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On-diagonal oscillation of the heat kernels on post-critically
finite self-similar fractals

Naotaka Kajino

Abstract For the canonical heat kernels pt .x; y/ associated with Dirichlet forms
on post-critically finite self-similar fractals, e.g. the transition densities (heat ker-
nels) of Brownian motion on affine nested fractals, the non-existence of the limit
limt#0 t

ds=2pt .x; x/ is established for a “generic” (in particular, almost every) point
x, where ds denotes the spectral dimension. Furthermore the same is proved for any
point x in the case of the d -dimensional standard Sierpinski gasket with d � 2 and
the N -polygasket with N � 3 odd, e.g. the pentagasket (N D 5) and the heptagasket
(N D 7).

Keywords post-critically finite self-similar fractals � affine nested fractals � Dirichlet
form � heat kernel � oscillation � short time asymptotics
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1 Introduction

It is a general belief that the heat kernels on fractals should exhibit highly oscillatory
behavior as opposed to the classical case of Riemannian manifolds. For example, on
the Sierpinski gasket (Fig. 1), the canonical “Brownian motion” has been constructed
by Goldstein [10] and Kusuoka [22], and Barlow and Perkins [3] have proved that
its transition density (heat kernel) pt .x; y/ is jointly continuous and subject to the
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Fig. 1 Sierpinski gasket
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for t 2 .0; 1�; here c1; c2 2 .0;1/ are some constants, ds WD 2 log5 3 and dw WD

log2 5 are called the spectral dimension and the walk dimension of the Sierpinski
gasket, respectively, and � is the shortest path metric in the gasket which is easily
seen to be equivalent to the Euclidean metric. In particular, for any point x of the
Sierpinski gasket we have

c1 � tds=2pt .x; x/ � c2; t 2 .0; 1�; (1.2)

and Barlow and Perkins have conjectured in [3, Problem 10.5] that the limit

lim
t#0

tds=2pt .x; x/ (1.3)

does not exist, but this problem has been open since then. The main purpose of this
paper is to prove this conjecture, namely:

Theorem 1.1. Let the heat kernel pt .x; y/ and ds D 2 log5 3 be as above. Then the
limit limt#0 t

ds=2pt .x; x/ does not exist for any point x of the Sierpinski gasket.

We can consider the same problem for a class of finitely ramified self-similar
fractals, called affine nested fractals. (See Section 4 for their definition; typical ex-
amples of affine nested fractals are shown in Fig. 2, and see Fig. 3, 4 and 5 below
for further examples.) By the results of Fitzsimmons, Hambly and Kumagai [8], an
affine nested fractal K admits a canonical Brownian motion on it, and the associated
(jointly continuous) transition density pt .x; y/ satisfies the two-sided sub-Gaussian
bound (1.1) with certain ds and dw and a suitably constructed geodesic metric � on
K. In particular, the on-diagonal estimate (1.2) holds for any x 2 K, and then it is
natural to ask whether the limit limt#0 t

ds=2pt .x; x/ exists or not. We address this
question in the present article, and the following theorem summarizes our main re-
sults. Recall that a self-similar measure on K is defined as the image of a Bernoulli
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Fig. 2 Typical examples of affine nested fractals. From the left, two-dimensional level-3 Sierpinski gasket,
three-dimensional standard (level-2) Sierpinski gasket, pentagasket (5-polygasket) and snowflake. In each
fractal, the set V0 of its boundary points is marked by solid circles.

measure on the corresponding shift space through the canonical projection; see [18,
Section 1.4]. See Examples 5.1 and 5.3 for the precise definition of the d -dimensional
level-l Sierpinski gasket and the N -polygasket, respectively.

Theorem 1.2. Let V0 be the set of boundary points of our affine nested fractal K.
(1) Assume #V0 � 3. Then the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2

K n S�, where S� is a Borel subset of K satisfying �.S�/ D 0 for any self-similar
measure � on K. (S� is explicitly defined by (4.4) and (3.1) and satisfies V0 � S�.)
(2) The limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 V0 when K is either

– the d -dimensional level-l Sierpinski gasket with d � 2, l � 2, or
– the N -polygasket with N � 3, N=4 62 N.

(3) The limit limt#0 t
ds=2pt .x; x/ does not exist for any x 2 K when K is either

– the d -dimensional standard (i.e. level-2) Sierpinski gasket with d � 2, or
– the N -polygasket with N � 3 odd.

Remark 1.3. The above description contains some ambiguity in the choice of a
“canonical” Brownian motion on K since an affine nested fractal may admit more
than one self-similar diffusion compatible with its symmetry. For example, according
to [8, Section 2, especially Proposition 2.3], on the two-dimensional level-3 Sierpin-
ski gasket in Fig. 2 one can construct self-similar diffusions which are invariant under
the symmetries of the space and have two different resistance scaling factors, one for
cells containing a boundary point and the other for those containing the barycenter.
In fact, Theorem 1.2-(1) is true for any choice of a self-similar diffusion on K (to
be more precise, of a regular harmonic structure on K) that is invariant under certain
symmetries of K, whereas Theorem 1.2-(2),(3) concern only the case where all cells
have the same resistance scaling factor. See Sections 4 and 6 for details.

Under a slightly more general framework than in Theorem 1.2-(1), Barlow and
Kigami [2] have proved a similar oscillation in the asymptotic behavior of the eigen-
values of the associated Laplacian. The heart of their argument is to construct a pre-
localized eigenfunction of the Laplacian (i.e. an eigenfunction of the Laplacian which
satisfies both Neumann and Dirichlet boundary conditions on V0), based only on the
symmetry of the fractal and the Laplacian. We prove Theorem 1.2-(1) by modifying
their argument to construct a pre-localized eigenfunction which is non-zero at a given
specific point, and the construction is again based only on the symmetry.
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Unfortunately, since V0 � S�, Theorem 1.2-(1) tells us nothing about the non-
existence of the limit limt#0 t

ds=2pt .x; x/ for x 2 V0. Theorem 1.2-(2) asserts this
non-existence in the particular cases of the d -dimensional level-l Sierpinski gasket
and the N -polygasket, and its proof is based on a simple geometric argument which
makes full use of the specific cell structures of these fractals.

