l/a) +c,
T dp(z,u)VY T o1y @

for some random constants ¢, ¢, where we used the second inequality in (6.3) in the fourth step.
For abbreviation we introduce the sets A, := Bj,(z,27"r) \ Bp(2,27" '), n > 0. Then the upper
estimate on the volume growth in Theorem 4.1 gives that there exists a deterministic constant
x > 0 such that uqspp-a.e. there exists random ry > 0 such that for each z € S, r € (0, ), we have
that

pn(Ap) < (2_”r)4(log (27/r))" < 27*"r*(nlog2 + log(r~1))".

By combining the above estimates we obtain that

E.[rp] < 2 / log (rdp(,u) ™) dyun (1) + & pun(B)

IN

IN

—Zlog (27" )Y 1y (A, N B) + € (B)

L g un(B) + En(B) + B2 Y+ 1) ()
n=0

IN

ye:;

Elog(rfl) pn(B) + ord log(ril)“,

for some random constant ¢ and the claim follows from the upper estimate in Theorem 4.1. O

IN

6.2. Definition of the good event. Throughout this section, we will make use of the notation
introduced in Subsections 5.1 and 5.2 some of which we now recall. Suppose that we have a
quantum surface D which is homeomorphic to D. For z,y € 9D, we let [z, y}g)p (resp. [x,y]gp)
denote the clockwise (resp. counterclockwise) arc of 9D from z to y.

We are now going to make a particular choice of the event E in the context of Proposition 5.1,
where FE is considered as a Borel subset of MSTV. Fix ¢ € (0,1) and A > Ay with Ag € [2,00) as in
Proposition 5.1. Suppose that we consider one of the following two quantum surfaces. Either we
let D = (D, h,0) have law ,ué:DfW and n’ be an independent radial SLE¢ starting from a uniformly
random point on the boundary and targeted at 0, or we let W = (H, h, 0, o0) have law u‘é"v?? and n/
be an independent chordal SLEg on H from 0 to co. Recall the definition of o /4 in (5.6), and set
o =0N054. Let N = NP or N = NV, respectively, be the quantum surface disconnected from 0
by 7/([0, o]), namely that parameterized by the interior of the hull K, of (][0, o]). Recall that the
top (resp. bottom) of AN is given by ON ND (resp. IN N ID). The left (resp. right) side of the top
is the part of the top which is to the left (resp. right) of 1/(c). Similarly, the left (resp. right) side
of the bottom is the part of the bottom which is to the left (resp. right) of »'(0). Fix M > 1 and
u,p > 0. Conditioned on ¢ = 05,4 (which implies that V' is simply connected and either the top left
or the top right of N has zero length), let F be the event that the following additional properties
hold.
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Zj

FIGURE 4. Illustration of the main step in the proof of the exit time lower bound
from Theorem 6.1. We will construct annuli consisting of “good” SLEg chunks
(green) so that whenever a Liouville Brownian motion passes through such an an-
nulus it is likely to take at least a certain amount of time to do so. The definition of
the good chunk (Subsection 6.2) includes a lower bound on the amount of quantum
mass that it has disconnected away from its boundary. We will control the size of
the good annuli in Subsection 6.3. The purpose of Subsection 6.4 is to show that
whenever a Liouville Brownian motion passes through such an annulus, it is very
likely to enter the interior of such a good chunk and hence take a certain amount
of time to pass through. The proof is completed in Subsection 6.5, where we show
that these good annuli are likely to occur all over our quantum sphere.

(I) The length of the top, bottom left, and bottom right of A/ are all at least §%/3 /M.

(II) The dy,, -diameter of A is at most M 51/3,

(II1) Let ¢: N' — D be the unique conformal transformation which takes the bottom left point to
—1, the bottom middle point 7’(0) to —i, and the bottom right point to 1 and consider the
embedding of N into D induced by . Then the quantum mass assigned to B(0,1/2) is at
least 6*/3 /M. Also, for each r € (0, M~!), every point with quantum metric distance at least
§/3r from OD (with respect to the field k| o o~ + Qlog |(¢~!)’]) has Euclidean distance at
least ™ from OD.

(IV) For every e € (0,6%/3/M) and points z,y € N such that both [z,y]5), and [z,y]5,, have
boundary length at least ¢ we have that their dj-distance in A is at least ¢ If either [z, y]gN
or [z, y](aj/\/ has boundary length at most ¢ then their dj,-distance in A is at most ¢!/

(V) For every e € (0,6'/3/M) and x,y € ON, the e-neighborhood (with respect to dj, in ) of
[, Y]S5y has quantum mass at least €2+ /M times the length of [z, ], The same is also true
with [z, y]§, in place of [z, Y]S5y

(VI) For every e € (0,6'/3/M), the quantum area of the e-neighborhood of O\ is at most €”6P.

Proposition 6.2. Let Ay € [2,00) and comax € (0,00) be as in Proposition 5.1. For each A > Ay
and ¢y € (0, ¢omax| there exist My € [1,00) and py > 0, depending only A, ¢y and u, such that for all
M > Mo and p € (0,po), plp? [EY N{N € E} |0 < 6] > 1—coA%/3,

In order to start to prove Proposition 6.2, we first need to recall the following lower bound
regarding the amount of mass near the boundary for a quantum disk [46, Lemma 3.4].
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Lemma 6.3. Suppose that D = (D, h,0) has law ,ué:D‘jW. For each u > 0 there a.s. exists ¢ > 0 such
that for each € € (0,1) and x,y € 0D the LQG area of the e-neighborhood of [z, y]gD is at least ce* T
times the length of [z, y]Sp. The same holds with [z, y]$y, in place of [z, y|$p.

We also need the following upper bound for distances between points on the boundary of a
quantum disk established in [46, Lemma 3.2].

Lemma 6.4. Fix { > 0 and let D = (D, h) have law u§g' or ufg'y. For each ¢ > 0 there a.s. exists
C > 0 so that for all x,y € 0D we have that

7/4

dn(w,y) < Con([w,yI5p) " (|1og v ([, y]§p) | +1)7F

and the same is true with [z,y|S, in place of [z,y]Sp. If we let C be the smallest constant for which
this is satisfied, then for A > 1 we have that P[C' > A] decays to 0 as A — oo faster than any negative
power of A.

Lemma 6.5. There exists a deterministic constant 3 > 0 such that the following is true. Suppose that
D = (D, h,0) has law l‘é:D,lw- Then, a.s. under ué:D}W, the quantum boundary length measure vy, is

B-Holder continuous with respect to the Euclidean metric.

Proof. First, we note that if i has the law of a free boundary GFF on I with some fixed normaliza-
tion, then [84, Proposition 3.7] implies that for every p € (1, p,), there exists C}, < oo such that
E[v;(A)P] < Cpdiam(A)P for each A C 9D Borel, where ¢, = (2 + %)p - @, p.« is the unique
p« > 1 such that (,, = 2, and diam denotes Euclidean diameter. Hence, by choosing p € (1, p)

such that ¢, > 1 and combining with Kolmogorov’s criterion, we obtain that there exists B >0
deterministic such that v; is a.s. -Hoélder continuous with respect to the Euclidean metric.

Now, we recall some results from [5]. Suppose that f is sampled from the group conf(H) of con-
formal automorphisms of H when the latter is endowed with the Haar measure, and let 4 be sam-
pled from the infinite measure of a weight-2 quantum disk with v = \/8/73 (see [35, Section 4.5])
weighted by v, (0H) 2. Then, [5, Theorem 1.2] implies that there exists a constant C' such that the
law of ho f~1+Qlog |(f~1)'| is given by C times the law of i := h—2Qlog |- |+ -+c, where h is a free
boundary GFF on H and ¢ is sampled from the infinite measure on R given by exp(—Qc)dc. Consider
the conformal transformation ¢ : HH — D given by ¢(z) = % Note that hoy~! is a free boundary
GFF on D with some fixed normalization and —2Q log max{|¢)~1(-)|, 1} +Qlog | (¥ 1) ()| +c = O(1)
uniformly in 0D. Hence, combining with Kahane’s convexity inequality, we obtain that the quantum
boundary length of h o 1)1 + Qlog |(v~1)] is a.e. -Hélder continuous on dD with respect to the
Euclidean metric. Therefore, the same is a.e. true for ho f~! + Qlog|(f~!)’| and since the event
that the quantum boundary length is 3-Holder continuous with respect to the Euclidean metric is
invariant under the coordinate change formula for quantum surfaces, we obtain that a sample from
the infinite measure of a weigh-2 quantum disk satisfies the above property a.e. Thus, combining
with disintegration with respect to the total boundary length (see [35, Section 4.5]), we obtain that
if (D, h) is sampled from Mé:Dl, then its boundary length is a.s. 3-Hélder continuous with respect
to the Euclidean metric. Therefore, the same is true for a sample (D, &, 0) from Né:D%w by absolute
continuity. U

Lemma 6.6. There exists a constant > 0 so that the following is true. Suppose that ¢ > 0 and
D = (D, h,0) has law u§g'yy. There is as. e > 0 so that for all e € (0,€) and a,b € 9D with both
vh([a,b]5p) > e and vy ([a, b]Sp) > € we have that dy(a,b) > €°.
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Proof. First, we note that a sample from Nészw can be obtained by starting with a sample from
15y and then multiplying lengths with ¢, distances with ¢*/2 and areas by (2. Thus, it suffices
to prove the claim in the case that / = 1. Suppose that (S,z,y) has distribution pqspu which
we can assume that it is parameterized by the Euclidean sphere S?. Recall that the metric dj, on
S? is Holder continuous with respect to the Euclidean metric d on S?, i.e., there exists a € (0, 1)
deterministic and C' > 1 random such that (6.3) holds for each u,v € S?. Let 7 be the smallest
r > 0 such that the boundary length of B}  (x,r) is equal to 1. Conditional on 7 < oo, the quantum
surface D parameterized by S \ B,;y(x,r) and marked by y has law Mé:D?W' Now, suppose that
we conformally map D to D with y sent to 0, and consider the surface parameterized by D. In
particular, we consider the conformal transformation ¢ mapping D onto D such that ¢(y) = 0
and ¢/(y) > 0, and set h := ho ¢~* + Qlog|(¢~')'|. Note that there a.s. exists A > 0 such that
disty(y,0D) > A. Fix p > 1 sufficiently large and deterministic (to be chosen) and let a,b € 9D
such that both v; ([a, blS,) > € and vi ([a, bl$y) > €. Then, we have that both v, ([a, E}gp) > e and
v ([@0)9p) > e with @ = ¢~ '(a) and b = ¢~ (b). Suppose that dy,(@,b) < d;(a,b) < €. Then, we
have that d(ﬁ,g) < C%*? < A for € > 0 sufficiently small. Moreover, since d; is a.s. equivalent to
the Euclidean metric on D, we obtain that it is a.s. the case that By_(z,€) € D N Bq(z,1/2) for all
z € 0D and all € > 0 sufficiently small. In particular, for ¢ > 0 sufficiently small, we have that the
geodesic v with respect to d; from a to b disconnects from 0 either [a, b] &y or [a, b5y, and so ¢~ (7)
disconnects from y either [675]373 or [a, g]gp. Note that dj,(a, z) < e? for all z € ¢~1(y), since ¢~ (v)
is the geodesic in D connecting a to b with respect to the interior-internal metric dy,|p. It follows
that B;(a, C“e*P) disconnects from y either [a, E]SD or [a, E]SD for all € > 0 sufficiently small. We
can assume that the latter holds. Then, the Beurling estimate implies that for all e > 0 sufficiently
small, the probability that a Brownian motion starting from y exits D in [a, E]SD is < €2/ where
the implicit constant depends only on C* and A. This implies that [Zi,g]gp gets mapped to an arc in
oD with Euclidean length at most O(e“?/?). Finally, to complete the proof, we let 3 be the constant
of Lemma 6.5 and choose p > 1 such that apg /2 > 1. Then, the ,ué:D}W-a.e. B-H(’:’)lder continuity
of v with respect to d shown in Lemma 6.5 implies that the quantum length of |a, b]gD is at most

O(eapg/ ?) for all € > 0 sufficiently small. But that is a contradiction since ; ([a, b)$,) > €. Hence,
d;(a,b) > €’ and this completes the proof. O

Lemma 6.7. Fix ¢ > 0,u € (0,2) and let D = (D, h,0) be a sample from Mészw- Then, ué:]fw-a.e.,
there exist random constants C > 0,9y € (0,1) such that the quantum area of the ¢-neighborhood of
OD with respect to dy, is at most C5>~ for all 6 € (0, o).

Proof. We assume that we have the setup of the proof of Lemma 6.4 given in [46]. In particular,
we let p : [0,1] — D be the quotient map introduced in [46, Section 3.1]. Then, we know from
[46, Section 3.1] that 9D = p({T, : r € [0,¢]}), where T, = inf{t > 0: B, = —r} and B is a
standard Brownian motion coupled with D. Fix u € (0, 1/2) sufficiently small (to be chosen). Then,
Lemma 6.4 implies that there a.s. exists a constant C' > 0 such that d(z,y) < Cvy([z,y] SD)%_ﬁ for
all z,y € 0D. Moreover, by possibly taking C' to be larger, we can assume using [46, Lemma 3.3]
that i, (Bg, (2,6)) < Cs*~ U forall z € D, § € (0,1). Let § € (0, 1/2) be sufficiently small such that
§ € (0,1/2) where 6 > 0 is such that C5'/2~% = §. Then, we have that p({T}. : r € [(k — 1), kd]}) C
By, (T'((k — 1)8),6) forall 1 < k < 6~ . It follows that the d-neighborhood of D with respect to
dy, is contained in Uzs,;;ll By, (p(T((k— 1)8)), 26). Therefore, a union bound implies that the quantum
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~ 9
area of the d-neighborhood of D with respect to dj, is at most < §*“~ 122, and so the proof of
the lemma is complete by choosing u such that 4 — u — ﬁ > 2 —u. O

Proposition 6.8. Fix ¢ € (0,1) and let D = (DD, h) be sampled from pgp'y. Define the event E(h)
that conditions (I1)-(VI) hold for the quantum surface D instead of N and with § = 1. Then, we have
that uéphy [E(h)] > 1 — e provided M is large enough and p is small enough.

Proof. Recall that a sample from Mé:D}w can be produced as follows. Let (S,h,x,y) be a sample
from pqspu and let ' be an independent whole-plane SLEg in S from z to y parameterized by
quantum natural time. Let also L be the process describing the boundary length evolution of the
connected component U; of S\ ([0, ¢]) containing y. We let 7 be the first time ¢ that L; = 1. Then,
conditional on 7 < oo, we let D be the surface obtained by conformally mapping U, onto D using
the conformal map « : U, — D such that ¢)(y) = 0 and ¢)’(y) > 0 and then applying the coordinate
change formula for quantum surfaces. Since D is a metric space of finite diameter a.s., we can
arrange so that part (II) holds with probability as close to 1 as we want by taking M sufficiently
large. Moreover, since u,(B(0,1/2)) > 0 ué:D?W-a.s. and there exists a deterministic constant
a € (0,1) such that the metric in S is a-Holder continuous with respect to the Euclidean metric
and ¢ is Holder continuous with some fixed and deterministic exponent (see [85, Theorem 5.2]),
we obtain that part (III) holds with probability as close to 1 as we want by taking M sufficiently
large. Also, it follows by combining Lemmas 6.4 and 6.6 that part (IV) holds with arbitrarily high
probability provided we choose M sufficiently large. Furthermore, by arguing in the same way
but using Lemma 6.3 instead, we obtain that part (V) holds with arbitrarily high probability if we
choose M sufficiently large. Finally, Lemma 6.7 implies that part (VI) holds with arbitrarily high
probability as well if we choose M large enough and p small enough. This completes the proof. [J

Next, we focus on proving Proposition 6.2. First, we will prove that condition (IV) holds with
high probability provided M is sufficiently large. We begin by proving that the lower bound on
quantum distances in condition (IV) holds with high probability. Since the proof of the lower
bound will be technical, we will give its proof in the next two lemmas. First, we will deal with the
case that both of the boundary points = and y lie on H N ON. This is the content of the following
lemma.

Lemma 6.9. Let W = (H, h, 0, 00) have law ug\ﬁ? and let 1/ be a chordal SLEg in H from 0 to oo
which is independent of W. Fix £ > 0 and let = > 0 be such that v, ([0, z]) = {. Let also T be the first
time that 0’ disconnects x from oo. Moreover, let (K;) denote the hulls of ' and let N be the quantum
surface parameterized by the interior of K. Then, there a.s. exist ¢y € (0,1) and M € (1,00) such
that for all € € (0,¢) the following holds. Let a,b € H N ON be such that vy([a, b]gN) > € and
vp([a, b]gN) > ¢. Then, we have that dy,|, (a,b) > €", where dy,,, denotes the interior-internal metric
on N with respect to h.

Proof. Step 1. Overview and setup. First we note that the locality property of SLEg implies that we
can couple " with an SLEg 77/ in H from 0 to x such that 7’ and 7/’ agree up until the first time that
they disconnect = from oo. From now on, we assume that we are working with this coupling. Let 7
be the left outer boundary of 7’ and for p > 0, we let 7, be the first time ¢ that dist(77(¢), R_) < p.
Note that 7, < oo a.s. for all p > 0. Let also 15,) be the unbounded connected component of
H \ 7([0,7,]). Moreover, we fix 0 < pa < p1 < z and let I be the counterclockwise segment traced
by 7 between times ¢ and 7, , where & is the last time before time 7,,, that 7 intersects [z, co) (wWhen
viewed as a set of prime ends on the left side of 7). We also set J = 7([5, Tp,]). The proof of the
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FIGURE 5. Illustration of the proof of Lemma 6.9. Top left: The chunk N. Top
right: An SLEg process 7/ in H from 0 to « coupled to agree with »’ up until they
first separate = from oo, shown on the event that the hull that it separates from oo
parameterizes N. Bottom: The right (standing from z looking towards 0) boundary
of 77 is 17, which we view as a curve from z to 0.

lemma consists of three steps. In Step 2, we will prove that the lower bound on quantum distances
A 4

in condition (IV) holds for a quantum wedge WV parameterized by H of weight g = 5 for points
on compact intervals on R which are bounded away from 0. Since the law of the field h restricted
to a small neighborhood of Tin N is absolutely continuous with a quantum wedge of weight %, we
will deduce in Step 3 the claim of the lemma for a,b € I N ON and the field h\H\ 7 in place of hlu.
Finally, we will complete the proof in Step 4 using the time-reversal invariance of the law of 7.

Step 2. Proof of the claim for a quantum wedge of weight 72—2 = %. Let & be a free boundary GFF on
H with the additive constant taken so that its average on HN 0D is equal to 0. Then Proposition 6.8
combined with the argument in Lemma 6.5 imply that for every fixed —oco < a < b < oo, there a.s.
exist ¢g € (0,1), M € (1,00) such that the following is true. For all € € (0,¢y) and all z,w € [a, b]
such that v;([z, w]) > ¢, we have that d; (2, w) > M, where d;. denotes the interior-internal metric
on H with respect to h.

Fix 0 < a < b. Then the above implies that there a.s. exists ¢y € (0, 1) such that for all € € (0, €p)

and all a < z < w < b such that v;([z,w]) > ¢, we have that dy, (z,w) > M forall0 <r <a<
™R

b < R, where A, r := B(0, R) \ B(0,r). Note that if we fix such r, R, the above event is determined

by E’AT,R' Suppose that W = (H, 1,0, o0) has the law of a weight g = % quantum Wedgiwith the
circle average embedding. Then, for fixed 0 < r < a < b < R, the laws of h|4, , and k|4, , are
mutually absolutely continuous and so it is a.s. the case that there exist ¢y € (0,1), M € (1, 00) such

that for all € € (0, ¢), if 2,w € [a,b] are such that v;([z,w]) > ¢, we have that dy (z,w) > M,
R

Note that dﬁ a.s. induces the Euclidean topology (see [54, Theorem 1.3]). Moreovér, the function
t — v;([0,1]) is a homeomorphism on R, with respect to the Euclidean topology (and hence
with respect to the topology induced by d; on R.), which implies that it is a.s. the case that
there exists §p € (0,1) such that d;(z,w) > o for all z,w € [a,b] such that v;([z,w]) > eo.
Also, since distdﬁ([a, b],04, r) > 0 a.s., possibly by taking ¢, to be smaller, we can assume that

dr(z,w) = dﬁlAnR(z,w) for all z,w € [a,b] such that v;([2,w]) < €. Combining, we obtain that

possibly by taking M to larger, we have that d;(z,w) > M for all a < z < w < b such that
v;([z,w]) > ¢, and all € € (0, ¢g). The same holds for any —co < a < b < 0 by symmetry.
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Step 3. Proof of the claim for the field h\H\ 7- Next, we note that It follows from [79, Section 2] that
7 has the law of an SLE, (§ —2; k —4) process in H from z to 0, where x = % and the force points are
located at 2~ and x* respectively. Let also  be an SLE, (4§ —2; x —4) process in H from z to oo with
the force points located at 2~ and z™ respectively, which is independent of V. Then, combining
[88, Proposition 1.7] with [35, Theorem 1.2], we obtain the following description of the quantum
surface parameterized by the region to the left of 7). Let ¢ be the conformal transformation mapping
the connected component of H \ 7 lying to the left of n onto H such that ¢(z) = 0,¢(c0) = oo
and ¢(0) = —1. Then, if we parameterize the field 4 := h o ¢~ 4+ Qlog|(¢~!)’| by the circle
average embedding, it has the same law with the field obtained when we parameterize W by
the circle average embedding. For p > 0, we let 7, be the first time ¢ that dist(n(¢),R_) < p.
Suppose that we are working on the event that 7,, < oo, where 0 < p» < p; < z are small
but fixed. Let I be the counterclockwise segment traced by 7 between the last time before 7,,
that it intersects [x,00) and time 7,, (seen as set of prime ends on the left side of ). Then, if
we apply the results of Step 2 for W on the time-interval ¢(I), we obtain that there a.s. exist
€0 € (0,1), M € (1,00) such that for all € € (0, ¢), the following is true. Let a,b € I be such that
n hits a before it hits b and vy,([a,b]) > e. Then, it holds that d; (¢(a), ¢(b)) > €. Suppose that
€0 € (0,1) is chosen such that ey < disty, (¢(1), ¢(1([7p,,0)))). We claim that if we further assume
that v, ([a,b]) < €, we have that dh\Dp2 (a,b) = dh|¢71(H (a,b), where D, denotes the unbounded
connected component of H \ ([0, 7,]). Indeed, clearly we have that dj, Dy (a,b) < dy, ¢—1(H) (a,b).
Let v be a dy, Dy -geodesic path in D, from a to b. Suppose that v intersects 7((7,,,00)), and let
t be the last time that ~ hits 7((7,,,00)), when v is parameterized by [0,1] and v(0) = a,v(1) =
b. Then, we have that the dj,-length of ~|;, 1) is at least disty, (#(1), ¢(1([7p,,0)))) > € and so
dp| Doy (a,b) > disty, (¢(I), d(n([7p,,0)))) > €0, but that is a contradiction. Thus, it follows that
dp| Doy (a,b) = dh|¢_1(H) (a,b). Combining everything, we obtain that the following is true a.s. on the
event that 7,, < co. There exists ¢y € (0,1), M € (1,00) such that for all € € (0, ¢p), the following
holds. Let a, b € I be such that 7 hits a before b and € < v4([a, b]$,/) < €. Then dhlpp2 (a,b) > M.
Also, it follows from [86, Theorem 6] that the law of 7[jo 7, | is absolutely continuous with respect
to the law of 17|[07%} when the latter is restricted to the event that 7,, < oco. It follows that there

a.s. exist e € (0,1), M € (1,00) such that for all € € (0, &), the following is true. Let a,b € I be
such that a is hit before b by 77 and € < v ([a,b]) < €o. Then, it holds that dj; (a,b) > M. We
P2

claim that dh|H\7(a, b) > M for such points as well, possibly by taking ¢, to be smaller. Indeed,

let v be a path in H \ J connecting a to b with v : (0,1) — H\ J and 7(0) = a,~(1) = b. If v is
contained in D,,, then clearly the dj,-length of ~ is at least ¢ since dh|5 (a,b) > M. Suppose that
P2

~ intersects 815,,2 \ (H \ .J). Then we have that ~ intersects 77([0, 5]) and let ¢ be the last time that
this occurs. Then we have that | ) is a path in l~)p2 connecting 7(¢) to b and the boundary length
of the counterclockwise arc of 8ﬁp2 from ~(t) to b is at least e. Hence, the dj,-length of | ;) is at
least € and so the dj,-length of v is at least ¢ in any case. It follows that dy,, (@, b) > M,

Step 4. Conclusion of the proof. Now, let 7) be the time-reversal of 77 and note that 7 has the law
of an SLE, (x — 4; & — 2) process in H from 0 to z, where the force points are located at 0~ and 0™
respectively [71]. Similarly, for p € [0,1), we set 7, = inf{t > 0 : dist(7(¢), [x,00)) < p} and let
o be the last time before time 7, that i) hits R_. Set also J = 7([7, Tp,]). Similarly with Step 3,
possibly by taking ¢; € (0,1) to be smaller and M € (1, o0) to be larger, we have that the following
holds for all € € (0,¢p). Let a,b be points on J viewed as prime ends on the right side of 7 such
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that 7 hits a before it hits b and € < vy, ([a,b]) < €. Then we have that dh|H\j(a, b) > M. Suppose
that these two events hold. Note that we can choose 0 < ps < p; < x sufficiently small such that
1([Tp,, 00)) N7([7,,, 00)) = @ with as high probability as we want. Suppose that this occurs as well.
Note also that in that case, we have that JU.J = HNJA. Moreover, possibly by taking €y € (0,1) to
be smaller, we can assume that the boundary length distance in N between 7([7,,, c0)) N ON and
N[y, 00)) NON is at least €. Fix a,b € HN ON such that ¢ < min{v([a, b]gN), v(la, b]gN)} < €p.
Without loss of generality, we can assume that [a, b}(aj/\f C H. Suppose that a € 7([0,7,,]). If
b € 7([0,7,,]), then we have that d,, (a,b) > dh\H\j(%b) > M. If b ¢ 7([0,7,,]), then we must
have that b € 7)([0,7,,]). Suppose that a ¢ 7([0,7,,]). If b € 1([0,7,,]), then clearly we have that
dp|(a,b) > dh‘H\j(a,b) > M. If b ¢ 7([0,7,,]), then we must have that the boundary length
distance in ON between a and b is at least ¢y, and that is a contradiction. Therefore, in any case, we
have that dp,, . (a,b) > M. Moreover, following similar arguments as the ones given in the previous
paragraphs, we obtain that there a.s. exists §o > 0 such that dj,.(a,b) > d for all a,b € ON such
that [a, b]gN C ON and v(]a, b]gN) > ¢p. Combining everything, we obtain that there a.s. exist
€0 € (0,1), M € (1,00) such that for all € € (0, ¢p), the following holds. Let a,b € H N N be such
that v([a, b]$),) > € and v,([a,b]5),) > €. Then we have that dp, (a,b) > €M. This completes the
proof of the lemma. O

Now we are ready to prove that condition (IV) holds with high probability in the context of
Proposition 6.2.

