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ABSTRACT. Liouville Brownian motion (LBM) is the canonical diffusion process on a Liouville quan-
tum gravity (LQG) surface. In this work, we establish upper and lower bounds for the heat kernel
for LBM when γ =

√
8/3 in terms of the

√
8/3-LQG metric which are sharp up to a polylogarithmic

factor in the exponential.
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1. INTRODUCTION

1.1. Background. During the past 15 years, substantial research activity has been focused on the
study a random geometry induced by the two-dimensional Gaussian free field, commonly known
under the banner of Liouville quantum gravity. For an overview, see, for instance, the recent surveys
[17, 89, 42]. Suppose that h is an instance of (some form of) the Gaussian free field (GFF) on a
domain D ⊆ C. The Liouville quantum gravity (LQG) surface described by h formally refers to the
random two-dimensional Riemannian manifold with metric tensor

(1.1) eγh(z)(dx2 + dy2)

where γ ∈ (0, 2] is a parameter and dx2 + dy2 denotes the Euclidean metric on D. This expression
does not make literal sense because h is a distribution and not a function. There has been a consid-
erable amount of work in recent years aimed at making rigorous sense of (1.1). The construction
of the volume form of (1.1) is related to Kahane’s theory of Gaussian multiplicative chaos [55] and
appears in a number of places. The approach taken in [36] is to let hϵ(z) be the average of h on
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∂B(z, ϵ) and then take

(1.2) µh = lim
ϵ→0

ϵγ
2/2eγhϵ(z)dz

where dz denotes Lebesgue measure on D, see [14] for an elementary approach establishing a
universal limit measure for a general class of mollifications of the field.

The metric (i.e., two-point distance function) associated with (1.1) was first constructed in the
case γ =

√
8/3 in [76, 73, 78, 77], building on [74] and using the tools from [35, 75]. The

construction is indirect and is based on defining a growth process called quantum Loewner evolution
which turns out to describe the growth of metric balls in the resulting metric space. The metric
associated with (1.1) was subsequently constructed for all γ ∈ (0, 2) as a limit of the type (1.2) in
[31, 34, 48, 47, 50, 49] but with γ replaced by ξ = γ/dγ where dγ is the exponent constructed in
[33]. In the present work, we will focus on the case that γ =

√
8/3. This value is special because it

turns out to be equivalent to the Brownian map [73, 77], which is the Gromov-Hausdorff-Prokhorov
scaling limit of random quadrangulations [63, 69].

Our main focus will be on the relationship between Liouville Brownian motion (LBM) and the√
8/3-LQG metric. Recall that LBM is the Brownian motion associated with (1.1) and was first

constructed in [39, 13]. It is defined as a time change of a standard planar Brownian motion where
the change of time depends on the underlying LQG surface. By general theory, the LBM turns out
to be symmetric with respect to the Liouville measure µh. In [38] Garban, Rhodes and Vargas also
identified the Dirichlet form associated with the LBM and showed that its transition semigroup is
absolutely continuous with respect to µh, meaning that the Liouville heat kernel pt(x, y) exists.
Moreover, they observed that the intrinsic metric generated by that Dirichlet form is identically
zero, which indicates some non-Gaussian heat kernel behavior. This degeneracy of the intrinsic
metric is known to occur typically for diffusions on fractals, whose heat kernels indeed satisfy the
so-called sub-Gaussian estimates; see e.g. the survey articles [11, 57] and references therein. The
works [67, 3] establish the continuity of the Liouville heat kernel pt(x, y) in (t, x, y) and some upper
and lower bounds on it. The bounds in [3] have successfully identified the order of the on-diagonal
part pt(x, x) for small t as t−1, up to a factor of a power of log t−1 reflecting the randomness of the
environment and except that the lower bound is proved only for µh-a.e. x. On the other hand, for
the off-diagonal behavior of pt(x, y), the sub-Gaussian upper bounds obtained in [67, 3] are stated
in terms of the Euclidean metric and thereby are expected to be far from being sharp, and the known
sub-Gaussian lower bound due to [67] gives a decay estimate only in t, with an exponent which is
also not expected to be sharp, for each fixed x, y. The work [33] is focused on the transition kernel
for a random walk on a certain graph approximation to LQG between fixed points and uses it to
construct the dimension exponent for LQG.

The definition of LBM is further motivated by recent works which have shown that it arises as
the scaling limit of simple random walk on certain graph approximations to LQG. The convergence
was first proved modulo time parameterization in [52] (for the so-called mated-CRT map) and
[51] (for the Poisson-Voronoi tessellation of the Brownian map, equivalently

√
8/3-LQG) using

the invariance principle established in [53]. The convergence was upgraded to obtain the time
parameterization in [15].

Most results in LQG, including the present work, remain specific to two dimensions and have
not yet been extended to higher dimensions, which is mainly due to the critical role of conformal
invariance in two-dimensional results that is not available in higher dimension. Nonetheless, recent
works [22, 32, 30, 29, 19] initiated the study of higher-dimensional analogs of LQG. In this context,
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higher dimensional version of LBM have been constructed in [30, 19], where in [19] the short-time
asymptotics of the heat kernel along the diagonal and the spectral dimension are identified.

1.2. Main results. The main contributions of the present work are sharp off-diagonal upper and
lower bounds for the (continuous) Liouville heat kernel pt(u, v) in the case γ =

√
8/3 in terms of

the
√
8/3-LQG metric, denoted by dh in the following, which hold for all points simultaneously for

a.e. instance of the
√

8/3-LQG surface and match up to polylog errors in the exponent. We will
state and prove our results in the case that the underlying LQG surface is the

√
8/3-LQG sphere

[35, 28]. By absolute continuity, one can extract similar heat kernel bounds for other LQG surfaces.

Theorem 1.1. There exists a finite constant κ > 0 such that the following is true. For a.e. instance
S = (S2, h) of the

√
8/3-LQG sphere, there exist random positive constants Ci = Ci(h), i = 1, 2, such

that for all u, v ∈ S and t ∈ (0, 1/2],

(1.3) pt(u, v) ≤
C1(log t

−1)κ

t
exp

(
−C2

(
dh(u, v)

4

t

) 1
3
(
log

(
e+

dh(u, v)

t

))−κ)
.

Theorem 1.2. There exists a finite constant κ > 0 such that the following is true. For a.e. instance
S = (S2, h) of the

√
8/3-LQG sphere, there exists a random constant C = C(h) ∈ (0, 1) such that for

all u, v ∈ S and 0 < t < Cdh(u, v),

(1.4) pt(u, v) ≥ exp

(
−
(
dh(u, v)

4

t

) 1
3
(
log

(
dh(u, v)

t

))κ)
.

Moreover, for all u ∈ S and t ∈ (0, 1/2], we have that pt(u, u) ≥ Ct−1(log t−1)−κ.

Remark 1.3. (i) The lower bound in Theorem 1.2 becomes effective in the regime 0 < t < dh(u, v)
4,

which reflects that the LBM needs to travel a sufficiently long distance so that the possibly bad local
geometries around the starting point become irrelevant. A similar phenomenon can be observed,
for instance, for simple random walks on supercritical percolation clusters, where one has to allow
the random walk some random time to exit bad parts of the cluster before Gaussian heat kernel
decay emerges; see [10].

(ii) While we do not discuss here the necessity of the polylogarithmic corrections in the estab-
lished heat kernel bounds, we remark that in many instances of stochastic processes on random
media, in particular for processes in low dimensions and models at criticality, heat kernel fluctua-
tions are known to occur, caused by local irregularities in the random medium, see [2] for a recent
review on this topic.

Off-diagonal upper and lower bounds of the heat kernel similar to (1.3) and (1.4) have been
proved in [26, 27, 12, 7, 6], for the canonical diffusions on various random fractals which are
trees or sufficiently close to being trees so that their heat kernel behavior can be described very
well in terms of the effective resistance metric as established in the general results in [25]. Our
main results, Theorems 1.1 and 1.2 above, are in sharp contrast to those preceding results in that
the effective resistance metric is no longer well-defined since the LBM a.s. does not hit a given
point. To the best of our knowledge, Theorems 1.1 and 1.2 are the first result in the literature
establishing sharp sub-Gaussian heat kernel bounds for diffusions on random fractals which do not
admit well-defined effective resistance metrics.
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1.3. Strategy and outline. The proof of Theorem 1.1 is based on a criterion for off-diagonal sub-
Gaussian heat kernel upper bounds, implied by results in [41, 40], in terms of an exit time estimate
and an on-diagonal heat kernel upper bound. However, since such estimates hold only with poly-
logarithmic corrections in the present context of LQG, in a first step we extend the relevant results
in [41, 40]. More precisely, we derive a perturbed off-diagonal sub-Gaussian heat kernel upper
bound which allows fluctuations in the exit time estimate and in the on-diagonal heat kernel upper
bound to be given by a general class of perturbation functions, including polynomial and polylog-
arithmic corrections. Assuming a similar upper bound on the volumes of metric balls instead of
an on-diagonal heat kernel upper bound, we also deduce a similarly perturbed on-diagonal heat
kernel lower bound by a standard method. These are done in Section 2, which is written in the
framework of a general diffusion (without killing inside) as it might be of independent interest. We
refer to [25] for similar results on heat kernel bounds with fluctuations for local resistance forms
(symmetric diffusions with well-defined effective resistance metrics).

After a review of the Brownian map, LQG and LBM in Section 3, we next establish volume
estimates for

√
8/3-LQG which hold with polylogarithmic corrections in Section 4. More precisely,

it was shown in earlier work by Le Gall [62] in the context of the Brownian map that for each δ > 0

there a.s. exists r0 > 0 so that for all r ∈ (0, r0) the volume of every ball of radius r is between
r4+δ and r4−δ. We improve this to show that there exists a constant κ > 0 and a.s. exists r0 > 0 so
that the volume of every ball of radius r ∈ (0, r0) is between r4(log r−1)−κ and r4(log r−1)κ. The
proofs in this part of the work are based purely on Brownian map techniques. By the equivalence
of
√
8/3-LQG and the Brownian map, the same estimates hold also for

√
8/3-LQG. We remark that

some of our volume estimates in Section 4 can also be extracted from more recent work of Le Gall
[65] but we have included our proofs since the reader might find them of independent interest.

As a preparation for the proofs of the quenched exit time lower bound for LBM and the off-
diagonal heat kernel lower bound (1.4) in Theorem 1.2, in Section 5 we prove a percolation result
for graphs formed by tilings of

√
8/3-LQG surfaces by chunks of SLE6 (Propositions 5.1 and 5.2).

Roughly speaking, they state that with high probability we can construct a strongly supercritical
configuration of such tiles each of which have a certain prescribed set of properties, under the
assumption that with sufficiently high probability each tile has that set of properties. We first prove
this result in the simpler setting of the half-plane as Proposition 5.2, and then translate it into an
analogous result, Proposition 5.1, for the setting of the disk.

We then proceed in Section 6 to establish the quenched exit time upper and lower bounds for
LBM, which states that there exists a constant κ > 0 and a.s. exists r0 > 0 so that for all r ∈ (0, r0)

the conditional expectation (given the underlying LQG surface) of the amount of time it takes
an LBM to exit any ball of radius r when starting from its center is between r4(log r−1)−κ and
r4(log r−1)κ. The upper bound follows easily by combining the volume upper bound from Sec-
tion 4 with the known two-sided Hölder continuity estimate for dh with respect to the usual spheri-
cal metric due to [73, Theorem 1.2] and the fact that the LBM has the same Green functions as the
Brownian motion on the sphere. The proof of the lower bound is based on an application of Propo-
sition 5.1 with the prescribed property for each tile being that with uniformly positive probability
it takes LBM a certain amount of time to cross. Altogether, this is enough to conclude Theorem 1.1
and the on-diagonal heat kernel lower bound in Theorem 1.2 thanks to the on-diagonal heat kernel
upper bound in [3], the general result from Section 2 and the volume upper bound from Section 4.

We finish by establishing (1.4) in Theorem 1.2 using a chaining argument in Section 7. We will
construct our chains out of annuli consisting of chunks of SLE6 by applying Proposition 5.1 in a
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manner similar to the proof of the exit time lower bound above. The special property that the
chunks which make up these annuli will have is an a priori lower bound on the amount of time it
takes the LBM to cross.

Acknowledgements. N.K. was supported in part by JSPS KAKENHI Grant Numbers JP18H01123,
JP22H01128, JP23K22399. J.M. was supported by ERC starting grant 804116 (SPRS) and ERC
consolidator grant ARPF (Horizon Europe UKRI G120614).

2. HEAT KERNEL BOUNDS WITH FLUCTUATIONS FOR GENERAL DIFFUSIONS

The purpose of this section is to give some sufficient conditions for the heat kernel (transition
density) of a diffusion (without killing inside) on a general state space to satisfy a sub-Gaussian type
off-diagonal upper bound and an on-diagonal lower bound which possibly involve some lower order
correction terms that are typically polylogarithmic. The main results of this section (Theorem 2.12
and Proposition 2.18 below), stated in their simplest possible forms that are still applicable to the
case of the

√
8/3-Liouville Brownian motion, yield the following theorem; see [37, Appendix A.2

and Section 4.5] and [24, Appendix A.1] for the basics of Markov processes.

Theorem 2.1. Let (X , d) be a compact metric space with at least two points, let µ be a Radon measure
on X with full support, and let X = ({Xt}t∈[0,∞), {Px}x∈X ) be a conservative diffusion on X which
admits a (unique) continuous function p = pt(x, y) : (0,∞) × X × X → [0,∞) such that for any
(t, x) ∈ (0,∞)×X ,

(2.1) Px[Xt ∈ dy] = pt(x, y)µ(dy) (as Borel measures on X ).

Further set diamX := supx,y∈X d(x, y)(∈ (0,∞)), B(x, r) := {y ∈ X | d(x, y) < r} for (x, r) ∈
X × (0,∞), τA := inf{t ∈ [0,∞) | Xt ̸∈ A} (inf ∅ := ∞) for A ⊂ X , let α ∈ (0,∞), β ∈ (1,∞), and
consider the following conditions:

(V)≤ (Volume upper bound) There exist κvu ∈ [0,∞) and CV ∈ (0,∞) such that for any (x, r) ∈
X × (0, diamX ],

µ(B(x, r)) ≤ CVr
α
(
log(e+ r−1)

)κvu .(2.2)

(E) (Mean exit time estimate) There exist κel, κeu ∈ [0,∞), ae ∈ [1,∞) and Ce ∈ (0,∞) such
that for any (x, r) ∈ X × (0, a−1e diamX ],

C−1e rβ
(
log(e+ r−1)

)−κel ≤ Ex[τB(x,r)] ≤ Cer
β
(
log(e+ r−1)

)κeu .(2.3)

(DU) (On-diagonal upper bound) There exist κdu ∈ [0,∞) and Cdu ∈ (0,∞) such that for any
(t, x, y) ∈ (0, (diamX )β]×X × X ,

pt(x, y) ≤ Cdut
−α/β(log(e+ t−1)

)κdu .(2.4)

(i) (Off-diagonal upper bound) Assume (E) and (DU), set κu := (2+ β)(κel + κeu), let εh ∈ (0,∞)

satisfy εhκu < 1 and set κ′du := (1− εhκu)
−1(κdu + κuα/β). Then there exist c1, c2 ∈ (0,∞)

such that for any (t, x, y) ∈ (0, (diamX )β]×X × X ,

pt(x, y) ≤ c1

(
log(e+ t−1)

)κ′du
tα/β

exp

(
−c2

(
d(x, y)β

t

) 1
β−1
(
log

(
e+

d(x, y)

t

))− κu
β−1

)
.(2.5)

(ii) (On-diagonal lower bound) Assume (V)≤, (E) and that X is µ-symmetric, i.e., pt(x, y) =

pt(y, x) for any (t, x, y) ∈ (0,∞)×X ×X . Set κu := (2+β)(κel+κeu) and κdl := κvu+κuα/β.
Then there exists c3 ∈ (0,∞)
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such that for any (t, x) ∈ (0, (diamX )β]×X ,

pt(x, x) ≥ c3t
−α/β(log(e+ t−1)

)−κdl .(2.6)

Theorem 2.1 is obtained at the end of this section as a corollary of the main results of this section
(Theorem 2.12 and Proposition 2.18 below), which, for potential future applications, we state and
prove in the general setting of a diffusion without killing inside on a locally compact separable
metric space.

The rest of this section is organized as follows. First in Subsection 2.1, we introduce the gen-
eral setting and suitable generalizations of conditions (V)≤, (E) and (DU) of Theorem 2.1. In
Subsection 2.2, we state the generalization of Theorem 2.1-(i) (Theorem 2.12) and prove it as an
application of [40, Theorems 6.2 and 6.4]. Subsection 2.3 states and proves the generalization of
Theorem 2.1-(ii) (Proposition 2.18), which is a mere adaptation of a well-known argument to our
setting. Then Theorem 2.1 is deduced from Theorem 2.12 and Proposition 2.18 in Subsection 2.4.

2.1. Setting and conditions. Throughout the rest of Section 2, we assume that (X , d) is a locally
compact separable metric space, and that µ is a Radon measure on X with full support, i.e., a Borel
measure on X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X . We will refer to such a triple (X , d, µ) as a metric measure space. For (x, r) ∈
X × (0,∞), we set B(x, r) := {y ∈ X | d(x, y) < r}, and the closure of B(x, r) in X is denoted by
B(x, r). Let X∂ := X ∪ {∂} be the one-point compactification of X , so that the Borel σ-field B(X∂)
of X∂ can be expressed, in terms of that B(X ) of X , as B(X∂) = B(X ) ∪ {A ∪ {∂} | A ∈ B(X )}. In
what follows, [−∞,∞]-valued functions on X are always set to be 0 at ∂ unless their values at ∂
are already defined: f(∂) := 0 for f : X → [−∞,∞].

Let X =
(
Ω,M, {Xt}t∈[0,∞], {Px}x∈X∂

)
be a diffusion without killing inside on (X ,B(X )) with

life time ζ and shift operators {θt}t∈[0,∞]. By definition, (Ω,M) is a measurable space, {Xt}t∈[0,∞]

is a family of M/B(X∂)-measurable maps Xt : Ω → X∂ such that [0,∞) ∋ t 7→ Xt(ω) ∈ X∂ is
continuous and Xt(ω) = ∂ for any t ∈ [ζ(ω),∞] for each ω ∈ Ω, where ζ(ω) := inf{t ∈ [0,∞) |
Xt(ω) = ∂}, and {θt}t∈[0,∞] is a family of maps θt : Ω → Ω satisfying Xs ◦ θt = Xs+t for any
s, t ∈ [0,∞]. The pair X of such a stochastic process

(
Ω,M, {Xt}t∈[0,∞]

)
and a family {Px}x∈X∂

of probability measures on (Ω,M) is then called a diffusion without killing inside on (X ,B(X )) if
and only if X is a normal Markov process on (X ,B(X )) whose minimum completed admissible
filtration F∗ = {Ft}t∈[0,∞] is right-continuous and which is strong Markov with respect to F∗; see
[37, Section A.2, (M.2)–(M.5), the paragraph before Lemma A.2.2, and (A.2.3)] for the precise
definitions of these notions. We set Ex[(·)] :=

∫
Ω(·) dPx for x ∈ X∂ . For each σ-finite Borel measure

ν on X∂ , the function X∂ ∋ x 7→ Px[B] is measurable with respect to the ν-completion of B(X∂) for
any B ∈ F∞ by [24, Exercise A.1.20-(i)], and associated with ν is a measure Pν on (Ω,F∞) given
by Pν [B] :=

∫
X∂ Px[B] dν(x). We also set σ̇B(ω) := inf{t ∈ [0,∞) | Xt(ω) ∈ B} (inf ∅ := ∞) and

τB(ω) := σ̇X∂\B(ω) for B ⊂ X∂ and ω ∈ Ω, so that σ̇B, τB are F∗-stopping times if B ∈ B(X∂) by
[37, Theorem A.2.3].

The most general form of heat kernel bounds we aim to establish in this section involves three
functions v(r), Ψ(r) and h(r) as introduced below, which correspond to the functions rα, rβ and
log(e+ r−1) in Theorem 2.1, respectively.

Assumption 2.2. Throughout the rest of Section 2, we fix homeomorphisms v,Ψ : [0,∞) → [0,∞)

and a non-increasing continuous function h : (0,∞] → [1,∞) with the properties that there ex-
ist positive constants Cv, α1, α2, CΨ, β1, β2, Ch, εh with α1 ≤ α2 and 1 < β1 ≤ β2 such that the
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following hold: for any s, t ∈ (0,∞) with s ≤ t,

C−1v

( t
s

)α1

≤ v(t)

v(s)
≤ Cv

( t
s

)α2

,(2.7)

C−1Ψ

( t
s

)β1
≤ Ψ(t)

Ψ(s)
≤ CΨ

( t
s

)β2
,(2.8)

h(s)

h(t)
≤ Ch

( t
s

)εh
.(2.9)

Note that (2.8) is equivalent to the property that for any s, t ∈ (0,∞) with s ≤ t,

C
−1/β2
Ψ

( t
s

)1/β2
≤ Ψ−1(t)

Ψ−1(s)
≤ C

1/β1
Ψ

( t
s

)1/β1
.(2.10)

Example 2.3. Let α ∈ (0,∞) and β ∈ (1,∞). Then the triple of functions v,Ψ : [0,∞) → [0,∞)

and h : (0,∞] → [1,∞) given by

v(r) := rα, Ψ(r) := rβ and h(r) := log(e+ r−1)(2.11)

satisfies Assumption 2.2 with α1 = α2 = α, β1 = β2 = β, arbitrary εh ∈ (0,∞) and Ch = 2+e−1ε−1h .
Indeed, to see (2.9), let εh ∈ (0,∞) and let s, t ∈ (0,∞) satisfy s ≤ t. Then clearly h(s)/h(t) ≤
log(2e) ≤ 2(t/s)εh for s ≥ e−1, whereas for s ≤ e−1 we have

log(e+ s−1)

log(e+ t−1)
= 1 +

log
(
e+s−1

e+t−1

)
log(e+ t−1)

≤ 1 + log
(e+ s−1

e+ t−1

)
≤ 1 + log

(
et+

t

s

)
≤ 1 + log

2t

s
≤ 2 + log

t

s
≤ (2 + e−1ε−1h )

( t
s

)εh
.

For the sake of the applicability of the main results of this section (Theorem 2.12 and Proposi-
tion 2.18 below) to diffusions on random non-compact spaces and to strongly local regular sym-
metric Dirichlet forms, we further introduce the following assumption.

Assumption 2.4. Throughout the rest of Section 2, we fix R ∈ (0,∞], a non-empty open subset Y
of X , and a Borel subset N of X with the property that

Px[σ̇N = ∞] = 1 for any x ∈ X \ N .(2.12)

Our conditions (V)≤, (E) and (DU) for heat kernel bounds, which we state next, concern the
behavior of the measure µ and the diffusion X only within metric balls contained in Y with radii
at most R, and hence can often be verified even for diffusions on random non-compact spaces by
choosing R to be finite and Y to be bounded. The set N can be considered as being removed from
the set of starting points of the diffusion X by virtue of (2.12), and is thereby going to play the role
of a set of “capacity zero with respect to X”; we remark that the presence of such N is inevitable
in analyzing symmetric diffusions on the basis of the general theory of regular symmetric Dirichlet
forms presented in [37, 24], as illustrated in Remark 2.8 below.

Definition 2.5 (Volume upper bound). We say that condition (V)≤ holds if there exist constants
κvu ∈ [0,∞), av ∈ [1,∞) and CV ∈ (0,∞) such that for any (x, r) ∈ (Y \ N ) ×

(
0, Rav

)
with

B(x, avr) ⊂ Y,

µ(B(x, r)) ≤ CVv(r)h(r)
κvu .(2.13)
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Definition 2.6 (Mean exit time estimate). We say that the mean exit time estimate (E) holds if
there exist constants κel, κeu ∈ [0,∞), ae ∈ [1,∞) and Ce ∈ (0,∞) such that for any (x, r) ∈
(Y \ N )×

(
0, Rae

)
with B(x, aer) ⊂ Y,

C−1e Ψ(r)h(r)−κel ≤ Ex[τB(x,r)] ≤ CeΨ(r)h(r)κeu .(2.14)

Definition 2.7 (On-diagonal upper bound). We say that condition (DU) holds if there exist con-
stants κdu ∈ [0,∞), adu ∈ [1,∞) and Cdu ∈ (0,∞) such that for any (x0, r) ∈ Y ×

(
0, R

adu

)
with

B(x0, adur) ⊂ Y, any t ∈ (0,Ψ(r)) and any Borel subset A of B(x0, r),

Px[Xt ∈ A, t < τB(x0,r)] ≤
Cdu

v(Ψ−1(t))
h(t)κduµ(A) for any x ∈ B(x0, r) \ N .(2.15)

Remark 2.8. Assume that X is µ-symmetric and associated with a regular symmetric Dirichlet form
on L2(X , µ) (see [37, Sections 1.1, 1.4, 4.1 and 4.2] for the precise definitions of these notions). In
this case, the validity of condition (DU) for some Borel subset N of X satisfying µ(N ) = 0 and (2.12)
follows from (DU) with “any x ∈ B(x0, r) \ N ” in (2.15) replaced by “µ-a.e. x ∈ B(x0, r)”.

Indeed, for each (x0, r) ∈ Y × (0, R
adu

) with B(x0, adur) ⊂ Y, [40, Theorem 5.4] implies the
existence of Nx0,r ∈ B(X ) satisfying µ(Nx0,r) = 0 and (2.12) such that (2.15) with Nx0,r in place
of N holds for all t ∈ (0,Ψ(r)) and all Borel subset A of B(x0, r). Then, choosing a countable dense
subset Y0 of Y, we see from [37, Theorem 4.1.1] that there exists N ∈ B(X ) with the properties
µ(N ) = 0, (2.12) and

⋃
x0∈Y0, r∈(0,R/adu)∩Q, B(x0,adur)⊂Y Nx0,r ⊂ N . Now it is elementary to see that

(DU) holds with this N and the same constants adu, Cdu, κdu.

2.2. Off-diagonal upper bounds of the heat kernel. The statement of our main result on off-
diagonal upper bounds of the heat kernel (Theorem 2.12 below) requires the following definition.

Definition 2.9. For any κ ∈ [0,∞), we define a lower semi-continuous function Φκ : [0,∞) ×
(0,∞) → [0,∞] by

Φκ(r, t) := sup
s∈(0,∞)

(
r

Ψ−1(sh(s)κ)
− t

s

)
,(2.16)

so that for any r, t ∈ (0,∞), Φκ(·, t) is non-decreasing, Φκ(r, ·) is non-increasing and Φκ(0, t) = 0 <

Φκ(r, t) < ∞ by the upper inequality in (2.10), β1 > 1 and the assumption that h is [1,∞)-valued
and non-increasing.

Example 2.10. Let β ∈ (1,∞) and assume that Ψ(r) = rβ for any r ∈ [0,∞). Then an elementary
differential calculus easily shows that for any (r, t) ∈ [0,∞)× (0,∞),

Φ0(r, t) = cβ

(
rβ

t

) 1
β−1

,(2.17)

where cβ := β−β/(β−1)(β − 1) = β−1/(β−1) − β−β/(β−1). On the other hand, for each κ ∈ [0,∞), the
effect of the correction term h(s)κ in (2.16) can be estimated as

Φκ(r, t) ≥ cβ

(
rβ

t

) 1
β−1

h
(
(t/r)

β
β−1

)− κ
β−1

= Φ0(r, t)h
(
(t/r)

β
β−1

)− κ
β−1(2.18)

(t/0 := ∞) for any (r, t) ∈ [0,∞)× (0,∞). Indeed, noting that (2.18) is obvious for r = 0 and that
h is [1,∞)-valued and non-increasing, let r, t ∈ (0,∞) and set

s := β
β
β−1 (t/r)

β
β−1h

(
(t/r)

β
β−1

) κ
β−1 ∈

[
(t/r)

β
β−1 ,∞

)
,
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so that h(s) ≤ h
(
(t/r)β/(β−1)

)
. Then by this last inequality and (2.16),

Φκ(r, t) ≥
r

Ψ−1(sh(s)κ)
− t

s
=

r

s1/βh(s)κ/β
− t

s

=

(
rβ

t

) 1
β−1

h
(
(t/r)

β
β−1

)− κ
β−1

(
β
− 1
β−1h(s)−κ/βh

(
(t/r)

β
β−1

)κ/β
− β

− β
β−1

)
≥
(
rβ

t

) 1
β−1

h
(
(t/r)

β
β−1

)− κ
β−1
(
β
− 1
β−1 − β

− β
β−1

)
,

proving (2.18).

In fact, the lower bound on the ratio Φκ(r, t)/Φ0(r, t) exhibited in (2.18) extends to the case of
general Ψ, as follows.

Lemma 2.11. Let κ ∈ [0,∞). Then there exists CΦκ ∈ (0,∞) such that for any (r, t) ∈ [0,∞)×(0,∞),

(2.19) Φκ(r, t) ≥ CΦκΦ0(r, t)h
(
(t/r)

β1
β1−1

)− κ
β1−1

.

Proof. Set κ′ := (β1 − 1)−1κ. (2.19) is obvious for r = 0, so let r, t ∈ (0,∞), and set r′ := C
−1/β1
Ψ r.

Since {sh(s)−κ′ | s ∈ (0,∞)} = (0,∞) and Φ0(r
′, t) > 0, in view of (2.16) we can choose s ∈ (0,∞)

so that
r′

Ψ−1(sh(s)−κ′)
− t

sh(s)−κ′
>

1

2
Φ0(r

′, t) > 0.(2.20)

Then by (2.10), r′ = C
−1/β1
Ψ r and κ′ = (β1 − 1)−1κ we have

r′h(s)−κ
′

Ψ−1(sh(s)−κ′)
≤
C

1/β1
Ψ r′h(s)−κ

′

Ψ−1(sh(s)κ)

(
sh(s)κ

sh(s)−κ′

)1/β1

=
r

Ψ−1(sh(s)κ)
,(2.21)

and therefore from [80, Lemma 2.10] (see also (2.28) and (2.29) below), (2.20), (2.21) and (2.16)
we obtain

Φ0(r, t)h(s)
−κ′ ≤ C

1
β1−1

Ψ

( r
r′

) β1
β1−1

Φ0(r
′, t)h(s)−κ

′ ≤ 2C
2

β1−1

Ψ

(
r′h(s)−κ

′

Ψ−1(sh(s)−κ′)
− t

s

)
≤ 2C

2
β1−1

Ψ

(
r

Ψ−1(sh(s)κ)
− t

s

)
≤ 2C

2
β1−1

Ψ Φκ(r, t).(2.22)

On the other hand, setting C ′Ψ :=
(
C
−1/β1
Ψ Ψ−1(1)

)β1/(β1−1) ∧ 1 and noting that

r′

Ψ−1(u)
− t

u
=

t

Ψ−1(u)

(
r′

t
− Ψ−1(u)

u

)
≤ t

Ψ−1(u)

(
r′

t
−
(C ′Ψ
u

)β1−1
β1

)
for any u ∈ (0, 1] by (2.10), we have

r′

Ψ−1(u)
− t

u
≤ 0 for any u ∈

(
0, C ′Ψ

( t
r′

∧ 1
) β1
β1−1

]
.(2.23)

It then follows from (2.23) and (2.20) that s ≥ sh(s)−κ
′
> C ′Ψ

(
t
r′ ∧ 1

)β1/(β1−1), and hence further

from (2.9) that, with CΨ,h := Ch
(
Ψ−1(1) ∧ 1

)−εhβ1/(β1−1),
h(s) ≤

h
(
C ′Ψ(t/r

′)
β1
β1−1

)
≤ CΨ,hh

(
(t/r)

β1
β1−1

)
if r′ ≥ t,

h(C ′Ψ) ≤ h(C ′Ψ)h(∞)−1h
(
(t/r)

β1
β1−1

)
if r′ ≤ t,
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which together with (2.22) shows (2.19). □

Now we can state the main result of this subsection; note that by Lemma 2.11 we can replace
exp
(
−c2Φκu

(
d(x, y) ∧Ry, t

))
in the right-hand side of (2.24) below by

exp

(
−c2CΦκuΦ0

(
d(x, y) ∧Ry, t

)
h

(( t

d(x, y) ∧Ry

) β1
β1−1

)− κu
β1−1

)
.

Theorem 2.12 (Off-diagonal upper bound). Assume (E), (DU) and that B(x, r) is compact for any
(x, r) ∈ (Y \ N )× (0, R

2ae
) with B(x, 2(ae + 1)r) ⊂ Y. Set κu := (2 + β2)(κel + κeu) and assume that

εhκu < 1. Then there exists a Borel measurable function p = pt(x, y) : (0,∞)× (X \N )×Y → [0,∞)

such that the following hold:

(i) For any (t, x) ∈ (0,∞)× (X \ N ),

Px[Xt ∈ dy] = pt(x, y)µ(dy).

(ii) There exist c1, c2 ∈ (0,∞) such that, with κ′du := (1−εhκu)−1(κdu+κuα2/β1), for any (t, x, y) ∈
(0,∞)× (X \ N )× Y,

pt(x, y) ≤
c1h
(
t ∧Ψ(Ry)

)κ′du
v
(
Ψ−1(t) ∧Ry

) exp
(
−c2Φκu

(
d(x, y) ∧Ry, t

))
,(2.24)

where Ry := R ∧ infz∈X\Y d(y, z) (inf ∅ := ∞) and Ψ(∞) := ∞.

The proof of Theorem 2.12 is concluded at the end of this subsection. For this purpose, we need
some preliminary results on basic properties of Φκ and on upper bounds on Px[τB(x,r) ≤ t]. First, for
Φκ we have the following lemma, which asserts that, provided εhκ < 1, the function Ψ−1(sh(s)κ)

in (2.16) is comparable to Ψ−1κ (s) for some homeomorphism Ψκ : [0,∞) → [0,∞) that still satisfies
(2.8) (for some different constants) even though Ψ−1(sh(s)κ) might not be itself strictly increasing.

Lemma 2.13. Let κ ∈ [0, ε−1h ) and define a homeomorphism Ψκ : [0,∞) → [0,∞) by

(2.25) Ψ−1κ (t) := sup
s∈(0,t]

Ψ−1(sh(s)κ) + Ψ−1(t),

which can be defined since lims↓0Ψ
−1(sh(s)κ) = 0 by εhκ < 1 and (2.9). Then there exists C > 0

such that

(2.26) CΨ−1κ (t) ≤ Ψ−1(th(t)κ) ≤ Ψ−1κ (t) for any t ∈ (0,∞),

and Ψκ satisfies (2.8) with β2 replaced by βκ,2 := (1 − εhκ)
−1β2 and CΨ by some CΨ,κ ∈ (0,∞).

Moreover, with βκ,1 := β1 and Φ̃κ(r, t) := sups∈(0,∞)

(
r/Ψ−1κ (s) − t/s

)
for (r, t) ∈ [0,∞) × (0,∞),

there exists C ′ ∈ (0,∞) such that for any r, t, s ∈ (0,∞) with s ≤ r,

C ′−1 min
j∈{1,2}

(
Ψκ(r)

t

) 1
βκ,j−1

≤ Φ̃κ(r, t) ≤ C ′ max
j∈{1,2}

(
Ψκ(r)

t

) 1
βκ,j−1

,(2.27)

C ′−1
(r
s

) βκ,2
βκ,2−1 ≤ Φ̃κ(r, t)

Φ̃κ(s, t)
≤ C ′

(r
s

) βκ,1
βκ,1−1

,(2.28)

Φ̃κ(r, t) ≤ Φκ(r, t) ≤ C ′Φ̃κ(r, t).(2.29)
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Proof. Let t ∈ (0,∞). Clearly Ψ−1(th(t)κ) ≤ Ψ−1κ (t). By (2.10) and (2.9), for any s ∈ (0, t], if
sh(s)κ ≥ th(t)κ then(s

t

)1/β1
≤ 1 ≤ Ψ−1(sh(s)κ)

Ψ−1(th(t)κ)
≤ c

(
sh(s)κ

th(t)κ

)1/β1

≤ cCκh

(s
t

) 1−εhκ
β1 ≤ cCκh

(s
t

) 1−εhκ
β2 ,(2.30)

and if sh(s)κ ≤ th(t)κ then

c−1
(s
t

)1/β1
≤ c−1

(
sh(s)κ

th(t)κ

)1/β1

≤ Ψ−1(sh(s)κ)

Ψ−1(th(t)κ)
≤ c

(
sh(s)κ

th(t)κ

)1/β2

≤ cCκh

(s
t

) 1−εhκ
β2 .(2.31)

In particular, we see from (2.30) and (2.31) that Ψ−1(sh(s)κ) ≤ cCκhΨ
−1(th(t)κ) for any s ∈ (0, t]

and hence that Ψ−1κ (t) ≤ 2 sups∈(0,t]Ψ
−1(sh(s)κ) ≤ cCκhΨ

−1(th(t)κ), proving (2.26). It follows
from (2.30), (2.31) and (2.26) that Ψκ satisfies (2.8) with β2 replaced by βκ,2 = (1− εhκ)

−1β2 and
CΨ by some constant CΨ,κ ∈ (0,∞). Finally, we have (2.27) by [41, Lemma 3.19] and [40, Lemma
5.7], (2.28) by [80, Lemma 2.10], and then (2.29) by (2.26) and (2.28). □

Next, we prove some upper bounds on Px[τB(x,r) ≤ t], which is a key condition for applying [40,
Theorems 6.2 and 6.4] to conclude Theorem 2.12. For any open set U ⊂ X we set

E(U) := sup
x∈U\N

Ex[τU ].

Lemma 2.14. For any open subset U of X with E(U) <∞ and any (t, x) ∈ (0,∞)× (X \ N ),

Px[τU < t] ≤ 1− Ex[τU ]

E(U)
+

t

E(U)
.

Proof. See [41, Lemma 3.12]. □

Lemma 2.15. Assume that condition (E) holds, and set κ1 := κel + κeu. Then there exist constants
c1, c2 ∈ (0,∞) such that for any (x, r) ∈ (Y \ N ) ×

(
0, R

2ae

)
with B(x, (2ae + 1)r) ⊂ Y and any

λ ∈ [c1h(r)
2κ1/Ψ(r),∞),

Ex
[
e−λτB(x,r)

]
≤ 1− c2h(r)

−κ1 .

Proof. For r and x as in the statement set B := B(x, r). Then, by Lemma 2.14 we have for all
t, λ ∈ (0,∞),

Ex
[
e−λτB

]
≤ Ex

[
e−λτB1l{τB<t}

]
+ Ex

[
e−λτB1l{τB≥t}

]
≤ Px

[
τB < t

]
+ e−λt

≤ 1− Ex[τB]

E(B)
+

t

E(B)
+ e−λt.

Next, note that for any y ∈ B \ N we have B(y, 2aer) ⊂ B(x, (2ae + 1)r) ⊂ Y and therefore by
condition (E) we obtain E(B) ≥ Ex[τB] ≥ C−1e Ψ(r)h(r)−κel and

E(B) = sup
y∈B\N

Ey
[
τB
]
≤ sup

y∈B\N
Ey
[
τB(y,2r)

]
≤ CeΨ(2r)h(2r)κeu

≤ cΨ(r)h(r)κeu ≤ c h(r)κel+κeu Ex
[
τB
]
.(2.32)

Hence, setting κ1 := κel + κeu we get

Ex
[
e−λτB(x,r)

]
≤ 1− c3 h(r)

−κ1 + c4 tΨ(r)−1 h(r)κel + e−λt.

Now choose t such that c3h(r)−κ1 = 2c4 tΨ(r)−1 h(r)κel , so that

Ex
[
e−λτB(x,r)

]
≤ 1− 1

2
c3h(r)

−κ1 + e−λt.
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Finally, note that for all λ ≥ c1h(r)
2κ1/Ψ(r) with c1 > 0 sufficiently large and t as chosen above we

have e−λt ≤ 1
4c3h(r)

−κ1 , which completes the proof. □

Proposition 2.16. Assume that condition (E) holds, and set κu := (2+β2)(κel+κeu). Then there exist
C5, γ ∈ (0,∞) such that, for any (x, r) ∈ (Y \ N ) ×

(
0, R

2ae

)
with B(x, r) compact and B(x, 2(ae +

1)r) ⊂ Y, and for any λ ∈ (0,∞),

Ex
[
e−λτB(x,r)

]
≤ C5 exp

(
− γr

Ψ−1
(
λ−1h(λ−1)κu

)).
Proof. We follow the arguments in [41, Lemma 3.14].

Step 1. Let λ > 0, fix some ρ < r to be specified later and set n = ⌊ rρ⌋. Further, set τ := τB(x,r)

and

u(y) := Ey
[
e−λτ

]
, mk := sup

B(x,kρ)\N
u, k = 1, 2, . . . , n.

For abbreviation define ε := C2h(ρ)
−κ1 (cf. Lemma 2.15) and ε′ := ε/2. Let yk be a point in

B(x, kρ) \ N such that

(1− ε′)mk ≤ u(yk) ≤ mk ≤ 1.

For k ≤ n − 1 notice that B(yk, ρ) ⊂ B(x, (k + 1)ρ) ⊂ B(x, r). Consider the function vk(y) :=

Ey[e
−λτk ] defined for y ∈ B(yk, ρ) where τk := τB(yk,ρ). Then, since B(x, r) is compact, by the

continuity of [0,∞) ∋ t 7→ Xt(ω) ∈ X∂ for each ω ∈ Ω, for all y ∈ B(yk, ρ) \ N we have Xτk ∈
B(yk, ρ) ⊂ B(x, (k + 1)ρ) Py-a.s. on {τk < ∞}. By the strong Markov property [24, Theorem
A.1.21] of X,

u(y) = Ey
[
e−λτke−λ(τ−τk)

]
= Ey

[
e−λτkEXτk

[
e−λτ

]]
= Ey

[
1l{τk<∞,Xτk∈B(x,(k+1)ρ)\N}e

−λτku(Xτk)
]

≤ Ey
[
e−λτk

]
sup

B(x,(k+1)ρ)\N
u = vk(y)mk+1.

In particular, by choosing y = yk, we get u(yk) ≤ vk(yk)mk+1 and therefore

(1− ε′)mk ≤ vk(yk)mk+1.(2.33)

If additionally

λ ≥ C1
h(ρ)2κ1

Ψ(ρ)
,(2.34)

since B(yk, (2ae + 1)ρ) ⊂ B(x, 2(ae + 1)r) ⊂ Y we may apply Lemma 2.15 to B(yk, ρ) and obtain
that vk(yk) ≤ 1− ε, which combined with (2.33) shows that

(1− ε′)mk ≤ (1− ε)mk+1, ∀k ∈ {1, . . . , n− 1}.

By iteration we get that

u(x) ≤ m1 ≤
( 1− ε

1− ε′

)n−1
mn ≤

(1− 2ε′

1− ε′

)n−1
≤ exp

(
− (n− 1) log

(
1 +

ε′

1− 2ε′

))
≤ exp

(
− (n− 1) log(1 + 2ε′)

)
,
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where we used in the last step that mn ≤ 1. Since we may assume that C2 ≤ 1
2 and therefore ε′ ≤ 1

4

and since n ≥ r
ρ − 1, using the definition of ε′ we obtain that

u(x) ≤ exp
(
− (n− 1) log

(
1 + 2ε′

))
≤ C exp

(
− C

r

ρh(ρ)κ1

)
(2.35)

provided (2.34) is satisfied.
Step 2: Choice of ρ. In order to choose an appropriate ρ ∈ (0, r), set κ0 := 2κ1 and C0 :=

C−1Ψ ∨ (C1h(Ψ
−1(1))κ0), where CΨ > 0 is such that Ψ−1(t) ≥ CΨ(t

1/β1 ∧ t1/β2) for all t > 0. Let
ρ := Ψ−1(C0λ

−1h(λ−1)κ0). We claim that for this choice of ρ,

λ ≥ C1
h(ρ)κ0

Ψ(ρ)
,

in particular, (2.34) holds. To see this, let us first consider the case λ ≥ C0. Then, since β2 ≥ β1 > 1

and

ρ ≥ Ψ−1(C0λ
−1) ≥ CΨ

(
(C0λ

−1)1/β1 ∧ (C0λ
−1)1/β2

)
≥ CΨC0 λ

−1 ≥ λ−1,(2.36)

we have
h(ρ)κ0

Ψ(ρ)
=

λ

C0
h(λ−1)−κ0h(ρ)κ0 ≤ λ

C0
≤ λ

C3
.

On the other hand, if λ ≤ C0, then

ρ ≥ Ψ−1(C0λ
−1) ≥ Ψ−1(1)(2.37)

and hence
h(ρ)κ0

Ψ(ρ)
≤ λ

C0
h(Ψ−1(1))−κ0h(ρ)κ0 ≤ λ

C3
.

Thus, (2.34) is satisfied for this choice of ρ and by (2.35) we have that

Ex
[
e−λτB(x,r)

]
≤ C exp

(
− C

r

ρh(ρ)κ1

)
(2.38)

provided ρ < r.
Step 3: Conclusion. In order to deduce the desired inequality let us assume first that ρ :=

Ψ−1(C0λ
−1h(λ−1)κ0) < r. We need an upper estimate on ρh(ρ)κ1 .

Let us again consider the case λ ≥ C0 first. Then, by (2.36) we get

ρ h(ρ)κ1 ≤ ρ h(λ−1)κ1 = Ψ−1
(
C0λ

−1h(λ−1
)κ0)h(λ−1)κ1

≤ C Ψ−1
(
C0λ

−1h(λ−1
)κ0+β2κ1)( C0λ

−1h(λ−1
)κ0

C0λ−1h(λ−1
)κ0+β2κ1

) 1
β2

h(λ−1)κ1

≤ C Ψ−1
(
λ−1h(λ−1)κu

)
(2.39)

with κu := κ0 + β2κ1 = (2 + β2)(κel + κeu), where we used that Ψ−1(r2)/Ψ−1(r1) ≤ C(r2/r1)
1/β2

for any 0 < r1 ≤ r2.
On the other hand, if λ ≤ C0, then ρ ≥ Ψ−1(1) by (2.37) and therefore

ρ h(ρ)κ1 ≤ ρ h(Ψ−1(1))κ1 = Ψ−1(C0λ
−1h(λ−1)κ0)h(Ψ−1(1))κ1

≤ C Ψ−1
(
λ−1h(λ−1

)κu).(2.40)

The claim now follows combining (2.38) with (2.39) and (2.40).
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Now assume that ρ := Ψ−1(C0λ
−1h(λ−1)κ0) ≥ r. Then,

r ≤ Ψ−1(C0λ
−1h(λ−1)κ0) ≤ C Ψ−1

(
λ−1h(λ−1)κu

)
,

and the desired estimate follows from e−λτB(x,r) ≤ 1 by adjusting the constants γ and C5. □

Corollary 2.17. Suppose that condition (E) holds, and set κu := (2 + β2)(κel + κeu). Then there exist
c1, c2 ∈ (0,∞) such that, for any (x, r) ∈ (Y \ N ) ×

(
0, R

2ae

)
with B(x, r) compact and B(x, 2(ae +

1)r) ⊂ Y, and for any t ∈ (0,∞),

Px[τB(x,r) ≤ t] ≤ c1 exp
(
−Φκu(c2r, t)

)
.

Proof. For x and r as in the statement and any s, t ∈ (0,∞), by Proposition 2.16

Px[τB(x,r) ≤ t] = Px
[
e−τB(x,r)/s ≥ e−t/s

]
≤ et/sEx

[
e−τB(x,r)/s

]
≤ C5 exp

(
t

s
− cr

Ψ−1(sh(s)κu)

)
.

Now the assertion follows by taking the infimum in s ∈ (0,∞) of the right-hand side of this in-
equality and recalling the definition (2.16) of Φκu . □

Proof of Theorem 2.12. If Y = X and R = ∞, then by Lemma 2.13 along with εhκu < 1, Corol-
lary 2.17 along with (E), and (DU) along with Ψκu ≤ Ψ, all the assumptions of [40, Theorem 6.4]
with Ψκu in place of Ψ are satisfied, and hence [40, Theorem 6.4] together with (2.28) and (2.29)
yields the assertions.

Thus we may assume that either Y ≠ X or R < ∞ holds, so that Ry ∈ (0,∞) for any y ∈ Y.
Let {yn}n∈N be a countable dense subset of Y. For each y ∈ Y, set R′y := Ry/

(
(2adu) ∨ (4ae + 4)

)
,

so that R′y ∈ (0, R
adu

), B(y, aduR
′
y) ⊂ Y, R′y ∈ (0, R

2ae
) and B(x, 2(ae + 1)r) ⊂ Y for any (x, r) ∈

B(y,R′y/2) × (0, R′y). Therefore for each n ∈ N, Lemma 2.13 along with εhκu < 1, Corollary 2.17
along with (E), and (DU) along with Ψκu ≤ Ψ together imply that the open subset B(yn, R

′
yn/2) of

X and the function Ψκu satisfy all the assumptions of [40, Theorem 6.2], and hence we see from
[40, (6.4) and (6.5)], (2.27), (2.28) and (2.29) that for any (t, x) ∈ (0,∞)× (X \N ) and any Borel
subset A of B(yn, R

′
yn/4),

Px[Xt ∈ A] ≤
∫
A

ch
(
t ∧Ψκu(R

′
yn)
)κdu

v
(
Ψ−1(t ∧Ψκu(R

′
yn))

) exp(−Φ̃κu
(
c
(
d(x, y) ∧R′yn

)
, t
))
µ(dy)

≤
∫
A

ch
(
t ∧Ψκu(R

′
yn)
)κdu

v
(
Ψ−1(t ∧Ψκu(R

′
yn))

) exp(−c2Φκu(d(x, y) ∧Ry, t))µ(dy).(2.41)

On the other hand, for any t ∈ (0,∞), CΨ(t) ≤ Ψκu(t)h(Ψκu(t))
κu ≤ Ψ(t) by (2.26) and (2.8),

hence h(Ψκu(t)) ≤ h
(
CΨ(t)h(Ψκu(t))

−κu
)
≤ Ch(Ψκu(t))

εhκuh(Ψ(t)) by (2.9), therefore h(Ψκu(t)) ≤
Ch(Ψ(t))

1
1−εhκu and thus

(2.42) h
(
t ∧Ψκu(R

′
yn)
)
≤ Ch

(
Ψ(Ψ−1κu (t)) ∧Ψ(R′yn)

) 1
1−εhκu ≤ C ′h

(
t ∧Ψ(Ry)

) 1
1−εhκu

for any y ∈ B(yn, R
′
yn/4) by Ψ−1κu ≥ Ψ−1, (2.9) and (2.8). Also for any t ∈ (0,∞), by Ψ−1κu ≥ Ψ−1,

(2.7), (2.26) and (2.10) we have

v(Ψ−1κu (t))

v(Ψ−1(t))
≤ Cv

(
Ψ−1κu (t)

Ψ−1(t)

)α2

≤ C ′
(
Ψ−1(th(t)κu)

Ψ−1(t)

)α2

≤ C ′′h(t)κuα2/β1 ,
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and therefore for any y ∈ B(yn, R
′
yn/4) we further obtain

(2.43)
1

v
(
Ψ−1(t ∧Ψκu(R

′
yn))

) ≤
C ′′h

(
t ∧Ψκu(R

′
yn)
)κuα2/β1

v
(
Ψ−1κu (t) ∧R′yn

) ≤
C ′′′h

(
t ∧Ψκu(R

′
yn)
)κuα2/β1

v
(
Ψ−1(t) ∧Ry

)
by Ψ−1κu ≥ Ψ−1 and (2.7). Combining (2.41), (2.42) and (2.43), for any (t, x) ∈ (0,∞) × (X \ N )

and any Borel subset A of B(yn, R
′
yn/4) we get

(2.44) Px[Xt ∈ A] ≤
∫
A

c1h
(
t ∧Ψ(Ry)

)κ′du
v
(
Ψ−1(t) ∧Ry

) exp
(
−c2Φκu

(
d(x, y) ∧Ry, t

))
µ(dy),

which then holds for any Borel subset A of Y since Y =
⋃
n∈NB(yn, R

′
yn/4). Now the assertions

follow from (2.44) and [40, Proposition 5.6]. □

2.3. On-diagonal lower bounds of the heat kernel. In the present general setting, our result on
on-diagonal lower bounds of the heat kernel is formulated as in the following proposition.

Proposition 2.18 (On-diagonal lower bound). Assume (V)≤ and (E), set κu := (2 + β2)(κel + κeu)

and assume εhκu < 1. Also set κdl := κvu + κuα2/β1 and κt := (1 − εhκu)
−1κu. Then there exist

εt ∈ (0, 1) and Cdl ∈ (0,∞) such that, for any (x0, r) ∈ Y ×
(
0, R

av∨ae
)

with B(x0, r) compact and
B
(
x0, ((av∨ae)+2)r

)
⊂ Y, and for any (t, x) ∈ (0, εtΨ(r)h(Ψ(r))−κt ]×(B(x0, r/2)\N ) with Px[Xt ∈

dy, t < τB(x0,r)] = p
B(x0,r)
t,x (y)µ(dy) for some Borel measurable function pB(x0,r)

t,x : B(x0, r) → [0,∞),∫
B(x0,r)

p
B(x0,r)
t,x (y)2 µ(dy) ≥ Cdl

v(Ψ−1(t))
h(t)−κdl .(2.45)

We need the following lemma for the proof of Proposition 2.18.

Lemma 2.19. Let κ ∈ [0, ε−1h ) and δ ∈ (0, 1). Then there exists ε ∈ (0, 1) such that th(t)κ ≤ Ψ( δ2r)

for any r, t ∈ (0,∞) with t ≤ εΨ(r)h(Ψ(r))−κ/(1−εhκ).

Proof. Set κt := (1 − εhκ)
−1κ. Let ε ∈ (0, 1), which we will choose to be sufficiently small later in

this proof, and let r, t ∈ (0,∞) satisfy t ≤ εΨ(r)h(Ψ(r))−κt . Then, setting s := Ψ(r)h(Ψ(r))−κt ∈
(t,Ψ(r)], by (2.9) we have

sh(s)κ ≤ s
(
Chh(Ψ(r))(Ψ(r)/s)εh

)κ
= CκhΨ(r).(2.46)

Therefore we see from (2.30), (2.31), t ≤ εs, (2.46) and (2.10) that

Ψ−1(th(t)κ) ≤ C(t/s)1/β2,κΨ−1(sh(s)κ) ≤ Cε1/β2,κΨ−1(CκhΨ(r)) ≤ C ′ε1/β2,κr

for a constant C ′ ∈ [1,∞) independent of ε ∈ (0, 1), and hence the assertion follows by assuming
that ε has been chosen to be ε := (δ/(2C ′))β2,κ ∈ (0, 1). □

Proof of Proposition 2.18. We follow the standard argument for proving on-diagonal lower bounds
as presented, e.g., in [41, Proof of Lemma 5.13]. Set κ := κu ∈ [0, ε−1h ), let δ ∈ (0, 1), which we
will choose to be sufficiently small later in this proof, let ε ∈ (0, 1) be as in Lemma 2.19 and set
εt := ε. Let (x0, r), (x, t) be as in the statement and set ρ := Ψ−1(th(t)κu)/δ, so that ρ ∈ (0, r2 ]

by the property of εt = ε from Lemma 2.19. Then CΨ−1κu (t) ≤ Ψ−1(th(t)κu) = δρ by (2.26),
hence t ≤ Ψκu(C

−1δρ) ≤ C ′δβκu,2Ψκu(c2ρ) by (2.8) for Ψκu proved in Lemma 2.13, with c2 as in
Corollary 2.17, and therefore

Φκu(c2ρ, t) ≥ Φ̃κu(c2ρ, t) ≥ C ′′ min
j∈{1,2}

(
Ψκu(c2ρ)

t

) 1
βκu,j−1

≥ C ′′′δ
−

βκu,2
βκu,2−1(2.47)
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by (2.29) and (2.27). On the other hand, ρ ≤ r
2 < R

2ae
, the compactness of B(x0, r) implies

that of B(x, ρ) by B(x, ρ) ⊂ B(x0, r), and we also have B(x, 2(ae + 1)ρ) ⊂ B(x, (ae + 1)r) ⊂
B(x0, (ae + 2)r) ⊂ Y, so that by Corollary 2.17 and (2.47) we get

Px[τB(x,ρ) ≤ t] ≤ c1 exp
(
−Φκu(c2ρ, t)

)
≤ c1 exp

(
−C ′′′δ−

βκu,2
βκu,2−1

)
(2.48)

with c1 as in Corollary 2.17. Since c1, C ′′′ in (2.48) are independent of δ ∈ (0, 1), we may assume
that δ has been chosen to satisfy c1 exp

(
−C ′′′δ−βκu,2/(βκu,2−1)

)
≤ 1

2 , and then by (2.48) we have

Px[t < τB(x,ρ)] = 1− Px[τB(x,ρ) ≤ t] ≥ 1

2
.(2.49)

It therefore follows from B(x, ρ) ⊂ B(x0, r) and (2.49) that∫
B(x0,r)

p
B(x0,r)
t,x (y)2 µ(dy) ≥

∫
B(x,ρ)

p
B(x0,r)
t,x (y)2 µ(dy)

≥ 1

µ(B(x, ρ))

(∫
B(x,ρ)

p
B(x0,r)
t,x (y)µ(dy)

)2

=
1

µ(B(x, ρ))
Px[Xt ∈ B(x, ρ), t < τB(x0,r)]

2

≥ 1

µ(B(x, ρ))
Px[t < τB(x,ρ)]

2

≥ 1

4µ(B(x, ρ))
.(2.50)

Finally, noting that Ψ−1(t) ≤ Ψ−1(th(t)κu)/δ = ρ ≤ r
2 <

R
av

and that B(x, avρ) ⊂ B(x0, (av+1) r2) ⊂
Y, we see from (V)≤, (2.7) and (2.10) that

µ(B(x, ρ)) ≤ CVv(ρ)h(ρ)
κvu ≤ CVCvv(Ψ

−1(t))h(Ψ−1(t))κvu
( ρ

Ψ−1(t)

)α2

≤ C ′′′′v(Ψ−1(t))h(Ψ−1(t))κvuh(t)κuα2/β1 .(2.51)

Now (2.45) follows from (2.50), (2.51) and the fact that h(Ψ−1(t)) ≤ h
(
C
−1/β2
Ψ

)
≤ h

(
C
−1/β2
Ψ

)
h(t)

by (2.10) if t ≥ 1 and h(Ψ−1(t)) ≤ h
(
C
−1/β1
Ψ Ψ−1(1)t1/β1

)
≤ C ′′′′′h(t) by (2.10) and (2.9) if t ≤

1. □

2.4. Proof of Theorem 2.1. We conclude this section with deducing Theorem 2.1 from Theo-
rem 2.12 and Proposition 2.18.

Proof of Theorem 2.1. Define v,Ψ : [0,∞) → [0,∞) and h : (0,∞] → [1,∞) by (2.11), so that
Assumption 2.2 holds with arbitrary εh ∈ (0,∞) by Example 2.3. Set R := 2diamX ∈ (0,∞),
Y := X and N := ∅, which satisfy Assumption 2.4.

For (i), since Ry = R∧ infz∈X\Y d(y, z) = 2diamX for any y ∈ X , by Theorem 2.12 there exist a
Borel measurable function p̃ = p̃t(x, y) : (0,∞)× X × X → [0,∞) and c1, c2 ∈ (0,∞) such that for
each (t, x) ∈ (0, (diamX )β]×X , for µ-a.e. y ∈ X ,

pt(x, y) = p̃t(x, y) ≤ c1t
−α/β(log(e+ t−1)

)κ′du exp(−c2Φκu(d(x, y), t)).(2.52)

Then by the continuity of pt(x, ·) and the lower semi-continuity of Φκu , the upper bound on pt(x, y)
in (2.52) extends to any (t, x, y) ∈ (0, (diamX )β] × X × X , from which we obtain (2.5) by noting
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that (2.18) in Example 2.10 yields

Φκu
(
d(x, y), t

)
≥ cβ

(
d(x, y)β

t

) 1
β−1
(
log

(
e+

(d(x, y)
t

) β
β−1

))− κu
β−1

≥ cβ(1− β−1)
κu
β−1

(
d(x, y)β

t

) 1
β−1
(
log

(
e+

d(x, y)

t

))− κu
β−1

.

For (ii), note first that for any (x0, r), (x, t) ∈ X × (0,∞) a function pB(x0,r)
t,x as in Proposition 2.18

exists and satisfies pB(x0,r)
t,x ≤ pt(x, ·) µ-a.e. on B(x0, r) by (2.1) and the Radon–Nikodym theorem.

Therefore, choosing any εh ∈ (0,∞) with εhκu < 1, we immediately see that all the assumptions of
Proposition 2.18 are satisfied and thus that, with κt, εt, Cdl as in Proposition 2.18, (2.45) holds for
any (x0, r) ∈ X × (0, a−1e diamX ) and any (t, x) ∈

(
0, εtr

β
(
log(e+ r−β)

)−κt]×B(x0, r/2). Now set
r0 := a−1e diamX , t0 := εtr

β
0

(
log(e+ r−β0 )

)−κt and let (t, x) ∈ (0, t0)×X . Then t ∈
(
0, εtr

β
(
log(e+

r−β)
)−κt] for some r ∈ (0, r0), and hence from pt(x, ·) = pt(·, x) on X , pt(x, ·) ≥ p

B(x,r)
t,x ≥ 0 µ-a.e.

on B(x, r) and (2.45) we obtain

p2t(x, x) =

∫
X
pt(x, y)pt(y, x)µ(dy) =

∫
X
pt(x, y)

2 µ(dy) ≥
∫
B(x,r)

pt(x, y)
2 µ(dy)

≥
∫
B(x,r)

p
B(x,r)
t,x (y)2 µ(dy) ≥ Cdlt

−α/β(log(e+ t−1)
)−κdl ,

proving (2.6) for (t, x) ∈ (0, 2t0) × X . Finally, (2.6) for (t, x) ∈ [2t0, (diamX )β] × X follows
since, for each s ∈ (0,∞), we can define a bounded self-adjoint operator Ts : L2(X , µ) → L2(X , µ)
satisfying Ts1 = 1 by Tsf :=

∫
X ps(·, y)f(y)µ(dy), then

∫
X |Tsf |2 dµ =

∫
X
∣∣Tsf− 1

µ(X )

∫
X f dµ

∣∣2 dµ+
1

µ(X )

(∫
X f dµ

)2 for any f ∈ L2(X , µ) and hence for any (t, x) ∈ (s,∞)×X ,

p2t(x, x) =

∫
X
pt(·, x)2 dµ =

∫
X

∣∣Ts(pt−s(·, x))∣∣2 dµ ≥
(∫
X pt−s(·, x) dµ

)2
µ(X )

=
1

µ(X )
.

We have thus completed the proof of Theorem 2.1. □

3. BACKGROUND ON THE BROWNIAN MAP AND LIOUVILLE QUANTUM GRAVITY

3.1. A review on the Brownian map.

3.1.1. Definition. The Brownian map is a random metric measure space which was shown by Le
Gall [63] and Miermont [69] to arise as the Gromov-Hausdorff scaling limit of certain types of uni-
formly random planar maps. The name Brownian map was introduced by Marckert and Mokkadem
in [68] who proved a weaker form of convergence of rescaled uniformly random quadrangulations.
The standard (unit area) Brownian map is defined from the Brownian snake using the following
procedure. Let X be a normalized Brownian excursion on [0, 1]. Let T be the instance of the
continuum random tree (CRT) [1] which is encoded by X. That is, for 0 ≤ s < t ≤ 1, we let

mX(s, t) = Xs +Xt − 2 inf
r∈[s,t]

Xr.

Then mX defines a pseudometric on [0, 1]. We say that s ∼ t if mX(s, t) = 0. Then T is given by
the metric quotient of [0, 1] with respect to the equivalence relation ∼. Let ρCRT : [0, 1] → T be the
natural projection map. Given X, we let Y be the mean-zero Gaussian process with

cov(Ys, Yt) = inf
r∈[s,t]

Xr
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so that E[(Ys − Yt)
2] = mX(s, t). In particular, if s ∼ t then Ys = Yt, so that Y induces a Brownian

process on the branches of the CRT instance T , and is called the Brownian snake. We note that
Y is a.s. α-Hölder continuous for any α < 1/4. This follows from the usual Kolmogorov-Centsov
argument.

For s, t ∈ [0, 1] with s < t and [t, s] = [0, 1] \ (s, t), let

d◦(s, t) = Ys + Yt − 2max

(
inf
r∈[s,t]

Yr, inf
r∈[t,s]

Yr

)
.

For a, b ∈ T , we set

d◦T (a, b) = min{d◦(s, t) : ρCRT(s) = a, ρCRT(t) = b}.

Finally, for a, b ∈ T , we set

d(a, b) = inf


k∑
j=1

d◦T (aj−1, aj)


where the infimum is over all k ∈ N and a0 = a, a1, . . . , ak = b in T . We say that a ∼= b if and only if
d(a, b) = 0. The Brownian map (S, d) is then defined to be the metric quotient T / ∼=. Let ρ : T → S
be the natural projection map associated with this metric quotient and let ρBM = ρ ◦ ρCRT. Let ν
denote the pushforward of Lebesgue measure from [0, 1] to S by ρBM so that (S, d, ν) is a metric
measure space.

The Brownian map is also naturally marked by two points. The first marked point x is called the
root and is equal to ρBM(s∗) where s∗ is the a.s. unique point in [0, 1] at which Y attains its infimum
[68, Lemma 16] (see also [66, Proposition 2.5]). The second marked point y is called the dual root
and is equal to ρBM(0) = ρBM(1). The reason for this terminology is that x is the root of the tree
of geodesics from every point z ∈ S to x and y is the root of the dual tree, where the tree encoded
by X is called the dual tree and the tree encoded by Y is called the geodesic tree (tree of geodesics
from every point back to x). It turns out that the conditional law of x, y given (S, d, ν) is that of
independent picks from ν [62, Section 8]. That is, the law of (S, d, ν, x, y) is invariant under the
operation of resampling x, y independently using ν.

We let µA=1
BM denote the law of (S, d, ν, x, y). The superscript A = 1 serves to emphasize that

ν(S) = 1 as X is defined on [0, 1]. If a > 0 is fixed then we define µA=aBM by replacing X with a
Brownian excursion of length a and in this case we have that ν(S) = a.

As we will see later, in many situations it is more convenient to consider the Brownian map with
random rather than fixed (unit) area. The starting point for the definition of the (doubly marked)
Brownian map with random area is the infinite measure on Brownian excursions [82]. We remind
the reader that one can “sample” from this distribution using the following two steps:

• Pick a lifetime t from the measure ct−3/2dt where c > 0 is a constant and dt denotes
Lebesgue measure on R+.

• Given t, pick a Brownian excursion X of length t.

Recall that a Brownian excursion X of length t can be constructed by first sampling a Brownian
excursion X̃ of unit length and then by setting Xs =

√
tX̃s/t.