Note that S� is defined through another subset S ofK given by (4.4), which is the
set of “points lying in some axis of symmetry of K”. For the 2-dimensional standard
Sierpinski gasket and the N -polygasket with N odd, we have S � V�, by virtue of
which Theorem 1.2-(3) follows from Theorem 1.2-(1),(2). A similar argument applies
also to the case of the d -dimensional standard Sierpinski gasket with d � 3 although
S 6� V� in this case (see Theorem 5.2). It is quite likely that Theorem 1.2-(3) can
be generalized to other affine nested fractals, but they are beyond the reach of our
method.

Similar oscillatory phenomena have been proved in [11,21,24] for the simple ran-
dom walks on self-similar graphs by using the method of “singularity analysis”, and
their results can be considered as giving sufficient conditions for the non-existence of
the limit limt#0 t

ds=2pt .x; x/ for x 2 V0, in view of the local limit theorem [6, The-
orem 31]. Their sufficient conditions, however, require some concrete calculations of
certain rational functions associated with the simple random walk and seem difficult
to verify for a general d -dimensional level-l Sierpinski gasket. Also their results do
not apply to fractals with “less symmetric boundary” such as the N -polygasket with
N 6D 3; 6; 9. An important point of Theorem 1.2-(2) is that it has successfully treated
all Sierpinski gaskets and polygaskets in a unified way without depending on concrete
calculations.

In fact, we can conclude the non-existence of the limit limt#0 t
ds=2pt .x; x/ for

any point x of the fractal if the eigenvalues of the Laplacian possess a certain property,
as treated in a forthcoming paper [17]. This result in particular applies to the two-
dimensional level-3 Sierpinski gasket and the hexagasket (6-polygasket, see Fig. 5),
which are beyond the scope of Theorem 1.2-(3). The property of the eigenvalues
required there, however, again seems difficult to verify for a general d -dimensional
level-l Sierpinski gasket since some concrete calculation is necessary. Moreover, the
property can be verified only by the method of spectral decimation, which does not
work for the N -polygasket, N 6D 3; 6; 9. In this sense, the method of this paper is
the only way established so far to obtain Theorem 1.2-(2),(3) for the N -polygasket,
N 6D 3; 6; 9.

This paper is organized as follows. In Section 2, we introduce our framework,
recall basic facts about the heat kernel pt .x; y/ and present our key criterion for the
non-existence of the limit limt#0 t

ds=2pt .x; x/. Following the framework of Barlow
and Kigami [2], in Section 3 we state and prove Theorem 3.4 which generalizes
Theorem 1.2-(1), and then we verify in Section 4 that Theorem 3.4 actually applies
to the case of affine nested fractals to imply Theorem 1.2-(1). We recall the definition
of the d -dimensional level-l Sierpinski gasket and the N -polygasket in Section 5,
and Section 6 is devoted to the proof of Theorem 1.2-(2),(3). In fact, in Section 6 we
establish the assertions of Theorem 1.2-(2),(3) also for the .N; l/-polygasket, which
is a post-critically finite self-similar fractal introduced in [5] as a generalization of
the N -polygasket.
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Notation. In this paper, we adopt the following notation and conventions.
(1) N D ¹1; 2; 3; : : : º, i.e. 0 62 N.
(2) The cardinality (the number of elements) of a set A is denoted by #A.
(3) We set sup ; WD 0, inf ; WD 1 and 00 WD 1. All functions in this paper are
assumed to be R-valued.
(4) For d 2 N, Rd is always equipped with the Euclidean norm j � j, and O.d/
denotes the d -dimensional real orthogonal group. For g 2 O.d/, detg denotes its
determinant.
(5) Let E be a topological space. The Borel � -field of E is denoted by B.E/. We
set C.E/ WD ¹u j u W E ! R; u is continuousº and kuk1 WD supx2E ju.x/j,
u 2 C.E/. For A � E, its interior in the topology of E is denoted by intE A. If � is
a metric on E, we set dist�.x; A/ WD infy2A �.x; y/ for x 2 E and A � E.

2 Preliminaries

In this section, we first introduce our framework of a self-similar set and a Dirichlet
form on it, and then present preliminary facts.

Let us start with the standard notions concerning self-similar sets. We refer to [18,
Chapter 1] for details. Throughout this paper, we fix a compact metrizable topological
space K, a finite set S with #S � 2 and a continuous injective map Fi W K ! K for
each i 2 S . We set L WD .K; S; ¹Fi ºi2S /. Also we arbitrarily take a metric � on K
compatible with the topology of K and fix it throughout this paper.

Definition 2.1. (1) Let W0 WD ¹;º, where ; is an element called the empty word,
let Wm WD Sm D ¹w1 : : : wm j wi 2 S for i 2 ¹1; : : : ; mºº for m 2 N and let
W� WD

S
m2N[¹0ºWm.

(2) We set † WD SN D ¹!1!2!3 : : : j !i 2 S for i 2 Nº, which is always equipped
with the product topology, and define the shift map � W † ! † by �.!1!2!3 : : : / WD

!2!3!4 : : : . For i 2 S we define �i W † ! † by �i .!1!2!3 : : : / WD i!1!2!3 : : :

and set i1 WD i i i : : : 2 †. Furthermore for ! D !1!2!3 : : : 2 † and m 2 N [ ¹0º,
we write Œ!�m WD !1 : : : !m 2 Wm.
(3) For w D w1 : : : wm 2 W�, we set Fw WD Fw1

ı � � � ı Fwm
(F; WD idK), Kw WD

Fw.K/, �w WD �w1
ı � � � ı �wm

(�; WD id†) and †w WD �w.†/.

Definition 2.2. L is called a self-similar structure if and only if there exists a contin-
uous surjective map � W † ! K such that Fi ı � D � ı �i for any i 2 S . Note that
such � , if exists, is unique and satisfies ¹�.!/º D

T
m2NKŒ!�m for any ! 2 †.

In what follows we always assume that L is a self-similar structure.