Lemma 6.10. Suppose that we have the setup of Lemma 6.9. Then there a.s. exist ¢y € (0,1) and
M € (1, 00) such that for all € € (0, €) the following hold. Let a,b € ON be such that vy,([a,b]5),) > €
and vy ([a, b]gN) > ¢. Then, we have that dy,,.(a,b) > ¢". Also, we have that if z,w € ON are such
that either vy ([z, w]5y) < € or vy ([2, w]Sy) < € then dy (2, w) < e/M.

Proof. We will only prove the first claim of the lemma (lower bound) since the second claim (upper
bound) follows from similar arguments. Lemma 6.9 implies that it suffices to prove the claim in the
case that either both a and b lie on RNAON or one of the points lies on RNIN and the other one lies
on HNION. We will first prove the claim in the case that {a,b} C RNON. Recall the decomposition
w&pwl-1 = J5° uggf{;le[ : ]ﬁefl/ 29 da. Also, Proposition 6.8 implies that the following is
true for ué:D?W—a.e. instance (H,%). There exist ¢y € (0,1),M € (1,00) such that the following
holds for all € € (0,¢€p). Let a < b € R be such that v; ([a, b]) > € and v}, (R\ [a, b]) > €. Then we have
that d; (a,b) > €M. Thus, combining with the above disintegration, we obtain that the same is a.e.

true if we replace ,ué:DlW by ug;‘(,’szl for all o > 0. In particular, it holds when o = 1. Let (H, A)

be a sample from ,ug;}\’,&:l and let y € OH be sampled uniformly according to v;,. Fix p € (0,1).
Then Lemma 4.2 implies that there exists @ > 0 depending only on p and a coupling between (H, h)
and (H, h) such that with probability at least 1 — £, we have that the metric spaces Bj,(0,a) and
By, (0,a) agree in the sense of Lemma 4.2. Thus, combining with the scale invariance of the law of
W (see [35, Proposition 4.7]), we obtain that for R > 0 fixed, there exist ¢y € (0,1), M € (1,00)
depending only on p and R, such that the following holds with probability at least 1 — £. For all
€ € (0,€0), we have that if = < w € R are such that [z, w] C By(0, R) and v ([z,w]) > €, we have
that dy(z,w) > M. Also, we can choose R > 0 sufficiently large such that K, C Bj(0, R) with
probability at least 1 — £. Combining, we obtain that there exist ¢y € (0,1), M € (1,00) depending
only on p, such that the following holds with probability at least 1 — p. For all ¢ € (0, ¢p) and all
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z < w € RN K such that v,([z,w]) > €, we have that dj, (2, w) > dj(z,w) > e. This completes
the proof of the lower bound in the case that both points lie on RNIN since p € (0, 1) was arbitrary.

Now, we prove the lower bound in the case that one of the points lies on R N N and the other
one lies on H N ON. Let U be the connected component of H \ 7/([0, 7]) whose boundary contains
2. Then combining [35, Theorem 1.18] with [4, Corollary 4.3], we obtain that the quantum
surface (U, h|) can be sampled as follows. Let Dy, D be two independent samples from the infinite
measures on quantum disks of weights W = 2 — 2 = % and 2 — W = 2 respectively, conditioned
on the event that /; < ¢ < ¢ + ¢35, where /1, /5 are the right boundary lengths of D; and D
respectively. Note that both of D; and D are equipped with two marked points. Then the quantum
surface (U, h|y) equipped with the first and last boundary point hit by n has the same law as the
marginal of D under the above conditional law. It follows by combining with Proposition 6.8 that
it is a.s. the case that possibly by taking ¢y € (0,1) to be smaller and M € (1,00) to be larger,
we have that for all € € (0,¢), if z,w € OU are such that min{v,([z, w|§;;), vn([z, w]5,)} > €
then dp,, (z,w) > ¢M. Moreover, Lemma 6.4 combined with absolute continuity imply that there
a.s. exists C' < oo such that dj,, (z,w) < C(min{vy [z, w]§,), vi([2, w]5, ) NY/? for all z,w € AU.
Furthermore, we can assume that distdhw ([0,c], HNON') > €y, where ¢ = “T“’ and a (resp. b) is the
first (resp. last) point of QU visited by 7/, since distdth([O, ¢, HNON) > 0 a.s. Now, fix € € (0, ¢9)
and let z € [¢,b],w € H N AN be such that yh([z,w}gN) > ¢ and uh([z,w]gj\/) > €. Suppose that
vn([z,8]) < €M’. Then, we have that dp|p(2,0) < dp, (2,0) < CeM?/3 and so combining with
triangle inequality and Lemma 6.9, we obtain that dj,.(z,w) > eM /2 possibly by taking ey > 0
to be smaller. Suppose that v, ([z,b]) > ¢M”. Then, we have that distg, (z,HNOU) > eM” and
note that any path P in A connecting w to z has to intersect OU. Suppose that P is parameterized
by [0,1] and P(0) = w, P(1) = 2. Let t be the last time that P hits H N OU. Then P|,) is a
path in U connecting some point on H N 9U to z and so the dj-length of P, ) is at least M,
It follows that dp,,.(z, w) > eM? since P was arbitrary. Combining, we obtain that there a.s. exist
€0 € (0,1), M € (1, 00) such that the following holds for all € € (0, ¢g). Let z € [0,b],w € HNIN be
such that min{v,([z, w]gN), vp([z, w]gN—)} > ¢. Then we have that dj, (2, w) > €V.

Note that since the law of the outer boundary of ’ when targeted at x has time-reversal symmetry
and the law of W is invariant under translating horizontally by a fixed number of quantum length
units (see [88, Proposition 1.7]), we obtain that the law of the quantum surface parameterized
by N is the same with the law of the quantum surface parameterized by N, where N is defined
as follows. We let y € R_ be such that v([y,0]) = ¢ and draw »’ up until the first time that it
disconnects y from co. Then A is the quantum surface induced by the restriction of A to the hull of
the above curve stopped at the above time. Then, arguing as in the previous paragraph, we obtain
that there a.s. exist ¢y € (0,1), M € (1,00) such that the following is true for all € € (0,¢p). Let
z,w € ON be such that z € HN ON,w € R_ NN and min{uh([z,w]gﬁ),uh([z,w]gﬁ)} > ¢. Then
it holds that dhw(% w) > M. Therefore, combining with the result of the previous paragraph, we
complete the proof of the lower bound in the lemma statement in the case that one of the points
lies on H N ON and the other on R N N. This completes the proof of the lemma. O

Next, we state that conditions (V) and (VI) hold with high probability in the context of Propo-
sition 6.2 provided M is large enough and p is small enough. We will not give a detailed proof
since it follows from a combination of Proposition 6.8 with the arguments presented in the proofs
of Lemmas 6.9 and 6.10.
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Lemma 6.11. Fix u > 0 and let p > 0 be a constant (corresponding to condition (VI)) which is small
enough as specified in Proposition 6.8. Suppose that we have the setup of Lemmas 6.9 and 6.10. Then
there a.s. exist ¢g € (0,1) and M € (1,00) such that for all e € (0,¢) the following hold. For all
x,y € ON, the e-neighborhood of [z, y]gN with respect to dy,|,, has quantum area at least 62}\7. The
same is also true with |z, y}gN in place of [z, y]gN. Moreover, the quantum area of the e-neighborhood

of ON with respect to dy,,, is at most €.

Proof. The two claims of the lemma essentially follow from the same arguments presented in Lem-
mas 6.9 and 6.10 combined with Proposition 6.8. O

Now we prove that conditions (II) and (IIT) hold with high probability if we choose M sufficiently
large. We first prove in the following lemma that condition (II) holds with high probability provided
we choose M sufficiently large.

Lemma 6.12. Suppose that we have the setup of Lemmas 6.9-6.11. Then we have that the dy,,.-
diameter of N is finite a.s.

Proof. Suppose that we have the setup of the proof of Lemma 6.9. Fix p; € (0,1) and let p; > 0
be chosen such that with probability at least 1 — &, we have that 7([0,7,,]) N OU # 0, where
both 7,7, are defined in Step 4 in the proof of Lemma 6.9 and U is the connected component of
H \ 7/(]0, 7]) whose boundary contains z. Let also & be the random field introduced in Step 3 in
the proof of Lemma 6.9. Since the d;-diameter of any compact set K C H is finite a.s. (see [54,
Theorem 1.3]), arguing as in Step 3 in the proof of Lemma 6.9 gives that the /AT D -diameter

of NV is finite a.s., where 77,7, and J are defined in Step 1 in the proof of Lemma 6.9. Also, since
the quantum surface parameterized by U has the law of a quantum disk conditioned on a positive
probability event (see the proof of Lemma 6.10), we obtain that the dj,-diameter of U is finite
a.s. Hence, there exists M > 1 sufficiently large such that with probability at least 1 — &, both
of the dhmw([a’?pl])—diameter of NV and the dj,|,-diameter of U are at most M. Suppose that we are
working on the event that the above holds and that 7([0,7,,]) N OU # (. Similarly, we can assume
in addition that the dh‘H\ﬁ([ﬁmD—diameter of NV is at most M and that 7([7,,, 00)) N 7([Tp,,0)) = 0.
Let ¢ be the first time that 7 intersects OU. Fix z € ON N7([0,t)) and let P : (0,1) — H\ 7([7, 7, ])
be a path such that P(0) = 0, P(1) = z and such that the dj,-length of P is at most M. If P doesn’t
intersect U, then it stays in A and so we have that dj,.(0,z) < M. Suppose that PN U # §, and
let 51 be the last time that P intersects OU. Then we have that P|,, ;) is a path in A from P(s1) to
z with dj,-length at most M. Let also s; be the first time that P intersects QU and let ) be a path
in U from P(sy) to P(s;) with dj-length at most M. Then the concatenation P of PJ(0,s5), @ and
P|(s, 1) is a path in VV from 0 to z with dj,-length at most 3M. Hence dj,,. (0, z) < 3M. Next, we fix
z € ON N7((t,00)) and note that z € IN N7([0,7,,]). Let A be a path in H \ 7([5,7,,]) from 0 to
z with dj,-length at most M and let s; be the first time that A intersects QU (it has to intersect 0U
in order to eventually hit z). Let also A be a path in H \ 7([7, Tp,]) from A(s1) to z with dj-length
at most M and let s, be the last time that A intersects OU. Then the path X](SQ 1) has to stay in

N and has dj,- length at most M. Let also B be a path in U from A(s1) to A(SQ) with dj,-length at
most M, and let A be the concatenation of Al(0,s1), B, and A| (s2,1)- Then Aisa path in NV from 0
to z with dj-length at most 3M. It follows that dj (0, z) < 3M for all z € n([o,t) U (t,00)) N ON
and the same bound holds for z = 7)(¢) by the continuity of the quantum metric with respect to the
Euclidean metric. Therefore, we obtain that the d|, -diameter of A/ is at most 6/ with probability
at least 1 — p;. The proof is then complete since p; € (0, 1) was arbitrary. O
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The final step before proving Proposition 6.2 is to prove that condition (III) holds with high
probability if M is large enough. This is the content of the following lemma.

Lemma 6.13. Suppose that we have the setup of Lemmas 6.9-6.12 and let o: N — D be the conformal
transformation as in condition (III). Then there a.s. exists M > 1 such that for all r € (0, M~!)
the following hold. The quantum area assigned to B(0,1/2) with respect to the field h|n o o=t +
Qlog |(p~ 1) is at least M~'. Moreover, every point with quantum distance at least r from 0D (with
respect to the field h|pn o ¢! + Qlog|(p~1)'|) has Euclidean distance at least r™ from OD.

We will describe the setup of the proof of Lemma 6.13 before proceeding with its proof. Note
that it is a.s. the case that on the event that o = 05,4, we have that o = 7, for some z € Q \ {0},
where 7, denotes the first time that n’ disconnects x from oo. Hence it suffices to prove the claim
of the lemma in the case that o = 7, for some =z € Q \ {0} fixed. Without loss of generality we can
assume that = > 0.

Let (K;) denote the family of hulls of 7'. Note that the locality property of SLEg implies that
7’ can be coupled with a chordal SLEg 7’ in H from 0 to x stopped at the first time 7, that 7’
disconnects = from oo such that #'|g -, = 7'|(07,]- Let also 7 denote the left outer boundary of
7’ and note that [70, Theorem 1.4] implies that 7 has the law of an SLE% (% — 2; % — 4) process

in H from z to 0 with the force points located at #— and =™ respectively. Let U be the connected
component whose boundary contains 0 of the complement in H of the curve 77 stopped at the
first time that it disconnects 0 from oo. Similarly we let V' be the connected component whose
boundary contains x of the complement in H of the time-reversal of 7] stopped at the first time that
it disconnects = from co. Moreover we let G be the connected component of H \ 7 lying to the left
ofn. Let f: U - D,g:V — Dand ¢ : G — D be conformal transformations defined in some
arbitrary but fixed way.

We note that all of the maps f, g and 1) are a.s. well-defined due to Proposition A.1 and the time-
reversal symmetry of 7 (see [71, Theorem 1.1]). Recall that [85, Theorem 5.2] implies that there
exists deterministic constant a € (0,1) such that all of the maps f~!,g~! and v~! are a-Hoélder
continuous a.s.

Proof of Lemma 6.13. Step 1. Outline. Suppose that we have the setup described in the paragraphs
just after the statement of Lemma 6.13. The first claim of the lemma (lower bound on the quantum
mass assigned to B(0,1/2)) follows since the quantum area measure assigns positive mass to every
open set a.s. Hence, we will focus on proving the second claim of the lemma. In Step 2, we will
prove that it is a.s. the case that there exist 79 € (0,1), M > 1 such that for all » € (0,79) and all
2z € N such that distdhw (2,0N) > r, we have that

B(z,m™M) C By (z,7) CN.

Then in Step 3, we will show that possibly by taking M to be larger and ry to be smaller, we have
that there a.s. exists (random) ¢g > 0 such that if z,r are as above, we have that the probability
that a complex Brownian motion starting from z intersects 1 ~!(B(0, 1/2)) before exiting A/ for the
first time is at least cor™, and then conclude the proof of the lemma.

Step 2. B(z,7™) C By,,.(z,). First, we note that [54, Proposition 1.8] implies that there exists
a deterministic constant 3 € (0, 1) such that dr|k is a.s. -Hoélder continuous with respect to the
Euclidean metric for all K C H compact, where  is a free boundary GFF on H with the additive
constant taken so that the average of h on H N dD is equal to zero. Then, arguing as in Step 2 in
the proof of Lemma 6.9, we obtain that for all 0 < r < R fixed, dp|4, , is a.s. 3-Hélder continuous
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with respect to the Euclidean metric, where A, p = HnN (B(0, R) \ B(0,r)). Moreover, combining
with the invariance of the law of W when translating horizontally by fixed number of units of
boundary length (see [88, Proposition 1.7]), we obtain that dj|unp(o,r) is a-s. 3-Hélder continuous
with respect to the Euclidean metric for all R > 0. Let R > 0 be such that N' C H N B(0, R).
Note that if = € A is such that distdhw (2,0N) > r, we have that By, (z,7) = By(z,7). Therefore,
combining with the Hélder continuity of |y p (o, z) With respect to the Euclidean metric, we obtain
that it is a.s. the case that there exists M > 1 large and ry > 0 small such that for all z € N and
all » € (0,79) such that distdhw(z,c?/\/) > r, we have that B(z,7") C By,,.(z,r). In particular, the
Euclidean distance of z from O is at least r/.

Step 3. Conclusion of the proof. Let ro € (0,1), M > 1 be as in Step 2 and fix r € (0,79),z € N
such that distdhw (2,0N) > r. Then Step 2 implies that

B(z,m™) C By (z,7) CN.

We will show that possibly by taking M to be larger, we have that the probability that a complex
Brownian motion starting from z intersects 1~ 1(B(0, 1/2)) before exiting N for the first time is at
least .

Let I be the arc traced by 7 up until the last time that it intersects R, and let .J be the arc traced
by the time-reversal of 7 up until the last time that it intersects R_. Then we have the following
cases.

Case 1. By, (z,7) N (IU.J) = (. Then we have that B(z,7™) C G. Note that there exists C' > 1
such that

[ (z) = (y)| < Cle —y|* forall =,yeD.

In particular we have that dist(¢)(z),dD) > 7/ and so the probability that a complex Brownian
motion starting from (z) intersects B(0,1/2) before exiting I for the first time is > M/, By
conformal invariance we obtain that the probability that a complex Brownian motion starting from
z intersects 1)~ 1(B(0,1/2)) before exiting I for the first time is > /.

Case 2. By, (z,7) NI # (. Possibly by taking ro € (0,1) to be smaller, we can assume that
B (z,7) N J = (). Hence we have that By (2,7) = By, (2,7) and so B(z, rM) C V. Asin Case 1,
we let C' > 1 be such that

lg7 (@) — g7 ()| < Clz—y|* forall z,yeD,
and then we have that
B(g(z),C~ VM) C g(B(z,7M)) C D.

Therefore arguing as in Case 1, we have that the probability that a complex Brownian motion
starting from z intersects 1»~(B(0, 1/2)) before exiting A\ for the first time is > M/,

Case 3. By|,.(z,7) N J # (. Arguing as in Cases 1 and 2, we obtain that the probability that a
complex Brownian motion starting from z intersects 1»~!(B(0,1/2)) before exiting N for the first
time is > rM/e,

Combining Cases 1,2 and 3, we obtain that there a.s. exists ¢y > 0 such that the probability
that a complex Brownian motion starting from z intersects 1 ~!(B(0,1/2)) before exiting N for
the first time is at least c¢or™/®. It follows that the probability that a complex Brownian motion
starting from ¢(z) intersects ¢ (¢~ (B(0,1/2))) before exiting I for the first time is at least cor™/.
Set d := dist(¢(y~'(B(0,1/2))),0D) > 0 and suppose that dist(¢(z),dD) < M/ Then the
Beurling estimate implies that the probability that a complex Brownian motion starting from ¢(z)
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intersects p(¢)~1(B(0,1/2))) before exiting D for the first time is at most a universal constant times
(r3M/e /d)1/2 In particular we have that M/ < 1-3M/(2¢) and so we obtain a contradiction possibly
by taking r¢ € (0,1) to be smaller. It follows that

dist(p(z),0D) > r3M/«
and so this completes the proof of the lemma. O

Proof of Proposition 6.2. First we note that when the quantum natural time is scaled by J, we have
that the quantum boundary length, the quantum metric distance and the quantum area are scaled
by §2/3,6%/3 and §%/3 respectively. Hence, combining with the scale invariance of the law of W
([35, Proposition 4.7]), we obtain that it suffices to prove the claim of the proposition when ¢ = 1.
Hence, from now on, we assume that § = 1. Fix p; € (0,1). Forall k € Nand N € N, we let
x n be the point on R, such that v ([0, z; n]) = % Forall k € Z_ and N € N we also let =, v
be the point on R_ such that v, ([z; n,0]) = F. For z € R\ {0}, we let 7)), be a chordal SLEg in
H from 0 to x which is independent of V. Then by [87, Section 4.2], we obtain that there exists
a coupling of (W, 7/, (1;)zer\{0}) such that for all z € R \ {0}, the curves 7', ; agree up until the
first time that they disconnect = from oo. Also, we can choose M;, N € N large enough such that
with probability at least 1 — £, we have that N' = N,  for some k € [-NM;, NM;] N Z, where
Nz,  denotes the quantum surface parameterized by the hull of n;,k’  stopped at the first time that
it disconnects zj v from co. Let also F, , be the event defined in the same way as E but with
Nz, » in place of N. Note that the quantum boundary lengths of the top, bottom left, and bottom
right of Nz,  are all positive a.s. Therefore, combining with Lemmas 6.9-6.13, we obtain that we
can choose M € (1,00) large enough and p > 0 small enough such that conditions (I)-(VI) all hold
with probability at least 1 — ; ]\I,’}wl . Thus, taking a union bound over all k € [-NM;, NM;]|NZ gives
that F holds with probability at least 1 — p; for the above choice of M, p. This completes the proof
of the proposition. O

6.3. Size bounds for the disconnecting good annulus. Fix § > 0 and suppose that we perform
the exploration as in Proposition 5.1 until the first time that 0 is disconnected from 9D by chunks
for which F occurs. Let A be quantum surface parameterized by the cluster of chunks N for
which F occurs with the property that there exist chunks N, ..., N;, which are discovered by the
exploration for which F occurs for all of them with N;, = N, N, on the boundary of the connected
component which contains 0, and with ON;, N ON;,,, # 0 for each 1 < j < n — 1. We define the
inner boundary of A to be the boundary of the connected component of C \ .A which contains 0.
We define the outer boundary of A to be the boundary of the unbounded connected component of

C\ A

Proposition 6.14. Suppose that D = (D, h,0) has law Né:Dtjw- Fix 6 € (0,1). Suppose that we
perform the exploration as in Proposition 5.1 until the first time that 0 is disconnected from 9D by
chunks for which E occurs and let A be as above. Fix u € (0,4), sop > 0 and suppose that we are
working on the event that pu;,(By(z,5)) < s*~% for all s € (0,s0), 2 € D, and py,(Bp(z, s)) > s*+¥ for
all s € (0, s0), 2z € D such that disty, (2,0D) > s. Then, there exist a constant p; > 0 depending only
on u,u and M, and a constant §y € (0, 1) depending only on u,u, M and sy such that the distance
(with respect to the interior-internal metric on A) between the inner and outer boundary of A is at
least 6P1. Moreover, there exists a constant py > 0 depending only on u such that the following holds.
There exist constants ¢y, co, « > 0 depending only on ¢, such that for all § € (0, 1) sufficiently small
(depending only on ¢, u), on the event E, ; defined in the statement of Proposition 5.1, off an event
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with probability at most c¢; exp(—c26~%), we have that A is contained in the éP°-neighborhood of 0D
with respect to dj,.