We define µBM to be the law of (S, d, ν, x, y) where X in the definition of the standard (unit area)
Brownian map is replaced by a sample from the infinite measure on Brownian excursions. Since
the law on Brownian excursions is an infinite measure, so is µBM. However, if we condition µBM

on ν(S) = a for a > 0 then we obtain the probability measure µA=aBM . It is also possible to condition
µBM on other events to obtain a probability measure. Another important example which we will
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discuss momentarily in more detail is the event d(x, y) > 1. More precisely, it follows from [77,
Theorem 1.1] that µBM[d(x, y) > 1] ∈ (0,∞). In particular, µBM[d(x, y) > 1]−1 times the restriction
of µBM to {d(x, y) > 1} is a probability measure. In fact, we have that µBM[diam(S) > 1] ∈ (0,∞).
Indeed, as we noted earlier, the Brownian snake Y used to construct a sample (S, d) from µA=1

BM

is α-Hölder continuous for any α < 1/4. Also, the Kolmogorov-Centsov argument implies that
Ỹ = max0≤t≤1 |Yt| ∈ Lp for all p ∈ [1,∞). Furthermore we have that µBM[diam(S) > 1] =

c
∫∞
t=0 µ

A=t
BM [diam(S) > 1]t−3/2dt for some constant c ∈ (0,∞) which combined with scaling and

change of coordinates implies that µBM[diam(S) > 1] = 4c
∫∞
s=0 µ

A=1
BM [diam(S) > s]sds. Fix p > 2.

Since diam(S) ≤ 2Ỹ by construction and µA=1
BM [Ỹ > s] ≲ s1−p by Markov’s inequality, we obtain

that µBM[diam(S) > 1] ≲ 1 +
∫∞
s=1 s

1−pds ≲ 1.
We now record an estimate for the volume of metric balls in the Brownian map. This result will

involve a polynomial correction, which we will improve later to a polylogarithmic correction.

Lemma 3.1. Suppose that (S, d, ν, x, y) is an instance of the Brownian map. For each u > 0 there a.s.
exists r0 > 0 so that

r4+u ≤ ν(B(z, r)) ≤ r4−u for all r ∈ (0, r0) and all z ∈ S.

Proof. The upper bound is proved in [62, Corollary 6.2]. The lower bound follows from the Hölder
continuity of the Brownian snake. □

3.1.2. Breadth-first construction. We will now review the basic properties of the breadth-first con-
struction of the Brownian map developed in [77].

Continuous state branching processes. Recall that a continuous state branching process (CSBP) with
branching mechanism ψ is the cadlag Markov process Y on R+ whose law is characterized by its
Laplace transforms

(3.1) E[exp(−λYt) |Ys] = exp(−Ysut−s(λ)) for 0 ≤ s ≤ t

where
∂ut
∂t

(λ) = −ψ(ut(λ)) for u0(λ) = λ.

See [58, Chapter 10] or [61] for an introduction to CSBPs. There is a correspondence between
CSBPs and Lévy processes via the so-called Lamperti transform [59]. In particular, if Y is a Lévy
process stopped upon hitting (−∞, 0) with only upward jumps and Laplace exponent ψ and we
define the time-change

(3.2) s(t) = inf{r > 0 :

∫ r

0

1

Yu
du ≥ t}

then the process Ys(t) is a CSBP with branching mechanism ψ. Conversely, if Y is a CSBP with
branching mechanism ψ and we set

(3.3) s(t) = inf{r > 0 :

∫ r

0
Yu du ≥ t}

then the time-changed process Ys(t) is a Lévy process stopped upon hitting (−∞, 0) with only up-
ward jumps and Laplace exponent ψ.

In this work, we will be primarily interested in the case that ψ(λ) = cλα where α ∈ (1, 2) and
c > 0 is a constant. We will call the corresponding CSBP an α-stable CSBP since the associated Lévy
process is α-stable. In this case, we have the explicit formula

(3.4) ut(λ) = (λ1−α + ct)1/(1−α).
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Note that the explicit form of ut combined with (3.1) implies that the following is true. If Y is an
α-stable CSBP starting from Y0 > 0 then for each c > 0 we have that t 7→ Ycα−1t has the same law
as cY , up to a change of starting point.

Let Y be an α-stable CSBP and let ζ = inf{t ≥ 0 : Yt = 0} be its extinction time. The for-
mula (3.1) yields an explicit formula for the distribution of ζ, which is as follows

(3.5) P[ζ > t] = P[Yt > 0] = 1− lim
λ→∞

E[e−λYt ] = 1− exp(−ct1/(1−α)Y0).

Boundary length and conditional independence of inside and outside of filled metric balls. Suppose
that (S, d, ν, x, y) is distributed according to µBM. For each r ≥ 0, we letB•(x, r) be the complement
of the y-containing component of S \ B(x, r), where we set B(x, 0) = ∅. We call B•(x, r) the filled
metric ball of radius r centered at x. In other words, B•(x, r) is defined as the closure of the union
of B(x, r) together with all of the components of S \B(x, r) which do not contain y.

On the event {d(x, y) > r}, it is shown in [77] how to associate with ∂B•(x, r) a boundary
length Lr in a manner which is measurable with respect to (S, d, ν, x, y). It turns out that the
marginal law on Lr can be “sampled” from by first “picking” a 3/2-stable CSBP excursion from the
infinite measure on such excursions and then taking the cadlag modification of the time-reversal.
The infinite measure on 3/2-stable CSBP excursions can be described as follows. Recall from [20,
Chapter VIII, Section 4] that the infinite measure on 3/2-stable Lévy excursions with only upward
jumps can be sampled from as follows.

• Pick a lifetime t from the measure ct−5/3dt where c > 0 is a constant and dt denotes
Lebesgue measure on R+.

• Given t, pick a 3/2-stable Lévy excursion with only upward jumps of time-length t.

The infinite measure on 3/2-stable CSBPs can be sampled from by first sampling from the infinite
measure on 3/2-stable Lévy excursions and then applying the Lamperti transform (3.2).

For each r > 0, we can view B•(x, r) as a metric measure space which is marked by x and
equipped with the restriction of ν to B•(x, r). The metric that we put on B•(x, r) is the interior-
internal metric, which is defined by setting the distance between points u, v ∈ B•(x, r) to be the
infimum of the d-length of paths which connect u, v and stay in the interior of B•(x, r) except
possibly at their endpoints. We can similarly view S \ B•(x, r) as a metric measure space which is
marked by y and equipped with the interior-internal metric.

It is shown in [77] that Lr is a.s. determined by B•(x, r), that Lr is a.s. determined also by
S \ B•(x, r) and, moreover, that B•(x, r) and S \ B•(x, r) are conditionally independent given Lr.
On the event that {d(x, y) > r}, the same also holds if we replace r by s = d(x, y)−r. In this case, S\
B•(x, s) is the region which has been explored after performing r units of reverse metric exploration.
It is also shown in [77] that for each r > 0 the metric measure spaces corresponding to S \B(x, r)

are conditionally independent given their boundary lengths. The conditional law of the components
of S \B(x, r) which do not contain y are given by µL=ℓBD (where ℓ is the hole boundary length) and
the conditional law of the component which contains y is given by µL=ℓBD,W (where ℓ is again the
hole boundary length); here µL=ℓBD and µL=ℓBD,W denote the law of a Brownian disk with boundary
length equal to ℓ and that of a Brownian disk weighted by its area, respectively, introduced below
at the end of Subsection 3.1.2. This in fact follows from the conditional independence of B•(x, r)
and S \ B•(x, r) and a re-rooting argument. These statements hold more generally if r is replaced
by a stopping time τ for the boundary length process of the whole collection of components of
S \B(x, s), s ≥ 0.
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Metric bands. The inside-outside independence of filled metric balls allows us to decompose an
instance of the Brownian map into conditionally independent metric bands. More precisely, suppose
that we have fixed r0 = 0 < r1 < r2 < · · · < rk and we let sj = d(x, y) − rj for each 0 ≤ j ≤ k.
Then we can view each Bj = B•(x, sj−1) \ B•(x, sj), 1 ≤ j ≤ k, as a metric measure space with
its interior-internal metric dBj and measure νBj = ν|Bj , where we set B(x, r) = B•(x, r) = ∅ for
r ≤ 0. Note that each Bj is either a topological disk or annulus. Its inner (resp. outer) boundary
is the component of ∂Bj whose distance to x is equal to sj−1 (resp. sj). We will denote the inner
(resp. outer) boundary of ∂Bj by ∂InBj (resp. ∂OutBj). We also note that ∂InBj is naturally marked
by the point visited by the a.s. unique geodesic connecting x and y. The width of Bj is sj−1 − sj =

rj − rj−1. We note that the independence property for the reverse metric exploration implies that
Bj is conditionally independent of B1, . . . ,Bj−1 given the boundary length of ∂InBj . Moreover, the
conditional law of Bj given that its inner boundary length is equal to ℓ depends only on ℓ and the
width rj − rj−1.

We let µL=ℓ,W=w
Band be the law on metric bands (B, dB, νB, z) with inner boundary length ℓ, width

w, and marked by a point z on the inner boundary of B. We note that if (B, dB, νB, z) has law
µL=ℓ,W=w
Band , a > 0 and we rescale distances by a, boundary lengths by a2, and areas by a4, then we

obtain a sample from µL=a
2ℓ,W=aw

Band .

Brownian disks and the metric net. The metric net of (S, d, ν, x, y) is defined as MetNet(S) :=⋃
r≥0 ∂B

•(x, r). The components of S \MetNet(S) are each topological disks. They correspond to
the downward jumps of the boundary length process Lr where the magnitude of a given downward
jump gives the boundary length of the component. The components are conditionally independent
given their boundary lengths and are instances of the Brownian disk with the given boundary length
(equipped with their interior-internal metric). For ℓ > 0, we let µL=ℓBD denote the law of a Brow-
nian disk with boundary length equal to ℓ. We also let µL=ℓBD,W denote the law of a Brownian disk
weighted by its area. In other words, the Radon-Nikodym derivative of µL=ℓBD,W with respect to µL=ℓBD

is equal to a normalizing constant times the area of the surface. If r > 0, we have that S \B•(x, r)
has the law µL=ℓBD,W where ℓ = Lr.

It turns out that the law of the area of a sample from µL=ℓBD,W is equal to the law of the amount
of time it takes a standard Brownian motion on R starting from 0 to hit −ℓ [21]. Recall that the
density for this law with respect to Lebesgue measure on R+ at a is given by

(3.6)
ℓ√
2πa3

exp

(
− ℓ2

2a

)
.

The law of the area of a sample from µL=ℓBD thus has density with respect to Lebesgue measure on
R+ at a given by

(3.7)
ℓ3√
2πa5

exp

(
− ℓ2

2a

)
.

We note that the Brownian disk can be constructed using a variant of the Brownian snake and this
perspective is developed in [21]. We will not describe this construction further here because in what
follows we will only need to know that Brownian disks arise as the complementary components
when performing a metric exploration of the Brownian map. The equivalence between these two
perspectives was proved in [64].
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3.1.3. Explorations of Brownian disks. Recall from the above that if (S, d, ν, x, y) has distribution
µBM and r > 0 then the conditional law of S \ B•(x, r) given Lr is equal to µL=LrBD,W. This implies
that there is a natural exploration of an instance (D, d, ν, y) sampled from µL=ℓBD,W, ℓ > 0, which is
given by considering for each r ≥ 0 the y-containing complementary component Dr of the (closed)
r-neighborhood of ∂D. The boundary length Lr of ∂Dr is then well-defined and evolves in the
same manner as in the case of a metric exploration of the Brownian map. Moreover, the successive
components disconnected from y correspond to the downward jumps of Lr and are conditionally
independent Brownian disks with boundary length equal to the size of the corresponding down-
ward jump. Finally, for each r ≥ 0, the conditional law given Lr of the metric measure space given
by Dr and marked by y, the restriction of ν to Dr, and the interior-internal metric in Dr is equal to
µL=LrBD,W.

In the case of (D, d, ν) sampled from µL=ℓBD , there is another exploration which is natural to
consider and is called the center exploration in [77]. It is analogous to the targeted exploration
described just above except that it always continues into the complementary component with the
largest boundary length. It can more precisely be constructed as follows. Suppose that y ∈ D is
picked according to ν/ν(D) independently of everything else. Then one can consider the metric
exploration starting from ∂D and targeted at y up until the first time a component D1 is discon-
nected from y with boundary length larger than the y-containing component. At this time, we pick
a point y1 in D1 from ν/ν(D1) independently of everything else and then continue the exploration
inside of D1 towards y1 until the first time a component D2 is disconnected from y1 with boundary
length larger than the y1-containing component. We then continue iterating the above procedure
to have a sequence {Dj}j of components inside of which we continue the exploration at each step,
until the boundary length of the target component first hits 0. We note that this time R is a.s. finite
since it is at most the diameter of D, and that a.s. the sequence {Dj}j is infinite but only finitely
many of them appear by exploration time r for any r < R.

Let us now record some important properties of the center exploration. By the target component
of the center exploration at exploration time r we mean the component in which the exploration
continues after r units of exploration, and each component which remains after the termination of
the exploration is called a component cut off by the center exploration. Let Mr denote the boundary
length of the target component at exploration time r. Then the downward jumps of Mr correspond
to components which are disconnected from the target component. Moreover, the components are
conditionally independent Brownian disks (given the realization of M) where the boundary length
of the disk is given by the length of the corresponding jump. Furthermore, the conditional law of
the target component given Mr is given by µL=Mr

BD .
Let (ai) denote the sequence of downward jumps made by the center exploration run until Mr

hits 0 and let α > 0. Then it is shown in [77, Section 4.6] that

(3.8) ℓ2 = E

[∑
i

a2i

]
and ℓα > E

[∑
i

aαi

]
for α > 2

where both expectations are under the law µL=ℓBD . Moreover, by the scale invariance of the Brownian
disk we note that the value of E[

∑
i(ai/ℓ)

α] does not depend on ℓ. The first equality in (3.8) can
be seen because the conditional expectation of the amount of area inside of D given the center
exploration up to some time evolves as a martingale and, as explained above, the complementary
components are conditionally independent Brownian disks. The inequality in (3.8) can be seen by
a direct calculation with the jump law for Mr (which is explicitly identified in [77]).



TWO-SIDED HEAT KERNEL BOUNDS FOR
√

8/3-LIOUVILLE BROWNIAN MOTION 23

3.2. Liouville quantum gravity review.

3.2.1. Basic definitions. Suppose that h is an instance of (some form of) the Gaussian free field
(GFF) on a domain D ⊆ C (e.g., with Dirichlet or free boundary conditions, defined on the whole-
plane, any of the above plus a harmonic function). The Liouville quantum gravity surface described
by h refers to the random two-dimensional Riemannian manifold with metric tensor

(3.9) eγh(z)(dx2 + dy2)

where γ ∈ (0, 2) is a parameter and dx2 + dy2 denotes the Euclidean metric on D. This expression
does not make literal sense because h is a distribution and not a function. The volume form
associated with (3.9) was constructed in [36]. The construction proceeds by letting hϵ(z) be the
average of h on ∂B(z, ϵ) and then taking

(3.10) µh = lim
ϵ→0

ϵγ
2/2eγhϵ(z)dz

where dz denotes Lebesgue measure on D. In the case that D has free boundary conditions on a
linear segment L, one can similarly define a boundary length measure on L by setting

(3.11) νh = lim
ϵ→0

ϵγ
2/4eγhϵ(z)/2dz

where dz denotes Lebesgue measure on L. The limiting procedure (3.10) implies that the measures
µh satisfy the following change of coordinates formula. If φ : D̃ → D is a conformal transformation
and

(3.12) h̃ = h ◦ φ+Q log |φ′| where Q =
2

γ
+
γ

2

then µ
h̃
(A) = µh(φ(A)) for all Borel sets A. The same is also true with νh in place of µh. In

particular, this gives a way to define νh on boundary segments which are not necessarily linear
because we can conformally map to such a domain and then compute the boundary length there.

We say that two domain/field pairs (D,h) and (D̃, h̃) are equivalent as quantum surfaces if h, h̃
are related as in (3.12). A quantum surface is an equivalence class of domain/field pairs under this
equivalence relation. An embedding of a quantum surface is a particular choice of representative,
and a quantum surface with an embedding (D,h) for a domain D ⊂ C is said to be parameterized
by D. We will also discuss marked quantum surfaces which refer to quantum surfaces with extra
marked points and the equivalence relation (3.12) is generalized so that the map φ must also
take the marked points associated with the surface described by h̃ to the marked points associated
with the surface described by h. It is not always immediate that two domain/field pairs describe
equivalent quantum surfaces, so there is some subtlety to this definition. For example, two very
different looking constructions of the quantum sphere have been given in [35] and [28] and proved
to be equivalent in [8].

3.2.2. Quantum disks, spheres, and wedges. We will now describe the construction of a quantum
disk and a quantum sphere, as introduced in [35]. The precise definitions will not be important for
what follows, but we include them here for completeness. Throughout Subsection 3.2.2, γ ∈ (0, 2)

is arbitrary, and for functions f, g with L2 gradients we define the Dirichlet inner product by

(3.13) (f, g)∇ =
1

2π

∫
∇f(x) · ∇g(x) dx.

Let ∥ · ∥∇ be the associated norm.
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The starting point for the definition of the quantum surfaces which we will discuss is the excur-
sion measure for a Bessel process, which we recall is defined as follows. Suppose that δ ∈ (−∞, 2).
Then one can sample from the measure on Bessel excursions using the following procedure:

(i) Pick a lifetime T from the measure cδT δ/2−2 dT where dT denotes Lebesgue measure on R+

and cδ > 0 is a constant.
(ii) Sample an independent normalized excursion Z̃ : [0, 1] → R+ of a Bessel process of dimension

δ.
(iii) Take Z to be t 7→ T 1/2Z̃(t/T ).

We note that the Bessel excursion measure is an infinite measure (as the measure cδT δ/2−2 dT is
an infinite measure). It is also defined even for δ ≤ 0, although in this case it is not possible to
concatenate a Poisson point process of such Bessel excursions to obtain a continuous process.

While reading what follows, the reader may find it helpful to look at [35, Figure 1.2].

Quantum disks. We will now describe the construction of a quantum disk. This is a finite volume
quantum surface which is homeomorphic to the unit disk D and is naturally marked by two points.
It is easiest to give the definition of the quantum disk when the surface is parameterized by the
infinite horizontal strip S = R × [0, π]. We let H(S ) be the closure of the C∞ functions on S

with L2 gradient with respect to ∥ · ∥∇, viewed modulo additive constant. Then H(S ) admits the
orthogonal decomposition H1(S )⊕H2(S ) where H1(S ) (resp. H2(S )) contains those functions
in H(S ) which are constant (resp. have mean-zero) on vertical lines.

A quantum disk is a quantum surface (S , h,−∞,+∞) whose law can be sampled from using the
following steps:

• Take the projection of h onto H1(S ) to be given by 2
γ logZ where Z is a Bessel excursion

of dimension 3− 4
γ2

, reparameterized to have quadratic variation 2 dt.
• Take the projection of h onto H2(S ) to be independently given by the corresponding pro-

jection of a GFF on S with free boundary conditions.

The above specifies the embedding of the surface modulo one free parameter (since as we will
explain below, the points at ±∞ are marked), which corresponds to the horizontal translation.
There are various ways of fixing the horizontal translation. One possibility is to let X denote the
projection of h onto H1(S ) and then choose the horizontal translation so that supu∈RXu is attained
at u = 0.

Since the measure on Bessel excursions of dimension 3 − 4
γ2

is an infinite measure, this defines
an infinite measure on quantum surfaces which we denote by µQD. One can obtain a probability
measure by conditioning, for example, on the boundary length νh(∂S ) or area µh(S ) being equal
to a given value. We let µL=ℓQD denote the probability measure obtained when we condition on the
boundary length νh(∂S ) being ℓ > 0.

The two marked points at +∞,−∞ are uniformly random given the quantum surface structure
[35, Proposition A.8]. This means that the law of (S , h,−∞,+∞) is invariant under the operation
of sampling x, y independently from νh, letting φ : S → S be a conformal transformation which
takes +∞ to x and −∞ to y, and then replacing h with h ◦ φ+Q log |φ′|.

We will often refer to the law on quantum disks which is obtained by weighting the law µL=ℓQD by
its total volume µh(S ) and then adding an extra marked point in the interior chosen at random
from the quantum measure µh. We let µL=ℓQD,W denote this probability measure.

Quantum spheres. We will now describe the construction of the quantum sphere. This is a finite
volume surface which is homeomorphic to the two-dimensional sphere S2 and is naturally marked
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by two points. It is easiest to give the definition of the quantum sphere when parameterized by the
infinite cylinder C = R× [0, 2π] with the top and bottom identified. Let H(C ) be the closure of the
C∞(C ) functions with respect to ∥ · ∥∇, defined modulo additive constant. Then H(C ) admits the
orthogonal decomposition H1(C )⊕H2(C ) where H1(C ) (resp. H2(C )) contains those functions in
H(C ) which are constant (resp. have mean-zero) on vertical lines.

Let h be the field on C whose law can be sampled from as follows:

• Take its projection onto H1(C ) to be given by 2
γ logZ where Z is a Bessel excursion of

dimension 4− 8
γ2

, reparameterized to have quadratic variation dt.
• Take its projection onto H2(C ) to be independently given by the corresponding projection

of a whole-plane GFF on C .

As in the case of the quantum disk, this specifies the embedding of the surface modulo one free
parameter. One possible way of fixing it is to let X denote the projection of h onto H1(C ) and then
choose the horizontal translation so that supu∈RXu is attained at u = 0.

We emphasize that since the Bessel excursion measure is an infinite measure, the measure on
quantum spheres that we have just defined is also an infinite measure. We let µQSPH denote this
infinite measure. One can obtain a probability measure by conditioning on its total volume.

The two marked points at +∞,−∞ turn out to be uniformly random given the quantum surface
structure [35, Proposition A.13]. This means that the law of (C , h,−∞,+∞) is invariant under the
operation of sampling x, y independently from µh, letting φ : C → C be a conformal transformation
which takes +∞ to x and −∞ to y, and then replacing h with h ◦ φ+Q log |φ′|.

Quantum wedges. We will now describe the construction of a quantum wedge. This is a doubly-
marked infinite volume surface which is homeomorphic to the upper half-plane H and is naturally
marked by two points (an “origin” point and an “infinity” point). Bounded neighborhoods of the
origin point a.s. have a finite amount of mass and neighborhoods of the infinity point a.s. have an
infinite amount of mass. It can be convenient to describe a quantum wedge parameterized either
by H (as this is the setting in which SLE is easiest to describe) or by S (as in this case the field is
easiest to describe).

Let us first describe the sampling procedure in the case of H. We let H(H) be the Hilbert space
closure of the C∞ functions on H with L2 gradient with respect to ∥ · ∥∇, viewed modulo addi-
tive constant. Then we can write H(H) = H1(H) ⊕ H2(H) where H1(H) (resp. H2(H)) denotes
the subspace of functions which are radially symmetric (resp. have zero mean on origin-centered
semicircles). The law of the quantum wedge (H, h, 0,∞) parameterized by H where 0 is the origin
point and ∞ is the infinity point can be sampled from using the following procedure.

First, we define a process As as follows. For s ≥ 0, we let As = B2s + γs where B is a standard
Brownian motion with B0 = 0. For s ≤ 0, we let As = B̂−2s + γs where B̂ is a standard Brownian
motion independent of B with B̂0 = 0 conditioned so that B̂2u + (Q− γ)u > 0 for all u > 0.

• We take the projection of h onto H1(H) to be the function whose common value on
∂B(0, e−s) ∩H is given by As as described above.

• We take the projection of h onto H2(H) to be independently given by the corresponding
projection of a GFF on H with free boundary conditions.

We note that if we have a quantum wedge parameterized by H, then taking the origin point
to be 0 and the infinity point to be ∞ specifies the embedding up to one free parameter which
corresponds to the scaling. In the above construction, we have taken the free parameter so that if
we let r = sup{s > 0 : hs(0) +Q log s = 0}, where hs(0) denotes the average of h on ∂B(0, s) ∩H,
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then r = 1. This is sometimes called the circle average embedding. There are other ways of fixing
this scaling, but the circle average embedding is often convenient because then the restriction of h
to D ∩ H has the same law as the corresponding restriction to D ∩ H of a free boundary GFF on H
plus −γ log | · | with the additive constant fixed so that its average on ∂D ∩H vanishes.

We can sample from the law of a quantum wedge parameterized by S using the following
procedure:

• Take the projection of h onto H1(S ) to be given by 2
γ logZ, Z a Bessel process of dimension

1 + 4
γ2

, parameterized to have quadratic variation 2dt.
• Take the projection of h onto H2(S ) to be independently given by the corresponding pro-

jection of a free boundary GFF on S .

We will use the notation (S , h,−∞,+∞) where −∞ (resp. +∞) denotes the origin (resp. infinity)
point. This actually specifies the embedding of the surface into S modulo horizontal translation.
It is often convenient to take the horizontal translation so that if X denotes the projection of h onto
H1(S ) then inf{u ∈ R : Xu = 0} = 0.

We let µW=2
QW denote the law of a quantum wedge. The reason for the superscript W = 2 is that

one can in fact consider variants of the quantum wedge which are obtained using a Bessel process
of dimension 1 + 2

γ2
W and the parameter W > 0 is called the weight. In this article, we will only

need the W = 2 quantum wedge so we will not discuss the other variants in further detail.
The weight-2 quantum wedge has the special feature that it is invariant under the operation of

translating its boundary point by a fixed amount of quantum length. More precisely, suppose that
(H, h, 0,∞) is a quantum wedge, L > 0, and x > 0 is such that νh([0, x]) = L. Then (H, h, x,∞) is
again a quantum wedge.

3.2.3. Review of the metric. A metric for
√

8/3-Liouville quantum gravity which is isometric to the
Brownian surfaces is constructed in [76, 73, 78] using the process QLE(8/3, 0) first defined in [74].

If we have a quantum surface described by the field h on the domain D, we will let dh denote
the corresponding metric and Bh(z, r) the metric ball with respect to dh centered at z of radius r.
If we have a marked point y, then we will let B•h,y(z, r) denote the filled metric ball relative to y
with respect to dh. In other words, B•h,y(z, r) is the complement of the y-containing component of
D \Bh(z, r).

If (C , h,−∞,+∞) is a quantum sphere, then the associated doubly-marked metric measure
space (C , dh, µh,−∞,+∞) has distribution µBM. Moreover, the field h which describes the quan-
tum sphere can be measurably recovered from the metric measure space structure. Similarly, if
(S , h,−∞,+∞) is a quantum disk then the associated metric measure space (S , dh, µh) has the
law of a Brownian disk.

There are also infinite volume versions of this, whereby the so-called quantum cone is equivalent
to the Brownian plane and a quantum wedge is equivalent to the Brownian half-plane.

3.2.4. SLE6 explorations of quantum wedges, disks and spheres. We will now review the basic prop-
erties of SLE6 explorations of quantum disks and spheres when γ =

√
8/3. These results come

from [35] and [75].
Suppose that (H, h, 0,∞) is a weight-2 quantum wedge. Let η′ be an independent SLE6 on H

from 0 to ∞. We assume that η′ is parameterized according to quantum natural time. Recall
that this is not the standard capacity parameterization but rather a time parameterization which
comes from the quantum surface structure defined by h. It is the continuum analog of the time
parameterization of an interface from a statistical mechanics model on a random planar map where
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η′(t)

FIGURE 1. Shown is a chordal SLE6 process η′ (red) on H from 0 to ∞ drawn up to
time t. The hull Kt of η′([0, t]) is the set of points disconnected from ∞ by η′([0, t]).
The top of Kt is the part of ∂Kt in H. The left (resp. right) side of the top of Kt is
the part of the top which is to the left (resp. right) of η′(t) and shown in teal (resp.
orange). The bottom of Kt is the part of ∂Kt in ∂H. The left (resp. right) side of
the bottom of Kt is the part which is to the left (resp. right) of 0 and is shown in
blue (resp. dark green). We set Lt to be the quantum length of the top left minus
the bottom left and Rt to be the quantum length of the top right minus the bottom
right. The quantum length of the top left is Lt− inf0≤s≤t Ls and the quantum length
of the bottom left is − inf0≤s≤t Ls.

the interface is explored one edge at a time. Suppose that t ≥ 0 and that Ht is the unbounded
component of H \ η′([0, t]) and let Kt = H \Ht be the associated hull. The top of Kt is Kt ∩ ∂Ht =

∂Kt ∩ H and the bottom is ∂Kt ∩ ∂H. We let Lt = Lt(η
′) denote the difference in the quantum

length of the part of the top which is to the left of η′(t) and the part of the bottom which is to the
left of 0. We similarly let Rt = Rt(η

′) denote the difference in the quantum length of the part of the
top which is to the right of η′(t) and the part of the bottom which is to the right of 0. See Figure 1
for an illustration of these definitions. Then L,R evolve as a pair of independent 3/2-stable Lévy
processes with only downward jumps occurring whenever η′ disconnects a bubble from ∞ on its
left (resp. right) side. The magnitude of the downward jump corresponds to the boundary length
of the bubble.

Moreover, for each a.s. finite {FW
t+}t∈[0,∞)-stopping time τ (with FW

t denoting the σ-field gener-
ated by the quantum surfaces disconnected by η′|[0,t] from ∞ and FW

t+ :=
⋂
s∈(t,∞) F

W
s ) we have that

the quantum surface parameterized by the unbounded component of H \ η′([0, τ ]) and marked by
η′(τ) and ∞ is a weight-2 quantum wedge independent of FW

τ+. The quantum surfaces parameter-
ized by the bounded components of H \ η′([0, τ ]) correspond to the downward jumps of L|[0,τ ] and
R|[0,τ ] (depending on whether they are to the left or right of η′) and are conditionally independent
quantum disks given L|[0,τ ], R|[0,τ ] with boundary length given by the size of the corresponding
jump. Here and in what follows, for a quantum surface with an embedding (D,h), we consider
each open subset D0 of D as parameterizing a quantum surface by equipping D0 with the field
h|D0 .

Suppose that (S, x, y) is a doubly marked quantum sphere. Let η′ be a whole-plane SLE6 from x

to y which is sampled independently of S and then reparameterized by quantum natural time, and
set tη′ := inf(η′)−1(y), so that tη′ <∞ a.s. For t ∈ [0,∞), we let Lt be the quantum boundary length
of the connected component of S \ η′([0, t]) containing y and let FS

t denote the σ-field generated
by the quantum surfaces disconnected by η′|[0,t] from y, and set FS

t+ :=
⋂
s∈(t,∞) F

S
s . Then, [75,

Proposition 6.4] implies that for each {FS
t+}t∈[0,∞)-stopping time τ with τ < tη′ a.s., conditionally

given FS
τ+, the quantum surface parameterized by the y-containing component of S \ η′([0, τ ])
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has law µL=LτQD,W and the location of η′(τ) on its boundary is uniformly random from the quantum
boundary measure. Moreover, the boundary length process {Lt}t∈[0,tη′ ) evolves as the time-reversal
of a 3/2-stable Lévy excursion. The same facts apply if ℓ > 0 is fixed and we explore an instance of
µL=ℓQD,W using a radial SLE6 starting from a uniformly random boundary point according to quantum
boundary length measure and targeted at the marked interior point.

In the case of the quantum sphere, the distribution of the amount of time that it takes η′ to go
from x to y is the same as the lifetime distribution for the infinite excursion measure on 3/2-stable
Lévy excursions with only upward jumps. Recall from just after (3.5) that this distribution is given
by a constant times t−5/3dt where dt denotes Lebesgue measure on R+.

3.3. Review of Liouville Brownian Motion. The Liouville Brownian motion has been constructed
in [39, 13] as the canonical diffusion process under the geometry induced by the measure µh, where
h is a zero-boundary GFF on a planar domain D ⊆ C. It is defined for any choice of the parameter
γ ∈ (0, 2) as the time change of the planar Brownian motion on D in terms of the right-continuous
inverse of the positive continuous additive functional (PCAF) associated with µh.

More precisely, let B = (Bt)t≥0 be the planar Brownian motion on D defined as the coordi-
nate process on the Wiener space (C([0,∞), D), (Gt)t≥0, (Px)x∈D) with transition kernel denoted
by qt(x, y), t > 0, x, y ∈ D. In [39], Garban, Rhodes and Vargas constructed a PCAF F = {Ft}t≥0
of B with the Liouville measure µh as the associated Revuz measure, that is∫

D
f(y) dµh(y) = lim

t↓0

1

t

∫
D
Ex

[∫ t

0
f(Bs) dFs

]
dx

for any non-negative Borel function f on D. Similarly as µh, the PCAF F can be obtained via a
regularization procedure from the circle average hϵ, i.e. for all x ∈ D,

Ft = lim
ϵ→0

∫ t

0
ϵγ

2/2 eγhϵ(Bs) ds in Px-probability

in the space C([0,∞),R) equipped with the topology of uniform convergence on compact sets
(cf. [39, Theorem 2.7]). Moreover, for all x ∈ D, Px-a.s., F is strictly increasing and satisfies
limt→∞ Ft = ∞.

Then the (γ-)Liouville Brownian motion (Xt)t≥0, abbreviated as (γ-)LBM, is defined as Xt =

BF−1
t

. By the general theory of time changes of Markov processes we have the following properties
of the LBM: First, it is a recurrent diffusion on D by [37, Theorems A.2.12 and 6.2.3]. Further-
more by [37, Theorem 6.2.1 (i)] (see also [39, Theorem 2.18]), the LBM is µh-symmetric, i.e. its
transition semigroup (Pt)t>0 given by

Pt(x,A) := Ex[Xt ∈ A]

for t ∈ (0,∞), x ∈ D and a Borel set A ⊂ D, satisfies∫
D
Ptf · g dµh =

∫
D
f · Ptg dµh

for all Borel measurable functions f, g : D → [0,∞]. By [38, Theorem 0.4] the Liouville semigroup
(Pt)t>0 is absolutely continuous with respect to the Liouville measure, so there exists the Liouville
heat kernel p = pt(x, y) : (0,∞)×D ×D → [0,∞) so that

Ptf(x) := Ex[f(Xt)] =

∫
D
pt(x, y)f(y) dµh(y), x ∈ D.
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Furthermore, by [3, Theorem 1.1] the Liouville heat kernel admits a jointly continuous version is
(0,∞)-valued, in particular the LBM is irreducible (cf. [67] for similar results). Moreover, the tran-
sition semigroup (Pt)t>0 is strong Feller, i.e. Ptf is continuous for any bounded Borel measurable
f : D → R. We note that the aforementioned properties of the LBM still hold if we replace h by
a random field on D whose law is locally absolutely continuous with respect to the law of h. We
also note that the fields that we are considering in this paper are locally absolutely continuous with
respect to the zero-boundary GFF.

The killed Liouville Brownian motion. Let U be a non-empty open subset of D and let U∪{∂U} be its
one-point compactification. We denote by TU := inf{s ≥ 0 : Bs ̸∈ U} the exit time of the Brownian
motion B from U and by τU := inf{s ≥ 0 : Xs ̸∈ U} that of the LBM X, where inf ∅ := ∞. Since
by definition Xt = BF−1

t
, t ≥ 0, and F is a homeomorphism on [0,∞), we have τU = FTU . Let now

BU = (BU
t )t≥0 and XU = (XU

t )t≥0 denote the Brownian motion and the LBM, respectively, killed
upon exiting U . That is, they are diffusions on U defined by

BU
t :=

{
Bt if t < TU ,

∂U if t ≥ TU ,
XU
t :=

{
Xt if t < τU ,

∂U if t ≥ τU .

Then for t ∈ (0,∞), the semigroup operator PUt associated with the killed LBM XU is expressed
as PUt f(x) := Ex

[
f(XU

t )
]
, x ∈ D, for each Borel function f : U → [−∞,∞] with the convention

f(∂U ) := 0 for which the expectation exist. By [3, Proposition 5.1] there exists a (unique) jointly
continuous function pU = pUt (x, y) : (0,∞)× U × U → [0,∞) such that for all (t, x) ∈ (0,∞)× U ,
Px[X

U
t ∈ dy] = pUt (x, y) dµh(y), which we refer to as the Dirichlet Liouville heat kernel on U .

Furthermore, the semigroup operator PUt is strong Feller, i.e. it maps Borel measurable bounded
functions on U to continuous bounded functions on U .

If U is bounded, as a time change of BU the killed LBM XU has the same integral kernel for its
Green operator GU as BU , namely for any non-negative Borel function f : U → [0,∞] and x ∈ D,

GUf(x) := Ex

[∫ τU

0
f(Xt) dt

]
= Ex

[∫ TU

0
f(Bt) dFt

]
=

∫
U
gU (x, y)f(y) dµh(y)(3.14)

Here gU denotes the Euclidean Green kernel given by

gU (x, y) =

∫ ∞
0

qUt (x, y) dt, x, y ∈ R2,(3.15)

for the heat kernel qUt (x, y) of BU : qU = qUt (x, y) : (0,∞)×U×U → [0,∞) is the jointly continuous
function such that Px[BU

t ∈ dy] = qUt (x, y) dy for t > 0 and x ∈ U , and we set qUt (x, y) := 0 for
t > 0 and (x, y) ∈ (U × U)c. Again we note that the aforementioned properties still hold if we
replace h by a a random field whose law is locally absolutely continuous with respect to the law
of h. Finally, we recall (see e.g. [37, Example 1.5.1]) that the Green function gB(x0,R) over a ball
B(x0, R) is of the form

gB(x0,R)(x, y) =
1

π
log

1

|x− y|
+Ψx0,R(x, y), x, y ∈ B(x0, R),(3.16)

for some continuous function Ψx0,R : B(x0, R)×B(x0, R) → R.
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4. QUENCHED ESTIMATES ON THE VOLUME GROWTH

For an instance (S, d, ν) of the Brownian map, it was shown by Le Gall [62, Corollary 6.2] that
ν(B(x, r)) is of order r4 up to a polynomial correction for all r > 0 small enough and every x (recall
also Lemma 3.1). We will now improve this estimate to polylogarithmic corrections.

Theorem 4.1. Suppose that (S, d, ν) is an instance of the unit area Brownian map. For each u > 0

there a.s. exists r0 ∈ (0, 1) so that

r4(log 1
r )
−6−u ≤ ν(B(x, r)) ≤ r4(log 1

r )
8+u, ∀r ∈ (0, r0), x ∈ S.

The proofs of the lower and upper bounds will be presented separately in Sections 4.1 and 4.2,
respectively. In what follows, we will use several times the following standard concentration result
for Poisson random variables. Namely, if Z is Poisson with mean λ > 0 then we have (cf. [73,
Lemma 2.9])

P[Z ≤ αλ] ≤ eλ(α−α logα−1), ∀α ∈ (0, 1),(4.1)

P[Z ≥ αλ] ≤ eλ(α−α logα−1), ∀α ∈ (1,∞).(4.2)

4.1. Lower bound. We will begin by working towards proving the lower bound in Theorem 4.1.
The starting point is Lemma 4.3, which is a pointwise lower bound for the volume in a metric ball
when we condition on the event that the filled metric ball boundary length process is not too small.
We will then extend this in Lemma 4.5 when we condition instead on the event that the distance
between x and y is at least 1, from which the lower bound in Theorem 4.1 easily follows. First,
we will state the following lemma which allows us to compare the laws of a weighted quantum
disk and a quantum wedge when both restricted in a small metric neighborhood around the point
chosen uniformly according to the quantum boundary length measure. Its proof is essentially the
same as the proof of [44, Proposition 4.2].

Lemma 4.2. Fix ℓ, α1, α2 > 0 with α1 < α2 and let (H, d) be a Brownian disk with area α and
boundary length ℓ (in the sense of [44, Section 3.5]), where α ∈ [α1, α2] is fixed. Let x ∈ ∂H
be sampled uniformly according to the boundary length measure induced by (H, d). Let (H, d̃) be a
Brownian half-plane (equivalently weight-2 quantum wedge). Then, for each ϵ ∈ (0, 1) there exists
α̃ > 0 depending only on ϵ, ℓ, α1, and α2, and a coupling of (H, d) and (H, d̃) so that the following is
true. With probability at least 1− ϵ, we have that the metric spaces Bd(x, α̃) and B

d̃
(0, α̃) agree in the

sense of [44].

Proof. It follows from the argument used to prove [44, Proposition 4.2]. □

Lemma 4.3. Let r > 0, and suppose that (S, d, ν, x, y) is distributed according to µBM conditioned so
that if Ys denotes the boundary length of ∂B•(x, d(x, y)−s) then sups≥0 Ys ≥ r2. There exist constants
c0,M0 > 0 which are independent of r so that

P[ν(B(x, r)) ≤ r4/c4] ≤ c0 exp(−M0c
2/3) for all c ≥ 1.

Proof. Let c > 1.
Step 1. We will first argue that with high probability under P there exists s ∈ [0, r] so that

the boundary length of ∂B•(x, s) is at least r2/c2, i.e., sups∈[0,r] Y(d(x,y)−s)∨0 ≥ r2/c2 with high
probability. We note that it follows from [20, Chapter IV, Section 4] that if τ is the first time
that Y enters [r2,∞), then the conditional law of Yt+τ given τ < ∞ is that of a 3/2-stable CSBP
starting from Yτ . Also, it is not difficult to see from the scaling properties of the 3/2-stable Lévy
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process that the distribution of the supremum under the 3/2-stable Lévy excursion measure is
given by a constant times t−2 dt; see, e.g., [83, Corollary 1] for a careful proof. In particular,
we have that µBM[τ < ∞] ∈ (0,∞). Next, we define stopping times as follows. We let τ0 =

inf{s ≥ 0 : supu∈[0,s] Yu ≥ r2, Ys ≤ r2/c2}. Given that τ0, . . . , τk have been defined, we let
τk+1 = inf{s ≥ τk+r/c : Ys ≤ r2/c2}. LetK = max{k ∈ N : τk < ζ}, where ζ = inf{s > 0 : Ys = 0}.
Note that τ < τ0 P-a.s. and that Yτk ≤ r2/c2 for each k ≥ 1 P-a.s. on the event that τk < ∞ while
Yτ0 = r2/c2 since Y has only upward jumps. It follows that conditionally on τk < ∞ and Y |[0,τk],
the random variable τk+1−τk is stochastically dominated from above by τ1−τ0. Set Ỹt = C−1YC1/2t

with C = r2/c2. Then the scaling property of Y implies that Ỹ has the law of a 3/2-stable CSBP
starting from 1. Moreover, by (3.5), we have that

P[τk+1 <∞| τk <∞] ≤ P[τ1 <∞] ≤ P[ζ > r/c] = p0

where p0 ∈ (0, 1) is a constant which does not depend on r or c. Therefore we obtain that K is
stochastically dominated by a geometric random variable with parameter p0. It follows that there
exists a universal constant M0 > 0 so that

(4.3) P[K ≥ c′] ≤ e−2M0c′ for all c′ ≥ 1.

As the event that sups∈[0,r] Y(d(x,y)−s)∨0 ≤ r2/c2 and d(x, y) ≥ r implies K ≥ ⌊c−⌋, where ⌊c−⌋ :=

max(Z ∩ (−∞, c)), we thus see from (4.3) that

(4.4) P[ sup
s∈[0,r]

Y(d(x,y)−s)∨0 ≤ r2/c2, d(x, y) ≥ r] ≤ e−M0c for all c > 1.

We note that d(x, y) ≤ r implies that sups∈[0,r] Y(d(x,y)−s)∨0 = sups≥0 Ys ≥ r2 > r2/c2. Combining
this with (4.4), we thus have

(4.5) P[ sup
s∈[0,r]

Y(d(x,y)−s)∨0 ≤ r2/c2] ≤ e−M0c for all c > 1.

Step 2. We emphasize that Y has upward but no downward jumps. Therefore it hits points at
its running infimum continuously. We now let ζ0 = inf{s ≥ 0 : supu∈[0,s] Yu ≥ r2, Ys = r2/c2} and
ξ0 = inf{s ≥ ζ0 : Ys = r2/(2c2)}. Given that ζ0, ξ0, . . . , ζk, ξk have been defined, we let ζk+1 =

inf{s ≥ ξk : Ys > r2/c2} and ξk+1 = inf{s ≥ ζk+1 : Ys = r2/(2c2)}. Let N = max{k ≥ 0 : ζk < ∞}.
Note that P[ζk+1 <∞| ζk <∞] = 1−P[Xτ̂ = −1

2 ], whereX has the law of a 3/2-stable Lévy process
starting from 0 with only upward jumps and τ̂ = inf{t ≥ 0 : Xt /∈ [−1

2 ,
1
2 ]}. This follows by scaling

and the strong Markov property of a 3/2-stable CSBP, together with the Lamperti transform. Also,
[20, Chapter VII, Theorem 8] implies that P[Xτ̂ = −1

2 ] > 0. In particular, there exists a universal
constant p1 ∈ (0, 1) so that N is stochastically dominated by a geometric random variable with
parameter p1. Thus, there exists a universal constant M1 > 0 such that

(4.6) P[N ≥ n] ≤ e−M1n for all n ∈ N.

By (4.5), off an event with probability at most e−M0c, there exists k ≥ 0 so that d(x, y) − r <

ξk <∞ and so that Y |[ξk,ξ′k], where ξ′k = inf{s ≥ ξk : Ys = r2/(4c2)}, describes the boundary length
evolution of ∂B•(x, s) for some interval of s ∈ [0, r].

Step 3. Let Z be a 3/2-stable Lévy process with only upward jumps starting from r2/(2c2) (run
even after hitting (−∞, 0)) and let ξ = inf{t ≥ 0 : Zt = r2/(4c2)}. For each k ≥ 0, by the
Lamperti transform, conditionally on the event {ζk <∞} = {ξk <∞} we have for each u > 0 that
the number of upward jumps made by Y |[ξk,ξ′k] with size at least u is equal in distribution to the
number of jumps that Z|[0,ξ] makes of size at least u.
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Let t > 0. Recalling the form of the Lévy measure for Z, we know that the number of upward
jumps of size at least u made by Z|[0,tr3/c3] is Poisson with parameter given by c0(tr3/c3)u−3/2 for

a constant c0 > 0. In particular, if we fix λ ≥ 1 and let u = ( c0tr
3

c3λ
)2/3 then by (4.1) the probability

that Z|[0,tr3/c3] makes fewer than λ/2 such jumps is at most

(4.7) exp(−a0λ) for a0 = 1 + 1
2 log

1
2 − 1

2 > 0.

Note that P[ξ ≤ tr3/c3] = P[T (r2/(4c2)) ≤ tr3/c3], where T (r2/(4c2)) is the first time that a 3/2-
stable Lévy process with only upward jumps and starting from 0 hits −r2/(4c2). Set q = c1(tr/c)

−3

for c1 > 0 sufficiently small (to be chosen). Then, the proof of [20, Chapter VII, Corollary 2] implies
that

(4.8) P[T (r2/(4c2)) ≤ tr3/c3] = P[exp(−qT (r2/(4c2))) ≥ exp(−qtr3/c3)] ≤ exp(−a1t−2),

where we choose c1 sufficiently small so that a1 = c
2/3
1 (14 − c

1/3
1 ) > 0.

Take t = λ−1/2 so that t−2 = λ. By decreasing the value of a1 > 0 if necessary and combin-
ing (4.7) and (4.8), we see for each k ≥ 0 that conditionally on {ζk <∞} = {ξk <∞} = {N ≥ k}
the probability that Y |[ξk,ξ′k] makes fewer than λ/2 jumps of size at least u is at most

(4.9) 2e−a1λ.

Note that with the choice t = λ−1/2, we have that u = c1λ
−1r2/c2 where c1 = c

2/3
0 .

By a union bound and combining (4.9) with (4.6) we have that, the probability that there exists
0 ≤ k ≤ N such that Y |[ξk,ξ′k] makes fewer than λ/2 upward jumps of size at least u, is for each
n ∈ N at most

(4.10) 2e−a1λ
n−1∑
k=0

P[ξk <∞] + e−M1n ≤ c2e
−a1λ + e−M1n

with M1 > 0 as in (4.6) and c2 = 2(1 − e−M1)−1 and is thus at most c2e−a1λ by letting n → ∞
in (4.10).

Combining this with (4.5) implies that the probability that the metric exploration started from x

and targeted at y run for time r disconnects fewer than λ/2 components with boundary length at
least c1λ−1r2/c2 is at most c2e−a1λ + e−M0c. We take λ = ( c1c3 )c for some constants c3, c4 > 0 (to be
chosen) so that the holes have boundary length at least c3r2/c3.

Step 4. Next we consider the components with boundary length at least c3r2/c3, disconnected
by the metric exploration started from x and targeted at y run for time r. Then there exists p2 ∈
(0, 1) which does not depend on r, c so that conditionally on their boundary lengths each such
component independently has probability at least p2 of having area at least r4/c6 within distance
r from its boundary. Indeed, each component is a Brownian disk conditionally given its boundary
length which is at least c3r2/c3. So the claim becomes that there exists p2 ∈ (0, 1) which does
not depend on r, c such that conditionally on the boundary lengths of the above holes, each such
hole independently has probability at least p2 of having area at least r4/c6 within metric distance r
from the boundary. By the scaling properties of Brownian disks this is equivalent to the statement
that a Brownian disk with boundary length ℓ ∈ [c3,∞) has area at least 1 in the c3/2-neighborhood
of its boundary, which is further equivalent to the statement that a Brownian disk with boundary
length 1 has area at least ℓ−2 in the c3/2ℓ−1/2-metric neighborhood of its boundary, where c ≥
c4 and ℓ ≥ c3. We will first prove the claim for a sample from µL=ℓBD,W. Note that we have the

disintegration µL=1
BD,W[·] =

∫∞
α=0 µ

A=α,L=1
BD,W [·]s 1√

2πα3
exp(−1/(2α))dα. Thus it suffices to prove the
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claim for a sample from µA=α,L=1
BD,W where the constant p2 can be made to uniform in α ∈ [1, 2]. Fix

α ∈ [1, 2], ℓ ≥ c3, c ≥ c4 and let α̃ be as in Lemma 4.2 with α1 = 1, α2 = 2 and ϵ = 1
2 . Suppose

that we have a coupling between a sample (H, h) from µA=α,L=1
BD,W and a quantum wedge of weight

2 (H, h̃, 0,∞) such that with probability at least 1
2 , the metric spaces Bdh(w, α̃) and Bd

h̃
(0, α̃) agree

in the sense of Lemma 4.2, where w is chosen uniformly with respect to the boundary length
measure νh on H and suppose that this event holds. Hence, it suffices to prove the corresponding
claim for Bd

h̃
(0, α̃) with high probability if we take c3, c4 sufficiently large. To show this, first we

assume that c3/2ℓ−1/2 ≤ α̃ and note that (H, h̃, 0,∞) is scale invariant in the sense that (H, h̃, 0,∞)

and (H, h̃ + C̃, 0,∞) have the same law for each C̃ ∈ R (see [35, Proposition 4.7]). Note that
adding a constant C̃ to the field scales areas by eγC̃ and distances by eγC̃/4. We pick C̃ ∈ R such
that c3/2ℓ−1/2eγC̃/4 = 1, and so the statement for (H, h̃, 0,∞) becomes equivalent to the statement
that the 1-metric neighborhood of 0 has area at least c−6. Note that the LQG metric induces the
Euclidean topology on H (see [54, Theorem 1.3]) and that µ

h̃
gives positive mass to every open

subset of H a.s. Hence, we can pick c4 > 0 sufficiently large such that with probability at least 2/3,
we have that the 1-metric neighborhood of 0 with respect to d

h̃
has area at least c−6, which implies

that the claim holds for (H, h) with probability at least 1/6. Suppose now that c3/2ℓ−1/2 ≥ α̃ > 0. In
that case, we need to bound from below the probability of the even that the α̃-metric neighborhood
of 0 with respect to d

h̃
has area at least ℓ−2. Then it suffices to bound from below the probability

that the α̃-metric neighborhood of 0 with respect to d
h̃

has area at least c−23 . Therefore, using
the scale invariance of (H, h̃, 0,∞) and arguing as before, we obtain that we can choose c3 > 0

sufficiently large (depending only on α̃) such that the probability of the latter event is at least
2/3. It follows that the claim holds for µA=α,L=1

BD,W with probability at least 1/6, for each α ∈ [1, 2],
and hence the same is true for µL=1

BD,W by possibly taking the lower bound on the probability to be
smaller. Finally, to deduce the claim for µL=1

BD , we note that

µL=1
BD,W =

(∫
ν(D)dµL=1

BD

)−1
ν(D)dµL=1

BD

and that ν(D) has finite moments of all orders under µL=1
BD . Therefore, the claim holds by combining

with Hölder’s inequality.
Step 5. Note that the event ν(B(x, 2r)) ≤ r4/c6 implies that either there are fewer than λ/2 =

c1c/(2c3) disks of boundary length at least c3r2/c3 cut off by the metric exploration started from x

and targeted at y run for time r or there are at least λ/2 disks cut off and each of them has area
less than r4/c6 at distance r from its boundary. As we showed above in Step 3, the former event
has probability at most c2e−a1λ + e−M0c. Since the disks are conditionally independent given their
boundary length, the conditional probability that all of the disks cut off have area less than r4/c6

each at distance r from their boundary given there are at least λ/2 of them is at most e−a2λ for a
constant a2 > 0. Altogether, this gives that

P[ν(B(x, 2r)) ≤ r4/c6] ≤ c2 exp(−a1c) + exp(−a2c) + exp(−M0c).

Replacing c with c2/3 and r with r/2 implies the result. □

Lemma 4.4. Fix c > 0 and suppose that Y is a 3/2-stable CSBP starting from Y0 ∈ [0, c]. Let
ζ = inf{r ≥ 0 : Yr = 0}. There exists a constant c0 > 0 so that

P
[
sup
r
Yr ≤ c, ζ ≥ T

]
≤ exp(−c0 T

c1/2
) for all T ≥ c1/2.



34 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

Proof. Let c = 1. Let Fr = σ(Ys : s ≤ r). Then there exists p0 ∈ (0, 1) so that

P[ζ ≤ r + 1 | Fr]1{ζ≥r,Yr≤1} ≥ p0 1{ζ≥r,Yr≤1}.

Iterating this implies the desired bound for c = 1. The general case c > 0 follows from the case
c = 1 and the scaling property of 3/2-stable CSBPs (see just after (3.4)). □

Lemma 4.5. Suppose that (S, d, ν, x, y) is sampled from µBM conditioned on D = {d(x, y) > 1}.
Suppose that u ∈ S is picked independently from ν/ν(S) and let Mr,c = {ν(B(u, r)) ≤ r4/c4} for
r ∈ (0, 1) and c ≥ 1. For each ρ ∈ (0, 1) there exist constants c0,M0,M1 > 0 such that for all
r ∈ (0, 1) and c ≥ 1,

P[Mr,c, ν(B(u, 1/8))/ν(S) ≤ ρ] ≤ c0r
−2(log 1

r )
2 exp(−M0c

2/3) + exp(−M1(log
1
r )

2).

Proof. In the proof, we will work under the measure µBM and denote it conditioned on an event
E with µBM[E] ∈ (0,∞) by µBM[· |E]. Let (yj) be an i.i.d. sequence in S picked from ν/ν(S).
Let Dj = {d(u, yj) ≥ 1/8}. Let Y j be the boundary length process associated with the metric
exploration from u targeted at yj and let Ej be the event that sups≥0 Y

j
s ≥ r2. For each n ∈ N we

have that

µBM

[
Mr,c, ν(B(u, 1/8))/ν(S) ≤ ρ |D

]
≤ µBM

[
Mr,c ∩

n⋃
j=1

Dj

∣∣∣D]+ µBM

[ n⋂
j=1

Dc
j , ν(B(u, 1/8))/ν(S) ≤ ρ

∣∣∣D]

≤
n∑
j=1

µBM

[
Mr,c ∩Dj ∩ Ecj |D

]
+

n∑
j=1

µBM

[
Mr,c ∩ Ej |D

]
+ µBM

[ n⋂
j=1

Dc
j , ν(B(u, 1/8))/ν(S) ≤ ρ

∣∣∣D].(4.11)

To bound the first term in the right hand side of (4.11), we let Ej,k = {e−k−1 ≤ sups≥0 Y
j
s < e−k}

and let ζj be the lifetime of Y j . With c0 = 1/µBM[D], we note that

(4.12) µBM

[
Mr,c ∩Dj ∩ Ecj |D

]
≤ µBM

[
Dj ∩ Ecj |D

]
≤ c0

∞∑
k=N

µBM

[
Dj |Ej,k

]
µBM[Ej,k],

where N = log r−2. For ϵ ∈ (0, 1) small, we set τϵ,j = inf{s ≥ 0 : Y j
s ≥ ϵ}. Then, for each j, k ∈ N,

we have that

µBM

[
Dj ∩ Ej,k | ζj ≥ 1/100

]
= lim

ϵ→0
µBM

[
Dj ∩ Ej,k ∩ {ζj − τϵ,j ≥ 1/8} | ζj ≥ 1/100, τϵ,j < 1/100, Y j

τϵ,j < e−k−1
]
.

Fix ϵ ∈ (0, e−k−1) small. Then it holds that

µBM

[
Dj ∩ Ej,k ∩ {ζj − τϵ,j ≥ 1/8} | ζj ≥ 1/100, τϵ,j < 1/100, Y j

τϵ,j < e−k−1
]

≤ µBM

[
ζj − τϵ,j ≥ 1/8, sup

s≥0
Y j
s+τϵ,j

≤ e−k | ζj ≥ 1/100, τϵ,j < 1/100, Y j
τϵ,j < e−k−1

]
.
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Also, the resampling property of the Brownian disk combined with Lemma 4.4 imply that

µBM

[
ζj − τϵ,j ≥ 1/8, sup

s≥0
Y j
s+τϵ,j

≤ e−k | ζj ≥ 1/100, τϵ,j < 1/100, Y j
τϵ,j < e−k−1

]
≤ P

[
sup
s≥0

Y j
s ≤ e−k, ζj ≥ 1/8 | ζj ≥ 1/100

]
≤ P

[
ζj ≥ 1/100

]−1P[ sup
s≥0

Y j
s ≤ e−k, ζj ≥ 1/8

]
≤ c1 exp(−c0(1/8)ek/2)

with c1 = (P[ζj ≥ 1/100])−1 and c0 the constant in Lemma 4.4. Therefore, combining with (4.12)
we obtain that there exist universal constants a1, a2 > 0 so that

µBM

[
Mr,c ∩Dj ∩ Ecj

]
≤ a1 exp(−a2r−1).

We turn to bound the second term in (4.11). We have that

µBM

[
Mr,c ∩ Ej |D

]
= c0 µBM

[
Mr,c ∩ Ej ∩D

]
≤ c0 µBM[Mr,c |Ej

]
µBM[Ej ].(4.13)

After possibly decreasing the value of a2 > 0, Lemma 4.3 gives that µBM[Mr,c |Ej ] ≤ c1 exp(−a2c2/3)
for a constant c1 > 0. Recall that under µBM we have that Y j is distributed as a 3/2-stable CSBP
excursion. By the Lamperti transform, the amount of mass that the 3/2-stable CSBP excursion mea-
sure puts on excursions with maximum in a given interval is the same as the amount of mass that
the 3/2-stable Lévy excursion measure (with only upward jumps) puts on such excursions. Recall
that the distribution of the supremum under the 3/2-stable Lévy excursion measure is given by a
constant times t−2 dt. Therefore the same is also true for the 3/2-stable CSBP excursion measure.
Hence we have that µBM[Ej ] = b0r

−2 for a constant b0 > 0. Combining, we have that (4.13) is at
most a constant times r−2 exp(−a2c2/3).

The last term in (4.11) is at most ρn, since on the event {ν(B(u, 1/8))/ν(S) ≤ ρ} the ν-
probability of Dc

j is at most ρ and (Dc
j)j are independent. Taking n = (log 1

r )
2 completes the

proof. □

Proof of Theorem 4.1, lower bound. It suffices to prove the assertion for a sample (S, d, ν, x, y) from
µBM conditioned on {d(x, y) > 1}, since (S, δd, δ4ν, x, y) is then a sample from µBM conditioned on
{d(x, y) > δ} for each δ ∈ (0,∞) and µBM

[
ν(S) > 0 | d(x, y) > 1

]
= 1. Let (xj) be an i.i.d. sequence

chosen from ν. Fix ρ ∈ (0, 1) and let Eρ be the event that supz∈S ν(B(z, 1/8))/ν(S) ≤ ρ. Note
that P[Eρ] → 1 as ρ increases to 1. Fix u′ > u > 0. Lemma 4.5 implies that P[ν(B(xj , r)) ≤
r4/(log 1

r )
6+u, Eρ] decays to 0 faster than any power of r for every j ∈ N. Moreover, since

µBM

[
ν(S) < ∞| d(x, y) > 1

]
= 1, it is a.s. the case under µBM

[
· | d(x, y) > 1

]
that there ex-

ists r0 ∈ (0, 1) such that ν(B(z, r))/ν(S) ≥ r4+u for each r ∈ (0, r0), z ∈ S, by the corresponding
property of the unit area Brownian map. Suppose that the above holds and pick z ∈ S uniformly
sampled from ν/ν(S) and independent of (xj). Set N = r−4−u

′
and A = S \ ∪Nj=1B(xj , r/2), Ã =

S \ ∪Nj=1B(xj , r). Then, the probability under ν/ν(S) that z /∈ ∪Nj=1B(xj , r/2) is at most (1 −
(r/2)4+u)N ≤ exp(−ru−u′/24+u). In particular, we have that ν(A)/ν(S) ≤ exp(−ru−u′/24+u). Sup-
pose that Ã ̸= ∅ and fix w ∈ Ã. Then ν(B(w, r/2)/ν(S) ≥ (r/2)4+u. If B(w, r/2) ⊆ A, then
(r/2)4+u ≤ exp(−ru−u′/24+u) and that is a contradiction for r > 0 sufficiently small. Hence there
exists 1 ≤ j ≤ N and w̃ ∈ B(xj , r/2) ∩ B(w, r/2) which implies that d(w, xj) < r, and that is a
contradiction. Therefore, we have that S = ∪Nj=1B(xj , r) with high probability if r > 0 is chosen suf-
ficiently small. Suppose that both of the events {S = ∪Nj=1B(xj , r)} and Eρ ∩

(
∩Nj=1{ν(B(xj , r)) ≥
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r4 log(r−1)−6−u}
)

hold. Then for each w ∈ S, there exists 1 ≤ j ≤ N such that w ∈ B(xj , r) and so
B(xj , r) ⊆ B(w, 2r). In particular, we have that ν(B(x, 2r)) ≥ ν(B(xj , r)) ≥ r4 log(r−1)−6−u. The
proof is then complete since the probability of Eρ ∩

(
∩Nj=1{ν(B(xj , r)) ≥ r4 log(r−1)−6−u}

)
can be

made to be arbitrarily close to that of Eρ if r > 0 is sufficiently small. □

4.2. Upper bound. We will prove the upper bound in Theorem 4.1 by dominating the amount of
area inside of the metric ball from above using a subcritical Galton-Watson tree with geometric
offspring distribution. The branching structure will come from a metric exploration on the Brow-
nian map or Brownian disk. We will begin in Lemma 4.6 by bounding the tail of the maximum
of the boundary length of a filled metric ball explored up to radius r and then deduce from this
in Lemma 4.7 an upper bound on the maximum boundary length of any of the complementary
components a metric ball explored up to radius r. We will then proceed in Lemma 4.8 to prove a
bound for the amount of area near the boundary of a Brownian disk, which will eventually be used
to show that the dominating Galton-Watson tree is subcritical.

Lemma 4.6. Suppose that (S, d, ν, x, y) has distribution µBM. Let r > 0, and let Mr = sups∈[0,r] Ls
where Ls is the boundary length of ∂B•(x, s). There exist constants c0,m0 > 0 which are independent
of r so that

µBM[Mr ≥ cr2] ≤ m0e
−c0cr−2 for all c ≥ 1.

Proof. Let Yt be the boundary length of ∂B•(x, s) where s = d(x, y) − t so that Yt evolves as a
3/2-stable CSBP excursion. Let τ1 = inf{t ≥ 0 : Yt ≥ cr2} and σ1 = inf{t ≥ τ1 : Yt = cr2/2}. Given
that τ1, σ1, . . . , τj , σj have been defined, let τj+1 = inf{t ≥ σj : Yt ≥ cr2} and σj+1 = inf{t ≥ τj+1 :

Yt = cr2/2}. Let J = max{j : σj < ∞} (J = 0 if σ1 = ∞) and ζ = inf{t > 0 : Yt = 0}. Note that
the event that Mr ≥ cr2 implies that J ≥ 1 and that ζ − σJ ≤ r. Therefore it suffices to give an
upper bound for µBM[J ≥ 1, ζ − σJ ≤ r].

By the scaling properties of a 3/2-stable CSBP (recall just after (3.4)), we note that there exists
p0 ∈ (0, 1) which does not depend on c or r so that µBM[τj+1 = ∞|σj < ∞] ≥ p0. Therefore J
under µBM[· | σ1 <∞] is stochastically dominated by a geometric random variable with parameter
p0. Moreover, by (3.5), we have for a constant c0 > 0 that

µBM

[
ζ − σj ≤ r |σj <∞

]
= e−c0c.