Definition 2.3. (1) We define the critical set C and the post-critical set P of L by

C WD ��1
�S

i;j 2S; i 6Dj Ki \Kj

�
and P WD

S
m2N �

m.C/: (2.1)

L is called post-critically finite, or p.c.f. for short, if and only if P is a finite set.
(2) We set V0 WD �.P/, Vm WD

S
w2Wm

Fw.V0/ for m 2 N and V� WD
S

m2N Vm.
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V0 should be considered as the “boundary” of the self-similar set K; recall that
Kw \ Kv D Fw.V0/ \ Fv.V0/ for any w; v 2 W� with †w \ †v D ; by [18,
Proposition 1.3.5-(2)]. Note that Vm�1 � Vm for any m 2 N by [18, Lemma 1.3.11].

From now on our self-similar structure L D .K; S; ¹Fi ºi2S / is always assumed
to be post-critically finite with K connected, so that #V0 � 2 and V� is dense in K.

Next we briefly describe the construction of a Dirichlet form onK; see [18, Chap-
ter 3] for details. LetD D .Dpq/p;q2V0

be a real symmetric matrix of size #V0 (which
we also regard as a linear operator on RV0 ) such that

.D1/ ¹u 2 RV0 j Du D 0º D R1V0
,

.D2/ Dpq � 0 for any p; q 2 V0 with p 6D q.

We define E .0/.u; v/ WD �
P

p;q2V0
Dpqu.q/v.p/ for u; v 2 RV0 , so that .E .0/;RV0/

is a Dirichlet form on L2.V0; #/. Furthermore let r D .ri /i2S 2 .0;1/S and define

E .m/.u; v/ WD
X

w2Wm

1

rw
E .0/.u ı Fw jV0

; v ı Fw jV0
/; u; v 2 RVm (2.2)

for eachm 2 N, where rw WD rw1
rw2

: : : rwm
forw D w1w2 : : : wm 2 Wm (r; WD 1).

Definition 2.4. The pair .D; r/ withD and r as above is called a harmonic structure
on L if and only if E .0/.u; u/ D infv2RV1 ; vjV0

Du E .1/.v; v/ for any u 2 RV0 ; note

that then E .m/.u; u/ D min
v2RVmC1 ; vjVm Du

E .mC1/.v; v/ for any m 2 N [ ¹0º and

any u 2 RVm . If r 2 .0; 1/S in addition, then .D; r/ is called regular.

In the rest of this paper, we assume that .D; r/ is a regular harmonic structure
on L. Let dH 2 .0;1/ be such that

P
i2S r

dH

i D 1, and let � be the self-similar
measure on K with weight .rdH

i /i2S , i.e. the unique Borel measure on K such that
�.Kw/ D r

dH
w for any w 2 W�. We set ds WD 2dH=.dH C 1/, which is called the

spectral dimension. In this case, ¹E .m/.ujVm
; ujVm

/ºm2N[¹0º is non-decreasing and
hence has the limit in Œ0;1� for any u 2 C.K/. Then we define

F WD ¹u 2 C.K/ j limm!1 E .m/.ujVm
; ujVm

/ < 1º;

E.u; v/ WD limm!1 E .m/.ujVm
; vjVm

/ 2 R; u; v 2 F ;
(2.3)

so that .E ;F/ possesses the following self-similarity: for any u; v 2 F ,

u ı Fi 2 F for any i 2 S and E.u; v/ D
X
i2S

1

ri
E.u ı Fi ; v ı Fi /: (2.4)

By [18, Theorem 3.3.4], .E ;F/ is a resistance form onK whose resistance metric
R W K � K ! Œ0;1/ is compatible with the original topology of K, and then [20,
Corollary 6.4 and Theorems 9.4], (2.4) and E.1; 1/ D 0 together imply that .E ;F/
is a strong local regular Dirichlet form on L2.K;�/. See [18, Definition 2.3.1] or
[20, Definition 3.1] for the definition of resistance forms and their resistance metrics,
and see [9, Section 1.1] for the definition of regular Dirichlet forms and their strong
locality. Furthermore by [20, Theorem 10.4] (or by [18, Section 5.1]), the Markovian
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semigroup ¹Tt ºt2.0;1/ on L2.K;�/ associated with .E ;F/ admits a unique contin-
uous function p D pt .x; y/ W .0;1/ � K � K ! Œ0;1/, called the heat kernel of
.K;�; E ;F/, such that for each f 2 L2.K;�/ and t 2 .0;1/,

Ttf D

Z
K

pt .�; y/f .y/d�.y/ �-a.e. (2.5)

Also by [18, Corollary 5.3.2] (or by [20, Theorem 15.10]; see the proof of Lemma
2.5 below), there exist c1; c2 2 .0;1/ such that for any x 2 K,

c1 � tds=2pt .x; x/ � c2; t 2 .0; 1�; (2.6)

where ds D 2dH=.dH C 1/ is the spectral dimension defined above.
Now we prepare several preliminary lemmas. The following lemma is standard.

Lemma 2.5. There exist c3; c4; c5 2 .0;1/ such that for any .t; x; y/ 2 .0; 1��K�

K,

jpt .x; x/ � pt .y; y/j � c3R.x; y/
1=2t�.dsC2/=4; (2.7)

pt .x; y/ � c4t
�ds=2 exp

�
�c5

�R.x; y/dH C1

t

�1=dH

�
: (2.8)

Proof. (2.7) is immediate from [20, (3.1) and Lemma 10.8-(2)] and (2.6) (or from
[16, Lemma 5.2]). We easily see from [18, Lemmas 3.3.5 and 4.2.3] and (2.4) (see
also [18, Lemma 4.2.4]) that c6s

dH � �.Bs.x;R// � c7s
dH for any .s; x/ 2

.0; diamR K� � K for some c6; c7 2 .0;1/, where diamR K WD supx;y2K R.x; y/

and Bs.x;R/ WD ¹y 2 K j R.x; y/ < sº. Therefore an application of [20, Theorem
15.10] yields (2.8).