We will begin by establishing the lower bound in Proposition 6.14, the main input of which is the
next lemma. Suppose that we have two SLEg chunks A7, N> from the exploration. We say that N}
comes before N5, or N5 comes after N, if V] is discovered by the exploration before N5. We say
that V; is adjacent to N; if the following is true. First, £ occurs for both A/; and V5. Second, N> is
the first chunk discovered after N for which E occurs whose boundary has non-empty intersection
with ON;. Then by the way that the exploration is defined, we know that an interval on the right
bottom of A, (whose left endpoint is the initial point of the SLEg in A>) is contained in the top of
N1 if both of ON; and ON; intersect the inner boundary of A.

Lemma 6.15. Suppose that we have the setup described in Proposition 5.1. Fix u € (0,4) and so > 0
and suppose that we are working on the event that (B (z,s)) < s*7% for all s € (0, s¢), z € D, and
pn(Br(z,8)) > s for dll s € (0, s0), 2 € D such that distg, (2,0D) > s. Then, there exist a constant
q > 0 depending only on v and w and a constant §y € (0, 1) depending only on u,wu, M, and s such
that the following holds for all 6 € (0,0y). Suppose that N1, N3 are two radial SLEg chunks which
are adjacent to each other with Ny coming after N1. Moreover, we assume that both of ON7 and ON3
intersect the inner boundary of A. Then, we have that the diameter of ON1 N ON3 with respect to dy, is
at least §9.

Proof. First, we note that since both of OA; and AN, intersect the inner boundary of A, we have
that I := N7 N ON- is an interval contained in in the right bottom of A, and at the top of N7, and
such that its left endpoint is the initial point of the radial SLEg in As. In particular, we have that
I is the bottom right of N5. Hence, it follows from part (I) that the quantum boundary length of I
is at least 6%/3 /M. Note that if 6y € (0,1) is such that dy < M~3/2, we have that § < 6'/3/M, and
so part (V) in the definition of E implies that the amount of volume in A; which has distance in
N1 at most 6 to I, is at least 6>+ times the length of I, i.e., at least 6%/3+% /M. Let ¢ = 8/5’_%3”‘ > 0.
We pick 4 sufficiently small so that we also have ¢ < so. Then, we have that the amount of area
in any ball in D with respect to dj, of radius §7 is at most §8/3+3% for all § € (0,dy). Therefore, if
we further choose dy € (0,1) such that §y < M ~'/(2¥)| then we have that I cannot be contained in
such a ball, which implies that the dj-diameter of I is at least §1. O

Proof of Proposition 6.14, lower bound. Suppose that §, and ¢ are as in Lemma 6.15. Let N7, N> be
two adjacent radial SLEg chunks with A5 coming after A7 and such that both of ON; and ON3
intersect the inner boundary of A. We will show that the diameter of the interval I := ON7 N ON>
with respect to the interior-internal metric of N’y U Ny is at least 309M by possibly taking ¢ to be
larger (depending only on u,w and M) and dy € (0, 1) to be smaller (depending only on u, u, M and
s0). Indeed, let @ and b be the two endpoints of I with a lying on the inner boundary of A. Let also
7 be the geodesic in N'; U N3 from a to b with respect to the interior-internal metric. Suppose that
the length of v (with respect to the interior-internal metric) is at most §9%. We can assume that
q > 2/3 and by possibly taking dy to be smaller (depending only on wu, u, M and sj), we can assume
that 69 < §2/3 /M. Then, either ~ intersects every subinterval of I with boundary length at most §¢
or it does not. Suppose that the former holds. Fix z € I and let x,y € I be such that z € [z, y](abf\/l
and vy, ([z, y]gNl) < 0%. Fix also w € yN [z, y]gNl. By condition (IV) of E we obtain that the distance
between z and w with respect to the interior-internal metric in N is at most 59/M and so the same
holds for the distance between z and w with respect to the interior-internal metric in Ny U Ns.
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FIGURE 6. Illustration of the setup of the proof of the lower bound of Proposition 6.14.

Hence, the distance between a and z with respect to the interior-internal metric in N'; U N is at
most 367M + §9/M by the triangle inequality. Since ~ was arbitrary, it follows that the diameter of
I with respect to dj, is at most 667" + 26¢/M  But this is a contradiction due to Lemma 6.15 by
possibly taking ¢ > 0 to be larger (depending only on w,u and M) and ¢y € (0,1) to be smaller
(depending only on u, w, M and sg). Thus, there exists a subinterval J of I with boundary length at
least 67 and such that v N J = (. This implies that there exists a segment of v which connects two
points o', b’ € I with boundary length distance at least 67 and this segment stays in either A7 or
N5. Then, condition (IV) of E implies that the length of the aforementioned segment with respect
to the interior-internal metric in A’y U N5 is at least 67V, Therefore, combining everything and
possibly taking ¢ to be larger (depending only on u,u and M), we have that the distance between
a and b with respect to the interior-internal metric in N'; U N5 is at least 367

See Figure 6 for an illustration of the notation for what follows. Now, let NVi,..., N, be the
chunks intersecting the inner boundary of A such that for all 1 < i < n — 1, we have that N
is adjacent to N;;1 and comes before N1, and set I; := ON; N ON;11. Set also Ny = N,, and
Iy = ON,, N ONi. Let w be a point lying in the inner boundary of A. Then, there exists 1 < i < n
such that w € ON; \ (I;—1 U ;). Let v € ON;—1 UIN; \ I;,—1 be such that v does not lie in the inner
boundary of A. Let also a;_1,b;—1 be the two endpoints of I;_; such that a;_; lies in the inner
boundary of A. Suppose that the boundary length distance of w from a;_; is at most §4°. Then,
condition (IV) of E implies that the distance between a; 1 and b; 1 with respect to the interior-
internal metric in N;_; U N/; is at most 6. If the boundary length distance of v from b;_; is at
most §7M* then combining with the triangle inequality, we obtain that the distance between w
and v with respect to the interior-internal metric in N;_; U N; is at least §9. Suppose that the
boundary length distance of w from a;_; is at least §%M°. Then, condition (IV) of E implies that
the distance between I;_; and w with respect to the interior-internal metric in A'; U N is at least
§IM? 1f g € ON;_1, then the distance between w and v with respect to the metric in N'; U N is at
least §9°. Suppose that v € 9N;. Note that the boundary lengths of I;_; and I; are both at least
§2/3 /M and so condition (IV) implies that the distance between the component of ON; \ (I;—1 U I;)
intersecting the inner boundary of .4 and the component of ON; \ (I;—1 U I;) not intersecting the
inner boundary of A is at least 59 with respect to the metric in A/;. Moreover, the way that the
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exploration is defined implies that the boundary length of the counterclockwsie arc of ON; from
ai_1 to a; is at least €yd%/3 and so combining with (IV), we obtain that the distance between a;_;
and I; with respect to the interior-internal metric in N; is at least eé” §2M/3 In particular, the
triangle inequality implies that the distance between w and I; with respect to the metric in N is
at least €)/62M/3 /2. 1t follows that the distance between w and v in N;_; UN; is at least 69 °
Note that if w has boundary length distance at least §?* from both of I;_; and I;, then (IV) implies
that the dj,-distance in N; between w and the part of ON; not contained in the inner boundary of
A is at least §7M°, Combining everything, we obtain that the following is true. If w lies in the
part of ON; contained in the inner boundary of A with boundary length distance from I; at least
§9M and v lies in the part of 9(N;_1 UN; UN; 1) not contained in the inner boundary of A, then
the distance between w and v with respect to the metric in N;_; UN; U N4, is at least 67 A
similar argument shows that if w and v are as above but w has boundary length distance from I;
at least 67M instead, then the distance between w and v in N;_; UN; U N1 is at least §9°. It
follows that if w lies in the part of ON; contained in the inner boundary of A and v lies in the part
of 9(N;_1 UN; UN ;1) not contained in the inner boundary of A, then we have that the distance
in N;_1 UN; UN 41 between w and v is at least §7M°.

To finish the proof, we let 9™ A (resp. 0°"‘A) be the inner (resp. outer) boundary of A. Fix
w € OMA, v € 9°° A and let v be a geodesic in A from w to v with respect to the interior-internal
metric in \A. Then, there exists 1 < ¢ < n such that w € ON;, and let v be the last point of
ONi_1 UN; UN 1)\ O™ A hit by . Then, the results of the previous paragraph imply that the
dp-length of the part of v from the last time that it hits v to the first time that it hits w is at least
§7M* and so the distance between w and v with respect to the interior-internal metric in A is at
least §%M° . This completes the proof of the lower bound. O

We now work towards proving the upper bound in Proposition 6.14. First, we state the following
version of Lemma 6.4.

Lemma 6.16. Fix { > 0,u € (0,1/2) and let D = (D, h,0) be a sample from ,ué:DKW. Then, there a.s.
exists C' > 0 such that for all z,y € D we have that dy(z,y) < Cvp([z,y]$p) />~ and the same is
true with [z, y]gp in place of [z, y]gp. Moreover; there exist constants c1,co > 0 depending only on ¢

and a constant o > 0 depending only on u such that if C > 0 is the smallest constant for which the
above bound holds, then we have that P[C' > A] < ¢ exp(—cpA®) for all A > 1.

Proof. It follows from an argument which is similar to the one given in the proof of Lemma 6.4. [J

Next, we state and prove the following lemma which gives an upper bound with high probability
on the diameter of the outer boundary of a radial SLE¢ curve drawn for at most ¢ units of quantum
natural time on top of a weighted quantum disk.

Lemma 6.17. Fix u € (0,1/3). Then, there exists u € (0,u) such that the following holds. Suppose
that D = (D, h,0) has law p&py with € < 67%/2. Let 1/ be a radial SLEg curve in I, independent
of D, starting from a point chosen uniformly at random on 0D with respect to v, and targeted at 0.
Fix 6 € (0,1) and suppose that o is a stopping time for ' which is a.s. at most §. Then, there exist
constants c1,co,« > 0 depending only on u such that on the event that the boundary length of the
component of D \ 1/([0,t]) containing 0 is at least §*/3~* for all t € [0, o], we have that off an event

with probability at most c; exp(—c20~ %), the dj,-diameter of the outer boundary of 1/ ([0, o]) is at most
51/3—u‘
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Proof. Fix u € (0,1/3) small (to be chosen and depending only on u). Suppose that z; € JD is
chosen uniformly at random from the quantum boundary measure and y; € 0D is the unique point
on 9D such that the boundary lengths of [xl,yl]g)m and [:cl,yl]gD are both equal to //2. We let
o1 be the first time that »’ disconnects y; from 0. Suppose that we have defined marked points
T1,...,%;,Y1,...,y; and stopping times o1, ...,0;. Then, we set z; 11 = 1'(c;) and let y; 1, be the
point on the boundary of the component D; of D\ ([0, ¢;]) containing 0 which is antipodal to x4,
with respect to quantum boundary length. Then, we let o;; be the first time that 7’ disconnects
yj+1 from 0. We set N := inf{j € N : ¢ < 0;}. Suppose that the boundary length ¢; of 0D; is
at least 62/3~%. We note that when scaling the boundary length by #;!, we have that the quantum

natural time is scaled by 6;3/ % and 6?/ 2 > §1-3u/2 5 5. Hence, it follows that there exists a universal
constant p € (0,1) such that P[o;41 — 05 > §|7'|p0,)] > 1 —p a.s. It follows that on the event that
the boundary length of D \ #/([0, t]) is at least 6%/~ for all t € [0, o], we have that N < §~% off an
event with probability at most exp(log(p)6—*%). From now on, we assume that we are working on
the event that N < §~ %,

Combining Lemma 5.9 with [20, Chapter VII, Corollary 2] gives that on the event that the
boundary length of the 0-containing connected component of I \ #/([0,]) is at least 6%/~ for
all t € [0, 0], we have that off an event with probability at most < §~1/3+%/2 exp(—§—2/3-%) (with
the implicit constant being universal), the boundary length of the 0-containing connected com-
ponent of D\ 7/([0,¢]) is at most 6~ for all ¢t € [0,0]. Suppose that this event occurs as well.
Moreover, Lemma 5.11 implies that there exist universal constants c;, co > 0 such that off an event
with probability at most ¢; exp(—c20~%), we have that for all 1 < j < N, the boundary length
of the part of 7'|;,,_, ,, contained in D;_; is at most 62/3=% where oy = 0. Suppose that this
event occurs as well. Furthermore, Lemma 6.16 implies that there exists a constant « > 0 de-
pending only on u such that by possibly taking c¢; to be larger and ¢y to be smaller (depending
only on u), we have that for all j € N, off an event with probability at most ¢; exp(—c2d™%),
Ej_l/Zdh(:E, y) < 5_17(63711/;1([1',y]ng))l/Q_17 for all z,y € 9D, and the same is true with [z, y]ng in
place of [z, y] SDJ_. Therefore, combining everything, we obtain that the following is true. There exist
constants cs, ¢4, « > 0 depending only on u and u such that on the event that the boundary length of
the 0-containing connected component of D\ 7/([0,]) is at least §2/3~* for all ¢ € [0, o], off an event
with probability at most c3 exp(—c46~?), it holds that N < %, ¢; < §~¥, the boundary length of the
part of ||, ,., ] contained in D; is at most 6*/3~%, and Egl/zdh(x, y) <074 ([, y]g’Dj))l/Q_a
for all z,y € 9D; and the same is true with [m,y]g)Dj in place of [:c,y]gD]_, forall1 < j < N.
In particular, we have that the dj,-diameter of the part of 7’ |[(,j70j .,] contained in Dj is at most
5_176?6(1/ 2-)(2/3-10) < §—u—u?§(1/2=0)(2/3-) 1t follows by a union bound that the dj,-diameter of
the outer boundary of 1/([0,0]) is at most §~28~4°§(1/2-0)(2/3-W)  So the proof is complete if we
choose u > 0 sufficiently small (depending only on u). O

Proof of Proposition 6.14, upper bound. Let u € (0,u/3) be as in Lemma 6.17, fix up € (0,1) (to
be chosen), and let E; s be the event that for all j € Z N [0,672/3%],¢ € [0,0,], the boundary
length of the 0-containing connected component of D; \ 7;([0,¢]) is at most §~%. Then, combining
Proposition 5.1 with Lemma 6.17, we obtain that there exist constants c;,cs,« > 0 depending
only on ¢ and « such that for all § € (0, 1), the following holds. On the event E, 5 N Emg, off an
event with probability at most ¢; exp(—c2d~%), the following conditions hold. The set A consists
of at most 6~2/3~% number of chunks and disconnects 0 from 9D, and for every chunk A in A,
there exists 1 < n < §“ and chunks N,..., N, discovered during the first §~2/3~v number
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of steps in the exploration such that N, N oD # O,N = Ni, and ON; N ON,;4+1 # 0, for all
1 < j < n—1. Moreover, if \ is a chunk discovered during the first §—2/3~" steps of the exploration
and 7’ is the corresponding radial SLEg curve which makes A/, then we have that the dj-diameter
of the outer boundary of # in N is at most §'/3~%, Suppose that the above hold. Fix z € A
and let NV be the chunk in A such that z € A. Let also Ni,..., N, be the chunks in A such that
N = N1,0N, N OD # 0, and ON; N ONj41 # 0, for all 1 < j < n — 1. Note that condition (II)
of E implies that the dj,-distance of z from 9.4 is at most M§'/3. Since ON; N ON;1 consists only
of points lying in the outer boundary of both 7;([0, 0;]) and 7;. ([0, 0;+1]), and N, N ID # 0, a
union bound gives that the dj,-distance of z from 9D is at most M §'/3 4 §'/3—4~u0_where we choose
ug > 0 such that ug < 1/3 — u. Furthermore, the proof of Proposition 5.1 implies that by possibly
taking ¢; to be larger and ¢, > 0 to be smaller (depending only on ¢, u), we can assume that
P[Eq 5] < c1 exp(—c2d~®). Combining everything, we complete the proof. O

6.4. SLEg hull cannot be too skinny. The main purpose of this subsection is to prove Lemma 6.18
which roughly states that with very high probability, we have that whenever the whole-plane SLEg
drawn on top of an independent sample from pqggpy and parameterized by quantum natural time
travels quantum distance at least §'/3log(6~1)", then at least § units of quantum natural time
have elapsed. The main component of the proof of Lemma 6.18 is Lemma 6.19 which is similar to
Lemma 6.17 except that it provides us with a better bound on the diameter of the outer boundary of
the radial SLE¢ curve of the form §'/3 log(6~")*. We will first prove Lemma 6.18 using Lemma 6.19
and then prove Lemma 6.19.

Lemma 6.18. There exists k > 0 so that the following is true. Suppose that (S, x,y) has distribution
pqspu and 1’ is an independent whole-plane SLEg from x to y which is parameterized by quantum
natural time. Suppose that 6 > 0. The pugspr measure of the event that there exists k € N so that the
dy,-diameter of the outer boundary of 7/ ([(k — 1), kd]) is at least 6*/3(log 6~ )" decays to 0 as § — 0
faster than any power of 6. Moreover, the nqspu measure of the event that 1’ travels d,-distance §1/3
without disconnecting at least §*/3(log 6~')~" units of quantum mass from y decays to 0 as § — 0
faster than any power of 0.

Lemma 6.19. Fix u > 0. Then, there exists a constant k > 0 depending only on u such that for all
§ € (0,1), 0 < £ <log(6~")", the following holds. Let D = (D, h,0) be a sample from u{gy, and
let 7' be a radial SLEg on D, independent of D, starting from a point chosen uniformly at random
on 0D according to v, and targeted at 0. Then, off an event with probability decaying to 0 as 6 — 0
faster than any power of 6, we have that the dj,-diameter of the outer boundary of n'([0,4]) is at most
53 log(67 1"

Proof of Lemma 6.18. Step 1. The boundary length process cannot be too large. Let k > 0 be the
constant of Lemma 6.19 with u = 2. First, we will show that if (L) is the boundary length process
corresponding to 7/, then supy<,«p L+ < log(671)? off an event whose uqspn measure decays to
0 as § — 0 faster than any po;ve_r of § (where T denotes the time duration of the excursion L).
Indeed, Lemma 5.9 combined with [20, Chapter VII, Corollary 2] implies that there exist universal
constants cj,cz > 0 such that conditional on 7 := inf{t > 0: L; = 1} < oo, the measure under
pqspr of the event that (Ly,) exceeds log(d—1)? is at most 1 exp(—c2log(671)?). Hence, since
pqspu [T < oo] € (0,00), we obtain that possibly by taking c; to be larger and c; to be smaller,
11QsPH | Supg<i<r Lt > log(671)?] < ¢1 exp(—calog(671)?) for all § € (0,1).

Step 2. Proof of the first claim of the lemma. We will start by proving the k& = 1 case first. For each
t > 0, we let U, be the connected component of S\ 7//([0, ]) containing y and set U; = S\ U,. Let 75
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be the first time ¢ that the distance between z and U, with respect to the interior-internal metric
in Ut is at least 4. Note that the interior-internal metric in Ut is determined by the restriction to Ut
of the field h generating (S, x,y). It follows from the proof of [75, Theorem 1.2] that on the event
{T > t}, the path-decorated quantum surface (U, hlg,n'ljo,n) is a.s. determined by the ordered
sequence of oriented marked components cut out by 7’| 1 from y viewed as quantum surfaces.
It follows that 75 is a stopping time with respect to the filtration (F;), where F; is the o-algebra
generated by the collection of quantum disks that 7[p has separated from y, each marked by
the last point on their boundary visited by 7’ and oriented by the direction in which 7’ has traced
their boundary. Set 75 = 75 A 6. Then, [75, Proposition 6.4] implies that conditional on F-,, the
conditional law of the surface parameterized by U, is that of ug:DLVT\;S If 75 = ¢, this implies that
the dj-diameter of 7/([0,d]) is at most §'/3 and so this handles the case that k = 1. If 75 < 6,
then we can apply Lemma 6.19 to obtain that conditional on 75 < ¢, the d;-diameter of the outer
boundary of 7/([7s,4]) is at most §'/3log(6~1)* off an event whose jiqspi measure tends to 0 as
d — 0 faster than any power of §. Hence, by possibly taking « to be larger, we can assume that the
dy-diameter of the outer boundary of 7/([0, §]) is at most 6'/31log(6~!)* off an event whose pqspn
measure tends to 0 as 6 — 0 faster than any power of §. For general £ € N, we note that conditional
on Fys and on the event that T > k¢, the law of the surface parameterized by Uy is that of ué:Df\,’{;‘,
and so by applying again Lemma 6.19, we obtain that the dj;-diameter of the outer boundary of
7' ([(k — 1)6, k]) is at most 6'/31log(5~1)* off an event whose qspi measure tends to 0 as § — 0
faster than any power of 6. Since pgspu [T > k6] is at most a constant times §~/3k~2/3, (recall the
discussion at the end of Subsection 3.2.4), the first assertion follows by taking a union bound over
ke N.

Step 3. Proof of the second claim of the lemma. We now turn to the second assertion of the lemma.
The time-reversal of L; is a 3/2-stable Lévy excursion with only upward jumps. This implies that
for each k£ € N,a > 0, conditional on {T" > ké}, the number of jumps in [kd/3, (k + 1)d/3] with
size at least a has the Poisson distribution with mean given by a constant times (J/3) faoo s5/2ds
which, in turn, is equal to a constant times Sa=3/2, By (4.1), (4.2), the conditional probability given
{T > k¢&} that the time-reversal of L makes fewer than (log 6~1)* jumps in [k&/3, (k + 1) /3] of size
at least 6%/3(log 0~1)~* decays as § — 0 faster than any power of §. By applying a union bound
over integer multiples of §/3, we see that this holds for all such multiples of §/3 simultaneously off
an event whose piqspi measure tends to 0 as ¢ — 0 faster than any power of 4.

We now consider I; in the forward time direction again. Then each interval of length § contains
at least one interval (for the time-reversal of L;) whose endpoints are an integer multiple of §/3.
Therefore the puqgspn measure of the event that there exists an interval of length § in which L
makes fewer than (log 6~')* downward jumps of size at least §2/3(log d—')~* decays to 0 as § — 0
faster than any power of §. Each downward jump of L; corresponds to a quantum disk whose
boundary length is given by the size of the downward jump. Moreover, these quantum disks are
conditionally independent given L. The probability that a quantum disk with boundary length
at least %/3(log 6~1)~* has area at least §*/3(logd~1)~2" is positive uniformly in 6. Therefore by
binomial concentration, the probability that fewer than a fixed fraction of these disks have area at
least §%/3(log 6—1)~2* decays to 0 as § — 0 faster than any power of §. Combining these observations
with scaling and the first assertion of the lemma implies the second assertion (up to a redefinition
of k). O

Next, it remains to prove Lemma 6.19. First, we will state and prove the following lemma which
gives an upper bound on the diameter of a radial SLEg chunk with high probability.
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Lemma 6.20. Fix a > 0, Ly < oc. Then, there exists a constant x > 0 depending only on a, Ly such
that for all ¢ € (0, Ly), the following is true. Let D = (D, h) be a sample from ,ué:D‘jW. Then, on the
event that the quantum area of D is at most a, off an event with probability decaying to 0 as 6 — 0
faster than any power of 6, we have that the dj-diameter of D is at most log(61)".

Proof. Fix k > 0 sufficiently large (to be chosen). Then, [77, Lemma 4.25] combined with Holder’s
inequality to compare the laws u{p'y and pgp' imply that there exists a constant ¢ € [1,00)
depending only on a, Ly such that if d* = sup,p distg, (2,0D), then on the event that p,(D) <
a, we have that d* < log(6~1)" off an event with probability at most cexp(—c~!log(6~1)*/3).
Fix u € (0,1/2) and consider the field I obtained by scaling lengths by ¢, distances by ¢!/2 and
areas by /2. Then, Lemma 6.16 combined with scaling imply that there exist universal constants
c1,c2 and a constant 8 > 0 depending only on u such that off an event with probability at most
c1 exp(—ca log(671)"#), we have that dj(x,y) < log(6~1) 1% < LT log(671)" for all z,y € ID.
Thus, if we choose » such that x > max{3~!,1}, then on the event that (D) < a, off an event
with probability decaying to 0 as 6 — 0 faster than any power of J, we have that dj(z,y) <
LT log(67 1) for all x,y € 0D and disty, (z,0D) < log(6~1)" for all z € D, which implies that
dp(z,y) < 21og(671)" + Lyt log(6~1)" for all z,w € D. This completes the proof. O

Next, we mention the following useful result whose proof is essentially the same with the proof
of Lemma 6.4.