Therefore

µBM[J ≥ 1, ζ − σJ ≤ r] ≤
∞∑
j=1

µBM[J ≥ j, ζ − σj ≤ r] =

∞∑
j=1

e−c0c µBM[J ≥ j]

= e−c0c
∫
J dµBM ≤ m0e

−c0cµBM[σ1 <∞],

where m0 is the mean of a geometric random variable with parameter p0. We note that µBM[σ1 <

∞] = µBM[τ1 < ∞] is the same as the measure under the infinite measure on 3/2-stable Lévy
excursions that the maximum is at least cr2. This, in turn, is equal to a constant times c−1r−2 as
shown in the paragraph of (4.13). □

Lemma 4.7. Suppose that (S, d, ν, x, y) is distributed according to µBM. Fix u > 0. The µBM-measure
of the event that there exists s ∈ (0, r] such that some component of S \ B(x, s) has boundary length
larger than r2(log 1

r )
1+u decays to 0 as r → 0 faster than any polynomial of r.
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Proof. Let τ be the first s ≥ 0 such that S \ B(x, s) has a component with boundary length at least
r2(log 1

r )
1+u. On τ ≤ r, we let D be such a component, breaking ties in a measurable manner, and

we let ℓ be the boundary length of ∂D. Then we know that the conditional law of D given ℓ is given
by µL=ℓBD if y /∈ D and is given by µL=ℓBD,W if y ∈ D. By (3.7), (3.6), and the strong Markov property of
the metric exploration, conditionally on τ ≤ r, the probability that ν(D) ≤ r4 decays to 0 as r → 0

faster than any polynomial of r. Next, we note that 0 < µBM

[
s ≤ τ ≤ r

]
≤ µBM

[
diam(S) ≥ s

]
<∞

for each r > 0, s ∈ (0, r) and the above imply that µBM

[
ν(D) ≤ r4 | s ≤ τ ≤ r

]
≤ 1

2 for each r > 0

sufficiently small, uniformly in s ∈ (0, r). Thus, we have that

µBM

[
s ≤ τ ≤ r

]
= µBM

[
s ≤ τ ≤ r, ν(D) ≤ r4

]
+ µBM

[
s ≤ τ ≤ r, ν(D) > r4

]
≤ 1

2
µBM

[
s ≤ τ ≤ r

]
+ µBM

[
s ≤ τ ≤ r, ν(D) > r4

]
,

for all r ∈ (0, 1) sufficiently small, and all s ∈ (0, r). Sending s→ 0 gives that

µBM

[
τ ≤ r

]
≤ 1

2
µBM

[
τ ≤ r

]
+ µBM

[
τ ≤ r, ν(D) > r4

]
which implies that µBM

[
τ ≤ r

]
≤ 2µBM

[
τ ≤ r, ν(D) > r4

]
for all r ∈ (0, 1) sufficiently small. Let

p > 0 and recall that the µBM mass of the event that ν(S) ≥ r−p is O(rp/2) (as it is the same as the
mass put by the infinite measure on Brownian excursions on those excursions with length at least
r−p). On τ ≤ r, ν(S) ≤ r−p and ν(D) ≥ r4, the conditional probability that y ∈ D is at least r4+p as
the conditional law of y given (S, d, ν) is ν normalized to be a probability measure (i.e., ν/ν(S)).
Let Mr be as in Lemma 4.6. Altogether, we have shown that

µBM[τ ≤ r] ≤ 2µBM[τ ≤ r, ν(S) ≤ r−p, ν(D) ≥ r4] + 2µBM[τ ≤ r, ν(S) > r−p]

≤ 2µBM[τ ≤ r, ν(S) ≤ r−p, ν(D) ≥ r4] +O(rp/2)

≤ 2r−4−pµBM[τ ≤ r, ν(S) ≤ r−p, ν(D) ≥ r4, y ∈ D] +O(rp/2)

≤ 2r−4−pµBM[Mr ≥ r2(log 1
r )

1+u] +O(rp/2).

This completes the proof as Lemma 4.6 implies that µBM[Mr ≥ r2(log 1
r )

1+u] decays to 0 as r → 0

faster than any polynomial of r and p > 0 was arbitrary. □

Lemma 4.8. There exist c0 ≥ 1 and δ ∈ (0, 1) such that the following is true for all ℓ ∈ (0, 1] and
c ≥ c0. Suppose that (D, d, ν) has law given by µL=ℓBD conditioned on having area at least c. Consider
the center exploration from ∂D run for one unit of time. Let pc be the probability that this exploration
cuts off a component with area at least c. Then pc ≤ 1 − δ. The same also holds if we instead
suppose that (S, d, ν, x, y) has law µBM conditioned on having area at least c and consider the metric
exploration starting at x and targeted at y.

Proof. First, let ℓ ∈ (0, 1] and let (D, d, ν) have law given by µL=ℓBD conditioned on having area at least
c. Let Ec denote the event that the center exploration from ∂D which is targeted at y and run for
one unit of time cuts off a component from y with area at least c. Note that pc = µL=ℓBD [Ec]/µ

L=ℓ
BD [Ac]

where Ac = {ν(D) ≥ c}. By (3.7), for each ϵ > 0 there exists c0 ≥ 1 so that c ≥ c0 implies that

(4.14) µL=ℓBD [Ac] ≥ (1− ϵ)

√
2ℓ3

3
√
πc3/2

.
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Let (ai) be the set of downward jumps made by the center exploration. It follows from a union
bound, (3.7), and (3.8) (with α = 3) that there exists 0 < δ < 1 so that

(4.15) µL=ℓBD [Ec] ≤ E

[∑
i

√
2a3i

3
√
πc3/2

]
≤ (1− 2δ)

√
2ℓ3

3
√
πc3/2

.

Combining (4.14) and (4.15), we have that

pc =
µL=ℓBD [Ec]

µL=ℓBD [Ac]
≤ 1− 2δ

1− ϵ
.

Thus, by taking ϵ ∈ (0, 1) sufficiently small such that 1−2δ
1−ϵ ≤ 1−δ, we obtain that there exists c0 ≥ 1

sufficiently large such that pc ≤ 1− δ, for each c ≥ c0.
Next, let (S, d, ν, x, y) have law µBM conditioned on having area at least c. Let Ec denote the

event that the metric exploration starting at x, targeted at y and run for one unit of time cuts off
a component from y with area at least c. Then recalling that µBM[·] =

∫∞
0 µA=aBM [·]c0a−3/2 da as

explained in Subsection 3.1.1, we obtain

pc = µBM[Ec | ν(S) ≥ c] ≤ µBM[ν(B•(x, 1)) ≥ c | ν(S) ≥ c](4.16)

=

∫∞
c µA=aBM [ν(B•(x, 1)) ≥ c]a−3/2 da∫∞

c a−3/2 da

=
1

2

∫ ∞
1

µA=bBM

[
ν(B•(x, c−1/4)) ≥ 1

]
b−3/2 db

c→∞−−−→ 0,

proving the assertion for (S, d, ν, x, y) with law µBM. □

In the following two lemmas and the completion of the proof of the upper bound of Theorem 4.1
given below, we will consider the following exploration. Suppose that r ∈ (0, 1/e], c > 1 and
u > 0. Fix ℓ ∈ [0, r2(log r−1)3+4u]. If ℓ > 0, we suppose that we have a Brownian disk (D, d, ν)
with boundary length ℓ conditioned on having area at least cr4(log r−1)6+8u. Consider the center
exploration from ∂D. Let τ1 be the first time that the center exploration has cut off a component
with area at least cr4(log r−1)6+8u. Given that τ1, . . . , τk have been defined, let τk+1 be the first time
after τk that the center exploration cuts off another component with area at least cr4(log r−1)6+8u. If
ℓ = 0, we suppose that we have a Brownian map instance (S, d, ν, x, y) conditioned on having area
at least cr4(log r−1)6+8u and define the exploration analogously except starting at x and targeted
at y.

Lemma 4.9. Suppose that we have the setup described just above. Let

Er =
{

sup
s∈[0,r]

Ls ≤ r2(log r−1)3+4u
}

denote the event that the boundary length Ls of the metric exploration is at most r2(log r−1)3+4u for
all s ∈ [0, r]. There exist c0 > 1 and δ ∈ (0, 1) which are independent of r, u, ℓ so that for all c ≥ c0 and
r ∈ (0, 1/e] the following is true. With Nr = sup{k : τk ≤ r} (sup ∅ := 0) we have that the probability
of Er ∩ {Nr ≥ n} is at most (1− δ)p̃n−1c where p̃c ∈ (0,∞) depends only on c and satisfies p̃c → 0 as
c→ ∞.

Proof. Recall that by rescaling boundary lengths by (r2(log r−1)3+4u)−1, areas by (r4(log r−1)6+8u)−1

and distances by (r(log r−1)3/2+2u)−1/2, we obtain a sample from the law µL=ℓrBD with ℓr given by
ℓr = ℓ(r2(log r−1)3+4u)−1 ∈ (0, 1] conditioned on having area at least c if ℓ > 0, and a sample from
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the law µBM conditioned on having area at least c if ℓ = 0. Under this rescaling, the event Er and
the random variable Nr become

Er =
{

sup
s∈[0,r0]

Ls ≤ 1
}

and Nr = sup{k : τk ≤ r0},(4.17)

respectively, where r0 = (log r−1)−3/2−2u, and we are to prove the assertion for these Er and Nr

instead.
Set Ek = {sups∈[0,τk] Ls ≤ 1} for each k ≥ 1. For each t ∈ [0,∞), let Ft be the σ-algebra

generated by {Lr}r∈[0,t] and the components cut off by the exploration up to time t. Then for each
k ≥ 1, a.s. on the event {τk < ∞}, the conditional law given Fτk of the target component at time
τk is µ

L=Lτk
BD if ℓ > 0 and µ

L=Lτk
BD,W if ℓ = 0, and therefore by (3.6) and (3.7) we have, a.s.,

P[τk+1 ≤ r0, Er | Fτk ] ≤ P[τk+1 ≤ r0, Ek+1 | Fτk ] ≤ P[τk+1 ≤ r0, Ek | Fτk ]
≤ P[ν(the target component at τk) ≥ c | Fτk ] 1l{τk≤r0}∩Ek

≤

{
µ
L=Lτk
BD [ν(D) ≥ c] 1l{τk≤r0}∩Ek if ℓ > 0,

µ
L=Lτk
BD,W [ν(D) ≥ c] 1l{τk≤r0}∩Ek if ℓ = 0,

≤ p̃c 1l{τk≤r0}∩Ek ,(4.18)

where p̃c = c−1/2∨c−3/2. Therefore, taking c0 ∈ [1,∞) and δ ∈ (0, 1) as in Lemma 4.8 and applying
(4.18) and Lemma 4.8, for any n ≥ 1 and any c ≥ c0 we get

P[Nr ≥ n, Er] = P[τn ≤ r0, Er] ≤ P[τn ≤ r0, En] ≤ p̃n−1c P[τ1 ≤ r0, E1]

≤ p̃n−1c P[τ1 ≤ r0] ≤ p̃n−1c (1− δ),

completing the proof. □

Lemma 4.10. Suppose we have the same setup as in Lemma 4.9. Let Ar denote the sum of the areas of
the components which are cut off by the exploration within exploration time r and have area at most
cr4(log r−1)6+8u each. The probability of the event Er ∩{Ar > r4(log r−1)7+12u} decays to 0 as r → 0

with a decay rate independent of ℓ and faster than any polynomial of r.

Proof. Set
R = r3(log r−1)3+4u and R′ = r24(log r−1)36+54u.

Step 1. Let Z be a 3/2-stable Lévy process with only upward jumps and let Λ = {(t, u)} be
the set of pairs consisting of the jump times and sizes for Z. That is, (t, u) ∈ Λ if and only if
u = Zt − Zt− > 0. Then Λ is a Poisson point process with intensity measure given by a constant
times u−5/2 du dt where du, dt both denote Lebesgue measure on R+. Let f denote the density
function for the area of a sample from µL=1

BD as given in (3.7). We associate with each upward
jump of Z an independent random variable a with density given by f . Then Λ0 = {(t, u, a)} is
a Poisson point process with intensity measure given by a constant times dt ⊗ u−5/2du ⊗ f(a)da

where dt, du, and da all denote Lebesgue measure on R+. Thus [35, Lemma 4.19] implies that
Λ̃ = {(t, u2a)} = {(t, v)} is a Poisson point process with intensity measure given by a constant times
dt ⊗ v−7/4dv where again dt and dv denote Lebesgue measure on R+. Note that u2a is equal in
distribution to the area of a Brownian disk with boundary length u.

Fix S ∈ (0, R′). For k ∈ Z, the number of elements (t, v) ∈ Λ̃ with t ∈ [1 − S, 1 + S] and
v ∈ (2−k−1, 2−k] is distributed as a Poisson random variable with mean mk given by a constant
times S23k/4. Let k0 ∈ Z be the smallest k ∈ Z so that S−1/2mk ≥ 1/2. For k ≥ k0, (4.2) with α =

(log 1
r )

1+uS−1 implies that the probability that there are more than (log 1
r )

1+uS−1mk such elements
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is at most exp(−(log 1
r )

1+uS−1mk), which decays to 0 as S → 0 faster than any power of S when
r > 0 is small enough and fixed. It likewise decays to 0 faster than any power of r as r → 0 provided
S ∈ (0, R′). Let k1 be the smallest k so that 2−k ≤ r4(log 1

r )
6+9u. By (4.2) with α = (log 1

r )
1+u/mk,

for each p > 0 there exists r0 > 0 so that for all r ∈ (0, r0) and for each k ∈ [k1, k0] ∩ Z, the
probability that we have more than (log 1

r )
1+u elements (t, v) ∈ Λ̃ with t ∈ [1 − S, 1 + S] and

v ∈ (2−k−1, 2−k] is O(Sp) as S → 0. Likewise, it tends to 0 as r → 0 faster than any power of
r provided S ∈ (0, R′). Altogether, we see that for each p > 0 there exists r0 > 0 so that for all
r ∈ (0, r0) the probability that

∑
(t,v)∈Λ̃:t∈[1−S,1+S], v≤cr4(log r−1)6+8u v exceeds r4(log 1

r )
7+11u is O(Sp)

as S → 0. Likewise, it tends to 0 as r → 0 faster than any power of r provided S ∈ (0, R′). We also
see that for each q ∈ [0,∞), the probability that

∑
(t,v)∈Λ̃:t∈[(q−4R)∨0,q+4R], v≤cr4(log r−1)6+8u v exceeds

r4(log 1
r )

7+11u tends to 0 as r → 0 faster than any power of r, by the argument in this paragraph
with mk a constant times R23k/4, k0 = min{k ∈ Z : mk ≥ 1/2} and (4.2) used with α = (log 1

r )
1+u

for k ≥ k0.
Step 2. We are now going to transfer the result of Step 1 about 3/2-stable Lévy processes to the

setting of 3/2-stable Lévy excursions. Let Z be a 3/2-stable Lévy process and set St = sup{0 ∨ Zs :
0 ≤ s ≤ t} for each t ≥ 0. Let also L = (Lt)t≥0 be a local time of S − Z at 0 in the sense
of [20, Chapter IV, Sections 2-4] and let L−1 be the right-continuous inverse of L. Note that
we can choose L by setting Lt = − inf{0 ∧ Zs : 0 ≤ s ≤ t} for each t ≥ 0 (see [20, Chapter
VI]). By [20, Chapter VIII, Lemma 1], we have that L−1 is a stable subordinator of index 1/3. Let
A = sup{t ≤ 1 : Zt−inf0≤s≤t Zs = 0} andB = inf{t ≥ 1 : Zt−inf0≤s≤t Zs = 0}. ThenB−A is equal
to the length of the interval in the complement of the range of L−1 which contains 1. In particular,
by [20, Chapter III, Proposition 2 (i)], the probability that B − A ∈ [s, 2s] is of order s1/3 as s → 0

and is of order s−1/3 as s → ∞. By [20, Chapter VIII, Proposition 15], the conditional law of the
process (B−A)−2/3(ZA+(B−A)t− inf0≤s≤1 Zs) is that of a unit length 3/2-stable Lévy excursion. By
Step 1, the probability that

∑
(t,v)∈Λ̃:t∈[1−S,1+S], v≤cr4(log r−1)6+8u v exceeds r4(log 1

r )
7+11u decays to 0

as S → 0 faster than any fixed power of S provided r > 0 is sufficiently small and fixed. Therefore,
combining with the above description of the unit length 3/2-stable Lévy excursion with the scaling
property of a 3/2-stable Lévy process, we obtain that the same is true if Z̃ is a 3/2-stable Lévy
excursion of time length S ∈ (0, R′) and we sum v over all of the associated jumps. Similarly, for
a 3/2-stable Lévy excursion Z̃ of time length S ∈ [R′,∞) and for each p > 0, the probability that
the sum of v over all the jumps within some time interval I ⊂ [0, S] of length at most R exceeds
r4(log 1

r )
7+11u decays to 0 as r → 0 with a decay rate determined solely by u and p and faster than

any power of r provided R′ ≤ S ≤ r−p.
Step 3. We are now going to deduce the result in the setting of µBM from the above estimates.

We will subsequently explain how to transfer the result to the setting of the Brownian disk in
Steps 4 and 5 below. Suppose that (S, d, ν, x, y) has distribution µBM and let Yt be the time-
reversal of the boundary length process so that Yt is a 3/2-stable CSBP excursion. By the Lamperti
transform (3.3), if we let s(t) = inf{r′ ≥ 0 :

∫ r′
0 Ys′ds

′ ≥ t} then we have that Z̃t = Ys(t) is
a 3/2-stable Lévy excursion. Let Ẽr denote the event that the sum of v over all the jumps of Z̃
within some time interval I of length at most R exceeds r4(log 1

r )
7+11u. For each q, q′ ∈ [0,∞) with

0 ≤ q′ − q ≤ r, let A[q,q′] denote the sum of the areas of the components which are cut off by the
metric exploration within time interval [q, q′] and have area at most cr4(log r−1)6+8u each. If such
q, q′ satisfy sups∈[q,q′] Ls ≤ r2(log r−1)3+4u, then the amount of Z̃t-time which corresponds to the
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metric exploration over time interval [q, q′] is∫ q′

q
Y(d(x,y)−s)∨0 ds ≤ (q′ − q)r2(log r−1)3+4u ≤ R,

and therefore ⋃
q,q′∈[0,∞)
0≤q′−q≤r

{
sup
s∈[q,q′]

Ls ≤ r2(log r−1)3+4u, A[q,q′] > r4(log r−1)7+11u

}
⊂ Ẽr.(4.19)

On the other hand, since the distribution for the time length ζ̃ of Z̃ is given by a constant times
s−5/3ds, we see that µBM[Ẽr] decays to 0 as r → 0 faster than any polynomial of r, by choosing
arbitrarily large p > 0 and integrating our upper bound on µBM[Ẽr | ζ̃ = s] from Step 2 with respect
to s−5/3 ds on (0, R′), [R′, r−p) and [r−p,∞) separately. In particular, the assertion of the lemma in
the case of µBM follows from this estimate on µBM[Ẽr] and (4.19).

Step 4. The result of Step 3 can be extended to the setting of an instance sampled from µL=ℓBD,W

(with the same exploration). Indeed, let Z ′t denote the Lamperti transform of the time-reversal
of the boundary length process under µL=ℓBD,W, and let E′r denote the event that the sum of v over
all the jumps of Z ′ within some time interval I of length at most R exceeds r4(log 1

r )
7+11u, so

that (4.19) with E′r in place of Ẽr holds as events under µL=ℓBD,W. If we start with a Brownian map
instance and explore the filled metric ball until the first time τ it has boundary length ℓ, then by
the strong Markov property of the metric exploration the conditional law of the complement Dτ

given τ < ∞ is µL=ℓBD,W, and {τ < ∞, Dτ satisfies E′r} ⊂ Ẽr as events under µBM. Recall also that
µL=ℓBD,W[ν(D) ≥ cr4(log r−1)6+8u] ≥ ℓ/(3c1/2r2(log r−1)3+4u) by (3.6) and ℓ ∈ (0, r2(log r−1)3+4u]

and that µBM[τ <∞] = µBM[sups≥0 Ls ≥ ℓ] = b0/ℓ for a constant b0 > 0 as shown in the paragraph
of (4.13). Combining these facts, we get the following upper bound independent of ℓ on the
probability of E′r:

µL=ℓBD,W[E′r | ν(D) ≥ cr4(log r−1)6+8u]

≤
µBM

[
1l{τ<∞}µBM[Dτ satisfies E′r | τ <∞]

]
µBM[τ <∞]µL=ℓBD,W[ν(D) ≥ cr4(log r−1)6+8u]

≤ 3b−10 c1/2r2(log r−1)3+4uµBM[τ <∞, Dτ satisfies E′r]

≤ 3b−10 c1/2r2(log r−1)3+4uµBM[Ẽr](4.20)

for each ℓ ∈ (0, r2 log(r−1)3+4u).
Step 5. On the basis of Steps 3 and 4, we can now obtain the result in the case of the center

exploration of an instance (D, d, ν) with law µL=ℓBD as follows. Let Dt denote the target component
of the center exploration at time t for each t ≥ 0 and set τ = inf{t ≥ 0 : ν(Dt) < r4(log r−1)6+8u},
so that on the event {τ > 0} we have ν(Dτ ) ≤ r4(log 1

r )
6+8u ≤ ν(Dτ−), where Dτ− =

⋂
t∈[0,τ)Dt.

Pick a random marked point y ∈ D according to ν/ν(D) independently of the center exploration.
Then on the event {τ > 0}, the conditional probability of {y ∈ Dτ−} given a realization of D and
the center exploration is at least ν(Dτ−)/ν(D) ≥ r4(log 1

r )
6+8u/ν(D), and on {τ > 0, y ∈ Dτ−}

the center exploration agrees with the exploration targeted at y over the time interval [0, τ). Set
Vr = {ν(D) ≥ cr4(log 1

r )
6+8u} ⊂ {τ > 0}, and recall that dµL=ℓBD,W =

(∫
ν(D) dµL=ℓBD

)−1
ν(D) dµL=ℓBD ,

that
∫
ν(D) dµL=ℓBD = ℓ2 by (3.7) and that µL=ℓBD,W[Vr]/µ

L=ℓ
BD [Vr] ≤ 9ℓ−2cr4(log 1

r )
6+8u by (3.6), (3.7)

and ℓ ∈ (0, r2(log 1
r )

3+4u]. Now, keeping writing Er, Ar for the event and the sum of the areas as
in the statement for the metric exploration targeted at y and letting Ecen

r , Acen
r denote those as in
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the statement for the center exploration, we see from (4.19) with E′r in place of Ẽr for instances of
µL=ℓBD,W and from (4.20) that the following holds:

r4(log 1
r )

6+8uµL=ℓBD [Vr ∩ Ecen
r ∩ {Acen

r > r4(log 1
r )

7+12u}]

≤
∫
Vr∩Ecen

r ∩{Acen
r >r4(log r−1)7+12u, y∈Dτ−}

ν(D) dµL=ℓBD

=

∫
ν(D) dµL=ℓBD · µL=ℓBD,W[Vr ∩ Ecen

r ∩ {Acen
r > r4(log 1

r )
7+12u, y ∈ Dτ−}]

≤ ℓ2µL=ℓBD,W[Vr ∩ Er ∩ {Ar > r4(log 1
r )

7+12u, y ∈ Dτ−, τ > r}]

+ ℓ2µL=ℓBD,W[Vr ∩ Ecen
r ∩ {Acen

r > r4(log 1
r )

7+12u, y ∈ Dτ−, τ ≤ r}]

≤ ℓ2µL=ℓBD,W[Vr ∩ Er ∩ {Ar > r4(log 1
r )

7+11u}]

+ ℓ2µL=ℓBD,W

[
Vr ∩

{
sup
s∈[0,τ ]

Ls ≤ r2(log 1
r )

3+4u, A[0,τ ] > r4(log 1
r )

7+11u, τ ≤ r

}]
≤ 2ℓ2µL=ℓBD,W[Vr ∩ E′r] = 2ℓ2µL=ℓBD,W[Vr]µ

L=ℓ
BD,W[E′r | Vr]

≤ 18cr4(log 1
r )

6+8uµL=ℓBD [Vr]µ
L=ℓ
BD,W[E′r | Vr]

≤ 54b−10 c3/2r6(log 1
r )

9+12uµL=ℓBD [Vr]µBM[Ẽr];

here, to bound the second term of the fourth line from above by that of the fifth line we used
the following two facts. First, sups∈[0,τ ] Ls = sups∈[0,τ) Ls on the event {τ > 0} since Ls has
only downward jumps. Second, on the event {Acen

r > r4(log 1
r )

7+12u, y ∈ Dτ−, 0 < τ ≤ r}, the
components cut off by the center exploration within the time interval [τ, r] contribute to Acen

r by at
most the sum of ν(Dτ ) and the area of the component cut off at time τ , where the latter is counted
only if it is at most cr4(log 1

r )
6+8u, and hence by y ∈ Dτ− and 0 < τ ≤ r,

A[0,τ ] ≥ Acen
r − ν(Dτ )− cr4(log 1

r )
6+8u

> r4(log 1
r )

7+12u − (c+ 1)r4(log 1
r )

6+8u ≥ r4(log 1
r )

7+11u.

Consequently, we obtain

µL=ℓBD [Ecen
r ∩ {Acen

r > r4(log 1
r )

7+12u} | Vr] ≤ 54b−10 c3/2r2(log 1
r )

3+4uµBM[Ẽr],

which has been already shown in Step 3 to decay to 0 as r → 0 with a decay rate (independent of
ℓ ∈ (0, r2 log(r−1)3+4u) and) faster than any polynomial of r. □

Proof of Theorem 4.1, upper bound. Suppose that (S, d, ν, x, y) has the law µBM conditioned on hav-
ing area at least cr4(log 1

r )
6+8u. As we mentioned earlier, we will prove the upper bound by domi-

nating the amount of area in B(x, r) from above using a subcritical Galton-Watson tree.
Fix c ≥ 1. We will adjust its value later in the proof. Let E0,r denote the event that any compo-

nent of S \ B(x, s) has boundary length at most r2(log 1
r )

3+4u for any s ∈ (0, r(log 1
r )

1+u], so that
µBM[(E0,r)

c] decays to 0 as r → 0 faster than any polynomial of r by Lemma 4.7. Let Er be as in
the statement of Lemma 4.9. Moreover, arguing as in the paragraph after (4.13) implies that

µBM

[
ν(S) ≥ cr4 log(r−1)6+8u

]
= c0

∫
t≥cr4 log(r−1)6+8u

t−2dt = c0c
−1r−4 log(r−1)−6−8u

for some universal constant c0 ∈ (0,∞). Combining the above, we obtain that µBM

[
(E0,r)

c | ν(S) ≥
cr4 log(r−1)6+8u

]
decays to 0 as r → 0 faster than any polynomial of r. Furthermore, apply-

ing Lemma 4.6 with c = log(r−1)3+4u implies that µBM

[
(Er)

c
]
≤ m0 exp(−c0 log(r−1)3+4u)r−2
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for all r ∈ (0, 1) sufficiently small, for some universal constants m0, c0 ∈ (0,∞). It follows that
µBM

[
(Er)

c | ν(S) ≥ cr4 log(r−1)6+8u
]

decays to 0 as r → 0 faster than any polynomial of r. Next,
we consider the exploration described just above Lemma 4.9 and let P be the probability measure
given by conditioning µBM on the positive probability event {ν(S) ≥ cr4 log(r−1)6+8u}. Lemma 4.9
implies that the number N of components cut off by B(x, r) with area at least cr4 log(r−1)6+8u

satisfies P
[
Er ∩ {N ≥ n}

]
≤ (1 − δ)p̃n−1c for each n ∈ N, c ≥ c0, where c0 ≥ 1, δ ∈ (0, 1) are

as in the statement of Lemma 4.9. We assume that we have chosen c sufficiently large so that∑
n≥1 n(1− δ)p̃n−1c < 1. Note that each of these N holes are conditionally independent given their

boundary lengths. If the boundary length of such a hole is ℓ, then we recall that its law is given
by µL=ℓBD conditioned on having area at least cr4 log(r−1)6+8u. We then branch the exploration into
each of these holes by performing the center exploration and then proceed as in Lemma 4.9. Then
Lemma 4.9 implies that inside of each hole, the number of additional holes which are cut off and
have area at least cr4 log(r−1)6+8u is stochastically dominated by a random variable with mean
strictly smaller than 1 and with an exponential tail. We have thus shown that the number of holes
discovered in the entire branching exploration is dominated from above by a Galton-Watson pro-
cess with offspring distribution given by a distribution with mean strictly smaller than 1 and with
an exponential tail. By our choice of c, this Galton-Watson process is subcritical, so that the law of
the total progeny exhibits exponential tails. Therefore, the probability that the Galton-Watson tree
has more than log(r−1)1+u nodes decays to 0 as r → 0 faster than any power of r.

Next, we note that [77, Lemma 4.12] implies that the metric net ∪r≥0∂B•(x, r) has ν-measure
zero for µBM-a.e. instance of (S, d, ν, x, y). We claim that the same is true if (S, d, ν, x, y) is sampled
from µL=ℓBD,W instead, for each ℓ > 0. Indeed, we fix r > 0 and perform the metric exploration from a
sample (S, d, ν, x, y) from µBM starting from x and targeted at y. Then we know that the conditional
law of S \B•(x, r) given Lr is equal to µL=LrBD,W. Also, the metric net of S \B•(x, r) is contained in the
metric net of (S, d, ν, x, y) and so the claim follows for a sample from µL=LrBD,W. Combining with the
rescaling property of the Brownian map, we obtain that the claim is true for µL=ℓBD,W for each ℓ > 0.
Furthermore, observing that the probability measures µL=ℓBD,W and µL=ℓBD are mutually absolutely
continuous for each ℓ > 0, and combining with the scaling property of the Brownian disk, we
obtain that the metric net of a sample from µL=ℓBD has area zero µL=ℓBD -a.e. for each ℓ > 0. Therefore,
combining everything we obtain that on the event that E0,r ∩Er holds and the Galton-Watson tree
has at most log(r−1)1+u nodes, we see from Lemma 4.9 that the total mount of area in B(x, r) is at
most r4 log(r−1)8+13u off an event whose probability decays to zero as r → 0 faster than any power
of r under P. It follows that the probability that ν(B(x, r)) > cr4 log(r−1)8+13u under P decays to
zero as r → 0 faster than any power of r. Hence, by picking i.i.d. points from ν

ν(S) and arguing as
in the proof of the lower bound of the theorem, we obtain that ν(B(z, r)) ≤ cr4 log(r−1)8+14u for
each z ∈ S, off an event whose probability under P decays to zero as r → 0 faster than any power
of r. Therefore the proof is complete by observing that

P =

∫
t≥cr4 log(r−1)6+8u t

−3/2µA=tBM dt

c−1r−4 log(r−1)6+8u

and combining with the scaling property of the Brownian map. □

Remark 4.11. Alternatively, the upper bound in Theorem 4.1 can be deduced directly from a re-
sult in [65]. In fact, for a “typical point” x, meaning a point x chosen uniformly according to the
volume measure, it has been shown in [65, Proposition 11] that the k-th moment of ν(B(x, r))
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is bounded above by Ck0 k! r
4k, where C0 is a constant. Hence, for any λ ∈ (0, C0) the expecta-

tion of exp(λν(B(x, r))/r4)) is finite, so the probability that ν(B(x, r)) is at least a constant times
r4 log(r−1) decays to zero faster than any polynomial, and the upper bound in Theorem 4.1 follows
by a union bound. However, we decided to include the above proof based on a branching argument
since it is different from the proof in [65] and it does not rely on such precise moment estimates,
so may be of independent interest.

5. PERCOLATION EXPLORATION

Later in this work, we are going to use SLE6 chunks in percolation style arguments as illustrated
in Proposition 5.1 below, the proof of which is the purpose of this long section. As necessary prepa-
rations for its statement, in Subsection 5.1 we introduce a suitable state space MCPU

2 for random
quantum surfaces and certain MCPU

2 -valued random variables defined through SLE6 explorations
of quantum disks and wedges considered in Subsection 3.2.4. In Subsection 5.2 we state the main
result of this section (Proposition 5.1), which formulates a percolation argument in the setting of
a quantum disk weighted by its area, and its analog in the simpler setting of a quantum wedge
(Proposition 5.2). We first prove the latter in Subsection 5.3, and then the former in Subsection 5.4
on the basis of the latter.

5.1. Preliminaries: SLE6 hulls as random curve-decorated quantum surfaces. Throughout, we
consider a radial SLE6 process η′ on D targeted at 0. Let t ∈ [0, inf(η′)−1(0)). In the same way as in
Subsection 3.2.4 (see also Appendix A), we define the hull Kt of η′([0, t]) as the complement in D
of the 0-containing component of D \ η′([0, t]), and we divide the boundary ∂Kt of Kt into the top
∂Kt∩D of Kt and the bottom ∂Kt∩∂D of Kt. On the event {∂Kt∩∂D ̸= ∂D}, i.e., that the bottom
of Kt is not the whole of the unit circle ∂D, we can further divide the top (resp. bottom) into its
left and right sides: the left (resp. right) side of the top is the part which is to the left (resp. right)
of η′(t), and the left (resp. right) side of the bottom is the part which is to the left (resp. right) of
η′(0).

Moreover, we also consider below the space MCPU
2 of curve-decorated quantum surfaces with two

marked boundary points, following [43, Subsection 2.2.5]. It is defined as the set of equivalence
classes modulo conformal maps of quintuples (D,µ, η, x, y) of a simply connected domain D ⊊ C,
a Radon measure µ on D, a continuous map η : [0,∞] → D ∪ ∂̃D with η(0) ∈ ∂̃D, and x, y ∈
∂̃D \ {η(0)} with x ̸= y and η(0) ∈ [x, y]⟲⟲⟲

∂̃D
, where ∂̃D denotes the set of prime ends of D and

[x, y]⟲⟲⟲
∂̃D

the counterclockwise arc of ∂̃D from x to y. Noting that each equivalence class K ∈ MCPU
2

has a unique representative of the form (D, µK, ηK,−
√
−1,

√
−1) with ηK(0) = 1 by the Riemann

mapping theorem, we equip MCPU
2 with the conformal Prokhorov-uniform metric dCPU

2 given by

(5.1) dCPU
2 (K1,K2) := dPD(µK1 , µK2) + dUD(ηK1 , ηK2), K1,K2 ∈ MCPU

2 ,

where dPD is a complete metric on the space of Radon measures on D compatible with the vague
topology and dUD(η1, η2) :=

∑∞
n=1 2

−n supt∈[0,n] |η1(t) − η2(t)|, so that MCPU
2 becomes a complete

separable metric space. Note that a quantum surface (D,h, η, x, y) parameterized by a simply
connected domainD ⊊ C and equipped with a continuous map η : [0,∞] → D∪∂̃D with η(0) ∈ ∂̃D

and two marked boundary points x, y ∈ ∂̃D\{η(0)} with x ̸= y and η(0) ∈ [x, y]⟲⟲⟲
∂̃D

can be identified
with an almost-surely defined random element (D,µh, η, x, y) of MCPU

2 , since h is a measurable
function of µh by [18, Theorem 1.1 and Remark 1.2].
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SLE6 explorations of quantum surfaces as introduced in Subsection 3.2.4 naturally define MCPU
2 -

valued random variables as follows. Let σ be an MCPU
2 -stopping time, i.e., a function σ : MCPU

2 →
[0,∞] which is a stopping time with respect to the filtration generated by the MCPU

2 -valued stochas-
tic process {Kt}t≥0 on MCPU

2 given by Kt(D,µ, η, x, y) := (D,µ, η(· ∧ t), x, y). We define a Borel
subset Eσ of MCPU

2 , considered as an event for ω ∈ MCPU
2 , by

(5.2) Eσ :=

{
ω = (Dω, µω, ηω, xω, yω) ∈ MCPU

2

∣∣∣∣∣ σ(ω) ∈ (0, tηω), ∂̃K
ω
σ(ω) ∩ ∂̃Dω ̸= ∂̃Dω,

ηω(σ(ω)) ∈ ∂̃Dω

}
,

where tηω := inf η−1ω (ηω(∞)) and, for t ∈ [0, tηω), K
ω
t denotes the complement in Dω of the compo-

nent of Dω \ ηω([0, t]) whose closure in Dω ∪ ∂̃Dω contains ηω(∞) and ∂̃Kω
t denotes its boundary

in Dω ∪ ∂̃Dω. Now let ℓ > 0, suppose that D = (D, h, 0) has law µL=ℓQD,W, let η′ be an independent
radial SLE6 on D starting from a uniformly random point on ∂D, targeted at 0 and parameterized
by quantum natural time, let xD,η′(0), yD,η′(0) ∈ ∂D\{η′(0)} be such that η′(0) ∈ [xD,η′(0), yD,η′(0)]

⟲⟲⟲
∂D

and νh([xD,η′(0), η′(0)]
⟲⟲⟲
∂D) = νh([η

′(0), yD,η′(0)]
⟲⟲⟲
∂D) = ℓ/4, and set σD := σ(D, µh, η′, xD,η′(0), yD,η′(0)).

Then we have η′([tη′ ,∞]) = {0} and tη′ = inf(η′)−1(0) <∞ a.s., and it follows from Proposition A.1
that, a.s. on the event

EDσ := {(D, µh, η′, xD,η′(0), yD,η′(0)) ∈ Eσ}
=
{
σD ∈ (0, tη′), ∂KσD ∩ ∂D ≠ ∂D, η′(σD) ∈ ∂D

}
,

(5.3)

KσD \ ∂KσD is a Jordan domain in C with boundary ∂KσD , η′([0, σD]) ⊂ KσD ∪ ∂KσD , and the
bottom ∂KσD ∩ ∂D of KσD is a compact interval in ∂D containing η′(0) in its interior. In particular,
letting xσD and yσD denote the endpoints of the left and right sides, respectively, of the bottom of
KσD other than η′(0), we see that

(5.4) NDσ :=
(
KσD \ ∂KσD , µh|KσD\∂KσD , η

′(· ∧ σD), xσD , yσD
)

is an MCPU
2 -valued random variable defined a.s. on EDσ .

We remark that the construction in the last paragraph can be applied also to a weight-2 quantum
wedge W = (H, h, 0,∞), an independent chordal SLE6 η

′ on H from 0 to ∞ parameterized by
quantum natural time, and xW , yW ∈ ∂H with xW < 0 < yW and µh([xW , 0]) = µh([0, yW ]) =

1. In this case we have η′(∞) = ∞ and tη′ = inf(η′)−1(∞) = ∞ a.s. and, as introduced in
Subsection 3.2.4, the hull Kt of η′([0, t]), its top and bottom are defined for any t ∈ [0,∞) in the
same way as above with the 0-containing component replaced by the unbounded component. Also
for each MCPU

2 -stopping time σ, thanks to Proposition A.2 an MCPU
2 -valued random variable NWσ

is defined a.s. on the event

(5.5) EWσ := {(H, µh, η′, xW , yW) ∈ Eσ} = {σW ∈ (0,∞), η′(σW) ∈ ∂W}

by (5.4) with σW in place of σD, where σW := σ(H, µh, η′, xW , yW).

5.2. Statement of percolation exploration. To state the main result of this section (Proposi-
tion 5.1 below), for each δ ∈ (0,∞) we define an MCPU

2 -stopping time σδ by

(5.6) σδ(ω) := inf
{
t ∈ [δ,∞)

∣∣ t < tηω , ∂̃Kω
t ∩ ∂̃Dω ̸= ∂̃Dω, ηω(t) ∈ ∂̃Dω

}
for ω = (Dω, µω, ηω, xω, yω) ∈ MCPU

2 (recall that tηω := inf η−1ω (ηω(∞))).

Proposition 5.1. There exist A0 ∈ [2,∞) and c0,max ∈ (0,∞) such that for any A ∈ [A0,∞) and
any c0 ∈ (0, c0,max] the following is true with ϵ0 := c0A

−2/3. Let δ > 0, set σ := σδ/A ∧ δ and let E
be any Borel subset of MCPU

2 such that µW=2
QW

[
EWσ ∩ {NWσ ∈ E}

∣∣ σ < δ
]
≥ 1 − ϵ0. Suppose that
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D = (D, h, 0) has law µL=1
QD,W, and consider the following exploration of D by radial SLE6 curves. Set

D0 := D, D0 := D, let η′0 be a radial SLE6 on D0 starting from a uniformly random point on ∂D0 and
targeted at 0, and set Ξ0 := ∅. We then inductively define a sequence {(Dj = (Dj , h|Dj , 0), η′j ,Ξj)}j≥0
of triples of a quantum disk Dj weighted by its area, a radial SLE6 η

′
j on Dj starting from a uniformly

random point η′j(0) on ∂Dj and targeted at 0, and a 2Z∩[0,j)-valued random variable Ξj , as follows.

• Set σj := σ
(
Dj , µh|Dj

, η′j , xDj ,η′j(0), yDj ,η′j(0)
)

and Ej := E
Dj
σ ∩ {σj < δ, NDjσ ∈ E}. If

σj ≥ tη′j , set Dj+1 := Dj , Dj+1 := Dj , η′j+1 := η′j and Ξj+1 := Ξj . If σj < tη′j , let Dj+1 be

the 0-containing component of Dj \ η′j([0, σj ]), set Kj
σj := Dj \Dj+1, and let Nj and Dj+1 be

the quantum surfaces parameterized by Kj
σj \ ∂K

j
σj and Dj+1, respectively. If Ej occurs, we

also say that E occurs for Nj .
• If σj < tη′j , we take an independent radial SLE6 η

′
j+1 on Dj+1 targeted at 0, choosing its

initial point η′j+1(0) and Ξj+1 according to the following rule:
(a) If Ej occurs, let η′j+1(0) be the leftmost point of ∂(Dj \ Dj+1) ∩ ∂Dj and set Ξj+1 :=

{j} ∪ {i ∈ Ξj | ∂Dj+1 ∩ ∂Ni ̸= ∅}.
(b) If Ej does not occur, ∂̃Kj

σj ∩ ∂̃Dj ̸= ∂̃Dj and
⋃
i∈Ξj (∂Dj+1 ∩ ∂Ni) ̸= ∅, noting that

[aj , bj ]
⟲⟲⟲
∂Dj+1

=
⋃
i∈Ξj (∂Dj+1 ∩ ∂Ni) for unique aj , bj ∈ ∂Dj+1, let η′j+1(0) be the first

point on [aj , bj ]
⟲⟲⟲
∂Dj+1

from aj that belongs to

(5.7) {bj} ∪
⋃

i ∈ Ξj ,∂Dj+1 ∩ ∂Ni has quantum length at least ϵ0δ2/3
∂Ni,

and set Ξj+1 :=
{
i ∈ Ξj

∣∣ ∅ ≠ ∂Dj+1 ∩ ∂Ni ⊂ [η′j+1(0), bj ]
⟲⟲⟲
∂Dj+1

}
, where [bj , bj ]

⟲⟲⟲
∂Dj+1

:=

{bj}.
(c) If Ej does not occur, ∂̃Kj

σj ∩ ∂̃Dj ̸= ∂̃Dj and
⋃
i∈Ξj (∂Dj+1 ∩ ∂Ni) = ∅, let η′j+1(0) be

the rightmost point of ∂(Dj \ Dj+1) ∩ ∂Dj and set Ξj+1 := ∅.
(d) If Ej does not occur and ∂̃Kj

σj ∩ ∂̃Dj = ∂̃Dj , let η′j+1(0) := η′j(σj) and set Ξj+1 := ∅.

Noting for any j ≥ 0 that
{
σj < tη′j , ∂Dj+1 ⊂

⋃
i∈Ξj+1

∂Ni

}
⊂ Ej and that on Ej the bottom left of

Dj \ Dj+1 can be written as [xσDj , η
′
j(0)]

⟲⟲⟲
∂Nj with xσDj as in (5.4), set

(5.8) Nδ := min

{
j ≥ 0

∣∣∣∣ σj < tη′j , ∂Dj+1 ⊂
⋃
i∈Ξj+1

∂Ni, [xσDj , η
′
j(0)]

⟲⟲⟲
∂Nj ∩⋃

i∈Ξj (∂Dj∩∂Ni) has quantum length at least ϵ0δ2/3

}
.

Let u > 0 and define an event Eu,δ by

(5.9) Eu,δ :=

{
for any j ∈ Z∩[0, δ−2/3−u] and any t ∈ [0, σj ], the boundary length
of the 0-containing component of Dj \ η′j([0, t]) is at least δ2/3−u

}
.

Then there exist c1, c2, a ∈ (0,∞) determined solely by A, c0, u such that the following hold:

(i) P
[
Eu,δ ∩ {Nδ ≥ δ−2/3−u}

]
≤ c1 exp(−c2δ−a).

(ii)

(5.10) P

Eu,δ \


for each 0 ≤ i ≤ Nδ there exist n ∈ Z∩[0, δ−u] and
{ij}nj=1 ⊂ {0, . . . , Nδ} such that ∂Nin ∩ ∂D0 ̸= ∅,
i1 = i and ∂Nij ∩ ∂Nij+1 ̸= ∅ for each 1 ≤ j < n


 ≤ c1 exp(−c2δ−a).

The first step in the proof of Proposition 5.1 is a related result in the setting of the half-plane. This
setting will be slightly easier to prove because the law of a weight-2 quantum wedge is invariant
under the operation of exploring a chordal SLE6 curve for a given amount of quantum natural
time.
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FIGURE 2. Left: Illustration of the setup of Proposition 5.1. The embedding of
D into D is taken so that the interior (resp. boundary) marked point is 0 (resp.
−i). Chunks for which the event E occurs (resp. does not occur) are shown in
green (resp. red). We will choose the event E so that the Ni for which it occurs are
necessarily homeomorphic to D, which is why the green chunks have this property
while the red chunks do not. Shown is the event that the chunks for which E occurs
disconnects ∂D from 0. Right: Illustration of the setup for Proposition 5.2, with the
same color scheme as on the left.

Proposition 5.2. There exist A0 ∈ [2,∞) and c0,max ∈ (0,∞) such that for any A ∈ [A0,∞) and any
c0 ∈ (0, c0,max] the following is true with ϵ0 := c0A

−2/3. Set σ := σ1/A ∧ 1 and let E be any Borel
subset of MCPU

2 such that µW=2
QW

[
EWσ ∩ {NWσ ∈ E}

∣∣ σ < 1
]
≥ 1− ϵ0. Suppose that W = (H, h, 0,∞)

has law µW=2
QW , and consider the following exploration of W by chordal SLE6 curves. Set H0 := H,

W0 := W and let η′0 be a chordal SLE6 on W0 from 0 to ∞. We then inductively define a sequence
{(Wj = (Hj , h|Hj , η′j(0),∞), η′j)}j≥0 of pairs of a quantum wedge Wj and a chordal SLE6 η

′
j on Wj

as follows.

• Set σj := σ(Hj , µh|Hj
, η′j , xWj , yWj ) and Ej := E

Wj
σ ∩ {σj < 1, NWj

σ ∈ E}. Let Hj+1 be the

unbounded component of Hj \ η′j([0, σj ]), set Kj
σj := Hj \Hj+1, and let Nj and Wj+1 be the

quantum surfaces parameterized by Kj
σj \ ∂K

j
σj and Hj+1, respectively. If Ej occurs, we also

say that E occurs for Nj .
• Let η′j+1 be an independent chordal SLE6 on Wj to ∞ whose initial point η′j+1(0) is chosen

according to the following rule. If Ej occurs, let η′j+1(0) be the leftmost point of ∂(Wj\Wj+1)∩
∂Wj . If Ej does not occur, let η′j+1(0) be the first point on ∂Wj+1 that is to the right of the
rightmost point of ∂(Wj \Wj+1) ∩ ∂Wj and belongs to

(5.11) (∂Wj+1 ∩ ∂W0) ∪
⋃

0 ≤ i < j,∂Wj+1 ∩ ∂Ni has quantum length at least ϵ0
∂Ni.

Let Lj denote the quantum length of the top left of W0 \ Wj (i.e., the part of ∂(W0 \ Wj) ∩ W0

which is to the left of η′j(0)) minus the quantum length of the bottom left of W0 \ Wj (i.e., the part
of ∂(W0 \ Wj) ∩ ∂W0 which is to the left of 0). Equivalently, set L0 := 0 and let Lj+1 − Lj be the
quantum length of the part of ∂Wj+1 from η′j+1(0) to the leftmost point of ∂(Wj \Wj+1)∩∂Wj minus
the quantum length of the bottom left of Wj \ Wj+1 (i.e., the part of ∂(Wj \ Wj+1) ∩ ∂Wj which is
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to the left of η′j(0)). Also let Rbot
j denote the quantum length of the bottom right of W0 \ Wj (i.e., the

part of ∂(W0 \Wj) ∩ ∂W0 which is to the right of 0). Then the following hold:

(i) There exist constants c1, c2 ∈ (0,∞) determined solely by A, c0 such that P[LN ≥ −c1N ] ≤
exp(−c2N) for any N ∈ N. More precisely, c1 can be chosen as c1 = 1

16cA
−2/3 logA with

c ∈ (0,∞) the constant in Proposition B.3.
(ii) For each u ∈ (0, 12), there exists a constant c3 ∈ (0,∞) determined solely by u such that P[Rbot

N ≥
N/10] ≤ c3N

u−1/2 for any N ∈ N.
(iii) There exist constants c4, c5, c6 ∈ (0,∞) determined solely by A, c0 such that for any u ∈ [2,∞)

and any N ∈ N,

(5.12) P

for each i ∈ Z ∩ [0, N ] there exist n ∈ N ∩ [1, c4u
2]

and {ij}nj=1 ⊂ Z ∩ [0, N ] such that i1 = i, ∂Nin ∩
∂W0 ̸= ∅ and ∂Nij∩∂Nij+1 ̸= ∅ for each 1 ≤ j < n

 ≥ 1− c5N
2 exp(−c6u).

(iv) There exist constants c7, c8, c9 ∈ (0,∞) determined solely by A, c0 such that, with ∂LW :=

(−∞, 0) ⊂ ∂W, for any u ∈ [2,∞) and any N ∈ N ∩ [c7u
3,∞),

(5.13) P
[
for each i ∈ Z∩ [0, N ] there exists j ∈ Z∩ [0, N) such
that |j−i| ≤ c7u

3, 1lEj∩Ej+1 = 1 and ∂Nj∩∂LW ≠ ∅

]
≥ 1− c8N

2 exp(−c9u).

5.3. Proof of Proposition 5.2. The proof of Proposition 5.2 is long and divided into several steps.
Until the end of Subsection 5.3, we fix the situation of the statement of Proposition 5.2, with
A ∈ [2,∞) and c0 ∈ (0,∞) arbitrary and the way of choosing A0, c0,max specified in the course
of the proof, and we also fix the following setting. Recall that for each j ≥ 0, Wj is a weight-
2 quantum wedge independent of {(Wi \ Wi+1, h|Wi\Wi+1

, η′i|[0,σi], L̃i)}0≤i<j by the properties of
quantum wedges described in Subsections 3.2.2 and 3.2.4, where L̃i denotes the quantum length
of the part of ∂Wi+1 from η′i+1(0) to the leftmost point of ∂(Wi \ Wi+1) ∩ ∂Wi. Let {Ljt}t≥0
(resp. {Rjt}t≥0) be the left (resp. right) boundary length process associated with (Wj , η

′
j) as in-

troduced in Subsection 3.2.4, let T j denote the quantum length of the top ∂(Wj \ Wj+1) ∩ Wj

of Wj \ Wj+1 and Bj
L (resp. Bj

R) the quantum length of the bottom left (resp. bottom right) of
Wj \ Wj+1. Then ({Ljt}t≥0, {R

j
t}t≥0) is a pair of independent 3/2-stable Lévy processes with only

downward jumps and is independent of {({Lit}t∈[0,σi], {Rit}t∈[0,σi])}0≤i<j for each j ≥ 0, the se-
quence {({Ljt}t∈[0,σj ], {R

j
t}t∈[0,σj ])}

∞
j=0 is i.i.d., and we have

0 ≤ T j = (Ljσj − inf0≤s≤σj L
j
s) + (Rjσj − inf0≤s≤σj R

j
s),(5.14)

0 < Bj
L = − inf0≤s≤σj L

j
s, 0 < Bj

R = − inf0≤s≤σj R
j
s,(5.15)

σj = (inf{t ∈ [1/A,∞) | η′j(t) ∈ ∂Wj}) ∧ 1 = (τLj ∧ τRj ) ∧ 1(5.16)

(for (5.16) recall (5.6)), where τLj := inf{t ∈ [1/A,∞) | Ljt = inf0≤s≤t L
j
s} and τRj := inf{t ∈

[1/A,∞) | Rjt = inf0≤s≤tR
j
s}. Also, following Appendix B, let X1, X2 be i.i.d. 3/2-stable Lévy

processes with only downward jumps and starting from 0, and set Ijt := inf0≤s≤tX
j
s , τ j := inf{t ∈

[1,∞) | Xj
t = Ijt } for j = 1, 2 and τ := τ1 ∧ τ2, so that (5.16) and the scaling property of X1, X2

imply that
(
{Ljt/A}t≥0, {R

j
t/A}t≥0, A(τ

L
j ∧τRj )

)
and

(
{A−2/3X1

t }t≥0, {A−2/3X2
t }t≥0, τ

)
have the same

law for any j ≥ 0.
We first prove Proposition 5.2-(ii), which is an easy consequence of the properties mentioned in

the previous paragraph, Proposition B.5 and (B.10).
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Proof of Proposition 5.2-(ii). Setting Rbot
0 := 0 =: Rtop

0 and letting Rtop
j denote the quantum length

of the part of ∂Wj from η′j(0) to the rightmost point of ∂(W0 \Wj)∩ ∂W0 for each j ≥ 1, we easily
see from the definition of the exploration that for any j ≥ 1,

(5.17) Rbot
j = Rbot

j−1 + (Bj−1
R −Rtop

j−1)
+ ≤ Rbot

j−1 +Bj−1
R ≤

j−1∑
k=0

Bk
R.

As noted in the first paragraph of Subsection 5.3,
{(

{Rjt/A}t∈[0,Aσj ], Aσj
)}∞

j=0
is i.i.d. with the

same law as
(
{A−2/3X2

t }t∈[0,τ∧A], τ ∧ A
)
, and therefore {Bj

R}
∞
j=0 is i.i.d. with the same law as

−A−2/3I2τ∧A by (5.15). Moreover, letting p ∈ (1, 32), by the scaling property of X2 and [20, Chapter
VIII, Proposition 4] we have

(5.18) E
[
(B0

R)
p
]
= E

[
(A−2/3|I2τ∧A|)p

]
≤ E

[
(A−2/3|I2A|)p

]
= E

[
|I21 |p

]
<∞,

which further implies that for any s ∈ (0,∞),

sP[B0
R ≥ s] ≤ s1−pE

[
(B0

R)
p
]
≤ s1−pE

[
|I21 |p

]
,(5.19)

E[B0
R]− E

[
B0
R1l{B0

R≤s}
]
= E

[
B0
R1l{B0

R>s}
]
≤ s1−pE

[
(B0

R)
p
]
≤ s1−pE

[
|I21 |p

]
.(5.20)

It follows from (5.20) with p = 5
4 , a version [90, Exercise 1.2.11] of the weak law of large numbers

with an explicit remainder estimate and (5.19) that for any N ∈ N and any s ∈ R with s >

N−1/4E
[
|I21 |5/4

]
,

P

[∣∣∣∣∣
N−1∑
j=0

Bj
R −NE[B0

R]

∣∣∣∣∣ ≥ Ns

]

≤ P

[∣∣∣∣∣ 1N
N−1∑
j=0

Bj
R − E

[
B0
R1l{B0

R≤N}
]∣∣∣∣∣ ≥ s−N−1/4E

[
|I21 |5/4

]]

≤ 2N−1
(
s−N−1/4E

[
|I21 |5/4

])−2 ∫ N

0
t1−pE

[
|I21 |p

]
dt+N1−pE

[
|I21 |p

]
=
(
2(2− p)−1

(
s−N−1/4E

[
|I21 |5/4

])−2
+ 1
)
E
[
|I21 |p

]
N1−p.(5.21)

Finally, by Proposition B.5 and (B.10), as long as A is large enough, E[B0
R] = E[−A−2/3I2τ∧A] ≤

1/20, and for any suchA and anyN ∈ N withN ≥ 404E
[
|I21 |5/4

]4 we see from (5.17), E[B0
R] ≤ 1/20

and (5.21) with s = 1/20 that P[Rbot
N ≥ N/10] ≤ c3N

1−p with c3 := (3200(2 − p)−1 + 1)E
[
|I21 |p

]
,

completing the proof. □

In order to prove Proposition 5.2-(i), we will consider a slightly modified exploration, illustrated
in Figure 3, for which the analog of {Lj}∞j=0, denoted by {L′j}∞j=0, dominates {Lj}∞j=0 in the sense
that LN ≤ L′N for anyN ≥ 1. Moreover, L′N =

∑N−1
j=0 (L′j+1−L′j) and the increments {L′j+1−L′j}∞j=0

form a sequence of i.i.d. random variables with negative mean and such that (L′j+1 − L′j)
+ has

a finite exponential moment. Then Proposition 5.2-(i) can be derived from the following large
deviation bound. This rather explicit large deviation estimate is required in order to prove that the
constants c1, c2 in Proposition 5.2-(i) can be chosen to be dependent only on A, c0.

Lemma 5.3. Let {Yn}∞n=1 be i.i.d. real random variables, let β, δ,K,M ∈ (0,∞), p ∈ (1,∞) and
assume that E[eβY

+
1 ] ≤ K, E[(Y −1 )p] ≤ M and E[Y1] ≤ −δ. Then there exists λ ∈ (0,∞) which is an
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FIGURE 3. Top: Shown on the left is the exploration in the statement of Propo-
sition 5.2 when the first chunk satisfies the event E. The exploration continues
starting from the orange dot. Shown on the top middle is the exploration when
the second chunk also satisfies the event E and the exploration continues from the
orange dot. On the top right, the second chunk does not satisfy E and the explo-
ration starts from the orange dot. Bottom: Shown is the exploration in the proof
of Proposition 5.2, which is more to the right than the exploration described in the
statement of Proposition 5.2. Whenever a chunk for which E occurs is discovered,
the exploration continues from the point which is ϵ0 units of boundary length from
the leftmost intersection of the chunk with the surface boundary (orange dot, bot-
tom middle). Whenever a chunk for which E does not occur is discovered, the
exploration continues from the rightmost intersection of the chunk with the surface
boundary (orange dot, bottom right).

explicit function of β, δ,K,M, p such that

(5.22) P

[
n∑
j=1

Yj ≥ −1

4
δn

]
≤ e−δλn/8 for any n ∈ N.

Proof. Set a := (2M/δ)
1
p−1 and b := E[(Y1 + a)+], so that b ≤ E[Y +

1 ] + a ≤ β−1K + a. Then by
Hölder’s and Markov’s inequalities,

b− a− E[Y1] = E[(Y1 + a)−] ≤ E
[
Y −1 1l{Y −

1 ≥a}
]
≤ E

[
(Y −1 )p

]1/p P[Y −1 ≥ a
]1−1/p

≤ a1−p E
[
(Y −1 )p

]
≤ a1−pM = 1

2δ,
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and hence a − b ≥ −E[Y1] − 1
2δ ≥ 1

2δ. Therefore, setting Ỹj := (Yj + a)+ − b for j ∈ N and noting
that E[Ỹ1] = 0, we see that for any n ∈ N and any λ ∈ (0, β],

P

[
n∑
j=1

Yj ≥ −1

4
δn

]
≤ P

[
n∑
j=1

Ỹj ≥
(
a− b− 1

4
δ
)
n

]
≤ P

[
n∑
j=1

Ỹj ≥
1

4
δn

]

≤ e−δλn/4 E

[
exp

(
λ

n∑
j=1

Ỹj

)]
= e−δλn/4

(
E[eλỸ1 ]

)n
≤ e−δλn/4

(
1 +

∞∑
k=2

(λ/β)k

k!
E
[
(β|Ỹ1|)k

])n
≤ e−δλn/4

(
1 + (λ/β)2E

[
eβ|Ỹ1|

])n
≤ exp

(
−δλn/4 + n(λ/β)2 E

[
eβ|Ỹ1|

])
.(5.23)

Now since |Ỹ1| ≤ Y +
1 + a+ b ≤ Y +

1 + 2a+ β−1K and thus E
[
eβ|Ỹ1|

]
≤ Ke2βa+K , (5.22) follows by

choosing λ :=
(
1
8δβ

2K−1e−2βa−K
)
∧ β in (5.23). □

Proof of Proposition 5.2-(i). We define {L′j}∞j=0 by L′0 := 0 and

(5.24) L′j+1 − L′j := (ϵ0 −Bj
L)1lEj + (T j −Bj

L)1lEcj .

Then since {(Wj \ Wj+1, h|Wj\Wj+1
, η′j |[0,σj ])}∞j=0 is i.i.d. and 1lEj , T

j , Bj
L, B

j
R are measurable with

respect to (Wj \ Wj+1, h|Wj\Wj+1
, η′j |[0,σj ]) by (5.5), (5.4), (5.14) and (5.15) for any j ≥ 0, we

have that {(1lEj , T j , B
j
L, B

j
R)}∞j=0 is i.i.d. and thus {L′j+1 − L′j}∞j=0 is also i.i.d. Note that {L′j}∞j=0

defined by (5.24) has the law of the analog of {Lj}∞j=0 for another exploration in which η′j+1(0)

is instead chosen on the event Ej to be the point on ∂Wj+1 which is ϵ0 boundary length units to
the right of the leftmost point of ∂(Wj \ Wj+1) ∩ ∂Wj and on the event Ecj to be the rightmost
point of ∂(Wj \ Wj+1) ∩ ∂Wj; see Figure 3 for an illustration. This is because Wj is a weight-
2 quantum wedge independent of {(Wi \ Wi+1, h|Wi\Wi+1

, η′i|[0,σi], L̃i)}0≤i<j for each j ≥ 0 for
either of the ways of choosing {η′j+1(0)}∞j=0, by the properties of quantum wedges described in
Subsections 3.2.2 and 3.2.4.

We claim that LN ≤ L′N for any N ≥ 1. Indeed, let j ≥ 0, set

(5.25) Ij :=

{
i

∣∣∣∣∣
0 ≤ i < j, ∂Wj+1 ∩ ∂Ni has at least two elements and is in-
cluded in the part of ∂Wj+1 from the rightmost point of ∂(Wj\
Wj+1) ∩ ∂Wj to the rightmost point of ∂(W0 \Wj+1) ∩ ∂W0

}
,

let T i,j denote the quantum length of ∂Wj+1 ∩ ∂Ni for i ∈ Ij , set I0j := ∅ on Ej and

(5.26) I0j :=

{
i ∈ Ij

∣∣∣∣ ∂Wj+1 ∩ ∂Ni is included in the part of ∂Wj+1 from
the rightmost point of ∂(Wj\Wj+1)∩∂Wj to η′j+1(0)

}
on Ecj . Then we easily see from the definition of {(Wi, η

′
i)}∞i=0 that 1lEi = 1 for any i ∈ Ij , that

I0j ⊂ {i ∈ Ij | T i,j < ϵ0}, that I0j ∩ I0k = ∅ for any k > j, that the part of ∂Wj+1 from the rightmost
point of ∂(Wj \ Wj+1) ∩ ∂Wj to the rightmost point of ∂(W0 \ Wj+1) ∩ ∂W0 (is a singleton or)
consists of closed intervals {∂Wj+1 ∩ ∂Ni}i∈Ij with disjoint interiors in ∂Wj+1, and thus that

Lj+1 − Lj = −Bj
L1lEj +

(
T j −Bj

L +
∑

i∈I0j
T i,j

)
1lEcj

≤ −Bj
L1lEj + (T j −Bj

L + ϵ0#I
0
j )1lEcj ;

(5.27)
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here #A denotes the number of elements of a set A. It follows from (5.24), (5.27), the disjointness
of {I0j }∞j=0 and I0j ⊂ {i ∈ Z ∩ [0, j) | 1lEi = 1} that for any N ≥ 1,

LN − L′N =

N−1∑
j=0

(
(Lj+1 − Lj)− (L′j+1 − L′j)

)
≤

N−1∑
j=0

(−ϵ01lEj + ϵ0#I
0
j )(5.28)

≤ ϵ0
(
−#{j ∈ Z ∩ [0, N) | 1lEj = 1}+#{j ∈ Z ∩ [0, N − 1) | 1lEj = 1}

)
≤ 0,

proving that LN ≤ L′N . It thus suffices to prove (i) for {L′j}∞j=0 instead of {Lj}∞j=0.
Recall that the sequence

{(
{Ljt/A}t∈[0,Aσj ], {R

j
t/A}t∈[0,Aσj ], Aσj

)}∞
j=0

is i.i.d. with the same law

as
(
{A−2/3X1

t }t∈[0,τ∧A], {A−2/3X2
t }t∈[0,τ∧A], τ ∧ A

)
. It thus follows from (5.24), (5.14), (5.15),

Propositions B.3 and B.4 that

E[L′1 − L′0]

= ϵ0P[E0] + E[T 01lEc0 ]− E[B0
L]

≤ ϵ0 + E
[
T 01l{σ0<1}\E0

]
+ E

[
T 01l{σ0=1} −B0

L

]
= ϵ0 + E

[
T 01l{σ0<1}\E0

]
+A−2/3E

[
(X1

A − I1A +X2
A − I2A)1l{τ≥A} + I1τ∧A

]
≤ ϵ0 + E

[
T 01l{σ0<1}\E0

]
+A−2/3(2c′ − c logA),(5.29)

where c′ := supA′∈[1,∞) E[(X1
A′ − I1A′)1l{τ≥A′}] < ∞ and c is the constant in Proposition B.3. More-

over, setting Zj := sup0≤t≤1(X
j
t − Ijt ) for j = 1, 2, we have E

[
eαT

0] ≤ E
[
eα(Z

1+Z2)
]
= E

[
eαZ

1]2
<

∞ for some α ∈ (0,∞) by (5.14) and Proposition B.7, and therefore by Jensen’s inequality and
P[Ec0 | σ0 < 1] ≤ ϵ0 we get

E
[
T 01l{σ0<1}\E0

]
= α−1P

[
{σ0 < 1} \ E0

]
E
[
αT 0

∣∣ {σ0 < 1} \ E0

]
≤ α−1P

[
{σ0 < 1} \ E0

]
logE

[
eαT

0 ∣∣ {σ0 < 1} \ E0

]
≤ α−1P

[
{σ0 < 1} \ E0

]
log

α′

P
[
{σ0 < 1} \ E0

]
≤ α−1ϵ0 log(α

′/ϵ0)(5.30)

provided ϵ0 ≤ α′/e, where α′ := E
[
eαZ

1]2. Combining (5.29), (5.30) and ϵ0 = c0A
−2/3, we

conclude that

(5.31) E[L′1 − L′0] ≤ A−2/3
(
c0 + α−1c0 log

α′

c0A−2/3
+ 2c′ − c logA

)
provided c0A

−2/3 ≤ α′/e, and hence we obtain E[L′1 − L′0] ≤ −1
4cA

−2/3 logA < 0 from (5.31)
by choosing c0 arbitrarily from (0, cα] and taking A large enough so that cαA−2/3 ≤ α′/e and
1
12 logA ≥ α+2c′/c+ log(α′/(cα)). Finally, by (5.24) and [20, Chapter VIII, Proposition 4] we also
have

E
[
eα(L

′
1−L′

0)
+] ≤ E

[
eα(ϵ0+T

0)
]
≤ eαc0 E

[
eαZ

1]2
= eαc0α′ <∞,

E
[
((L′1 − L′0)

−)p
]
≤ E

[
(B0

L)
p
]
≤ E

[
|I11 |p

]
<∞,

where p ∈ (1, 32) is arbitrary. Altogether, we thus have shown that the sequence {L′j+1 − L′j}∞j=0

of real random variables is i.i.d. and satisfies the assumptions of Lemma 5.3 with β := α, δ :=
1
4cA

−2/3 logA, K := eαc0α′, M := E
[
|I11 |5/4

]
and p := 5

4 , which are all determined solely by (the
law of (X1, X2) and) A, c0. Therefore by Lemma 5.3 there exists λ ∈ (0,∞) which is an explicit
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function of β, δ,K,M, p and hence determined solely by A, c0 such that L′N =
∑N−1

j=0 (L′j+1 − L′j)

satisfies

(5.32) P
[
L′N ≥ −1

4
δN

]
≤ exp

(
−1

8
δλN

)
for any N ∈ N,

which together with LN ≤ L′N proves Proposition 5.2-(i). □

We now turn to the proof of Proposition 5.2-(iii). We briefly describe its main steps before
proceeding to the actual proof. First, in Lemma 5.4 we show that the quantum length of the top
right of W0 \ Wj minus the quantum length of the bottom right of W0 \ Wj , with the influences
of the slides of {η′i(0)}0≤i<j to the right caused by (5.11) neglected, grows linearly in j with high
probability, on the basis of some moment analysis similar to the proof of Proposition 5.2-(i) above.
Next, in Lemma 5.5 we prove by using Lemma 5.4 and a comparison argument similar to (5.28)
that for any j ≥ 0, with some probability uniformly positive in j the event Ej occurs, ∂Nj ∩ ∂Wj+1

has quantum length greater than 3ϵ0 and the chunks {Nk}k≥j+1 never enter the rightmost interval
of quantum length ϵ0 in ∂Nj ∩ ∂Wj+1 or the part of ∂Wj+1 to the right of this interval. Then
in Lemma 5.6 we deduce from Lemma 5.5 that, with probability exponentially high in u, at most
u of the subintervals {∂Nj ∩ ∂Wn+1 | 0 ≤ j ≤ n, Ej occurs} of ∂Wn+1 with quantum length in
(0, ϵ0) can consecutively align for any 0 ≤ n ≤ N , so that the slides of {η′i(0)}0≤j≤N to the right
caused by (5.11) have quantum lengths at most ϵ0u. Finally, we combine Lemmas 5.5 and 5.6 to
show that, with probability exponentially high in u, for any 0 ≤ j ≤ N with ∂Nj ∩ (−∞, 0) ̸= ∅
we have

(⋃
0<k≤u2 ∂Nj+k

)
∩ (−∞, 0) ̸= ∅, which is easily seen to imply the property stated in

Proposition 5.2-(iii).