Remark 2.6. The power 1=dH in the exponential in the right-hand side of (2.8) is
not best possible in general. Under the same framework, Hambly and Kumagai [16]
have obtained a sharp two-sided estimate of pt .x; y/.

Lemma 2.7. Let U be a non-empty open subset ofK and set �jU WD �jB.U /, FU WD

¹u 2 F j ujKnU D 0º and EU WD E jFU �FU
. Then .EU ;FU / is a strong local regular

Dirichlet form on L2.U; �jU / whose associated Markovian semigroup ¹T U
t ºt2.0;1/

admits a unique continuous integral kernel pU D pU
t .x; y/ W .0;1/ � U � U !

Œ0;1/, called the Dirichlet heat kernel on U , similarly to (2.5). Moreover, pU is
extended to a continuous function on .0;1/�K�K by setting pU WD 0 on .0;1/�

.K �K n U � U/, and pU
t .x; y/ � pt .x; y/ for any .t; x; y/ 2 .0;1/ �K �K.

Proof. This is immediate from [20, Theorem 10.4].

Lemma 2.8. Let U be a non-empty open subset of K. Then for any .t; x; y/ 2

.0;1/ � U � U ,

pt .x; y/ � pU
t .x; y/ � sup

s2Œt=2; t�

sup
´2U nU

ps.x; ´/C sup
s2Œt=2; t�

sup
´2U nU

ps.´; y/: (2.9)

Proof. This is immediate from [13, Theorem 5.1] (or [12, Theorem 10.4]) and the
continuity of the heat kernels pt .x; y/ and pU

t .x; y/.
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Finally we relate the non-existence of the limit limt#0 t
ds=2pt .x; x/ to proper-

ties of eigenvalues and eigenfunctions of the Laplacian. Let � be the non-positive
self-adjoint operator (“Laplacian”) associated with the Dirichlet form .E ;F/ on
L2.K;�/ and let DŒ�� be its domain. Recall that DŒ�� � F and that for u 2 F
and f 2 L2.K;�/,

u 2 DŒ�� and ��u D f if and only if E.u; v/ D

Z
K

f vd� for any v 2 F :
(2.10)

Let ¹'nºn2N be a complete orthonormal system ofL2.K;�/ such that for each n 2 N,
'n is an eigenfunction of �, i.e. 'n 2 DŒ�� and ��'n D �n'n for some �n 2 R.
Such ¹'nºn2N exists since � has compact resolvent by [20, Lemma 9.7], and then
necessarily ¹�nºn2N � Œ0;1/ and limn!1 �n D 1. Therefore without loss of
generality we assume that ¹�nºn2N is non-decreasing, and note that �1 D 0 < �2.

Lemma 2.9. Let x 2 K. Then the limit limt#0 t
ds=2pt .x; x/ exists if and only if so

does the limit

lim
�!1

P
n2N; �n�� 'n.x/

2

�ds=2
: (2.11)

Proof. [20, Proof of Lemma 10.7] tells us that

pt .x; y/ D

X
n2N

e��nt'n.x/'n.y/; .t; x; y/ 2 .0;1/ �K �K; (2.12)

where the series is uniformly absolutely convergent on ŒT;1/ � K � K for any
T 2 .0;1/. Let x 2 K and set Nx.�/ WD

P
n2N; �n�� 'n.x/

2 for � 2 R. Then
pt .x; x/ D

R
Œ0;1/

e��tdNx.�/ for any t 2 .0;1/ by (2.12), and the assertion fol-
lows by Karamata’s Tauberian theorem [7, p. 445, Theorem 2]; note that (2.6) and
[14, Theorem 1] yield 0 < inf�2Œ1;1/ �

�ds=2Nx.�/ � sup�2Œ1;1/ �
�ds=2Nx.�/ <

1.

Lemma 2.10. The limit limt#0 t
ds=2pt .x; x/ does not exist for any x 2 K satisfying

lim sup
n!1

'n.x/
2

�
ds=2
n

> 0: (2.13)

Proof. Let x 2 K satisfy (2.13), and for � 2 R let Nx.�/ be as in the previous proof.
Then since

lim sup
n!1

Nx.�n/ � Nx.�n � 1/

�
ds=2
n

� lim sup
n!1

'n.x/
2

�
ds=2
n

> 0;

the limit (2.11) cannot exist and hence neither does the limit limt#0 t
ds=2pt .x; x/ by

Lemma 2.9.

Lemma 2.10 will play fundamental roles in the proofs of our main results below.
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3 Symmetry group and oscillation at “generic” points

Throughout this section and the next, we follow the framework described in the previ-
ous section. Namely, L D .K; S; ¹Fi ºi2S / is a post-critically finite self-similar struc-
ture with K connected and #S � 2, .D; r D .ri /i2S / is a regular harmonic structure
on L, and � is the self-similar measure on K with weight .rdH

i /i2S . Also, .E ;F/ is
the resistance form on K associated with .D; r/ as in (2.3), R W K �K ! Œ0;1/ is
the resistance metric of .E ;F/, and p D pt .x; y/ W .0;1/�K �K ! Œ0;1/ is the
heat kernel of .K;�; E ;F/.

In this section, we establish the non-existence of the limit limt#0 t
ds=2pt .x; x/ for

a “generic” point x 2 K under the assumption of a certain symmetry of .K;�; E ;F/,
following closely the arguments in [18, Section 4.4] and [2, Sections 5 and 6].

Let us start with the following definition. Note that �.A/ 2 B.K/ for any A 2

B.†/.
Definition 3.1. For each Z � K, we define Z� 2 B.K/ by

Z� WD ¹x 2 K j limm!1 dist�.�.�m.!//; Z/ D 0 for any ! 2 ��1.x/º; (3.1)

which is independent of a particular choice of the metric � on K.
Then we have the following easy proposition. Note that any Borel measure on

K vanishing on V� is of the form � ı ��1 with � a Borel measure on †, since
�j†n��1.V�/ W † n ��1.V�/ ! K n V� is a continuous bijective map with Borel
measurable inverse. Recall that a Borel measure � on † is called � -ergodic if and
only if � ı ��1 D � and �.A/�.† n A/ D 0 for any A 2 B.†/ with ��1.A/ D A.
Proposition 3.2. Let Z be a closed subset of K. If � is a �-ergodic finite Borel
measure on † and satisfies � ı ��1.K nZ/ > 0, then � ı ��1.Z�/ D 0.