Lemma 6.21. There exist universal constants c1,co > 0 such that the following is true. Fix £ > 0,( €
(0,1) and let D = (D, h,0) be a sample from pg5'y. Then, for all k,n € N such that nt~ > 1,k >,
off an event with probability at most ¢;n'/? exp(—cz log(log(k))log(k)), the following is true. There
exist points x1,...,xy on JD such that the intervals [:rj,acjﬂ]gm) form a partition of 9D and the
boundary length of [.Tj,l’j.i_l](a)ﬂ) is given by (n~'/2 and the dj,-diameter of [xj,$j+1]gﬂ) is at most
8012014 1og (k) /4 forall 1 < j < N — 1.

Proof. It follows from the argument used to prove Lemma 6.4. O

Proof of Lemma 6.19. Fix u > 0. We define marked points (z;), (y;) and stopping times (o) as in
the proof of Lemma 6.17. We let Nj be the first j € N such that either o, —0j_1 > § or £; < §%/3 and
pn(D) < M§*/3, where ¢; denotes the boundary length of the 0-containing connected component
of D\ 7/([0,0,]), and M > 1 is a universal constant (to be chosen). We claim that there exists a
universal constant p € (0, 1) such that conditional on 7’| 0,0,_1)> .S we have that either 0;—0;_1 > ¢
or {; < §2/3 and py, (D) < M§*/3, with probability at least p. Indeed, suppose that we are working on
the event that ¢; > §%/3. Note that by arguing as in the proof of Lemma 6.17, we obtain that there
exists a universal constant p € (0, 1) such that P[o; — o1 > |7/ [o,aj,lﬂ > pa.s.on {{; > §%3/2}.
Suppose that we are working on the event /; < 6%/3. By possibly decreasing p, taking M sufficiently
large and applying scaling, we have that P[v,(0D;) < {j, un(Dj) < M3 |1 |0,_,] > p. This
proves the claim. It follows that N5 < log(6~!)? off an event whose probability decays to 0 as
0 — 0 faster than any power of §. The proof of Lemma 6.17 implies that off an event whose
probability decays to 0 as 6 — 0 faster than any power of §, we have that the boundary length of
the 0-containing connected component of I \ 7/([0,¢]) is at most 21log(6~!)? for all ¢ € [0, 6], and
the boundary length of the part of /|, , .| contained in D;_; is at most 6*/%log(6~")* for all
1< j <log(6~1)2

Let x > 0 be the constant of Lemma 6.20 with Ly = 1 and a = M. Then, Lemma 6.20 combined
with scaling imply that a.s. on the event that on;, — on,—1 < 0, we have off an event whose
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probability decays to 0 as 6 — 0 faster than any power of ¢ that the dj;-diameter of Dy, is at most
6'/31og(6~1)*. Furthermore, Lemma 6.21 applied with n = |§~4/3¢,],¢ = 1 and k = |5~ | implies
that for j € N fixed, off an event whose probability tends to 0 as 6 — 0 faster than any power of
J, we have that there exists a partition [z;, xi+1)§D7_, 1 <1i < Nj — 1 of Dj such that the boundary
length of [z;, xiH)ng is given by ¢;n~'/2 and its dj,-diameter is at most 86;/271*1/4 log(6—1)%/* for
all 1 <i < N; —1. Let ; (resp. y;) be the leftmost (resp. rightmost) point of n;([aj,l, o;]) N OD;
and let 1 < ¢ < N; — 1 be such that z; € [xi,a:iJrl)ng. Note that by the end of the previous
paragraph, we have that the boundary length of the counterclockwise arc of 9D, from z; to y; is at
most 6%/% log(6~1)? off an event whose probability tends to zero as § — 0 faster than any power of 4.
Then, since £;n~/2 > §%/3, it follows that at most log(5~!)? intervals of the form [z, Zp11)$;, are
needed to cover the counterclockwise arc of 0D; from z; to y;, and so the latter has dj-diameter
at most < §'/3log(6~1)'7/4, where the implicit constant is universal. Combining everything, we
obtain that there exists a universal constant ¢ > 0 such that off an event whose probability tends to
0 as § — 0 faster than any power of d, the following hold.
(i) N5 <log(6—1)2
(i) The dj-diameter of Dy, is at most 6/ log(5~1)".
(iii) The dj,-diameter of the part of 7|, , , contained in D; is at most c§'/3log(5~")* for all
1< j<log(d™")

Then, the proof of the lemma is complete by taking a union bound and possibly taking ~ to be
larger. O

6.5. Proof of the exit time lower bound. Now we focus on proving the lower bound of Theo-
rem 6.1. The main ingredient of the proof of the lower bound is Lemma 6.22 which roughly states
that if (S, h, z, y) is a sample from pqspy and we truncate on an event whose complement has small
pqspr measure, then the desired lower bound holds for the metric balls centered at the quantum
typical point x.

The main idea behind the proof of Lemma 6.22 is that Propositions 5.1 and 6.14 allow us to
construct sufficiently many annuli A centered at = which have the following property. If we start
a complex Brownian motion B from z which is independent from (S, h, z,y), then B has to dis-
connect from oo a sufficiently large amount of quantum area while making a crossing of such an
annulus A between its inner and outer boundaries.

The proof of the lower bound in Theorem 6.1 will be complete by combining with the fact that
off an event whose pggpy measure tends to 0 as » — 0 faster than any power of r, we can cover
S by at most »—4 many metric balls of radius  and centered at quantum typical points, for some
finite and deterministic constant A.

Lemma 6.22. There exists a constant > 0 such that the following is true. Fix u € (0,1/3),179 > 0
and suppose that we are working on the event that r* log(r=1)=6=% < pu;,(Bp(z,7))) < r*log(r—1)8+,
‘%(5:7&7"))) > r4 and diam(S) > 6r forall z € S, r € (0,70), where (S, h,x,y) has law pqspn.
Then, we have that

E, [TBh(ac,r)] > r IOg(r_l)_H

off an event whose jiqspu measure tends to 0 as » — 0 faster than any power of r, where the expectation
is over the Brownian motion with S fixed.

Proof. Step 1. Setup and overview of the proof strategy. Suppose that we have the setup of Propo-
sition 5.1 with the above choice of u and the event E defined in Subsection 6.2. Proposition 6.2
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implies that we can choose M > 1 sufficiently large such that the statement of Proposition 5.1
applies. Fix » > 0 and suppose that the event in the statement of the lemma holds, and set
N, = r~%, Let (zj) be a sequence of points chosen i.i.d. from p;. Then, the proof of the lower
bound of Theorem 4.1 implies that S C U " Bn(zj,7) off an event whose ;iqspn measure tends to
0 as r — 0 faster than any power of r. The main idea of the proof of the lemma is roughly the fol-
lowing. First, we will show that off an event whose ;iqgpy measure tends to 0 as  — 0 faster than
any power of r, the following holds. Fix 1 < j < N, such that dj(z, z;) > r. Then, we can find an
annulus A; contained in By, (z, ) which consists of radial SLE¢ chunks and disconnects By, (z,7/2)
from z; as in the statement of Proposition 6.14. Moreover, the dj-distance with respect to the
interior-internal metric in .A; between the inner and outer boundaries of A; is at least 7 log(r—1) 7
for some constant p. We will show this in Step 2. Next, in Step 3, we will show that the following
holds with high probability. If we start a Brownian motion from z, then it will disconnect at least
rlog(r~1)~7 units of quantum area while crossing .A; and before exiting By, (, r) for some constant
g > 0 and some 1 < j < N,. Then, we will conclude the proof in Step 4 arguing as in the proof of
the upper bound of Theorem 6.1.

Step 2. Constructing good annuli with high probability. Let u € (0,1/3) be the constant in
Lemma 6.17. Fix aq, as > 0 (to be chosen) and for 1 < 5 < N,, let 7-1 be the first time after /2 that
L7 goes above r2log(r~1)~%, where L’ is the process describing the boundary length evolution
of the metric exploration from z to z;. Given that we have defined ..., we let 7, be
the first time after 77, | + rlog(r~1)~% that L’ goes above rlog(r~!)~%. Lemma 4.6 implies that
SUpgese, L1 < r2log(r~1)2 for all 1 < j < N,, off an event whose pqspr measure tends to 0 as
r — 0 faster than any power of r. Thus, from now on, we can assume that we are working on that
event. Note that there exists a universal constant py € (0, 1) such that if Y is the time-reversal of a
3/2-stable CSBP excursion starting from 1, then Y hits 0 before time 1 with probability at least py.
It follows that the ygspr measure of the event that 7-1‘ L 4 rlog(r~')~ is at most exp(log(1 —
po) log(r—1)~@2%e1/2) " Thus, if we choose a1, ay such that az < a;/2 — 1, we have that 7/ <
5+ rlog(r~1)792 for all 1 < j < N,, off an event whose pqspu measure tends to 0 as r — 0 faster
than any power of r. Similarly, conditionally on T,{L_l < 00, we have that T%—Tﬁl_l < 2rlog(r=1)—®
off an event whose pqspn measure tends to 0 as » — 0 faster than any power of r. Fix 1 < a3 < as.
Then, we have that le g(r-1yes < OO off an event whose ;1qspn measure tends to 0 as r — 0 faster
than any power of r. Fix also a4 > 1 (to be chosen). Let Dj be the surface parameterized by
S\ B; (yc 71) Suppose that we perform the exploration in DJ as in Proposition 5.1 up until either

the boundary length of the z;-containing component does not lie in [Li ; /2, LJT ; log(r~1)~*¥] or we

have discovered a chunk which cannot be connected to 87){ by a sequence of at most log(r~1)a4%

number of chunks which have already been discovered or we have discovered log(r—!)%(2/3+v)

number of chunks. Let N, 11 . SNy 7 be the chunks that have been completely discovered up until

that point. Lemma 6.17 combmed with scaling imply that conditionally on 7{ < oo, the probability

that there exists 1 < 7 < N such that the d;-diameter of the outer boundary of j\/ 7 is at least

log(r—1)—aa(l/3= ”)(ij)l/Q is at most ¢; log(r—1)2(2/3+% exp(—cy log(r~—1)*%), where ci, ¢z, > 0
1

depend only on u. Thus, if we choose a4 > a~!, then we have that the above probability tends to 0
as r — 0 faster than any power of r. Also, by construction, we have that if the above event occurs,
then for all 1 <14 < N, every point on the outer boundary of N, ''J has dj,-distance from By (z, Tl') at
most r log(r~1)e4(2u=1/9+1 In particular, if we choose a4 so that 1 + (2u — 1/3)ay < —ag, we have
that the outer boundary of A" is contained in By, (x, 7/ + rlog(r~')=%) forall1 <i < N.
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Now, we perform the exploration in D{ as in Proposition 5.1 with § = log(r~1)~% after we scale
lengths by (L’,)~!, distances by (I’,)~'/? and quantum natural time by (L’,)3/2. Let A] be the
Tl T'l T'l

event that the elements of N, f’j s N i,’j for which the event F in Proposition 6.2 occurs disconnect
x from z;. We also let B] be the intersection of AJ with the event that the annulus .4 formed by
the Ml’j ’s is contained in the 7 log(r—1)!~P0% d; -neighborhood of oD! , Where pg is the constant in
Proposition 6.14. We pick a4 so that ay > p;'. Combining Propositions 5.1 and 6.14, we obtain that
there exists a constant ¢ > 0 depending only on u such that nqspu [B{ | T{ < oo} > q. Note that the
choices of a1, as, ay imply that ./\/'ll’j, . ,/\/]{,’j are all contained in B .. (z, Tf +rlog(r=1)792), if we
further assume that 1 — ppay < —as. Moreover, it is easy to see that the conditions in the statement
of the lemma imply that the conditions in Proposition 6.14 hold for the field in D{ obtained by
rescaling h. Hence, it follows from Proposition 6.14 that the distance with respect to d; between
the inner and outer boundaries of A is at least 7 log(r—")~P1%4~%2/2 where p; is the constant in
the statement of Proposition 6.14. Furthermore, for all : € N such that Tij < 0o, we define events
Al B!, and SLEs chunks AV, ,i] as above. The same analysis as above implies that given 77 < oo, the
conditional probability that Bg occurs is positive uniformly. Let I; be the smallest i such that Bg
occurs. Then, the above analysis implies that the uqspn measure of the event that I; > log(r—1)%
for some 1 < j < N, such that dj(z,z;) > r tends to 0 as » — 0 faster than any power of r.
Note that if A; is the annulus corresponding to I;, then the choice of the constants a;, as, a3 and a4
implies that A; C B, (x,7)\ By ., (z,7).

Step 3. A Brownian motion starting from z disconnects r log(r~')~7 units of quantum area while
crossing A; for the first time with high probability. Suppose that we are working on the event that
I; <log(r—')® forall1 < j < N,. Let Dy,..., Dy, denote the connected components of S\ By,(z,)
with the property that they contain a point whose dj,-distance from the boundary of the component
is at least . Then z; € U2, D; for some 1 < j < N,. Fix ¢, j such that z; € D;. Let K be the set
of points disconnected from z; by a Brownian motion starting from x and run until the first time
that it exits B,;Zj (z,7). Then, [60, Proposition 6.32] implies that K has the same law as the hull
of a whole-plane SLEg which is independent of (S, z,y), starting from = and stopped upon hitting
B;L’Zj (z,r) since we further have that B,‘hzj (z,r) is a Jordan domain (see [77, Theorem 1.1]). Then,
we have that the SLEg hull has to pass through the annulus A; and upon doing so, it has to make
a crossing in A; from the outer to the inner boundary of A;. In particular, it has to travel dj-
distance at least rlog(r—!)~%4P1=%1/2, Then, Lemma 6.18 implies that there exists a constant ¢ > 0
depending only in a1, a4 such that off an event whose ;1qspy measure decays to 0 as » — 0 faster
than any power of 7, we have that the whole-plane SLE¢ disconnects from z; at least r*log(r—1)~¢
units of quantum area while crossing A; for the the first time.

Step 4. Conclusion of the proof. Fix > 1 large (to be chosen and depending only on a;, as, as, a4
and ¢) and suppose that r is sufficiently small such that log(r—')=? < log(r—1)~%/3/M. Then,

N 1/2
condition (VI) implies that the (Li i > log(r~')~# d;-neighborhood of the boundary of a good
I

chunk A of A; has area at most rlog(r—!)1=P5~Pa4/3 where p is the constant in (VI). Since
L’, > rlog(r~1)~®, possibly by taking § to be larger, we can assume that the rlog(r—!)=# dj,-
T

J
I

J
neighborhood of the boundary of a good chunk A of A; has area at most r log(r—!)!~P8—pas/3,
It follows that by taking g sufficiently large (depending only on a;, a9, a3, as and ¢), we can as-
sume that the union of the r'/2log(r~—')~# dj,-neighborhoods of the boundaries of the chunks in
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A; has area at most r log(r—!) 4. Therefore, we obtain that the hull of the whole-plane SLEg must
exit the 7'/21log(r—1)~# dj-neighborhood of the boundaries of the chunks and so the same is true
for the Brownian motion. Let N be the first chunk in A; that the Brownian motion hits the part
of A" which has dj,-distance at least /2 log(r—')~# from ON and let w be the first such point it
hits. Let ¢ : NV — D be the conformal transformation as in (III). Then, condition (III) implies
that ¢(w) has Euclidean distance at least log(r—')~7 from 0D, where ¢ = M (8 + 1 — a3/3). This
implies that the probability that the Brownian motion (conformally mapped) hits B(0,1/4) before
leaving D is at least a constant times log(r‘l)_a . Moreover, it follows from (III) that the quantum
mass assigned to B(0,1/2) with respect to the embedding of A into D induced by ¢ is at least
log(r~1)=4a4/3 /M. Since Gp(1/2)(2,w) 2 1 for all z,w € B(0,1/2) with the implicit constant be-
ing universal, (3.14) implies that the total amount of time in B(0,1/2) that the LBM starting from
w € 0B(0,1/4) spends up until the first time that it exits B(0,1/2) is at least a universal constant
times log(r~!)~4%2/3 /M. Combining everything, we obtain that E, [7p, (] is at least a universal
constant times log(r—1)~%-4@s/3 /). This completes the proof of the lemma. O

Proof of Theorem 6.1, lower bound. Suppose that (S, z,y) has distribution puqspu. Since the met-
ric in S is bi-Holder continuous with respect to the Euclidean metric, we know that there exists
a € (0,1) deterministic such that pqggspg-a.e., there exists ro € (0,1) such that By(z, 71" C
B(z,7'/*) C By(z,r) for all z € S,r € (0,79). Fix 79 € (0,1) and suppose that we are work-
ing on the event that for all » € (0,ry), the above holds and and in addition we have that
diam(S) > 67, r*log(r=1)757% < up(Bpr(z,7)) < rtlog(r~1)®+* and ’”(ﬁ%(g)’r)) >rituforall z € S,
where u € (0,1/3) is fixed. Note that by Theorem 4.1 and since S is a finite metric space pqspu-a.e.,
we obtain that uqspy-a.e., there exists ry € (0, 1) satisfying these properties.

Let (z;) be a sequence of points in S chosen i.i.d. from ;;, normalized to be a probability measure.
With N, = r—%~4/°*we know from the proof of Lemma 6.22 that § C U‘;V:TIB}L(Z]‘, (r/4)4/*) off
an event whose pqspy measure tends to 0 as » — 0 faster than any power of r. Then, Lemma 6.22
implies that there exists a universal constant x > 0 such that off an event whose pqspy measure
tends to 0 as » — 0 faster than any power of r, the following holds for all 1 < j < N, simultaneously.
The conditional expectation given S of the amount of time that the LBM starting from z; spends
in Bp(zj,7) \ Bn(zj,r/2) before leaving By (zj,r) is at least rlog(r~1)". Fix 1 < j < N, and
z € B(z, (r/4)/*) C By(z;,7/2). We note that the Radon-Nikodym derivative between harmonic
measure on 9B(zj, (r/4)'/*) as seen from z and from z; is bounded from above and below by
universal constants. By integrating over their first hitting point of dB(z;, (r/4)'/®), we thus have
that if B* (resp. B%) is an LBM starting from z (resp. z;) then the expected amount of time that
B* spends in By(zj,7) \ Bn(2j,7/2) before exiting B,(z;,7) is comparable to the expected amount
of time that B* spends in By (z;,7) \ Bp(2;,7/2). Hence, the proof is complete possibly by taking
k to be larger since S C U;-V:TIB<Z]‘, (r/4)Y®). O

7. BOUNDS ON THE LIOUVILLE HEAT KERNEL

In this section we prove Theorems 1.1 and 1.2. We start with Theorem 1.1, which is now a direct
consequence of the results in the previous sections.

Proof of Theorem 1.1. First, we will show the desired upper bound for the LBM killed upon exiting
bounded domains in C whose closure does not contain 0. Also, by scaling and disintegration with
respect to area, it suffices to prove the desired upper bound when h has the law of the unit area
LQG sphere. Fix U C C non-empty and open and such that 0 ¢ U. Let also D C C be a Jordan
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domain such that U € D and 0 ¢ D. Note that [9, Lemma 3.9] implies that the law of a zero-
boundary GFF on D is mutually absolutely continuous with respect to the law of the restriction
to D of a massive GFF on R? with constant positive mass. Hence, combining [3, Theorem 1.2]
with absolute continuity, we obtain that there a.s. exists a random constant C; < oo such that
pe(z,y) = pe(y,z) < Crt~tlog(t™1) for all z,y € D, t € (0,1/2], where p;(-,-) denotes the heat
kernel of the LBM killed at the first time that it exits D, with respect to a zero-boundary GFF h°
on D. Note that the definition of the law of i given in [35, Section 4.5] combined with the proof
of [70, Proposition 3.4] imply that the laws of h|p and h°|p are mutually absolutely continuous.
Hence, it follows that for a.e. instance of h, there exists a random constant C' < oo such that
pP(x,y) = pP(y,r) < Ctllog(t™!) for all 2,y € D, t € (0,1/2], where pP(:,-) denotes the
Liouville heat kernel for the LBM with respect to h when killed at the first time that it exits D.
Thus, it follows that for all (zg,7) € D x (0,27Y4) with By (x0,2"/4r) C D, t € (0,7%) C (0,1/2),
A C By (zo,r) Borel and x € By(zg, ), we have that

P, [Xt € A,t < TBh(:vo,r)] = /Apfh(foﬂ“) (l’,y) d)uh(y)

é/ptD(fv,y) dpn(y) < Ct ' log(e +t™ M (A).
A

In particular, condition (DU) holds for h.

Next, we proceed to prove that condition (E) holds. Indeed, Theorem 6.1 implies that (2.3)
holds with 8 = 4 and k¢ = kew = & for all (z,7) € D x (0,1) such that By(z,r) C D, where
k is the constant in the statement of Theorem 6.1. Therefore, by further setting oy = ay =
B1 = B2 = 4, Lemma 2.11 combined with Theorem 2.12 and since disty, (U,S? \ D) > 0, we
obtain that the desired upper bound holds for all (t,z,y) € (0,1/2] x S? x U. Now, suppose that
conditional on (S?,h), we choose independently a point z from pj; and let ¢ : S> — S? be a
conformal map such that ¢(0) = 0 and ¢(z) = co. Then, it follows from [35, Proposition A.8]
that h := ho ¢! + Qlog|(¢~!)'| has the same law with » modulo a scaling factor, where h and
h are considered to have the embedding introduced in [35, Section 4.5]. Note that z ¢ {0, 00}
a.s. Hence, combining the fact that the desired upper bound on the heat kernel holds in U with
[13, Theorem 1.3], we obtain that there a.s. exist open neighborhoods U; and U; of 0 and oo
respectively, and random constants C7, Cy such that

forallt € (0,1/2], (z,y) € (S*xU;)U(S?x Us). Finally, we have already shown that (7.1) holds with
t € (0,1/2] and z, y both lying in a bounded domain in C with positive distance from 0. Combining,
we complete the proof. O

As the first step in proving the lower bound in Theorem 1.2 we record an on-diagonal heat kernel
lower bound as a further consequence of the results in the previous sections.

Lemma 7.1. There exists a deterministic constant x > 0 such that for pqspu-a.e. instance (S, z,y)
there exists C' > 1 such that for all w € S and t € (0, &,

>__ b

~ Ct(logt=1)r"

Proof. First, we note that assumption (2.1) holds for a.e. instance (S, z,y) of a sample from the
fixed area Brownian map, since (2.1) is a.s. true for the restriction of the GFF on R? to every open

(7.2) Pe(u, u)
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and bounded subset of R?, and the law of the latter is locally absolutely continuous with respect to
the law of the fixed area Brownian map as explained in the proof of Theorem 1.1. Hence, it follows
by scaling that assumption (2.1) holds for pqgspu-a.e. instance (S,z,y). Moreover, assumptions
(V)< and (E) have been established for puqspn in Theorems 4.1 and 6.1, respectively. Therefore,
the proof is complete by combining with Theorem 2.1. O

In order to prove the off-diagonal lower bound, we want to construct a chain out of order
(d(u,v)*/t)'/3 sets which connect u to v, each of diameter of order (¢/d(u,v))'/? between which
the Brownian motion can move with positive probability. The sets that we will use will be given
by annuli of SLEg chunks using a certain good event as in the exit time lower bound. In what
follows, we will define the good event in Subsection 7.1. We will then establish various properties
of the corresponding good annuli in Subsection 7.2. We will complete the proof of Theorem 1.2 in
Subsection 7.3.

7.1. The good event. We are now going to give the definition of the good event that we will use
for the chunks of SLEg.

Fix § € (0,1] and M > 1, fix a constant p > 0 (corresponding to condition (VI) in Subsection 6.2)
which is small enough as specified in Proposition 6.8, and let D = (D, h, 0) be a sample from Nészzw-
Let also n’ be a radial SLEg in D started from the point x € 9D which is sampled uniformly from
vy, (normalized to be a probability measure) and targeted at 0, and such that 7’ is independent of
D. Let y be the point on 9D which is antipodal to x with respect to v, and let & be the first time
after §/M that the curve 7’ is in the boundary and let © = & A 4. In the case that W = (H, h, 0, o)
is a sample from ,u(‘gfvﬁ, we let ' be a chordal SLEg in H from 0 to co which is independent of
W and it is parameterized by quantum natural time with respect to h. We define stopping times
0,0 analogously. In either case, we let E be the event that o = & and the following conditions
hold for the quantum surface N disconnected by 7/([0,c]). (Note that o = o implies that A is
homeomorphic to D.)