Lemma 5.4. Let j ≥ 0 and set Sj,j := 0 and

(5.33) Sj,k :=
k∑

i=j+1

(
(T i −Bi

R)1lEi −Bi
R1lEci

)
=

k∑
i=j+1

(T i1lEi −Bi
R) for k > j.

Let c′, c, α, α′ ∈ (0,∞) be the constants as in the proof of Proposition 5.2-(i) above, fix an arbitrary
A ∈ [2,∞) satisfying cαA−2/3 ≤ α′/e and 1

12 logA ≥ 2c′/c+ log(α′/(cα)), and for each n0 ∈ N set

(5.34) qn0 := P
[
inf
k≥n0

Sj,j+k
k

≥ 1

12
cA−2/3 logA

]
,

which is independent of j ≥ 0. Then, as long as c0 ∈ (0, cα],

(5.35) lim
n0→∞

qn0 = 1
with a rate of convergence determined solely
by A (and thus independent of c0 and E).

Proof. {(1lEk , T k, Bk
R)}∞k=0 is i.i.d. since {(Wk\Wk+1, h|Wk\Wk+1

, η′k|[0,σk])}
∞
k=0 is i.i.d. and 1lEk , T

k, Bk
R

are measurable with respect to (Wk \ Wk+1, h|Wk\Wk+1
, η′k|[0,σk]) by (5.5), (5.4), (5.14) and (5.15)

for any k ≥ 0, and therefore qn0 is independent of j.
We first show that, as long as c0 ∈ (0, cα],

(5.36) E
[
T 0 −B0

R

]
∈ [cA−2/3 logA,∞) and E

[
T 01lEc0

]
≤ 3

4
cA−2/3 logA.

Indeed, noting that ϵ0 = c0A
−2/3 ≤ cαA−2/3 ≤ α′/e and that 1

12 logA ≥ 2c′/c + log(α′/(cα)), we
see from (5.30), which requires ϵ0 ≤ α′/e, and the calculations made in (5.29) for E

[
T 01lEc0

]
that

E
[
T 01lEc0

]
= E

[
T 01l{σ0<1}\E0

]
+ E

[
T 01l{σ0=1}

]
≤ α−1ϵ0 log(α

′/ϵ0) + 2c′A−2/3

≤ A−2/3
(
2
3c logA+ c log(α′/(cα)) + 2c′

)
≤ 3

4cA
−2/3 logA.
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Next, for E
[
T 0 −B0

R

]
, note that T 0 −B0

R = L0
σ0 +B0

L+R0
σ0 by (5.14) and (5.15) and that, since(

{L0
t/A}t≥0, {R

0
t/A}t≥0, Aσ0

)
and

(
{A−2/3X1

t }t≥0, {A−2/3X2
t }t≥0, τ ∧ A

)
have the same law, so do

(L0
σ0 , B

0
L, R

0
σ0 , B

0
R) and A−2/3(X1

τ∧A,−I1τ∧A, X2
τ∧A,−I2τ∧A). Further, for j = 1, 2, for any t ∈ [0,∞)

we have E[|Xj
t |] < ∞ by [20, Chapter VII, Corollary 2-(i) and Chapter VIII, Proposition 4] and

E[Xj
t ] = 0 by the stationarity and the scaling property of Xj , and hence the Markov property of

Xj (see, e.g., [20, Chapter I, Proposition 6]) implies that Xj is a martingale with respect to the
completed filtration generated by Xj . It thus follows from the optional sampling theorem and the
independence of {Xj , τ3−j} that E

[
|Xj

τ∧A|
]
< ∞ and E

[
Xj
τ∧A
]
= 0. Also, recalling that c is the

constant from Proposition B.3, by [20, Chapter VIII, Proposition 4], the scaling property of X1 and
Proposition B.3 we have

∞ > A2/3E
[
|I11 |
]
= E

[
|I1A|

]
≥ E

[
−I1τ∧A

]
≥ E

[
−I1τ 1l{τ<A}

]
≥ c logA.

Combining the facts mentioned above in this paragraph, we see that E
[
|T 0 − B0

R|
]
< ∞ and that

E
[
T 0 −B0

R

]
= A−2/3E

[
−I1τ∧A

]
≥ cA−2/3 logA, proving (5.36).

Turning to the proof of (5.35), we define partial sums {S1
k}k≥1, {S2

k}k≥1 of i.i.d. real random
variables by S1

k :=
∑k

i=1(T
i − Bi

R) and S2
k :=

∑k
i=1 T

i1lEci for k ∈ N, so that S0,k = S1
k − S2

k

by (5.33). Then since the law of T 0 − B0
R is determined solely by A, the strong law of large

numbers together with the first half of (5.36) yields

(5.37) lim
n0→∞

P
[
inf
k≥n0

S1
k

k
≥ 11

12
cA−2/3 logA

]
= 1

with a rate of convergence
determined solely by A.

On the other hand, E
[
(T 0)4

]
≤ 24α−4E

[
eαT

0] ≤ 24α−4α′ < ∞ by the choice of α, α′ specified just
before and after (5.30), and hence for any a ∈ (0,∞) and any k ∈ N, by Markov’s and Hölder’s
inequalities we have

P
[∣∣∣∣S2

k

k
− E

[
T 01lEc0

]∣∣∣∣ ≥ a

]
≤

E
[
|S2
k − kE[T 01lEc0 ]|

4
]

(ka)4
≤ 48

k2a4
E
[
(T 0)4

]
≤ 1152α′

k2a4α4
.

From this inequality with a = 1
12cA

−2/3 logA and the second half of (5.36) we get

(5.38) P

[ ∞⋃
k=n0

{
S2
k

k
≥ 5

6
cA−2/3 logA

}]
≤ 127α′

c4α4

A8/3

(logA)4

∞∑
k=n0

1

k2
.

Now (5.35) follows by S0,k = S1
k − S2

k , (5.37) and (5.38). □

Lemma 5.5. Let j ≥ 0, l > j, let {Sj,k}∞k=j be as in Lemma 5.4, and define events Ẽj,l, Ẽj by

Ẽj,l := Ej ∩ {T j > 3ϵ0} ∩
⋂l

k=j+1
{Sj,k−1 −Bk

R > (2(k − j)− 3)ϵ0},(5.39)

Ẽj := Ej ∩ {T j > 3ϵ0} ∩
⋂∞

k=j+1
{Sj,k−1 −Bk

R > (2(k − j)− 3)ϵ0}.(5.40)

Also let zj ∈ ∂(Wj \ Wj+1) ∩ ∂Wj+1 be such that the quantum length of the part of ∂(Wj \ Wj+1) ∩
∂Wj+1 from its leftmost point to zj is (2ϵ0) ∧ T j . Then

Ẽj,l ⊂
{
∂(Wk\Wk+1) does not intersect the part of ∂Wj+1

which is to the right of zj for any k ∈ N ∩ (j, l]

}
,(5.41)

Ẽj ⊂
{
∂(Wk \ Wk+1) does not intersect the part of
∂Wj+1 which is to the right of zj for any k > j

}
(5.42)
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and, provided A−1 ∨ c0 is small enough, there exists q̃ ∈ (0, 1) determined solely by A, c0 such that

(5.43) P[Ẽj ] = P[Ẽ0] ≥ 1− q̃.

Proof. It is clear that (5.42) follows from (5.41) by taking the intersection over l ∈ Z ∩ (j,∞). We
show (5.41) by a comparison argument similar to (5.28). Let yk denote the rightmost point of
∂(Wk \ Wk+1) ∩ ∂Wk for each k ≥ 0, and fix any instance of the exploration for which Ẽj,l holds,
so that the quantum length of the part of ∂(Wj \Wj+1)∩∂Wj+1 from zj to yj is T j − 2ϵ0 ∈ (ϵ0,∞).
Set k0 := j, V0 := 0 and kn := inf{k > kn−1 | 1lEk = 0} for n ≥ 1. Also for each n ≥ 1, set

(5.44) Jn :=

{
k

∣∣∣∣ k ∈ Z∩ (j, kn) \ {ki | i ≥ 1}, ∂Wkn+1 ∩ ∂Nk has at least two ele-
ments and is included in the part of ∂Wkn+1 from ykn to η′kn+1(0)

}
if kn <∞ and Jn := ∅ if kn = ∞, let T k,kn denote the quantum length of ∂Wkn+1∩∂Nk for k ∈ Jn,
set Un :=

∑
k∈Jn T

k,kn and Vn :=
∑n

i=1 Ui, so that the definition of the exploration easily implies
that T k,kn < ϵ0 for any k ∈ Jn by 1lEkn = 0 (recall (5.11)) and that Jn ∩ Ji = ∅ for any i > n. In
particular, Vn ≤ ϵ0

∑n
i=1#Ji ≤ (kn − j − n)ϵ0 for any n ≥ 0.

To show (5.41) by induction, let n ≥ 0 satisfy kn < l and suppose that ∂(Wk \ Wk+1) does not
intersect the part of ∂Wj+1 which is to the right of zj for any k ∈ Z∩ (j, kn], that η′kn+1(0) is located
to the left of zj in ∂Wkn+1 and that the quantum length of the part of ∂Wkn+1 from η′kn+1(0) to zj
is given by 2ϵ0 + Sj,kn − Vn; note that this supposition holds for n = 0 since η′j+1(0) is the leftmost
point of ∂(Wj \Wj+1)∩ ∂Wj by 1lEj = 1. Then an inductive argument on k based on the definition
of the exploration and the third part of (5.39) easily shows for any k ∈ Z ∩ (kn, kn+1 ∧ l] that
∂(Wk \Wk+1) does not intersect the part of ∂Wj+1 which is to the right of zj and that the quantum
length of the part of ∂Wk+1 from yk to zj is given by 2ϵ0+Sj,k−1−Bk

R−Vn and hence greater than
(2k−kn−j+n−1)ϵ0 ≥ (n+1)ϵ0 by (5.39) and Vn ≤ (kn−j−n)ϵ0. Moreover, suppose further that
kn+1 < l. Then since the definition of the exploration implies also that the part of ∂Wkn+1+1 from
ykn+1 to zj involves only ∂Wkn+1+1∩∂Nk for k ∈ Z∩ [j, kn+1)\{ki | i ≥ 1} and has quantum length
greater than (2kn+1−kn−j+n−1)ϵ0 ≥ (kn+1−j)ϵ0, there exists jn+1 ∈ Z∩[j, kn+1)\{ki | i ≥ 1} such
that ∂Wkn+1+1 ∩ ∂Njn+1 has quantum length greater than ϵ0. It thus follows from 1lEkn+1

= 0 and
the way of choosing η′kn+1+1(0) (recall (5.11)) that the quantum length of the part of ∂Wkn+1+1

from ykn+1 to η′kn+1+1(0) is given by Un+1, thereby that η′kn+1+1(0) is located to the left of zj in
∂Wkn+1+1 and that the quantum length of the part of ∂Wkn+1+1 from η′kn+1+1(0) to zj is given by

2ϵ0 + Sj,kn+1−1 − B
kn+1

R − Vn − Un+1 = 2ϵ0 + Sj,kn+1 − Vn+1. This completes the induction and
proves (5.41) and thereby (5.42).

Next, for (5.43) we begin by noting that, since Wj ,W0,W1 are weight-2 quantum wedges, W1

is independent of (W0 \ W1, h|W0\W1
, η′0|[0,σ0]) and 1lE0 , T

0 are measurable with respect to (W0 \
W1, h|W0\W1

, η′0|[0,σ0]) in view of (5.5), (5.4) and (5.14),

P[Ẽj ] = P[Ẽ0]

= P
[
E0 ∩ {T 0 > 3ϵ0}

]
· P
[
S0,k−1 −Bk

R > (2k − 3)ϵ0 for any k ≥ 1
]
.(5.45)

Therefore it suffices to prove that the last two probabilities in (5.45) are bounded from below by
positive constants determined solely by A, c0 as long as A−1∨ c0 is small enough. To this end, recall
that X1, X2 are i.i.d. 3/2-stable Lévy processes with only downward jumps and starting from 0, and
that we have set Ijt := inf0≤s≤tX

j
s , τ j := inf{t ∈ [1,∞) | Xj

t = Ijt } for j = 1, 2 and τ := τ1 ∧ τ2. By
E0 ⊂ {σ0 < 1} and (5.14),

(5.46) E0 ∩ {T 0 > 3ϵ0} = E0 ∩
{
L0
σ1/A,0

− inf0≤s≤σ1/A,0 L
0
s +R0

σ1/A,0
− inf0≤s≤σ1/A,0 R

0
s > 3ϵ0

}
,
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where σ1/A,0 := σ1/A(H, µh, η′0, 0,∞). Since
(
{L0

t/A}t≥0, {R
0
t/A}t≥0, Aσ1/A,0

)
has the same law as(

{A−2/3X1
t }t≥0, {A−2/3X2

t }t≥0, τ
)
, we see in view of ϵ0 = c0A

−2/3 that

P
[
L0
σ1/A,0

− inf0≤s≤σ1/A,0 L
0
s +R0

σ1/A,0
− inf0≤s≤σ1/A,0 R

0
s > 3ϵ0

]
= P

[
X1
τ − I1τ +X2

τ − I2τ > 3c0
] c0↓0−−→ P

[
X1
τ − I1τ +X2

τ − I2τ > 0
]
= 1,

(5.47)

where the last equality follows by the independence of X1, X2, (B.1) and (B.3). Moreover, the
assumption on the Borel subset E of MCPU

2 and (B.3) together imply that there exists c′′ ∈ (0,∞)

determined solely by the law of (X1, X2) such that

(5.48) P[E0] ≥ (1− ϵ0)P[σ0 < 1] = (1− ϵ0)P[τ < A] ≥ (1− c0A
−2/3)(1− c′′A−2/3).

It thus follows that P
[
E0 ∩ {T 0 > 3ϵ0}

]
≥ 1/2 > 0, by choosing first c0 ∈ (0, 1] small enough on the

basis of (5.47) so that P
[
X1
τ − I1τ +X2

τ − I2τ > 3c0
]
≥ 3/4, then taking A large enough on the basis

of (5.48) so that P[E0] ≥ 3/4, and combining these with (5.46) and (5.47).
To see that the last probability in (5.45) is bounded from below by a positive constant determined

solely by A, c0, assume that c0 ∈ (0, cα] and that A is large enough so that cαA−2/3 ≤ α′/e and
1
12 logA ≥

(
2c′/c + log(α′/(cα))

)
∨ (4α). Then 1

12cA
−2/3 logA ≥ 4cαA−2/3 ≥ 4c0A

−2/3 = 4ϵ0
and hence qn0 as in (5.34) satisfies P

[
infk≥n0 k

−1S0,k > 3ϵ0
]
≥ qn0 for any n0 ∈ N. Also, since

P[Bk+1
R ≥ k9/10] ≤ k−9/8E

[
(Bk+1

R )5/4
]
≤ k−9/8E

[
|I11 |5/4

]
< ∞ for any k ∈ N by (5.15) and [20,

Chapter VIII, Proposition 4], for any n0 ∈ N ∩ (ϵ−100 ,∞) we have

(5.49) P
[
sup
k≥n0

Bk+1
R

k
< ϵ0

]
≥ P

[ ⋂
k≥n0

{Bk+1
R < k9/10}

]
≥ 1− E

[
|I11 |5/4

] ∞∑
k=n0

k−9/8.

Thus by (5.35) and (5.49) there exists n0 ∈ N determined solely by A such that P
[
infk≥n0 k

−1S0,k >

3ϵ0
]
≥ qn0 ≥ 7

8 and P
[
supk≥n0

k−1Bk+1
R < ϵ0

]
≥ 7

8 , and then since {Bk
R}∞k=0 is i.i.d. with the

law determined solely by A, we can further take M ∈ (0,∞) depending only on A so that
P
[
max1≤k≤n0 k

−1∑k
i=1B

i
R ≤ M

]
≥ 3

4 . It follows from these inequalities and S0,k−1 − Bk
R ≥

−
∑k

i=1B
i
R for k ∈ N that

(5.50) P
[
inf
k≥n0

S0,k
k

> 3ϵ0, sup
k≥n0

Bk+1
R

k
< ϵ0, min

1≤k≤n0

S0,k−1 −Bk
R

k
≥ −M

]
≥ 1

2
.

On the other hand, let c1 ∈ (0,∞) be the constant from Proposition B.6 and assume that A ≥
(2/c1)

3/2 and c0 ≤ 1. Then by ϵ0 = c0A
−2/3 ≤ 1

2c1c0 and (B.16) we have

P
[
T 01lE0 > 4ϵ0, B

0
R < ϵ0

]
= P

[
E0 ∩ {T 0 > 4ϵ0, B

0
R < ϵ0}

]
= P

[
σ0 < 1, T 0 > 4ϵ0, B

0
R < ϵ0

]
− P

[
{σ0 < 1, T 0 > 4ϵ0, B

0
R < ϵ0} \ E0

]
≥ P

[
τ < A, X1

τ − I1τ > 4c0, I
2
τ > −c0

]
− P[Ec0 | σ0 < 1]

≥ c1c0 − ϵ0 ≥ 1
2c1c0.

(5.51)

Setting n1 := min
(
N ∩ [(2ϵ−10 M + 4)n0,∞)

)
, which is determined solely by A, c0 as a function

of n0,M, ϵ0 = c0A
−2/3, and recalling (5.33) and that {(1lEk , T k, Bk

R)}∞k=0 is i.i.d., from (5.50)
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and (5.51) now we obtain

P
[
S0,k−1 −Bk

R > (2k − 3)ϵ0 for any k ≥ 1
]

≥ P

 inf
k≥n0

Sn1,n1+k

k
> 3ϵ0, sup

k≥n0

Bn1+k+1
R

k
< ϵ0, min

1≤k≤n0

Sn1,n1+k−1 −Bn1+k
R

k
≥ −M ,

T k1lEk > 4ϵ0 and Bk
R < ϵ0 for any k ∈ {1, . . . , n1}


≥ (c1c0/2)

n1

2
> 0(5.52)

provided A−1∨c0 is small enough. Here we have the first inequality in (5.52) since the event in the
first line of (5.52) is seen to hold on the event in the second line as follows: for any k ∈ {1, . . . , n1}
we have S0,k−1 − Bk

R > 3ϵ0(k − 1) − ϵ0 ≥ (2k − 3)ϵ0, for any k ∈ N ∩ (n1, n1 + n0] we see from
n1 ≥ (2ϵ−10 M + 4)n0 that

S0,k−1 −Bk
R = S0,n1 + Sn1,k−1 −Bk

R > 3ϵ0n1 −M(k − n1)

≥ 2ϵ0n1 + ϵ0(2ϵ
−1
0 M + 4)n0 −Mn0 > 2(n1 + n0)ϵ0 > (2k − 3)ϵ0,

and for any k ∈ N ∩ (n1 + n0,∞) we obtain

S0,k−1 −Bk
R = S0,n1 + Sn1,k−1 −Bk

R > 3ϵ0n1 + (3ϵ0 − ϵ0)(k − n1 − 1) > (2k − 3)ϵ0.

Thus by (5.45), (5.52) and the discussion following (5.48) we conclude that P[Ẽj ] = P[Ẽ0] ≥
1
4(c1c0/2)

n1 provided A−1 ∨ c0 is small enough, proving (5.43). □

Lemma 5.6. Let u ∈ [2,∞). For each N ∈ N, let ÊN = Êu,N be the event that there exists 0 ≤ n ≤ N

so that for some m ∈ N ∩ (u,∞) and 0 ≤ j1 < · · · < jm ≤ n the following hold:

(i) Eji occurs for any 1 ≤ i ≤ m.
(ii) The boundary length of Iji,n := ∂Nji ∩ ∂Wn+1 is in (0, ϵ0) for any 1 ≤ i ≤ m.

(iii) Iji,n ∩ Iji+1,n ̸= ∅ and Iji+1,n is located to the left of Iji,n in ∂Wn+1 for any 1 ≤ i ≤ m− 1.

(Note that {Iji,n}mi=1 are closed subintervals of ∂Wn+1 with disjoint interiors under (i) and (ii) by
Proposition A.2.) Assume further that A−1 ∨ c0 is small enough so that (5.43) holds, let q̃ be as
in (5.43) and set c̃ := 1

2 log(q̃
−1). Then for any N ∈ N,

(5.53) P[ÊN ] ≤ q̃−1N exp(−c̃u).

Proof. Let j ≥ 0. On the event Ej , we consider a random tree rooted at j with the set of vertices
Tj ⊂ Z ∩ [j,∞), defined as follows. Given k ∈ Tj , we say that l ∈ N ∩ (k,∞) is a child of k in the
tree if the following three conditions are satisfied:

(I) El occurs.
(II) The boundary length of Ik,l := ∂Nk ∩ ∂Wl+1 is in (0, ϵ0).

(III) Ik,l ∩ ∂Nl ̸= ∅ and ∂Nl is located to the left of Ik,l in ∂Wl+1.

Recall that T j denotes the quantum length of the top ∂Nj ∩ Wj of Wj \ Wj+1. We claim that,
provided A−1 ∨ c0 is small enough so that (5.43) holds, the conditional law of the cardinality
#Tj of Tj given Ej and T j is stochastically dominated by a geometric distribution whose success
probability is explicit in q̃, with q̃ as in (5.43). Indeed, for each k ≥ 0 let Gk denote the σ-algebra
generated by {(Wi \ Wi+1, h|Wi\Wi+1

, η′i|[0,σi], L̃i)}0≤i≤k, and for i ≥ 0 let mi denote the (i + 1)-th
smallest element of Tj ⊂ Z∩ [j,∞) on the event {#Tj > i} and set mi := ∞ on {#Tj ≤ i} ∪Ecj , so
that mi is a {Gk}-stopping time. Let i ≥ 0. Then setting Ẽmi+1 :=

⋃
k∈N∪{0}

(
Ẽk+1 ∩ {mi = k}

)
, on

Ẽmi+1 we have Tmi+1 > 3ϵ0 by (5.40), hence see from (5.42) and the definition of the exploration
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that (II) with k = mi+1 and (III) with any k ∈ {m0, . . . ,mi} fail to hold for any l ∈ N∩ [mi+2,∞),
and thus obtain Tj ⊂ {m0, . . . ,mi,mi + 1} and in particular #Tj ≤ i+ 2. Therefore

P[mi+2 <∞ | Gmi ] ≤ 1l{mi<∞} − P
[
Ẽmi+1

∣∣ Gmi]
=
(
1− P[Ẽ0]

)
1l{mi<∞} ≤ q̃1l{mi<∞},

(5.54)

where the equality holds by the facts that Ẽmi+1∩{mi = k} = Ẽk+1∩{mi = k}, Ẽk+1 is independent
of Gk and P[Ẽk+1] = P[Ẽ0] for any k ≥ 0. It thus follows by an induction on i based on (5.54) that
for any i ≥ 0,

(5.55) P[#Tj > 2i | Gj ]1lEj = P[m2i <∞ | Gj ]1lEj ≤ q̃i1lEj ,

which implies the desired claim.
Now we can conclude the assertion as follows. Let N ∈ N, and for each j ≥ 0 let ÊN,j be the

event that (i), (ii) and (iii) as in the statement hold for some m ∈ N ∩ (u,∞) and j = j1 < · · · <
jm ≤ n, so that ÊN ⊂

⋃N−1
j=0 ÊN,j . Then since {j1, . . . , jm} ⊂ Tj for such m and j1, . . . , jm, n by the

definition of the tree Tj given at the beginning of the previous paragraph, we have ÊN,j ⊂ Ej ∩
{#Tj > u}, hence P[ÊN,j ] ≤ P

[
Ej ∩ {#Tj > u}

]
≤ q̃−1 exp(−c̃u) by (5.55), where c̃ := 1

2 log(q̃
−1),

and thus P[ÊN ] ≤
∑N−1

j=0 P[ÊN,j ] ≤ q̃−1N exp(−c̃u). □

Proof of Proposition 5.2-(iii). Assume that A−1 ∨ c0 is small enough so that Proposition 5.2-(i)
and (5.43) hold with c1, c2, q̃ as stated in these places. Recalling that W = (H, h, 0,∞) is the
original quantum wedge on which the exploration is defined, set ∂LW := (−∞, 0) ⊂ ∂W. Let
Gk denote the σ-algebra generated by {(Wi \Wi+1, h|Wi\Wi+1

, η′i|[0,σi], L̃i)}0≤i≤k for each k ≥ 0, set
m0 := 0 and inductively mj := inf{i > mj−1 | ∂Ni∩∂LW ≠ ∅} for each j ≥ 1, so that for any j ≥ 0,
mj is a {Gk}-stopping time and Proposition 5.2-(i) easily implies that mj < ∞ a.s. Also let N ∈ N
and set JN := min{j ≥ 0 | mj ≥ N}, so that JN ≤ N . Then we easily see from the definition of the
exploration that for any j ≥ 0 and any i ∈ Z∩ [mj ,mj+1] there exist i1, . . . , in ∈ Z∩ [mj ,mj+1] with
n ≤ mj+1−mj and i1 = i such that ∂Nin ∩∂LW ≠ ∅ and ∂Nik ∩∂Nik+1

̸= ∅ for each 1 ≤ k ≤ n−1,
i.e., the number of adjacent chunks necessary to get from Ni to ∂LW is at most mj+1 − mj . It
therefore suffices to bound max0≤j<JN (mj+1 −mj).

Let Ẽj be as in (5.40) for j ≥ 0, let u ∈ [2,∞) and let ÊN = Êu,N be as in Lemma 5.6. Let j ≥ 0,
define Gmj -measurable random variables Rj , tj by Rj := 0 on {mj = ∞},

(5.56) Rj := 1 + max

{
m ≥ 1

∣∣∣∣ (i), (ii) and (iii) in the statement of Lemma 5.6
hold with n = mj for some 0 ≤ j1 < · · · < jm ≤ mj

}
on {mj < ∞} (max ∅ := 0) and tj := Tmj1lEcmj

:=
∑∞

k=0 T
k1lEck∩{mj=k}, and set nu := max

(
N ∩

[1, u]
)

and ñu := (2ϵ0/c1)nu.
We claim that

(5.57) P
[
mj+1 −mj > ñuRj

∣∣ Gmj]1l{mj<N, tj≤ϵ0nu} ≤ (q̃nu−1 + e−c2ñu)1l{mj<N, tj≤ϵ0nu}.

To see this, set τj,0 := mj − 1 and inductively τj,n := inf
{
k > τj,n−1

∣∣ η′k+1(0) ̸∈
⋃k
i=mj

∂Ni

}
for

each n ≥ 1, so that τj,n is a {Gk}-stopping time for any n ≥ 1; note that τj,n is the n-th smallest
k ≥ mj such that Ek does not occur and the process of deciding the location of η′k+1(0) according
to (5.11) involves skipping some of the intervals {∂Wk+1 ∩ ∂Ni}0≤i<mj in ∂Wk+1 whose quantum
lengths are in (0, ϵ0). Then for any n ≥ 1 we have {τj,n+1 < ∞} ⊂

⋃∞
k=0({τj,n = k} \ Ẽk+1)

by (5.40) and (5.42), hence P[τj,n+1 < ∞ | Gτj,n ] ≤ q̃1l{τj,n<∞} by the independence of Ẽk+1 and
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Gk and (5.43) with j = k + 1 for k ≥ 0, thus P[τj,n < ∞ | Gmj ] ≤ q̃n−11l{mj<∞} and in particular
P[τj,nu <∞ | Gmj ] ≤ q̃nu−11l{mj<∞}. Therefore, to show (5.57) it suffices to prove instead that

(5.58) P
[
mj+1 −mj > ñuRj , τj,nu = ∞

∣∣ Gmj]1l{mj<N, tj≤ϵ0nu} ≤ e−c2ñu1l{mj<N, tj≤ϵ0nu}.

For this purpose, for each n ≥ 1 let sj,n denote the quantum length of the part of ∂Wτj,n+1 between
η′τj,n+1(0) and the rightmost point of

⋃τj,n
i=mj

∂Ni ∩ ∂Wτj,n+1, so that sj,n ≤ Rjϵ0 by (5.11) and
(5.56). Then since, conditionally on {mj <∞},

{(
Wi+1+mj \Wi+2+mj , h|Wi+1+mj

\Wi+2+mj
, η′i+1+mj |[0,σi+1+mj

], L̃mj ,i+1+mj

)}∞
i=0
,

where L̃mj ,i+1+mj := L̃i+1+mj −
∑∞

n=1 sj,n1l{τj,n=i+1+mj}, is independent of Gmj and has the
same law as {(Wi \ Wi+1, h|Wi\Wi+1

, η′i|[0,σi], L̃i)}∞i=0, it follows that, conditionally on {mj < ∞},{
Lk+1+mj − L1+mj −

∑∞
n=1 sj,n1l{mj<τj,n≤k+mj}

}∞
k=0

is independent of Gmj and has the same law
as {Lk}∞k=0. On the other hand, noting that tj + sj,11l{τj,1=mj} is the quantum length L̃mj of
the part of ∂W1+mj between η′1+mj (0) and the leftmost point of ∂(Wmj \ W1+mj) ∩ ∂Wmj , we
see from the definition of mj ,mj+1 that the quantum length of ∂(W0 \ W1+mj ) ∩ ∂LW is given
by −(L1+mj − tj − sj,11l{τj,1=mj}) and that on the event {mj+1 − mj > ñuRj} we have ∂(W0 \
WñuRj+1+mj )∩∂LW = ∂(W0 \W1+mj )∩∂LW and hence LñuRj+1+mj ≥ L1+mj − tj−sj,11l{τj,1=mj}.
Recalling the Gmj -measurability of Rj and tj = Tmj1lEcmj

, from the facts in the last two sentences,
sj,n ≤ Rjϵ0 and Proposition 5.2-(i) we get

P
[
mj+1 −mj > ñuRj , τj,nu = ∞

∣∣ Gmj]1l{mj<N, tj≤ϵ0nu}
≤ P

[
LñuRj+1+mj ≥ L1+mj − tj − sj,11l{τj,1=mj}, τj,nu = ∞

∣∣ Gmj]1l{mj<N, tj≤ϵ0nu}
≤ P

[
LñuRj+1+mj −L1+mj −

∑∞
n=1 sj,n1l{mj<τj,n≤ñuRj+mj}

≥ −Rjϵ0nu − tj

∣∣∣∣ Gmj]1l{mj<N, tj≤ϵ0nu}
=
(
P[Lk ≥ −(ϵ0nu/ñu)k − t]|(k,t)=(ñuRj ,tj)

)
1l{mj<N, tj≤ϵ0nu}

≤
(
P[Lk ≥ −(2ϵ0nu/ñu)k]|k=ñuRj

)
1l{mj<N, tj≤ϵ0nu}

=
(
P[Lk ≥ −c1k]|k=ñuRj

)
1l{mj<N, tj≤ϵ0nu} ≤ e−c2ñu1l{mj<N, tj≤ϵ0nu},

proving (5.58) and thereby (5.57).
Finally, we give similar upper bounds on P

[
mj < N, Rj > u + 1

]
and P

[
mj < N, tj > ϵ0nu

]
to

conclude the proof. Indeed, {mj < N, Rj > u+ 1} ⊂ ÊN by (5.56) and hence

(5.59) P
[
mj < N, Rj > u+ 1

]
≤ P[ÊN ] ≤ q̃−1N exp(−c̃u)

by Lemma 5.6, where c̃ := 1
2 log(q̃

−1). For the latter, noting that tj = Tmj1lEcmj
≤ max0≤k<N T

k on

the event {mj < N}, that {T k}0≤k<N is i.i.d. and that T 0 is stochastically dominated by Z1 + Z2

with Zi := sup0≤t≤1(X
i
t − Iit) for i = 1, 2 by (5.14) and σ0 ≤ 1, we see from Proposition B.7 that

P
[
mj < N, tj > ϵ0nu

]
≤ P

[
max0≤k<N T

k > ϵ0nu
]
≤ N P

[
T 0 > ϵ0nu

]
≤ N P

[
Z1 + Z2 > ϵ0nu

]
≤ 2N P

[
Z1 > 1

2ϵ0nu
]
≤ 2c3N exp(−1

2c4ϵ0nu)
(5.60)
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for some c3, c4 > 0 determined solely by the law of X1. Combining (5.59) and (5.60) with (5.57),
we now obtain

P
[
max0≤j<JN (mj+1 −mj) > (3ϵ0/c1)u

2
]

≤ P
[
max0≤j<JN (mj+1 −mj) > ñu(u+ 1)

]
≤

N−1∑
j=0

P
[
mj < N, mj+1 −mj > ñu(u+ 1)

]
≤

N−1∑
j=0

(
P
[
mj < N, mj+1 −mj > ñuRj

]
+ P

[
mj < N, Rj > u+ 1

])
≤

N−1∑
j=0

(
E
[
1l{mj<N, tj≤ϵ0nu,mj+1−mj>ñuRj}

]
+ P

[
mj < N, tj > ϵ0nu

]
+ P[ÊN ]

)
≤ N

(
q̃nu−1 + e−c2ñu + 2c3N exp(−1

2c4ϵ0nu) + q̃−1N exp(−c̃u)
)

≤ c5N
2 exp(−c6u),(5.61)

where c5 := q̃−2+e2ϵ0c2/c1+2c3e
c4ϵ0/2+q̃−1 and c6 := min

{
2ϵ0c2/c1,

1
2c4ϵ0, c̃

}
. Then Proposition 5.2-

(iii) follows from the first paragraph of this proof and (5.61). □

Finally, in the rest of this subsection we prove Proposition 5.2-(iv), on the basis of the following
strategy. We first prove in Lemma 5.7 that for each j ≥ 0 and n ∈ N, with probability tending to 1

as n → ∞, the amount of quantum length occupied by {∂Ni | j ≤ i < j + n, 1lEi∩Ei+1 = 0} in the
part of ∂Wj to the left of η′j(0) is at most a constant multiple of A−2/3n. This is expected to be much
smaller than the quantum length of the part of ∂(Wj \ Wj+n) ∩ ∂Wj to the left of η′j(0) provided
A is large enough, since Proposition 5.2-(i) indicates that the latter length should typically be at
least ( 1

16cA
−2/3 logA)n. While this expectation is not true with arbitrarily high probability because

of the possible slides of the exploration to the right caused by {Ni | 0 ≤ i < j} (recall (5.11)),
we show in Lemma 5.8 that it is true with some probability, thanks to the fact that with some
probability {Ni | 0 ≤ i < j} causes no slide to the right by Lemma 5.5. As a consequence,
with some probability the part of ∂(Wj \ Wj+n) ∩ ∂Wj to the left of η′j(0) cannot be covered
by {∂Ni | j ≤ i < j + n, 1lEi∩Ei+1 = 0} and hence intersects ∂Ni for some i ∈ Z ∩ [j, j + n) with
1lEi∩Ei+1 = 1. By taking n large enough, we can further assume that this ∂Ni is sufficiently far away
to the left from η′j(0), and then ∂Ni is going to intersect ∂LW = (−∞, 0) provided the quantum
length of the part of ∂(W0 \Wj) ∩ ∂Wj to the left of η′j(0) is reasonably bounded. Now since, with
very high probability, this boundedness holds for any j ∈ Z ∩ [0, N ] with ∂Nj ∩ ∂LW ≠ ∅ by (5.59)
and (5.60) and such j appears sufficiently often by (5.61), we can make trials for sufficiently many
j ∈ Z ∩ [0, N ], each with some probability of success, to find i ∈ Z ∩ [j, j + n) with 1lEi∩Ei+1 = 1

and ∂Ni ∩ ∂LW ≠ ∅ for fixed n large enough, which turns out to yield (5.13).

Lemma 5.7. Let j ≥ 0 and set

(5.62) S′j,k :=

k−1∑
i=j

Bi
L1l(Ei∩Ei+1)c for k > j.

Then for any p ∈ (1, 32), there exist cp,1, cp,2 ∈ (0,∞) determined solely by p (cp,1 can be chosen so as
to be independent of p) such that, as long as c0 ∈ (0, 1], for any n ∈ N,

(5.63) P
[
S′j,j+n ≥ cp,1A

−2/3n
]
= P

[
S′0,n ≥ cp,1A

−2/3n
]
≤ cp,2A

2/3n1−p.
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Proof. Since {(1lEi , Bi
L)}∞i=0 is i.i.d. as noted after (5.24), the equality in (5.63) holds, and we may

therefore assume that j = 0. We set S3
n :=

∑n−1
i=0 B

i
L1lEci and S4

n :=
∑n−1

i=0 B
i
L1lEi∩Eci+1

for n ∈ N, so
that S′0,n = S3

n + S4
n, and we will apply to {Bi

L1lEci }
n−1
i=0 and {Bi

L1lEi∩Eci+1
}n−1i=0 separately a version

[90, Exercise 1.2.11] of the weak law of large numbers with an explicit remainder estimate.
Let p ∈ [1, 32). We first prove that, as long as c0 ∈ (0, 1],

(5.64) E[(B0
L)
p1lEc0 ] ≤ cp,3A

−2/3 and E[(B0
L)
p1lE0∩Ec1 ] ≤ cp,3A

−2/3

for some cp,3 ∈ (0,∞) determined solely by p. Recall that E[(B0
L)
p] ≤ E[|I11 |p] <∞ by (5.15), (5.16)

and [20, Chapter VIII, Proposition 4], that P[Ec0 | σ0 < 1] = 1 − P[E0 | σ0 < 1] ≤ ϵ0 = c0A
−2/3 by

the assumption on the Borel subset E of MCPU
2 and hence that P[Ec1] = P[Ec0] = P[σ0 = 1]+P[{σ0 <

1} \E0] ≤ P[τ ≥ A] + c0A
−2/3 ≤ (c′′ + c0)A

−2/3 for some c′′ ∈ (0,∞) determined solely by the law
of (X1, X2) by (B.3). By the independence of (B0

L)
p1lE0 , 1lEc1 we have

(5.65) E[(B0
L)
p1lE0∩Ec1 ] = E[(B0

L)
p1lE0 ]P[Ec1] ≤ E[|I11 |p](c′′ + c0)A

−2/3.

For E[(B0
L)
p1lEc0 ], we decompose it as

(5.66) E[(B0
L)
p1lEc0 ] = E[(B0

L)
p1l{σ0=1}] + E[(B0

L)
p1l{σ0<1}\E0

],

and then since I1A = I11 a.s. on {τ ≥ A}, for the first term we have

(5.67) E[(B0
L)
p1l{σ0=1}] = E[|A−2/3I1A|p1l{τ≥A}] ≤ A−2p/3E[|I11 |p] ≤ A−2/3E[|I11 |p].

For the last term in (5.66), setting q := 1
2 + 3

4p
−1 ∈ (1, 32p

−1), by Hölder’s inequality, P[Ec0 | σ0 <
1] ≤ c0A

−2/3 and Proposition B.5 we get

E[(B0
L)
p1l{σ0<1}\E0

] ≤ P[{σ0 < 1} \ E0]
1−1/qE[(B0

L)
pq1l{σ0<1}]

1/q

= P[{σ0 < 1} \ E0]
1−1/qE[|A−2/3I1τ |pq1l{τ<A}]1/q

≤ (c0A
−2/3)1−1/q(A−2pq/3cpqA

2(pq−1)/3)1/q

= c
1−1/q
0 c1/qpq A

−2/3,(5.68)

where cpq ∈ (0,∞) is as in Proposition B.5 with pq in place of p. Thus (5.64) follows by combining
(5.65), (5.66), (5.67) and (5.68).

Now setting E3
i := Eci and E4

i := Ei ∩ Eci+1 for i ≥ 0 and letting p ∈ (1, 32), n ∈ N, l ∈ {3, 4} and
s ∈ (0,∞), we see from [90, Exercise 1.2.11] applied to {Bi

L1lEli
}n−1i=0 and (5.64) that

P
[∣∣Sln − nE[B0

L1lEl0∩{B0
L≤n}

]
∣∣ ≥ ns

]
≤ 2

ns2

∫ n

0
tP[B0

L1lEl0
≥ t] dt+ nP[B0

L1lEl0
≥ n]

≤
(

2

ns2

∫ n

0
t1−p dt+ n1−p

)
E[(B0

L)
p1lEl0

] ≤ n1−p(4s−2 + 1)cp,3A
−2/3;(5.69)

to be precise, {Bi
L1lE4

i
}n−1i=0 is not independent as assumed in [90, Exercise 1.2.11], but the inequal-

ity in the first line of (5.69) still holds since the covariance of Bi
L1lE4

i ∩{BiL≤n}
, Bk

L1lE4
k∩{B

k
L≤n}

is 0

for i, k ≥ 0 with |i − k| ≥ 2 by the independence and at most 0 for i, k ≥ 0 with |i − k| = 1

by 1lE4
i ∩{BiL≤n}

1lE4
k∩{B

k
L≤n}

= 0 and Bi
L ∧ Bk

L ≥ 0. Finally, noting that S′0,n = S3
n + S4

n and that

E[B0
L1lEl0∩{B0

L≤n}
] ≤ E[B0

L1lEl0
] ≤ c1,3A

−2/3 by (5.64), we conclude from (5.69) with s = A−2/3 that

P[S′0,n ≥ 2(c1,3 + 1)A−2/3n] ≤ P[S3
n ≥ (c1,3 + 1)A−2/3n] + P[S4

n ≥ (c1,3 + 1)A−2/3n]

≤ 2n1−p(4A4/3 + 1)cp,3A
−2/3 ≤ 9cp,3A

2/3n1−p,

proving (5.63). □
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The essence of Proposition 5.2-(iv) consists in the following lemma.

Lemma 5.8. Let c ∈ (0,∞) be the constant from Proposition B.3, let c5/4,1 ∈ (0,∞) be as in
Lemma 5.7 with p = 5

4 , define {L′j}∞j=0 by L′0 := 0 and (5.24), and let {S′j,k}j≥0, k>j be as in (5.62).
Let j ≥ 0, and for each n ≥ 2, let yj,n ∈ ∂Wj be the point to the left of η′j(0) in ∂Wj such that the
quantum length of the part of ∂Wj from η′j(0) to yj,n is ( 1

64cA
−2/3 logA)n, and define an event Ẽ′j,n

by

(5.70) Ẽ′j,n := Ẽj,j+n−1 ∩
{
L′j − L′j+n

n
>

1

16
cA−2/3 logA,

S′j,j+n
n

< c5/4,1A
−2/3

}
,

where Ẽj,j+n−1 is as defined in (5.39) with l = j + n − 1. Then, provided A−1 ∨ c0 is small enough,
there exist n1 ≥ 2 and q̃′ ∈ (0, 1) determined solely by A, c0 such that for any n ≥ n1,

Ẽ′j,n ⊂
{

there exists l ∈ Z∩ [j, j + n) such that 1lEl∩El+1
= 1 and

∂Nl intersects the part of ∂Wj which is to the left of yj,n

}
,(5.71)

P[Ẽ′j,n] = P[Ẽ′0,n] ≥ 1− q̃′.(5.72)

Proof. Assume that A ≥ exp(64c5/4,1/c), that c0 ∈ (0, 1] and that A−1 ∨ c0 is small enough so
that (5.32) and (5.43) hold with δ = 1

4cA
−2/3 logA, λ, q̃ as stated in these places. Let c5/4,2 ∈ (0,∞)

be as in Lemma 5.7 with p = 5
4 , and set

(5.73) n1 := min

(
N ∩

[
max

{
2,

8

δλ
log

4

1− q̃
,
(
c5/4,2A

2/3 4

1− q̃

)4}
,∞
))

,

so that n1 is determined solely by A, c0 and satisfies exp(−1
8δλn1) ≤

1
4(1− q̃) and c5/4,2A2/3n

−1/4
1 ≤

1
4(1 − q̃). Now let n ≥ n1. Then since {(1lEk , T k, Bk

L, B
k
R)}∞k=0 is i.i.d. as noted just after (5.24),

the equality in (5.72) holds, and we easily see from (5.43), (5.32) and (5.63) with p = 5
4 that

P[Ẽ′0,n] ≥ 1− q̃′ with q̃′ := 1
2(1 + q̃).

To show (5.71), fix any instance of the exploration for which Ẽ′j,n holds, and for each k ≥ 0, as
in the proof of Proposition 5.2-(i) define I0k ⊂ Z ∩ [0, k) by I0k := ∅ on Ek and by (5.26) with k in
place of j on Eck (recall (5.25) for Ik), so that I0k ⊂ {i ∈ Z ∩ [0, k) | 1lEi = 1} and I0k ∩ I0l = ∅ for
any l > k. Then since

⋃j+n−1
k=j I0k ⊂ Z ∩ (j, j + n− 1) by (5.41), it follows from (5.27) in the same

way as (5.28) that

(Lj+n − Lj)− (L′j+n − L′j)

=

j+n−1∑
k=j

(
(Lk+1 − Lk)− (L′k+1 − L′k)

)
≤

j+n−1∑
k=j

(−ϵ01lEk + ϵ0#I
0
k)(5.74)

≤ ϵ0
(
−#{k ∈ Z ∩ [j, j + n) | 1lEk = 1}+#{k ∈ Z ∩ (j, j + n− 1) | 1lEk = 1}

)
≤ 0.

Recalling that 1
64cA

−2/3 logA ≥ c5/4,1A
−2/3 by A ≥ exp(64c5/4,1/c), from (5.74) and the latter part

of (5.70) we obtain

Lj − Lj+n −
j+n−1∑
k=j

Bk
L1l(Ek∩Ek+1)c −

( 1

64
cA−2/3 logA

)
n

≥ L′j − L′j+n − S′j,j+n −
( 1

64
cA−2/3 logA

)
n >

( 1

32
cA−2/3 logA

)
n > 0.(5.75)

Note that the part of ∂(Wj\Wj+n)∩∂Wj which is to the left of η′j(0) has quantum length at least Lj−
Lj+n and equals

⋃j+n−1
k=j (the bottom left of Wk \Wk+1)∩∂Wj . Now these facts and (5.75) together
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imply that yj,n belongs to the interior of this part of ∂(Wj \Wj+n)∩∂Wj and that the part of ∂(Wj \
Wj+n) ∩ ∂Wj which is to the left of yj,n has quantum length greater than

∑j+n−1
k=j Bk

L1l(Ek∩Ek+1)c

and hence intersects
⋃
j≤k<j+n, 1lEk∩Ek+1

=1(the bottom left of Wk \Wk+1)∩∂Wj . This last property

means that the event in the right-hand side of (5.71) holds, proving (5.71). □

Proof of Proposition 5.2-(iv). Assume that A−1 ∨ c0 is small enough so that c0 ∈ (0, 1] and Propo-
sition 5.2-(i), (5.43), (5.71) and (5.72) hold with c1, c2, q̃, n1, q̃

′ as stated in these places. Let
u ∈ [2,∞) and set nu := max

(
N ∩ [1, u]

)
and n̂u := n1 ∨min

(
N ∩ [256c−1nu,∞)

)
, where c ∈ (0,∞)

is the constant from Proposition B.3. Following the proof of Proposition 5.2-(iii), set ∂LW :=

(−∞, 0) ⊂ ∂W, let Gk denote the σ-algebra generated by {(Wi \Wi+1, h|Wi\Wi+1
, η′i|[0,σi], L̃i)}0≤i≤k

for each k ≥ 0, set m̃0 := 0 and inductively m̃j := inf{i > m̃j−1 + n̂u | ∂Ni ∩ ∂LW ≠ ∅}
for each j ≥ 1, so that m̃j is a {Gk}-stopping time for any j ≥ 0. Let Ẽ′j,n̂u be as in (5.70)

with n = n̂u for j ≥ 0, and set Ẽ′m̃j+1,n̂u
:=
⋃
k∈N∪{0}

(
Ẽ′k+1,n̂u

∩ {m̃j = k}
)

for each j ≥ 0.

Then since m̃j + n̂u < m̃j+1 < ∞ for any j ≥ 0 a.s. by Proposition 5.2-(i) and Ẽ′k,n̂u is measur-

able with respect to {(1lEi , T i, Bi
L, B

i
R)}

k+n̂u
i=k and hence independent of Gk−1 for any k ≥ 1, we

have Ẽ′m̃j+1,n̂u
∈ Gm̃j+1

and therefore see from (5.72) that {Ẽ′m̃j+1,n̂u
}∞j=0 is independent and that

P
[
Ẽ′m̃j+1,n̂u

]
= P

[
Ẽ′0,n̂u

]
≥ 1 − q̃′ for any j ≥ 0. It thus follows that, with c̃′ := log(1/q̃′), for any

N ∈ N,

(5.76) P

[
N−1⋃
k=0

(k+1)nu−1⋂
j=knu

(
Ẽ′m̃j+1,n̂u

)c] ≤
N−1∑
k=0

(k+1)nu−1∏
j=knu

P
[(
Ẽ′m̃j+1,n̂u

)c] ≤ Ne−c̃
′nu .

Furthermore let mj , Rj , tj be as in the proof of Proposition 5.2-(iii) for each j ≥ 0, let N ∈ N and
set JN := min{j ≥ 0 | mj ≥ N}, so that JN ≤ N . Then by (5.59) and (5.60) we have

P
[
{max0≤j<JN Rj > nu + 1} ∪ {max0≤j<JN tj > ϵ0nu}

]
≤ P

[
max0≤j<JN Rj > nu + 1

]
+ P

[
max0≤j<JN tj > ϵ0nu

]
≤

N−1∑
j=0

(
P
[
mj < N, Rj > nu + 1

]
+ P

[
mj < N, tj > ϵ0nu

])
≤ N2

(
q̃−1 exp(−c̃u) + 2c3 exp(−1

2c4ϵ0nu)
)
,(5.77)

where c̃ := 1
2 log(q̃

−1) and c3, c4 ∈ (0,∞) are as in (5.60). Thus from (5.61), (5.76) and (5.77) we
obtain

P

[{
mj+1−mj ≤ (3ϵ0/c1)u

2,Rj ≤ nu+1

and tj ≤ ϵ0nu for any j ∈ Z∩ [0, JN )

}
∩
N−1⋂
k=0

(k+1)nu−1⋃
j=knu

Ẽ′m̃j+1,n̂u

]
≥ 1− c5N

2 exp(−c6u)−Ne−c̃
′nu −N2

(
q̃−1 exp(−c̃u) + 2c3 exp(−1

2c4ϵ0nu)
)

≥ 1− c8N
2 exp(−c9u),(5.78)

where c5, c6 ∈ (0,∞) are as in (5.61), c8 := c5+e
c̃′ + q̃−1+2c3e

c4ϵ0/2 and c9 := min
{
c6, c̃

′, c̃, 12c4ϵ0
}

.
It therefore remains to verify that the event in (5.78) is included in that in (5.13) as long as

N ≥ c7u
3, for some c7 ∈ (0,∞) determined solely by A, c0. To this end, fix any instance of the

exploration for which the event in (5.78) holds, set J̃N := min{j ≥ 0 | m̃j + n̂u ≥ N} and
J̃ ′N := max

(
Z ∩ [0, J̃N/nu]

)
, so that J̃ ′N ≤ J̃N/nu ≤ J̃N ≤ N . Then since mj+1 −mj ≤ (3ϵ0/c1)u

2
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for any j ∈ Z ∩ [0, JN ), we easily obtain

(5.79) m̃j+1 − m̃j ≤ (3ϵ0/c1)u
2 + n̂u for any j ∈ Z ∩ [0, J̃N ).

Let i ∈ Z∩ [0, J̃N ), set j := m̃i + 1 ≤ N and let yj,n̂u ∈ ∂Wj be as in Lemma 5.8 with n = n̂u. Then
m̃i = mk for some k ∈ Z ∩ [0, JN ), hence Rk ≤ nu + 1, tk ≤ ϵ0nu, and thus by ∂Nj−1 ∩ ∂LW ≠ ∅,
(5.11), (5.56) and tk = T j−11lEcj−1

, the part of ∂(W0 \ Wj) ∩ ∂Wj to the left of η′j(0) has quantum

length at most ϵ0(Rk − 1) + tk ≤ 2ϵ0nu. Moreover, 2ϵ0nu in turn is less than ( 1
64cA

−2/3 logA)n̂u,
the quantum length of the part of ∂Wj from η′j(0) to yj,n̂u , by ϵ0 = c0A

−2/3, A ≥ 2, c0 ≤ 1 and
n̂u ≥ 256c−1nu. It follows therefore that yj,n̂u ∈ ∂LW and hence by n̂u ≥ n1 and (5.71) that,

(5.80)
if 1l

Ẽ′
m̃i+1,n̂u

= 1, then we have 1lEl∩El+1
= 1 and

∂Nl ∩ ∂LW ≠ ∅ for some l ∈ Z ∩ (m̃i, m̃i + n̂u].

On the other hand, for any k ∈ Z ∩ [0, J̃ ′N ), by the latter part of the event in (5.78) there exists
i ∈ Z∩[knu, (k+1)nu) such that 1l

Ẽ′
m̃i+1,n̂u

= 1, which together with Z∩[knu, (k+1)nu) ⊂ Z∩[0, J̃N )
and (5.80) implies that 1lEl∩El+1

= 1 and ∂Nl ∩ ∂LW ̸= ∅ for some l ∈ Z ∩ (m̃i, m̃i + n̂u] ⊂
Z ∩ (m̃i, m̃i+1) ⊂ Z ∩ (m̃knu , m̃(k+1)nu). Combining these observations with (5.79), we have thus
proved the following:

(5.81)
for any k ∈ Z∩[0, J̃ ′N ), m̃(k+1)nu−m̃knu ≤ nu

(
(3ϵ0/c1)u

2+n̂u
)
, and there

exists l ∈ Z∩(m̃knu , m̃(k+1)nu) such that 1lEl∩El+1
= 1 and ∂Nl∩∂LW ≠ ∅.

Suppose for the moment that J̃ ′N ≥ 2, or equivalently, J̃N ≥ 2nu. Then the left and right ends in Z
of the sequence

{
Z ∩ (m̃knu , m̃(k+1)nu)

}J̃ ′
N−1
k=0

of intervals appearing in (5.81) are given by m̃0 = 0

and m̃
J̃ ′
Nnu

, respectively, and we see from J̃ ′N + 1 > J̃N/nu, (5.79) and m̃
J̃N

+ n̂u ≥ N that

N − m̃
J̃ ′
Nnu

≤ N − m̃
J̃N−nu+1

≤ N − m̃
J̃N

+ (nu − 1)
(
(3ϵ0/c1)u

2 + n̂u
)

≤ n̂u + (nu − 1)
(
(3ϵ0/c1)u

2 + n̂u
)
< nu

(
(3ϵ0/c1)u

2 + n̂u
)
.

(5.82)

Moreover, for any k ∈ Z ∩ [0, J̃ ′N − 2] we also have

(5.83) m̃(k+1)nu ≤ m̃
(J̃ ′
N−1)nu

< m̃
J̃ ′
Nnu−1

≤ m̃
J̃N−1 < N − n̂u < N.

Since 2nu
(
(3ϵ0/c1)u

2 + n̂u
)
≤ c7u

3 with c7 := 6ϵ0/c1 +2(n1 ∨ (256c−1 +1)), it follows from (5.81),
(5.82) and (5.83) that with this choice of c7 the event in (5.13) occurs for the present instance of the
exploration. Finally, we conclude this proof by deducing our supposition J̃N ≥ 2nu from (5.79) and
the requirement N ≥ c7u

3; indeed, an induction on j based on N ≥ c7u
3 ≥ 2nu

(
(3ϵ0/c1)u

2 + n̂u
)

and (5.79) easily shows that m̃j ≤ j
(
(3ϵ0/c1)u

2 + n̂u
)
< N − n̂u for any j ∈ Z ∩ [0, 2nu), whence

m̃2nu−1 + n̂u < N , namely J̃N ≥ 2nu. □

5.4. Proof of Proposition 5.1. The proof of Proposition 5.1 requires Lemma 5.9 below in addition
to Proposition 5.2. For each n ∈ N, we setDRn := {ω | ω = (ω1, . . . , ωn) : [0,∞) → Rn, ω is cadlag},
let {Fnt }t∈[0,∞) denote the filtration in DRn generated by the coordinate process, and set Fnt+ :=⋂
s∈(t,∞) F

n
s for t ∈ [0,∞).

Lemma 5.9. Let a ∈ (0,∞), and let Z be a 3/2-stable Lévy excursion with only upward jumps. Set
Z̃t := Z(ζ−t)− for each 0 ≤ t ≤ ζ, i.e., the cadlag modification of the time-reversal of Z, where ζ
denotes the lifetime of Z. We also set T := inf{t ≥ 0 : Z̃t ≥ a} and Yt = Z̃t+T , where we set Yt := 0

for t ∈ [ζY ,∞) with ζY denoting the lifetime of Y . Then, conditional on the event {T < ∞}, we have
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that ζY <∞ a.s., Yt > 0 for any t ∈ [0, ζY ) a.s. and limt↑ζY Yt = 0 a.s. Moreover, let X be a 3/2-stable
Lévy process with only downward jumps with X0 = a, and set τ0 := inf{t ∈ [0,∞) | Xt ≤ 0}. Then
for any {F1

t+}t∈[0,∞)-stopping time τ ,

(5.84) P[Y ∈ dω, τ(Y ) < ζY ]|F1
τ+

=
(ω(τ)

a

)−1/2
P[X ∈ dω, τ(X) < τ0]|F1

τ+
.

Proof. Let Z, Z̃ be as in the statement of the lemma and let n denote the law of Z. Let also ñ

denote the law of Z̃ under n. Then [23, Theorem 4, part 2] implies that ñ[Z̃t ∈ A, t < ζ | F1
s+ ] =∫

A pt−s(Z̃s, x)dx ñ-a.e. on F1
s+ , for each 0 ≤ s ≤ t, A ∈ F1

t+ , where pt(x, y) = (xy )
1/2qt(x, y) for each

t, x, y > 0, and qt denotes the semigroup of X killed at the first time that it exits (0,∞), where X is
as in the statement of the lemma. Let µ (resp. ν) denote the law of Y (resp. X). It follows that

µ
[
Y ∈ A, t < ζY

]
=

∫
A
pt(a, x)dx =

∫
A

(ω(t)
a

)−1/2
pt(a, x)dx

for each A ∈ F1
t+ . This proves (5.84) for deterministic times. To prove the result for general

stopping times, we first note that it is easy to see that Mt :=
(ω(t)

a

)−1/2
1l{t<τ0} is a non-negative

supermartingale under ν. Fix an (F1
t+)-stopping time τ as in the statement of the lemma, and set

τn := inf((2−nZ) ∩ (τ,∞)) for each n ∈ N. Note that τn decreases to τ as n → ∞ ν-a.e. Moreover,
we have that µ

[
Y ∈ A, τn(Y ) < ζY

]
=
∫
AMτndν for each A ∈ F1

τ+n
, n ∈ N. Note also that the

optional stopping theorem implies that E
[
Mτn | F1

τ+n

]
≤ Mτm ν-a.e., for each 1 ≤ m ≤ n, and so

(−Mτn) is a backwards submartingale under (F1
τ+n

)n≥1. Also, E
[
−Mτn

]
≥ −M0 = −a, and so [56,

Problem 3.11] implies that Mτn is a uniformly integrable martingale under ν. It follows that for
each A ∈ F1

τ+ , we have that

µ
[
Y ∈ A, τ(Y ) < ζY

]
= lim

n→∞
µ
[
Y ∈ A, τn(Y ) < ζY

]
=

∫
A
Mτdν

and this completes the proof. □

We need the following lemma to prove Lemma 5.11 below.

Lemma 5.10 ([45, Theorem 1.2]). Let ℓ ∈ (0,∞), a ∈ (0, 1), suppose that D = (D, h) has law
µL=ℓQD , let x ∈ ∂D be chosen uniformly from the boundary measure νh, and let y be the point of ∂D so
that νh([x, y]⟲⟲⟲∂D) = (1 − a)ℓ. Let η′ be an independent chordal SLE6 on D from x to y parameterized
according to quantum natural time, set tη′ := inf(η′)−1(y), Lt := 0 =: Rt for t ∈ [tη′ ,∞), and for each
t ∈ [0, tη′) let Lt (resp. Rt) denote the boundary length of the clockwise (resp. counterclockwise) arc of
∂̃Dy,t from η′(t) to y, where Dy,t denotes the component of D \ η′([0, t]) with y ∈ ∂Dy,t. Then tη′ <∞
a.s. and limt↑tη′ (Lt, Rt) = (0, 0) a.s. Moreover, let X1, X2 be independent 3/2-stable Lévy processes
with only downward jumps and with X1

0 = aℓ = ℓ−X2
0 , and set τ0 := inf{t ∈ [0,∞) | X1

t ∧X2
t ≤ 0}.

Then for any {F2
t+}t∈[0,∞)-stopping time τ ,

P
[
(L·, R·) ∈ d(ω1, ω2), τ(L·, R·) < tη′

]∣∣
F2
τ+

=
(ω1(τ) + ω2(τ)

ℓ

)−5/2
P
[
(X1, X2) ∈ d(ω1, ω2), τ(X

1, X2) < τ0
]∣∣

F2
τ+
.

(5.85)

Proof. The first assertion and (5.85) for constant τ follow from [45, Theorem 1.2] combined with
the resampling property of the quantum disk [35, Proposition A.8]. Then (5.85) for general τ can
be verified in exactly the same way as in the proof of Lemma 5.9 above. □

Combining Lemma 5.10 with Proposition B.7, we obtain the following lemma.
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Lemma 5.11. Let ℓ ∈ (0,∞), a ∈ (0, 1), suppose that D = (D, h, 0) has law µL=ℓQD,W, let x ∈ ∂D be
chosen uniformly from the boundary measure νh, and let y be the point of ∂D so that νh([x, y]⟲⟲⟲∂D) =
(1 − a)ℓ. Let η′ be an independent radial SLE6 on D from x targeted at 0 parameterized according
to quantum natural time, set tη′ := inf(η′)−1(0), let Tt denote the quantum length of ∂Kt ∩ D for
t ∈ [0, tη′), set Tt := 0 for t ∈ [tη′ ,∞), and set τ := inf

{
t ∈ [0, tη′)

∣∣ y ∈ Kt

}
, where Kt denotes

the complement in D of the 0-containing component of D \ η′([0, t]). Then τ < tη′ a.s., and there
exist constants c1, c2, c3 ∈ (0,∞) independent of ℓ, a such that for any δ, u ∈ (0,∞), as long as
ℓ ≤ δ2/3 exp(c3δ

−u) or a ∈ [1/10, 9/10],

(5.86) P
[

sup
t∈[0,τ∧δ]

Tt ≥ δ2/3−u
]
≤ c1 exp(−c2δ−u).

Proof. Note that by the locality of SLE6 (see, e.g., [86, Theorem 3]), η′|[0,τ ] has the same law as
η̃′|[0,τ̃ ] for an independent chordal SLE6 η̃

′ on D from x to y parameterized according to quantum
natural time and τ̃ := inf

{
t ∈ [0, tη̃′)

∣∣ 0 ∈ K̃t

}
, where tη̃′ := inf(η̃′)−1(y) and K̃t denotes the

complement in D of the component of D \ η̃′([0, t]) whose boundary contains y. Then since τ̃ < tη̃′

a.s. by [16, Proposition 11.7] and 0 ̸∈ η̃′([0, τ̃ ]) a.s. by [16, Theorem 11.2-(b)], we have 0 ̸∈ η′([0, τ ])

a.s. and thus τ < tη′ a.s.
To prove (5.86), let T̃t denote the quantum length of ∂K̃t ∩ D for t ∈ [0, tη̃′), set T̃t := 0 for

t ∈ [tη̃′ ,∞), and let Lt, Rt, X1
t , X

2
t , τ0 be as in Lemma 5.10 with η̃′ in place of η′. Let δ, u ∈ (0,∞).

Then by Tτ∧δ ≤ limt↑τ∧δ Tt (since both of L and R have downward jumps), the locality of SLE6

mentioned above, and (3.7),

µL=ℓQD,W

[
sup

t∈[0,τ∧δ]
Tt > δ2/3−u

]
(5.87)

= µL=ℓQD,W

[
sup

t∈[0,τ∧δ)
Tt > δ2/3−u

]
= µL=ℓQD,W

[
sup

t∈[0,τ̃∧δ)
T̃t > δ2/3−u

]
≤ µL=ℓQD,W

[
sup
t∈[0,δ]

T̃t > δ2/3−u
]
=

∫
{supt∈[0,δ] T̃t>δ

2/3−u}

µh(D)∫
µh(D) dµL=ℓQD

dµL=ℓQD

≤ µL=ℓQD

[
sup
t∈[0,δ]

T̃t > δ2/3−u
] 1

5

(∫
µh(D)5/4 dµL=ℓQD

)4/5∫
µh(D) dµL=ℓQD

= c4µ
L=ℓ
QD

[
sup
t∈[0,δ]

T̃t > δ2/3−u
] 1

5

,

where c4 :=
(∫∞

0 (2π)−1/2s−5/4e−1/(2s) ds
)4/5.

Since (5.86) is obvious for δ ∈ [1,∞), we may assume that δ ∈ (0, 1). Noting that T̃t = Lt −
infs∈[0,t] Ls +Rt − infs∈[0,t]Rs for any t ∈ [0,∞), define an {F2

t+}t∈[0,∞)-stopping time τδ by

τδ(ω1, ω2) := inf

{
t ∈ [0,∞)

∣∣∣∣ ω1(t)− inf
s∈[0,t]

ω1(s) + ω2(t)− inf
s∈[0,t]

ω2(s) > δ2/3−u
}
.