Proof. Since Z is closed and � ı��1.K nZ/ > 0, we can choose " 2 .0;1/ so that
� ı ��1.¹x 2 K j dist�.x;Z/ � "º/ > 0. Define A 2 B.†/ by

A WD
T

n2N
S

m�n �
�m

�
��1.¹x 2 K j dist�.x;Z/ � "º/

�
:

Then ��1.A/ D A and ��1.Z�/ � † n A. By virtue of � ı ��1 D �, a version [4,
Proposition II.5.14] of the Borel-Cantelli lemma yields �.A/ > 0 and hence we have
� ı ��1.Z�/ � �.† n A/ D 0 by the �-ergodicity of �.

The following definition is fundamental for the arguments of this section.
Definition 3.3. (1) We define the symmetry group G of .L; .D; r/; �/ by

G WD

²
g

ˇ̌̌̌
g is a homeomorphism fromK to itself, g.V0/ D V0, �ıg D �,
u ı g; u ı g�1 2 F and E.u ı g; u ı g/ D E.u; u/ for any u 2 F

³
; (3.2)

which clearly forms a subgroup of the group of homeomorphisms of K.
(2) For a finite subgroup G of G and h 2 G, we define S.G; h/ and S�.G; h/ by

S.G; h/ WD
[
g2G

¹x 2 K j h�1g.x/ D xº; S�.G; h/ WD .S.G; h/ [ V0/�: (3.3)

(3) For g 2 G and u W K ! R, we define Tgu WD u ı g�1, so that Tg defines a linear
surjective isometry Tg W L2.K;�/ ! L2.K;�/ by virtue of � ı g D �.
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In the situation of Definition 3.3-(2), S.G; h/ is closed in K, V� � S�.G; h/

since �m.��1.Vm// D P form 2 N [ ¹0º by [18, Proposition 1.3.5-(1)], and Propo-
sition 3.2 says that S�.G; h/ may be considered as “measure-theoretically small” if
S.G; h/ 6D K. Keeping this observation in mind, now we state the main theorem of
this section.

Theorem 3.4. Suppose that a finite subgroupG of G and h 2 GnG satisfy S.G; h/ 6D

K and h�1.q/ 2 ¹g.q/ j g 2 Gº for any q 2 V0. Then the limit limt#0 t
ds=2pt .x; x/

does not exist for any x 2 K n S�.G; h/. If in addition the limit limt#0 t
ds=2pt .x; x/

does not exist for any x 2 S.G; h/ n V0, then neither does it for any x 2 K n V�.

In view of V� � S�.G; h/, Theorem 3.4 tells us nothing about the non-existence
of the limit limt#0 t

ds=2pt .x; x/ for x 2 V�, which we will establish in Section 6
below in the case of certain examples such as Sierpinski gaskets and polygaskets.

The rest of this section is devoted to the proof of Theorem 3.4. The essential part
is the proof of the following two lemmas.

Lemma 3.5. Suppose that a finite subgroup G of G and h 2 G nG satisfy S.G; h/ 6D

K and h�1.q/ 2 ¹g.q/ j g 2 Gº for any q 2 V0. Then for each x 2 K n .S.G; h/ [

V0/, there exists an eigenfunction 'x of � such that 'xjV0
D 0 and 'x.x/ 6D 0.

Proof. We follow [18, Proof of Theorem 4.4.4]. We define RG ; RG;h; R
�
G;h

by

RG WD .#G/�1
P

g2G Tg ; RG;h WD RGTh�1 �RG ; R
�
G;h

WD ThRG �RG ; (3.4)

so that
R

K.RG;hu/vd� D
R

K uR
�
G;h
vd� for u; v 2 L2.K;�/, and RG;hu;R

�
G;h
v 2

F and E.RG;hu; v/ D E.u;R�
G;h
v/ for any u; v 2 F . Moreover for u 2 C.K/ and

q 2 V0, h�1.q/ D g�1.q/ for some g 2 G and hence R�
G;h
u.q/ D RGu.g

�1.q// �

RGu.q/ D 0, from which it follows that R�
G;h
.F/ � FKnV0

.
Let x 2 K n .S.G; h/ [ V0/. Since V0 [ ¹g.x/ j g 2 Gº is finite and does

not contain h.x/, we can choose u 2 FKnV0
so that u � 0, u.h.x// D 1 and

u.g.x// D 0 for g 2 G. Then .#G/RG;hu.x/ D
P

g2G

�
u.hg.x// � u.g.x//

�
�

u.h.x// D 1. Let ¹'0
nºn2N be a complete orthonormal system ofL2.K;�/ consisting

of eigenfunctions of the non-positive self-adjoint operator on L2.K;�jKnV0
/ associ-

ated with .EKnV0 ;FKnV0
/; such ¹'0

nºn2N exists by [20, Lemma 9.7]. Then letting
un WD

Pn
kD1

�R
K u'

0
k
d�

�
'0

k
for n 2 N, we see from [20, (3.1)] that ku � unk2

1 �

.diamR K/E.u � un; u � un/ ! 0 as n ! 1 . Thus limn!1RG;hun.x/ D

RG;hu.x/ � .#G/�1, and it follows that RG;h'
0
j .x/ 6D 0 for some j 2 N. Now

by using R�
G;h
.F/ � FKnV0

and (2.10) for .EKnV0 ;FKnV0
/ we can easily verify that

'x WD RG;h'
0
j 2 FKnV0

is an eigenfunction of � with 'x.x/ 6D 0.

Lemma 3.6. Let ! 2 † and y 2 KnV0. If lim infm!1 �.�.�m.!//; y/ D 0 and the
limit limt#0 t

ds=2pt .y; y/ does not exist, then the limit limt#0 t
ds=2pt .�.!/; �.!//

does not exist, either.