(I) For every r € (0,6'/3M~") and every x,y € N with dj-distance at least r from N there
exists t € [M M543 /(log 1)M, MM §4/3(log 1)M] so that

/ Y (2, w) dpp(w) > M,
Bh(yzr)

where p" denotes the Liouville heat kernel on .

(I) For every z € N and r € (0,63 /M) there exists w € N with dj,(z,w) < r and By, (w, 2r™) C
N.

(II1) The conditions in the event F used for the exit time lower bound, described in Subsection 6.2,
hold with the parameter M.

The rest of this subsection is devoted to the proof of the following statement.

Proposition 7.2. For every po € (0, 1) there exists M > 1 depending only on p so that > [E)YY N
{E holds for N'} | o < 6] > 1~ py forall 6 € (0,1].

First we note that by scaling, it suffices to prove that conditions (I)—(III) hold with high proba-
bility (if M is sufficiently large) when § = 1. From now on, we will assume that § = 1. Also the fact
that condition (III) holds with as high probability as we want (provided we choose M sufficiently
large) follows from Proposition 6.2.

Next we focus on proving that condition (II) holds with high probability if we choose M large
enough. The main idea in order to prove the claim is to prove that condition (II) holds with high
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probability when N is the radial SLEg chunk drawn on top of an independent sample from ué:D?w.
Then the claim will follow by arguing in the same way as in Steps 3 and 4 in the proof of Lemma 6.9
and the second paragraph of the proof of Lemma 6.10. We believe that this approach will make
it easier for the reader to understand the proof of Proposition 7.2 (instead of proving directly the
claim for the quantum wedge without comparing the law of the latter with that of a quantum disk),
since similar arguments have been presented in Section 6.

Let us now prove that condition (II) holds with high probability when the radial SLEs chunk A/
is drawn on top of an independent sample from ,ué:D?W. This is the content of the following lemma.

Lemma 7.3. Suppose that D = (D, h,0) has law Néﬁ{w for £ > 0 fixed. Then, there exists a de-
terministic constant M > 1 such that ué:DfW-a.s. there exists (random) ro € (0, 1) such that for all
z € D,r € (0,rg), there exists w € D with dj,(z,w) < r and By, (w,2r™) C D.

The main ingredient in the proof of Lemma 7.3 is the following lemma which states that the LQG

distance with respect to a sample from ué:DKW for £ > 0 (when parameterized by D) is bi-Holder
continuous with respect to the Euclidean metric (with deterministic exponents) a.s.

Lemma 7.4. Suppose that we have the setup of Lemma 7.3. Then, there exists a deterministic constant
B € (0,1) such that ué:D‘jW-a.s. there exists C' > 1 such that

Clz—wYP <dp(z,w) < Clz—wl® forall zweD.

Proof. First we will show the claim of the lemma for a free boundary GFF h on D normalized so
that the value of its harmonic part at 0 is equal to zero and then use the same argument as in the
proof of Lemma 6.5 to deduce the claim for the weighted quantum disk.

Step 1. Proof of the claim for a free boundary GFF on D. We note that h can be sampled as follows.
Let h be a free boundary GFF on H such that its average on HN 0D is equal to zero and consider the
conformal transformation F' : H — D such that F'(z) = —j—jrj Let also h denote the harmonic part
of h. Then we have that h can be sampled as h=hoF1_ E(i). Moreover [54, Proposition 1.8]
implies that there exists deterministic constant 5 € (0,1) such that the following is true a.s. For
every compact set K C H, there exists (random) constant C' > 1 such that

C7Yz—w|tP < di(z,w) < Clz — w|? forall zwe K.
Thus the same is true with h — H(z) in place of h since
5y (22 0) = exp (—E(i) /\fﬁ) d:(z,w) forall zw e H.

Furthermore it holds that dy_ .1, 5 1g -1y (% 0) = dﬁ_ﬁ(i)(F_l(z), F~}(w)) and there exists de-

terministic constant M > 1 such that M~ < |(F~!)(w)| < M for allw € D\ B(—1,1/4). It follows
that there a.s. exists a random constant C' > 1 such that

(7.3) C Yz —wt/P < dp(z,w) < Clz — w|® forall zweD)\ B(-1,1/4).

Note that the random fields h(z) and h(—z) have the same law and so combining with (7.3), we
obtain that it is a.s. the case that there exists C' > 1 such that

(7.4) CYz —w['P < de(z,w) < Clz—w|’ forall zweDNB(-1,1/4).

Fix z € D\ B(—1,1/4), w € B(—1,1/4) N D and let y be the point of intersection between
DNoB(—1,1/4) and the segment [z, w]. Then combining (7.3) and (7.4) we obtain that

di (z,w) < di(2,y) + di(y,w) < 2C|z —wl’.
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To show the lower bound for d;(z,w), we fix ¢ > 0. Since d; is a length metric, we obtain that
there exists a path P : [0,1] — D such that P(0) = w, P(1) = z and the d;-length of P is at
most d;(z,w) + €. Let x be the first point of D N dB(—1,1/4) that P intersects. Then either
|z —z| > |z —w|/2 or lw — x| > |z — w|/2. Suppose that the former case holds. Then (7.3) implies
that

dp(z,w) + € > dp (2, ) > C Yz —a|VP > C 12718z — w8,

Similarly if the latter case holds, (7.4) implies that

dp(z,w) + € > dp(w, ) > C 7w — 2|8 > C7127 VB |z — |8,

Hence since ¢ > 0 was arbitrary, we obtain that

dp(z,w) > C127 VB |z — |/

in either case. Combining we obtain that it is a.s. the case that there exists C' > 1 such that
(7.5) C Yz — w|1/5dﬁ(z, w) < Clz—wl® forall zweD.

Step 2. Conclusion of the proof. Next we will combine Step 1 with the argument in the proof of
Lemma 6.5 to complete the proof of the lemma.

Recall that [5, Theorem 1.2] implies that the following is true a.s. Suppose that f is sampled
from the group conf(H) of conformal automorphisms of H when the latter is endowed with the
Haar measure, and let h; be sampled from the infinite measure of a weight-2 quantum disk with
v = \/% weighted by vy, (OH) 2. Then there exists a deterministic constant C' > 0 such that the
law of the field hy o f~1 + Qlog|(f~!)| is given by C times the law of h — 2Qlog| - |+ + ¢ where
c is sampled independently from the infinite measure on R given by exp(—Qc)dc, and recall that
1 denotes a free boundary GFF on H normalized so that its average on H N D is equal to zero. It
follows that that the field 1 o f~' o F~! + Qlog |(F o f)~!)'| has the same law as C' times the law
of the field

hoF™1_ 2Qlog |F7 ()| + Qlog |(F~Y| + ¢

where log |z|+ = log max(|z|,1).
Since d;_._; = exp (E(z’) / \/6> d;, we have by (7.5) that it is a.s. the case that there exists M > 1
such that

M_1|z—w|1/f3§d,~wF,1(z,w)§M|z—w|ﬁ forall z,weD.

Moreover as explained in the proof of Lemma 6.5, we have that
—2Q10g [F~1 ()] + Qlog|(F~Y()| = O(1)
uniformly in D. Thus it follows that almost everywhere, there exists M/ > 1 such that
MYz —wMP < dyoirop)-11Qlog | (Fof) -1y (7:w) < M|z —w]® forall zweD.

Combining with the fact that the event in the lemma statement is invariant under the coordinate
change formula of quantum surfaces with disintegration with respect to the total boundary length
of a quantum disk sampled from the infinite measure, we obtain the lemma statement for a sample
from ,ué:DE. Therefore, it also holds a.s. for a sample from ,ué:DfW since the measures Nészw and

Hé:DK are mutually absolutely continuous. This completes the proof of the lemma. O
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Proof of Lemma 7.3. By absolute continuity, it suffices to prove the claim for ,ué:DZ instead. Let
B € (0,1) be the constant of Lemma 7.4. Then, Lemma 7.4 implies that ué:Df-a.e., there exists a
random constant C' > 1 such that C~!|z—w|Y? < dy(z,w) < C|z—wl|? for all z,w € D. Pick M > 1
deterministic such that M/ > 1. Then, we have that D N B(z, rM ) C Bp(z,7) for all 2 € D and all
r > 0 sufficiently small, which implies that there exists w € D such that B(w, rM /2) CDNBy(z,r).
Fix M > B~'M. Then, we have that By, (w,r™) C B(w,rﬂ/2) C DN By(z,r) forall r > 0
sufficiently small (independent of z, w) and this completes the proof. O

Now we proceed on proving that condition (I) holds with high probability for M large enough.
As in the first paragraph of the proof of Lemma 6.10, the main idea is to compare locally the laws
of a quantum disk and a quantum wedge of weight 2, and then deduce the claim by proving that
condition (I) holds with high probability when the surface N is drawn on top of a sample from
Mé:D?W' The purpose of the following lemma is to show the latter claim.

Lemma 7.5. Suppose that we have the same setup as in the definition of the good event just before
the statement of Proposition 7.2, where the surface N is drawn on top of a sample D = (D, h,0) from
,ué:DlW. Then, it is a.s. the case that there exists Mg > 1 such that condition (I) holds for all M > M,
when § = 1.

The main idea of the proof of Lemma 7.5 is the following. Suppose that we have the same setup
as in the statement of Lemma 7.5. Fix M > 1 sufficiently large and let z,y € N be such that
distg, ({x,y},ON) > r, where r € (0, M~!). Let also Tj, () denote the total amount of time that
the Liouville Brownian motion starting from z with respect to h and killed upon exiting A/ spends in
By (y,r). Then we will show that if M is sufficiently large, it is very likely that there exists t € I,
with

1 N
(76) T b ($, w)dﬂh(w) 2 E:E [TBh(y,T)]>
Intrl By ()

where

Tagy o= (MM dog(r=1) =, MM/ dog ()M,
Moreover we will show that with high probability (if M is large enough), we have that
(7.7) E,[Tg, () 2 7™/2.

Therefore combining (7.6) with (7.7), the proof of Lemma 7.5 will be complete.
We start with proving a lower bound for E; [T, (,]- This is the content of the following lemma.

Lemma 7.6. Suppose that we have the same setup as in the definition of the good event just before
the statement of Proposition 7.2, where the surface N is drawn on top of a sample D = (D, h,0) from
Né:D,W' Set h := h|yxr oL+ Qlog|(¢1)|. Then there exists a deterministic constant o > 0 such that
it is a.s. the case that there exist M > 1,co > 0 such that the following is true for all r € (0, M~1)
and all =,y € D such that distdﬁ ({z,y},0D) > r. If T4 denotes the amount of time that the Liouville

Brownian motion in D with respect to h spends in the set A C I before exiting D, then we have that

Let us first briefly describe the setup of the proof of Lemma 7.6 before proceeding with its proof.
The setup is similar to the setup of the proof of Lemma 6.13. Let I C 0D be a fixed countable and
dense subset of OD. Then it is a.s. the case on the event that o = 7, that there exist z,w € I such
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that 7/([0,¢]) = 7'([0, 7]), where 7 is the first time that 1/ disconnects z from w. Also we have that
z lies in the boundary of the connected component of D \ #/([0, 7]) which contains 0. Note that 7 is
also the first time that »’ disconnects w from 0 and so 7'y ;; has the same law as a chordal SLEg
process in D from x to w, stopped at the first time at which it disconnects w from 0, and the latter
time is the same time at which the chordal process disconnects w from z. Moreover the locality
property of SLEg implies that the latter chordal process has the same law as a chordal SLE¢ process
77 in D from x to z, stopped at the first time 7 at which it disconnects z from w. In particular we
have that V has the same law with the hull of 7|y 7. Combining with the rotational invariance
of the law of radial SLEg, we obtain that it suffices to prove the claim of the lemma when N is
replaced by the hull of 7| 77, where 7/’ is a chordal SLEg in D from —i to z stopped at the first time
7 that it disconnects z from w, where z, w are fixed and distinct points in I and 7 is independent
from D.

Proof of Lemma 7.6. Step 1. Outline and setup. Suppose that we have the same setup as in the
paragraph just after the statement of the lemma and let (f{t) denote the family of hulls of 77’. Again
by the locality property, we have that 7' can be coupled with a chordal SLEg 7’ in D from —i to w
stopped at the first time 7 that 7}’ disconnects z from w such that 7'|jo 1 = 7|0 7-

Without loss of generality, we can assume that w lies in the counterclockwise arc of dD from
—i to z. Let 77 denote the left outer boundary of 77 when viewed as a curve from w to —i. It
follows from [70, Theorem 1.4] that 7 has the law of an SLE 8 (% —2; % — 4) process in D from w

to —i with the force points located at w~ and w™ respectively. Let U be the connected component
whose boundary contains —i of the complement in D of the curve 7) stopped at the first time that it
disconnects —i from z. Similarly we let V' be the connected component whose boundary contains
w of the complement in D of the time-reversal of 7 stopped at the first time that it disconnects
w from z. Let also G be the connected component of D \ 7 lying to the left of 7. Note that
Proposition A.1 implies that int(f( ), U, V, G are all Jordan domains such that UUV UG C int(IN{;)
and let ¢ : int(f(;) —D,f:U —D,g:V — Dand ¢ : G — D be conformal transformations
chosen in some arbitrary but fixed way. Let also T be the arc traced by 7 up until the last time that
it hits the counterclockwise arc of 9D from —i to z and let .J be the arc traced by the time-reversal
of 7 stopped at the last time that it hits the clockwise arc of O from —i to z. Note that I N .J = 0.
Note also that [85, Theorem 5.2] combined with the time-reversal symmetry of the law of 77 (see
[71, Theorem 1.1])) implies that there exists a deterministic constant « € (0, 1) such that all of the
maps f~', ¢! and ¢! are a-Holder continuous.

Fix M € (1,00) sufficiently large (to be chosen) and let r € (0, M~ 1). Let z,y € N = int(l?;)
be such that diStdh‘ﬁ ({z,y},ON) > r. In Step 2, we will show that the probability that a complex

Brownian motion starting from z intersects ¢~ (B(0,1/2)) before exiting A for the first time is
> r1/(aB)  where the implicit constant is independent of  and 5 € (0,1) is the constant in the
statement of Lemma 7.4. Then we will conclude the proof in Step 3 as follows. Suppose that we
are working on the event that the Brownian motion intersects ¢»~*(B(0, 1/2)) before exiting A for
the first time. Using the a-Hélder continuity of the maps ¢!, f~!, ¢~ and ¢!, we will show that
the probability that a Brownian motion starting from a point u € ¥»~1(B(0,1/2)) intersects By, (y, )
before exiting A for the first time is > r!/(@%) where the implicit constant is uniform in « and
r. Therefore the proof will be complete by combining with the Markov property of the Brownian
motion and the fact that u,(By(y, 7)) > rM/4 A M is sufficiently large (see [46, Lemma 3.3]).
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Step 2. Lower bound on the probability that the Brownian motion hits 1)~ (B(0, 1/2)) before leaving
N. We have the following cases.

Case 1. Bhw(x’r) N (IUJ) = 0. In that case, we have that Bhw(a:,r) C G and so Bh\]v“(x’ r) =
By, (w,7). Lemma 7.4 implies that there exists deterministic constant 3 € (0, 1) such that possibly
by taking M to be larger, we have that

(7.8) B(z,r'/P) C By, (w,7) C B(z,rP).

Let C > 0 be such that [¢)~! (u) —¢~!(v)| < Clu—v|* for all u,v € D. Then combining with (7.8)
we obtain that

B(yp(x), C~eyt/ o) B gop-14+Q10g |(w-1) (¥ (2), 7).

Note that the probability that starting from ¢(z) the Brownian motion intersects B(0, 1/2) before
leaving DD is at least a constant times — log|¢(x)|. In particular, combining with conformal in-
variance, we obtain that there exists a (random) constant ¢y > 0 such that the probability that a
Brownian motion starting from z intersects ¢~ !(B(0, 1/2)) before exiting A for the first time is at
least corl/(@h),

Case 2. Bhw(ac, T) N1 # (. Possibly by taking M to be larger, we can assume that Bhw(x, )N J=
() and hence Bhw(x,r) C V, which implies that Bh‘ﬁ(x, r) = By, (z,7). Similarly to Case 1, we
have that

B(g(.’IJ), C—l/arl/(aﬁ)) - Bh|vog*1+Q log|(g—1)| (g(w)a T’),
where C > 0 is such that
97 (u) — g7 (v)| < Clu—v|® forall wu,veD.

In particular, we have that dist(g(z), D) > C~1/*r1/(@#) and so possibly by taking the constant
¢o > 0 in Case 1 to be smaller and combining with conformal invariance, we can assume that the
probability that a Brownian motion starting from z intersects v~ (B(0, 1/2)) before exiting N is at
least cort/(@h)

Case 3. Bhw(x’ )N J . As in Case 2, possibly by taking M to be larger, we can assume that
Bhw(% NI =0 and so Bhw(%"") C U, which implies that By, (z,7) = Bhw(x,r). Since f~1
is a-Holder continuous, by arguing as in Case 2, we obtain that possibly by taking the constant
¢p > 0 to be smaller, we have that the probability that a Brownian motion starting from z intersects
¥~ 1(B(0,1/2)) before exiting Afor the first time is at least cor/(@5),

It follows that in every case, there exists a (random) constant ¢y > 0 such that the probability
that a Brownian motion starting from z intersects 1y~ (B(0, 1/2)) before exiting A/ for the first time
is at least cor!/(@h),

Step 3. Conclusion of the proof. Next we set A := Bhw(y, ). Recall that Lemma 7.4 implies that
possibly by taking M to be larger, we can assume that

B(u,r'/?) C By(u,r) = By (u,r) € Blu,r?)

for all u € D such that distg, (u, 0D) > 7.
Suppose first that By, (y,) N (I U J) = (. Then arguing as in Case 1, we obtain that there exists
a constant C' > 1 such that

B((y), C~V(r/2)/P)) C ¢(B(y, (r/2)'/7)).
Then [60, Exercise 2.7] implies that there exists a (random) constant ¢ > 0 such that for all u €
B(0,1/2), the probability that a Brownian motion starting from v intersects B(1(y), O~/ (r/2)1/(@5))
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before exiting D for the first time is at least ¢rr'/(®%), Therefore combining with Step 2 and the
Markov property of the Brownian motion, we obtain that the probability that a Brownian motion
starting from x intersects A before exiting A for the first time is at least ccor?/ (@9,

Note that [46, Lemma 3.3] implies that possibly by taking M to be larger, we have that

1n(B(y, (r/4)9)) > pn(Bu(y, (r/4)1/5%)) > M/,
It follows that

E,[Ta] > ccor?/ (P inf E,[T
[Ta] = cco wedB(y.(r/2)1/5) [ B(y,(r/4)1/ﬂ)}

g

> ccor?/(@F) inf / Gp(y/m)(u,v)dun(v) 2 ras s
u€dB(y,(r/2)Y/8) J B(y,(r/4)1/5) ’

where G Bly,r/8) denotes the Green’s function on B(y,r'/#) and in the latter inequality we also
used that Gz, ,1/)(u, ) is bounded from below on B(y, (r/4)'/?) by a universal constant which is
uniform on u € dB(y, (r/2)"/?). ~ ~

By arguing in the same way in the cases that either By (y,r) NI # 0 or By(y,r) N J # 0, we

obtain that

2 .M
Ex[TA} Z rap 4

in both cases and so this completes the proof of the lemma. 0

Proof of Lemma 7.5. Step 1. Outline and setup. Let o > 0 be the deterministic constant in Lemma 7.6
and let M > 0 be sufficiently large such that the statement of Lemma 7.6 holds. Set h :=
hly oo™ + Qlog|(¢~")| and fix z,y € D, € (0,M~") such that disty_({x,y},dD) > r. Set
also A := B;(z,r) and as in Lemma 7.6, we let T4 denote the amount of time that the Liouville
Brownian motion in I with respect to & spends in A. Then Lemma 7.6 implies that there exists a
(random) constant ¢y > 0 depending only on M such that

(7.9) Ey[Ta] > cor®™ 7.

Moreover [46, Lemma 3.3] implies that it is a.s. the case that possibly by taking M to be larger, we
have that
M

(7.10) pn(Br(u,r)) >ra  forall weD suchthat disty, (u,dD) > 7.

Set

noen = [ f P (@, w)dtdp; (1)
DJMM/2 log(r—l)lw

M—M/2 log(r—l)—]\/f
mmm:AA P (r, w)dtdps (w).

In Step 2, we will show that f;(M,r) — 0 as r — 0 faster than any positive power of r while in
Step 3 we will complete the proof of the lemma by bounding f»(M, r) from above and combining
with (7.9).

Step 2. fi1(M,r) tends to zero as r — 0 faster than any positive power of r. First we note that
u— Eylmp) = [ G(u, w) dup(w) is an a.s. continuous function on D and is therefore a.s. bounded,
where G denotes the Green’s function on . By Markov’s inequality, we therefore have that

E.|m]

P,[m >1] < —0 as t— o0



TWO-SIDED HEAT KERNEL BOUNDS FOR 4/8/3-LIOUVILLE BROWNIAN MOTION 107

uniformly in v € D. In particular, by increasing the value of M if necessary, we have that that
P,[mp > M] < 1/2 for all u € D. By the Markov property, we therefore have that P, [rp > tM] < 27¢
for all w € D and ¢ > 1. We therefore have by applying the Markov property again that

fiM,r) < / / ) pP (oY (z), w) dt duy, (w)
D M]M/2(10g;)]bl
= wal(z) [(T]D) — MM/? log(rfl)M)]l{TD>MM/2 log(r71)M}]

1 MM/2=1 og(r—1)M
<o B 1] Pyt > M 10gr~)¥] <sup . o] (3
which tends to zero as r — 0 faster than any positive power of r, provided M is sufficiently large.

Step 3. Conclusion of the proof. Now we will complete the proof of the lemma by bounding from
above the term fo(M, 7).

First we note that a sample from D can be produced as follows. Let (SQ,E, 0,00) be a doubly
marked quantum sphere and let 7 be a whole-plane SLEg in S? from 0 to oo parameterized by
quantum natural time with respect to h. Let 7 be the first time ¢ that the quantum boundary length
of the co-containing connected component of S? \ 7/([0,¢]) is equal to 1 and we condition on the
event that 7 < oo. Let U be that component and let ¢ : U — D be the conformal transformation
such that ¢)(c0) = 0 and ¢'(c0) > 0. Then conditional on 7 < oo, we set

h:= E|U op P+ Qlog|(v Y| and dp(z,w) = d; (Y 1(2),y H(w)) forall z,weD.

lu

Set 7 := ¢ '(2),y := ¢ *(y). Then we have that either d;(v'(2),%'(y)) > 2M~! or
dy (v=1(Z), v (7)) < 2M . We will prove the claim of the lemma in each different case.

Case 1. d; (v~ (%), ¢~ (y)) > 2M . Suppose that d; (1 (2), ' (y)) > 2M 1. Let also ﬁt(Au,v)
(resp. pY (u,v)) denote the heat kernel for the LBM on S? (resp. U) with respect to h (resp. h|y).
Then Theorem 1.1 implies that there exists a deterministic constant x > 0 and there a.s. exist
random constants ¢y, ¢o such that

t

for all u,v € S%,t € (0,1/2]. Moreover, by [13, Theorem 1.3], pP (u,v) = p¢ ("' (u), v~ (v)) for
all u,v € D,t > 0. It follows that for M sufficiently large and since ' (¢~ '(A)) = B; (v~ (y),r),
we have that

M~M/2 /(1og %)]M
/ PP (&, w) dt dy, ()

f2(M77’)S/

p~1(A)JO

M—M/2 log(r’l)’M lo t*l K

< m(®) [ BT exp (—eal(200) 47/ loge + (2001) )™ di
0

and the right-hand side tends to 0 as » — 0 faster than any positive power of r. Letting f := f1 + fa
and Iy, := [M~M/2/(log 1)M, M™M/2(log 1)M], we thus have that for M sufficiently large,

M7+ /A / P (2, w) dt dpiz (w) > Ea[T4],

where f(M,r) — 0 as r — 0 faster than any positive power of r by combining with Step 2.
Since |I.| is of order M™/2(log 1)M, by dividing both sides by |I);,| and combining with (7.9)

T
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and (7.10), we see that for r € (0, M~ 1),

a+M/2
/ /pt r,w) dyg (w) dt > ZTa+3M/4(10g )M >
Ing,r

IIMrl ~ MM (log H)M

provided M is sufficiently large. Thus, there exists t € Iy, such that the claimed lower bound in
the statement of the lemma holds.