TWO-SIDED HEAT KERNEL BOUNDS FOR
√

8/3-LIOUVILLE BROWNIAN MOTION 67

Then by Lemma 5.10 with τ = τδ, the scaling property of X1, X2 and Proposition B.7, with the
constants c1, c2 ∈ (0,∞) as in Proposition B.7 we have

µL=ℓQD

[
sup
t∈[0,δ]

T̃t > δ2/3−u
]
= µL=ℓQD [τδ(L·, R·) < δ, τδ(L·, R·) < tη̃′ ]

= E
[
ℓ5/2

(
X1
τδ(X1,X2) +X2

τδ(X1,X2)

)−5/2
1l{τδ(X1,X2)<δ, τδ(X1,X2)<τ0}

]
≤ ℓ5/2(δ2/3−u)−5/2P[τδ(X1, X2) < δ]

≤ ℓ5/2δ−5/3P
[
sup
t∈[0,1]

(
X1
t − inf

s∈[0,t]
X1
s +X2

t − inf
s∈[0,t]

X2
s

)
> δ−u

]
≤ 2c1ℓ

5/2δ−5/3 exp(−c2δ−u/2).(5.88)

It thus follows from (5.87) and (5.88) that (5.86) with (2c1, c2/3) in place of (c1, c2) holds as long
as ℓ ≤ δ2/3 exp(c2δ

−u/15).
Next, assume that ℓ ≥ δ2/3 exp(c2δ

−u/15) and that a ∈ [1/10, 9/10], and define an {F2
t+}t∈[0,∞)-

stopping time τ ′ by

(5.89) τ ′(ω1, ω2) := inf{t ∈ [0,∞) | ω1(t) ∧ ω2(t) < ℓ/20}.

Then τ ′(L·, R·) < tη̃′ a.s. since limt↑tη̃′ (Lt, Rt) = (0, 0) a.s. by Lemma 5.10, and we also have
X1
τ ′(X1,X2) + X2

τ ′(X1,X2) ≥ X1
τ ′(X1,X2) ∨ X2

τ ′(X1,X2) ≥ ℓ/20 a.s. on {τ ′(X1, X2) < τ0} by noting
that (X1

t − lims↑tX
1
s )(X

2
t − lims↑tX

2
s ) = 0 for any t ∈ (0,∞) a.s. by the independence of X1, X2.

Therefore by Lemma 5.10 with τ = τ ′, τδ, the last inequality in (5.88), X1
0 ∧X2

0 ≥ ℓ/10, the scaling
property of X1, X2, [20, Chapter VIII, Proposition 4] and δ−2/3ℓ ≥ exp(c2δ

−u/15) we obtain

µL=ℓQD

[
sup
t∈[0,δ]

T̃t > δ2/3−u
]

≤ µL=ℓQD [τ ′(L·, R·) ≤ δ] + µL=ℓQD

[
sup
t∈[0,δ]

T̃t > δ2/3−u, τ ′(L·, R·) > δ

]
≤ µL=ℓQD [τ ′(L·, R·) ≤ δ] + µL=ℓQD

[
τδ(L·, R·) < δ ∧ tη̃′ , Lτδ(L·,R·) +Rτδ(L·,R·) ≥ ℓ/20

]
≤ 205/2

(
P[τ ′(X1, X2) ≤ δ] + P[τδ(X1, X2) < δ]

)
≤ 205/2

(
P
[

min
k∈{1,2}

inf
t∈[0,1]

(Xk
t −Xk

0 ) ≤ −δ−2/3 ℓ
20

]
+ 2c1 exp(−c2δ−u/2)

)
≤ 205/2

(
c5(δ

−2/3ℓ/20)−3/2 + 2c1 exp(−c2δ−u/2)
)
≤ c6 exp(−c2δ−u/10)(5.90)

for some constants c5, c6 ∈ (0,∞) determined solely by the law of X1−X1
0 . Thus (5.87) and (5.90)

yield (5.86) when ℓ ≥ δ2/3 exp(c2δ
−u/15) and a ∈ [1/10, 9/10], completing the proof. □

Suppose now that we have the setup of Proposition 5.2. We scale time by δ ∈ (0, 1) and lengths
by δ2/3 so that each chunk Nj is drawn by a chordal SLE6 curve stopped at a stopping time which
is at most δ and note that the setup is scale invariant. For every j ∈ N0, we let (Lj , Rj) be the
pair of 3/2-stable Lévy processes describing the boundary length evolution of the quantum surface
parameterized by Nj . We also define a process X = (Xt)t≥0 as follows. First, we set Xt = L0

t +R0
t

for each t ∈ [0, σ0]. Fix j ∈ N and suppose that we have defined Xt for each t ∈ [0, σj−1]. Then
we set Xt = Xσj−1 + Ljt + Rjt for each t ∈ [σj−1, σj ] and we proceed inductively. Since both of Lj

and Lj are 3/2-stable Lévy processes, the sequences (Lj)j≥0, (R
j)j≥0 are i.i.d. and the exploration

is constructed in a Markovian way, we obtain that X has the law of a 3/2-stable Lévy process.
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We note that X has only downward jumps and a jump occurs whenever a curve η′j either finishes
tracing an SLE6 bubble whose boundary is bounded away from ∂H or it disconnects points of
∂H from ∞. In either case, we have that the size of the jump of X is equal to the quantum
boundary length of the quantum surface parameterized by the region that η′j disconnects from ∞.

Moreover, we define inductively a collection of quantum surfaces W̃ = (W̃t)t≥0 as follows. First,
for t ∈ [0, σ0], we let W̃t be the quantum surface parameterized by the unbounded connected
component of H \ η′0([0, t]). Fix j ∈ N and suppose that we have defined W̃t for t ∈ [0, σj−1]. Then
for t ∈ [σj−1, σj ], we let W̃t be the quantum surface parameterized by the unbounded connected

component of H \
(
η′j([0, t]) ∪ (∪j−1i=0Ni)

)
. Then for each t ≥ 0, we have that Xt is equal to the

boundary length of ∂W̃t \ ∂W̃0 minus the boundary length of ∂W̃0 \ ∂W̃t.
Let us now briefly describe the main strategy for proving Proposition 5.1. First, we will show in

Lemma 5.12 that with positive probability (uniform in ℓ > 0, δ ∈ (0, 1)), we have that the chordal
exploration in Proposition 5.2 disconnects from ∞ at least ℓ/2 units of quantum boundary length
in (−∞, 0) starting from 0 during the first ⌊ℓδ−2/3−u/3⌋ + 1 number of steps and using only good
chunks, without disconnecting from ∞ too many units of quantum area. Next, in Lemma 5.13,
we show that the same is true if we consider the chordal SLE6 exploration on top of a quantum
disk instead. For this, we are going to use Lemma 5.10 in order to compare the laws of the two
explorations on top of the quantum wedge and the quantum disk respectively. Moreover, using
Lemma 5.9, we show in Lemma 5.14 that the statement of Lemma 5.13 still holds if we consider
the radial SLE6 exploration instead. Finally, we complete the proof of Proposition 5.1 by applying
Lemma 5.14 iteratively.

Lemma 5.12. Suppose that we have the setup of Proposition 5.2 and the setup described in the previous
paragraphs. Fix 0 < u1 < u < 1/3, ℓ ∈ [δ2/3−u, δ−u1 ] and set N = ⌊ℓδ−2/3−u/3⌋+ 1. Let b > 0 (resp.
b̃ > 0) be such that νh([−b, 0]) = ℓ/2 (resp. νh([−b̃, 0]) = 3ℓ/4). We let E be the event that the
following hold.

(i) There exists 1 ≤ j ≤ N/2 such that the first j number of chunks in the exploration disconnect
[−b, 0] but not [−b̃, 0] from ∞, and ∂Wj intersects the boundaries of only good chunks.

(ii) We have that sup0≤t≤2ℓδ1/3−u/3 |Xt| < ℓδu/200 and inf0≤t≤δ L
0
t > −ℓδu/200. Moreover, the total

amount of quantum area disconnected from ∞ by the first N number of chunks is at most a
constant times δu/18 where the implicit constant depends only on c0, A, u and u1.

(iii) The chunk N0 is good and the top of ∂N0 is not disconnected from ∞ by the first N number of
chunks of the exploration. Moreover, the boundary length of the part of ∂N0 contained in the
boundary of the unbounded connected component of H \ ∪Ni=0Ni is at least ϵ0δ2/3.

(iv) For each i ∈ Z ∩ [0, N ], there exists n ∈ [1, log(δ−1)3] ∩ N and {ij}nj=1 ⊆ Z ∩ [0, N ] such that
i1 = i > i2 > · · · > in, ∂Nin ∩ ∂W0 ̸= ∅ and ∂Nij ∩ ∂Nij+1 ̸= ∅, for each 1 ≤ j < n.

Then there exist q̃, δ0 ∈ (0, 1) depending only on A, c0, u and u1 such that for each δ ∈ (0, δ0), we have
that P[E] ≥ 1− q̃.

Proof. Step 1. (i) holds with high probability. First we note that part (i) of Proposition 5.2 implies
that there exist constants c1, c2 > 0 depending only on A, c0 such that P

[
L⌊N/2⌋ ≥ −c1Nδ2/3

]
≤

e−c2N , where Lj is defined as in the statement of Proposition 5.2. Note that if L⌊N/2⌋ < −c1Nδ2/3,
then we have that the first ⌊N/2⌋ number of chunks of the exploration have disconnected from
∞ at least c1Nδ2/3 units of quantum boundary length in (−∞, 0) starting from 0. Note also that
c1Nδ

2/3 ≥ c1ℓδ
−u/3 > ℓ/2 for each δ ∈ (0, 1) sufficiently small. In particular, the first ⌊N/2⌋ chunks
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of the exploration disconnect [−b, 0] from ∞ off an event with probability at most e−c2N . Moreover,
[20, Chapter VIII, Proposition 4] implies that P

[
inf0≤t≤δ L

j
t < −ℓδu/100/16

]
≲ ℓ−3/2δ1−3u/200 for

each j, with the implicit constant being universal. It follows by taking a union bound over all
0 ≤ j ≤ N and since ℓ ≥ δ2/3−u that

P
[

inf
0≤t≤δ

Ljt < −ℓδu/100/16 for some 0 ≤ j ≤ N
]
≲ δa(u)

where a(u) > 0 depends only on u and the implicit constant is universal. Also, part (iv) of Proposi-
tion 5.2 implies that there exist constants c3, c4 > 0 depending only on A, c0 such that off an event
with probability at most c3N2 exp(−c4δ−u/200) the following holds. For each i ∈ Z ∩ [0, N ] there
exists j ∈ Z ∩ [0, N) such that |j − i| ≤ δ−u/200, 1lEj∩Ej+1 = 1 and ∂Nj ∩ ∂WL ̸= ∅.

Suppose that all of the events described in the previous paragraph hold and let i be the smallest
i ∈ Z ∩ [0, N/2] such that the first i number of chunks of the exploration disconnect [−b, 0] from
∞. Then there exists j > i such that |j − i| ≤ 2δ−u/200, 1lEj∩Ej+1 = 1 and ∂Nj ∩ ∂WL ̸= ∅. Since
inf0≤t≤δ L

i
t > −ℓδu/100/16 > −ℓ/16, we obtain that ∂Ni ∩ ∂WL ⊆ [−b1, 0], where b1 > 0 is such

that νh([−b1, 0]) = ℓ/2 + ℓ/16. Furthermore, the boundary length of ∂(Wi \ Wj) ∩ ∂LW is at most
−
∑j

m=i+1 inf0≤t≤δ L
m
t ≤ ℓδu/200/8 < ℓ/8, and so we obtain that ∂Nj∩∂LW ⊆ [−b2, 0] where b2 > 0

is such that νh([−b2, 0]) = 11ℓ/16 < 3ℓ/4. It follows that there exist a > 0, δ0 ∈ (0, 1) depending
only on A, c0 and u such that for each δ ∈ (0, δ0), we have off an event with probability at most δa

that there exists 1 ≤ j ≤ N/2 such that Ej occurs and the chunks discovered during the first j steps
of the exploration disconnect [−b, 0] but not [−b̃, 0] from ∞. Moreover, it follows from the way that
we have defined the exploration that Nm is good for each 0 ≤ m ≤ j such that ∂Nm ∩ ∂Wj ̸= ∅.
Therefore (i) holds with high probability.

Step 2. (ii) holds with high probability. Fix p ∈ (1, 3/2). Then [20, Chapter VII,Corollary 2]
combined with [20, Chapter VIII, Proposition 4] imply that E

[
sup0≤t≤1 |Xt|p

]
< ∞. Thus, the

maximal inequality for martingales combined with scaling imply that

E

[
sup

0≤t≤2ℓδ1/3−u/3
|Xt|

]
≤ E

[
sup

0≤t≤2ℓδ1/3−u/3
|Xt|p

]1/p

= (2ℓδ1/3−u/3)2/3E
[
sup

0≤t≤1
|Xt|p

]1/p
≲ ℓ2/3δ2/9−2u/9.

Hence, Markov’s inequality implies that

P

[
sup

0≤t≤2ℓ1/3−u/3
|Xt| ≥ ℓδu/200

]
≲ ℓ−1δ−u/200ℓ2/3δ2/9−2u/9 ≲ δu/9−u/200

since we also have that ℓ ≥ δ2/3−u. We note that during the first N steps of the exploration, we
have that at most 2ℓδ1/3−u/3 units of time elapsed for X. Also, the expectation of the sums of
squares of the jumps of X of size at most ℓ made in the time interval [0, 2ℓδ1/3−u/3], is given by
c2ℓδ1/3−u/3

∫ ℓ
x=0 x

2x−5/2dx = 4cℓ3/2δ1/3−u/3, where c > 0 is a universal constant. Furthermore, the
number of jumps of size larger than ℓ made by X in [0, 2ℓδ1/3−u/3] has the law of a Poisson random
variable with mean 2cℓδ1/3−u/3

∫∞
x=ℓ x

−5/2dx = 4cℓ−1/2δ1/3−u/3/3. It follows that the probability
of having a jump of size at least ℓ in [0, 2ℓδ1/3−u/3] is given by 1 − exp(−4cℓ−1/2δ1/3−u/3/3) which
is at most 4cδu/6/3 since recall that ℓ ≥ δ2/3−u. Suppose that we are working on the event that
we don’t have a jump of size at least ℓ in [0, 2ℓδ1/3−u/3]. Then [35, Theorem 1.16] implies that
the conditional expectation of the total quantum area disconnected from ∞ by the first N number
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of chunks given the sizes of the jumps of X in [0, 2ℓδ1/3−u/3] is at most 4cℓ3/2δ1/3−u/3. It follows
from the Markov property that the conditional probability that more than ℓ3/2δ1/3−u/2+u/9 units of
quantum area is disconnected from ∞ by the first N number of chunks of the exploration is at most
4cℓ−3/2δ−1/3+u/2−u/9ℓ3/2δ1/3−u/3/3 = 4cδu/18/3. Note that ℓ3/2δ1/3−u/2+u/9 ≤ δ−3u1/2+1/3−7u/8

since ℓ ≤ δ−u1 . Therefore, possibly by taking the constant a in Step 1 to be smaller, we can assume
that (ii) holds off an event with probability at most δa for all δ ∈ (0, 1) sufficiently small (depending
only on A, c0, u1 and u).

Step 3. Conclusion of the proof. We note that Lemma 5.5 implies that provided A−1 ∨ c0 is small
enough, we have that there exists q̃ ∈ (0, 1) depending only on A, c0 such that with probability at
least 1 − q̃, the following holds. The chunk N0 is good and the top of ∂N0 is never disconnected
from ∞ by the exploration. Note also that if the latter occurs, we have that the boundary length of
the part of ∂N0 contained in the boundary of the unbounded connected component of H \ ∪Ni=0Ni

is at least ϵ0δ2/3. This proves (iii). Finally, for (iv), we note that part (iii) of Proposition 5.2
combined with the fact that ℓ ≤ δ−u1 imply that there exist constants c5, c6 > 0 depending only
on A, c0, u and u1 such that for all δ ∈ (0, 1) sufficiently small (depending only on A, c0, u and u1),
we have that off an event with probability at most c5 exp(−c6 log(δ−1)3/2) the claim in part (iv) of
the statement of the lemma holds. Therefore, possibly by taking q̃ ∈ (0, 1) to be smaller and for all
δ ∈ (0, 1) sufficiently small (depending only on A, c0, u and u1), we can assume that parts (i)-(iv)
hold simultaneously with probability at least q̃. This completes the proof of the lemma. □

Next, we will prove that the statement of Lemma 5.12 still holds if we perform the analogous
exploration using chordal SLE6 chunks on top of a quantum disk instead. This is the content of the
following lemma.

Lemma 5.13. Fix 0 < u1 < u < 1/3 and δ2/3−u ≤ ℓ ≤ δ−u1 for δ ∈ (0, 1). Suppose that D = (D, h) is
a sample from µL=ℓQD and let x ∈ ∂D be chosen uniformly according to νh. Let also y be the point which
is antipodal to x (with respect to quantum boundary length), z be the point on the clockwise arc of ∂D
from x to y such that the boundary length of the clockwise arc of ∂D from x to z is equal to ℓ/4, and
let w (resp. z̃) be the point on the clockwise (resp. counterclockwise) arc of ∂D from x to y such that
the boundary length of the clockwise (resp. counterclockwise) arc of ∂D from x to w (resp. from x to
z̃) is equal to 3ℓ/8 (resp. ℓ/4). Suppose that we perform the exploration on top of D in the same way
that we did on top of the quantum wedge except that each chunk is formed by a chordal SLE6 starting
from the marked point of the chunk and targeted at y. We stop the exploration at the first time that
we discover a chunk which contains y, so that the corresponding chordal SLE6 curve hits y before the
chunk is formed. Let E1 be the event that the following hold.

(i) There exists 1 ≤ j ≤ N/2 such that the first j number of chunks of the exploration disconnect
from booth y and 0 the clockwise arc of ∂D from x to z without disconnecting from y either
the clockwise arc of ∂D from x to w or the counterclockwise arc of ∂D from x to z̃. Also, if
Ñ0, . . . , Ñj are the corresponding chunks of the exploration, we have that the boundary of the
connected component of D \ ∪ji=0Ñi containing 0 intersects the boundaries of only good chunks.

(ii) Ñ0 is good and the top of ∂Ñ0 is not disconnected either from 0 or y and the boundary length of
the part of ∂Ñ0 contained in the boundary of the connected component of D \ ∪ji=0Ñi containing
0 is in [ϵ0δ

2/3, ℓδu/200].
(iii) For each 0 ≤ i ≤ N/2, we let Di be the connected component of D \ ∪im=0Ñm whose boundary

contains y. Then, we have that the boundary length of D∩∂Di is at most ℓ/100 plus the boundary
length of ∂D \ ∂Di.
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(iv) For each 0 ≤ i ≤ j, there exist {ij}nj=1 ⊆ Z ∩ [0, j] and 1 ≤ n ≤ log(δ−1)3, such that i = i1 >

i2 > · · · > in, ∂Ñin ∩ ∂D, and ∂Ñim+1 ∩ ∂Ñim ̸= ∅ for each 0 ≤ m ≤ n− 1.

Then, there exist p1, δ0 ∈ (0, 1) depending only on A, c0, u1 and u, such that for each δ ∈ (0, δ0), we
have that P[E1] ≥ p1.

Proof. Suppose that we have the setup of Lemma 5.12. Let Ẽ be the event defined in the same way
as E but with ℓ/2 in place of ℓ and for the exploration with respect to the quantum disk D instead
and the marked points 0 and ∞ replaced by x and y respectively. Fix j ∈ N. Then Lemma 5.10
implies that conditional on the event that the exploration in D has not ended during the first j − 1

steps and on the boundary length ℓL
j−1 (resp. ℓR

j−1) of the clockwise (resp. counterclockwise) arc of
∂Dj−1 from η′j(0) to y, we have that the Radon-Nikodym derivative of the law of Ñj with respect

to the law of Nj (when both viewed as quantum surfaces) is given by
(
Ljσj+R

j
σj

ℓLj−1+ℓ
R
j−1

+ 1
)−5/2

1l{σj<Sj},

where Sj is the first time t such that either Ljt ≤ −ℓL
j−1 or Rjt ≤ −ℓR

j−1. Let j0 ∈ N be the
smallest integer for which condition (i) of Lemma 5.12 is satisfied. Therefore, the Radon-Nikodym
derivative of the law of the quantum surfaces (Ñ0, . . . , Ñj0) with respect to the law of the quantum

surfaces (N0, . . . ,Nj0) is given by
(
ℓLj0

+ℓRj0
ℓ

)−5/2
. Note that ℓL

j0
+ ℓR

j0
< 2ℓ and ℓLj0 + ℓR

j0
> ℓ/2 if

E occurs which implies that
(
ℓLj0

+ℓRj0
ℓ

)−5/2
≍ 1 with the implicit constants being universal. Thus,

combining with Lemma 5.12, there exist δ0, p̃ ∈ (0, 1) depending only on A, c0, u and u1 such that
P
[
Ẽ
]
≥ p̃ for each δ ∈ (0, δ0).

Next, conditionally on h, we sample w ∈ D independently according to the probability measure
µh

µh(D) on D, and set h̃ := h ◦ ϕ−1 +Q log |(ϕ−1)′| where ϕ : D → D is the conformal transformation

such that ϕ(w) = 0 and ϕ′(w) > 0. Then the marginal law of (D, h̃) is given by µL=ℓQD,W. Sup-

pose that Ẽ occurs. Then we have that the quantum area of ∪j0i=0Ñi with respect to h is at most
ℓ3/2δ1/3−u/2+u/9. Also, by scaling, we have that the probability that µh(D) is at least ℓ2δu/18 tends
to 1 as δ → 0, at a rate which is uniform in δ. Hence, by possibly taking p̃, δ0 ∈ (0, 1) to be smaller,
we can assume that the probability of Ẽ ∩ {µh(D) ≥ ℓ2δu/18} under µL=ℓQD is at least p̃. Note that

if Ẽ ∩ {µh(D) ≥ ℓ2δu/18} occurs, then we have that conditional on h, the probability that w lies in
∪j0i=0Ñi is at most ℓ3/2δ1/3−u/2+u/9

ℓ2δu/18
≤ δu/18. Therefore, by possibly taking p̃, δ0 ∈ (0, 1) to be smaller,

we can assume that µL=ℓQD,W

[
Ẽ1

]
≥ p̃, where Ẽ1 is the event defined in the same way as the event

E1 of Lemma 5.12 except that we consider the exploration with respect to h̃ instead of h. It follows
that

p̃ ≤ µL=ℓQD,W

[
Ẽ1

]
≤ µL=ℓQD

[
E1

]1/5 (∫ µh(D)5/4dµL=ℓQD )4/5∫
µh(D)dµL=ℓQD

≲ µL=ℓQD

[
E1

]1/5
,

where the implicit constant is universal. This completes the proof of the lemma. □

Now that we have stated and proved Lemma 5.13, we can state and prove the analogous version
for the exploration using radial SLE6 chunks instead.

Lemma 5.14. Fix 0 < u1 < u < 1/3 and δ2/3−u ≤ ℓ ≤ δ−u1 for δ ∈ (0, 1). Suppose that D = (D, h, 0)
has law given by µL=ℓQD,W. Suppose also that we perform the exploration using radial SLE6 chunks as
in the statement of Proposition 5.1. Let Ẽ1 be the event defined in the same way as the event E1 of
Lemma 5.13 except that we consider the radial SLE6 exploration. Then, there exist p0, δ0 ∈ (0, 1)

depending only on A, c0, u1 and u such that P
[
Ẽ1

]
≥ p0 for each δ ∈ (0, δ0).
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Proof. First, we note that the radial SLE6 curves used to construct the chunks (N̂j) for the radial ex-
ploration can be coupled with chordal SLE6 curves starting from the same point so that they agree
up until the first time that they disconnect y from 0. Moreover, let X be the overall boundary length
process for the radial exploration. Then, by [75, Theorem 7.3], the exploration is determined by
X, the conditionally independent family of quantum disks which are cut out, and the orientations
of their boundaries. We note that the boundaries are oriented i.i.d. with equal probability 1

2 given
X. We can use these orientations in order to determine the boundary length process L (resp. R)
from the tip of the exploration clockwise (resp. counterclockwise) to y, up until the first time that
the radial exploration disconnects y from 0. Indeed, this is because L (resp. R) is equal to the
process which is formed by applying the deterministic function which recovers a 3/2-stable Lévy
process from its jumps to the downward jumps of X which correspond to quantum disks whose
boundaries have a counterclockwise (resp. clockwise) direction. This implies that the following is
true. Fix j ∈ N and suppose that we are working on the event that the first j − 1 chunks of the
exploration do not disconnect y from 0. Let also ℓj−1 be the boundary length of the component
containing 0 after j − 1 steps of radial exploration. Then, it follows by combining Lemmas 5.9
and 5.10 that the Radon-Nikodym derivative of the law of N̂j on the event that N̂j does not dis-

connect y from 0 with respect to the law of Ñj where Ñj is as in Lemma 5.13, is given by
(

ℓj
ℓj−1

)2
,

where ℓj is the boundary length of the connected component of D \ Ñj containing 0. It follows that
on the events Ẽ1, E1, if j0 is as in Lemma 5.13, then the Radon-Nikodym derivative of the law of

(N̂0, . . . , N̂j0) with respect to the law of (Ñ0, . . . , Ñj0) is given by
(
ℓ̃
ℓ

)2
, where ℓ̃ is the boundary

length of the component of D \ ∪j0i=0Ñi containing 0. Since ℓ̃
ℓ ≍ 1 on E1 with the implicit constants

being universal, the proof of the lemma is complete. □

Now we are ready to prove Proposition 5.1. The main idea of the proof is to apply Lemma 5.14
iteratively up until we find the desired chain of good chunks as in the statement of Proposition 5.1.
The conditions in the definition of the event Ẽ1 in Lemma 5.14 will guarantee that it is possible to
construct the desired chain with high probability since the probability of Ẽ1 is bounded from below
by a constant which is uniform in δ.

Now, we proceed to the details of the proof. Suppose that we have the setup of the statement of
Proposition 5.1. Fix u1 ∈ (0, u/3) and let Ẽu1,δ be the event that for each j ∈ Z ∩ [0, δ−2/3−u] and
each t ∈ [0, σj ], the boundary length of the 0-containing connected component of Dj \η′j([0, t]) is at
most δ−u1 . We define sequences of marked points {x̃j}j≥0, {ỹj}j≥0, {z̃j}j≥0 and domains {D̃j}j≥0
as follows. First, we pick x ∈ ∂D uniformly according to the boundary length measure and let y be
the point on ∂D which is antipodal to x with respect to the boundary length measure.. Let also z be
the point on the clockwise arc of ∂D from x to y such that the clockwise arc of ∂D from x to z has
boundary length equal to 1/4. Then we set x̃0 = x, ỹ0 = y and z̃0 = z. We also set D̃0 = D = D0.
Fix j ∈ N and suppose that we have defined marked points {(x̃i, ỹi, z̃i)}ji=0 and domains {D̃i}ji=0.
Let ℓj be the boundary length of ∂D̃j and set Nj = ⌊ℓjδ−2/3−u/3⌋+ 1. Let also Fj be the event that
the event Ẽ1 defined in Lemma 5.14 occurs for the quantum surface parameterized by D̃j . We also
let w̃j be the point on the clockwise arc of ∂D̃j from x̃j to ỹj with boundary length distance on ∂D̃j

from x̃j equal to 3ℓj/8. Suppose that Fj occurs. Then, we let j0 ∈ N0 be the first 0 ≤ m ≤ Nj for
which we can find the desired sequence of good chunks in the definition of Fj during the first m
steps of the exploration and starting after the last chunk discovered during the formation of ∂D̃j .
Then, we let x̃j+1 be the marked point of the exploration in D̃j after we have performed it for j0
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times. Suppose that Fj does not occur. Then, at least one of the following has to occur for the
exploration in D̃j before w̃j is disconnected from 0 for the first time.

(i) There is a chunk which cannot be connected to ∂D̃j by at most log(δ−1)3 number of chunks
discovered before that chunk.

(ii) z̃j is not disconnected from 0 by good chunks.
(iii) The first chunk is not good.
(iv) The first chunk is good but it is disconnected from 0 before z̃j is disconnected from 0.
(v) Nj number of chunks have been explored.

(vi) z̃j and w̃j are disconnected from 0 simultaneously.

If (i) occurs, we let x̃j+1 be the marked point of the exploration after we discover the first chunk
which cannot be connected to ∂D by at most log(δ−1)3 number of chunks discovered before that
chunk. If either (ii) or (vi) occurs, we let x̃j+1 be the marked point of the exploration after we
discover the first chunk N which disconnects z̃j from 0. If (iii) occurs, we let x̃j+1 be the marked
point of the exploration after we discover the first chunk of the exploration in D̃j . If (iv) occurs, we
let x̃j+1 be the marked point of the exploration after we discover the first chunk which disconnects
from 0 the first chunk of the exploration in D̃j . Finally, if (v) occurs, we let x̃j+1 be the marked
point of the exploration in D̃j after Nj number of steps. In any case, we let D̃j+1 be the connected
component containing 0 in the exploration in D̃j whose boundary contains x̃j+1. Also, we let ỹj+1

be the point on ∂D̃j+1 with boundary length distance from x̃j+1 in ∂D̃j+1 equal to ℓj+1/2, where
ℓj+1 is the boundary length of ∂D̃j+1. Moreover, we let z̃j+1 (resp. w̃j+1) be the point on the
clockwise arc of ∂D̃j+1 from x̃j+1 to ỹj+1 with boundary length distance from x̃j+1 equal to ℓj+1/4

(resp. 3ℓj+1/8), and set Nj+1 := ⌊ℓj+1δ
−2/3−u/3⌋+ 1. We then let Fj+1 be the event that the event

Ẽ1 defined in Lemma 5.14 occurs for the quantum surface parameterized by D̃j+1.

Proof of Proposition 5.1. Suppose that we have the setup described in the above paragraphs. For
each j ∈ N0, we let G1

j be the event that the boundary length of D̃j is at least δ−2/3−u and G2
j the

event that the boundary length of ∂D̃j is at most δ−u1 . Let also Fj be the σ-algebra generated by
the chunks discovered up until ∂D̃j is formed. Lemma 5.14 implies that there exists p0 ∈ (0, 1)

depending only on A, c0, u and u1 such that P
[
Fj | Fj

]
1lGj ≥ p01lGj for each j ∈ N a.s., where

Gj = G1
j ∩G2

j . Thus, by iterating and possibly taking p0 ∈ (0, 1) to be smaller (depending only on
A, c0, u and u1), we can assume that P

[
F̃j | Fj

]
1lGj ≥ p01lGj for each j ∈ N a.s., where F̃j = ∪j+4

i=j Fi.

Suppose that F̃j ∩Eu,δ ∩ Ẽu1,δ occurs for some 0 ≤ j ≤ δ−u/3. Then, we will show that the required
events in the statement of Proposition 5.1 occur as well. Indeed, first we note that it is easy to
see that the exploration disconnects x̃j from 0 using only good chunks. Also, since Fj occurs, if N
is the first chunk discovered in the exploration in D̃j , then the boundary length of the part of N
contained in D̃j is in [ϵ0δ

2/3, ℓjδ
u/200]. Thus, possibly by taking p0 ∈ (0, 1) to be smaller (depending

only on A, c0, u and u0), we can assume that the aforementioned part of ∂N is disconnected from
0 by the exploration in D̃j . It follows that both of the conditions in the definition of Nδ hold and
that Nδ ≤ 5(1 + δ−2/3−u0−u/3) ≤ δ−2/3−u for all δ ∈ (0, 1) sufficiently small (depending only on
A, c0, u and u1). Furthermore, every chunk discovered in the exploration in D̃j up until ∂D̃j+1 is
formed can be connected to ∂D̃j using at most log(δ−1)3 number of chunks. Since the definition
of the D̃i’s implies that for each i, we have that every chunk discovered in the exploration in D̃i

up until ∂D̃i+1 is formed can be connected to ∂D̃i using at most 2 log(δ−1)3 number of chunks, we
obtain that every chunk discovered in up until ∂D̃i+1 is formed can be connected to ∂D using at
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most 10δ−u/3 log(δ−1)3 number of chunks and the latter is at most δ−u for δ ∈ (0, 1) sufficiently
small (depending only on A, c0, u1 and u). Therefore, the events in (i) and (ii) occur.

Finally, to complete the proof, we F̃ be the event that F5j occurs for some 0 ≤ j ≤ δ−u/3/5−1. It
follows from the previous paragraph that there exist constants c1, c2 > 0 depending only on p0 such
that P

[
F̃ c∩Eu,δ∩Ẽu1,δ

]
≤ c1 exp(−c2δ−u/3). Therefore, it suffices to give appropriate upper bounds

for P
[
Ẽcu1,δ

]
. But the latter follows by combining Lemma 5.9 with Proposition B.7. In particular,

we obtain that there exist universal constants c3, c4 > 0 such that P
[
Ẽcu1,δ

]
≤ c3 exp(−c4δ−u1). This

completes the proof. □

6. QUENCHED BOUNDS FOR THE EXPECTED EXIT TIME FROM A METRIC BALL

In this section we will prove one main ingredient which is used to prove the upper bound in
the heat kernel estimate, namely quenched upper and lower bounds for the exit time of a Liouville
Brownian motion from a ball. For a set A ⊆ S, we let τA be the exit time of the Liouville Brownian
motion from A. Let µQSPH denote the law of the infinite quantum sphere.

Theorem 6.1. There exists a deterministic constant κ > 0 so that the following is true. For µQSPH-a.e.
instance (S, h, x, y) there exists r0 > 0 random such that for every z ∈ S and r ∈ (0, r0) we have that

(6.1) r4(log r−1)−κ ≤ Ez[τBh(z,r)] ≤ r4(log r−1)κ,

where the expectation is over just the Brownian motion and the Brownian map instance is fixed.

We note that (6.1) is equivalent to proving that

(6.2) r4(log r−1)−κ ≤
∫
S
GBh(z,r)(z, y) dµh(y) ≤ r4(log r−1)κ

where GBh(z,r) is the Green’s function on the ball Bh(z, r). To establish (6.1) we will in fact estab-
lish (6.2). Also, we note that [73, Theorem 1.2] implies that there exists a deterministic constant
α ∈ (0, 1) such that µQSPH-a.e. there exists a random constant C ≥ 1 such that for all u, v ∈ S we
have that

(6.3) C−1d(u, v)1/α ≤ dh(u, v) ≤ Cd(u, v)α,

where we recall that d denotes the Euclidean metric on S2 and we assume that (S, x, y) is parame-
terized by S2.

The proof of the upper bound in Theorem 6.1 is straightforward and short and given in Subsec-
tion 6.1. The proof of the lower bound is much more involved and given in the remainder of this
section; see Figure 4 for an illustration of the proof.

6.1. Proof of the exit time upper bound. The upper bound in Theorem 6.1 follows from (6.3)
and the upper volume growth estimate in Theorem 4.1 by the following argument.

Proof of Theorem 6.1, upper bound. Let B = Bh(z, r) be fixed. By (6.3) we have B ⊂ B
(
z, c1r

α
)

for
some finite random constant c1. Therefore,

Ez
[
τB
]
=

∫
B
GB(z, u) dµh(u) ≤

∫
B
GB(z,2c1rα)(z, u) dµh(u).

On the other hand, recall that by (3.16)

GB(0,1/2)(u, v) =
1

π
log

1

d(u, v)
+ F (u, v)
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for some continuous function F : B(0, 1/2)×B(0, 1/2) → R. Hence, for all u ∈ B,

GB(z,2c1rα)(z, u) = GB(0,2c1rα)(0, u− z) = GB(0,1/2)

(
0, u−z

4c1rα

)
=

1

π
log

4c1r
α

d(z, u)
+ F

(
0, u−z

4c1rα

)
≤ 1

π
log

crα

dh(z, u)1/α
+ sup
B(0,1/4)

F (0, ·) =
1

π
log
(
rαdh(z, u)

−1/α)+ c̃,

for some random constants c, c̃, where we used the second inequality in (6.3) in the fourth step.
For abbreviation we introduce the sets An := Bh(z, 2

−nr) \ Bh(z, 2−n−1r), n ≥ 0. Then the upper
estimate on the volume growth in Theorem 4.1 gives that there exists a deterministic constant
κ > 0 such that µQSPH-a.e. there exists random r0 > 0 such that for each z ∈ S, r ∈ (0, r0), we have
that

µh(An) ≤
(
2−nr

)4(
log
(
2n/r

))κ ≤ 2−4nr4
(
n log 2 + log(r−1)

)κ
.

By combining the above estimates we obtain that

Ez
[
τB
]
≤ 1

π

∫
B
log
(
rαdh(z, u)

−1/α) dµh(u) + c̃ µh(B)

≤ 1

π

∞∑
n=0

∫
An∩B

log
(
rαdh(z, u)

−1/α) dµh(u) + c̃ µh(B)

≤ 1

π

∞∑
n=0

log
(
rα(2−n−1r)−1/α

)
µh(An ∩B) + c̃ µh(B)

≤ 1− α2

πα
log(r−1)µh(B) + c̃ µh(B) +

log 2

απ

∞∑
n=0

(n+ 1)µh(An)

≤ ĉ log(r−1)µh(B) + ĉ r4 log(r−1)κ,

for some random constant ĉ and the claim follows from the upper estimate in Theorem 4.1. □

6.2. Definition of the good event. Throughout this section, we will make use of the notation
introduced in Subsections 5.1 and 5.2 some of which we now recall. Suppose that we have a
quantum surface D which is homeomorphic to D. For x, y ∈ ∂D, we let [x, y]⟳⟳⟳∂D (resp. [x, y]⟲⟲⟲∂D)
denote the clockwise (resp. counterclockwise) arc of ∂D from x to y.

We are now going to make a particular choice of the event E in the context of Proposition 5.1,
where E is considered as a Borel subset of MCPU

2 . Fix δ ∈ (0, 1) and A ≥ A0 with A0 ∈ [2,∞) as in
Proposition 5.1. Suppose that we consider one of the following two quantum surfaces. Either we
let D = (D, h, 0) have law µL=ℓQD,W and η′ be an independent radial SLE6 starting from a uniformly
random point on the boundary and targeted at 0, or we let W = (H, h, 0,∞) have law µW=2

QW and η′

be an independent chordal SLE6 on H from 0 to ∞. Recall the definition of σδ/A in (5.6), and set
σ = δ ∧ σδ/A. Let N = NDσ or N = NWσ , respectively, be the quantum surface disconnected from 0

by η′([0, σ]), namely that parameterized by the interior of the hull Kσ of η′([0, σ]). Recall that the
top (resp. bottom) of ∂N is given by ∂N ∩D (resp. ∂N ∩ ∂D). The left (resp. right) side of the top
is the part of the top which is to the left (resp. right) of η′(σ). Similarly, the left (resp. right) side
of the bottom is the part of the bottom which is to the left (resp. right) of η′(0). Fix M ≥ 1 and
u, p > 0. Conditioned on σ = σδ/A (which implies that N is simply connected and either the top left
or the top right of N has zero length), let E be the event that the following additional properties
hold.
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x

zj

Aj

FIGURE 4. Illustration of the main step in the proof of the exit time lower bound
from Theorem 6.1. We will construct annuli consisting of “good” SLE6 chunks
(green) so that whenever a Liouville Brownian motion passes through such an an-
nulus it is likely to take at least a certain amount of time to do so. The definition of
the good chunk (Subsection 6.2) includes a lower bound on the amount of quantum
mass that it has disconnected away from its boundary. We will control the size of
the good annuli in Subsection 6.3. The purpose of Subsection 6.4 is to show that
whenever a Liouville Brownian motion passes through such an annulus, it is very
likely to enter the interior of such a good chunk and hence take a certain amount
of time to pass through. The proof is completed in Subsection 6.5, where we show
that these good annuli are likely to occur all over our quantum sphere.

(I) The length of the top, bottom left, and bottom right of N are all at least δ2/3/M .
(II) The dh|N -diameter of N is at most Mδ1/3.

(III) Let φ : N → D be the unique conformal transformation which takes the bottom left point to
−1, the bottom middle point η′(0) to −i, and the bottom right point to 1 and consider the
embedding of N into D induced by φ. Then the quantum mass assigned to B(0, 1/2) is at
least δ4/3/M . Also, for each r ∈ (0,M−1), every point with quantum metric distance at least
δ1/3r from ∂D (with respect to the field h|N ◦ φ−1 +Q log |(φ−1)′|) has Euclidean distance at
least rM from ∂D.

(IV) For every ϵ ∈ (0, δ2/3/M) and points x, y ∈ ∂N such that both [x, y]⟳⟳⟳∂N and [x, y]⟲⟲⟲∂N have
boundary length at least ϵ we have that their dh-distance in N is at least ϵM . If either [x, y]⟳⟳⟳∂N
or [x, y]⟲⟲⟲∂N has boundary length at most ϵ then their dh-distance in N is at most ϵ1/M .

(V) For every ϵ ∈ (0, δ1/3/M) and x, y ∈ ∂N , the ϵ-neighborhood (with respect to dh in N ) of
[x, y]⟲⟲⟲∂N has quantum mass at least ϵ2+u/M times the length of [x, y]⟲⟲⟲∂N . The same is also true
with [x, y]⟳⟳⟳∂N in place of [x, y]⟲⟲⟲∂N .

(VI) For every ϵ ∈ (0, δ1/3/M), the quantum area of the ϵ-neighborhood of ∂N is at most ϵpδp.

Proposition 6.2. Let A0 ∈ [2,∞) and c0,max ∈ (0,∞) be as in Proposition 5.1. For each A ≥ A0

and c0 ∈ (0, c0,max] there exist M0 ∈ [1,∞) and p0 > 0, depending only A, c0 and u, such that for all
M ≥M0 and p ∈ (0, p0), µW=2

QW

[
EWσ ∩ {N ∈ E}

∣∣ σ < δ
]
≥ 1− c0A

−2/3.

In order to start to prove Proposition 6.2, we first need to recall the following lower bound
regarding the amount of mass near the boundary for a quantum disk [46, Lemma 3.4].
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Lemma 6.3. Suppose that D = (D, h, 0) has law µL=ℓQD,W. For each u > 0 there a.s. exists c > 0 such
that for each ϵ ∈ (0, 1) and x, y ∈ ∂D the LQG area of the ϵ-neighborhood of [x, y]⟲⟲⟲∂D is at least cϵ2+u

times the length of [x, y]⟲⟲⟲∂D. The same holds with [x, y]⟳⟳⟳∂D in place of [x, y]⟲⟲⟲∂D.

We also need the following upper bound for distances between points on the boundary of a
quantum disk established in [46, Lemma 3.2].

Lemma 6.4. Fix ℓ > 0 and let D = (D, h) have law µL=ℓQD or µL=ℓQD,W. For each ζ > 0 there a.s. exists
C > 0 so that for all x, y ∈ ∂D we have that

dh(x, y) ≤ Cνh([x, y]
⟲⟲⟲
∂D)

1/2
(
| log νh([x, y]⟲⟲⟲∂D)|+ 1

)7/4+ζ
and the same is true with [x, y]⟳⟳⟳∂D in place of [x, y]⟲⟲⟲∂D. If we let C be the smallest constant for which
this is satisfied, then for A > 1 we have that P[C > A] decays to 0 as A→ ∞ faster than any negative
power of A.

Lemma 6.5. There exists a deterministic constant β̃ > 0 such that the following is true. Suppose that
D = (D, h, 0) has law µL=1

QD,W. Then, a.s. under µL=1
QD,W, the quantum boundary length measure νh is

β̃-Hölder continuous with respect to the Euclidean metric.

Proof. First, we note that if h̃ has the law of a free boundary GFF on D with some fixed normaliza-
tion, then [84, Proposition 3.7] implies that for every p ∈ (1, p∗), there exists Cp < ∞ such that
E
[
ν
h̃
(A)p

]
≤ Cp diam(A)p for each A ⊆ ∂D Borel, where ζp = (2 + γ2

4 )p −
γ2p2

4 , p∗ is the unique
p∗ > 1 such that ζp∗ = 2, and diam denotes Euclidean diameter. Hence, by choosing p ∈ (1, p∗)

such that ζp > 1 and combining with Kolmogorov’s criterion, we obtain that there exists β̃ > 0

deterministic such that ν
h̃

is a.s. β̃-Hölder continuous with respect to the Euclidean metric.
Now, we recall some results from [5]. Suppose that f is sampled from the group conf(H) of con-

formal automorphisms of H when the latter is endowed with the Haar measure, and let h be sam-
pled from the infinite measure of a weight-2 quantum disk with γ =

√
8/3 (see [35, Section 4.5])

weighted by νh(∂H)−2. Then, [5, Theorem 1.2] implies that there exists a constant C such that the
law of h◦f−1+Q log |(f−1)′| is given by C times the law of ĥ := h̃−2Q log | · |++c, where h̃ is a free
boundary GFF on H and c is sampled from the infinite measure on R given by exp(−Qc)dc. Consider
the conformal transformation ψ : H → D given by ψ(z) = z−i

z+i . Note that h̃ ◦ψ−1 is a free boundary
GFF on D with some fixed normalization and −2Q logmax{|ψ−1(·)|, 1}+Q log |(ψ−1)′(·)|+c = O(1)

uniformly in ∂D. Hence, combining with Kahane’s convexity inequality, we obtain that the quantum
boundary length of ĥ ◦ ψ−1 + Q log |(ψ−1)′| is a.e. β̃-Hölder continuous on ∂D with respect to the
Euclidean metric. Therefore, the same is a.e. true for h ◦ f−1 + Q log |(f−1)′| and since the event
that the quantum boundary length is β̃-Hölder continuous with respect to the Euclidean metric is
invariant under the coordinate change formula for quantum surfaces, we obtain that a sample from
the infinite measure of a weigh-2 quantum disk satisfies the above property a.e. Thus, combining
with disintegration with respect to the total boundary length (see [35, Section 4.5]), we obtain that
if (D, h) is sampled from µL=1

QD , then its boundary length is a.s. β̃-Hölder continuous with respect
to the Euclidean metric. Therefore, the same is true for a sample (D, h, 0) from µL=1

QD,W by absolute
continuity. □

Lemma 6.6. There exists a constant β > 0 so that the following is true. Suppose that ℓ > 0 and
D = (D, h, 0) has law µL=ℓQD,W. There is a.s. ϵ0 > 0 so that for all ϵ ∈ (0, ϵ0) and a, b ∈ ∂D with both
νh([a, b]

⟳⟳⟳
∂D) ≥ ϵ and νh([a, b]⟲⟲⟲∂D) ≥ ϵ we have that dh(a, b) ≥ ϵβ.
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Proof. First, we note that a sample from µL=ℓQD,W can be obtained by starting with a sample from
µL=1
QD,W and then multiplying lengths with ℓ, distances with ℓ1/2 and areas by ℓ2. Thus, it suffices

to prove the claim in the case that ℓ = 1. Suppose that (S, x, y) has distribution µQSPH which
we can assume that it is parameterized by the Euclidean sphere S2. Recall that the metric dh on
S2 is Hölder continuous with respect to the Euclidean metric d on S2, i.e., there exists α ∈ (0, 1)

deterministic and C ≥ 1 random such that (6.3) holds for each u, v ∈ S2. Let τ be the smallest
r > 0 such that the boundary length of B•h,y(x, r) is equal to 1. Conditional on τ <∞, the quantum
surface D parameterized by S \ B•h,y(x, r) and marked by y has law µL=1

QD,W. Now, suppose that
we conformally map D to D with y sent to 0, and consider the surface parameterized by D. In
particular, we consider the conformal transformation ϕ mapping D onto D such that ϕ(y) = 0

and ϕ′(y) > 0, and set h̃ := h ◦ ϕ−1 + Q log |(ϕ−1)′|. Note that there a.s. exists A > 0 such that
distd(y, ∂D) ≥ A. Fix p > 1 sufficiently large and deterministic (to be chosen) and let a, b ∈ ∂D
such that both ν

h̃
([a, b]⟳⟳⟳∂D) ≥ ϵ and ν

h̃
([a, b]⟲⟲⟲∂D) ≥ ϵ. Then, we have that both νh([ã, b̃]

⟳⟳⟳
∂D) ≥ ϵ and

νh([ã,̃ b]
⟲⟲⟲
∂D) ≥ ϵ with ã = ϕ−1(a) and b̃ = ϕ−1(b). Suppose that dh(ã, b̃) ≤ d

h̃
(a, b) ≤ ϵp. Then, we

have that d(ã, b̃) ≤ Cαϵαp < A for ϵ > 0 sufficiently small. Moreover, since d
h̃

is a.s. equivalent to
the Euclidean metric on D, we obtain that it is a.s. the case that Bd

h̃
(z, ϵ) ⊆ D ∩ Bd(z, 1/2) for all

z ∈ ∂D and all ϵ > 0 sufficiently small. In particular, for ϵ > 0 sufficiently small, we have that the
geodesic γ with respect to d

h̃
from a to b disconnects from 0 either [a, b]⟳⟳⟳∂D or [a, b]⟲⟲⟲∂D, and so ϕ−1(γ)

disconnects from y either [ã, b̃]⟳⟳⟳∂D or [ã, b̃]⟲⟲⟲∂D. Note that dh(ã, z) ≤ ϵp for all z ∈ ϕ−1(γ), since ϕ−1(γ)
is the geodesic in D connecting ã to b̃ with respect to the interior-internal metric dh|D. It follows
that Bd(ã, Cαϵαp) disconnects from y either [ã, b̃]⟳⟳⟳∂D or [ã, b̃]⟲⟲⟲∂D for all ϵ > 0 sufficiently small. We
can assume that the latter holds. Then, the Beurling estimate implies that for all ϵ > 0 sufficiently
small, the probability that a Brownian motion starting from y exits D in [ã, b̃]⟲⟲⟲∂D is ≲ ϵαp/2, where
the implicit constant depends only on Cα and A. This implies that [ã, b̃]⟲⟲⟲∂D gets mapped to an arc in
∂D with Euclidean length at most O(ϵαp/2). Finally, to complete the proof, we let β̃ be the constant
of Lemma 6.5 and choose p > 1 such that αpβ̃/2 > 1. Then, the µL=1

QD,W-a.e. β̃-Hölder continuity
of ν

h̃
with respect to d shown in Lemma 6.5 implies that the quantum length of [a, b]⟲⟲⟲∂D is at most

O(ϵαpβ̃/2) for all ϵ > 0 sufficiently small. But that is a contradiction since ν
h̃
([a, b]⟲⟲⟲∂D) ≥ ϵ. Hence,

d
h̃
(a, b) ≥ ϵp and this completes the proof. □

Lemma 6.7. Fix ℓ > 0, u ∈ (0, 2) and let D = (D, h, 0) be a sample from µL=ℓQD,W. Then, µL=ℓQD,W-a.e.,
there exist random constants C > 0, δ0 ∈ (0, 1) such that the quantum area of the δ-neighborhood of
∂D with respect to dh is at most Cδ2−u for all δ ∈ (0, δ0).

Proof. We assume that we have the setup of the proof of Lemma 6.4 given in [46]. In particular,
we let p : [0, 1] → D be the quotient map introduced in [46, Section 3.1]. Then, we know from
[46, Section 3.1] that ∂D = p({Tr : r ∈ [0, ℓ]}), where Tr = inf{t ≥ 0 : Bt = −r} and B is a
standard Brownian motion coupled with D. Fix ũ ∈ (0, 1/2) sufficiently small (to be chosen). Then,
Lemma 6.4 implies that there a.s. exists a constant C > 0 such that dh(x, y) ≤ Cνh([x, y]

⟳⟳⟳
∂D)

1
2
−ũ for

all x, y ∈ ∂D. Moreover, by possibly taking C to be larger, we can assume using [46, Lemma 3.3]
that µh(Bdh(z, δ)) ≤ Cδ4−ũ for all z ∈ ∂D, δ ∈ (0, 1). Let δ0 ∈ (0, 1/2) be sufficiently small such that
δ̃ ∈ (0, 1/2) where δ̃ > 0 is such that Cδ̃1/2−ũ = δ. Then, we have that p({Tr : r ∈ [(k− 1)δ̃, kδ̃]}) ⊆
Bdh(T ((k − 1)δ̃), δ) for all 1 ≤ k ≤ δ̃−1 . It follows that the δ-neighborhood of ∂D with respect to
dh is contained in ∪δ̃−1

k=1Bdh(p(T ((k−1)δ̃)), 2δ). Therefore, a union bound implies that the quantum
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area of the δ-neighborhood of ∂D with respect to dh is at most ≲ δ4−ũ−
2

1−2ũ , and so the proof of
the lemma is complete by choosing ũ such that 4− ũ− 2

1−2ũ > 2− u. □

Proposition 6.8. Fix ϵ ∈ (0, 1) and let D = (D, h) be sampled from µL=1
QD,W. Define the event E(h)

that conditions (II)-(VI) hold for the quantum surface D instead of N and with δ = 1. Then, we have
that µL=1

QD,W

[
E(h)

]
≥ 1− ϵ provided M is large enough and p is small enough.

Proof. Recall that a sample from µL=1
QD,W can be produced as follows. Let (S, h, x, y) be a sample

from µQSPH and let η′ be an independent whole-plane SLE6 in S from x to y parameterized by
quantum natural time. Let also L be the process describing the boundary length evolution of the
connected component Ut of S \ η′([0, t]) containing y. We let τ be the first time t that Lt = 1. Then,
conditional on τ < ∞, we let D be the surface obtained by conformally mapping Uτ onto D using
the conformal map ψ : Uτ → D such that ψ(y) = 0 and ψ′(y) > 0 and then applying the coordinate
change formula for quantum surfaces. Since D is a metric space of finite diameter a.s., we can
arrange so that part (II) holds with probability as close to 1 as we want by taking M sufficiently
large. Moreover, since µh(B(0, 1/2)) > 0 µL=1

QD,W-a.s. and there exists a deterministic constant
α ∈ (0, 1) such that the metric in S is α-Hölder continuous with respect to the Euclidean metric
and ψ is Hölder continuous with some fixed and deterministic exponent (see [85, Theorem 5.2]),
we obtain that part (III) holds with probability as close to 1 as we want by taking M sufficiently
large. Also, it follows by combining Lemmas 6.4 and 6.6 that part (IV) holds with arbitrarily high
probability provided we choose M sufficiently large. Furthermore, by arguing in the same way
but using Lemma 6.3 instead, we obtain that part (V) holds with arbitrarily high probability if we
choose M sufficiently large. Finally, Lemma 6.7 implies that part (VI) holds with arbitrarily high
probability as well if we choose M large enough and p small enough. This completes the proof. □

Next, we focus on proving Proposition 6.2. First, we will prove that condition (IV) holds with
high probability provided M is sufficiently large. We begin by proving that the lower bound on
quantum distances in condition (IV) holds with high probability. Since the proof of the lower
bound will be technical, we will give its proof in the next two lemmas. First, we will deal with the
case that both of the boundary points x and y lie on H ∩ ∂N . This is the content of the following
lemma.

Lemma 6.9. Let W = (H, h, 0,∞) have law µW=2
QW and let η′ be a chordal SLE6 in H from 0 to ∞

which is independent of W. Fix ℓ > 0 and let x > 0 be such that νh([0, x]) = ℓ. Let also τ be the first
time that η′ disconnects x from ∞. Moreover, let (Kt) denote the hulls of η′ and let N be the quantum
surface parameterized by the interior of Kτ . Then, there a.s. exist ϵ0 ∈ (0, 1) and M ∈ (1,∞) such
that for all ϵ ∈ (0, ϵ0) the following holds. Let a, b ∈ H ∩ ∂N be such that νh([a, b]⟳⟳⟳∂N ) ≥ ϵ and
νh([a, b]

⟲⟲⟲
∂N ) ≥ ϵ. Then, we have that dh|N (a, b) ≥ ϵM , where dh|N denotes the interior-internal metric

on N with respect to h.

Proof. Step 1. Overview and setup. First we note that the locality property of SLE6 implies that we
can couple η′ with an SLE6 η̃

′ in H from 0 to x such that η′ and η̃′ agree up until the first time that
they disconnect x from ∞. From now on, we assume that we are working with this coupling. Let η̃
be the left outer boundary of η̃′ and for ρ ≥ 0, we let τ̃ρ be the first time t that dist(η̃(t),R−) ≤ ρ.
Note that τ̃ρ < ∞ a.s. for all ρ ≥ 0. Let also D̃ρ be the unbounded connected component of
H \ η̃([0, τ̃ρ]). Moreover, we fix 0 < ρ2 < ρ1 < x and let Ĩ be the counterclockwise segment traced
by η̃ between times σ̃ and τ̃ρ1 , where σ̃ is the last time before time τ̃ρ1 that η̃ intersects [x,∞) (when
viewed as a set of prime ends on the left side of η̃). We also set J̃ = η̃([σ̃, τ̃ρ2 ]). The proof of the
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N

x0

N

η̃′

x0

x0

η̃

FIGURE 5. Illustration of the proof of Lemma 6.9. Top left: The chunk N . Top
right: An SLE6 process η̃′ in H from 0 to x coupled to agree with η′ up until they
first separate x from ∞, shown on the event that the hull that it separates from ∞
parameterizes N . Bottom: The right (standing from x looking towards 0) boundary
of η̃′ is η̃, which we view as a curve from x to 0.

lemma consists of three steps. In Step 2, we will prove that the lower bound on quantum distances
in condition (IV) holds for a quantum wedge Ŵ parameterized by H of weight γ2

2 = 4
3 for points

on compact intervals on R which are bounded away from 0. Since the law of the field h restricted
to a small neighborhood of Ĩ in N is absolutely continuous with a quantum wedge of weight 4

3 , we
will deduce in Step 3 the claim of the lemma for a, b ∈ Ĩ ∩ ∂N and the field h|H\J̃ in place of h|N .
Finally, we will complete the proof in Step 4 using the time-reversal invariance of the law of η̃.

Step 2. Proof of the claim for a quantum wedge of weight γ2

2 = 4
3 . Let h̃ be a free boundary GFF on

H with the additive constant taken so that its average on H∩∂D is equal to 0. Then Proposition 6.8
combined with the argument in Lemma 6.5 imply that for every fixed −∞ < a < b <∞, there a.s.
exist ϵ0 ∈ (0, 1),M ∈ (1,∞) such that the following is true. For all ϵ ∈ (0, ϵ0) and all z, w ∈ [a, b]

such that ν
h̃
([z, w]) ≥ ϵ, we have that d

h̃
(z, w) ≥ ϵM , where d

h̃
denotes the interior-internal metric

on H with respect to h̃.
Fix 0 < a < b. Then the above implies that there a.s. exists ϵ0 ∈ (0, 1) such that for all ϵ ∈ (0, ϵ0)

and all a ≤ z < w ≤ b such that ν
h̃
([z, w]) ≥ ϵ, we have that d

h̃|Ar,R
(z, w) ≥ ϵM , for all 0 < r < a <

b < R, where Ar,R := B(0, R) \B(0, r). Note that if we fix such r,R, the above event is determined
by h̃|Ar,R . Suppose that Ŵ = (H, ĥ, 0,∞) has the law of a weight γ2

2 = 4
3 quantum wedge with the

circle average embedding. Then, for fixed 0 < r < a < b < R, the laws of ĥ|Ar,R and h̃|Ar,R are
mutually absolutely continuous and so it is a.s. the case that there exist ϵ0 ∈ (0, 1),M ∈ (1,∞) such
that for all ϵ ∈ (0, ϵ0), if z, w ∈ [a, b] are such that ν

ĥ
([z, w]) ≥ ϵ, we have that d

ĥ|Ar,R
(z, w) ≥ ϵM .

Note that d
ĥ

a.s. induces the Euclidean topology (see [54, Theorem 1.3]). Moreover, the function
t → ν

ĥ
([0, t]) is a homeomorphism on R+ with respect to the Euclidean topology (and hence

with respect to the topology induced by d
ĥ

on R+), which implies that it is a.s. the case that
there exists δ0 ∈ (0, 1) such that d

ĥ
(z, w) ≥ δ0 for all z, w ∈ [a, b] such that ν

ĥ
([z, w]) ≥ ϵ0.

Also, since distd
ĥ
([a, b], ∂Ar,R) > 0 a.s., possibly by taking ϵ0 to be smaller, we can assume that

d
ĥ
(z, w) = d

ĥ|Ar,R
(z, w) for all z, w ∈ [a, b] such that ν

ĥ
([z, w]) ≤ ϵ0. Combining, we obtain that

possibly by taking M to larger, we have that d
ĥ
(z, w) ≥ ϵM for all a ≤ z < w ≤ b such that

ν
ĥ
([z, w]) ≥ ϵ, and all ϵ ∈ (0, ϵ0). The same holds for any −∞ < a < b < 0 by symmetry.
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Step 3. Proof of the claim for the field h|H\J̃ . Next, we note that It follows from [79, Section 2] that

η̃ has the law of an SLEκ(
κ
2 −2;κ−4) process in H from x to 0, where κ = 8

3 and the force points are
located at x− and x+ respectively. Let also η be an SLEκ(

κ
2 −2;κ−4) process in H from x to ∞ with

the force points located at x− and x+ respectively, which is independent of W. Then, combining
[88, Proposition 1.7] with [35, Theorem 1.2], we obtain the following description of the quantum
surface parameterized by the region to the left of η. Let ϕ be the conformal transformation mapping
the connected component of H \ η lying to the left of η onto H such that ϕ(x) = 0, ϕ(∞) = ∞
and ϕ(0) = −1. Then, if we parameterize the field ȟ := h ◦ ϕ−1 + Q log |(ϕ−1)′| by the circle
average embedding, it has the same law with the field obtained when we parameterize Ŵ by
the circle average embedding. For ρ ≥ 0, we let τρ be the first time t that dist(η(t),R−) ≤ ρ.
Suppose that we are working on the event that τρ2 < ∞, where 0 < ρ2 < ρ1 < x are small
but fixed. Let I be the counterclockwise segment traced by η between the last time before τρ1
that it intersects [x,∞) and time τρ1 (seen as set of prime ends on the left side of η). Then, if
we apply the results of Step 2 for Ŵ on the time-interval ϕ(I), we obtain that there a.s. exist
ϵ0 ∈ (0, 1),M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0), the following is true. Let a, b ∈ I be such that
η hits a before it hits b and νh([a, b]) ≥ ϵ. Then, it holds that dȟ(ϕ(a), ϕ(b)) ≥ ϵM . Suppose that
ϵ0 ∈ (0, 1) is chosen such that ϵ0 < distdȟ(ϕ(I), ϕ(η([τρ2 ,∞)))). We claim that if we further assume
that νh([a, b]) ≤ ϵ0, we have that dh|Dρ2 (a, b) = dh|ϕ−1(H)

(a, b), where Dρ denotes the unbounded
connected component of H \ η([0, τρ]). Indeed, clearly we have that dh|Dρ2 (a, b) ≤ dh|ϕ−1(H)

(a, b).
Let γ be a dh|Dρ2 -geodesic path in Dρ2 from a to b. Suppose that γ intersects η((τρ2 ,∞)), and let
t be the last time that γ hits η((τρ2 ,∞)), when γ is parameterized by [0, 1] and γ(0) = a, γ(1) =

b. Then, we have that the dh-length of γ|[t,1] is at least distdȟ(ϕ(I), ϕ(η([τρ2 ,∞)))) ≥ ϵ0 and so
dh|Dρ2

(a, b) ≥ distdȟ(ϕ(I), ϕ(η([τρ2 ,∞)))) ≥ ϵ0, but that is a contradiction. Thus, it follows that
dh|Dρ2

(a, b) = dh|ϕ−1(H)
(a, b). Combining everything, we obtain that the following is true a.s. on the

event that τρ2 < ∞. There exists ϵ0 ∈ (0, 1),M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0), the following
holds. Let a, b ∈ I be such that η hits a before b and ϵ ≤ νh([a, b]

⟲⟲⟲
∂N ) ≤ ϵ0. Then dh|Dρ2 (a, b) ≥ ϵM .

Also, it follows from [86, Theorem 6] that the law of η̃|[0,τ̃ρ2 ] is absolutely continuous with respect
to the law of η|[0,τρ2 ] when the latter is restricted to the event that τρ2 < ∞. It follows that there

a.s. exist ϵ0 ∈ (0, 1),M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0), the following is true. Let a, b ∈ Ĩ be
such that a is hit before b by η̃ and ϵ ≤ νh([a, b]) ≤ ϵ0. Then, it holds that dh|

D̃ρ2

(a, b) ≥ ϵM . We

claim that dh|H\J̃
(a, b) ≥ ϵM for such points as well, possibly by taking ϵ0 to be smaller. Indeed,

let γ be a path in H \ J̃ connecting a to b with γ : (0, 1) → H \ J̃ and γ(0) = a, γ(1) = b. If γ is
contained in D̃ρ2 , then clearly the dh-length of γ is at least ϵM since dh|

D̃ρ2

(a, b) ≥ ϵM . Suppose that

γ intersects ∂D̃ρ2 \ ∂(H \ J̃). Then we have that γ intersects η̃([0, σ̃]) and let t be the last time that
this occurs. Then we have that γ|(t,1) is a path in D̃ρ2 connecting γ(t) to b and the boundary length
of the counterclockwise arc of ∂D̃ρ2 from γ(t) to b is at least ϵ. Hence, the dh-length of γ|(t,1) is at
least ϵM and so the dh-length of γ is at least ϵM in any case. It follows that dh|H\J̃

(a, b) ≥ ϵM .
Step 4. Conclusion of the proof. Now, let η̂ be the time-reversal of η̃ and note that η̂ has the law

of an SLEκ(κ− 4; κ2 − 2) process in H from 0 to x, where the force points are located at 0− and 0+

respectively [71]. Similarly, for ρ ∈ [0, 1), we set τ̂ρ = inf{t ≥ 0 : dist(η̂(t), [x,∞)) < ρ} and let
σ̂ be the last time before time τ̂ρ1 that η̂ hits R−. Set also Ĵ = η̂([σ̂, τ̂ρ2 ]). Similarly with Step 3,
possibly by taking ϵ0 ∈ (0, 1) to be smaller and M ∈ (1,∞) to be larger, we have that the following
holds for all ϵ ∈ (0, ϵ0). Let a, b be points on Ĵ viewed as prime ends on the right side of η̂ such
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that η̂ hits a before it hits b and ϵ ≤ νh([a, b]) ≤ ϵ0. Then we have that dh|H\Ĵ
(a, b) ≥ ϵM . Suppose

that these two events hold. Note that we can choose 0 < ρ2 < ρ1 < x sufficiently small such that
η̃([τ̃ρ1 ,∞)) ∩ η̂([τ̂ρ1 ,∞)) = ∅ with as high probability as we want. Suppose that this occurs as well.
Note also that in that case, we have that J̃ ∪ Ĵ = H∩∂N . Moreover, possibly by taking ϵ0 ∈ (0, 1) to
be smaller, we can assume that the boundary length distance in ∂N between η̃([τ̃ρ1 ,∞)) ∩ ∂N and
η̂([τ̂ρ1 ,∞)) ∩ ∂N is at least ϵ0. Fix a, b ∈ H ∩ ∂N such that ϵ ≤ min{νh([a, b]⟳⟳⟳∂N ), νh([a, b]

⟲⟲⟲
∂N )} ≤ ϵ0.