Proof. Set x WD �.!/. By the assumption we have limk!1R.�.�mk .!//; y/ D 0

for some strictly increasing sequence ¹mkºk2N � N. Let k 2 N be large enough
so that R.�.�mk .!//; y/ � distR.y; V0/=2 DW Dy , and set wk WD Œ!�mk

, xk WD
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F �1
wk
.x/ D �.�mk .!//, �k WD r

�.dH C1/
wk

and KI
k

WD Kwk
n Fwk

.V0/. Then KI
k

is open in K since K n KI
k

D Fwk
.V0/ [

S
w2Wmk

n¹wkºKw . By [19, Theorem
A.1] there exists c8 2 .0; 1� such that R.Fw.x1/; Fw.x2// � c8rwR.x1; x2/ for any
w 2 W� and x1; x2 2 K, and therefore

R.x; Fwk
.q// � c8rwk

R
�
xk ; q

�
� c8Dyrwk

; q 2 V0: (3.5)

Let t 2 .0; ��1
k
�. Then Lemmas 2.5, 2.7, 2.8 and (3.5) together yield

0 � pt .x; x/ � p
KI

k
t .x; x/ � 4c4t

�ds=2 exp
�
�cy.�kt/

�1=dH
�
; (3.6)

0 � p�k t .xk ; xk/ � p
KnV0
�k t .xk ; xk/ � 4c4.�kt /

�ds=2 exp
�
�cy.�kt /

�1=dH
�
; (3.7)ˇ̌

p�k t .xk ; xk/ � p�k t .y; y/
ˇ̌

� c3R.xk ; y/
1=2.�kt /

�.dsC2/=4; (3.8)

where cy WD c5.c8Dy/
1C1=dH . Since tds=2p

KI
k

t .x; x/ D .�kt /
ds=2p

KnV0
�k t .xk ; xk/ by

(2.3) and (2.4), it follows from (3.6), (3.7) and (3.8) that for any t 2 .0; ��1
k
�,ˇ̌

tds=2pt .x; x/ � .�kt /
ds=2p�k t .y; y/

ˇ̌
� 4c4 exp

�
�cy.�kt/

�1=dH
�

C c3R.xk ; y/
1=2.�kt/

.ds�2/=4: (3.9)

Set Ay WD lim supt#0 t
ds=2pt .y; y/ � lim inft#0 t

ds=2pt .y; y/ 2 .0;1/ and

choose ty 2 .0; 1� so that 4c4 exp
�
�cy t

�1=dH
y

�
� Ay=6. The definition of Ay tells

us that tds=2
1 pt1.y; y/ � t

ds=2
2 pt2.y; y/ � Ay=2 for some t1; t2 2 .0; ty �. Setting

t D t1=�k and t D t2=�k in (3.9), from limk!1R.xk ; y/ D 0 we easily see that

lim inf
k!1

�
.t1=�k/

ds=2pt1=�k
.x; x/ � .t2=�k/

ds=2pt2=�k
.x; x/

�
� Ay=6 > 0;

in view of which the limit limt#0 t
ds=2pt .x; x/ cannot exist since ��1

k
D r

dH C1
wk

! 0

as k ! 1 by r 2 .0; 1/S .

We also need the following easy lemma.

Lemma 3.7. .V0/� D V�. (Here .V0/� is of course given by (3.1) with Z D V0.)

Proof. We have V� � .V0/� since �m.��1.Vm// D P for any m 2 N [ ¹0º by [18,
Proposition 1.3.5-(1)]. Let x 2 .V0/� and ! 2 ��1.x/. Then from ��1.V0/ D P
and limm!1 dist�.�.�m.!//; V0/ D 0 we see that limm!1 distı.�m.!/;P/ D 0,
where ı is a metric on† compatible with the product topology of†. Since P is finite
and �.P/ � P , there exist n 2 N and wk ; vk 2 Wn for k 2 ¹1; : : : ; #Pº such that
P D ¹wkv

1
k

j k 2 ¹1; : : : ; #Pºº, where wv1 WD wvvv : : : 2 † for w; v 2 Wn

in the natural manner. Take " 2 .0;1/ such that Œ� �3n D Œ��3n for any �; � 2 †

with ı.�; �/ < ", and choose N 2 N so that distı.�mn.!/;P/ < " for any m � N .
Then for each m � N , ı.�mn.!/; wkm

v1
km
/ < " for some km 2 ¹1; : : : ; #Pº, hence

Œ�mn.!/�3n D Œwkm
v1

km
�3n, and it turns out that vkm

D vkmC1
for m � N . Thus

�Nn.!/ D wkN
v1

kN
2 P and x D FŒ!�Nn

.�.�Nn.!/// 2 V�.
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Proof of Theorem 3.4. Let x 2 K n S�.G; h/, so that x 62 V�, and let ! 2 ��1.x/.
Then lim supm!1 dist�.�.�m.!//;S.G; h/[V0/ > 0, and by the compactness ofK
there exist y 2 K n .S.G; h/ [ V0/ and a strictly increasing sequence ¹mkºk2N � N
such that limk!1 �.�.�mk .!//; y/ D 0. By Lemma 3.5 we can take an eigenfunc-
tion 'y of �� with eigenvalue � 2 .0;1/ such that 'y jV0

D 0, 'y.y/ > 0 andR
K '

2
yd� D 1. Let k 2 N be large enough so that 'y.�.�

mk .!/// � 'y.y/=2, and

define 'x;k 2 C.K/ by 'x;kjKŒ!�mk
WD r

�dH

Œ!�mk

'y ı F �1
Œ!�mk

and 'x;kjKnKŒ!�mk
WD 0

(recall 'y jV0
D 0). Then

R
K '

2
x;k
d� D 1, and (2.3) and (2.4) easily imply that 'x;k is

an eigenfunction of �� with eigenvalue �=rdH C1

Œ!�mk

. Now since limk!1 �=r
dH C1

Œ!�mk

D

1 and
'x;k.x/

2

.�=r
dH C1

Œ!�mk

/ds=2
D
'y.�.�

mk .!///2

�ds=2
�
'y.y/

2

4�ds=2
> 0;

the limit limt#0 t
ds=2pt .x; x/ does not exist by Lemma 2.10.