Case 2. dz(¢~1(Z),¢"1(y)) < 2M~'. Suppose now that d;(¢»~'(Z),¢"'(y)) < 2M~'. Note
that we have already shown in Step 2 of the proof of Lemma 7.6 that there exists a deterministic
constant 3 € (0,00) and there a.s. exist (random) zp € D, ¢p, s > 0 such that B(zp,s) C D and the
probability that a complex Brownian motion starting from z intersects B(z, s/4) before exiting D
for the first time is at least cor?.

Let (X?) denote the Liouville Brownian motion on I with respect to h, killed when it first exits
D. Suppose first that = € B(z,s/3) and set T := inf{t > 0 : X} € 0B(z0, s/2)}. Possibly by taking
M to be larger, we can assume that

disty (™" (o™ (B(z0,5/3))), 0~ (9~ (B(20,5/2)))) = 100M .
Then we have that d; (¢ (¢~ 1 (XP)), ¥ (y)) > 2M ', Similarly if 2 ¢ B(z,s/3), we let T be the
first time that X intersects B(zq, s/4) before exiting I. Then we have that P[T < co] > cor” and
di (v (e HXD)), (@) = 2M L, if we take M sufficiently large such that
disty_ (" (¢ (B(20,5/4))), ¥~ (¢~ (B(20,5/3)))) = 100M ",
Thus we have that
di (™ e (X)) (G) 2 2M
in every case. Also Lemma 7.6 implies that
Exp[Tal Z rotM/A a5 on {T < oo}
and so we obtain that
o [ly7coo) Exp [Ta]] 2 r7eM%,

Also we have that
[H{MM/2 log(r—1)M /2<T <00} / Lixs, ea dt} < /A/MM/2 e 1312 Y (z,w) dt dpsz;(w)

< sup ( |/ P (2, w) dt dug(uﬁ)
z€D A JMM/21og(r—1)M /2

which implies that

o0
potBEM/A < qup / / pév(z,w) dt duz(w) | + 11 + Iz + I3,
zeD \JA JMM/210g(r—1)M /2
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where

M~ ]W/Qlog(
I = E; ]1{T<MM/2 log(r—1) M/Q}/

—1)]%
Lixp, eay dt] :

MM/2 |og(r—1)M

I2 - E‘T ]I{TSMM/Q log(r=1)M /2} M~—M/2]og(r—1)M ]I{Xt+T€A} dt] ’

[e.o]

I3 =F, H{TSMA4/2 log(r—1)M /2}

1 dt| .
MM/2 log(r—1)M {Xt+TeA} ]

M~M/2]og(r
I7<ocy /A/O

1 dt
/MM/2 log(r—1)M {(xpeay ]

M—M/2 log(ril)*M 1 “1\k
</ Og(t)exp( co(2Mt) Y3 dt

// P (@, w) dt iz (w).
MM/2 |og(r—1)M

Thus, by arguing as in Step 2, we obtain that I; + I3 — 0 as » — 0 faster than any positive power
of r. Furthermore, we have that

3MM/21og(r—1)M /2
I < / / P (o, w) dt dyi (w),

M/2 Jog(r—1)M j24 N ~M/2 log(r—1)—M

Moreover, we have that
—1)1\/1

L+I3<E,

(X2, w)dtdw,;(w)]

+ Ey

Hence, by arguing as in Case 1, we get that there exists t € [M~™/2log(r—1)=M, MM/2Jog(r—1)M]
such that [, p (z,w)dps; (w) > rM. O

We next record the following which will be used in Subsection 7.2 (see in particular the proof
of Lemma 7.9) in order to bound from below the probabilities that the Liouville Brownian motion
intersects certain fixed LQG metric balls. We chose to state and prove the lemma at this point since
its proof follows from the same argument used to prove Lemma 7.5.

Lemma 7.7. For every M > 1 there exist constants K1, Ko > 1, depending on M, so that the following
is true. For uqspm a.e. instance of (S, h,x,y) there exists Ay > 0 so that for all § € (0,Aq) and
u,v € S? with dy,(u,v) < 6 there exists t € [6%1,6Y/51] so that

P,[X; € By(v,6M)] > 62,
where X denotes Liouville Brownian motion and P, is the law under which X starts from .
Proof. This follows from the same argument used to prove Lemma 7.5. O

Proof of Proposition 7.2. First we note that by scaling and as in the proof of Proposition 6.2, it suf-
fices to prove the claim of the proposition in the case that 6 = 1. Moreover, combining Lemma 7.5
with the argument in the first paragraph of the proof of Lemma 6.10 in order to compare locally the
laws of a quantum disk and a quantum wedge of weight 2, we obtain that condition (I) occurs with
as high probability as we want provided we choose M sufficiently large. Furthermore, combining
Lemma 7.3 with the arguments in Steps 3 and 4 in the proof of Lemma 6.9 and the argument in the
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second paragraph of the proof of Lemma 6.10, we obtain that condition (II) holds with high proba-
bility as well provided we choose M large enough. Therefore, the proof is complete by combining
with Proposition 6.2. 0

7.2. Definition and properties of the good annuli. The main goal of this section is to prove the
following proposition.

Proposition 7.8. There exists a constant £ > 0 so that for pqspu-a.e. (S, h,x,y) there exists Ag > 0
so that for all § € (0,A) the following is true. For every z € S there exists an annulus A with the
following properties.
(i) Ais contained in By,(z,5"/3(log6~1)%) \ Bp(z,5/3(logd=1)=").
(ii) The dj-distance between the inner and outer boundaries of A is at least §'/3(log 6—1)~*.
(iii) If u,v € A have dj-distance at least 6'/3(log 6=1)~"/2 from d.A, then there exists an element s
of [6*/3(log 61)=*, 6*/3(log 6—1)*] so that

/ P (u, @) dpn(a) > exp(—(log 6~1)7)
By, (v,61/3(log §=1)~r)

where p” denotes the heat kernel for Liouville Brownian motion on A.
(iv) For each u € A there exists s < §'/% so that

/ ps(z,a) dun(a) > exp(—(log6~1)") and
Bh,(u,51/3)

/ ps(a, 2) dpun(a) > exp(—(log 6~1)").
Bh(u751/3)

As explained just after the proof of Lemma 7.1, we will use Proposition 7.8 in order to prove that
the following is true for uqspn-a.e. (S, h,z,y). Fix u,v € S distinct points and 0 < ¢ < dp(u,v).
Then Proposition 7.8 implies that we can find a finite and connected chain of topological annuli
Aj,---, Ay connecting u to v and each of them satisfying properties (i)-(iv) and consisting of

unions of good chunks in the sense of Proposition 7.2. Moreover we have that N = (‘1’1(127’”)4)1/ s

and diam(A4;) =< ( T (Z,v))l/ Sforall 1 < j < N, and the Brownian motion can move between the
annuli with uniformly positive probability. The reason for introducing properties (i) - (iv) is that
they will ensure that the required bounds on the heat kernel of the Liouville Brownian motion hold
and hence complete the proof of Theorem 1.2 in Subsection 7.3.

We will focus on proving Proposition 7.8 for the rest of the section. From now on we fix M > 1
so that py € (0,1) from Proposition 7.2 is large enough so that the assertion of Proposition 5.1
holds.

We start by describing the setup of the proof of Proposition 7.8. Suppose that (S, h,x,y) has
distribution p1qspw, let & > 0 be the constant from the statement of Lemma 6.22 and fix u € (0,1/3).
Fix also rg € (0,1) and from now on, we assume that we are working on the event that

:uh(Bh(zaT)) > r4+u
pe(S) T
forall z € S,r € (0,79), where (S, h, z,y) has law puqspu. We note that Theorem 4.1 implies that
we can find such r( satisfying the above properties for pqgspr-a.e. instance (S, h,z,y). Let k € N
be sufficiently large such that 27% < 7y and set N, = 2%*+%. Let (z;) be a sequence chosen i.i.d.
from p,. Then, we know from the proof of Lemma 6.22 that S C Uj.V:’HBh(zj, 27%) off an event
whose p1qspn measure tends to 0 as k — oo faster than any power of 27%. We set §, = 273% and

rtlog(r~1) 757" < pp(Bp(z,7)) < rtlog(r~1)8T, and diam(S) > 6r
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for all 1 < i,j < Nj such that dy(z;, 2;) > 27%/2, suppose that we define stopping times i and

events Ai’j, AR Bi’j ....,B% as in the proof of Lemma 6.22 with r = (5,1/ ®. We also define
collections of chunks N}/, ..., N™7 in a similar way, where z; plays the role of z in the proof

of Lemma 6.22. Then, arguing in the same way as in the proof of Lemma 6.22, we obtain that off
an event whose iqspy measure tends to 0 as k — oo faster than any power of 2%, it holds that we
can find an annulus A; ; ;. consisting only of good chunks such that

Aijk C By (zi, 25,1/3) \ Bh(zi,Csi/g),

A; j 1, disconnects By, (z;, 5,1/ 3) from z;, and the distance between the inner and outer boundaries of
A; j. 1 with respect to the interior-internal metric in A4, ; is at least 5;/ 3 log(égl)_”. Therefore by
the Borel-Cantelli lemma, we have that uqspu-a.e., there exists Ky € N such that £ > Ky implies
that A; ;1 satisfies both (i) and (ii) from Proposition 7.8. We now show that the A; ;; satisfy the
other properties.

We start by proving that condition (iii) holds with high probability. This will follow from applying
a union bound using the Borel-Cantelli lemma and the following lemma combined with the fact that
the number of chunks in 4, ; ;, is at most log(élzl)c for some constant ¢ > 0 by (i).

Lemma 7.9. Fix b > 0. Then there exists a deterministic constant ¢ > 0, depending on M and b so
that the following is true off an event whose jgspn measure tends to 0 as k — oo. Suppose that we
have the setup described just after the statement of Proposition 7.8. Fix k € N and suppose that we are
working on the event that k > Ky and gk = 0k log(é,;l)_b < Ag where Ay is as in Lemma 7.7. Fix
1 <i,j < Ny, and further suppose we are working on the event that dy(z;, z;) > 27%/2. Suppose that
N1, N are two adjacent chunks in A = A; ; i, for which the event E occurs and let N be the quantum
surface parameterized by the interior of N1 U Na. For each u,v € N with distance at least Si/ 3 /M
from ON there exists s € [M_Mg:/g/(log s HM, MMg:/?’(log 5. HYM] so that

Pu[X, € By(v,6,/M~1)] > 5,

where X denotes Liouville Brownian motion and P, is the law under which X starts from .

Proof. Suppose that A, N7, Ao, N are as in the statement of the lemma. We also let K, K5 be as in
the statement of Lemma 7.7. We take p = 8K /3 so that gfz/ K _ 32/ 3 is of lower order than gé/ 3,
Suppose that u,v € N both have distance at least Si/ 3 /M from ON. We may assume without loss
of generality that u € N;. By condition (II) in the definition of E for the chunk A7, there exists
uy € N such that dj, (u, uy) < gz and By,(u1, 25£M) C M. Let us € Nj have distance gfc’ from ON5
with By, (ug, gfg’M) C M and let v € N be such that dj, (ug, v2) < 252’ with By,(ve, 2§£M) C Ny (we
apply again condition (II) in the definition of E but for the chunk N5 in place of 7). If v € A7, then
the claim of the lemma follows from condition (I) in the definition of E for the chunk Ni. If v € N5,
then for s1, s9, 3,54 > 0 and s = s1+s2+ 53+ 34, we have that P,[ X € By, (v, 5;/3M_1)] > p1pap3P4
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where

p1 = Pu[Xs, € Bp(u1, 62,

Do = inf  P,[X,, € Bh(UZagiM)]v
wGBh(mﬁﬁM)

ps=  inf_ Pu[X, € By(va,00M)],
we By, (ug,5M)

pi=  inf_ P,[X,, € By(v,5,/*/M)].

wE By, (v2,00™)

By Lemma 7.7, there exists a choice of s1, s3 € [SZK ' Si’/ Kl] so that py, p3 > g’,ZK %, Furthermore, by
condition (I) in the definition of the event E for both chunks A7 and N>, applied with r = EZM <
513 /M, we can find sy, 54 € [M—M5%/(log 5 YM, MM5! (1og 5, 1)M] so that pg,ps > o0
Altogether, this implies that there exists s € [ MM 52/ ?/(log 6, )M, 2M M g:/ ®(log 6, 1)M] and a
constant ¢ > 0 depending on M and b so that P,[ X, € By (v, ;5;/3M’1)] > 5~,§. O

Next we focus on proving that condition (iv) holds with high probability. The main ingredi-
ent of the proof of the claim is the following lemma which states that with probability tend-
ing to 1 as K — oo, we have that condition (iv) holds for all A; ;; with dj,(z;,2;) > 2-k/2 and
B, (2, 5;/3 log(ék_l)“) C Bp(z, 5,1/'{0) for some fixed and deterministic constant xg € (0, c0).

Lemma 7.10. There exists a constant ¢ > 0 such that the following is true. Suppose that we have the
setup described just after the statement of Proposition 7.8. Then, off an event whose jiqspa measure
tends to 0 as k — oo, we have that the following holds. Fix 1 < i,j < Ny and further suppose that we
are working on the event that k € Ko, dy(2i, 2;) > 27%/? and By ., (z, 51/3 log(d, %) C By (i, 5,1;/”0)
for some fixed and deterministic constant o € (0,00). Then, for all z € By(z;, 5k/ log(8,1)~"), there
exists s € (0,4, /% 0g (6 )¢ such that

/B gty P2 @) 2 exp(—(logd;)%) and
hlU

/B ( 51/3)p8(a’ 2) dpn(a) > exp(—(log 5;1)5)
h\U

forallue A:=A; .
Proof. Since k € Ky, we have that
AC Bi (6, 10g(07)") € Ba(zi,0/™) € Bu(z,6,/™),

where 0 < k1 < Ko is fixed and deterministic. Let X be the LBM and let 7 = inf{t > 0 : X; €
A}. Then, under P,, 7 is clearly bounded from above by the first exit time from By (z, 51/ )
so that Theorem 6.1 implies that E,[7] < 6, 4/m1 log(6; 1) for all w € By(z,0, 1/51) for some
fixed and deterministic constant ko € (0, 00). In particular, if ¢; > ko + 1, we have that P.[r >
(54/ " log (0, )Cl] — 0 as k — oo faster than any power of 27%. Indeed, Markov’s inequality implies

that if k3 € (k2,1 — 1) is fixed and deterministic, then

P.[r > 6" 1og(5;71)™] < 6, " log(67, ) ™ L[] < log(s; 1),
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Hence, the Markov property of X implies that
P.[r 2 6!/ 10g(67")"] < exp(—(ra — o) log(3; ) 1),

which proves the claim. Once X hits A, we know from Lemma 7.9 by taking ¢; to be larger if
necessary and depending only on s and M, that X can move from one chunk in A to an adjacent
chunk in A in time between a constant depending only on M times 5i/ 3 log(ék_l)*cl and a constant
depending only on M times 5:/ 3 1og(5k_1)c1 with probability at least 4,'. Note that the number of
chunks which make up A is at most log(s; *)*(?/3~%) which is at most log(s; ') by taking c; to
be larger if necessary, where u € (0,1/3) is as in the statement of Proposition 5.1. Hence, we can
find c2 > ¢ fixed and deterministic, depending only on ¢; and ¢ (where ¢ is the constant in the
statement of Lemma 7.9), such that X hits By, (u, 5;/3/M) in time at most (6:/“1 + 5:/3) log(6;,1)e
with probability at least exp(—log(ék_l)”). Suppose that w € By, (u, 5,1/3/M) and ¢t € [5,1/62, 1/2].
Then, by taking ¢, to be larger if necessary, we can assume using Lemma 7.1 that there exists a

1
random constant C' > 1 such that p;(w, w) > Gilog Ty

Suppose that t' = 52‘/ %Jog(t~1)~22. Note that

pi(w, w) :/Spt_t/(w,a)pt/(a, w)dpp(a).

Then, Theorem 1.1 implies that by taking ¢, to be larger if necessary, there exist random constants
Ay, Az > 0 such that forall a € S\ By (u, 5,1/3), we have that

o) N—1ye2 a.w 1/3
pr(a,w) < Aulog(() ™) exp<_A2 (dh(’)4> )

- t t!
and so
[ pevlwapea o)) - 0
S\ B (u,6,"")

as k — oo, faster than any power of 27*. Therefore, by increasing C' if necessary, we have that

1
/ / D e !
Lo Pt e ) =

k

Applying again Theorem 1.1 to py(w, a), we obtain that

Clog((t)~1)e 1
e — ] ! > .
4 /Bh(u,51/3) Pt adinle) = log(t=1)e

k
After possibly increasing C', we obtain that
t/
_ d > =
/Bh(u,a,i“) Pe-v 0, @)dpn{a) 2 Ctlog(t=1)e

Note that for all ¢ € [5:/02, 25/3/62], we have t' > 5:/3 log (6, 1) 722 and tlog(t~1)%2 < 5:/62 log(6; 1)e
with the implicit constants depending only on ¢9, and so

4/co
k

26,72 1
P [ [ et addina) 2 e(-Tos(i )
§ lgh(uvék )

by taking co to be larger if necessary. It follows that the expected amount of time that the

LBM X starting from z spends in By (u, 5;/ 3) in the time interval [0,6:/ “log(s; 1) is at least
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exp(—2 log(ék_l)@). Therefore, taking c3 > ¢, depending only on ¢, and dividing by §%/<2 log(égl)@,
we obtain that there exists s € (0, (53/ “log(d; )] such that

/ s, Ps(z:a)dpn(a) > exp(—log(d;)™).
Bh(u,ék )

This proves the first inequality of the lemma. The second inequality follows from the symmetry of
the heat kernel and the first inequality. O

Recall that in order to be able to apply Lemma 7.10, we need to have with high probability as
k — oo that

Bﬁ,zj(zi,@i/g log (s, 1)) C Bh(zi,éi/“(’)

whenever dj,(z;, z;) > 27%/2 for some fixed and deterministic constant g € (0,00). This will be a
consequence of the following lemma together with the Holder continuity of dj, with respect to the
Euclidean metric.

Lemma 7.11. There exists a deterministic constant p > 0 so that for uqspu-a.e. instance of (S, h, x,y)
there exists ey > 0 so that for all € € (0, €y) the following is true. For every set S C S with dj-diameter
at most €P there exists at most one connected component of S \ S which contains a dp-ball of radius e.

Proof. We can assume that (S, h,z,y) is parameterized by S?. Recall that the metric dj, is Holder
continuous with respect to the Euclidean metric on S?. This implies that there exists a € (0,1)
deterministic and C > 1 so that for all u,v € S we have that

(7.12) C~ d(u,v)Y* < dy(u,v) < Cd(u,v)®,

where d denotes the Euclidean metric on S?. Fix €, p > 0 and suppose that S C S has dj,-diameter
at most €. Then (7.12) implies that S has Euclidean diameter at most C'e®?. All components of
S?\ S except one have Euclidean diameter at most C'c®”. Therefore by (7.12) all components of
S?\ S except one have dj-diameter at most C L+aea® The result thus follows by assuming that p is
sufficiently large so that o%p > 1. O

Proof of Proposition 7.8. Fix ¢ > 0 and suppose that (z;) is an i.i.d. sequence of points in S chosen
independently from ;. We explained after the statement of Proposition 7.8 why for k£ > K and
dp(zi, zj) > 2-k/2 we have that A; j 1 satisfies properties (i) and (ii). Lemma 7.9 and the fact that
the number of chunks in A4; ; is at most 1og(6,;1)c for some constant ¢ > 0 by (i) together with
another union bound and the Borel-Cantelli lemma implies that, after possibly increasing the value
of Ko, we have that (iii) also holds for each such A; ;; by possibly increasing . Lemma 7.11
together with the Holder continuity of d; with respect to the Euclidean metric implies that by
possibly increasing the values of Ko and , we have that if d,(z;, z;) > 27%/2 then By . (z, 2 kR C
By, (zi, 2K/ ). It thus follows from Lemma 7.10 that by possibly increasing Ky and « further we
have that (iv) holds for each A; ; ;, with dj (2, ;) > 2-k/2,

By possibly increasing Ky further, for every 1 < i < N}, there exists 1 < j < Ny, so that dj(z;, z;) >
2-k/2_ For z € Bp(2;,27%) we take A = A; ;. (breaking ties in an arbitrary way). This choice of A
then satisfies properties (i), (ii), (iii), and (iv). O
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7.3. Completion of the proof. We now turn to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that (S, h,z,y) has distribution pqspn. Fix u,v € S andlet k € Z
be such that 2% < dj,(u,v) < 2", Fix t € (0, 3Aody(u,v)) where Ag > 0 is as in Proposition 7.8.
For each j € Z we let §; = 27/, in particular §;, < Ag. Let v be a geodesic from u to v. For each
j > k we consider the following chain of annuli. We let zp; = v = v(0) and we let Ay ; be an
annulus which is centered at z; ; and satisfies the properties from Proposition 7.8 with parameter
d; and let k > 0 be the constant from the statement of Proposition 7.8. Given that we have
defined 2, ..., 2z, we let 2,1 ; be a point on the interval of v from z, ; to v which is in A, ;
and has dj-distance at least 6;/ 3(log 5;1)_“ from 0A, ;. Note that z,, ; is well-defined since by
possibly increasing «, we can assume that the dj,-distance between the inner and outer boundaries
of A, ; is at least 2(5;/ 3 log(éj_l)*”, by condition (ii) in the statement of Proposition 7.8. We then
let A,, 11 ; be an annulus which satisfies the properties from Proposition 7.8 centered at the point
Zn41,j With parameter J;. We continue this until we find the point zy, ; so that dy(zn; ;,v) <
6;/3(log 5;1)_“. Since we have that 6;/3(log 5;1)_“ < dn(zij, ziy1,5) < 6;/3(10g 6;1)“, it follows
that dy, (u, v)/(8}" (log 6, 1)%) < Ny < dj,(u,) /(6> (log 6;1)~*).

We take jy € Z to be the smallest j € Z so that 5]1./ "< 5,3/ ®. We note that log 5].’1 is comparable to
log 6,;1 for k < j < jo. Therefore we will phrase estimates from Proposition 7.8 in terms of log 6,;1.
Suppose that we have picked w; € A ; for each £ < j < jo. By Proposition 7.8-(iv) we know that

there exists sj, < sYr < 6:/ 3 5o that
Jo

(7.13) / s Psio (u, @) dpp(a) > exp(—(logd, )"™).
Bh(wjo ’éjO )

For each k + 1 < j < jo, we let m; be the first index i so that A; ; N Ag j—1 # 0. Then we have that

m; < (log 5,;1)”. By iterating Proposition 7.8-(iii) m; times, we see that by increasing the value of

k if necessary, there exists 6;1/3 log(éj_l)_” <s< 6;1/3(10g 5;1)“ so that

(7.14) / Ly Ps(wit1, @) dpp(a) > exp(—(log &, 1)%").
By, (wj,éj/d)

By applying the semigroup property and iterating (7.14) over jo < j < k and combining with (7.13),

we thus see that by possibly taking « to be larger, there exists 52/ 3 log(ék_l)_’”" <s< 62/ 3(log 5,;1)’i

so that

(7.15) [ e din(@) = exp(-(k ~ jo)(logd ).
Bh(wkvék/ )

For each i, we let v; ;, be a point in A; ;, N A;41 ;, whose dj,-distance from both 0.A; ;, and 0.A;1 1, is
at least 52/ 3 log(6; 1)~ /2. We let vy, = wy. It follows from Proposition 7.8-(iii) that there exists
(52‘/3(log 5. m<s< (52‘/3(log 6, ')~ so that

(7.16) / » Ps(vi—1k,a) dun(a) > exp(—(log 5, 1)").
Bh(vi,k76k/ )

By applying the semigroup property and iterating (7.16) over 1 < i < Ny, we see that there exists

N5 (log 6,1) 7% < s < N6t/ (log 6, )" so that

(7.17) / s ps(vo,ks @) dun(a) > exp(— Ny (log o, 1)").
By (v, k40" ")
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Arguing in the same way as (7.15), we have that there exists 5:/3 log(égl)_” <s< 52/3(log 5,;1)”
so that

(7.18) / s ps(a,v) dpup(a) > exp(—(k — jo)(log 5;1)2”).
B (vny,,k:0,"")

Combining (7.15), (7.17) and (7.18), increasing the value of x if necessary, and applying the
semigroup property we see that there exists ¢ € [t(logd, '), t(log 6, *)"] so that
(7.19) Dto (u, v) > exp(—Ni(log 5,;1)”).