Without loss of generality, we can assume that [a, b]⟲⟲⟲∂N ⊆ H. Suppose that a ∈ η̃([0, τ̃ρ1 ]). If
b ∈ η̃([0, τ̃ρ1 ]), then we have that dh|N (a, b) ≥ dh|H\J̃

(a, b) ≥ ϵM . If b /∈ η̃([0, τ̃ρ1 ]), then we must
have that b ∈ η̂([0, τ̂ρ1 ]). Suppose that a /∈ η̂([0, τ̂ρ1 ]). If b ∈ η̂([0, τ̂ρ1 ]), then clearly we have that
dh|N (a, b) ≥ dh|H\Ĵ

(a, b) ≥ ϵM . If b /∈ η̂([0, τ̂ρ1 ]), then we must have that the boundary length
distance in ∂N between a and b is at least ϵ0, and that is a contradiction. Therefore, in any case, we
have that dh|N (a, b) ≥ ϵM . Moreover, following similar arguments as the ones given in the previous
paragraphs, we obtain that there a.s. exists δ0 > 0 such that dh|N (a, b) ≥ δ0 for all a, b ∈ ∂N such
that [a, b]⟲⟲⟲∂N ⊆ ∂N and νh([a, b]

⟲⟲⟲
∂N ) ≥ ϵ0. Combining everything, we obtain that there a.s. exist

ϵ0 ∈ (0, 1),M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0), the following holds. Let a, b ∈ H ∩ ∂N be such
that νh([a, b]⟳⟳⟳∂N ) ≥ ϵ and νh([a, b]⟲⟲⟲∂N ) ≥ ϵ. Then we have that dh|N (a, b) ≥ ϵM . This completes the
proof of the lemma. □

Now we are ready to prove that condition (IV) holds with high probability in the context of
Proposition 6.2.

Lemma 6.10. Suppose that we have the setup of Lemma 6.9. Then there a.s. exist ϵ0 ∈ (0, 1) and
M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0) the following hold. Let a, b ∈ ∂N be such that νh([a, b]⟳⟳⟳∂N ) ≥ ϵ

and νh([a, b]⟲⟲⟲∂N ) ≥ ϵ. Then, we have that dh|N (a, b) ≥ ϵM . Also, we have that if z, w ∈ ∂N are such
that either νh([z, w]⟳⟳⟳∂N ) ≤ ϵ or νh([z, w]⟲⟲⟲∂N ) ≤ ϵ, then dh|N (z, w) ≤ ϵ1/M .

Proof. We will only prove the first claim of the lemma (lower bound) since the second claim (upper
bound) follows from similar arguments. Lemma 6.9 implies that it suffices to prove the claim in the
case that either both a and b lie on R∩∂N or one of the points lies on R∩∂N and the other one lies
on H∩∂N . We will first prove the claim in the case that {a, b} ⊆ R∩∂N . Recall the decomposition
µL=1
QD,W[ · ] =

∫∞
0 µA=α,L=1

QD,W [ · ] 1√
2πα3

e−1/(2α)dα. Also, Proposition 6.8 implies that the following is

true for µL=1
QD,W-a.e. instance (H, ȟ). There exist ϵ0 ∈ (0, 1),M ∈ (1,∞) such that the following

holds for all ϵ ∈ (0, ϵ0). Let a < b ∈ R be such that νȟ([a, b]) ≥ ϵ and νȟ(R\ [a, b]) ≥ ϵ. Then we have
that dȟ(a, b) ≥ ϵM . Thus, combining with the above disintegration, we obtain that the same is a.e.
true if we replace µL=1

QD,W by µA=α,L=1
QD,W for all α > 0. In particular, it holds when α = 1. Let (H, ȟ)

be a sample from µA=1,L=1
QD,W and let y ∈ ∂H be sampled uniformly according to νȟ. Fix p ∈ (0, 1).

Then Lemma 4.2 implies that there exists ã > 0 depending only on p and a coupling between (H, ȟ)
and (H, h) such that with probability at least 1 − p

2 , we have that the metric spaces Bȟ(0, ã) and
Bh(0, ã) agree in the sense of Lemma 4.2. Thus, combining with the scale invariance of the law of
W (see [35, Proposition 4.7]), we obtain that for R > 0 fixed, there exist ϵ0 ∈ (0, 1),M ∈ (1,∞)

depending only on p and R, such that the following holds with probability at least 1 − p
2 . For all

ϵ ∈ (0, ϵ0), we have that if z < w ∈ R are such that [z, w] ⊆ Bh(0, R) and νh([z, w]) ≥ ϵ, we have
that dh(z, w) ≥ ϵM . Also, we can choose R > 0 sufficiently large such that Kτ ⊆ Bh(0, R) with
probability at least 1− p

2 . Combining, we obtain that there exist ϵ0 ∈ (0, 1),M ∈ (1,∞) depending
only on p, such that the following holds with probability at least 1 − p. For all ϵ ∈ (0, ϵ0) and all
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z < w ∈ R ∩Kτ such that νh([z, w]) ≥ ϵ, we have that dh|N (z, w) ≥ dh(z, w) ≥ ϵM . This completes
the proof of the lower bound in the case that both points lie on R∩∂N since p ∈ (0, 1) was arbitrary.

Now, we prove the lower bound in the case that one of the points lies on R ∩ ∂N and the other
one lies on H ∩ ∂N . Let U be the connected component of H \ η′([0, τ ]) whose boundary contains
x. Then combining [35, Theorem 1.18] with [4, Corollary 4.3], we obtain that the quantum
surface (U, h|U ) can be sampled as follows. Let D1,D be two independent samples from the infinite
measures on quantum disks of weights W = γ2 − 2 = 2

3 and γ2 −W = 2 respectively, conditioned
on the event that ℓ1 < ℓ < ℓ1 + ℓ2, where ℓ1, ℓ2 are the right boundary lengths of D1 and D
respectively. Note that both of D1 and D are equipped with two marked points. Then the quantum
surface (U, h|U ) equipped with the first and last boundary point hit by η has the same law as the
marginal of D under the above conditional law. It follows by combining with Proposition 6.8 that
it is a.s. the case that possibly by taking ϵ0 ∈ (0, 1) to be smaller and M ∈ (1,∞) to be larger,
we have that for all ϵ ∈ (0, ϵ0), if z, w ∈ ∂U are such that min{νh([z, w]⟲⟲⟲∂U ), νh([z, w]

⟳⟳⟳
∂U )} ≥ ϵ,

then dh|U (z, w) ≥ ϵM . Moreover, Lemma 6.4 combined with absolute continuity imply that there
a.s. exists C < ∞ such that dh|U (z, w) ≤ C(min{νh([z, w]⟲⟲⟲∂U ), νh([z, w]

⟳⟳⟳
∂U )})

1//3 for all z, w ∈ ∂U .
Furthermore, we can assume that distdh|N ([0, c],H∩ ∂N ) ≥ ϵ0, where c = a+b

2 and a (resp. b) is the
first (resp. last) point of ∂U visited by η′, since distdh|N ([0, c],H ∩ ∂N ) > 0 a.s. Now, fix ϵ ∈ (0, ϵ0)

and let z ∈ [c, b], w ∈ H ∩ ∂N be such that νh([z, w]⟲⟲⟲∂N ) ≥ ϵ and νh([z, w]
⟳⟳⟳
∂N ) ≥ ϵ. Suppose that

νh([z, b]) ≤ ϵM
2
. Then, we have that dh|N (z, b) ≤ dh|U (z, b) ≤ CϵM

2/3 and so combining with
triangle inequality and Lemma 6.9, we obtain that dh|N (z, w) ≥ ϵM/2 possibly by taking ϵ0 > 0

to be smaller. Suppose that νh([z, b]) > ϵM
2
. Then, we have that distdh|U (z,H ∩ ∂U) ≥ ϵM

3
and

note that any path P in N connecting w to z has to intersect ∂U . Suppose that P is parameterized
by [0, 1] and P (0) = w,P (1) = z. Let t be the last time that P hits H ∩ ∂U . Then P |(t,1) is a
path in U connecting some point on H ∩ ∂U to z and so the dh-length of P |(t,1) is at least ϵM

3
.

It follows that dh|N (z, w) ≥ ϵM
3

since P was arbitrary. Combining, we obtain that there a.s. exist
ϵ0 ∈ (0, 1),M ∈ (1,∞) such that the following holds for all ϵ ∈ (0, ϵ0). Let z ∈ [0, b], w ∈ H∩ ∂N be
such that min{νh([z, w]⟲⟲⟲∂N ), νh([z, w]

⟳⟳⟳
∂N )} ≥ ϵ. Then we have that dh|N (z, w) ≥ ϵM .

Note that since the law of the outer boundary of η′ when targeted at x has time-reversal symmetry
and the law of W is invariant under translating horizontally by a fixed number of quantum length
units (see [88, Proposition 1.7]), we obtain that the law of the quantum surface parameterized
by N is the same with the law of the quantum surface parameterized by Ñ , where Ñ is defined
as follows. We let y ∈ R− be such that νh([y, 0]) = ℓ and draw η′ up until the first time that it
disconnects y from ∞. Then Ñ is the quantum surface induced by the restriction of h to the hull of
the above curve stopped at the above time. Then, arguing as in the previous paragraph, we obtain
that there a.s. exist ϵ0 ∈ (0, 1),M ∈ (1,∞) such that the following is true for all ϵ ∈ (0, ϵ0). Let
z, w ∈ ∂Ñ be such that z ∈ H ∩ ∂Ñ , w ∈ R− ∩ ∂Ñ and min{νh([z, w]⟲⟲⟲∂Ñ ), νh([z, w]

⟳⟳⟳
∂Ñ

)} ≥ ϵ. Then
it holds that dh|Ñ (z, w) ≥ ϵM . Therefore, combining with the result of the previous paragraph, we
complete the proof of the lower bound in the lemma statement in the case that one of the points
lies on H ∩ ∂N and the other on R ∩ ∂N . This completes the proof of the lemma. □

Next, we state that conditions (V) and (VI) hold with high probability in the context of Propo-
sition 6.2 provided M is large enough and p is small enough. We will not give a detailed proof
since it follows from a combination of Proposition 6.8 with the arguments presented in the proofs
of Lemmas 6.9 and 6.10.
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Lemma 6.11. Fix u > 0 and let p > 0 be a constant (corresponding to condition (VI)) which is small
enough as specified in Proposition 6.8. Suppose that we have the setup of Lemmas 6.9 and 6.10. Then
there a.s. exist ϵ0 ∈ (0, 1) and M ∈ (1,∞) such that for all ϵ ∈ (0, ϵ0) the following hold. For all
x, y ∈ ∂N , the ϵ-neighborhood of [x, y]⟲⟲⟲∂N with respect to dh|N has quantum area at least ϵ2+u

M . The
same is also true with [x, y]⟳⟳⟳∂N in place of [x, y]⟲⟲⟲∂N . Moreover, the quantum area of the ϵ-neighborhood
of ∂N with respect to dh|N is at most ϵp.

Proof. The two claims of the lemma essentially follow from the same arguments presented in Lem-
mas 6.9 and 6.10 combined with Proposition 6.8. □

Now we prove that conditions (II) and (III) hold with high probability if we chooseM sufficiently
large. We first prove in the following lemma that condition (II) holds with high probability provided
we choose M sufficiently large.

Lemma 6.12. Suppose that we have the setup of Lemmas 6.9-6.11. Then we have that the dh|N -
diameter of N is finite a.s.

Proof. Suppose that we have the setup of the proof of Lemma 6.9. Fix p1 ∈ (0, 1) and let ρ1 > 0

be chosen such that with probability at least 1 − p1
2 , we have that η̂([0, τ̂ρ1 ]) ∩ ∂U ̸= ∅, where

both η̂, τ̂ρ are defined in Step 4 in the proof of Lemma 6.9 and U is the connected component of
H \ η′([0, τ ]) whose boundary contains x. Let also ȟ be the random field introduced in Step 3 in
the proof of Lemma 6.9. Since the dȟ-diameter of any compact set K ⊆ H is finite a.s. (see [54,
Theorem 1.3]), arguing as in Step 3 in the proof of Lemma 6.9 gives that the dh|H\η̃([σ̃,τ̃ρ1 ])

-diameter

of N is finite a.s., where η̃, τ̃ρ and J̃ are defined in Step 1 in the proof of Lemma 6.9. Also, since
the quantum surface parameterized by U has the law of a quantum disk conditioned on a positive
probability event (see the proof of Lemma 6.10), we obtain that the dh|U -diameter of U is finite
a.s. Hence, there exists M > 1 sufficiently large such that with probability at least 1 − p1

2 , both
of the dh|H\η̂([σ̂,τ̂ρ1 ])

-diameter of N and the dh|U -diameter of U are at most M . Suppose that we are
working on the event that the above holds and that η̂([0, τ̂ρ1 ]) ∩ ∂U ̸= ∅. Similarly, we can assume
in addition that the dh|H\η̃([σ̃,τ̃ρ1 ])

-diameter of N is at most M and that η̃([τ̃ρ1 ,∞)) ∩ η̂([τ̂ρ1 ,∞)) = ∅.
Let t be the first time that η̂ intersects ∂U . Fix z ∈ ∂N ∩ η̂([0, t)) and let P : (0, 1) → H \ η̂([σ̂, τ̂ρ1 ])
be a path such that P (0) = 0, P (1) = z and such that the dh-length of P is at most M . If P doesn’t
intersect U , then it stays in N and so we have that dh|N (0, z) ≤ M . Suppose that P ∩ U ̸= ∅, and
let s1 be the last time that P intersects ∂U . Then we have that P |(s1,1) is a path in N from P (s1) to
z with dh-length at most M . Let also s2 be the first time that P intersects ∂U and let Q be a path
in U from P (s2) to P (s1) with dh-length at most M . Then the concatenation P̃ of P |(0,s2), Q and
P |(s1,1) is a path in N from 0 to z with dh-length at most 3M . Hence dh|N (0, z) ≤ 3M . Next, we fix
z ∈ ∂N ∩ η̂((t,∞)) and note that z ∈ ∂N ∩ η̃([0, τ̃ρ1 ]). Let A be a path in H \ η̂([σ̂, τ̂ρ1 ]) from 0 to
z with dh-length at most M and let s1 be the first time that A intersects ∂U (it has to intersect ∂U
in order to eventually hit z). Let also Ã be a path in H \ η̃([σ̃, τ̃ρ1 ]) from A(s1) to z with dh-length
at most M and let s2 be the last time that Ã intersects ∂U . Then the path Ã|(s2,1) has to stay in
N and has dh-length at most M . Let also B be a path in U from A(s1) to Ã(s2) with dh-length at
most M , and let Â be the concatenation of A|(0,s1), B, and Ã|(s2,1). Then Â is a path in N from 0

to z with dh-length at most 3M . It follows that dh|N (0, z) ≤ 3M for all z ∈ η̂([σ̂, t) ∪ (t,∞)) ∩ ∂N
and the same bound holds for z = η̂(t) by the continuity of the quantum metric with respect to the
Euclidean metric. Therefore, we obtain that the dh|N -diameter of N is at most 6M with probability
at least 1− p1. The proof is then complete since p1 ∈ (0, 1) was arbitrary. □
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The final step before proving Proposition 6.2 is to prove that condition (III) holds with high
probability if M is large enough. This is the content of the following lemma.

Lemma 6.13. Suppose that we have the setup of Lemmas 6.9-6.12 and let φ : N → D be the conformal
transformation as in condition (III). Then there a.s. exists M > 1 such that for all r ∈ (0,M−1)

the following hold. The quantum area assigned to B(0, 1/2) with respect to the field h|N ◦ φ−1 +

Q log |(φ−1)′| is at least M−1. Moreover, every point with quantum distance at least r from ∂D (with
respect to the field h|N ◦ φ−1 +Q log |(φ−1)′|) has Euclidean distance at least rM from ∂D.

We will describe the setup of the proof of Lemma 6.13 before proceeding with its proof. Note
that it is a.s. the case that on the event that σ = σδ/A, we have that σ = τx for some x ∈ Q \ {0},
where τx denotes the first time that η′ disconnects x from ∞. Hence it suffices to prove the claim
of the lemma in the case that σ = τx for some x ∈ Q \ {0} fixed. Without loss of generality we can
assume that x > 0.

Let (Kt) denote the family of hulls of η′. Note that the locality property of SLE6 implies that
η′ can be coupled with a chordal SLE6 η̃

′ in H from 0 to x stopped at the first time τ̃x that η̃′

disconnects x from ∞ such that η′|[0,τx] = η̃′|[0,τ̃x]. Let also η̃ denote the left outer boundary of
η̃′ and note that [70, Theorem 1.4] implies that η̃ has the law of an SLE 8

3
(83 − 2; 83 − 4) process

in H from x to 0 with the force points located at x− and x+ respectively. Let U be the connected
component whose boundary contains 0 of the complement in H of the curve η̃ stopped at the
first time that it disconnects 0 from ∞. Similarly we let V be the connected component whose
boundary contains x of the complement in H of the time-reversal of η̃ stopped at the first time that
it disconnects x from ∞. Moreover we let G be the connected component of H \ η̃ lying to the left
of η̃. Let f : U → D, g : V → D and ψ : G → D be conformal transformations defined in some
arbitrary but fixed way.

We note that all of the maps f, g and ψ are a.s. well-defined due to Proposition A.1 and the time-
reversal symmetry of η̃ (see [71, Theorem 1.1]). Recall that [85, Theorem 5.2] implies that there
exists deterministic constant α ∈ (0, 1) such that all of the maps f−1, g−1 and ψ−1 are α-Hölder
continuous a.s.

Proof of Lemma 6.13. Step 1. Outline. Suppose that we have the setup described in the paragraphs
just after the statement of Lemma 6.13. The first claim of the lemma (lower bound on the quantum
mass assigned to B(0, 1/2)) follows since the quantum area measure assigns positive mass to every
open set a.s. Hence, we will focus on proving the second claim of the lemma. In Step 2, we will
prove that it is a.s. the case that there exist r0 ∈ (0, 1),M > 1 such that for all r ∈ (0, r0) and all
z ∈ N such that distdh|N (z, ∂N ) ≥ r, we have that

B(z, rM ) ⊆ Bh|N (z, r) ⊆ N .

Then in Step 3, we will show that possibly by taking M to be larger and r0 to be smaller, we have
that there a.s. exists (random) c0 > 0 such that if z, r are as above, we have that the probability
that a complex Brownian motion starting from z intersects ψ−1(B(0, 1/2)) before exiting N for the
first time is at least c0rM , and then conclude the proof of the lemma.

Step 2. B(z, rM ) ⊆ Bh|N (z, r). First, we note that [54, Proposition 1.8] implies that there exists
a deterministic constant β̃ ∈ (0, 1) such that d

h̃
|K is a.s. β̃-Hölder continuous with respect to the

Euclidean metric for all K ⊆ H compact, where h̃ is a free boundary GFF on H with the additive
constant taken so that the average of h̃ on H ∩ ∂D is equal to zero. Then, arguing as in Step 2 in
the proof of Lemma 6.9, we obtain that for all 0 < r < R fixed, dh|Ar,R is a.s. β̃-Hölder continuous
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with respect to the Euclidean metric, where Ar,R = H ∩ (B(0, R) \ B(0, r)). Moreover, combining
with the invariance of the law of W when translating horizontally by fixed number of units of
boundary length (see [88, Proposition 1.7]), we obtain that dh|H∩B(0,R) is a.s. β̃-Hölder continuous
with respect to the Euclidean metric for all R > 0. Let R > 0 be such that N ⊆ H ∩ B(0, R).
Note that if z ∈ N is such that distdh|N (z, ∂N ) > r, we have that Bh|N (z, r) = Bh(z, r). Therefore,
combining with the Hölder continuity of h|H∩B(0,R) with respect to the Euclidean metric, we obtain
that it is a.s. the case that there exists M > 1 large and r0 > 0 small such that for all z ∈ N and
all r ∈ (0, r0) such that distdh|N (z, ∂N ) > r, we have that B(z, rM ) ⊆ Bh|N (z, r). In particular, the
Euclidean distance of z from ∂N is at least rM .

Step 3. Conclusion of the proof. Let r0 ∈ (0, 1),M > 1 be as in Step 2 and fix r ∈ (0, r0), z ∈ N
such that distdh|N (z, ∂N ) > r. Then Step 2 implies that

B(z, rM ) ⊆ Bh|N (z, r) ⊆ N .

We will show that possibly by taking M to be larger, we have that the probability that a complex
Brownian motion starting from z intersects ψ−1(B(0, 1/2)) before exiting N for the first time is at
least rM .

Let Ĩ be the arc traced by η̃ up until the last time that it intersects R+ and let J̃ be the arc traced
by the time-reversal of η̃ up until the last time that it intersects R−. Then we have the following
cases.

Case 1. Bh|N (z, r) ∩ (Ĩ ∪ J̃) = ∅. Then we have that B(z, rM ) ⊆ G. Note that there exists C > 1

such that

|ψ−1(x)− ψ−1(y)| ≤ C|x− y|α for all x, y ∈ D.

In particular we have that dist(ψ(z), ∂D) ≳ rM/α and so the probability that a complex Brownian
motion starting from ψ(z) intersects B(0, 1/2) before exiting D for the first time is ≳ rM/α. By
conformal invariance we obtain that the probability that a complex Brownian motion starting from
z intersects ψ−1(B(0, 1/2)) before exiting D for the first time is ≳ rM/α.

Case 2. Bh|N (z, r) ∩ Ĩ ̸= ∅. Possibly by taking r0 ∈ (0, 1) to be smaller, we can assume that
Bh|N (z, r)∩ J̃ = ∅. Hence we have that Bh|N (z, r) = Bh|V (z, r) and so B(z, rM ) ⊆ V . As in Case 1,
we let C > 1 be such that

|g−1(x)− g−1(y)| ≤ C|x− y|α for all x, y ∈ D,

and then we have that

B(g(z), C−1/αrM/α) ⊆ g(B(z, rM )) ⊆ D.

Therefore arguing as in Case 1, we have that the probability that a complex Brownian motion
starting from z intersects ψ−1(B(0, 1/2)) before exiting N for the first time is ≳ rM/α.

Case 3. Bh|N (z, r) ∩ J̃ ̸= ∅. Arguing as in Cases 1 and 2, we obtain that the probability that a
complex Brownian motion starting from z intersects ψ−1(B(0, 1/2)) before exiting N for the first
time is ≳ rM/α.

Combining Cases 1,2 and 3, we obtain that there a.s. exists c0 > 0 such that the probability
that a complex Brownian motion starting from z intersects ψ−1(B(0, 1/2)) before exiting N for
the first time is at least c0rM/α. It follows that the probability that a complex Brownian motion
starting from φ(z) intersects φ(ψ−1(B(0, 1/2))) before exiting D for the first time is at least c0rM/α.
Set d := dist(φ(ψ−1(B(0, 1/2))), ∂D) > 0 and suppose that dist(φ(z), ∂D) < r3M/α. Then the
Beurling estimate implies that the probability that a complex Brownian motion starting from φ(z)
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intersects φ(ψ−1(B(0, 1/2))) before exiting D for the first time is at most a universal constant times
(r3M/α/d)1/2. In particular we have that rM/α ≲ r3M/(2α) and so we obtain a contradiction possibly
by taking r0 ∈ (0, 1) to be smaller. It follows that

dist(φ(z), ∂D) ≳ r3M/α

and so this completes the proof of the lemma. □

Proof of Proposition 6.2. First we note that when the quantum natural time is scaled by δ, we have
that the quantum boundary length, the quantum metric distance and the quantum area are scaled
by δ2/3, δ1/3 and δ4/3 respectively. Hence, combining with the scale invariance of the law of W
([35, Proposition 4.7]), we obtain that it suffices to prove the claim of the proposition when δ = 1.
Hence, from now on, we assume that δ = 1. Fix p1 ∈ (0, 1). For all k ∈ N and N ∈ N, we let
xk,N be the point on R+ such that νh([0, xk,N ]) = k

N . For all k ∈ Z− and N ∈ N we also let xk,N
be the point on R− such that νh([xk,N , 0]) = −k

N . For x ∈ R \ {0}, we let η′x be a chordal SLE6 in
H from 0 to x which is independent of W. Then by [87, Section 4.2], we obtain that there exists
a coupling of (W, η′, (η′x)x∈R\{0}) such that for all x ∈ R \ {0}, the curves η′, η′x agree up until the
first time that they disconnect x from ∞. Also, we can choose M1, N ∈ N large enough such that
with probability at least 1 − p1

2 , we have that N = Nxk,N for some k ∈ [−NM1, NM1] ∩ Z, where
Nxk,N denotes the quantum surface parameterized by the hull of η′xk,N stopped at the first time that
it disconnects xk,N from ∞. Let also Exk,N be the event defined in the same way as E but with
Nxk,N in place of N . Note that the quantum boundary lengths of the top, bottom left, and bottom
right of Nxk,N are all positive a.s. Therefore, combining with Lemmas 6.9-6.13, we obtain that we
can choose M ∈ (1,∞) large enough and p > 0 small enough such that conditions (I)-(VI) all hold
with probability at least 1− p1

4NM1
. Thus, taking a union bound over all k ∈ [−NM1, NM1]∩Z gives

that E holds with probability at least 1− p1 for the above choice of M,p. This completes the proof
of the proposition. □

6.3. Size bounds for the disconnecting good annulus. Fix δ > 0 and suppose that we perform
the exploration as in Proposition 5.1 until the first time that 0 is disconnected from ∂D by chunks
for which E occurs. Let A be quantum surface parameterized by the cluster of chunks N for
which E occurs with the property that there exist chunks Ni1 , . . . ,Nin which are discovered by the
exploration for which E occurs for all of them with Ni1 = N , Nin on the boundary of the connected
component which contains 0, and with ∂Nij ∩ ∂Nij+1 ̸= ∅ for each 1 ≤ j ≤ n − 1. We define the
inner boundary of A to be the boundary of the connected component of C \ A which contains 0.
We define the outer boundary of A to be the boundary of the unbounded connected component of
C \ A.

Proposition 6.14. Suppose that D = (D, h, 0) has law µL=ℓQD,W. Fix δ ∈ (0, 1). Suppose that we
perform the exploration as in Proposition 5.1 until the first time that 0 is disconnected from ∂D by
chunks for which E occurs and let A be as above. Fix ũ ∈ (0, 4), s0 > 0 and suppose that we are
working on the event that µh(Bh(z, s)) < s4−ũ for all s ∈ (0, s0), z ∈ D, and µh(Bh(z, s)) > s4+ũ for
all s ∈ (0, s0), z ∈ D such that distdh(z, ∂D) > s. Then, there exist a constant p1 > 0 depending only
on u, ũ and M , and a constant δ0 ∈ (0, 1) depending only on u, ũ,M and s0 such that the distance
(with respect to the interior-internal metric on A) between the inner and outer boundary of A is at
least δp1 . Moreover, there exists a constant p0 > 0 depending only on u such that the following holds.
There exist constants c1, c2, α > 0 depending only on ℓ, u such that for all δ ∈ (0, 1) sufficiently small
(depending only on ℓ, u), on the event Eu,δ defined in the statement of Proposition 5.1, off an event
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with probability at most c1 exp(−c2δ−α), we have that A is contained in the δp0-neighborhood of ∂D
with respect to dh.

We will begin by establishing the lower bound in Proposition 6.14, the main input of which is the
next lemma. Suppose that we have two SLE6 chunks N1, N2 from the exploration. We say that N1

comes before N2, or N2 comes after N1, if N1 is discovered by the exploration before N2. We say
that N1 is adjacent to N2 if the following is true. First, E occurs for both N1 and N2. Second, N2 is
the first chunk discovered after N1 for which E occurs whose boundary has non-empty intersection
with ∂N1. Then by the way that the exploration is defined, we know that an interval on the right
bottom of N2 (whose left endpoint is the initial point of the SLE6 in N2) is contained in the top of
N1 if both of ∂N1 and ∂N2 intersect the inner boundary of A.

Lemma 6.15. Suppose that we have the setup described in Proposition 5.1. Fix ũ ∈ (0, 4) and s0 > 0

and suppose that we are working on the event that µh(Bh(z, s)) < s4−ũ for all s ∈ (0, s0), z ∈ D, and
µh(Bh(z, s)) > s4+ũ for all s ∈ (0, s0), z ∈ D such that distdh(z, ∂D) > s. Then, there exist a constant
q > 0 depending only on u and ũ and a constant δ0 ∈ (0, 1) depending only on u, ũ,M , and s0 such
that the following holds for all δ ∈ (0, δ0). Suppose that N1,N2 are two radial SLE6 chunks which
are adjacent to each other with N2 coming after N1. Moreover, we assume that both of ∂N1 and ∂N2

intersect the inner boundary of A. Then, we have that the diameter of ∂N1 ∩ ∂N2 with respect to dh is
at least δq.

Proof. First, we note that since both of ∂N1 and ∂N2 intersect the inner boundary of A, we have
that I := ∂N1 ∩ ∂N2 is an interval contained in in the right bottom of N2 and at the top of N1, and
such that its left endpoint is the initial point of the radial SLE6 in N2. In particular, we have that
I is the bottom right of N2. Hence, it follows from part (I) that the quantum boundary length of I
is at least δ2/3/M . Note that if δ0 ∈ (0, 1) is such that δ0 < M−3/2, we have that δ < δ1/3/M , and
so part (V) in the definition of E implies that the amount of volume in N1 which has distance in
N1 at most δ to I, is at least δ2+u times the length of I, i.e., at least δ8/3+u/M . Let q = 8/3+3u

4−ũ > 0.
We pick δ0 sufficiently small so that we also have δq0 < s0. Then, we have that the amount of area
in any ball in D with respect to dh of radius δq is at most δ8/3+3u, for all δ ∈ (0, δ0). Therefore, if
we further choose δ0 ∈ (0, 1) such that δ0 < M−1/(2u), then we have that I cannot be contained in
such a ball, which implies that the dh-diameter of I is at least δq. □

Proof of Proposition 6.14, lower bound. Suppose that δ0 and q are as in Lemma 6.15. Let N1,N2 be
two adjacent radial SLE6 chunks with N2 coming after N1 and such that both of ∂N1 and ∂N2

intersect the inner boundary of A. We will show that the diameter of the interval I := ∂N1 ∩ ∂N2

with respect to the interior-internal metric of N 1 ∪ N 2 is at least 3δqM by possibly taking q to be
larger (depending only on u, ũ and M) and δ0 ∈ (0, 1) to be smaller (depending only on u, ũ,M and
s0). Indeed, let a and b be the two endpoints of I with a lying on the inner boundary of A. Let also
γ be the geodesic in N 1 ∪N 2 from a to b with respect to the interior-internal metric. Suppose that
the length of γ (with respect to the interior-internal metric) is at most δqM . We can assume that
q > 2/3 and by possibly taking δ0 to be smaller (depending only on u, ũ,M and s0), we can assume
that δq < δ2/3/M . Then, either γ intersects every subinterval of I with boundary length at most δq

or it does not. Suppose that the former holds. Fix z ∈ I and let x, y ∈ I be such that z ∈ [x, y]⟲⟲⟲∂N1

and νh([x, y]⟲⟲⟲∂N1
) < δq. Fix also w ∈ γ∩ [x, y]⟲⟲⟲∂N1

. By condition (IV) of E we obtain that the distance
between z and w with respect to the interior-internal metric in N1 is at most δq/M and so the same
holds for the distance between z and w with respect to the interior-internal metric in N 1 ∪ N 2.



TWO-SIDED HEAT KERNEL BOUNDS FOR
√

8/3-LIOUVILLE BROWNIAN MOTION 89

Ni−1

Ni

Ni+1

w

v

ai−1

bi−1

ai

bi

Ii−1

Ii

FIGURE 6. Illustration of the setup of the proof of the lower bound of Proposition 6.14.

Hence, the distance between a and z with respect to the interior-internal metric in N 1 ∪ N 2 is at
most 3δqM + δq/M by the triangle inequality. Since z was arbitrary, it follows that the diameter of
I with respect to dh is at most 6δqM + 2δq/M . But this is a contradiction due to Lemma 6.15 by
possibly taking q > 0 to be larger (depending only on u, ũ and M) and δ0 ∈ (0, 1) to be smaller
(depending only on u, ũ,M and s0). Thus, there exists a subinterval J of I with boundary length at
least δq and such that γ ∩ J = ∅. This implies that there exists a segment of γ which connects two
points a′, b′ ∈ I with boundary length distance at least δq and this segment stays in either N1 or
N2. Then, condition (IV) of E implies that the length of the aforementioned segment with respect
to the interior-internal metric in N 1 ∪ N 2 is at least δqM . Therefore, combining everything and
possibly taking q to be larger (depending only on u, ũ and M), we have that the distance between
a and b with respect to the interior-internal metric in N 1 ∪N 2 is at least 3δqM .

See Figure 6 for an illustration of the notation for what follows. Now, let N1, . . . ,Nn be the
chunks intersecting the inner boundary of A such that for all 1 ≤ i ≤ n − 1, we have that Ni

is adjacent to Ni+1 and comes before Ni+1, and set Ii := ∂Ni ∩ ∂Ni+1. Set also N0 = Nn and
I0 = ∂Nn ∩ ∂N1. Let w be a point lying in the inner boundary of A. Then, there exists 1 ≤ i ≤ n

such that w ∈ ∂Ni \ (Ii−1 ∪ Ii). Let v ∈ ∂Ni−1 ∪ ∂Ni \ Ii−1 be such that v does not lie in the inner
boundary of A. Let also ai−1, bi−1 be the two endpoints of Ii−1 such that ai−1 lies in the inner
boundary of A. Suppose that the boundary length distance of w from ai−1 is at most δqM

2
. Then,

condition (IV) of E implies that the distance between ai−1 and bi−1 with respect to the interior-
internal metric in N i−1 ∪ N i is at most δqM . If the boundary length distance of v from bi−1 is at
most δqM

2
, then combining with the triangle inequality, we obtain that the distance between w

and v with respect to the interior-internal metric in N i−1 ∪ N i is at least δqM . Suppose that the
boundary length distance of w from ai−1 is at least δqM

2
. Then, condition (IV) of E implies that

the distance between Ii−1 and w with respect to the interior-internal metric in N 1 ∪ N 2 is at least
δqM

3
. If v ∈ ∂Ni−1, then the distance between w and v with respect to the metric in N 1 ∪ N 2 is at

least δqM
3
. Suppose that v ∈ ∂Ni. Note that the boundary lengths of Ii−1 and Ii are both at least

δ2/3/M and so condition (IV) implies that the distance between the component of ∂Ni \ (Ii−1 ∪ Ii)
intersecting the inner boundary of A and the component of ∂Ni \ (Ii−1 ∪ Ii) not intersecting the
inner boundary of A is at least δqM with respect to the metric in N i. Moreover, the way that the
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exploration is defined implies that the boundary length of the counterclockwsie arc of ∂Ni from
ai−1 to ai is at least ϵ0δ2/3 and so combining with (IV), we obtain that the distance between ai−1
and Ii with respect to the interior-internal metric in Ni is at least ϵM0 δ

2M/3. In particular, the
triangle inequality implies that the distance between w and Ii with respect to the metric in Ni is
at least ϵM0 δ

2M/3/2. It follows that the distance between w and v in N i−1 ∪ N i is at least δqM
3
.

Note that if w has boundary length distance at least δqM from both of Ii−1 and Ii, then (IV) implies
that the dh-distance in Ni between w and the part of ∂Ni not contained in the inner boundary of
A is at least δqM

3
. Combining everything, we obtain that the following is true. If w lies in the

part of ∂Ni contained in the inner boundary of A with boundary length distance from Ii at least
δqM , and v lies in the part of ∂(N i−1 ∪N i ∪N i+1) not contained in the inner boundary of A, then
the distance between w and v with respect to the metric in N i−1 ∪ N i ∪ N i+1 is at least δqM

3
. A

similar argument shows that if w and v are as above but w has boundary length distance from Ii−1
at least δqM instead, then the distance between w and v in N i−1 ∪ N i ∪ N i+1 is at least δqM

3
. It

follows that if w lies in the part of ∂Ni contained in the inner boundary of A and v lies in the part
of ∂(N i−1 ∪ N i ∪ N i+1) not contained in the inner boundary of A, then we have that the distance
in N i−1 ∪N i ∪N i+1 between w and v is at least δqM

3
.

To finish the proof, we let ∂inA (resp. ∂outA) be the inner (resp. outer) boundary of A. Fix
w ∈ ∂inA, v ∈ ∂outA and let γ be a geodesic in A from w to v with respect to the interior-internal
metric in A. Then, there exists 1 ≤ i ≤ n such that w ∈ ∂Ni, and let ṽ be the last point of
∂(N i−1 ∪ N i ∪ N i+1) \ ∂inA hit by γ. Then, the results of the previous paragraph imply that the
dh-length of the part of γ from the last time that it hits ṽ to the first time that it hits w is at least
δqM

3
and so the distance between w and v with respect to the interior-internal metric in A is at

least δqM
3
. This completes the proof of the lower bound. □

We now work towards proving the upper bound in Proposition 6.14. First, we state the following
version of Lemma 6.4.

Lemma 6.16. Fix ℓ > 0, u ∈ (0, 1/2) and let D = (D, h, 0) be a sample from µL=ℓQD,W. Then, there a.s.
exists C > 0 such that for all x, y ∈ ∂D we have that dh(x, y) ≤ Cνh([x, y]

⟲⟲⟲
∂D)

1/2−u and the same is
true with [x, y]⟳⟳⟳∂D in place of [x, y]⟲⟲⟲∂D. Moreover, there exist constants c1, c2 > 0 depending only on ℓ
and a constant α > 0 depending only on u such that if C > 0 is the smallest constant for which the
above bound holds, then we have that P

[
C > A

]
≤ c1 exp(−c2Aα) for all A > 1.

Proof. It follows from an argument which is similar to the one given in the proof of Lemma 6.4. □

Next, we state and prove the following lemma which gives an upper bound with high probability
on the diameter of the outer boundary of a radial SLE6 curve drawn for at most δ units of quantum
natural time on top of a weighted quantum disk.

Lemma 6.17. Fix u ∈ (0, 1/3). Then, there exists ũ ∈ (0, u) such that the following holds. Suppose
that D = (D, h, 0) has law µL=ℓQD,W with ℓ ≤ δ−ũ/2. Let η′ be a radial SLE6 curve in D, independent
of D, starting from a point chosen uniformly at random on ∂D with respect to νh and targeted at 0.
Fix δ ∈ (0, 1) and suppose that σ is a stopping time for η′ which is a.s. at most δ. Then, there exist
constants c1, c2, α > 0 depending only on u such that on the event that the boundary length of the
component of D \ η′([0, t]) containing 0 is at least δ2/3−u for all t ∈ [0, σ], we have that off an event
with probability at most c1 exp(−c2δ−α), the dh-diameter of the outer boundary of η′([0, σ]) is at most
δ1/3−u.
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Proof. Fix ũ ∈ (0, 1/3) small (to be chosen and depending only on u). Suppose that x1 ∈ ∂D is
chosen uniformly at random from the quantum boundary measure and y1 ∈ ∂D is the unique point
on ∂D such that the boundary lengths of [x1, y1]

⟳⟳⟳
∂D and [x1, y1]

⟲⟲⟲
∂D are both equal to ℓ/2. We let

σ1 be the first time that η′ disconnects y1 from 0. Suppose that we have defined marked points
x1, . . . , xj , y1, . . . , yj and stopping times σ1, . . . , σj . Then, we set xj+1 = η′(σj) and let yj+1 be the
point on the boundary of the component Dj of D\η′([0, σj ]) containing 0 which is antipodal to xj+1

with respect to quantum boundary length. Then, we let σj+1 be the first time that η′ disconnects
yj+1 from 0. We set N := inf{j ∈ N : σ ≤ σj}. Suppose that the boundary length ℓj of ∂Dj is
at least δ2/3−u. We note that when scaling the boundary length by ℓ−1j , we have that the quantum

natural time is scaled by ℓ−3/2j and ℓ3/2j ≥ δ1−3u/2 > δ. Hence, it follows that there exists a universal
constant p ∈ (0, 1) such that P

[
σj+1 − σj > δ | η′|[0,σj ]

]
≥ 1− p a.s. It follows that on the event that

the boundary length of D \ η′([0, t]) is at least δ2/3−u for all t ∈ [0, σ], we have that N < δ−ũ off an
event with probability at most exp(log(p)δ−ũ). From now on, we assume that we are working on
the event that N < δ−ũ.

Combining Lemma 5.9 with [20, Chapter VII, Corollary 2] gives that on the event that the
boundary length of the 0-containing connected component of D \ η′([0, t]) is at least δ2/3−u for
all t ∈ [0, σ], we have that off an event with probability at most ≲ δ−1/3+u/2 exp(−δ−2/3−ũ) (with
the implicit constant being universal), the boundary length of the 0-containing connected com-
ponent of D \ η′([0, t]) is at most δ−ũ for all t ∈ [0, σ]. Suppose that this event occurs as well.
Moreover, Lemma 5.11 implies that there exist universal constants c1, c2 > 0 such that off an event
with probability at most c1 exp(−c2δ−ũ), we have that for all 1 ≤ j ≤ N , the boundary length
of the part of η′|[σj−1,σj ] contained in Dj−1 is at most δ2/3−ũ, where σ0 = 0. Suppose that this
event occurs as well. Furthermore, Lemma 6.16 implies that there exists a constant α > 0 de-
pending only on ũ such that by possibly taking c1 to be larger and c2 to be smaller (depending
only on ũ), we have that for all j ∈ N, off an event with probability at most c1 exp(−c2δ−α),
ℓ
−1/2
j dh(x, y) ≤ δ−ũ(ℓ−1j νh([x, y]

⟲⟲⟲
∂Dj

))1/2−ũ for all x, y ∈ ∂Dj and the same is true with [x, y]⟳⟳⟳∂Dj in
place of [x, y]⟲⟲⟲∂Dj . Therefore, combining everything, we obtain that the following is true. There exist
constants c3, c4, α > 0 depending only on ũ and u such that on the event that the boundary length of
the 0-containing connected component of D\η′([0, t]) is at least δ2/3−u for all t ∈ [0, σ], off an event
with probability at most c3 exp(−c4δ−α), it holds thatN < δ−ũ, ℓj ≤ δ−ũ, the boundary length of the
part of η′|[σj ,σj+1] contained in Dj is at most δ2/3−ũ, and ℓ−1/2j dh(x, y) ≤ δ−ũ(ℓ−1j νh([x, y]

⟲⟲⟲
∂Dj

))1/2−ũ

for all x, y ∈ ∂Dj and the same is true with [x, y]⟳⟳⟳∂Dj in place of [x, y]⟲⟲⟲∂Dj , for all 1 ≤ j ≤ N .
In particular, we have that the dh-diameter of the part of η′|[σj ,σj+1] contained in Dj is at most
δ−ũℓũj δ

(1/2−ũ)(2/3−ũ) ≤ δ−ũ−ũ
2
δ(1/2−ũ)(2/3−ũ). It follows by a union bound that the dh-diameter of

the outer boundary of η′([0, σ]) is at most δ−2ũ−ũ
2
δ(1/2−ũ)(2/3−ũ). So the proof is complete if we

choose ũ > 0 sufficiently small (depending only on u). □

Proof of Proposition 6.14, upper bound. Let ũ ∈ (0, u/3) be as in Lemma 6.17, fix u0 ∈ (0, 1) (to
be chosen), and let Ẽũ,δ be the event that for all j ∈ Z ∩ [0, δ−2/3−u], t ∈ [0, σj ], the boundary
length of the 0-containing connected component of Dj \ η′l([0, t]) is at most δ−ũ. Then, combining
Proposition 5.1 with Lemma 6.17, we obtain that there exist constants c1, c2, α > 0 depending
only on ℓ and u such that for all δ ∈ (0, 1), the following holds. On the event Eu,δ ∩ Ẽũ,δ, off an
event with probability at most c1 exp(−c2δ−α), the following conditions hold. The set A consists
of at most δ−2/3−u number of chunks and disconnects 0 from ∂D, and for every chunk N in A,
there exists 1 ≤ n ≤ δ−u0 and chunks N1, . . . ,Nn discovered during the first δ−2/3−u number
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of steps in the exploration such that ∂Nn ∩ ∂D ̸= ∅,N = N1, and ∂Nj ∩ ∂Nj+1 ̸= ∅, for all
1 ≤ j ≤ n−1. Moreover, if N is a chunk discovered during the first δ−2/3−u steps of the exploration
and η′ is the corresponding radial SLE6 curve which makes N , then we have that the dh-diameter
of the outer boundary of η′ in N is at most δ1/3−u. Suppose that the above hold. Fix z ∈ A
and let N be the chunk in A such that z ∈ A. Let also N1, . . . ,Nn be the chunks in A such that
N = N1, ∂Nn ∩ ∂D ̸= ∅, and ∂Nj ∩ ∂Nj+1 ̸= ∅, for all 1 ≤ j ≤ n − 1. Note that condition (II)
of E implies that the dh-distance of z from ∂A is at most Mδ1/3. Since ∂Nj ∩ ∂Nj+1 consists only
of points lying in the outer boundary of both η′j([0, σj ]) and η′j+1([0, σj+1]), and ∂Nn ∩ ∂D ̸= ∅, a
union bound gives that the dh-distance of z from ∂D is at most Mδ1/3+δ1/3−u−u0 , where we choose
u0 > 0 such that u0 < 1/3 − u. Furthermore, the proof of Proposition 5.1 implies that by possibly
taking c1 to be larger and c2, α > 0 to be smaller (depending only on ℓ, u), we can assume that
P
[
Ẽũ,δ

]
≤ c1 exp(−c2δ−α). Combining everything, we complete the proof. □

6.4. SLE6 hull cannot be too skinny. The main purpose of this subsection is to prove Lemma 6.18
which roughly states that with very high probability, we have that whenever the whole-plane SLE6

drawn on top of an independent sample from µQSPH and parameterized by quantum natural time
travels quantum distance at least δ1/3 log(δ−1)κ, then at least δ units of quantum natural time
have elapsed. The main component of the proof of Lemma 6.18 is Lemma 6.19 which is similar to
Lemma 6.17 except that it provides us with a better bound on the diameter of the outer boundary of
the radial SLE6 curve of the form δ1/3 log(δ−1)κ. We will first prove Lemma 6.18 using Lemma 6.19
and then prove Lemma 6.19.

Lemma 6.18. There exists κ > 0 so that the following is true. Suppose that (S, x, y) has distribution
µQSPH and η′ is an independent whole-plane SLE6 from x to y which is parameterized by quantum
natural time. Suppose that δ > 0. The µQSPH measure of the event that there exists k ∈ N so that the
dh-diameter of the outer boundary of η′([(k − 1)δ, kδ]) is at least δ1/3(log δ−1)κ decays to 0 as δ → 0

faster than any power of δ. Moreover, the µQSPH measure of the event that η′ travels dh-distance δ1/3

without disconnecting at least δ4/3(log δ−1)−κ units of quantum mass from y decays to 0 as δ → 0

faster than any power of δ.

Lemma 6.19. Fix u > 0. Then, there exists a constant κ > 0 depending only on u such that for all
δ ∈ (0, 1), 0 < ℓ ≤ log(δ−1)u, the following holds. Let D = (D, h, 0) be a sample from µL=ℓQD,W and
let η′ be a radial SLE6 on D, independent of D, starting from a point chosen uniformly at random
on ∂D according to νh and targeted at 0. Then, off an event with probability decaying to 0 as δ → 0

faster than any power of δ, we have that the dh-diameter of the outer boundary of η′([0, δ]) is at most
δ1/3 log(δ−1)κ.

Proof of Lemma 6.18. Step 1. The boundary length process cannot be too large. Let κ > 0 be the
constant of Lemma 6.19 with u = 2. First, we will show that if (Lt) is the boundary length process
corresponding to η′, then sup0≤t≤T Lt ≤ log(δ−1)2 off an event whose µQSPH measure decays to
0 as δ → 0 faster than any power of δ (where T denotes the time duration of the excursion L).
Indeed, Lemma 5.9 combined with [20, Chapter VII, Corollary 2] implies that there exist universal
constants c1, c2 > 0 such that conditional on τ := inf{t ≥ 0 : Lt = 1} < ∞, the measure under
µQSPH of the event that (Lt+τ ) exceeds log(δ−1)2 is at most c1 exp(−c2 log(δ−1)2). Hence, since
µQSPH

[
τ < ∞

]
∈ (0,∞), we obtain that possibly by taking c1 to be larger and c2 to be smaller,

µQSPH

[
sup0≤t≤T Lt > log(δ−1)2

]
≤ c1 exp(−c2 log(δ−1)2) for all δ ∈ (0, 1).

Step 2. Proof of the first claim of the lemma. We will start by proving the k = 1 case first. For each
t ≥ 0, we let Ut be the connected component of S \η′([0, t]) containing y and set Ũt = S \U t. Let τ̃δ
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be the first time t that the distance between x and ∂Ũt with respect to the interior-internal metric
in Ũt is at least δ. Note that the interior-internal metric in Ũt is determined by the restriction to Ũt
of the field h generating (S, x, y). It follows from the proof of [75, Theorem 1.2] that on the event
{T > t}, the path-decorated quantum surface (Ũt, h|Ũt , η

′|[0,t]) is a.s. determined by the ordered
sequence of oriented marked components cut out by η′|[0,t] from y viewed as quantum surfaces.
It follows that τ̃δ is a stopping time with respect to the filtration (Ft), where Ft is the σ-algebra
generated by the collection of quantum disks that η′|[0,t] has separated from y, each marked by
the last point on their boundary visited by η′ and oriented by the direction in which η′ has traced
their boundary. Set τδ = τ̃δ ∧ δ. Then, [75, Proposition 6.4] implies that conditional on Fτδ , the
conditional law of the surface parameterized by Uτδ is that of µ

L=Lτδ
QD,W . If τδ = δ, this implies that

the dh-diameter of η′([0, δ]) is at most δ1/3 and so this handles the case that k = 1. If τδ < δ,
then we can apply Lemma 6.19 to obtain that conditional on τδ < δ, the dh-diameter of the outer
boundary of η′([τδ, δ]) is at most δ1/3 log(δ−1)κ off an event whose µQSPH measure tends to 0 as
δ → 0 faster than any power of δ. Hence, by possibly taking κ to be larger, we can assume that the
dh-diameter of the outer boundary of η′([0, δ]) is at most δ1/3 log(δ−1)κ off an event whose µQSPH

measure tends to 0 as δ → 0 faster than any power of δ. For general k ∈ N, we note that conditional
on Fkδ and on the event that T ≥ kδ, the law of the surface parameterized by Ukδ is that of µL=LkδQD,W ,
and so by applying again Lemma 6.19, we obtain that the dh-diameter of the outer boundary of
η′([(k − 1)δ, kδ]) is at most δ1/3 log(δ−1)κ off an event whose µQSPH measure tends to 0 as δ → 0

faster than any power of δ. Since µQSPH

[
T ≥ kδ

]
is at most a constant times δ−2/3k−2/3, (recall the

discussion at the end of Subsection 3.2.4), the first assertion follows by taking a union bound over
k ∈ N.

Step 3. Proof of the second claim of the lemma. We now turn to the second assertion of the lemma.
The time-reversal of Lt is a 3/2-stable Lévy excursion with only upward jumps. This implies that
for each k ∈ N, a > 0, conditional on {T ≥ kδ}, the number of jumps in [kδ/3, (k + 1)δ/3] with
size at least a has the Poisson distribution with mean given by a constant times (δ/3)

∫∞
a s−5/2ds

which, in turn, is equal to a constant times δa−3/2. By (4.1), (4.2), the conditional probability given
{T ≥ kδ} that the time-reversal of L makes fewer than (log δ−1)κ jumps in [kδ/3, (k+1)δ/3] of size
at least δ2/3(log δ−1)−κ decays as δ → 0 faster than any power of δ. By applying a union bound
over integer multiples of δ/3, we see that this holds for all such multiples of δ/3 simultaneously off
an event whose µQSPH measure tends to 0 as δ → 0 faster than any power of δ.

We now consider Lt in the forward time direction again. Then each interval of length δ contains
at least one interval (for the time-reversal of Lt) whose endpoints are an integer multiple of δ/3.
Therefore the µQSPH measure of the event that there exists an interval of length δ in which L

makes fewer than (log δ−1)κ downward jumps of size at least δ2/3(log δ−1)−κ decays to 0 as δ → 0

faster than any power of δ. Each downward jump of Lt corresponds to a quantum disk whose
boundary length is given by the size of the downward jump. Moreover, these quantum disks are
conditionally independent given L. The probability that a quantum disk with boundary length
at least δ2/3(log δ−1)−κ has area at least δ4/3(log δ−1)−2κ is positive uniformly in δ. Therefore by
binomial concentration, the probability that fewer than a fixed fraction of these disks have area at
least δ4/3(log δ−1)−2κ decays to 0 as δ → 0 faster than any power of δ. Combining these observations
with scaling and the first assertion of the lemma implies the second assertion (up to a redefinition
of κ). □

Next, it remains to prove Lemma 6.19. First, we will state and prove the following lemma which
gives an upper bound on the diameter of a radial SLE6 chunk with high probability.



94 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

Lemma 6.20. Fix a > 0, L0 < ∞. Then, there exists a constant κ > 0 depending only on a, L0 such
that for all ℓ ∈ (0, L0), the following is true. Let D = (D, h) be a sample from µL=ℓQD,W. Then, on the
event that the quantum area of D is at most a, off an event with probability decaying to 0 as δ → 0

faster than any power of δ, we have that the dh-diameter of D is at most log(δ−1)κ.

Proof. Fix κ > 0 sufficiently large (to be chosen). Then, [77, Lemma 4.25] combined with Hölder’s
inequality to compare the laws µL=ℓQD,W and µL=ℓQD imply that there exists a constant c ∈ [1,∞)

depending only on a, L0 such that if d∗ = supz∈D distdh(z, ∂D), then on the event that µh(D) ≤
a, we have that d∗ ≤ log(δ−1)κ off an event with probability at most c exp(−c−1 log(δ−1)4κ/3).
Fix u ∈ (0, 1/2) and consider the field h̃ obtained by scaling lengths by ℓ, distances by ℓ1/2 and
areas by ℓ2. Then, Lemma 6.16 combined with scaling imply that there exist universal constants
c1, c2 and a constant β > 0 depending only on u such that off an event with probability at most
c1 exp(−c2 log(δ−1)κβ), we have that dh(x, y) ≤ log(δ−1)κℓ1+u ≤ L1+u

0 log(δ−1)κ for all x, y ∈ ∂D.
Thus, if we choose κ such that κ > max{β−1, 1}, then on the event that µh(D) ≤ a, off an event
with probability decaying to 0 as δ → 0 faster than any power of δ, we have that dh(x, y) ≤
L1+u
0 log(δ−1)κ for all x, y ∈ ∂D and distdh(z, ∂D) ≤ log(δ−1)κ for all z ∈ D, which implies that

dh(x, y) ≤ 2 log(δ−1)κ + L1+u
0 log(δ−1)κ for all z, w ∈ D. This completes the proof. □

Next, we mention the following useful result whose proof is essentially the same with the proof
of Lemma 6.4.

Lemma 6.21. There exist universal constants c1, c2 > 0 such that the following is true. Fix ℓ > 0, ζ ∈
(0, 1) and let D = (D, h, 0) be a sample from µL=ℓQD,W. Then, for all k, n ∈ N such that nℓ−1 ≥ 1, k ≥ e,
off an event with probability at most c1n1/2 exp(−c2 log(log(k)) log(k)), the following is true. There
exist points x1, . . . , xN on ∂D such that the intervals [xj , xj+1]

⟲⟲⟲
∂D form a partition of ∂D and the

boundary length of [xj , xj+1]
⟲⟲⟲
∂D is given by ℓn−1/2 and the dh-diameter of [xj , xj+1]

⟲⟲⟲
∂D is at most

8ℓ1/2n−1/4 log(k)7/4+ζ for all 1 ≤ j ≤ N − 1.

Proof. It follows from the argument used to prove Lemma 6.4. □

Proof of Lemma 6.19. Fix u > 0. We define marked points (xj), (yj) and stopping times (σj) as in
the proof of Lemma 6.17. We let Nδ be the first j ∈ N such that either σj−σj−1 ≥ δ or ℓj < δ2/3 and
µh(D) < Mδ4/3, where ℓj denotes the boundary length of the 0-containing connected component
of D \ η′([0, σj ]), and M > 1 is a universal constant (to be chosen). We claim that there exists a
universal constant p ∈ (0, 1) such that conditional on η′|[0,σj−1], a.s. we have that either σj−σj−1 ≥ δ

or ℓj < δ2/3 and µh(D) < Mδ4/3, with probability at least p. Indeed, suppose that we are working on
the event that ℓj ≥ δ2/3. Note that by arguing as in the proof of Lemma 6.17, we obtain that there
exists a universal constant p ∈ (0, 1) such that P

[
σj−σj−1 ≥ δ | η′|[0,σj−1]

]
≥ p a.s. on {ℓj ≥ δ2/3/2}.

Suppose that we are working on the event ℓj < δ2/3. By possibly decreasing p, taking M sufficiently
large and applying scaling, we have that P

[
νh(∂Dj) < ℓj , µh(Dj) < Mℓ2j | η′|[0,σj−1]

]
≥ p. This

proves the claim. It follows that Nδ < log(δ−1)2 off an event whose probability decays to 0 as
δ → 0 faster than any power of δ. The proof of Lemma 6.17 implies that off an event whose
probability decays to 0 as δ → 0 faster than any power of δ, we have that the boundary length of
the 0-containing connected component of D \ η′([0, t]) is at most 2 log(δ−1)2 for all t ∈ [0, δ], and
the boundary length of the part of η′|[σj−1,σj ] contained in Dj−1 is at most δ2/3 log(δ−1)2 for all
1 ≤ j ≤ log(δ−1)2.

Let κ > 0 be the constant of Lemma 6.20 with L0 = 1 and a =M . Then, Lemma 6.20 combined
with scaling imply that a.s. on the event that σNδ − σNδ−1 < δ, we have off an event whose
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probability decays to 0 as δ → 0 faster than any power of δ that the dh-diameter of DNδ is at most
δ1/3 log(δ−1)κ. Furthermore, Lemma 6.21 applied with n = ⌊δ−4/3ℓj⌋, ζ = 1 and k = ⌊δ−1⌋ implies
that for j ∈ N fixed, off an event whose probability tends to 0 as δ → 0 faster than any power of
δ, we have that there exists a partition [xi, xi+1)

⟲⟲⟲
∂Dj

, 1 ≤ i ≤ Nj − 1 of ∂Dj such that the boundary

length of [xi, xi+1)
⟲⟲⟲
∂Dj

is given by ℓjn−1/2 and its dh-diameter is at most 8ℓ1/2j n−1/4 log(δ−1)9/4 for
all 1 ≤ i ≤ Nj − 1. Let x̃j (resp. ỹj) be the leftmost (resp. rightmost) point of η′j([σj−1, σj ]) ∩ ∂Dj

and let 1 ≤ i ≤ Nj − 1 be such that x̃j ∈ [xi, xi+1)
⟲⟲⟲
∂Dj

. Note that by the end of the previous
paragraph, we have that the boundary length of the counterclockwise arc of ∂Dj from x̃j to ỹj is at
most δ2/3 log(δ−1)2 off an event whose probability tends to zero as δ → 0 faster than any power of δ.
Then, since ℓjn−1/2 ≥ δ2/3, it follows that at most log(δ−1)2 intervals of the form [xm, xm+1)

⟲⟲⟲
∂D are

needed to cover the counterclockwise arc of ∂Dj from x̃j to ỹj , and so the latter has dh-diameter
at most ≲ δ1/3 log(δ−1)17/4, where the implicit constant is universal. Combining everything, we
obtain that there exists a universal constant c > 0 such that off an event whose probability tends to
0 as δ → 0 faster than any power of δ, the following hold.

(i) Nδ < log(δ−1)2.
(ii) The dh-diameter of DNδ is at most δ1/3 log(δ−1)κ.

(iii) The dh-diameter of the part of η′|[σj−1,σj ] contained in Dj is at most cδ1/3 log(δ−1)2 for all
1 ≤ j ≤ log(δ−1)2.

Then, the proof of the lemma is complete by taking a union bound and possibly taking κ to be
larger. □

6.5. Proof of the exit time lower bound. Now we focus on proving the lower bound of Theo-
rem 6.1. The main ingredient of the proof of the lower bound is Lemma 6.22 which roughly states
that if (S, h, x, y) is a sample from µQSPH and we truncate on an event whose complement has small
µQSPH measure, then the desired lower bound holds for the metric balls centered at the quantum
typical point x.

The main idea behind the proof of Lemma 6.22 is that Propositions 5.1 and 6.14 allow us to
construct sufficiently many annuli A centered at x which have the following property. If we start
a complex Brownian motion B from x which is independent from (S, h, x, y), then B has to dis-
connect from ∞ a sufficiently large amount of quantum area while making a crossing of such an
annulus A between its inner and outer boundaries.

The proof of the lower bound in Theorem 6.1 will be complete by combining with the fact that
off an event whose µQSPH measure tends to 0 as r → 0 faster than any power of r, we can cover
S by at most r−A many metric balls of radius r and centered at quantum typical points, for some
finite and deterministic constant A.

Lemma 6.22. There exists a constant κ > 0 such that the following is true. Fix u ∈ (0, 1/3), r0 > 0

and suppose that we are working on the event that r4 log(r−1)−6−u ≤ µh(Bh(z, r))) ≤ r4 log(r−1)8+u,
µh(Bh(z,r)))

µh(S) ≥ r4+u, and diam(S) ≥ 6r for all z ∈ S, r ∈ (0, r0), where (S, h, x, y) has law µQSPH.
Then, we have that

Ex
[
τBh(x,r)

]
≥ r4 log(r−1)−κ

off an event whose µQSPH measure tends to 0 as r → 0 faster than any power of r, where the expectation
is over the Brownian motion with S fixed.

Proof. Step 1. Setup and overview of the proof strategy. Suppose that we have the setup of Propo-
sition 5.1 with the above choice of u and the event E defined in Subsection 6.2. Proposition 6.2
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implies that we can choose M > 1 sufficiently large such that the statement of Proposition 5.1
applies. Fix r > 0 and suppose that the event in the statement of the lemma holds, and set
Nr = r−4−u. Let (zj) be a sequence of points chosen i.i.d. from µh. Then, the proof of the lower
bound of Theorem 4.1 implies that S ⊆ ∪Nrj=1Bh(zj , r) off an event whose µQSPH measure tends to
0 as r → 0 faster than any power of r. The main idea of the proof of the lemma is roughly the fol-
lowing. First, we will show that off an event whose µQSPH measure tends to 0 as r → 0 faster than
any power of r, the following holds. Fix 1 ≤ j ≤ Nr such that dh(x, zj) ≥ r. Then, we can find an
annulus Aj contained in Bh(x, r) which consists of radial SLE6 chunks and disconnects Bh(x, r/2)
from zj as in the statement of Proposition 6.14. Moreover, the dh-distance with respect to the
interior-internal metric in Aj between the inner and outer boundaries of Aj is at least r log(r−1)−p

for some constant p. We will show this in Step 2. Next, in Step 3, we will show that the following
holds with high probability. If we start a Brownian motion from x, then it will disconnect at least
r log(r−1)−q units of quantum area while crossing Aj and before exiting Bh(x, r) for some constant
q > 0 and some 1 ≤ j ≤ Nr. Then, we will conclude the proof in Step 4 arguing as in the proof of
the upper bound of Theorem 6.1.