For the proof of the second assertion let x 2 S�.G; h/ n V� and ! 2 ��1.x/. By
Lemma 3.7 we have lim supm!1 dist�.�.�m.!//; V0/ > 0, which together with the
compactness of K yields y 2 K n V0 such that lim infm!1 �.�.�m.!//; y/ D 0.
Then y 2 .S.G; h/ [ V0/ n V0 D S.G; h/ n V0 by x 2 S�.G; h/, and the second
assertion follows since the non-existence of the limit limt#0 t

ds=2pt .y; y/ implies
that of the limit limt#0 t

ds=2pt .x; x/ by virtue of Lemma 3.6.

4 The case of affine nested fractals

In this section, we recall the definition of affine nested fractals and show that Theorem
3.4 is applicable to them. Throughout this section, we follow the same framework and
notation as in the previous section, and furthermore we assume the following:

d 2 N, K is a compact subset of Rd , and Fi D fi jK for
some contractive similitude fi on Rd for each i 2 S .

(4.1)

Recall that f W Rd ! Rd is called a contractive similitude on Rd if and only if there
exist ˛ 2 .0; 1/, U 2 O.d/ and b 2 Rd such that f .x/ D ˛Ux C b for any x 2 Rd .
According to [18, Theorem 1.2.3], any finite family of contractive similitudes on Rd

actually gives rise to a self-similar structure satisfying (4.1) by taking the associated
self-similar set.

Notation. For x; y 2 Rd with x 6D y, let gxy W Rd ! Rd denote the reflection in
the hyperplane Hxy WD ¹´ 2 Rd j j´ � xj D j´ � yjº.

First we prove that Theorem 3.4 is applicable if #V0 � 3 and gxy jK 2 G for any
x; y 2 V0 with x 6D y, following [18, Proof of Theorem 4.4.10]; see Theorem 4.3
below. Later we will see that affine nested fractals with #V0 � 3 satisfy this condition.

Lemma 4.1. Assume that gxy.V0/ D V0 for any x; y 2 V0 with x 6D y, and define

G0 WD ¹gx1y1
gx2y2

: : : gxnyn
j n 2 N, xi ; yi 2 V0, xi 6D yi , i 2 ¹1; : : : ; nºº; (4.2)
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G1 WD ¹gx1y1
gx2y2

: : : gx2ny2n
j n 2 N, xi ; yi 2 V0, xi 6D yi , i 2 ¹1; : : : ; 2nºº:

(4.3)

Then for n 2 N and xi ; yi 2 V0 with xi 6D yi , i 2 ¹1; : : : ; nº, gx1y1
gx2y2

: : : gxnyn
2

G0 n G1 if and only if n is odd. Moreover, G0 3 g 7! gjV0
is injective and #G0 �

.#V0/Š.

Proof. Without loss of generality assume
P

p2V0
p D 0Rd . Let g 2 G0 and choose

n 2 N and xi ; yi 2 V0 with xi 6D yi so that g D gx1y1
gx2y2

: : : gxnyn
. Then

g 2 O.d/ by g.V0/ D V0, and we have detg D .�1/n, from which the first assertion
is immediate.

Next let H0 WD ¹
P

p2V0
app j .ap/p2V0

2 RV0º, which is a linear subspace of
Rd . Since each g 2 G0 is the identity on the orthogonal complement of H0, G0 3

g 7! gjV0
is injective with gjV0

W V0 ! V0 bijective and hence #G0 � .#V0/Š.

Proposition 4.2. Assume that gxy.V0/ D V0 for any x; y 2 V0 with x 6D y, and
define

S WD

²
x 2 K

ˇ̌̌̌
gx1y1

gx2y2
: : : gx2n�1y2n�1

.x/ D x for some n 2 N
and xi ; yi 2 V0 with xi 6D yi , i 2 ¹1; 2; : : : ; 2n � 1º

³
: (4.4)

Then we have the following statements (recall that S� is given by (3.1) with Z D S).
(1) S is closed in K and intK S D ;. If #V0 � 3 then V0 � S and V� � S�.
(2) If � is a �-ergodic finite Borel measure on † and satisfies � ı ��1.K n S/ > 0,
then � ı ��1.S�/ D 0.

Proof. (1) Without loss of generality assume
P

p2V0
p D 0Rd , and let HK be the

linear subspace of Rd generated by K. Then for any g 2 G0 n G1, gjHK
is a linear

isometry of HK with determinant �1 by Lemma 4.1, and therefore intK¹x 2 K j

g.x/ D xº D ; by virtue of the second assertion of [18, Lemma 4.4.5-(3)], which
is in fact valid without assuming g.K/ D K. Now since S D

S
g2G0nG1

¹x 2 K j

g.x/ D xº and #G0 < 1 by Lemma 4.1, S is closed in K and intK S D ;. If
#V0 � 3, then gxygy´g´x.x/ D x for any distinct x; y; ´ 2 V0 and hence V0 � S,
which easily implies V� � S�.
(2) Since S is closed in K, this is a special case of Proposition 3.2.

Now a simple application of Theorem 3.4 yields the following theorem.

Theorem 4.3. Assume #V0 � 3 and that gxy jK 2 G for any x; y 2 V0 with x 6D y.
Then the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K n S�. If in addition
the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 S n V0, then neither does it
for any x 2 K n V�.

Proof. Set G1jK WD ¹gjK j g 2 G1º and let h 2 G0 n G1. Then by the as-
sumption and Lemma 4.1, G1jK is a finite subgroup of G, hjK 2 G n G1jK and
K 6D S D

S
g2G0nG1

¹x 2 K j g.x/ D xº D S.G1jK ; hjK/ � V0, whence
S� D S�.G1jK ; hjK/. Moreover, gy´gx´.x/ D y and gy´gx´ 2 G1 for any distinct
x; y; ´ 2 V0 and therefore ¹g.q/ j g 2 G1jKº D V0 for q 2 V0. Now the assertions
follow from Theorem 3.4.
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Fig. 3 Some examples of affine nested fractals. From the left, snowflake, the Vicsek set, and some modified
Sierpinski gaskets.