Therefore, the claim of Theorem 1.2 holds with ¢, in place of ¢. We will now complete the proof
by establishing the result for ¢ in place of ¢y. If we apply the argument described above but with
t(log 0, ')~ /2 in place of ¢, then (7.19) implies that there exists ¢1 € [t(log ¢, ')~2%/2,t/2] so that
pt, (u,v) satisfies the desired lower bound. We have that

R Pita (1,0) pry (a,v) dpn (a).
By, (v,6,* (log 6, 1) =*)

By arguing as above, we have that for all a € By, (u, 5;/3 log(6,1)™"), pr, (a, u) satisfies the desired
lower bound. Therefore we just need to get a lower bound on

Lo Pty (,0) dpn (@) = Pl X, € Bu(u, 5 (log ;1) ™))
By (u,6/* (log 6, 1)=")

Take ¢, = t(log 0, ') ~2*. From Lemma 7.1, we have that
1
s @) 0,0 din (@) = ity () >
for some random constant C' > 0. The upper heat kernel estimate in Theorem 1.1 implies that
Pty (a, ) is negligible if a ¢ By, (u, 6,1/3(10g 6, ')7"). Thus by possibly adjusting the value of C, we
have that

1
_ d >
/Bh(u7611€/3(10g6k_1)ﬁ) pt t1 (u7a) th (a/au) /“Lh(a) — Ct(logtfl)li
Applying Theorem 1.1 to py, (a, u) yields that
Cllogty )" 1

, Pe—t, (u,a) dpp(a) > —————.
l2 /B;L(U,(si/s(log(;kl)—n) =2 (4, @) dpn(0) Ct(logt=1)x

Rearranging and increasing the value of C gives

to
Pe—t (uaa) d/‘h(a) > AT —1\or "
/Bh(u,§,1€/3(log5;1)") ' Ct(logt 1)2

Combining this with the above implies that P,[X;_;, € B(u, 5;/ 3(log 5, ')~")] satisfies the desired
lower bound. U

APPENDIX A. SLEg HULLS AT THE TIMES WHEN THE TIP IS ON THE BOUNDARY ARE JORDAN DOMAINS

In Sections 5, 6 and 7, we make use of the hulls of SLEg to construct nice cellular decompositions
of quantum disks and wedges. An essential feature of the hulls of SLEg, on which our arguments
heavily rely, is that they are Jordan domains at the times when the tip of SLEg is located on the bound-
ary. For completeness, here we give a detailed proof of this fact on the basis of some fundamental
results from the theory of imaginary geometry developed in [70, 72].
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We first give the precise formulation of this property in the case of radial SLEg, since our argu-
ments in Sections 5, 6 and 7 require it mainly for this case. In the same way as in Subsection 3.2.4,
for a radial SLEg 7' on D targeted at 0 and ¢ € [0,inf(n')~%(0)), we define the hull K; of /([0,1]) as
the complement in D of the 0-containing component of D \ ([0, ¢]).

Proposition A.1. Let = € 9D and let 1/ be a radial SLEg on D from x targeted at 0. Then a.s., for any
t € (0,inf(n')~1(0)) with 0K; N 0D # 0D and ' (t) € D,
K\ 0K, is a Jordan domain in C with boundary 0Ky, and 0 K;N0D

Al . . . o e e
A1) is a compact interval in 9D containing n’(0) = x in its interior.

Proposition A.1 can be obtained by combining with a version of the locality of SLEg the analo-
gous statement for chordal SLEg on H stated as follows.

Proposition A.2. Let 7/ be a chordal SLEg on H from 0 to co. Then a.s., for any t € (0,00) with
n'(t) R,
K\ 0K, is a Jordan domain in C with boundary 0K}, and

A2 . . ; . L .
A.2) OK;NR is a compact interval in R containing 0 in its interior.

Note that each ¢ € (0, 00) with 7/(¢) € R and the property (A.2) also satisfies
(A.3) 7' (t) € {max(0K; NR), min(0K; NR)},

since for any ¢, s € [0, 00) with ¢ < s we have K; # K, and hence n'((¢,s]) "H ¢ K (see, e.g., [16,
Sections 7-9]).

Proof. Step 1. We first recall some basic properties of the chordal SLE¢ 1/'. Set T}, := inf{¢ € [0, 00) |
n'(t) € [a,00)} and T, := inf{t € [0,00) | #'(t) € (—o0,—a]} for a € (0,00) and Ty := 0, so that
T, = inf{t € [0,00) | a € 0K,} for any a € R since 0K; N R is non-empty and connected for any
t € (0,00) (see, e.g., [16, Sections 7-9]). Note that limy o7, < T, < T, VT, < oo a.s. for
each a € (0,00) (see, e.g., [60, Propositions 6.33 and 6.34] or [16, Proposition 10.3-(b)]), which
together with the scale invariance of n’ under the parameterization by half-plane capacity (see,
e.g., [60, Proposition 6.5] or [16, Proposition 9.3]) easily implies that lim o7} V7, = 0 a.s. In
particular, a.s.,

7'([0,00)) N (—o0,0) and 7' ([0,00)) N (0, ) are

unbounded and their boundaries in C contain 0.

We also easily see, for a € R\ {0} from [60, Proposition 6.34] or [16, Proposition 10.3-(b)], and
for a = 0 from lim;_, |1/ (t)| = oo a.s. (see, e.g., [60, Proposition 6.10] or [16, Proposition 11.7])
and the above-mentioned scale invariance of 1/, that

(A.5) a & n'((0,00)) a.s. for each a € R.
It is also known by [79, Remark 5.3] that a.s.

(A4)

(A.6) no (s,t,u) € R3 with 0 < s < t < u satisfies n/(s) = 1/(t) = 1'(u).

Step 2. Let 7} and 7, denote the left and right boundaries of 7/([0, 0)), respectively, i.e., 1} =
UL, \ i(—00,0) and nf, := OUR \ i(—00,0), where i(—o0,0) := {ia | a € (—00,0)} and U, and Ugr
denote the components of C \ (7'([0,00)) Ui(—00,0)) containing —1 — ¢ and 1 — i, respectively. We
claim that a.s. 7}, and 7, are simple curves starting from 0 and tending to oo and satisfy 1, N(0, c0) =
0 = nl N (—00,0). Indeed, let o) : H — H denote the conformal map given by ¢(z) := —1/z, set
nr = (¥(n;) U{0}) \ {oo} and np := (¢ (1) U {0}) \ {oo}. By [70, Theorem 1.4] (see also [79,
Fig. 51), nr (resp. L) is a (chordal) SLEg,3((8/3)/2—2;8/3—4) (resp. SLEg3(8/3—4;(8/3)/2—2))
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curve (on H) from 0 to oo with force points 0" and 0, a variant of SLEg /3 introduced in [70,
Section 2], then nr N (—o0,0) = 0 = n;, N (0,00) a.s. by [70, Remark 5.3] and hence 1} N (0, 00) =
0 = ny N (—o0,0) a.s. Moreover, a.s. 1)}, and 7, are simple curves starting from 0 and tending to oo,
because nr and 7y, are continuous curves starting from 0 and tending to oo a.s. by [70, Proposition
7.3] and are simple curves a.s. by the fact that an SLE,(p”; p*) curve n with force points 0+ and
0~ is a simple curve a.s. for any « € (0,4) and any p”, pf* € (-2, 00).

This last fact can be verified as follows. [70, Lemma 7.1]" implies that the law of an SLEH(pL ; pR)
curve 7 can be realized as a certain conditional law of a conformal image of a segment of an
SLE,(p*; p™*) curve 7 from 0 to oo with force points 07 and 0~ for a suitable choice of p’, pf* €
[£/2 — 2,00). Then since a chordal SLE, on H from 0 to o is a simple curve a.s. (see, e.g., [60,
Propositions 6.9 and 6.12] or [16, Propositions 11.3 and 11.5]) and has law mutually absolutely
continuous with respect to that of 77 on any compact time interval in (0, co) under the parameteri-
zation by half-plane capacity by p”, p* € [k/2 — 2,00) and [70, Remark 2.3], it follows that 7 and
thereby n are simple curves a.s.

Step 3. Next, we verify that for each a € R\ {0} we a.s. have (A.2) with ¢t = T,. Indeed, let g
be the Mobius transformation given by g(z) := az/(z + a), which maps H, 0, co, —a onto H, 0, a, oo,
respectively. Then g oy’ is (a time reparameterization of) a chordal SLEg on H from 0 to a by the
conformal invariance of chordal SLEg (see, e.g., [16, Proposition 9.3]), and the reparameterization
of g o 1'|jo,7_,) by its half-plane capacity has the same law as 7’|y 7,) by the locality of SLEg (see,
e.g., [60, Proposition 6.14] or [16, Theorem 13.2]). In particular, g~ !(H \ K7,) has the same law
as the component U_, of H \ #'([0,7_,]) whose boundary contains —a, but U_, coincides with
the component of H \ 7/([0, c0)) whose boundary contains —a by 7'((T-4,0)) N Kr_, C 0K _,.
Then by (A.4), (A.5) and Step 2, a.s. U_, is a Jordan domain whose boundary dU_, is of the
form ~((0,1)) U [a, 5] for some «, 8 € R with o < —a < f and 0 ¢ [«, §] and some simple curve
v : (0,1) — H with limg o v(s) = a and limg y(s) = 8. Thus a.s. K7, \ 0K7, is a Jordan domain
with boundary 0K7,, which is of the form g(v((0,1)) U (R \ [a, 8])) U {a} for some such «, 3,7,
proving (A.2) with t = T,.

Step 4. By using the reversibility of chordal SLEg proved in [72, Theorem 1.1], which states
that ) := 1o n'((-)7') ()_(0) := oo and «(z) := —% for z € C) is (a time reparameterization of)
a chordal SLEg on H from oo to 0, the results of Step 2 can be (partially) extended to 7'([0, s))
for each s € (0,00) as follows. Let K., denote the complement in H of the component of H \
7' ([s,00)) = ¢(H \ 1}_([0,57!])) whose boundary in C contains 0. Noting that —1/7,_is (a time
reparameterization of) a chordal SLEg on H from 0 to co by the reversibility and the conformal
invariance of chordal SLEs and applying to —1/7/_ the fact that limy 7 V T_ = 0 a.s. mentioned
in Step 1 and the result of Step 3 for each a € Q \ {0}, we easily see that, a.s.,

(A.7) H \ K is a bounded simply connected domain in C.

Let gs : H \ K50 — H be the unique conformal map such that lim|,|_,(gs(—=1/2) — 2z) = 0 (see,
e.g., [60, Proposition 3.36] or [16, Theorem 4.3]). Then the domain Markov property of chordal
SLEs (see, e.g., [16, Proposition 9.4]) applied to 7, _ at time s~! implies that the conditional law
of (Logsot)on,_|s—1,0) =1t0gso0 77’((-)_1)|[8_1,OO) given 1'[(; o) is (a time reparameterization of) a
chordal SLEg on H from ¢ o g5(n/(s)) to co. Applying the reversibility [72, Theorem 1.1] of chordal
SLEg to 1o gson ((')71)’[571,00) and then using the domain Markov property of chordal SLEg, we

'We remark that “let 7, be the flow line of h., starting from 0 and targeted at co” in [70, p. 668, lines 18-19] should
read “let n,, denote the time reparameterization of v o ¢ by half-plane capacity”.
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further see that the conditional law of ¢, o /[y ;) given 7/[(; o is (a time reparameterization of)
a chordal SLEg on H from 0 to oo, where ¢, : H \ K — H is the conformal map defined by
0s(2) := (g9s(1'(s)) — gs(2)) 1. It thus follows from Step 2 that for each s € (0, ), a.s.

the left and right boundaries 7}, 5 of v(7//([0, 5))) are simple curves start-
ing from 0 and tending to oo and satisfy 7/* N (0, 00) = 0 = 15 N (—o0,0).

Recall (see, e.g., [91, Theorems II.(4.1) and VI.(2.2)] and [81, Theorem 2.1]) that ¢! has a
continuous extension to HU{oo}, so that o5 1 (RU{o0}) = O(H\ K; ). Note that, while (¢;1)71(2)
is a singleton for any z € O(H \ K, ) \ 0K~ by an application of Carathéodory’s theorem (see,
e.g., [81, Theorem 2.6 and Proposition 2.141), (¢;!)~!(z) may have two or more elements for
z€ OH\ Ks00) NOK; oo

Step 5. From (A.5), Step 3, Step 4 and the domain Markov property of chordal SLEg, we choose
as follows an event for r of probability 1 on which the assertion of the proposition will be verified in
Steps 6-8 below. For each s,t € [0, 00) with s < ¢, let K denote the hull of n/([s, t]) in H\ K, i.e.,
the complement in H\ K of the unbounded component of (H\ K)\7'([s, t]), so that K, ; = K;\ K,
and set 0"PK,; := 0Ks; N (H\ K;) and 0" Ky, := 0Ks; N O(H \ K;). Then for each a,b € R
with either 0 < a < bor b < a < 0, it follows from Step 3 and the domain Markov property [16,
Proposition 9.4] of chordal SLEg that, a.s. on {7}, < T3}, (O(H \ K7,) is a simple curve,)

(A.8)

Kr, 1, \ 0K, 1, is @ Jordan domain in C with boundary 0K7r, 1,, and
Ot Kr, 7, is a compact interval in (H\ K7, ) containing /(7,) in its interior

(note that (A.9) with ¢ = 0 is the same as (A.2) with ¢t = T}). Also for each b € R and each
s € (0,00), we easily see from the domain Markov property of chordal SLEg, (A.5) and (A.9) with
a = 0 that, a.s.,

(A.10) ' (Ty) & 0/ ((Ty, 0)),

(A.11) max(0K; NR)", min(0K; NR)™ & 7.((s,00));

(A.9)

here 7, denotes the lift of 7| .y to (H \ K) U d(H \ K,), with 9(H \ K,) representing the set of
prime ends of H \ K, and max(9K; N R)" and min(0K; N R)~ denote the two elements of the
boundary of (R U {c0}) \ 9K, in d(H \ K,) corresponding to max(dK, N R) and min(dK, N R),
respectively.

Recalling Step 4, we can thus choose an event ) for n’ of probability 1 such that every instance of
7’ from Qg satisfies (A.4), lim; o, [7'(t)| = oo, (A.6), (A.7), (A.8) and (A.11) for any s € QN (0, c0),
(A.10) for any b € Q, and either T, = T, or (A.9) for any a,b € Q with either 0 < a < b or
b<a<0.

Step 6. Now we can proceed to the conclusion of the proof as follows. Fix any instance of 7’ from
Qo, and let ¢ € (0,00) satisfy 1/(t) € R. If t = T}, for some b € Q \ {0}, then (A.2) holds by (A.9)
with a = 0. Therefore we may assume that ¢ # T, for any a € Q\ {0}, and we further set b := /(¢),
so that b € R\ {0} by (A.10) with 0 in place of b. By considering ¢ o n’ instead of ’ when b < 0,
where ((z) := —Z for z € C, we may and do assume that b > 0 in the rest of this proof.

Let a € QN (0, 00), so that '(T,) > a. If ' (T) > b, then b belongs to the interior of the compact
interval 0°°* K 1, in R, hence n/(t) = b & 1/([Ta, 00)) by (A.9) with 0 in place of a and thus ¢ < T},.
Combining this observation with ¢ # T, and (A.10), we easily obtain

(A.12) t< Ty, for any a € Q N (b, 00),
(A.13) T,<t and a<n'(T,) <b for any a € QN (0,b).
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In particular,
(A.14) n'(s) <b  foranys e [0,t] withn'(s) € R,

since for any a € QN (b, 00) we have s < t < T, by (A.12) and hence 7/(s) < a. Moreover, by the
monotonicity of 7, in a € (0,00), 7(t) = b, the continuity of ' and (A.13) we have limg, T, <
Ty < t, ' (limgpp, Tp) = limgsers 7' (To) = b, therefore

(A.15) lig}Ta =T, <t, n'(Ty)=b and T, < Ty foranya € (0,b).

Step 7. We claim that b = 7/(t) satisfies (A.9) with ¢ = 0 under the setting of Step 6. To see
this, we inductively construct a sequence {b,}:°, C QN (0,b) as follows. First, noting (A.15),
choose by € QN (0,b) so that |n'(s) — b] < b for any s € [I},, Tp], and set a := min(0Kr, N
R), which satisfies a« < 0 by (A.9) with 0,by in place of a,b. Next, letting n > 0, supposing
that b, € QN (0,b) is given, and noting (A.13), (A.15) and that we have (A.3) with t = Tp,
by (A.9) with 0, b, in place of a,b, choose b1 € QN [(b, +b)/2,b) so that ([T}, ., Ty]) N K7, =
0. Then {b,}>2 o, {Ts, 150, {n'(T3,)}5°, are strictly increasing, lim, b, = b, and for any n >

0 we have min(@KTbn N ]R) = a by ’I’]/([TbO,Tbn]) N (—O0,0] = @, 8t°PKg,Tbn C T],([O,Tbn]), and

IWPKT, T,y C 0 ([Ty,,» Tb,,.,]), which in turn is included in H\ Kr, if n > 1. This last property

combined with (A.9) further implies that 9*PKr, 1, . N 9"PKor, is a singleton {z,} for any
n > 0 and that z, € 8“0pKTb"_1,Tbn for any n > 1. Using these properties together with (A.9),
we can define a simple closed curve v : [~1,00] — H by y(c0) = b, y(=t) := (1 — t)a + tb
for t € [0,1], ¥/ being a homeomorphism to the closed interval in 8tOPK07TbO from a to zo,
and 'y|[n’n+1} being a homeomorphism to the closed interval in atOPKTbn_PTbn from z,_1 to z, for
each n > 1; note that lim,_,, y(s) = b by lim, o b, = b, (A.15), the continuity of »" at T, and
the fact that OPKr, 1, . C 0 ([Ty,, Tp,.,]) for any n > 0. Then ~((0,00)) C H N 7' ([0,T3)),
v([=1,0]) = [a,b], and it is elementary to see from the construction of ~ that 1/([0, T3]) is included
in the closure in C of the (bounded) Jordan domain with boundary ~([—1, oc]), which together
immediately show ~([—1, oc]) = 0K, and that b = 1/(t) satisfies (A.9) with 0 in place of a.

Step 8. It remains to prove that ¢ = T}, under the setting of Step 6. For this purpose, noting (A.15)
and the fact that »'((Ty, s]) "H ¢ Krp, for any s € (13, 00) as noted just after (A.3), suppose that
Ty < t, and choose s € Q N (T}, t) so that n'(s) € H\ Kr, and |/(r) — b| < b for any r € [T}, s]. Set
a := min(0K7, NR), so that by combining (A.9) with 0 in place of a from Step 7, (A.14), /(1) = b
from (A.15), 0’ ([T, s]) N {z € C | Re(z) < 0} =0 and n'([s,0)) C H\ K, we get a < 0,

(A.16) OK,NR = 0Kp, NR = [a,b)],

n'([s,00)) N (a,b) = 0, and U N K; = U N Ky, for some open neighborhood U of @ in C. In
particular, since H \ K7, is a Jordan domain in C U {oo} by (A.9) with 0 in place of a, the point
a € O(H\ K,) corresponds to a unique element of d(H \ K), hence a ¢ 1/([s, o)) by (A.16), (A.11)
and Re(n/(s)) > 0, and it thus follows that

(A.17) (a—e,b)Nn([s,00)) =0 for some ¢ € (0, c0).

Now we use the notation and the results from Step 4. Note that by (A.17) we have (a —¢,b) C
O(H \ Ks ) and hence that by Carathéodory’s theorem [81, Theorem 2.6] the conformal map
s : H\ K4 oo — H extends continuously to a bounded R-valued strictly increasing map on (a—e¢, b),
which then satisfies 5(0) = 0 and (¢;1)"1(u) = {ps(u)} for any u € (a — &,b). Set ps(b—) =
lim,,14 @s(u). Recalling (A.8) and noting that p,(a) € 1} by (A.16) and that ¢, (b—) € 7} by (A.13)
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and (A.15), we define simple curves v;,vg : [0,00) — H starting from 0 and tending to co by
v (u) = gps(ua) and yp(u) = @s(ub) for u € [0,1), vL|p o) Deing a homeomorphism to the
interval in 7} from ¢4(a) to oo and Yg|}1,.) being a homeomorphism to the interval in 733 from
@s(b—) to co. Then (v ((1,00)) Uvr((1,00))) N [ps(a), ps(b—)) = 0 and therefore

(A.18) (5t o y((1,00)) Uyt o vr((1,00))) Nla,b) = 0.

Moreover, noting that ¢s(1/([0, s))) in (A.8), precisely speaking, denotes the image of the lift 77/, of
1'lj0,s) to H under ¢, i.e., the continuous map 7, : [0,s) — H satisfying 7]/|[0 ) = ¢5 o, that
Ts(Ty) = limgsue s (' (Tw)) = s(b—) by (A.13) and (A.15), and that n}? Un}s C 7,([0, s)), we have

(A.19) 03 (1 Uni) \ {es(0-)}) € o (7([0, ) \ {7 (Th)}) < 7' ([0,9) \ {T3}).

Since b € 1/([0,5) \ {Tp}) by 0’ (Tp) = b=1n/(t), T, < s < t and (A.6), it follows from (A.19), (A.18)
and (A.16) that

(A.20) w3 oL((1,00)) Upst 0 vr((1,00)) €1/ ([0,9)) \ [a,0] = 7/([0, 5)) NH.

On the other hand, (A.8) combined with the definition of )’ and 7} implies that 1}’ (resp. n}}) is
located to the left (resp. right) of 15 (resp. 1), i.e., included in the closure in C of the component of
C\(nU(—00,0]) (resp. C\ (n;°U[0, 00)) not containing —i, and 77, ([0, s)) is located both to the left of
7} and to the right of . Set 7 := inf{u € [1,00] | yr(u) € y.([0,00])} and {71} := 7. ' (vr(7R)),
where yr(c0) := 0o =: v1(0), so that 7g, 71, € (1,00]. Further, recalling (A.20), choose a simple
curve vs C @5t oyn([1, 7)) U eyt o vr([1,7r])(C 7([0,s)) N H) from b to a, which is possible by
[91, Theorem II.(5.1)], and let Us denote the (bounded) Jordan domain with boundary ~s U [a, b].
Then we easily see from ~, C n '([0,s)) N H and the above-mentioned topological configuration of
7,([0, 5)) in relation to n}; and 7 that Uy C K and that 7/([0, s]) \ U is included in the union Cj of
{n'(s)} = {p5(c0)} and the image by o, ! of the part of C located both to the left of yz([7r,>0))
and to the right of v ([71,00)). Since C; is a compact subset of H by (A.7) and (A.20), it follows
that VN K, = VNUsNH for some open neighborhood V of b in C, which together with the definition
of U, shows that b € 9(H \ K;) corresponds to a unique element of O(H \ Ks). Thus b & /((s,0))
by (A.16) and (A.11), which contradicts the definition b = r/(¢) of b in view of ¢ € (s, c0) and hence
proves that t = Ty O

Proof of Proposition A.1. We set 7 := inf{t € [0,inf(n')~1(0)) | 0K; N OD = 0D}, so that {t €
(0,inf(n")~1(0)) | 0K N OD # D, n'(t) € D} C [0, 7). Also let 77’ be a chordal SLEg on H from 0
to oo, set 7, (t) := zexp(iff (t)) for ¢t € [0,00), define K} for ¢t € [0,00) to be the complement in D
of the 0-containing component of D \ 7, ([0,¢]), and set 7. := inf{t € [0,00) | OK; N ID = 9D}.
Then since {n'},c(o,-) has the same law as a time reparameterization of {1, },c[.-,) by a version [60,
Proposition 6.22] of the locality of SLE, it suffices to show the assertion for {7, };c(o,-,)-

Fix any instance of 77 with the property (A.2) for any ¢ € (0,00) with 7/(¢) € R, which occurs
a.s. by Proposition A.2. Let ¢t € (0,00) satisfy 0K, N 0D # 0D, which means that we can take
a piecewise linear simple curve 4! : [0,1] — D\ 7.(]0,¢]) with 4*(0) = 0, 4%([0,1)) C D and
74(1) € OD. Then D, := D\ 4%([0,1)) is a simply connected domain with 0 ¢ D, and hence there
exists a unique continuous branch f; of —ilog(-/z) on D, := D, U (dD \ {7*(1)}) with f,(z) = 0, so
that x exp(i-)| , (Do) . f(D;) — Dy is a homeomorphism with inverse f;. Now since 7/.([0,t]) C D,
zexp(ifi(n.(s))) = ni(s) = wexp(in (s)) for any s € [0,t] and fi(n.(0)) = fi(z) = 0 = 7'(0), it
follows that f; o 1|04 = 7|04 and thus that f;(K7}) is the complement in H of the unbounded
component of H \ f:(n.([0,¢])) = H \ 7/([0,¢]). In particulay, if it also holds that n,(t) € 9D,
then 7/(t) = fi(n.(t)) € R, hence f,(K;) has the property (A.2), and therefore its image K;



122 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

by the homeomorphism x exp(i-)|y, on a neighborhood V; of ft(ﬁt) in C has the property (A.1),
completing the proof. O

APPENDIX B. SOME LEVY PROCESS ESTIMATES

In this appendix, we prove some estimates on the 3/2-stable Lévy processes with only downward
jumps (Propositions B.3, B.4, B.5, B.6 and B.7 below), on which our proof of Proposition 5.2 heavily
relies.