Step 2. Constructing good annuli with high probability. Let ũ ∈ (0, 1/3) be the constant in
Lemma 6.17. Fix a1, a2 > 0 (to be chosen) and for 1 ≤ j ≤ Nr, let τ j1 be the first time after r/2 that
Lj goes above r2 log(r−1)−a1 , where Lj is the process describing the boundary length evolution
of the metric exploration from x to zj . Given that we have defined τ j1 , . . . , τ

j
m−1, we let τ jm be

the first time after τ jm−1 + r log(r−1)−a2 that Lj goes above r log(r−1)−a1 . Lemma 4.6 implies that
sup0≤s≤r L

j
s < r2 log(r−1)2 for all 1 ≤ j ≤ Nr, off an event whose µQSPH measure tends to 0 as

r → 0 faster than any power of r. Thus, from now on, we can assume that we are working on that
event. Note that there exists a universal constant p0 ∈ (0, 1) such that if Y is the time-reversal of a
3/2-stable CSBP excursion starting from 1, then Y hits 0 before time 1 with probability at least p0.
It follows that the µQSPH measure of the event that τ j1 >

r
2 + r log(r−1)−a2 is at most exp(log(1 −

p0) log(r
−1)−a2+a1/2). Thus, if we choose a1, a2 such that a2 < a1/2 − 1, we have that τ j1 ≤

r
2 + r log(r−1)−a2 for all 1 ≤ j ≤ Nr, off an event whose µQSPH measure tends to 0 as r → 0 faster
than any power of r. Similarly, conditionally on τ jm−1 <∞, we have that τ jm−τ jm−1 ≤ 2r log(r−1)−a2

off an event whose µQSPH measure tends to 0 as r → 0 faster than any power of r. Fix 1 < a3 < a2.
Then, we have that τ j

log(r−1)a3
< ∞ off an event whose µQSPH measure tends to 0 as r → 0 faster

than any power of r. Fix also a4 > 1 (to be chosen). Let Dj
1 be the surface parameterized by

S \B•h,zj (x, τ
j
1 ). Suppose that we perform the exploration in Dj

1 as in Proposition 5.1 up until either

the boundary length of the zj-containing component does not lie in [Lj
τ j1
/2, Lj

τ j1
log(r−1)−a4ũ] or we

have discovered a chunk which cannot be connected to ∂Dj
1 by a sequence of at most log(r−1)a4u

number of chunks which have already been discovered or we have discovered log(r−1)a4(2/3+u)

number of chunks. Let N 1,j
1 , . . . ,N 1,j

N be the chunks that have been completely discovered up until
that point. Lemma 6.17 combined with scaling imply that conditionally on τ j1 <∞, the probability
that there exists 1 ≤ i ≤ N such that the dh-diameter of the outer boundary of N 1,j

i is at least
log(r−1)−a4(1/3−u)(Lj

τ j1
)1/2 is at most c1 log(r−1)a4(2/3+u) exp(−c2 log(r−1)αa4), where c1, c2, α > 0

depend only on u. Thus, if we choose a4 > α−1, then we have that the above probability tends to 0

as r → 0 faster than any power of r. Also, by construction, we have that if the above event occurs,
then for all 1 ≤ i ≤ N , every point on the outer boundary of N 1,j

i has dh-distance from Bh(x, τ
j
1 ) at

most r log(r−1)a4(2u−1/3)+1. In particular, if we choose a4 so that 1 + (2u− 1/3)a4 < −a2, we have
that the outer boundary of N 1,j

i is contained in Bh(x, τ
j
1 + r log(r−1)−a2) for all 1 ≤ i ≤ N .
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Now, we perform the exploration in Dj
1 as in Proposition 5.1 with δ = log(r−1)−a4 after we scale

lengths by (Lj
τ j1
)−1, distances by (Lj

τ j1
)−1/2 and quantum natural time by (Lj

τ j1
)−3/2. Let Aj1 be the

event that the elements of N 1,j
1 , . . . ,N 1,j

N for which the event E in Proposition 6.2 occurs disconnect
x from zj . We also let Bj

1 be the intersection of Aj1 with the event that the annulus A formed by
the N 1,j

i ’s is contained in the r log(r−1)1−p0a4 dh-neighborhood of ∂Dj
1, where p0 is the constant in

Proposition 6.14. We pick a4 so that a4 > p−10 . Combining Propositions 5.1 and 6.14, we obtain that
there exists a constant q > 0 depending only on u such that µQSPH

[
Bj

1 | τ
j
1 <∞

]
≥ q. Note that the

choices of a1, a2, a4 imply that N 1,j
1 , . . . ,N 1,j

N are all contained in B•h,zj (x, τ
j
1 + r log(r−1)−a2), if we

further assume that 1− p0a4 < −a2. Moreover, it is easy to see that the conditions in the statement
of the lemma imply that the conditions in Proposition 6.14 hold for the field in Dj

1 obtained by
rescaling h. Hence, it follows from Proposition 6.14 that the distance with respect to dh between
the inner and outer boundaries of A is at least r log(r−1)−p1a4−a2/2, where p1 is the constant in
the statement of Proposition 6.14. Furthermore, for all i ∈ N such that τ ji < ∞, we define events
Aji , B

j
i , and SLE6 chunks N i,j

k as above. The same analysis as above implies that given τ ji <∞, the
conditional probability that Bj

i occurs is positive uniformly. Let Ij be the smallest i such that Bj
i

occurs. Then, the above analysis implies that the µQSPH measure of the event that Ij > log(r−1)a3

for some 1 ≤ j ≤ Nr such that dh(x, zj) ≥ r tends to 0 as r → 0 faster than any power of r.
Note that if Aj is the annulus corresponding to Ij , then the choice of the constants a1, a2, a3 and a4
implies that Aj ⊆ B•h,zj (x, r) \B

•
h,zj

(x, r).
Step 3. A Brownian motion starting from x disconnects r log(r−1)−q units of quantum area while

crossing Aj for the first time with high probability. Suppose that we are working on the event that
Ij ≤ log(r−1)a3 for all 1 ≤ j ≤ Nr. LetD1, . . . , Dm denote the connected components of S\Bh(x, r)
with the property that they contain a point whose dh-distance from the boundary of the component
is at least r. Then zj ∈ ∪mi=1Di for some 1 ≤ j ≤ Nr. Fix i, j such that zj ∈ Di. Let K be the set
of points disconnected from zj by a Brownian motion starting from x and run until the first time
that it exits B•h,zj (x, r). Then, [60, Proposition 6.32] implies that K has the same law as the hull
of a whole-plane SLE6 which is independent of (S, x, y), starting from x and stopped upon hitting
B•h,zj (x, r) since we further have that B•h,zj (x, r) is a Jordan domain (see [77, Theorem 1.1]). Then,
we have that the SLE6 hull has to pass through the annulus Aj and upon doing so, it has to make
a crossing in Aj from the outer to the inner boundary of Aj . In particular, it has to travel dh-
distance at least r log(r−1)−a4p1−a1/2. Then, Lemma 6.18 implies that there exists a constant q > 0

depending only in a1, a4 such that off an event whose µQSPH measure decays to 0 as r → 0 faster
than any power of r, we have that the whole-plane SLE6 disconnects from zj at least r4 log(r−1)−q

units of quantum area while crossing Aj for the the first time.
Step 4. Conclusion of the proof. Fix β > 1 large (to be chosen and depending only on a1, a2, a3, a4

and q) and suppose that r is sufficiently small such that log(r−1)−β < log(r−1)−a4/3/M . Then,

condition (VI) implies that the
(
Lj
τ jIj

)1/2

log(r−1)−β dh-neighborhood of the boundary of a good

chunk N of Aj has area at most r log(r−1)1−pβ−pa4/3, where p is the constant in (VI). Since
Lj
τ jIj

≥ r log(r−1)−a1 , possibly by taking β to be larger, we can assume that the r log(r−1)−β dh-

neighborhood of the boundary of a good chunk N of Aj has area at most r log(r−1)1−pβ−pa4/3.
It follows that by taking β sufficiently large (depending only on a1, a2, a3, a4 and q), we can as-
sume that the union of the r1/2 log(r−1)−β dh-neighborhoods of the boundaries of the chunks in
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Aj has area at most r log(r−1)−q. Therefore, we obtain that the hull of the whole-plane SLE6 must
exit the r1/2 log(r−1)−β dh-neighborhood of the boundaries of the chunks and so the same is true
for the Brownian motion. Let N be the first chunk in Aj that the Brownian motion hits the part
of N which has dh-distance at least r1/2 log(r−1)−β from ∂N and let w be the first such point it
hits. Let ϕ : N → D be the conformal transformation as in (III). Then, condition (III) implies
that ϕ(w) has Euclidean distance at least log(r−1)−q̃ from ∂D, where q̃ = M(β + 1 − a3/3). This
implies that the probability that the Brownian motion (conformally mapped) hits B(0, 1/4) before
leaving D is at least a constant times log(r−1)−q̃. Moreover, it follows from (III) that the quantum
mass assigned to B(0, 1/2) with respect to the embedding of N into D induced by ϕ is at least
log(r−1)−4a4/3/M . Since GB(0,1/2)(z, w) ≳ 1 for all z, w ∈ B(0, 1/2) with the implicit constant be-
ing universal, (3.14) implies that the total amount of time in B(0, 1/2) that the LBM starting from
w ∈ ∂B(0, 1/4) spends up until the first time that it exits B(0, 1/2) is at least a universal constant
times log(r−1)−4a3/3/M . Combining everything, we obtain that Ex

[
τBh(x,r)

]
is at least a universal

constant times log(r−1)−q̃−4a3/3/M . This completes the proof of the lemma. □

Proof of Theorem 6.1, lower bound. Suppose that (S, x, y) has distribution µQSPH. Since the met-
ric in S is bi-Hölder continuous with respect to the Euclidean metric, we know that there exists
α ∈ (0, 1) deterministic such that µQSPH-a.e., there exists r0 ∈ (0, 1) such that Bh(z, r1/α

2
) ⊆

B(z, r1/α) ⊆ Bh(z, r) for all z ∈ S, r ∈ (0, r0). Fix r0 ∈ (0, 1) and suppose that we are work-
ing on the event that for all r ∈ (0, r0), the above holds and and in addition we have that
diam(S) ≥ 6r, r4 log(r−1)−6−u ≤ µh(Bh(z, r)) ≤ r4 log(r−1)8+u and µh(Bh(z,r))

µh(S) ≥ r4+u for all z ∈ S,
where u ∈ (0, 1/3) is fixed. Note that by Theorem 4.1 and since S is a finite metric space µQSPH-a.e.,
we obtain that µQSPH-a.e., there exists r0 ∈ (0, 1) satisfying these properties.

Let (zj) be a sequence of points in S chosen i.i.d. from µh normalized to be a probability measure.
With Nr = r−u−4/α

2
, we know from the proof of Lemma 6.22 that S ⊆ ∪Nrj=1Bh(zj , (r/4)

1/α2
) off

an event whose µQSPH measure tends to 0 as r → 0 faster than any power of r. Then, Lemma 6.22
implies that there exists a universal constant κ > 0 such that off an event whose µQSPH measure
tends to 0 as r → 0 faster than any power of r, the following holds for all 1 ≤ j ≤ Nr simultaneously.
The conditional expectation given S of the amount of time that the LBM starting from zj spends
in Bh(zj , r) \ Bh(zj , r/2) before leaving Bh(zj , r) is at least r4 log(r−1)−κ. Fix 1 ≤ j ≤ Nr and
z ∈ B(zj , (r/4)

1/α) ⊆ Bh(zj , r/2). We note that the Radon-Nikodym derivative between harmonic
measure on ∂B(zj , (r/4)

1/α) as seen from z and from zj is bounded from above and below by
universal constants. By integrating over their first hitting point of ∂B(zj , (r/4)

1/α), we thus have
that if Bz (resp. Bzj) is an LBM starting from z (resp. zj) then the expected amount of time that
Bz spends in Bh(zj , r) \Bh(zj , r/2) before exiting Bh(zj , r) is comparable to the expected amount
of time that Bzj spends in Bh(zj , r) \ Bh(zj , r/2). Hence, the proof is complete possibly by taking
κ to be larger since S ⊆ ∪Nrj=1B(zj , (r/4)

1/α). □

7. BOUNDS ON THE LIOUVILLE HEAT KERNEL

In this section we prove Theorems 1.1 and 1.2. We start with Theorem 1.1, which is now a direct
consequence of the results in the previous sections.

Proof of Theorem 1.1. First, we will show the desired upper bound for the LBM killed upon exiting
bounded domains in C whose closure does not contain 0. Also, by scaling and disintegration with
respect to area, it suffices to prove the desired upper bound when h has the law of the unit area
LQG sphere. Fix U ⊆ C non-empty and open and such that 0 /∈ U . Let also D ⊆ C be a Jordan
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domain such that U ⊆ D and 0 /∈ D. Note that [9, Lemma 3.9] implies that the law of a zero-
boundary GFF on D is mutually absolutely continuous with respect to the law of the restriction
to D of a massive GFF on R2 with constant positive mass. Hence, combining [3, Theorem 1.2]
with absolute continuity, we obtain that there a.s. exists a random constant C1 < ∞ such that
p̃t(x, y) = p̃t(y, x) ≤ C1t

−1 log(t−1) for all x, y ∈ D, t ∈ (0, 1/2], where p̃t(·, ·) denotes the heat
kernel of the LBM killed at the first time that it exits D, with respect to a zero-boundary GFF h0

on D. Note that the definition of the law of h given in [35, Section 4.5] combined with the proof
of [70, Proposition 3.4] imply that the laws of h|D and h0|D are mutually absolutely continuous.
Hence, it follows that for a.e. instance of h, there exists a random constant C < ∞ such that
pDt (x, y) = pDt (y, x) ≤ Ct−1 log(t−1) for all x, y ∈ D, t ∈ (0, 1/2], where pDt (·, ·) denotes the
Liouville heat kernel for the LBM with respect to h when killed at the first time that it exits D.
Thus, it follows that for all (x0, r) ∈ D × (0, 2−1/4) with Bh(x0, 2

1/4r) ⊆ D, t ∈ (0, r4) ⊆ (0, 1/2),
A ⊆ Bh(x0, r) Borel and x ∈ Bh(x0, r), we have that

Px
[
Xt ∈ A, t < τBh(x0,r)

]
=

∫
A
p
Bh(x0,r)
t (x, y) dµh(y)

≤
∫
A
pDt (x, y) dµh(y) ≤ Ct−1 log(e+ t−1)µh(A).

In particular, condition (DU) holds for h.
Next, we proceed to prove that condition (E) holds. Indeed, Theorem 6.1 implies that (2.3)

holds with β = 4 and κel = κeu = κ for all (x, r) ∈ D × (0, 1) such that Bh(x, r) ⊆ D, where
κ is the constant in the statement of Theorem 6.1. Therefore, by further setting α1 = α2 =

β1 = β2 = 4, Lemma 2.11 combined with Theorem 2.12 and since distdh(U,S2 \ D) > 0, we
obtain that the desired upper bound holds for all (t, x, y) ∈ (0, 1/2] × S2 × U . Now, suppose that
conditional on (S2, h), we choose independently a point z from µh and let ϕ : S2 → S2 be a
conformal map such that ϕ(0) = 0 and ϕ(z) = ∞. Then, it follows from [35, Proposition A.8]
that h̃ := h ◦ ϕ−1 + Q log |(ϕ−1)′| has the same law with h modulo a scaling factor, where h and
h̃ are considered to have the embedding introduced in [35, Section 4.5]. Note that z /∈ {0,∞}
a.s. Hence, combining the fact that the desired upper bound on the heat kernel holds in U with
[13, Theorem 1.3], we obtain that there a.s. exist open neighborhoods U1 and U2 of 0 and ∞
respectively, and random constants C1, C2 such that

(7.1) pt(u, v) ≤ C1(log t
−1)κ

t
exp

(
−C2

(
dh(u, v)

4

t

)1
3
(
log

(
e+

dh(u, v)

t

))−κ)
for all t ∈ (0, 1/2], (x, y) ∈ (S2×U1)∪(S2×U2). Finally, we have already shown that (7.1) holds with
t ∈ (0, 1/2] and x, y both lying in a bounded domain in C with positive distance from 0. Combining,
we complete the proof. □

As the first step in proving the lower bound in Theorem 1.2 we record an on-diagonal heat kernel
lower bound as a further consequence of the results in the previous sections.

Lemma 7.1. There exists a deterministic constant κ > 0 such that for µQSPH-a.e. instance (S, x, y)
there exists C ≥ 1 such that for all u ∈ S and t ∈ (0, 12 ],

(7.2) pt(u, u) ≥
1

Ct(log t−1)κ
.

Proof. First, we note that assumption (2.1) holds for a.e. instance (S, x, y) of a sample from the
fixed area Brownian map, since (2.1) is a.s. true for the restriction of the GFF on R2 to every open
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and bounded subset of R2, and the law of the latter is locally absolutely continuous with respect to
the law of the fixed area Brownian map as explained in the proof of Theorem 1.1. Hence, it follows
by scaling that assumption (2.1) holds for µQSPH-a.e. instance (S, x, y). Moreover, assumptions
(V)≤ and (E) have been established for µQSPH in Theorems 4.1 and 6.1, respectively. Therefore,
the proof is complete by combining with Theorem 2.1. □

In order to prove the off-diagonal lower bound, we want to construct a chain out of order
(d(u, v)4/t)1/3 sets which connect u to v, each of diameter of order (t/d(u, v))1/3 between which
the Brownian motion can move with positive probability. The sets that we will use will be given
by annuli of SLE6 chunks using a certain good event as in the exit time lower bound. In what
follows, we will define the good event in Subsection 7.1. We will then establish various properties
of the corresponding good annuli in Subsection 7.2. We will complete the proof of Theorem 1.2 in
Subsection 7.3.

7.1. The good event. We are now going to give the definition of the good event that we will use
for the chunks of SLE6.

Fix δ ∈ (0, 1] and M > 1, fix a constant p > 0 (corresponding to condition (VI) in Subsection 6.2)
which is small enough as specified in Proposition 6.8, and let D = (D, h, 0) be a sample from µL=ℓQD,W.
Let also η′ be a radial SLE6 in D started from the point x ∈ ∂D which is sampled uniformly from
νh (normalized to be a probability measure) and targeted at 0, and such that η′ is independent of
D. Let y be the point on ∂D which is antipodal to x with respect to νh and let σ̃ be the first time
after δ/M that the curve η′ is in the boundary and let σ = σ̃ ∧ δ. In the case that W = (H, h, 0,∞)

is a sample from µW=2
QW , we let η′ be a chordal SLE6 in H from 0 to ∞ which is independent of

W and it is parameterized by quantum natural time with respect to h. We define stopping times
σ, σ̃ analogously. In either case, we let E be the event that σ = σ̃ and the following conditions
hold for the quantum surface N disconnected by η′([0, σ]). (Note that σ = σ̃ implies that N is
homeomorphic to D.)

(I) For every r ∈ (0, δ1/3M−1) and every x, y ∈ N with dh-distance at least r from ∂N there
exists t ∈ [M−Mδ4/3/(log 1

r )
M ,MMδ4/3(log 1

r )
M ] so that∫

Bh(y,r)
pNt (x,w) dµh(w) ≥ rM ,

where pN denotes the Liouville heat kernel on N .
(II) For every z ∈ N and r ∈ (0, δ1/3/M) there exists w ∈ N with dh(z, w) ≤ r and Bh(w, 2rM ) ⊆

N .
(III) The conditions in the event E used for the exit time lower bound, described in Subsection 6.2,

hold with the parameter M .

The rest of this subsection is devoted to the proof of the following statement.

Proposition 7.2. For every p0 ∈ (0, 1) there exists M ≥ 1 depending only on p0 so that µW=2
QW

[
EWσ ∩

{E holds for N}
∣∣ σ < δ

]
≥ 1− p0 for all δ ∈ (0, 1].

First we note that by scaling, it suffices to prove that conditions (I)–(III) hold with high proba-
bility (if M is sufficiently large) when δ = 1. From now on, we will assume that δ = 1. Also the fact
that condition (III) holds with as high probability as we want (provided we choose M sufficiently
large) follows from Proposition 6.2.

Next we focus on proving that condition (II) holds with high probability if we choose M large
enough. The main idea in order to prove the claim is to prove that condition (II) holds with high
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probability when N is the radial SLE6 chunk drawn on top of an independent sample from µL=1
QD,W.

Then the claim will follow by arguing in the same way as in Steps 3 and 4 in the proof of Lemma 6.9
and the second paragraph of the proof of Lemma 6.10. We believe that this approach will make
it easier for the reader to understand the proof of Proposition 7.2 (instead of proving directly the
claim for the quantum wedge without comparing the law of the latter with that of a quantum disk),
since similar arguments have been presented in Section 6.

Let us now prove that condition (II) holds with high probability when the radial SLE6 chunk N
is drawn on top of an independent sample from µL=1

QD,W. This is the content of the following lemma.

Lemma 7.3. Suppose that D = (D, h, 0) has law µL=ℓQD,W for ℓ > 0 fixed. Then, there exists a de-
terministic constant M > 1 such that µL=ℓQD,W-a.s. there exists (random) r0 ∈ (0, 1) such that for all
z ∈ D, r ∈ (0, r0), there exists w ∈ D with dh(z, w) ≤ r and Bh(w, 2rM ) ⊆ D.

The main ingredient in the proof of Lemma 7.3 is the following lemma which states that the LQG
distance with respect to a sample from µL=ℓQD,W for ℓ > 0 (when parameterized by D) is bi-Hölder
continuous with respect to the Euclidean metric (with deterministic exponents) a.s.

Lemma 7.4. Suppose that we have the setup of Lemma 7.3. Then, there exists a deterministic constant
β ∈ (0, 1) such that µL=ℓQD,W-a.s. there exists C > 1 such that

C−1|z − w|1/β ≤ dh(z, w) ≤ C|z − w|β for all z, w ∈ D.

Proof. First we will show the claim of the lemma for a free boundary GFF ĥ on D normalized so
that the value of its harmonic part at 0 is equal to zero and then use the same argument as in the
proof of Lemma 6.5 to deduce the claim for the weighted quantum disk.

Step 1. Proof of the claim for a free boundary GFF on D. We note that ĥ can be sampled as follows.
Let h̃ be a free boundary GFF on H such that its average on H∩∂D is equal to zero and consider the
conformal transformation F : H → D such that F (z) = − z−i

z+i . Let also h̃ denote the harmonic part
of h̃. Then we have that ĥ can be sampled as ĥ = h̃ ◦ F−1 − h̃(i). Moreover [54, Proposition 1.8]
implies that there exists deterministic constant β ∈ (0, 1) such that the following is true a.s. For
every compact set K ⊆ H, there exists (random) constant C > 1 such that

C−1|z − w|1/β ≤ d
h̃
(z, w) ≤ C|z − w|β for all z, w ∈ K.

Thus the same is true with h̃− h̃(i) in place of h̃ since

d
h̃−h̃(i)(z, w) = exp

(
−h̃(i)/

√
6
)
d
h̃
(z, w) for all z, w ∈ H.

Furthermore it holds that d
h̃◦F−1+Q log |(F−1)′|(z, w) = d

h̃−h̃(i)(F
−1(z), F−1(w)) and there exists de-

terministic constant M > 1 such that M−1 ≤ |(F−1)′(w)| ≤M for all w ∈ D\B(−1, 1/4). It follows
that there a.s. exists a random constant C > 1 such that

C−1|z − w|1/β ≤ d
ĥ
(z, w) ≤ C|z − w|β for all z, w ∈ D \B(−1, 1/4).(7.3)

Note that the random fields h(z) and h(−z) have the same law and so combining with (7.3), we
obtain that it is a.s. the case that there exists C > 1 such that

C−1|z − w|1/β ≤ d
ĥ
(z, w) ≤ C|z − w|β for all z, w ∈ D ∩B(−1, 1/4).(7.4)

Fix z ∈ D \ B(−1, 1/4), w ∈ B(−1, 1/4) ∩ D and let y be the point of intersection between
D ∩ ∂B(−1, 1/4) and the segment [z, w]. Then combining (7.3) and (7.4) we obtain that

d
ĥ
(z, w) ≤ d

ĥ
(z, y) + d

ĥ
(y, w) ≤ 2C|z − w|β.
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To show the lower bound for d
ĥ
(z, w), we fix ϵ > 0. Since d

ĥ
is a length metric, we obtain that

there exists a path P : [0, 1] → D such that P (0) = w,P (1) = z and the d
ĥ
-length of P is at

most d
ĥ
(z, w) + ϵ. Let x be the first point of D ∩ ∂B(−1, 1/4) that P intersects. Then either

|z − x| ≥ |z − w|/2 or |w − x| ≥ |z − w|/2. Suppose that the former case holds. Then (7.3) implies
that

d
ĥ
(z, w) + ϵ ≥ d

ĥ
(z, x) ≥ C−1|z − x|1/β ≥ C−12−1/β|z − w|1/β.

Similarly if the latter case holds, (7.4) implies that

d
ĥ
(z, w) + ϵ ≥ d

ĥ
(w, x) ≥ C−1|w − x|1/β ≥ C−12−1/β|z − w|1/β.

Hence since ϵ > 0 was arbitrary, we obtain that

d
ĥ
(z, w) ≥ C−12−1/β|z − w|1/β

in either case. Combining we obtain that it is a.s. the case that there exists C > 1 such that

C−1|z − w|1/βd
ĥ
(z, w) ≤ C|z − w|β for all z, w ∈ D.(7.5)

Step 2. Conclusion of the proof. Next we will combine Step 1 with the argument in the proof of
Lemma 6.5 to complete the proof of the lemma.

Recall that [5, Theorem 1.2] implies that the following is true a.s. Suppose that f is sampled
from the group conf(H) of conformal automorphisms of H when the latter is endowed with the
Haar measure, and let h1 be sampled from the infinite measure of a weight-2 quantum disk with
γ =

√
8/3 weighted by νh1(∂H)−2. Then there exists a deterministic constant C > 0 such that the

law of the field h1 ◦ f−1 + Q log |(f−1)′| is given by C times the law of h̃ − 2Q log | · |+ + c where
c is sampled independently from the infinite measure on R given by exp(−Qc)dc, and recall that
h̃ denotes a free boundary GFF on H normalized so that its average on H ∩ ∂D is equal to zero. It
follows that that the field h1 ◦ f−1 ◦ F−1 +Q log |(F ◦ f)−1)′| has the same law as C times the law
of the field

h̃ ◦ F−1 − 2Q log |F−1(·)|+ +Q log |(F−1)′|+ c

where log |x|+ = logmax(|x|, 1).
Since d

h̃◦F−1 = exp
(
h̃(i)/

√
6
)
d
ĥ
, we have by (7.5) that it is a.s. the case that there exists M > 1

such that

M−1|z − w|1/β ≤ d
h̃◦F−1(z, w) ≤M |z − w|β for all z, w ∈ D.

Moreover as explained in the proof of Lemma 6.5, we have that

−2Q log |F−1(·)|+ +Q log |(F−1)′(·)| = O(1)

uniformly in D. Thus it follows that almost everywhere, there exists M > 1 such that

M−1|z − w|1/β ≤ dh1◦(F◦f)−1+Q log |((F◦f)−1)′|(z, w) ≤M |z − w|β for all z, w ∈ D.

Combining with the fact that the event in the lemma statement is invariant under the coordinate
change formula of quantum surfaces with disintegration with respect to the total boundary length
of a quantum disk sampled from the infinite measure, we obtain the lemma statement for a sample
from µL=ℓQD . Therefore, it also holds a.s. for a sample from µL=ℓQD,W since the measures µL=ℓQD,W and
µL=ℓQD are mutually absolutely continuous. This completes the proof of the lemma. □
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Proof of Lemma 7.3. By absolute continuity, it suffices to prove the claim for µL=ℓQD instead. Let
β ∈ (0, 1) be the constant of Lemma 7.4. Then, Lemma 7.4 implies that µL=ℓQD -a.e., there exists a

random constant C > 1 such that C−1|z−w|1/β ≤ dh(z, w) ≤ C|z−w|β for all z, w ∈ D. Pick M̃ > 1

deterministic such that M̃β > 1. Then, we have that D ∩ B(z, rM̃ ) ⊆ Bh(z, r) for all z ∈ D and all
r > 0 sufficiently small, which implies that there exists w ∈ D such that B(w, rM̃/2) ⊆ D∩Bh(z, r).
Fix M > β−1M̃ . Then, we have that Bh(w, rM ) ⊆ B(w, rM̃/2) ⊆ D ∩ Bh(z, r) for all r > 0

sufficiently small (independent of z, w) and this completes the proof. □

Now we proceed on proving that condition (I) holds with high probability for M large enough.
As in the first paragraph of the proof of Lemma 6.10, the main idea is to compare locally the laws
of a quantum disk and a quantum wedge of weight 2, and then deduce the claim by proving that
condition (I) holds with high probability when the surface N is drawn on top of a sample from
µL=1
QD,W. The purpose of the following lemma is to show the latter claim.

Lemma 7.5. Suppose that we have the same setup as in the definition of the good event just before
the statement of Proposition 7.2, where the surface N is drawn on top of a sample D = (D, h, 0) from
µL=1
QD,W. Then, it is a.s. the case that there exists M0 ≥ 1 such that condition (I) holds for all M ≥ M0

when δ = 1.

The main idea of the proof of Lemma 7.5 is the following. Suppose that we have the same setup
as in the statement of Lemma 7.5. Fix M > 1 sufficiently large and let x, y ∈ N be such that
distdh({x, y}, ∂N ) ≥ r, where r ∈ (0,M−1). Let also TBh(y,r) denote the total amount of time that
the Liouville Brownian motion starting from xwith respect to h and killed upon exiting N spends in
Bh(y, r). Then we will show that if M is sufficiently large, it is very likely that there exists t ∈ IM,r

with
1

|IM,r|

∫
Bh(y,r)

pNt (x,w)dµh(w) ≳ Ex[TBh(y,r)],(7.6)

where

IM,r := [M−M/2 log(r−1)−M ,MM/2 log(r−1)M ].

Moreover we will show that with high probability (if M is large enough), we have that

Ex[TBh(y,r)] ≳ rM/2.(7.7)

Therefore combining (7.6) with (7.7), the proof of Lemma 7.5 will be complete.
We start with proving a lower bound for Ex[TBh(y,r)]. This is the content of the following lemma.

Lemma 7.6. Suppose that we have the same setup as in the definition of the good event just before
the statement of Proposition 7.2, where the surface N is drawn on top of a sample D = (D, h, 0) from
µL=1
QD,W. Set h̃ := h|N ◦φ−1+Q log |(φ−1)′|. Then there exists a deterministic constant α > 0 such that

it is a.s. the case that there exist M > 1, c0 > 0 such that the following is true for all r ∈ (0,M−1)

and all x, y ∈ D such that distd
h̃
({x, y}, ∂D) ≥ r. If TA denotes the amount of time that the Liouville

Brownian motion in D with respect to h̃ spends in the set A ⊆ D before exiting D, then we have that

Ex[TB
h̃
(y,r)] ≥ c0r

α+M/4.

Let us first briefly describe the setup of the proof of Lemma 7.6 before proceeding with its proof.
The setup is similar to the setup of the proof of Lemma 6.13. Let I ⊆ ∂D be a fixed countable and
dense subset of ∂D. Then it is a.s. the case on the event that σ = σ̃, that there exist z, w ∈ I such
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that η′([0, σ]) = η′([0, τ ]), where τ is the first time that η′ disconnects z from w. Also we have that
z lies in the boundary of the connected component of D \ η′([0, τ ]) which contains 0. Note that τ is
also the first time that η′ disconnects w from 0 and so η′|[0,τ ] has the same law as a chordal SLE6

process in D from x to w, stopped at the first time at which it disconnects w from 0, and the latter
time is the same time at which the chordal process disconnects w from z. Moreover the locality
property of SLE6 implies that the latter chordal process has the same law as a chordal SLE6 process
η̃′ in D from x to z, stopped at the first time τ̃ at which it disconnects z from w. In particular we
have that N has the same law with the hull of η̃′|[0,τ̃ ]. Combining with the rotational invariance
of the law of radial SLE6, we obtain that it suffices to prove the claim of the lemma when N is
replaced by the hull of η̃′|[0,τ̃ ], where η̃′ is a chordal SLE6 in D from −i to z stopped at the first time
τ̃ that it disconnects z from w, where z, w are fixed and distinct points in I and η̃′ is independent
from D.

Proof of Lemma 7.6. Step 1. Outline and setup. Suppose that we have the same setup as in the
paragraph just after the statement of the lemma and let (K̃t) denote the family of hulls of η̃′. Again
by the locality property, we have that η̃′ can be coupled with a chordal SLE6 η̂

′ in D from −i to w
stopped at the first time τ̂ that η̂′ disconnects z from w such that η̃′|[0,τ̃ ] = η̂′|[0,τ̂ ].

Without loss of generality, we can assume that w lies in the counterclockwise arc of ∂D from
−i to z. Let η̂ denote the left outer boundary of η̂′ when viewed as a curve from w to −i. It
follows from [70, Theorem 1.4] that η̂ has the law of an SLE 8

3
(83 − 2; 83 − 4) process in D from w

to −i with the force points located at w− and w+ respectively. Let U be the connected component
whose boundary contains −i of the complement in D of the curve η̂ stopped at the first time that it
disconnects −i from z. Similarly we let V be the connected component whose boundary contains
w of the complement in D of the time-reversal of η̂ stopped at the first time that it disconnects
w from z. Let also G be the connected component of D \ η̂ lying to the left of η̂. Note that
Proposition A.1 implies that int(K̃τ̃ ), U, V,G are all Jordan domains such that U ∪ V ∪G ⊆ int(K̃τ̃ )

and let ϕ : int(K̃τ̃ ) → D, f : U → D, g : V → D and ψ : G → D be conformal transformations
chosen in some arbitrary but fixed way. Let also Î be the arc traced by η̂ up until the last time that
it hits the counterclockwise arc of ∂D from −i to z and let Ĵ be the arc traced by the time-reversal
of η̂ stopped at the last time that it hits the clockwise arc of ∂D from −i to z. Note that Î ∩ Ĵ = ∅.
Note also that [85, Theorem 5.2] combined with the time-reversal symmetry of the law of η̂ (see
[71, Theorem 1.1])) implies that there exists a deterministic constant α ∈ (0, 1) such that all of the
maps f−1, g−1 and ψ−1 are α-Hölder continuous.

Fix M ∈ (1,∞) sufficiently large (to be chosen) and let r ∈ (0,M−1). Let x, y ∈ Ñ := int(K̃τ̃ )

be such that distdh|Ñ
({x, y}, ∂Ñ ) ≥ r. In Step 2, we will show that the probability that a complex

Brownian motion starting from x intersects ψ−1(B(0, 1/2)) before exiting Ñ for the first time is
≳ r1/(αβ), where the implicit constant is independent of r and β ∈ (0, 1) is the constant in the
statement of Lemma 7.4. Then we will conclude the proof in Step 3 as follows. Suppose that we
are working on the event that the Brownian motion intersects ψ−1(B(0, 1/2)) before exiting Ñ for
the first time. Using the α-Hölder continuity of the maps ψ−1, f−1, g−1 and ϕ−1, we will show that
the probability that a Brownian motion starting from a point u ∈ ψ−1(B(0, 1/2)) intersects Bh(y, r)
before exiting Ñ for the first time is ≳ r1/(αβ), where the implicit constant is uniform in u and
r. Therefore the proof will be complete by combining with the Markov property of the Brownian
motion and the fact that µh(Bh(y, r)) ≥ rM/4 if M is sufficiently large (see [46, Lemma 3.3]).
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Step 2. Lower bound on the probability that the Brownian motion hits ψ−1(B(0, 1/2)) before leaving
Ñ . We have the following cases.

Case 1. Bh|Ñ (x, r) ∩ (Î ∪ Ĵ) = ∅. In that case, we have that Bh|Ñ (x, r) ⊆ G and so Bh|Ñ (x, r) =

Bh|G(x, r). Lemma 7.4 implies that there exists deterministic constant β ∈ (0, 1) such that possibly
by taking M to be larger, we have that

B(x, r1/β) ⊆ Bh|G(x, r) ⊆ B(x, rβ).(7.8)

Let C > 0 be such that |ψ−1(u)−ψ−1(v)| ≤ C|u−v|α for all u, v ∈ D. Then combining with (7.8)
we obtain that

B(ψ(x), C−1/αr1/(αβ)) ⊆ Bh|G◦ψ−1+Q log |(ψ−1)′|(ψ(x), r).

Note that the probability that starting from ψ(x) the Brownian motion intersects B(0, 1/2) before
leaving D is at least a constant times − log |ψ(x)|. In particular, combining with conformal in-
variance, we obtain that there exists a (random) constant c0 > 0 such that the probability that a
Brownian motion starting from x intersects ψ−1(B(0, 1/2)) before exiting Ñ for the first time is at
least c0r1/(αβ).

Case 2. Bh|Ñ (x, r)∩ Î ̸= ∅. Possibly by taking M to be larger, we can assume that Bh|Ñ (x, r)∩ Ĵ =

∅ and hence Bh|Ñ (x, r) ⊆ V , which implies that Bh|Ñ (x, r) = Bh|V (x, r). Similarly to Case 1, we
have that

B(g(x), C−1/αr1/(αβ)) ⊆ Bh|V ◦g−1+Q log |(g−1)′|(g(x), r),

where C > 0 is such that

|g−1(u)− g−1(v)| ≤ C|u− v|α for all u, v ∈ D.

In particular, we have that dist(g(x), ∂D) ≥ C−1/αr1/(αβ) and so possibly by taking the constant
c0 > 0 in Case 1 to be smaller and combining with conformal invariance, we can assume that the
probability that a Brownian motion starting from x intersects ψ−1(B(0, 1/2)) before exiting Ñ is at
least c0r1/(αβ).

Case 3. Bh|Ñ (x, r) ∩ Ĵ ̸= ∅. As in Case 2, possibly by taking M to be larger, we can assume that

Bh|Ñ
(x, r) ∩ Î = ∅ and so Bh|Ñ (x, r) ⊆ U , which implies that Bh|U (x, r) = Bh|Ñ

(x, r). Since f−1

is α-Hölder continuous, by arguing as in Case 2, we obtain that possibly by taking the constant
c0 > 0 to be smaller, we have that the probability that a Brownian motion starting from x intersects
ψ−1(B(0, 1/2)) before exiting Ñ for the first time is at least c0r1/(αβ).

It follows that in every case, there exists a (random) constant c0 > 0 such that the probability
that a Brownian motion starting from x intersects ψ−1(B(0, 1/2)) before exiting Ñ for the first time
is at least c0r1/(αβ).

Step 3. Conclusion of the proof. Next we set A := Bh|Ñ
(y, r). Recall that Lemma 7.4 implies that

possibly by taking M to be larger, we can assume that

B(u, r1/β) ⊆ Bh(u, r) = Bh|Ñ
(u, r) ⊆ B(u, rβ)

for all u ∈ D such that distdh(u, ∂D) ≥ r.
Suppose first that Bh(y, r) ∩ (Î ∪ Ĵ) = ∅. Then arguing as in Case 1, we obtain that there exists

a constant C > 1 such that

B(ψ(y), C−1/α(r/2)1/(αβ)) ⊆ ψ(B(y, (r/2)1/β)).

Then [60, Exercise 2.7] implies that there exists a (random) constant c > 0 such that for all u ∈
B(0, 1/2), the probability that a Brownian motion starting from u intersectsB(ψ(y), C−1/α(r/2)1/(αβ))
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before exiting D for the first time is at least cr1/(αβ). Therefore combining with Step 2 and the
Markov property of the Brownian motion, we obtain that the probability that a Brownian motion
starting from x intersects A before exiting Ñ for the first time is at least cc0r2/(αβ).

Note that [46, Lemma 3.3] implies that possibly by taking M to be larger, we have that

µh(B(y, (r/4)1β)) ≥ µh(Bh(y, (r/4)
1/β2

)) ≥ rM/4.

It follows that

Ex[TA] ≥ cc0r
2/(αβ) inf

u∈∂B(y,(r/2)1/β)
Eu[TB(y,(r/4)1/β)]

≥ cc0r
2/(αβ) inf

u∈∂B(y,(r/2)1/β)

∫
B(y,(r/4)1/β)

GB(y,r1/β)(u, v)dµh(v) ≳ r
2
αβ

+M
4

where GB(y,r1/β) denotes the Green’s function on B(y, r1/β) and in the latter inequality we also
used that GB(y,r1/β)(u, ·) is bounded from below on B(y, (r/4)1/β) by a universal constant which is
uniform on u ∈ ∂B(y, (r/2)1/β).

By arguing in the same way in the cases that either Bh(y, r) ∩ Î ̸= ∅ or Bh(y, r) ∩ Ĵ ̸= ∅, we
obtain that

Ex[TA] ≳ r
2
αβ

+M
4

in both cases and so this completes the proof of the lemma. □

Proof of Lemma 7.5. Step 1. Outline and setup. Let α > 0 be the deterministic constant in Lemma 7.6
and let M > 0 be sufficiently large such that the statement of Lemma 7.6 holds. Set h̃ :=

h|N ◦ φ−1 + Q log |(φ−1)′| and fix x, y ∈ D, r ∈ (0,M−1) such that distd
h̃
({x, y}, ∂D) ≥ r. Set

also A := B
h̃
(x, r) and as in Lemma 7.6, we let TA denote the amount of time that the Liouville

Brownian motion in D with respect to h̃ spends in A. Then Lemma 7.6 implies that there exists a
(random) constant c0 > 0 depending only on M such that

Ex[TA] ≥ c0r
α+M

4 .(7.9)

Moreover [46, Lemma 3.3] implies that it is a.s. the case that possibly by taking M to be larger, we
have that

µh(Bh(u, r)) ≥ r
M
4 for all u ∈ D such that distdh(u, ∂D) ≥ r.(7.10)

Set

f1(M, r) :=

∫
D

∫
MM/2 log(r−1)M

pNt (x,w)dtdµ
h̃
(w)

f2(M, r) :=

∫
A

∫ M−M/2 log(r−1)−M

0
pNt (x,w)dtdµ

h̃
(w).

In Step 2, we will show that f1(M, r) → 0 as r → 0 faster than any positive power of r while in
Step 3 we will complete the proof of the lemma by bounding f2(M, r) from above and combining
with (7.9).

Step 2. f1(M, r) tends to zero as r → 0 faster than any positive power of r. First we note that
u 7→ Eu[τD] =

∫
DG(u,w) dµh(w) is an a.s. continuous function on D and is therefore a.s. bounded,

where G denotes the Green’s function on D. By Markov’s inequality, we therefore have that

Pu[τD ≥ t] ≤ Eu[τD]

t
→ 0 as t→ ∞
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uniformly in u ∈ D. In particular, by increasing the value of M if necessary, we have that that
Pu[τD ≥M ] ≤ 1/2 for all u ∈ D. By the Markov property, we therefore have that Pu[τD ≥ tM ] ≤ 2−t

for all u ∈ D and t ≥ 1. We therefore have by applying the Markov property again that

f1(M, r) ≤
∫
D

∫ ∞
MM/2(log

1
r )
M

pDt (φ
−1(x), w) dt dµh(w)

= Eφ−1(x)

[
(τD −MM/2 log(r−1)M )1l{τD>MM/2 log(r−1)M}

]
≤ sup

z∈D
Ez
[
τD
]
Pφ−1(x)

[
τD > MM/2 log(r−1)M

]
≤ sup

z∈D
Ez
[
τD
](1

2

)MM/2−1 log(r−1)M

which tends to zero as r → 0 faster than any positive power of r, provided M is sufficiently large.
Step 3. Conclusion of the proof. Now we will complete the proof of the lemma by bounding from

above the term f2(M, r).
First we note that a sample from D can be produced as follows. Let (S2, ĥ, 0,∞) be a doubly

marked quantum sphere and let η̂′ be a whole-plane SLE6 in S2 from 0 to ∞ parameterized by
quantum natural time with respect to ĥ. Let τ be the first time t that the quantum boundary length
of the ∞-containing connected component of S2 \ η̂′([0, t]) is equal to 1 and we condition on the
event that τ < ∞. Let U be that component and let ψ : U → D be the conformal transformation
such that ψ(∞) = 0 and ψ′(∞) > 0. Then conditional on τ <∞, we set

h := ĥ|U ◦ ψ−1 +Q log |(ψ−1)′| and dh(z, w) = d
ĥ|U (ψ

−1(z), ψ−1(w)) for all z, w ∈ D.

Set x̃ := φ−1(x), ỹ := φ−1(y). Then we have that either d
ĥ
(ψ−1(x̃), ψ−1(ỹ)) ≥ 2M−1 or

d
ĥ
(ψ−1(x̃), ψ−1(ỹ)) < 2M−1. We will prove the claim of the lemma in each different case.
Case 1. d

ĥ
(ψ−1(x̃), ψ−1(ỹ)) ≥ 2M−1. Suppose that d

ĥ
(ψ−1(x̃), ψ−1(ỹ)) ≥ 2M−1. Let also p̂t(u, v)

(resp. p̂Ut (u, v)) denote the heat kernel for the LBM on S2 (resp. U) with respect to ĥ (resp. ĥ|U).
Then Theorem 1.1 implies that there exists a deterministic constant κ > 0 and there a.s. exist
random constants c1, c2 such that

(7.11) p̂Ut (u, v) ≤ p̂t(u, v) ≤
c1(log t

−1)κ

t
exp

(
−c2

(
d
ĥ
(u, v)4

t

)1
3
(
log

(
e+

d
ĥ
(u, v)

t

))−κ)
for all u, v ∈ S2, t ∈ (0, 1/2]. Moreover, by [13, Theorem 1.3], pDt (u, v) = p̂Ut (ψ

−1(u), ψ−1(v)) for
all u, v ∈ D, t > 0. It follows that for M sufficiently large and since ψ−1(φ−1(A)) = B

ĥ
(ψ−1(ỹ), r),

we have that

f2(M, r) ≤
∫
φ−1(A)

∫ M−M/2/(log
1
r )
M

0
pDt (x̃, w) dt dµh(w)

≤ c1µh(D)
∫ M−M/2 log(r−1)−M

0

log(t−1)κ

t
exp

(
−c2((2M)−4t−1)1/3 log(e+ (2Mt)−1)−κ

)
dt

and the right-hand side tends to 0 as r → 0 faster than any positive power of r. Letting f := f1+ f2
and IM,r := [M−M/2/(log 1

r )
M ,MM/2(log 1

r )
M ], we thus have that for M sufficiently large,

f(M, r) +

∫
A

∫
IM,r

pNt (x,w) dt dµ
h̃
(w) ≥ Ex[TA],

where f(M, r) → 0 as r → 0 faster than any positive power of r by combining with Step 2.
Since |IM,r| is of order MM/2(log 1

r )
M , by dividing both sides by |IM,r| and combining with (7.9)
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and (7.10), we see that for r ∈ (0,M−1),

1

|IM,r|

∫
IM,r

∫
A
pNt (x,w) dµ

h̃
(w) dt ≥ rα+M/2

MM/2(log 1
r )
M

≥ rα+3M/4(log 1
r )
−M ≥ rM ,

provided M is sufficiently large. Thus, there exists t ∈ IM,r such that the claimed lower bound in
the statement of the lemma holds.

Case 2. d
ĥ
(ψ−1(x̃), ψ−1(ỹ)) < 2M−1. Suppose now that d

ĥ
(ψ−1(x̃), ψ−1(ỹ)) < 2M−1. Note

that we have already shown in Step 2 of the proof of Lemma 7.6 that there exists a deterministic
constant β ∈ (0,∞) and there a.s. exist (random) z0 ∈ D, c0, s > 0 such that B(z0, s) ⊆ D and the
probability that a complex Brownian motion starting from x intersects B(z0, s/4) before exiting D
for the first time is at least c0rβ.

Let (XD
t ) denote the Liouville Brownian motion on D with respect to h̃, killed when it first exits

D. Suppose first that x ∈ B(z0, s/3) and set T := inf{t ≥ 0 : XD
t ∈ ∂B(z0, s/2)}. Possibly by taking

M to be larger, we can assume that

distd
ĥ
(ψ−1(φ−1(B(z0, s/3))), ψ

−1(φ−1(B(z0, s/2)))) ≥ 100M−1.

Then we have that d
ĥ
(ψ−1(φ−1(XD

T )), ψ
−1(ỹ)) ≥ 2M−1. Similarly if x /∈ B(z0, s/3), we let T be the

first time that XD intersects B(z0, s/4) before exiting D. Then we have that P [T < ∞] ≥ c0r
β and

d
ĥ
(ψ−1(φ−1(XD

T )), ψ
−1(ỹ)) ≥ 2M−1, if we take M sufficiently large such that

distd
ĥ
(ψ−1(φ−1(B(z0, s/4))), ψ

−1(φ−1(B(z0, s/3)))) ≥ 100M−1.

Thus we have that

d
ĥ
(ψ−1(φ−1(XD

T )), ψ
−1(ỹ)) ≥ 2M−1

in every case. Also Lemma 7.6 implies that

EXD
T
[TA] ≳ rα+M/4 a.s. on {T <∞}

and so we obtain that

Ex
[
1l{T<∞}EXD

T

[
TA
]]

≳ rα+β+M/4.

Also we have that

Ex

[
1l{MM/2 log(r−1)M/2≤T<∞}

∫ ∞
0

1l{XD
t+T∈A}

dt

]
≤
∫
A

∫ ∞
MM/2 log(r−1)M/2

pNt (x,w) dt dµ
h̃
(w)

≤ sup
z∈D

(∫
A

∫ ∞
MM/2 log(r−1)M/2

pNt (z, w) dt dµ
h̃
(w)

)

which implies that

rα+β+M/4 ≲ sup
z∈D

(∫
A

∫ ∞
MM/2 log(r−1)M/2

pNt (z, w) dt dµ
h̃
(w)

)
+ I1 + I2 + I3,
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where

I1 = Ex

[
1l{T≤MM/2 log(r−1)M/2}

∫ M−M/2 log(r−1)M

0
1l{XD

t+T∈A}
dt

]
,

I2 = Ex

[
1l{T≤MM/2 log(r−1)M/2}

∫ MM/2 log(r−1)M

M−M/2 log(r−1)M
1l{XD

t+T∈A}
dt

]
,

I3 = Ex

[
1l{T≤MM/2 log(r−1)M/2}

∫ ∞
MM/2 log(r−1)M

1l{XD
t+T∈A}

dt

]
.

Moreover, we have that

I1 + I3 ≤ Ex

[
1l{T<∞}

∫
A

∫ M−M/2 log(r−1)M

0
pNt (XD

T , w)dtdµh̃(w)

]

+ Ex

[∫ ∞
MM/2 log(r−1)M

1l{XD
t ∈A}

dt

]

≲
∫ M−M/2 log(r−1)−M

0

log(r−1)κ

t
exp(−c2(2Mt)−1/3)dt

+

∫
A

∫ ∞
MM/2 log(r−1)M

pNt (x,w) dt µ
h̃
(w).

Thus, by arguing as in Step 2, we obtain that I1 + I3 → 0 as r → 0 faster than any positive power
of r. Furthermore, we have that

I2 ≤
∫
A

∫ 3MM/2 log(r−1)M/2

MM/2 log(r−1)M/2+M−M/2 log(r−1)−M
pNt (x,w) dt dµ

h̃
(w).

Hence, by arguing as in Case 1, we get that there exists t ∈ [M−M/2 log(r−1)−M ,MM/2 log(r−1)M ]

such that
∫
A p
N
t (x,w)dµ

h̃
(w) ≥ rM . □

We next record the following which will be used in Subsection 7.2 (see in particular the proof
of Lemma 7.9) in order to bound from below the probabilities that the Liouville Brownian motion
intersects certain fixed LQG metric balls. We chose to state and prove the lemma at this point since
its proof follows from the same argument used to prove Lemma 7.5.

Lemma 7.7. For every M > 1 there exist constants K1,K2 > 1, depending on M , so that the following
is true. For µQSPH a.e. instance of (S, h, x, y) there exists ∆0 > 0 so that for all δ ∈ (0,∆0) and
u, v ∈ S2 with dh(u, v) ≤ δ there exists t ∈ [δK1 , δ1/K1 ] so that

Pu[Xt ∈ Bh(v, δ
M )] ≥ δK2 ,

where X denotes Liouville Brownian motion and Pu is the law under which X starts from u.

Proof. This follows from the same argument used to prove Lemma 7.5. □

Proof of Proposition 7.2. First we note that by scaling and as in the proof of Proposition 6.2, it suf-
fices to prove the claim of the proposition in the case that δ = 1. Moreover, combining Lemma 7.5
with the argument in the first paragraph of the proof of Lemma 6.10 in order to compare locally the
laws of a quantum disk and a quantum wedge of weight 2, we obtain that condition (I) occurs with
as high probability as we want provided we choose M0 sufficiently large. Furthermore, combining
Lemma 7.3 with the arguments in Steps 3 and 4 in the proof of Lemma 6.9 and the argument in the
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second paragraph of the proof of Lemma 6.10, we obtain that condition (II) holds with high proba-
bility as well provided we choose M0 large enough. Therefore, the proof is complete by combining
with Proposition 6.2. □

7.2. Definition and properties of the good annuli. The main goal of this section is to prove the
following proposition.

Proposition 7.8. There exists a constant κ > 0 so that for µQSPH-a.e. (S, h, x, y) there exists ∆0 > 0

so that for all δ ∈ (0,∆0) the following is true. For every z ∈ S there exists an annulus A with the
following properties.

(i) A is contained in Bh(z, δ1/3(log δ−1)κ) \Bh(z, δ1/3(log δ−1)−κ).
(ii) The dh-distance between the inner and outer boundaries of A is at least δ1/3(log δ−1)−κ.

(iii) If u, v ∈ A have dh-distance at least δ1/3(log δ−1)−κ/2 from ∂A, then there exists an element s
of [δ4/3(log δ−1)−κ, δ4/3(log δ−1)κ] so that∫

Bh(v,δ1/3(log δ−1)−κ)
pAs (u, a) dµh(a) ≥ exp(−(log δ−1)κ)

where pA denotes the heat kernel for Liouville Brownian motion on A.
(iv) For each u ∈ A there exists s ≤ δ1/κ so that∫

Bh(u,δ1/3)
ps(z, a) dµh(a) ≥ exp(−(log δ−1)κ) and∫

Bh(u,δ1/3)
ps(a, z) dµh(a) ≥ exp(−(log δ−1)κ).

As explained just after the proof of Lemma 7.1, we will use Proposition 7.8 in order to prove that
the following is true for µQSPH-a.e. (S, h, x, y). Fix u, v ∈ S distinct points and 0 < t ≲ dh(u, v).
Then Proposition 7.8 implies that we can find a finite and connected chain of topological annuli
A1, · · · ,AN connecting u to v and each of them satisfying properties (i)-(iv) and consisting of
unions of good chunks in the sense of Proposition 7.2. Moreover we have that N ≍

(dh(u,v)4
t

)1/3
and diam(Aj) ≍

(
t

dh(u,v)

)1/3 for all 1 ≤ j ≤ N , and the Brownian motion can move between the
annuli with uniformly positive probability. The reason for introducing properties (i) - (iv) is that
they will ensure that the required bounds on the heat kernel of the Liouville Brownian motion hold
and hence complete the proof of Theorem 1.2 in Subsection 7.3.

We will focus on proving Proposition 7.8 for the rest of the section. From now on we fix M ≥ 1

so that p0 ∈ (0, 1) from Proposition 7.2 is large enough so that the assertion of Proposition 5.1
holds.

We start by describing the setup of the proof of Proposition 7.8. Suppose that (S, h, x, y) has
distribution µQSPH, let κ > 0 be the constant from the statement of Lemma 6.22 and fix u ∈ (0, 1/3).
Fix also r0 ∈ (0, 1) and from now on, we assume that we are working on the event that

r4 log(r−1)−6−u ≤ µh(Bh(z, r)) ≤ r4 log(r−1)8+u,
µh(Bh(z, r))

µh(S)
≥ r4+u and diam(S) ≥ 6r

for all z ∈ S, r ∈ (0, r0), where (S, h, x, y) has law µQSPH. We note that Theorem 4.1 implies that
we can find such r0 satisfying the above properties for µQSPH-a.e. instance (S, h, x, y). Let k ∈ N
be sufficiently large such that 2−k < r0 and set Nk = 24k+u. Let (zj) be a sequence chosen i.i.d.
from µh. Then, we know from the proof of Lemma 6.22 that S ⊆ ∪Nkj=1Bh(zj , 2

−k) off an event
whose µQSPH measure tends to 0 as k → ∞ faster than any power of 2−k. We set δk = 2−3k and
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for all 1 ≤ i, j ≤ Nk such that dh(zi, zj) ≥ 2−k/2, suppose that we define stopping times τ i,jm and
events Ai,j1 , . . . , A

i,j
m , B

i,j
1 , . . . , Bi,j

m as in the proof of Lemma 6.22 with r = δ
1/3
k . We also define

collections of chunks N i,m,j
1 , . . . ,N i,m,j

N in a similar way, where zi plays the role of x in the proof
of Lemma 6.22. Then, arguing in the same way as in the proof of Lemma 6.22, we obtain that off
an event whose µQSPH measure tends to 0 as k → ∞ faster than any power of 2−k, it holds that we
can find an annulus Ai,j,k consisting only of good chunks such that

Ai,j,k ⊆ Bh(zi, 2δ
1/3
k ) \Bh(zi, δ

1/3
k ),

Ai,j,k disconnects Bh(zi, δ
1/3
k ) from zi, and the distance between the inner and outer boundaries of

Ai,j,k with respect to the interior-internal metric in Ai,j,k is at least δ1/3k log(δ−1k )−κ. Therefore by
the Borel-Cantelli lemma, we have that µQSPH-a.e., there exists K0 ∈ N such that k ≥ K0 implies
that Ai,j,k satisfies both (i) and (ii) from Proposition 7.8. We now show that the Ai,j,k satisfy the
other properties.

We start by proving that condition (iii) holds with high probability. This will follow from applying
a union bound using the Borel-Cantelli lemma and the following lemma combined with the fact that
the number of chunks in Ai,j,k is at most log(δ−1k )c for some constant c > 0 by (i).

Lemma 7.9. Fix b > 0. Then there exists a deterministic constant c > 0, depending on M and b so
that the following is true off an event whose µQSPH measure tends to 0 as k → ∞. Suppose that we
have the setup described just after the statement of Proposition 7.8. Fix k ∈ N and suppose that we are
working on the event that k ≥ K0 and δ̃k := δk log(δ

−1
k )−b ≤ ∆0 where ∆0 is as in Lemma 7.7. Fix

1 ≤ i, j ≤ Nk and further suppose we are working on the event that dh(zi, zj) ≥ 2−k/2. Suppose that
N1,N2 are two adjacent chunks in A = Ai,j,k for which the event E occurs and let N be the quantum
surface parameterized by the interior of N 1 ∪ N 2. For each u, v ∈ N with distance at least δ̃1/3k /M

from ∂N there exists s ∈ [M−M δ̃
4/3
k /(log δ̃−1k )M ,MM δ̃

4/3
k (log δ̃−1k )M ] so that

Pu
[
Xs ∈ Bh(v, δ̃

1/3
k M−1)

]
≥ δ̃ck,

where X denotes Liouville Brownian motion and Pu is the law under which X starts from u.

Proof. Suppose that A, N1, N2, N are as in the statement of the lemma. We also let K1,K2 be as in
the statement of Lemma 7.7. We take p = 8K1/3 so that δ̃p/K1

k = δ̃
8/3
k is of lower order than δ̃4/3k .

Suppose that u, v ∈ N both have distance at least δ̃1/3k /M from ∂N . We may assume without loss
of generality that u ∈ N1. By condition (II) in the definition of E for the chunk N1, there exists
u1 ∈ N1 such that dh(u, u1) ≤ δ̃pk and Bh(u1, 2δ̃

pM
k ) ⊆ N1. Let u2 ∈ N1 have distance δ̃pk from ∂N2

with Bh(u2, δ̃
pM
k ) ⊆ N1 and let v2 ∈ N2 be such that dh(u2, v2) ≤ 2δ̃pk with Bh(v2, 2δ̃

pM
k ) ⊆ N2 (we

apply again condition (II) in the definition of E but for the chunk N2 in place of N1). If v ∈ N1, then
the claim of the lemma follows from condition (I) in the definition of E for the chunk N1. If v ∈ N2,
then for s1, s2, s3, s4 > 0 and s = s1+s2+s3+s4, we have that Pu[Xs ∈ Bh(v, δ̃

1/3
k M−1)] ≥ p1p2p3p4
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where

p1 = Pu[Xs1 ∈ Bh(u1, δ̃
pM
k )],

p2 = inf
w∈Bh(u1,δ̃pMk )

Pw[Xs2 ∈ Bh(u2, δ̃
pM
k )],

p3 = inf
w∈Bh(u2,δ̃pMk )

Pw[Xs3 ∈ Bh(v2, δ̃
pM
k )],

p4 = inf
w∈Bh(v2,δ̃pMk )

Pw[Xs4 ∈ Bh(v, δ̃
1/3
k /M)].

By Lemma 7.7, there exists a choice of s1, s3 ∈ [δ̃pK1

k , δ̃
p/K1

k ] so that p1, p3 ≥ δ̃pK2

k . Furthermore, by
condition (I) in the definition of the event E for both chunks N1 and N2, applied with r = δ̃pMk <

δ̃
1/3
k /M , we can find s2, s4 ∈ [M−M δ̃

4/3
k /(log δ̃−1k )M ,MM δ̃

4/3
k (log δ̃−1k )M ] so that p2, p4 ≥ δ̃pM

2

k .
Altogether, this implies that there exists s ∈ [12M

−M δ̃
4/3
k /(log δ̃−1k )M , 2MM δ̃

4/3
k (log δ̃−1k )M ] and a

constant c > 0 depending on M and b so that Pu[Xs ∈ Bh(v, δ̃
1/3
k M−1)] ≥ δ̃ck. □

Next we focus on proving that condition (iv) holds with high probability. The main ingredi-
ent of the proof of the claim is the following lemma which states that with probability tend-
ing to 1 as k → ∞, we have that condition (iv) holds for all Ai,j,k with dh(zi, zj) ≥ 2−k/2 and
B•h,zj (zi, δ

1/3
k log(δ−1k )κ) ⊆ Bh(zi, δ

1/κ0
k ) for some fixed and deterministic constant κ0 ∈ (0,∞).

Lemma 7.10. There exists a constant c̃ > 0 such that the following is true. Suppose that we have the
setup described just after the statement of Proposition 7.8. Then, off an event whose µQSPH measure
tends to 0 as k → ∞, we have that the following holds. Fix 1 ≤ i, j ≤ Nk and further suppose that we
are working on the event that k ∈ K0, dh(zi, zj) ≥ 2−k/2 and B•h,zj (zi, δ

1/3
k log(δ−1k )κ) ⊆ Bh(zi, δ

1/κ0
k )

for some fixed and deterministic constant κ0 ∈ (0,∞). Then, for all z ∈ Bh(zi, δ
1/3
k log(δ−1k )−κ), there

exists s ∈
(
0, δ

4/c̃
k log(δ−1k )c̃

]
such that∫

Bh(u,δ
1/3
k )

ps(z, a) dµh(a) ≥ exp(−(log δ−1k )c̃) and∫
Bh(u,δ

1/3
k )

ps(a, z) dµh(a) ≥ exp(−(log δ−1k )c̃)

for all u ∈ A := Ai,j,k.

Proof. Since k ∈ K0, we have that

A ⊆ B•h,zj (zi, δ
1/3
k log(δ−1k )κ) ⊆ Bh(zi, δ

1/κ0
k ) ⊆ Bh(z, δ

1/κ1
k ),

where 0 < κ1 < κ0 is fixed and deterministic. Let X be the LBM and let τ = inf{t ≥ 0 : Xt ∈
A}. Then, under Pz, τ is clearly bounded from above by the first exit time from Bh(z, δ

1/κ1
k )

so that Theorem 6.1 implies that Ew
[
τ
]
≤ δ

4/κ1
k log(δ−1k )κ2 for all w ∈ Bh(z, δ

1/κ1
k ), for some

fixed and deterministic constant κ2 ∈ (0,∞). In particular, if c1 > κ2 + 1, we have that Pz
[
τ ≥

δ
4/κ1
k log(δ−1k )c1

]
→ 0 as k → ∞ faster than any power of 2−k. Indeed, Markov’s inequality implies

that if κ3 ∈ (κ2, c1 − 1) is fixed and deterministic, then

Pz
[
τ ≥ δ

4/κ1
k log(δ−1k )κ3

]
≤ δ
−4/κ1
k log(δ−1k )−κ3Ez

[
τ
]
≤ log(δ−1k )κ2−κ3 .
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Hence, the Markov property of X implies that

Pz
[
τ ≥ δ

4/κ1
k log(δ−1k )c1

]
≤ exp(−(κ3 − κ2) log(δ

−1
k )c1−κ3+1),

which proves the claim. Once X hits A, we know from Lemma 7.9 by taking c1 to be larger if
necessary and depending only on κ and M , that X can move from one chunk in A to an adjacent
chunk in A in time between a constant depending only on M times δ4/3k log(δ−1k )−c1 and a constant
depending only on M times δ4/3k log(δ−1k )c1 with probability at least δc1k . Note that the number of
chunks which make up A is at most log(δ−1k )κ(2/3−u) which is at most log(δ−1k )c1 by taking c1 to
be larger if necessary, where u ∈ (0, 1/3) is as in the statement of Proposition 5.1. Hence, we can
find c2 > c1 fixed and deterministic, depending only on c1 and c (where c is the constant in the
statement of Lemma 7.9), such that X hits Bh(u, δ

1/3
k /M) in time at most (δ4/κ1k + δ

4/3
k ) log(δ−1k )c2

with probability at least exp(− log(δ−1k )c2). Suppose that w ∈ Bh(u, δ
1/3
k /M) and t ∈ [δ

1/c2
k , 1/2].

Then, by taking c2 to be larger if necessary, we can assume using Lemma 7.1 that there exists a
random constant C ≥ 1 such that pt(w,w) ≥ 1

Ct log(δ−1
k )c2

.

Suppose that t′ = δ
4/3
k log(t−1)−2c2 . Note that

pt(w,w) =

∫
S
pt−t′(w, a)pt′(a,w)dµh(a).

Then, Theorem 1.1 implies that by taking c2 to be larger if necessary, there exist random constants
A1, A2 > 0 such that for all a ∈ S \Bh(u, δ

1/3
k ), we have that

pt′(a,w) ≤
A1 log((t

′)−1)c2

t′
exp

(
−A2

(
dh(a,w)

4

t′

)1/3
)

and so ∫
S\Bh(u,δ

1/3
k )

pt−t′(w, a)pt′(a,w)dµh(a) → 0

as k → ∞, faster than any power of 2−k. Therefore, by increasing C if necessary, we have that∫
Bh(u,δ

1/3
k )

pt−t′(w, a)pt′(w, a)dµh(a) ≥
1

Ct log(t−1)c2
.

Applying again Theorem 1.1 to pt′(w, a), we obtain that

C log((t′)−1)c2

t′

∫
Bh(u,δ

1/3
k )

pt−t′(w, a)dµh(a) ≥
1

Ct log(t−1)c2
.

After possibly increasing C, we obtain that∫
Bh(u,δ

1/3
k )

pt−t′(w, a)dµh(a) ≥
t′

Ct log(t−1)c2
.

Note that for all t ∈ [δ
4/c2
k , 2δ

4/c2
k ], we have t′ ≳ δ

4/3
k log(δ−1k )−2c2 and t log(t−1)2c2 ≲ δ

4/c2
k log(δ−1k )c2

with the implicit constants depending only on c2, and so

I :=

∫ 2δ
4/c2
k

δ
4/c2
k

∫
Bh(u,δ

1/3
k )

pt−t′(w, a)dµh(a) ≳ exp(− log(δ−1k )c2)

by taking c2 to be larger if necessary. It follows that the expected amount of time that the
LBM X starting from z spends in Bh(u, δ

1/3
k ) in the time interval [0, δ

4/c2
k log(δ−1k )c2 ] is at least
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exp(−2 log(δ−1k )c2). Therefore, taking c3 > c2 depending only on c2 and dividing by δ4/c2 log(δ−1k )c2 ,
we obtain that there exists s ∈

(
0, δ

4/c3
k log(δ−1k )c3

]
such that∫

Bh(u,δ
1/3
k )

ps(z, a)dµh(a) ≥ exp(− log(δ−1k )c3).

This proves the first inequality of the lemma. The second inequality follows from the symmetry of
the heat kernel and the first inequality. □

Recall that in order to be able to apply Lemma 7.10, we need to have with high probability as
k → ∞ that

B•h,zj (zi, δ
1/3
k log(δ−1k )κ) ⊆ Bh(zi, δ

1/κ0
k )

whenever dh(zi, zj) ≥ 2−k/2 for some fixed and deterministic constant κ0 ∈ (0,∞). This will be a
consequence of the following lemma together with the Hölder continuity of dh with respect to the
Euclidean metric.

Lemma 7.11. There exists a deterministic constant p > 0 so that for µQSPH-a.e. instance of (S, h, x, y)
there exists ϵ0 > 0 so that for all ϵ ∈ (0, ϵ0) the following is true. For every set S ⊆ S with dh-diameter
at most ϵp there exists at most one connected component of S \ S which contains a dh-ball of radius ϵ.