Let X!, X? be i.i.d. 3/2-stable Lévy processes with only downward jumps and starting from 0.
Let I = infocscy X7 and S/ = supge <, X2 for j = 1,2, respectively, be the running infimum and
supremum of X7. We let 77 = inf{t > 1 | X/ = I/} for j = 1,2 and 7 = 7! A 72. Note that by [20,
Chapter VII, Theorem 1 and Chapter VI, Proposition 3] we have

(B.1) P/ =2] <P[X) =I]=0 foranyz € [1,00).
Lemma B.1. There exists a constant ¢ > 0 such that P[7 > z] = cz'/3(1 + 0(1)) as z — oco.

Proof Letz € (1,00). Then setting F(y) = y~'/?P[I? > —y] for y € (0, 00), by the Markov property
of X! and the scaling property of X? we have that

Bl > | I, X} = P2, > I} - X} | XD 1) =PI > (2 — 17231} — X})| X}, 1}
®.2) =@-D7PX] )R- )X - 1)
< (z—1)"Y3(XL - 2 (F((J; —1)"28(x) - I}))H{X%_Illg(x_l)g/s,} + 1)

and that lim, o F(y) = ¢ for some ¢ > 0 by [20, Chapter VIII, Proposition 2]. Since X| — I{ has a
finite mean by [20, Chapter VI, Proposition 3 and Chapter VII, Corollary 2-(i)] and hence a finite
1/2-moment, it follows by an application of the dominated convergence theorem based on (B.2)
and lim, o F(y) = c that P[r} > 2] = E[P[r! > o |1}, X]]] = E[(X{ — I})}/?271/3(1 + o(1)) as
T — 00. O

As a consequence of Lemma B.1, there exists a constant ¢ > 0 such that
(B.3) Plr > 2] = Plr' > 2]P[r? > 2] = cx™?3(1 4+ 0(1))  asz — oco.

Lemma B.2. Set 7} = inf{t > 0: X} < —1}. Then there exists a constant ¢ > 0 such that for any
x € [1,00),

(B.4) ]P’[Tol <1, X% < —x] > cx 32,

Proof. For j = 1,2, by [90, Theorem 4.3.7, Corollary 4.2.17 and Theorem 4.2.8] we can decompose
X7 uniquely as X/ = X7+ X7, where X7°, X! are independent Lévy processes with X7* having
jumps only in [-2,0) and X7! a compound Poisson process with jumps only in (—oc, —2). Then
X0 x11 x20 X2 are independent, XV, X2 have the same law, so do X!, X%! and hence
the process X = {X;};>o defined by X; = th,o + Xf’l has the same law as X'. Set 7y = inf{t > 0:
X < —1}.

Let E! denote the event that supy<,q |X}| < 1, so that P[E'] > 0 by [20, Chapter VIII,
Proposition 3] and X[, = X0,y a.s. on E'. Let = € [2,00), and recall that the numbers
N[2—z,—2)’N(2—oo,—z) of jumps in [—z,—2), (—oo, —z), respectively, made by X*!|,) are indepen-
dent and have the Poisson distribution with mean ¢(273/2 — £73/2), cx=3/2, respectively, for some
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¢ > 0 independent of z. Since {r) < 1, X;, < —(z—1)} D E'n {N[Z_x Ly =0<NE bas,it
follows that

Pl <1, Xj& <—(z-1)]=P[ro <1, Xpy < —(z —1)]
1 2 2
>P[E N {NL, ) =0< Nl _}]
1 2 2
= P[E ] ’ ]P)[N[—a:,—2) = 0] ’ ]P)[N(—oo,—x) = 1]
_ P[El]e—c(2*3/2—$*3/2) (1 _ 6—c:c*3/2) > C,(:L‘ . 1)—3/2
for some ¢’ > 0 independent of z € [2, ), proving (B.4). O
Proposition B.3. There exists a constant ¢ > 0 so that E[—I} 1, 4] > clog A for any A € [2, o).
Proof. We first claim that
(B.5) P[X} > ak?3|7' > k] -0 as «— oo uniformlyin k.

To see this, fix @ € [2,00). For each k € N, let o} = inf{t > 0 : X} = k?/3}. Then since X! has only
downward jumps, we have { X} > ak?/®} C {o} < k} and hence that

P[X} > ak?3 | 7! > k] = P[X} > ak?/3, o} < k|7! > K]

1 2/3| 41 1s 1
P[Supaigtga}g—ﬁ—k X} > ak??| ol < k7' > o]

<
- P[712k|ai§k,7120i]

Applying the strong Markov property of X! at the time o} and the scaling property of X!, we

easily see that the denominator is at least P[/{ > —1], which is positive by [20, Chapter VIII,
Proposition 2], and that the numerator is at most P[S] > « — 1], which tends to 0 as a — oo,
proving (B.5). On the other hand, since I} = I} on {r! > k}, from Lemma B.1 and [20, Chapter
VIII, Proposition 4] we obtain

PI] < —ak?/?]

(B.6) IP’[I,% < —ak?3 |7'1 > k] < Pl S A < ca 3213 < cq3/2
for any k € N for some ¢ > 0.

Further, there exists pg > 0 so that
(B.7) PIX, >I,+1|7" >kl >py forallkeN.

Indeed, for any ¢ € [2,00) and for any k € N, we have P[X{ > I{ +t] > 0 by [20, Chapter VI,
Proposition 3 and Chapter VII, Corollary 2-(i)],

]P)[infkgtngrl(th - X]i) > —1, Xli > Ili —|—t, 7'1 Z k‘]
PlI} > —1]
<P >-1"'"PIXL, >, +t—1, 7 >k + 1],

PIXE>1 +t, 7' >k =
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and hence P[X! > I} + 1|7} > k] > 0. Also, noting that P[I{ < —1] > 0 by [20, Chapter VIII,
Proposition 4], for any k& € N we have

Plinfrei<pi1(Xf — X} < -1, X < L+ 1|71 > K]

P[I{ < —1]
- Plrl <k+1|7! >k B 1—Plrt > k+1])/P[r! > k] kooo
- PlI} < —1] B P[I} < —1]

PX}<I}+1|1 >k =

0,

where the last limit follows by Lemma B.1. The above results together yield (B.7).
Now, combining (B.5), (B.6) and (B.7), we can choose « € [2, c0) sufficiently large so that

(B.8) PlI} +1< X} <ak?3 I} > —ak®3 |78 > k] > po/2  forallk € N.
Let k € N, set 7} = inf{t > 0: X}, — X} < —1} and let E| denote the event that 7} < 1 and
Xrl,g+k — X} < —20k?3. Then since {X},, — X} }>0 is independent of X!|j,;; and has the same

law as X!, we have P[E}] > ¢/k~! for a constant ¢’ > 0 independent of k by Lemma B.2, and it
follows that

(B.9) PIEL I} +1< X} < ak?®3, I} > —ak??, 7' > k] = P[E}] > kL.

Further, on the event E} N {I} +1 < X} < ak?3 Il > —ak?3 71 > k72 > k + 1} we have
=1 =71 4+k € [kk+1)and Il < —ak?3. It therefore follows that there exist constants
c1,c2 > 0 so that for any A € N,

E[-I 4]
A-1
> ak?PPIELN{IE+1< X} <ak?3 1L > —ak?3, 71 >k, 72 > k+ 1}]
A—
> kKBl 'Plrt = KPr? > k+1] (by (B.8), (B.9), X', X* independent)
k=

> Z cok™t  (by Lemma B.1)

This proves the result. 0
Proposition B.4. sup s¢(; o) E[(X) — I}) 17> 43] < 0.

Proof. Let A € [1,00). Since Iy = I} on the event {r > A} and E[|I{|] < oo by [20, Chapter VIII,
Proposition 4], setting c¢; := E[|I1|] and using (B.1), we have

(B.10) E[-Ii1>a) = E[-I{ 1o 4] S E[I]] = a1 < oo
Set oy = inf{t > 0: X} = A?/3}. By the independence of X', X? and Lemma B.1 we have that

(B.11) E[Xi1say) = Plr? > AJE[X i1 s 0] < A7V EX 105 4],
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We moreover have that

E[X 31> ay] = E[XA 0o 4 (D> ay + Dot <ay)]
< APl > A+ B[ X cacrny]

< AV E[X ]1{0 <A<7'1}] (by Lemma B.1)
< AV E[(X) — X0 ) Ut cacry] + AP P[> 4
< A3 4 E[sup0<t<,4( ot — oi;)]l{ffk“l}] (by Lemma B.1)

= A3 L E[S4]P[c}y < 7'] (by strong Markov at time o)
(B.12) S AP+ ABPlo < 71,

where the strong Markov property of X! refers to [20, Chapter I, Proposition 6] and we used in
the last step that E[SY] = A%/3E[S]] < A?/3 by the scaling property of X' and [20, Chapter VII,
Corollary 2-(i)]. Further, by considering {X}, | — X{},>0, which is independent of X*|j ;) and has
the same law as X2, we obtain

Plo} < 7' <Plo} < 1]+ P[X] < A%3, X? hits A%/ — X{ before hitting (—oo, I} — X{]].

Then P[o}y < 1] < P[S] > A%/3] < coe=A"? for some ¢» > 0 independent of A by [20, Chapter VII,
Corollary 2-(i)]. Also, [20, Chapter VII, Theorem 8] implies that

W(Xi - 1)

2 1; 2/3 1 s _ 1yl 1717 _
P[X? hits A X before hitting (—oo, I — Xj] | X7, 11] WX T A28 X))

where W is the scale function of X' introduced in [20, Section VII.2]. Moreover, since the Laplace
exponent ¥(\) of X is proportional to A\3/2 by the scaling property of X! and the Laplace transform
of W is 1/t by definition, we see that IV (x) is proportional to z!/2. It thus follows that

P[X? hits A% — X{ before hitting (oo, I — X{] | X{,I{]

()'(11 _ 111)1/2 1 1\1/2 4—1/3
= < (X7 —17)/ A
(X} =1 + A% — X])1/2

a.s. on {X] < A%/}, and hence taking expectations yields P[c}y < 7] < A™'/3 in view of the
fact that E[(X{ — I})'/?] < oo as noted in the proof of Lemma B.1. Combining this with (B.11)
and (B.12) implies that sup s ) E[X} 1> 4] < oo, which together with (B.10) proves the result.

]

In fact, we also have an upper bound on E[(—I} )P, 4] for p € [1, 3), which with p = 1 matches
the lower bound obtained in Proposition B.3, as follows.

Proposition B.5. For any p € [1, %) there exists ¢, € (0,00) depending only on p and the law of X!
such that for any A € [2,00),

cilog A ifp=1,
(B.13) E[(~ 1)1 n)] < .
{r<A} CPAQ(pfl)/S pr e (1, %)
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Proof. Letp € [1,3), A € [2,00) and set A’ := min{n € N | A < 2"}. We have

E[( ) ]1{T<A}] < E[( {T<2A’ ZE Il p]l{2k 1<T<2k}}

(B.14) < ZE Qk ]1{2k 1<T<2k}:|

Then for each k¥ € N, since X} > I} = I} as. on {Tl > t} for each t € [1,00) and 1), =
infor-1<,con X2 on {2871 < 71 < 2F} it follows from the independence of X!, X2, the convexity of
the function R > x + ()P, the Markov property of X' at time 2¥~! and P[r! > 2¢~1] = P[72 >

2k=1] that
E[(— Iy )P Ijgi-1 <7 cohy]
= E[(—Iglk)p]l{2k71§7§rl<2k}] + E[(—Izlk)p]l{2k*1§r<2k§71}]
< PTE[(Xgir — infaemicgcon XJ) PN isoe1y |P[r? > 2571
+ 2 E[( X)) rzgsoy] + B TP B[ > 2671
(B.15) < 2PTE[(—Ih -, )PJP[r? > 28712 4 (2771 + DE[(— I )PIP[? > 2771,
Now, recalling that for some ¢ € (0, c0) determined solely by the law of X* we have E[(—1,,_,)?] =

(2F=1)2P/3E[(—I1)P] < ¢(2%~1)%/3 by the scaling property of X' and [20, Chapter VIII, Proposition
4] and P[r? > 2F-1] < ¢2=(*~1)/3 by Lemma B.1, we conclude from (B.14), (B.15) and 2" < 24

that
A/
E[(—I;)p]l{7-<14}] < Z(2p—lc3(2k—1)2p/32—2(k—1)/3 + (2p—1 + 1)622_(k_1)/3)
k=1
A’ —1 2 e
< op—1.3 Z(2Q(p—1)/3>k’—1 n (2P +1)c <Jla log A ifp=1,
T2 S o008 fpe (1,9)
for some ¢, € (0, 00) explicit in 2P~ ! and ¢, completing the proof. O

We also need the following propositions in the proof of Proposition 5.2.

Proposition B.6. There exists c¢; € (0,00) such that for any y € (0, 1],
(B.16) Plr=7"<2, X} -1} >4, I>) > —y| > a1y.
Proof. Let z,y € (0,00). By (B.1) and the independence of X!, X2,
Plr=r?<2, X! - Il >z, I? > -2y
>P[r! > 2, inficca(X] — I}) >z, 7° <2, IZ > —2y]
(B.17) =P[r! > 2, inf1<<o(X} — I}) > 2] P[7? < 2, I2 > —2y].

For the first term of the product in (B.17), we have P[X{} — I > 2x] > 0 by [20, Chapter VI, Propo-
sition 3 and Chapter VII, Corollary 2-(i)] and P[I{ > —z] > 0 by [20, Chapter VIII, Proposition 2],
and then, since {X}, ; — X{ };>0 has the same law as X' and is independent of { X/ }o<;<1,

]P)[Tl Z 2, inflStSQ(th — Itl) > l‘] Z P[Xll — 111 > 2$, infOStSl(Xt+1 Xl) ZL‘]
(B.18) =P[X] — I} > 22]P[I} > —x] > 0.
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For the second term of the product in (B.17), setting 7, := inf{t > 0 | X? < —z} for z € (0,00), by
72 > 1 and the Markov property of X? at time 1 we have
P[r? <2, I% > —2y]
>P[I} > -y, X{ €[1,2], 7, <2, X2 > —2y]
(B.19) > P[] > —y, X7 € [1,2)] infepoPrery <1, X2 > —z—2y].

Since the left-hand side of (B.16) is non-decreasing in y, in view of (B.17), (B.18) and (B.19) it
suffices to show that there exist ¢, ¢3, ¢4 € (0,00) with ¢ < 1 such that for any y € (0, c2] and any
z €[1,3],

(B.20) P17 > —y, X7 € [1,2]] > c39'/?,
(B.21) IP[TZ <1, XTQZ > —z — y] > C4y1/2.

For (B.20), set o, := inf{t > 0 | X? > 2} for z € [0,00), so that Plo, < oo] = 1 by [20,
Chapter VII, Proof of Theorem 1], and let y,u € (0,00). Then by the scaling property of X?
and [20, Chapter VIII, Proposition 2], for a constant ¢5 € [1,00) independent of y,u we have
P[Ig/z > —y| = P[I? > —(u/2)"?3y] < esu~1/3y'/2, which together with the scaling property of
X2 and [20, Chapter VII, Theorem 8] implies that, with a := u~2/3,

P[Iga > —ay, 0q < 1/2] = P[Igl > —y, 01 < u/2]
=P[I2 > —y] —P[I2, > —y, 01 > u/2]
>y /(1 + )2 =PI}, > —y]
> (1 Fy) 12 05u_1/3)y1/2.

(B.22)

Choosing u := 125¢¢ and replacing y with a~'y = «*/3y in (B.22), for any y € (0, a] we obtain
(B.23) P[Iga > —y, 04 < 1/2] > (2_1/2 — 05u_1/3)u1/3y1/2 > 2C5y1/2.
Moreover, for all x > 0, we let P, denote the law of X?+z, and let P} be the probability measure on

the space of [0, co0)-valued cadlag paths (equipped with the o-algebra generated by the coordinate
process X = {X;};>0) given by

W (y)
PHX; e dy| = 5P [ Xy edy, t <T(_
x[te y] W (x) [te Yy, t < (oo,O)]v
where W is as in the proof of Proposition B.4 and T(_ ¢y := inf{t > 0 | X; < 0}. Then, by [20,
Chapter VII, Proposition 14] there exists a probability measure P such that P} — P§ as z | 0 in

the sense of finite-dimensional distributions, and by [20, Chapter VII, Corollary 16] we have
yW(y)

Py [X: € dy] = P[X7 € dy].
It follows that

P[X}, >3/2—b, I, > —b] =Py [Xl/g >3/2, inf X, > o}

0<s<1/2
©
=P[X1/0>3/2, T\_ouoy > 1/2] =W (b — P [X, 5 €dz
b[ 1/2 / ( ,0) /] () 3/2 W(Z) b[ 1/2 ]
for any b > 0, and
T prixped] ¥ [ L prx,eds] = 2/00219[)(12 ,€dz] >0
32 W(z) " 32 W(2) 3/2 /
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since P[X? /2 >3 /2] > 0 by the scaling property of X2 and [20, Chapter VII, Corollary 2-(i)]. We
see therefore that, if c5 € [1, 00) is large enough so that a = u=%/3 = (5¢5)~? is small enough, then

(B.24) @ =Plog o <1/2, 17, > —a] 2P[X};, >3/2—a, I}y > —a] > 0.

Noting that P[X2 = z] = 1 for z € (0,00) and that g, := P[supy<;<; | X7| < 1/2] > 0 by [20,
Chapter VIII, Proposition 3], from the strong Markov property of X? at times o,, 03 /2 (see, e.g.,
[20, Chapter I, Proposition 6]), (B.24) and (B.23) we get

2 1 . 2 1 2 1
>]P>[I >—y,0, <3, inf X;7>0,035—0,<35, sup XHUS/Q—%‘SQ}
0<t<1

0a<t<o3/o
=P[I2 > -y, 0o < 3|q1g2 > (2e5q142)y"?,

proving (B.20).
Next, to see (B.21), let y € (0, 1] and z € [1, 3]. By [20, Chapter VIII, Exercise 3],

y/(z+y) 1/2
(B.25) P(X2 >—z-y|= 1/ 21— z)V2dp > L
0

™ ™

Let b € (0,00), and recall that [E[eV~XT]| = el for any A € R for some c¢5 € (0,00) by

[20, Chapter VIII, equation (1)] and hence that the law of X 12 has a bounded continuous density

fi: R — [0, 00) by Fourier inversion. Then noting that 7! fo‘/ oHB) p=1/2(1 — 2)"V2 4z < (a)B)Y/?

for any «, 8 € (0,00) by considering the cases of & < 8 and a > [ separately, we see from the

Markov property of X2 at time b, [20, Chapter VIII, Exercise 3] and the scaling property of X? that
]P’[TZ > b, X2 > —z—y}

- E[H{T >b}( [ Todo > —zZ—Yy - x”x:X?)}

y/(z4+y+X37)
=E {]l{rz>b} / 21— )7 dw]

< PB4 XD ] = oM R w0+ XD oy)

< g2 PE[(w 4+ X2V xas0)] = yl/zb—1/3/0 e V28 (z — w)dw

1 oo
(B.26) < y1/2b*1/3 ((:7/ Y2 dr + / filz —w) dm) < y1/2b*1/3(267 +1),
0 1
where w := b"2/3z and ¢; := sup,cg f1(z). Thus by choosing b := 73(4c; + 2)3, from (B.25)
and (B.26) we obtain
8.27) Plr, <b, X2 >—z—y| =P[X2 > —2—y] —P[r. > b, X2 > —2 —y
B.27
> (27_‘_)—1y1/2.

Further, by [20, Chapter VIII, Proposition 4] and the scaling property of X? there exist A € [2, c0)
and cs € (0,00) such that for any € € [;5672/3,6%/%], any z € [5 A, 104] and any s € (0, ),

P[If,g/g € [-xz/s,—(1 —€)z/s)] =P[I} € [-z,—(1 — €)z)] > cs,
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which in turn, with e = ¢y 1= 30723, 2 = 3, 1= (2 — $b72/%)A and s = 4, yields
Plr.s <3, X2, €[-2+ 50723, —z+ b7/
(B.28) >P[I% ,, € [~2+ 30723, —2 + 5723
> ]P’[Ii,g/g €[~z /A, —(1 - eo)mzyb/A)} > cg,

where 7,5, := 7,_; 25. It follows from the strong Markov property of X 2 at time T, (B.28), the
scaling property of X2 and (B.27) that, provided y € (0, 162/3),

P[r. <1, XTQZ > —z—y]
>Plr,, < %, szvb €l—z+ %b_2/3, —2 40728, 1, < Tap + %, XEZ > —z —y]
= E[ﬂ{rz,bg%,Xzzﬁe[—z+%b—2/3,—z+b—2/3]}(P[TZH <5 X, >-z-y- $]|x:X32,b)]
2 g infme[%b—2/3,b—2/3] P[Tm < %7 sz > —x - y]
= cginf e o P < V20, X2 > -z — 2b2/3y] > cg(2m)H(20%/3)1/241/2,
which proves (B.21) and thereby completes the proof of (B.16). O

Proposition B.7. Let X = {X;};>0 be a 3/2-stable Lévy process with only downward jumps and
Xo =0, and set Z; := X; — info<s<¢(Xs A 0) for t € [0,00). Then there exist c1, ca € (0,00) such that
Plsupg<;<1 Z; > z] < cre” " for any z € [0, 00).

Proof. Set 1y := 0, and define sequences {c,,}°° , {7, }22, of stopping times for X inductively by
op = inf{t € [7,-1,00) | Z; > 1} and 7,, := inf{t € [0y,,00) | Z; = 0} for n > 1, so that Z,, =1
on {0, < oo} by the absence of upward jumps of X. Since {Z;}:>¢ is strong Markov by [20,
Chapter VI, Proposition 1], it easily follows from [20, Chapter VII, Theorem 8] that o, < 7, <
oo for any n > 1 a.s. and hence that {{Z;14, }tc[0,r,—0n) fne1 18 ii.d. with law given by that of
{Xitt0}tejo,r—0) With o := inf{t € [0,00) | X; > 1} and 7 := inf{t € [0,00) | X; < 0}. Moreover,
recalling that {X;,, — 1};>0 has the same law as X by the strong Markov property [20, Chapter I,
Proposition 6] of X, we have ¢ := P[r — o < 1] € (0,1) by [20, Chapter VIII, Propositions 2 and
4] and c3 := Elexp(2(—log q) supg<i«(r—oy)a1 Xt+o)| < o0 by [20, Chapter VII, Corollary 2-(i)], and
the random variable N := min{n > 1| 7, > 1} satisfies P[N > n] < P[ﬂ?;ll{Tj —0j <1} =q¢"!
for any n > 1. It thus follows that for any = € [1, 00), with n := min(N N [z, 0)), ¢2 := —log ¢ and
Cy = 0362_1602*1 +1,

Plsupg<i<1 Z¢ > 2] < P[U

< nP[supo<ic(r—oyn1 Xt+o > 2] +¢"

1<j<n{sup0§t<(7'n—o'n)/\1 Zt—‘,—o'j Z HZ}:| —+ IP[N > n]

< ncge—2¢:2r + e—C2m < ($ + 1)036—20290 + e—C2% < C4€_CQI,

proving the assertion for « € [1, c0). The assertion for = € [0, 1) follows by setting ¢; := ¢4 Ve®. O
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