Proof. We can assume that (S, h, x, y) is parameterized by S2. Recall that the metric dh is Hölder
continuous with respect to the Euclidean metric on S2. This implies that there exists α ∈ (0, 1)

deterministic and C ≥ 1 so that for all u, v ∈ S we have that

(7.12) C−1d(u, v)1/α ≤ dh(u, v) ≤ Cd(u, v)α,

where d denotes the Euclidean metric on S2. Fix ϵ, p > 0 and suppose that S ⊆ S has dh-diameter
at most ϵp. Then (7.12) implies that S has Euclidean diameter at most Cϵαp. All components of
S2 \ S except one have Euclidean diameter at most Cϵαp. Therefore by (7.12) all components of
S2 \S except one have dh-diameter at most C1+αϵα

2p. The result thus follows by assuming that p is
sufficiently large so that α2p > 1. □

Proof of Proposition 7.8. Fix δ > 0 and suppose that (zj) is an i.i.d. sequence of points in S chosen
independently from µh. We explained after the statement of Proposition 7.8 why for k ≥ K0 and
dh(zi, zj) ≥ 2−k/2 we have that Ai,j,k satisfies properties (i) and (ii). Lemma 7.9 and the fact that
the number of chunks in Ai,j,k is at most log(δ−1k )c for some constant c > 0 by (i) together with
another union bound and the Borel-Cantelli lemma implies that, after possibly increasing the value
of K0, we have that (iii) also holds for each such Ai,j,k by possibly increasing κ. Lemma 7.11
together with the Hölder continuity of dh with respect to the Euclidean metric implies that by
possibly increasing the values of K0 and κ, we have that if dh(zi, zj) ≥ 2−k/2 then B•h,zj (zi, 2

−kkκ) ⊆
Bh(zi, 2

−k/κ). It thus follows from Lemma 7.10 that by possibly increasing K0 and κ further we
have that (iv) holds for each Ai,j,k with dh(zi, zj) ≥ 2−k/2.

By possibly increasing K0 further, for every 1 ≤ i ≤ Nk there exists 1 ≤ j ≤ Nk so that dh(zi, zj) ≥
2−k/2. For z ∈ Bh(zi, 2

−k) we take A = Ai,j,k (breaking ties in an arbitrary way). This choice of A
then satisfies properties (i), (ii), (iii), and (iv). □
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7.3. Completion of the proof. We now turn to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that (S, h, x, y) has distribution µQSPH. Fix u, v ∈ S and let k ∈ Z
be such that 2k ≤ dh(u, v) < 2k+1. Fix t ∈ (0, 12∆0dh(u, v)) where ∆0 > 0 is as in Proposition 7.8.
For each j ∈ Z we let δj = t2−j , in particular δk ≤ ∆0. Let γ be a geodesic from u to v. For each
j ≥ k we consider the following chain of annuli. We let z0,j = u = γ(0) and we let A0,j be an
annulus which is centered at z0,j and satisfies the properties from Proposition 7.8 with parameter
δj and let κ > 0 be the constant from the statement of Proposition 7.8. Given that we have
defined z0,j , . . . , zn,j we let zn+1,j be a point on the interval of γ from zn,j to v which is in An,j

and has dh-distance at least δ1/3j (log δ−1j )−κ from ∂An,j . Note that zn+1,j is well-defined since by
possibly increasing κ, we can assume that the dh-distance between the inner and outer boundaries
of An,j is at least 2δ1/3j log(δ−1j )−κ, by condition (ii) in the statement of Proposition 7.8. We then
let An+1,j be an annulus which satisfies the properties from Proposition 7.8 centered at the point
zn+1,j with parameter δj . We continue this until we find the point zNj ,j so that dh(zNj ,j , v) ≤
δ
1/3
j (log δ−1j )−κ. Since we have that δ1/3j (log δ−1j )−κ ≤ dh(zi,j , zi+1,j) ≤ δ

1/3
j (log δ−1j )κ, it follows

that dh(u, v)/(δ
1/3
j (log δ−1j )κ) ≤ Nj ≤ dh(u, v)/(δ

1/3
j (log δ−1j )−κ).

We take j0 ∈ Z to be the smallest j ∈ Z so that δ1/κj ≤ δ
4/3
k . We note that log δ−1j is comparable to

log δ−1k for k ≤ j ≤ j0. Therefore we will phrase estimates from Proposition 7.8 in terms of log δ−1k .
Suppose that we have picked wj ∈ A0,j for each k ≤ j ≤ j0. By Proposition 7.8-(iv) we know that
there exists sj0 ≤ δ

1/κ
j0

≤ δ
4/3
k so that

(7.13)
∫
Bh(wj0 ,δ

1/3
j0

)
psj0 (u, a) dµh(a) ≥ exp(−(log δ−1k )κ).

For each k + 1 ≤ j ≤ j0, we let mj be the first index i so that Ai,j ∩ A0,j−1 ̸= ∅. Then we have that
mj ≤ (log δ−1k )κ. By iterating Proposition 7.8-(iii) mj times, we see that by increasing the value of
κ if necessary, there exists δ4/3j log(δ−1j )−κ ≤ s ≤ δ

4/3
j (log δ−1j )κ so that

(7.14)
∫
Bh(wj ,δ

1/3
j )

ps(wj+1, a) dµh(a) ≥ exp(−(log δ−1k )2κ).

By applying the semigroup property and iterating (7.14) over j0 ≤ j ≤ k and combining with (7.13),
we thus see that by possibly taking κ to be larger, there exists δ4/3k log(δ−1k )−κ ≤ s ≤ δ

4/3
k (log δ−1k )κ

so that

(7.15)
∫
Bh(wk,δ

1/3
k )

ps(u, a) dµh(a) ≥ exp(−(k − j0)(log δ
−1
k )2κ).

For each i, we let vi,k be a point in Ai,k ∩ Ai+1,k whose dh-distance from both ∂Ai,k and ∂Ai+1,k is
at least δ1/3k log(δ−1k )−κ/2. We let v0,k = wk. It follows from Proposition 7.8-(iii) that there exists
δ
4/3
k (log δ−1k )−κ ≤ s ≤ δ

4/3
k (log δ−1k )κ so that

(7.16)
∫
Bh(vi,k,δ

1/3
k )

ps(vi−1,k, a) dµh(a) ≥ exp(−(log δ−1k )κ).

By applying the semigroup property and iterating (7.16) over 1 ≤ i ≤ Nk, we see that there exists
Nkδ

4/3
k (log δ−1k )−κ ≤ s ≤ Nkδ

4/3
k (log δ−1k )κ so that

(7.17)
∫
Bh(vNk,k,δ

1/3
k )

ps(v0,k, a) dµh(a) ≥ exp(−Nk(log δ
−1
k )κ).
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Arguing in the same way as (7.15), we have that there exists δ4/3k log(δ−1k )−κ ≤ s ≤ δ
4/3
k (log δ−1k )κ

so that

(7.18)
∫
Bh(vNk,k,δ

1/3
k )

ps(a, v) dµh(a) ≥ exp(−(k − j0)(log δ
−1
k )2κ).

Combining (7.15), (7.17) and (7.18), increasing the value of κ if necessary, and applying the
semigroup property we see that there exists t0 ∈ [t(log δ−1k )−κ, t(log δ−1k )κ] so that

(7.19) pt0(u, v) ≥ exp(−Nk(log δ
−1
k )κ).

Therefore, the claim of Theorem 1.2 holds with t0 in place of t. We will now complete the proof
by establishing the result for t in place of t0. If we apply the argument described above but with
t(log δ−1k )−κ/2 in place of t, then (7.19) implies that there exists t1 ∈ [t(log δ−1k )−2κ/2, t/2] so that
pt1(u, v) satisfies the desired lower bound. We have that

pt(u, v) ≥
∫
Bh(v,δ

1/3
k (log δ−1

k )−κ)
pt−t1(u, a) pt1(a, v) dµh(a).

By arguing as above, we have that for all a ∈ Bh(u, δ
1/3
k log(δ−1k )−κ), pt1(a, u) satisfies the desired

lower bound. Therefore we just need to get a lower bound on∫
Bh(u,δ

1/3
k (log δ−1

k )−κ)
pt−t1(u, a) dµh(a) = Pu[Xt−t1 ∈ Bh(u, δ

1/3
k (log δ−1k )−κ)].

Take t2 = t(log δ−1k )−2κ. From Lemma 7.1, we have that∫
S
pt−t1(u, a) pt2(a, u) dµh(a) = pt−t1+t2(u, u) ≥

1

Ct(log t−1)κ

for some random constant C > 0. The upper heat kernel estimate in Theorem 1.1 implies that
pt2(a, u) is negligible if a /∈ Bh(u, δ

1/3
k (log δ−1k )−κ). Thus by possibly adjusting the value of C, we

have that ∫
Bh(u,δ

1/3
k (log δ−1

k )−κ)
pt−t1(u, a) pt2(a, u) dµh(a) ≥

1

Ct(log t−1)κ
.

Applying Theorem 1.1 to pt2(a, u) yields that

C(log t−12 )κ

t2

∫
Bh(u,δ

1/3
k (log δ−1

k )−κ)
pt−t1(u, a) dµh(a) ≥

1

Ct(log t−1)κ
.

Rearranging and increasing the value of C gives∫
Bh(u,δ

1/3
k (log δ−1

k )−κ)
pt−t1(u, a) dµh(a) ≥

t2
Ct(log t−1)2κ

.

Combining this with the above implies that Pu[Xt−t1 ∈ Bh(u, δ
1/3
k (log δ−1k )−κ)] satisfies the desired

lower bound. □

APPENDIX A. SLE6 HULLS AT THE TIMES WHEN THE TIP IS ON THE BOUNDARY ARE JORDAN DOMAINS

In Sections 5, 6 and 7, we make use of the hulls of SLE6 to construct nice cellular decompositions
of quantum disks and wedges. An essential feature of the hulls of SLE6, on which our arguments
heavily rely, is that they are Jordan domains at the times when the tip of SLE6 is located on the bound-
ary. For completeness, here we give a detailed proof of this fact on the basis of some fundamental
results from the theory of imaginary geometry developed in [70, 72].



TWO-SIDED HEAT KERNEL BOUNDS FOR
√

8/3-LIOUVILLE BROWNIAN MOTION 117

We first give the precise formulation of this property in the case of radial SLE6, since our argu-
ments in Sections 5, 6 and 7 require it mainly for this case. In the same way as in Subsection 3.2.4,
for a radial SLE6 η

′ on D targeted at 0 and t ∈ [0, inf(η′)−1(0)), we define the hull Kt of η′([0, t]) as
the complement in D of the 0-containing component of D \ η′([0, t]).

Proposition A.1. Let x ∈ ∂D and let η′ be a radial SLE6 on D from x targeted at 0. Then a.s., for any
t ∈ (0, inf(η′)−1(0)) with ∂Kt ∩ ∂D ̸= ∂D and η′(t) ∈ ∂D,

(A.1)
Kt\∂Kt is a Jordan domain in C with boundary ∂Kt, and ∂Kt∩∂D
is a compact interval in ∂D containing η′(0) = x in its interior.

Proposition A.1 can be obtained by combining with a version of the locality of SLE6 the analo-
gous statement for chordal SLE6 on H stated as follows.

Proposition A.2. Let η′ be a chordal SLE6 on H from 0 to ∞. Then a.s., for any t ∈ (0,∞) with
η′(t) ∈ R,

(A.2)
Kt \ ∂Kt is a Jordan domain in C with boundary ∂Kt, and
∂Kt∩R is a compact interval in R containing 0 in its interior.

Note that each t ∈ (0,∞) with η′(t) ∈ R and the property (A.2) also satisfies

(A.3) η′(t) ∈ {max(∂Kt ∩ R),min(∂Kt ∩ R)},

since for any t, s ∈ [0,∞) with t < s we have Kt ̸= Ks and hence η′((t, s]) ∩H ̸⊂ Kt (see, e.g., [16,
Sections 7–9]).

Proof. Step 1. We first recall some basic properties of the chordal SLE6 η
′. Set Ta := inf{t ∈ [0,∞) |

η′(t) ∈ [a,∞)} and T−a := inf{t ∈ [0,∞) | η′(t) ∈ (−∞,−a]} for a ∈ (0,∞) and T0 := 0, so that
Ta = inf{t ∈ [0,∞) | a ∈ ∂Kt} for any a ∈ R since ∂Kt ∩ R is non-empty and connected for any
t ∈ (0,∞) (see, e.g., [16, Sections 7–9]). Note that limb↓0 T−b < Ta ≤ Ta ∨ T−a < ∞ a.s. for
each a ∈ (0,∞) (see, e.g., [60, Propositions 6.33 and 6.34] or [16, Proposition 10.3-(b)]), which
together with the scale invariance of η′ under the parameterization by half-plane capacity (see,
e.g., [60, Proposition 6.5] or [16, Proposition 9.3]) easily implies that limb↓0 Tb ∨ T−b = 0 a.s. In
particular, a.s.,

(A.4) η′([0,∞)) ∩ (−∞, 0) and η′([0,∞)) ∩ (0,∞) are
unbounded and their boundaries in C contain 0.

We also easily see, for a ∈ R \ {0} from [60, Proposition 6.34] or [16, Proposition 10.3-(b)], and
for a = 0 from limt→∞ |η′(t)| = ∞ a.s. (see, e.g., [60, Proposition 6.10] or [16, Proposition 11.7])
and the above-mentioned scale invariance of η′, that

(A.5) a ̸∈ η′((0,∞)) a.s. for each a ∈ R.

It is also known by [79, Remark 5.3] that a.s.

(A.6) no (s, t, u) ∈ R3 with 0 ≤ s < t < u satisfies η′(s) = η′(t) = η′(u).

Step 2. Let η′L and η′R denote the left and right boundaries of η′([0,∞)), respectively, i.e., η′L :=

∂UL \ i(−∞, 0) and η′R := ∂UR \ i(−∞, 0), where i(−∞, 0) := {ia | a ∈ (−∞, 0)} and UL and UR
denote the components of C \ (η′([0,∞)) ∪ i(−∞, 0)) containing −1− i and 1− i, respectively. We
claim that a.s. η′L and η′R are simple curves starting from 0 and tending to ∞ and satisfy η′L∩(0,∞) =

∅ = η′R ∩ (−∞, 0). Indeed, let ψ : H → H denote the conformal map given by ψ(z) := −1/z, set
ηR := (ψ(η′L) ∪ {0}) \ {∞} and ηL := (ψ(η′R) ∪ {0}) \ {∞}. By [70, Theorem 1.4] (see also [79,
Fig. 5]), ηR (resp. ηL) is a (chordal) SLE8/3((8/3)/2−2; 8/3−4) (resp. SLE8/3(8/3−4; (8/3)/2−2))
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curve (on H) from 0 to ∞ with force points 0+ and 0−, a variant of SLE8/3 introduced in [70,
Section 2], then ηR ∩ (−∞, 0) = ∅ = ηL ∩ (0,∞) a.s. by [70, Remark 5.3] and hence η′L ∩ (0,∞) =

∅ = η′R ∩ (−∞, 0) a.s. Moreover, a.s. η′L and η′R are simple curves starting from 0 and tending to ∞,
because ηR and ηL are continuous curves starting from 0 and tending to ∞ a.s. by [70, Proposition
7.3] and are simple curves a.s. by the fact that an SLEκ(ρ

L; ρR) curve η with force points 0+ and
0− is a simple curve a.s. for any κ ∈ (0, 4) and any ρL, ρR ∈ (−2,∞).

This last fact can be verified as follows. [70, Lemma 7.1]1 implies that the law of an SLEκ(ρ
L; ρR)

curve η can be realized as a certain conditional law of a conformal image of a segment of an
SLEκ(ρ̂

L; ρ̂R) curve η̂ from 0 to ∞ with force points 0+ and 0− for a suitable choice of ρ̂L, ρ̂R ∈
[κ/2 − 2,∞). Then since a chordal SLEκ on H from 0 to ∞ is a simple curve a.s. (see, e.g., [60,
Propositions 6.9 and 6.12] or [16, Propositions 11.3 and 11.5]) and has law mutually absolutely
continuous with respect to that of η̂ on any compact time interval in (0,∞) under the parameteri-
zation by half-plane capacity by ρ̂L, ρ̂R ∈ [κ/2 − 2,∞) and [70, Remark 2.3], it follows that η̂ and
thereby η are simple curves a.s.

Step 3. Next, we verify that for each a ∈ R \ {0} we a.s. have (A.2) with t = Ta. Indeed, let g
be the Möbius transformation given by g(z) := az/(z + a), which maps H, 0,∞,−a onto H, 0, a,∞,
respectively. Then g ◦ η′ is (a time reparameterization of) a chordal SLE6 on H from 0 to a by the
conformal invariance of chordal SLE6 (see, e.g., [16, Proposition 9.3]), and the reparameterization
of g ◦ η′|[0,T−a] by its half-plane capacity has the same law as η′|[0,Ta] by the locality of SLE6 (see,
e.g., [60, Proposition 6.14] or [16, Theorem 13.2]). In particular, g−1(H \KTa) has the same law
as the component U−a of H \ η′([0, T−a]) whose boundary contains −a, but U−a coincides with
the component of H \ η′([0,∞)) whose boundary contains −a by η′((T−a,∞)) ∩ KT−a ⊂ ∂KT−a .
Then by (A.4), (A.5) and Step 2, a.s. U−a is a Jordan domain whose boundary ∂U−a is of the
form γ((0, 1)) ∪ [α, β] for some α, β ∈ R with α < −a < β and 0 ̸∈ [α, β] and some simple curve
γ : (0, 1) → H with lims↓0 γ(s) = α and lims↑1 γ(s) = β. Thus a.s. KTa \ ∂KTa is a Jordan domain
with boundary ∂KTa , which is of the form g

(
γ((0, 1)) ∪ (R \ [α, β])

)
∪ {a} for some such α, β, γ,

proving (A.2) with t = Ta.
Step 4. By using the reversibility of chordal SLE6 proved in [72, Theorem 1.1], which states

that η′← := ι ◦ η′((·)−1) (η′←(0) := ∞ and ι(z) := −z for z ∈ C) is (a time reparameterization of)
a chordal SLE6 on H from ∞ to 0, the results of Step 2 can be (partially) extended to η′([0, s))

for each s ∈ (0,∞) as follows. Let Ks,∞ denote the complement in H of the component of H \
η′([s,∞)) = ι(H \ η′←([0, s−1])) whose boundary in C contains 0. Noting that −1/η′← is (a time
reparameterization of) a chordal SLE6 on H from 0 to ∞ by the reversibility and the conformal
invariance of chordal SLE6 and applying to −1/η′← the fact that limb↓0 Tb ∨ T−b = 0 a.s. mentioned
in Step 1 and the result of Step 3 for each a ∈ Q \ {0}, we easily see that, a.s.,

(A.7) H \Ks,∞ is a bounded simply connected domain in C.

Let gs : H \ Ks,∞ → H be the unique conformal map such that lim|z|→∞(gs(−1/z) − z) = 0 (see,
e.g., [60, Proposition 3.36] or [16, Theorem 4.3]). Then the domain Markov property of chordal
SLE6 (see, e.g., [16, Proposition 9.4]) applied to η′← at time s−1 implies that the conditional law
of (ι ◦ gs ◦ ι) ◦ η′←|[s−1,∞) = ι ◦ gs ◦ η′((·)−1)|[s−1,∞) given η′|[s,∞) is (a time reparameterization of) a
chordal SLE6 on H from ι ◦ gs(η′(s)) to ∞. Applying the reversibility [72, Theorem 1.1] of chordal
SLE6 to ι ◦ gs ◦ η′((·)−1)|[s−1,∞) and then using the domain Markov property of chordal SLE6, we

1We remark that “let ηψ be the flow line of hψ starting from 0 and targeted at ∞” in [70, p. 668, lines 18–19] should
read “let ηψ denote the time reparameterization of ψ ◦ ηC by half-plane capacity”.
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further see that the conditional law of φs ◦ η′|[0,s) given η′|[s,∞) is (a time reparameterization of)
a chordal SLE6 on H from 0 to ∞, where φs : H \ Ks,∞ → H is the conformal map defined by
φs(z) := (gs(η

′(s))− gs(z))
−1. It thus follows from Step 2 that for each s ∈ (0,∞), a.s.

(A.8)
the left and right boundaries η′sL , η

′s
R of φs(η′([0, s))) are simple curves start-

ing from 0 and tending to ∞ and satisfy η′sL ∩ (0,∞) = ∅ = η′sR ∩ (−∞, 0).

Recall (see, e.g., [91, Theorems II.(4.1) and VI.(2.2)] and [81, Theorem 2.1]) that φ−1s has a
continuous extension to H∪{∞}, so that φ−1s (R∪{∞}) = ∂(H\Ks,∞). Note that, while (φ−1s )−1(z)

is a singleton for any z ∈ ∂(H \Ks,∞) \ ∂Ks,∞ by an application of Carathéodory’s theorem (see,
e.g., [81, Theorem 2.6 and Proposition 2.14]), (φ−1s )−1(z) may have two or more elements for
z ∈ ∂(H \Ks,∞) ∩ ∂Ks,∞.

Step 5. From (A.5), Step 3, Step 4 and the domain Markov property of chordal SLE6, we choose
as follows an event for η′ of probability 1 on which the assertion of the proposition will be verified in
Steps 6–8 below. For each s, t ∈ [0,∞) with s ≤ t, let Ks,t denote the hull of η′([s, t]) in H \Ks, i.e.,
the complement in H\Ks of the unbounded component of (H\Ks)\η′([s, t]), so thatKs,t = Kt\Ks,
and set ∂topKs,t := ∂Ks,t ∩ (H \ Ks) and ∂botKs,t := ∂Ks,t ∩ ∂(H \ Ks). Then for each a, b ∈ R
with either 0 ≤ a < b or b < a ≤ 0, it follows from Step 3 and the domain Markov property [16,
Proposition 9.4] of chordal SLE6 that, a.s. on {Ta < Tb}, (∂(H \KTa) is a simple curve,)

(A.9)
KTa,Tb \ ∂KTa,Tb is a Jordan domain in C with boundary ∂KTa,Tb , and
∂botKTa,Tb is a compact interval in ∂(H\KTa) containing η′(Ta) in its interior

(note that (A.9) with a = 0 is the same as (A.2) with t = Tb). Also for each b ∈ R and each
s ∈ (0,∞), we easily see from the domain Markov property of chordal SLE6, (A.5) and (A.9) with
a = 0 that, a.s.,

η′(Tb) ̸∈ η′((Tb,∞)),(A.10)

max(∂Ks ∩ R)+,min(∂Ks ∩ R)− ̸∈ η̃′s((s,∞));(A.11)

here η̃′s denotes the lift of η′|[s,∞) to (H \Ks) ∪ ∂̃(H \Ks), with ∂̃(H \Ks) representing the set of
prime ends of H \ Ks, and max(∂Ks ∩ R)+ and min(∂Ks ∩ R)− denote the two elements of the
boundary of (R ∪ {∞}) \ ∂Ks in ∂̃(H \ Ks) corresponding to max(∂Ks ∩ R) and min(∂Ks ∩ R),
respectively.

Recalling Step 4, we can thus choose an event Ω0 for η′ of probability 1 such that every instance of
η′ from Ω0 satisfies (A.4), limt→∞ |η′(t)| = ∞, (A.6), (A.7), (A.8) and (A.11) for any s ∈ Q∩(0,∞),
(A.10) for any b ∈ Q, and either Ta = Tb or (A.9) for any a, b ∈ Q with either 0 ≤ a < b or
b < a ≤ 0.

Step 6. Now we can proceed to the conclusion of the proof as follows. Fix any instance of η′ from
Ω0, and let t ∈ (0,∞) satisfy η′(t) ∈ R. If t = Tb for some b ∈ Q \ {0}, then (A.2) holds by (A.9)
with a = 0. Therefore we may assume that t ̸= Ta for any a ∈ Q\{0}, and we further set b := η′(t),
so that b ∈ R \ {0} by (A.10) with 0 in place of b. By considering ι ◦ η′ instead of η′ when b < 0,
where ι(z) := −z for z ∈ C, we may and do assume that b > 0 in the rest of this proof.

Let a ∈ Q∩ (0,∞), so that η′(Ta) ≥ a. If η′(Ta) > b, then b belongs to the interior of the compact
interval ∂botK0,Ta in R, hence η′(t) = b ̸∈ η′([Ta,∞)) by (A.9) with 0 in place of a and thus t < Ta.
Combining this observation with t ̸= Ta and (A.10), we easily obtain

t < Ta for any a ∈ Q ∩ (b,∞),(A.12)

Ta < t and a ≤ η′(Ta) < b for any a ∈ Q ∩ (0, b).(A.13)
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In particular,

(A.14) η′(s) ≤ b for any s ∈ [0, t] with η′(s) ∈ R,

since for any a ∈ Q ∩ (b,∞) we have s ≤ t < Ta by (A.12) and hence η′(s) < a. Moreover, by the
monotonicity of Ta in a ∈ (0,∞), η′(t) = b, the continuity of η′ and (A.13) we have lima↑b Ta ≤
Tb ≤ t, η′(lima↑b Ta) = limQ∋a↑b η

′(Ta) = b, therefore

(A.15) lim
a↑b

Ta = Tb ≤ t, η′(Tb) = b and Ta < Tb for any a ∈ (0, b).

Step 7. We claim that b = η′(t) satisfies (A.9) with a = 0 under the setting of Step 6. To see
this, we inductively construct a sequence {bn}∞n=0 ⊂ Q ∩ (0, b) as follows. First, noting (A.15),
choose b0 ∈ Q ∩ (0, b) so that |η′(s) − b| < b for any s ∈ [Tb0 , Tb], and set a := min(∂KTb0

∩
R), which satisfies a < 0 by (A.9) with 0, b0 in place of a, b. Next, letting n ≥ 0, supposing
that bn ∈ Q ∩ (0, b) is given, and noting (A.13), (A.15) and that we have (A.3) with t = Tbn
by (A.9) with 0, bn in place of a, b, choose bn+1 ∈ Q ∩ [(bn + b)/2, b) so that η′([Tbn+1 , Tb]) ∩KTbn

=

∅. Then {bn}∞n=0, {Tbn}∞n=0, {η′(Tbn)}∞n=0 are strictly increasing, limn→∞ bn = b, and for any n ≥
0 we have min(∂KTbn

∩ R) = a by η′([Tb0 , Tbn ]) ∩ (−∞, 0] = ∅, ∂topK0,Tbn
⊂ η′([0, Tbn ]), and

∂topKTbn ,Tbn+1
⊂ η′([Tbn , Tbn+1 ]), which in turn is included in H\KTbn−1

if n ≥ 1. This last property

combined with (A.9) further implies that ∂topKTbn ,Tbn+1
∩ ∂topK0,Tbn

is a singleton {zn} for any
n ≥ 0 and that zn ∈ ∂topKTbn−1

,Tbn
for any n ≥ 1. Using these properties together with (A.9),

we can define a simple closed curve γ : [−1,∞] → H by γ(∞) := b, γ(−t) := (1 − t)a + tb

for t ∈ [0, 1], γ|[0,1] being a homeomorphism to the closed interval in ∂topK0,Tb0
from a to z0,

and γ|[n,n+1] being a homeomorphism to the closed interval in ∂topKTbn−1
,Tbn

from zn−1 to zn for
each n ≥ 1; note that lims→∞ γ(s) = b by limn→∞ bn = b, (A.15), the continuity of η′ at Tb and
the fact that ∂topKTbn ,Tbn+1

⊂ η′([Tbn , Tbn+1 ]) for any n ≥ 0. Then γ((0,∞)) ⊂ H ∩ η′([0, Tb]),
γ([−1, 0]) = [a, b], and it is elementary to see from the construction of γ that η′([0, Tb]) is included
in the closure in C of the (bounded) Jordan domain with boundary γ([−1,∞]), which together
immediately show γ([−1,∞]) = ∂KTb and that b = η′(t) satisfies (A.9) with 0 in place of a.

Step 8. It remains to prove that t = Tb under the setting of Step 6. For this purpose, noting (A.15)
and the fact that η′((Tb, s]) ∩ H ̸⊂ KTb for any s ∈ (Tb,∞) as noted just after (A.3), suppose that
Tb < t, and choose s ∈ Q ∩ (Tb, t) so that η′(s) ∈ H \KTb and |η′(r)− b| < b for any r ∈ [Tb, s]. Set
a := min(∂KTb ∩R), so that by combining (A.9) with 0 in place of a from Step 7, (A.14), η′(Tb) = b

from (A.15), η′([Tb, s]) ∩ {z ∈ C | Re(z) ≤ 0} = ∅ and η′([s,∞)) ⊂ H \Ks, we get a < 0,

(A.16) ∂Ks ∩ R = ∂KTb ∩ R = [a, b],

η′([s,∞)) ∩ (a, b) = ∅, and U ∩ Ks = U ∩ KTb for some open neighborhood U of a in C. In
particular, since H \ KTb is a Jordan domain in C ∪ {∞} by (A.9) with 0 in place of a, the point
a ∈ ∂(H\Ks) corresponds to a unique element of ∂̃(H\Ks), hence a ̸∈ η′([s,∞)) by (A.16), (A.11)
and Re(η′(s)) > 0, and it thus follows that

(A.17) (a− ε, b) ∩ η′([s,∞)) = ∅ for some ε ∈ (0,∞).

Now we use the notation and the results from Step 4. Note that by (A.17) we have (a − ε, b) ⊂
∂(H \ Ks,∞) and hence that by Carathéodory’s theorem [81, Theorem 2.6] the conformal map
φs : H\Ks,∞ → H extends continuously to a bounded R-valued strictly increasing map on (a−ε, b),
which then satisfies φs(0) = 0 and (φ−1s )−1(u) = {φs(u)} for any u ∈ (a − ε, b). Set φs(b−) :=

limu↑b φs(u). Recalling (A.8) and noting that φs(a) ∈ η′sL by (A.16) and that φs(b−) ∈ η′sR by (A.13)
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and (A.15), we define simple curves γL, γR : [0,∞) → H starting from 0 and tending to ∞ by
γL(u) := φs(ua) and γR(u) := φs(ub) for u ∈ [0, 1), γL|[1,∞) being a homeomorphism to the
interval in η′sL from φs(a) to ∞ and γR|[1,∞) being a homeomorphism to the interval in η′sR from
φs(b−) to ∞. Then (γL((1,∞)) ∪ γR((1,∞))) ∩ [φs(a), φs(b−)) = ∅ and therefore

(A.18)
(
φ−1s ◦ γL((1,∞)) ∪ φ−1s ◦ γR((1,∞))

)
∩ [a, b) = ∅.

Moreover, noting that φs(η′([0, s))) in (A.8), precisely speaking, denotes the image of the lift η′s of
η′|[0,s) to H under φ−1s , i.e., the continuous map η′s : [0, s) → H satisfying η′|[0,s) = φ−1s ◦ η′s, that
η′s(Tb) = limQ∋u↑b φs(η

′(Tu)) = φs(b−) by (A.13) and (A.15), and that η′sL ∪η′sR ⊂ η′s([0, s)), we have

(A.19) φ−1s
(
(η′sL ∪ η′sR) \ {φs(b−)}

)
⊂ φ−1s

(
η′s([0, s)) \ {η′s(Tb)}

)
⊂ η′([0, s) \ {Tb}).

Since b ̸∈ η′([0, s) \ {Tb}) by η′(Tb) = b = η′(t), Tb < s < t and (A.6), it follows from (A.19), (A.18)
and (A.16) that

(A.20) φ−1s ◦ γL((1,∞)) ∪ φ−1s ◦ γR((1,∞)) ⊂ η′([0, s)) \ [a, b] = η′([0, s)) ∩H.

On the other hand, (A.8) combined with the definition of η′sL and η′sR implies that η′sL (resp. η′sR) is
located to the left (resp. right) of η′sR (resp. η′sL), i.e., included in the closure in C of the component of
C\(η′sR∪(−∞, 0]) (resp. C\(η′sL∪[0,∞)) not containing −i, and η′s([0, s)) is located both to the left of
η′sR and to the right of η′sL . Set τR := inf{u ∈ [1,∞] | γR(u) ∈ γL([0,∞])} and {τL} := γ−1L (γR(τR)),
where γR(∞) := ∞ =: γL(∞), so that τR, τL ∈ (1,∞]. Further, recalling (A.20), choose a simple
curve γs ⊂ φ−1s ◦ γL([1, τL]) ∪ φ−1s ◦ γR([1, τR])(⊂ η′([0, s)) ∩ H) from b to a, which is possible by
[91, Theorem II.(5.1)], and let Us denote the (bounded) Jordan domain with boundary γs ∪ [a, b].
Then we easily see from γs ⊂ η′([0, s)) ∩ H and the above-mentioned topological configuration of
η′s([0, s)) in relation to η′sR and η′sL that Us ⊂ Ks and that η′([0, s]) \Us is included in the union Cs of
{η′(s)} = {φ−1s (∞)} and the image by φ−1s of the part of C located both to the left of γR([τR,∞))

and to the right of γL([τL,∞)). Since Cs is a compact subset of H by (A.7) and (A.20), it follows
that V ∩Ks = V ∩Us∩H for some open neighborhood V of b in C, which together with the definition
of Us shows that b ∈ ∂(H \Ks) corresponds to a unique element of ∂̃(H \Ks). Thus b ̸∈ η′((s,∞))

by (A.16) and (A.11), which contradicts the definition b = η′(t) of b in view of t ∈ (s,∞) and hence
proves that t = Tb. □

Proof of Proposition A.1. We set τ := inf{t ∈ [0, inf(η′)−1(0)) | ∂Kt ∩ ∂D = ∂D}, so that {t ∈
(0, inf(η′)−1(0)) | ∂Kt ∩ ∂D ̸= ∂D, η′(t) ∈ ∂D} ⊂ [0, τ). Also let η′ be a chordal SLE6 on H from 0

to ∞, set η′∗(t) := x exp(iη′(t)) for t ∈ [0,∞), define K∗t for t ∈ [0,∞) to be the complement in D
of the 0-containing component of D \ η′∗([0, t]), and set τ∗ := inf{t ∈ [0,∞) | ∂K∗t ∩ ∂D = ∂D}.
Then since {η′}t∈[0,τ) has the same law as a time reparameterization of {η′∗}t∈[0,τ∗) by a version [60,
Proposition 6.22] of the locality of SLE6, it suffices to show the assertion for {η′∗}t∈[0,τ∗).

Fix any instance of η′ with the property (A.2) for any t ∈ (0,∞) with η′(t) ∈ R, which occurs
a.s. by Proposition A.2. Let t ∈ (0,∞) satisfy ∂K∗t ∩ ∂D ̸= ∂D, which means that we can take
a piecewise linear simple curve γt : [0, 1] → D \ η′∗([0, t]) with γt(0) = 0, γt([0, 1)) ⊂ D and
γt(1) ∈ ∂D. Then Dt := D \ γt([0, 1)) is a simply connected domain with 0 ̸∈ Dt and hence there
exists a unique continuous branch ft of −i log(·/x) on D̃t := Dt ∪ (∂D \ {γt(1)}) with ft(x) = 0, so
that x exp(i·)|

ft(D̃t)
: ft(D̃t) → D̃t is a homeomorphism with inverse ft. Now since η′∗([0, t]) ⊂ D̃t,

x exp(ift(η
′
∗(s))) = η′∗(s) = x exp(iη′(s)) for any s ∈ [0, t] and ft(η

′
∗(0)) = ft(x) = 0 = η′(0), it

follows that ft ◦ η′∗|[0,t] = η′|[0,t] and thus that ft(K∗t ) is the complement in H of the unbounded
component of H \ ft(η′∗([0, t])) = H \ η′([0, t]). In particular, if it also holds that η′∗(t) ∈ ∂D,
then η′(t) = ft(η

′
∗(t)) ∈ R, hence ft(K

∗
t ) has the property (A.2), and therefore its image K∗t
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by the homeomorphism x exp(i·)|Vt on a neighborhood Vt of ft(D̃t) in C has the property (A.1),
completing the proof. □

APPENDIX B. SOME LÉVY PROCESS ESTIMATES

In this appendix, we prove some estimates on the 3/2-stable Lévy processes with only downward
jumps (Propositions B.3, B.4, B.5, B.6 and B.7 below), on which our proof of Proposition 5.2 heavily
relies.

Let X1, X2 be i.i.d. 3/2-stable Lévy processes with only downward jumps and starting from 0.
Let Ijt = inf0≤s≤tX

j
s and Sjt = sup0≤s≤tX

j
s for j = 1, 2, respectively, be the running infimum and

supremum of Xj . We let τ j = inf{t ≥ 1 | Xj
t = Ijt } for j = 1, 2 and τ = τ1 ∧ τ2. Note that by [20,

Chapter VII, Theorem 1 and Chapter VI, Proposition 3] we have

(B.1) P[τ j = x] ≤ P[Xj
x = Ijx] = 0 for any x ∈ [1,∞).

Lemma B.1. There exists a constant c > 0 such that P[τ j ≥ x] = cx−1/3(1 + o(1)) as x→ ∞.

Proof. Let x ∈ (1,∞). Then setting F (y) = y−1/2P[I21 > −y] for y ∈ (0,∞), by the Markov property
of X1 and the scaling property of X2 we have that

P[τ1 > x | I11 , X1
1 ] = P[I2x−1 > I11 −X1

1 |X1
1 , I

1
1 ] = P[I21 > (x− 1)−2/3(I11 −X1

1 ) |X1
1 , I

1
1 ]

= (x− 1)−1/3(X1
1 − I11 )

1/2F
(
(x− 1)−2/3(X1

1 − I11 )
)

≤ (x− 1)−1/3(X1
1 − I11 )

1/2
(
F
(
(x− 1)−2/3(X1

1 − I11 )
)
1l{X1

1−I11≤(x−1)2/3}
+ 1
)(B.2)

and that limy↓0 F (y) = c for some c > 0 by [20, Chapter VIII, Proposition 2]. Since X1
1 − I11 has a

finite mean by [20, Chapter VI, Proposition 3 and Chapter VII, Corollary 2-(i)] and hence a finite
1/2-moment, it follows by an application of the dominated convergence theorem based on (B.2)
and limy↓0 F (y) = c that P[τ1 ≥ x] = E

[
P[τ1 > x | I11 , X1

1 ]
]
= cE[(X1

1 − I11 )
1/2]x−1/3(1 + o(1)) as

x→ ∞. □

As a consequence of Lemma B.1, there exists a constant c > 0 such that

(B.3) P[τ ≥ x] = P[τ1 ≥ x]P[τ2 ≥ x] = cx−2/3(1 + o(1)) as x→ ∞.

Lemma B.2. Set τ10 = inf{t ≥ 0 : X1
t < −1}. Then there exists a constant c > 0 such that for any

x ∈ [1,∞),

(B.4) P
[
τ10 < 1, X1

τ10
< −x

]
≥ cx−3/2.

Proof. For j = 1, 2, by [90, Theorem 4.3.7, Corollary 4.2.17 and Theorem 4.2.8] we can decompose
Xj uniquely asXj

t = Xj,0
t +Xj,1

t , whereXj,0, Xj,1 are independent Lévy processes withXj,0 having
jumps only in [−2, 0) and Xj,1 a compound Poisson process with jumps only in (−∞,−2). Then
X1,0, X1,1, X2,0, X2,1 are independent, X1,0, X2,0 have the same law, so do X1,1, X2,1, and hence
the process X = {Xt}t≥0 defined by Xt = X1,0

t +X2,1
t has the same law as X1. Set τ0 = inf{t ≥ 0 :

Xt < −1}.
Let E1 denote the event that sup0≤t<1 |X1

t | ≤ 1, so that P[E1] > 0 by [20, Chapter VIII,
Proposition 3] and X1|[0,1) = X1,0|[0,1) a.s. on E1. Let x ∈ [2,∞), and recall that the numbers
N2

[−x,−2), N
2
(−∞,−x) of jumps in [−x,−2), (−∞,−x), respectively, made by X2,1|[0,1) are indepen-

dent and have the Poisson distribution with mean c(2−3/2 − x−3/2), cx−3/2, respectively, for some
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c > 0 independent of x. Since {τ0 < 1, Xτ0 < −(x− 1)} ⊃ E1 ∩
{
N2

[−x,−2) = 0 < N2
(−∞,−x)

}
a.s., it

follows that

P
[
τ10 < 1, X1

τ10
< −(x− 1)

]
= P

[
τ0 < 1, Xτ0 < −(x− 1)

]
≥ P

[
E1 ∩

{
N2

[−x,−2) = 0 < N2
(−∞,−x)

}]
= P[E1] · P

[
N2

[−x,−2) = 0
]
· P
[
N2

(−∞,−x) ≥ 1
]

= P[E1]e−c(2
−3/2−x−3/2)

(
1− e−cx

−3/2) ≥ c′(x− 1)−3/2

for some c′ > 0 independent of x ∈ [2,∞), proving (B.4). □

Proposition B.3. There exists a constant c > 0 so that E[−I1τ 1l{τ<A}] ≥ c logA for any A ∈ [2,∞).

Proof. We first claim that

(B.5) P[X1
k ≥ αk2/3 | τ1 ≥ k] → 0 as α→ ∞ uniformly in k.

To see this, fix α ∈ [2,∞). For each k ∈ N, let σ1k = inf{t ≥ 0 : X1
t = k2/3}. Then since X1 has only

downward jumps, we have {X1
k ≥ αk2/3} ⊂ {σ1k ≤ k} and hence that

P[X1
k ≥ αk2/3 | τ1 ≥ k] = P[X1

k ≥ αk2/3, σ1k ≤ k | τ1 ≥ k]

≤ P[X1
k ≥ αk2/3 |σ1k ≤ k, τ1 ≥ k]

=
P[X1

k ≥ αk2/3, τ1 ≥ k |σ1k ≤ k, τ1 ≥ σ1k]

P[τ1 ≥ k |σ1k ≤ k, τ1 ≥ σ1k]

≤
P
[
supσ1

k≤t≤σ
1
k+k

X1
t ≥ αk2/3 |σ1k ≤ k, τ1 ≥ σ1k

]
P[τ1 ≥ k |σ1k ≤ k, τ1 ≥ σ1k]

.

Applying the strong Markov property of X1 at the time σ1k and the scaling property of X1, we
easily see that the denominator is at least P[I11 > −1], which is positive by [20, Chapter VIII,
Proposition 2], and that the numerator is at most P[S1

1 ≥ α − 1], which tends to 0 as α → ∞,
proving (B.5). On the other hand, since I1k = I11 on {τ1 > k}, from Lemma B.1 and [20, Chapter
VIII, Proposition 4] we obtain

(B.6) P[I1k ≤ −αk2/3 | τ1 ≥ k] ≤ P[I11 ≤ −αk2/3]
P[τ1 ≥ k]

≤ cα−3/2k−1k1/3 ≤ cα−3/2

for any k ∈ N for some c > 0.
Further, there exists p0 > 0 so that

P[X1
k ≥ I1k + 1 | τ1 ≥ k] ≥ p0 for all k ∈ N.(B.7)

Indeed, for any t ∈ [2,∞) and for any k ∈ N, we have P[X1
1 ≥ I11 + t] > 0 by [20, Chapter VI,

Proposition 3 and Chapter VII, Corollary 2-(i)],

P[X1
k ≥ I1k + t, τ1 ≥ k] =

P[infk≤t≤k+1(X
1
t −X1

k) > −1, X1
k ≥ I1k + t, τ1 ≥ k]

P[I11 > −1]

≤ P[I11 > −1]−1P[X1
k+1 ≥ I1k+1 + t− 1, τ1 ≥ k + 1],
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and hence P[X1
k ≥ I1k + 1 | τ1 ≥ k] > 0. Also, noting that P[I11 ≤ −1] > 0 by [20, Chapter VIII,

Proposition 4], for any k ∈ N we have

P[X1
k < I1k + 1 | τ1 ≥ k] =

P[infk≤t≤k+1(X
1
t −X1

k) ≤ −1, X1
k < I1k + 1 | τ1 ≥ k]

P[I11 ≤ −1]

≤ P[τ1 < k + 1 | τ1 ≥ k]

P[I11 ≤ −1]
=

1− P[τ1 ≥ k + 1]/P[τ1 ≥ k]

P[I11 ≤ −1]

k→∞−−−→ 0,

where the last limit follows by Lemma B.1. The above results together yield (B.7).
Now, combining (B.5), (B.6) and (B.7), we can choose α ∈ [2,∞) sufficiently large so that

(B.8) P
[
I1k + 1 ≤ X1

k ≤ αk2/3, I1k ≥ −αk2/3 | τ1 ≥ k
]
≥ p0/2 for all k ∈ N.

Let k ∈ N, set τ1k = inf{t ≥ 0 : X1
t+k − X1

k < −1} and let E1
k denote the event that τ1k < 1 and

X1
τ1k+k

− X1
k < −2αk2/3. Then since {X1

t+k − X1
k}t≥0 is independent of X1|[0,k] and has the same

law as X1, we have P[E1
k ] ≥ c′k−1 for a constant c′ > 0 independent of k by Lemma B.2, and it

follows that

(B.9) P[E1
k | I1k + 1 ≤ X1

k ≤ αk2/3, I1k ≥ −αk2/3, τ1 ≥ k] = P[E1
k ] ≥ c′k−1.

Further, on the event E1
k ∩ {I1k + 1 ≤ X1

k ≤ αk2/3, I1k ≥ −αk2/3, τ1 ≥ k, τ2 ≥ k + 1} we have
τ = τ1 = τ1k + k ∈ [k, k + 1) and I1τ ≤ −αk2/3. It therefore follows that there exist constants
c1, c2 > 0 so that for any A ∈ N,

E[−I1τ 1l{τ<A}]

≥
A−1∑
k=1

αk2/3P
[
E1
k ∩ {I1k + 1 ≤ X1

k ≤ αk2/3, I1k ≥ −αk2/3, τ1 ≥ k, τ2 ≥ k + 1}
]

≥
A−1∑
k=1

k2/3c1k
−1P[τ1 ≥ k]P[τ2 ≥ k + 1] (by (B.8), (B.9), X1, X2 independent)

≥
A−1∑
k=1

c2k
−1 (by Lemma B.1)

≥ c2 logA.

This proves the result. □

Proposition B.4. supA∈[1,∞) E[(X1
A − I1A)1l{τ≥A}] <∞.

Proof. Let A ∈ [1,∞). Since I1A = I11 on the event {τ > A} and E[|I11 |] < ∞ by [20, Chapter VIII,
Proposition 4], setting c1 := E[|I11 |] and using (B.1), we have

(B.10) E[−I1A1l{τ≥A}] = E[−I111l{τ>A}] ≤ E[|I11 |] = c1 <∞.

Set σ1A = inf{t ≥ 0 : X1
t = A2/3}. By the independence of X1, X2 and Lemma B.1 we have that

(B.11) E[X1
A1l{τ≥A}] = P[τ2 ≥ A]E[X1

A1l{τ1≥A}] ≍ A−1/3 E[X1
A1l{τ1≥A}].
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We moreover have that

E[X1
A1l{τ1≥A}] = E

[
X1
A1l{τ1≥A}

(
1l{σ1

A≥A}
+ 1l{σ1

A<A}
)]

≤ A2/3P[τ1 ≥ A] + E
[
X1
A1l{σ1

A<A≤τ1}
]

≲ A1/3 + E
[
X1
A1l{σ1

A<A≤τ1}
]

(by Lemma B.1)

≤ A1/3 + E
[(
X1
A −X1

σ1
A

)
1l{σ1

A<A≤τ1}
]
+A2/3 P[τ1 ≥ A]

≲ A1/3 + E
[
sup0≤t≤A

(
X1
t+σ1

A
−X1

σ1
A

)
1l{σ1

A<τ
1}
]

(by Lemma B.1)

= A1/3 + E[S1
A]P[σ1A < τ1] (by strong Markov at time σ1A)

≲ A1/3 +A2/3 P[σ1A < τ1],(B.12)

where the strong Markov property of X1 refers to [20, Chapter I, Proposition 6] and we used in
the last step that E[S1

A] = A2/3E[S1
1 ] ≍ A2/3 by the scaling property of X1 and [20, Chapter VII,

Corollary 2-(i)]. Further, by considering {X1
t+1 −X1

1}t≥0, which is independent of X1|[0,1] and has
the same law as X2, we obtain

P[σ1A < τ1] ≤ P[σ1A ≤ 1] + P
[
X1

1 < A2/3, X2 hits A2/3 −X1
1 before hitting (−∞, I11 −X1

1 ]
]
.

Then P[σ1A ≤ 1] ≤ P[S1
1 ≥ A2/3] ≤ c2e

−A2/3
for some c2 > 0 independent of A by [20, Chapter VII,

Corollary 2-(i)]. Also, [20, Chapter VII, Theorem 8] implies that

P
[
X2 hits A2/3 −X1

1 before hitting (−∞, I11 −X1
1 ]
∣∣ X1

1 , I
1
1

]
=

W (X1
1 − I11 )

W (X1
1 − I11 +A2/3 −X1

1 )
,

where W is the scale function of X1 introduced in [20, Section VII.2]. Moreover, since the Laplace
exponent ψ(λ) ofX1 is proportional to λ3/2 by the scaling property ofX1 and the Laplace transform
of W is 1/ψ by definition, we see that W (x) is proportional to x1/2. It thus follows that

P
[
X2 hits A2/3 −X1

1 before hitting (−∞, I11 −X1
1 ]
∣∣ X1

1 , I
1
1

]
=

(X1
1 − I11 )

1/2

(X1
1 − I11 +A2/3 −X1

1 )
1/2

≤ (X1
1 − I11 )

1/2A−1/3

a.s. on {X1
1 < A2/3}, and hence taking expectations yields P[σ1A < τ1] ≲ A−1/3 in view of the

fact that E[(X1
1 − I11 )

1/2] < ∞ as noted in the proof of Lemma B.1. Combining this with (B.11)
and (B.12) implies that supA∈[1,∞) E[X1

A1l{τ≥A}] <∞, which together with (B.10) proves the result.
□

In fact, we also have an upper bound on E[(−I1τ )p1l{τ<A}] for p ∈ [1, 32), which with p = 1 matches
the lower bound obtained in Proposition B.3, as follows.

Proposition B.5. For any p ∈ [1, 32) there exists cp ∈ (0,∞) depending only on p and the law of X1

such that for any A ∈ [2,∞),

(B.13) E[(−I1τ )p1l{τ<A}] ≤

{
c1 logA if p = 1,

cpA
2(p−1)/3 if p ∈ (1, 32).



126 SEBASTIAN ANDRES, NAOTAKA KAJINO, KONSTANTINOS KAVVADIAS, AND JASON MILLER

Proof. Let p ∈ [1, 32), A ∈ [2,∞) and set A′ := min{n ∈ N | A ≤ 2n}. We have

E[(−I1τ )p1l{τ<A}] ≤ E[(−I1τ )p1l{τ<2A′}] =

A′∑
k=1

E
[
(−I1τ )p1l{2k−1≤τ<2k}

]
≤

A′∑
k=1

E
[
(−I12k)

p1l{2k−1≤τ<2k}
]
.(B.14)

Then for each k ∈ N, since X1
t ≥ I11 = I1t a.s. on {τ1 ≥ t} for each t ∈ [1,∞) and I1

2k
=

inf2k−1≤s≤2k X
1
s on {2k−1 ≤ τ1 < 2k}, it follows from the independence of X1, X2, the convexity of

the function R ∋ x 7→ (x+)p, the Markov property of X1 at time 2k−1 and P[τ1 ≥ 2k−1] = P[τ2 ≥
2k−1] that

E
[
(−I12k)

p1l{2k−1≤τ<2k}
]

= E
[
(−I12k)

p1l{2k−1≤τ≤τ1<2k}
]
+ E

[
(−I12k)

p1l{2k−1≤τ<2k≤τ1}
]

≤ 2p−1E
[(
X1

2k−1 − inf2k−1≤s≤2k X
1
s

)p
1l{τ1≥2k−1}

]
P[τ2 ≥ 2k−1]

+ 2p−1E
[(
(−X1

2k−1)
+
)p
1l{τ≥2k−1}

]
+ E[(−I11 )p1l{τ1≥2k}]P[τ2 ≥ 2k−1]

≤ 2p−1E[(−I12k−1)
p]P[τ2 ≥ 2k−1]2 + (2p−1 + 1)E[(−I11 )p]P[τ2 ≥ 2k−1].(B.15)

Now, recalling that for some c ∈ (0,∞) determined solely by the law of X1 we have E[(−I1
2k−1)

p] =

(2k−1)2p/3E[(−I11 )p] ≤ c(2k−1)2p/3 by the scaling property of X1 and [20, Chapter VIII, Proposition
4] and P[τ2 ≥ 2k−1] ≤ c2−(k−1)/3 by Lemma B.1, we conclude from (B.14), (B.15) and 2A

′
< 2A

that

E[(−I1τ )p1l{τ<A}] ≤
A′∑
k=1

(
2p−1c3(2k−1)2p/32−2(k−1)/3 + (2p−1 + 1)c22−(k−1)/3

)
≤ 2p−1c3

A′∑
k=1

(22(p−1)/3)k−1 +
(2p−1 + 1)c2

1− 2−1/3
≤

{
c1 logA if p = 1,

cpA
2(p−1)/3 if p ∈ (1, 32)

for some cp ∈ (0,∞) explicit in 2p−1 and c, completing the proof. □

We also need the following propositions in the proof of Proposition 5.2.

Proposition B.6. There exists c1 ∈ (0,∞) such that for any y ∈ (0, 1],

(B.16) P
[
τ = τ2 < 2, X1

τ − I1τ > 4, I2τ > −y
]
≥ c1y.

Proof. Let x, y ∈ (0,∞). By (B.1) and the independence of X1, X2,

P
[
τ = τ2 < 2, X1

τ − I1τ > x, I2τ > −2y
]

≥ P
[
τ1 ≥ 2, inf1≤t≤2(X

1
t − I1t ) > x, τ2 ≤ 2, I2τ2 > −2y

]
= P

[
τ1 ≥ 2, inf1≤t≤2(X

1
t − I1t ) > x

]
P
[
τ2 ≤ 2, I2τ2 > −2y

]
.(B.17)

For the first term of the product in (B.17), we have P[X1
1 − I11 > 2x] > 0 by [20, Chapter VI, Propo-

sition 3 and Chapter VII, Corollary 2-(i)] and P[I11 > −x] > 0 by [20, Chapter VIII, Proposition 2],
and then, since {X1

t+1 −X1
1}t≥0 has the same law as X1 and is independent of {X1

t }0≤t≤1,

P
[
τ1 ≥ 2, inf1≤t≤2(X

1
t − I1t ) > x

]
≥ P

[
X1

1 − I11 > 2x, inf0≤t≤1(X
1
t+1 −X1

1 ) > −x
]

= P[X1
1 − I11 > 2x]P[I11 > −x] > 0.(B.18)
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For the second term of the product in (B.17), setting τz := inf{t ≥ 0 | X2
t ≤ −z} for z ∈ (0,∞), by

τ2 ≥ 1 and the Markov property of X2 at time 1 we have

P
[
τ2 ≤ 2, I2τ2 > −2y

]
≥ P

[
I21 > −y, X2

1 ∈ [1, 2], τy ≤ 2, X2
τy > −2y

]
≥ P

[
I21 > −y, X2

1 ∈ [1, 2]
]
infz∈[1,2] P

[
τz+y ≤ 1, X2

τz+y > −z − 2y
]
.(B.19)

Since the left-hand side of (B.16) is non-decreasing in y, in view of (B.17), (B.18) and (B.19) it
suffices to show that there exist c2, c3, c4 ∈ (0,∞) with c2 ≤ 1 such that for any y ∈ (0, c2] and any
z ∈ [1, 3],

P
[
I21 > −y, X2

1 ∈ [1, 2]
]
≥ c3y

1/2,(B.20)

P
[
τz ≤ 1, X2

τz > −z − y
]
≥ c4y

1/2.(B.21)

For (B.20), set σz := inf{t ≥ 0 | X2
t > z} for z ∈ [0,∞), so that P[σz < ∞] = 1 by [20,

Chapter VII, Proof of Theorem 1], and let y, u ∈ (0,∞). Then by the scaling property of X2

and [20, Chapter VIII, Proposition 2], for a constant c5 ∈ [1,∞) independent of y, u we have
P
[
I2u/2 > −y

]
= P

[
I21 > −(u/2)−2/3y

]
≤ c5u

−1/3y1/2, which together with the scaling property of

X2 and [20, Chapter VII, Theorem 8] implies that, with a := u−2/3,

P
[
I2σa > −ay, σa < 1/2

]
= P

[
I2σ1 > −y, σ1 < u/2

]
= P

[
I2σ1 > −y

]
− P

[
I2σ1 > −y, σ1 ≥ u/2

]
≥ y1/2/(1 + y)1/2 − P

[
I2u/2 > −y

]
≥
(
(1 + y)−1/2 − c5u

−1/3)y1/2.
(B.22)

Choosing u := 125c35 and replacing y with a−1y = u2/3y in (B.22), for any y ∈ (0, a] we obtain

(B.23) P
[
I2σa > −y, σa < 1/2

]
≥
(
2−1/2 − c5u

−1/3)u1/3y1/2 > 2c5y
1/2.

Moreover, for all x > 0, we let Px denote the law ofX2+x, and let P+
x be the probability measure on

the space of [0,∞)-valued cadlag paths (equipped with the σ-algebra generated by the coordinate
process X = {Xt}t≥0) given by

P+
x

[
Xt ∈ dy

]
=
W (y)

W (x)
Px
[
Xt ∈ dy, t < T(−∞,0)

]
,

where W is as in the proof of Proposition B.4 and T(−∞,0) := inf{t ≥ 0 | Xt < 0}. Then, by [20,
Chapter VII, Proposition 14] there exists a probability measure P+

0 such that P+
x → P+

0 as x ↓ 0 in
the sense of finite-dimensional distributions, and by [20, Chapter VII, Corollary 16] we have

P+
0

[
Xt ∈ dy

]
=
yW (y)

t
P
[
X2
t ∈ dy

]
.

It follows that

P
[
X2

1/2 > 3/2− b, I21/2 ≥ −b
]
= Pb

[
X1/2 > 3/2, inf

0≤s≤1/2
Xs > 0

]
= Pb

[
X1/2 > 3/2, T(−∞,0) > 1/2

]
=W (b)

∫ ∞
3/2

1

W (z)
P+
b

[
X1/2 ∈ dz

]
for any b > 0, and∫ ∞

3/2

1

W (z)
P+
b

[
X1/2 ∈ dz

] b↓0−−→
∫ ∞
3/2

1

W (z)
P+
0

[
X1/2 ∈ dz

]
= 2

∫ ∞
3/2

zP
[
X2

1/2 ∈ dz
]
> 0
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since P[X2
1/2 > 3/2] > 0 by the scaling property of X2 and [20, Chapter VII, Corollary 2-(i)]. We

see therefore that, if c5 ∈ [1,∞) is large enough so that a = u−2/3 = (5c5)
−2 is small enough, then

(B.24) q1 := P
[
σ3/2−a < 1/2, I2σ3/2−a ≥ −a

]
≥ P

[
X2

1/2 > 3/2− a, I21/2 ≥ −a
]
> 0.

Noting that P
[
X2
σz = z

]
= 1 for z ∈ (0,∞) and that q2 := P

[
sup0≤t≤1 |X2

t | ≤ 1/2
]
> 0 by [20,

Chapter VIII, Proposition 3], from the strong Markov property of X2 at times σa, σ3/2 (see, e.g.,
[20, Chapter I, Proposition 6]), (B.24) and (B.23) we get

P
[
I21 > −y, X2

1 ∈ [1, 2]
]

≥ P
[
I2σa > −y, σa < 1

2 , inf
σa≤t≤σ3/2

X2
t ≥ 0, σ3/2 − σa <

1
2 , sup

0≤t≤1

∣∣X2
t+σ3/2

− 3
2

∣∣ ≤ 1
2

]
= P

[
I2σa > −y, σa < 1

2

]
q1q2 ≥ (2c5q1q2)y

1/2,

proving (B.20).
Next, to see (B.21), let y ∈ (0, 1] and z ∈ [1, 3]. By [20, Chapter VIII, Exercise 3],

(B.25) P
[
X2
τz > −z − y

]
=

1

π

∫ y/(z+y)

0
x−1/2(1− x)−1/2 dx ≥ y1/2

π
.

Let b ∈ (0,∞), and recall that
∣∣E[e√−1λX2

1
]∣∣ = e−c6|λ|

3/2
for any λ ∈ R for some c6 ∈ (0,∞) by

[20, Chapter VIII, equation (1)] and hence that the law of X2
1 has a bounded continuous density

f1 : R → [0,∞) by Fourier inversion. Then noting that π−1
∫ α/(α+β)
0 x−1/2(1−x)−1/2 dx ≤ (α/β)1/2

for any α, β ∈ (0,∞) by considering the cases of α ≤ β and α > β separately, we see from the
Markov property of X2 at time b, [20, Chapter VIII, Exercise 3] and the scaling property of X2 that

P
[
τz > b, X2

τz > −z − y
]

= E
[
1l{τz>b}

(
P[X2

τz+x > −z − y − x]|x=X2
b

)]
= E

[
1l{τz>b}

1

π

∫ y/(z+y+X2
b )

0
x−1/2(1− x)−1/2 dx

]
≤ y1/2E

[
(z +X2

b )
−1/21l{τz>b}

]
= y1/2b−1/3E

[
(w +X2

1 )
−1/21l{τw>1}

]
≤ y1/2b−1/3E

[
(w +X2

1 )
−1/21l{w+X2

1>0}
]
= y1/2b−1/3

∫ ∞
0

x−1/2f1(x− w) dx

≤ y1/2b−1/3
(
c7

∫ 1

0
x−1/2 dx+

∫ ∞
1

f1(x− w) dx

)
≤ y1/2b−1/3(2c7 + 1),(B.26)

where w := b−2/3z and c7 := supx∈R f1(x). Thus by choosing b := π3(4c7 + 2)3, from (B.25)
and (B.26) we obtain

P
[
τz ≤ b, X2

τz > −z − y
]
= P

[
X2
τz > −z − y

]
− P

[
τz > b, X2

τz > −z − y
]

≥ (2π)−1y1/2.
(B.27)

Further, by [20, Chapter VIII, Proposition 4] and the scaling property of X2 there exist A ∈ [2,∞)

and c8 ∈ (0,∞) such that for any ϵ ∈ [ 110b
−2/3, b−2/3], any x ∈ [ 110A, 10A] and any s ∈ (0,∞),

P
[
I2
s−3/2 ∈ [−x/s,−(1− ϵ)x/s)

]
= P

[
I21 ∈ [−x,−(1− ϵ)x)

]
≥ c8,



TWO-SIDED HEAT KERNEL BOUNDS FOR
√

8/3-LIOUVILLE BROWNIAN MOTION 129

which in turn, with ϵ = ϵ0 :=
1
6b
−2/3, x = xz,b := (z − 1

2b
−2/3)A and s = A, yields

P
[
τz,b ≤ 1

2 , X
2
τz,b

∈ [−z + 1
2b
−2/3,−z + b−2/3]

]
≥ P

[
I2
A−3/2 ∈ [−z + 1

2b
−2/3,−z + b−2/3)

]
≥ P

[
I2
A−3/2 ∈ [−xz,b/A,−(1− ϵ0)xz,b/A)

]
≥ c8,

(B.28)

where τz,b := τz−b−2/3 . It follows from the strong Markov property of X2 at time τz,b, (B.28), the
scaling property of X2 and (B.27) that, provided y ∈ (0, 12b

−2/3],

P
[
τz ≤ 1, X2

τz > −z − y
]

≥ P
[
τz,b ≤ 1

2 , X
2
τz,b

∈ [−z + 1
2b
−2/3,−z + b−2/3], τz ≤ τz,b +

1
2 , X

2
τz > −z − y

]
= E

[
1l{τz,b≤ 1

2
, X2

τz,b
∈[−z+ 1

2
b−2/3,−z+b−2/3]}

(
P[τz+x ≤ 1

2 , X
2
τz+x > −z − y − x]|x=X2

τz,b

)]
≥ c8 infx∈[ 1

2
b−2/3,b−2/3] P

[
τx ≤ 1

2 , X
2
τx > −x− y

]
= c8 infx∈[1,2] P

[
τx ≤

√
2b, X2

τx > −x− 2b2/3y
]
≥ c8(2π)

−1(2b2/3)1/2y1/2,

which proves (B.21) and thereby completes the proof of (B.16). □

Proposition B.7. Let X = {Xt}t≥0 be a 3/2-stable Lévy process with only downward jumps and
X0 = 0, and set Zt := Xt − inf0≤s≤t(Xs ∧ 0) for t ∈ [0,∞). Then there exist c1, c2 ∈ (0,∞) such that
P[sup0≤t≤1 Zt ≥ x] ≤ c1e

−c2x for any x ∈ [0,∞).

Proof. Set τ0 := 0, and define sequences {σn}∞n=1, {τn}∞n=1 of stopping times for X inductively by
σn := inf{t ∈ [τn−1,∞) | Zt ≥ 1} and τn := inf{t ∈ [σn,∞) | Zt = 0} for n ≥ 1, so that Zσn = 1

on {σn < ∞} by the absence of upward jumps of X. Since {Zt}t≥0 is strong Markov by [20,
Chapter VI, Proposition 1], it easily follows from [20, Chapter VII, Theorem 8] that σn < τn <

∞ for any n ≥ 1 a.s. and hence that {{Zt+σn}t∈[0,τn−σn)}∞n=1 is i.i.d. with law given by that of
{Xt+σ}t∈[0,τ−σ) with σ := inf{t ∈ [0,∞) | Xt ≥ 1} and τ := inf{t ∈ [σ,∞) | Xt ≤ 0}. Moreover,
recalling that {Xt+σ − 1}t≥0 has the same law as X by the strong Markov property [20, Chapter I,
Proposition 6] of X, we have q := P[τ − σ ≤ 1] ∈ (0, 1) by [20, Chapter VIII, Propositions 2 and
4] and c3 := E[exp(2(− log q) sup0≤t<(τ−σ)∧1Xt+σ)] <∞ by [20, Chapter VII, Corollary 2-(i)], and
the random variable N := min{n ≥ 1 | τn > 1} satisfies P[N ≥ n] ≤ P[

⋂n−1
j=1 {τj − σj ≤ 1}] = qn−1

for any n ≥ 1. It thus follows that for any x ∈ [1,∞), with n := min(N ∩ [x,∞)), c2 := − log q and
c4 := c3c

−1
2 ec2−1 + 1,

P[sup0≤t≤1 Zt ≥ x] ≤ P
[⋃

1≤j≤n
{sup0≤t<(τn−σn)∧1 Zt+σj ≥ x}

]
+ P[N > n]

≤ nP[sup0≤t<(τ−σ)∧1Xt+σ ≥ x] + qn

≤ nc3e
−2c2x + e−c2n ≤ (x+ 1)c3e

−2c2x + e−c2x ≤ c4e
−c2x,

proving the assertion for x ∈ [1,∞). The assertion for x ∈ [0, 1) follows by setting c1 := c4∨ec2 . □
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Poincaré Probab. Statist., 55(3):1712–1750, 2019.
[76] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. Invent. Math.,

219(1):75–152, 2020.
[77] J. Miller and S. Sheffield. An axiomatic characterization of the Brownian map. J. Éc. polytech. Math., 8:609–731,
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Current address: Institut für Mathematische Stochastik, Universitätsplatz 2 38106 Braunschweig, Germany
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