Next we recall the definition of affine nested fractals and apply Theorem 4.3 to
them.

Definition 4.4. (1) A homeomorphism g W K ! K is called a symmetry of L if and
only if, for any m 2 N [ ¹0º, there exists an injective map g.m/ W Wm ! Wm such
that g.Fw.V0// D Fg.m/.w/.V0/ for any w 2 Wm.
(2) We set Gs WD ¹g j g is a symmetry of L, g D f jK for some isometry f of Rd º.
(3) L is called an affine nested fractal if and only if it is post-critically finite, K is
connected and gxy jK 2 Gs for any x; y 2 V0 with x 6D y.
(4) We call a real matrix L D .Lpq/p;q2V0

Gs-invariant if and only if Lpq D

Lg.p/g.q/ for any p; q 2 V0 and g 2 Gs . Also a D .ai /i2S 2 .0;1/S is called
Gs-invariant if and only if ai D aj for any i; j 2 S satisfying g.Fi .V0// D Fj .V0/

for some g 2 Gs .

By [18, Propositions 3.8.7 and 3.8.9], if L is an affine nested fractal, then L D

.Lpq/p;q2V0
is Gs-invariant if and only if Lpq D Lp0q0 whenever jp� qj D jp0 � q0j.

Theorem 4.5. Assume that L D .K; S; ¹Fi ºi2S / is an affine nested fractal with
#V0 � 3 and that both D D .Dpq/p;q2V0

and r D .ri /i2S are Gs-invariant. Further
assume that

#.Fi .V0/ \ Fj .V0// � 1 for any i; j 2 S with i 6D j : (4.5)

Then the limit limt#0 t
ds=2pt .x; x/ does not exist for any x 2 K n S�. If in addition

the limit limt#0 t
ds=2pt .x; x/ does not exist for any x 2 S n V0, then neither does it

for any x 2 K n V�.

Proof. In view of Theorem 4.3, it suffices to show Gs � G. Let m 2 N [ ¹0º and
suppose � ı g.Kw/ D �.Kw/ for any w 2 Wm and any g 2 Gs . Let i 2 S , w 2 Wm

and g 2 Gs . Since g is a symmetry of L, g.Fi .V0// D Fj .V0/ for some j 2 S , and
by [18, Proposition 3.8.20] there exists gi 2 Gs such that g ı Fi D Fj ı gi . Then
�.g.Kiw// D � ı Fj .gi .Kw// D r

dH

j �.gi .Kw// D r
dH

i �.Kw/ D r
dH

i r
dH
w D

�.Kiw/. Thus for any g 2 Gs , � ı g.Kw/ D �.Kw/ for any w 2 W� and hence
� ı g D �, which together with [18, Corollary 3.8.21] implies that Gs � G.



On-diagonal oscillation of heat kernels on p.c.f. fractals 15

Remark 4.6. (1) The following fact is known for the existence of Gs-invariant har-
monic structures (see [18, Section 3.8] and references therein for details):

If L is an affine nested fractal and satisfies (4.5), then for each Gs-invariant
r 2 .0;1/S , there exist a unique � 2 .0;1/ and a unique (up to constant
multiples) Gs-invariant real symmetric matrix D D .Dpq/p;q2V0

satisfying
.D1/; .D2/ such that .D; �r/ is a harmonic structure on L.

(2) It is quite unclear whether the assumption (4.5) can be removed from Theorem
4.5 (or more specifically, from [18, Proposition 3.8.20]; see the previous proof and
[18, Proof of Corollary 3.8.21]), although (4.5) should be regarded as a technical
assumption to avoid nonessential difficulties, as noted in [1, Remark 5.25-2.(c)] and
[18, p. 118].
(3) The non-existence of the limit limt#0 t

ds=2pt .x; x/ may or may not occur when
#V0 D 2. Of course this limit exists for any x in the case [18, Example 3.1.4] of
the unit interval Œ0; 1� with its usual Dirichlet form. On the other hand, Example 4.7
below presents an affine nested fractal with #V0 D 2 to which Theorem 3.4 applies.

Example 4.7. Following [18, Example 4.4.9], let S WD ¹1; 2; 3; 4º and define fi W

C ! C for i 2 S by f1.´/ WD
1
2
.´C 1/, f2.´/ WD

1
2
.´ � 1/, f3.´/ WD

p
�1
4
.´C 1/

and f4.´/ WD

p
�1
4
.´ � 1/. Let K be the self-similar set associated with ¹fi ºi2S , i.e.

the unique non-empty compact subset of C Š R2 that satisfies K D
S

i2S fi .K/,
and set Fi WD fi jK , i 2 S . Then L D .K; S; ¹Fi ºi2S / is a self-similar structure, and
we have P D ¹11; 21º and V0 D ¹�1; 1º. Defining g; h W C ! C by g.´/ WD �´

and h.´/ WD ´, we easily see that gjK ; hjK 2 Gs , and thus L is an affine nested
fractal.

Let D D .Dpq/p;q2V0
WD

�
�1 1
1 �1

�
, r 2 .0; 1/ and r D .ri /i2S WD

�
1
2
; 1

2
; r; r

�
.

Then .D; r/ is clearly a regular harmonic structure on L, and similarly to the proof of
Theorem 4.5 we can verify gjK ; hjK 2 G. Now since hjK 6D idK , S.¹idKº; hjK/ D

¹x 2 K j h.x/ D xº 6D K and h.q/ D q for q 2 V0, Theorem 3.4 implies that the
limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K n S�.¹idKº; hjK/.

5 Examples

In this section, we apply Theorems 3.4 and 4.5 to basic examples. Note that by [18,
Theorem 1.6.2], if L D .K; S; ¹Fi ºi2S / is a self-similar structure, then K is con-
nected if and only if any i; j 2 S admit n 2 N and ¹ikºn

kD0
� S with i0 D i

and in D j such that Kik�1
\ Kik 6D ; for any k 2 ¹1; : : : ; nº. Recall that, given

a post-critically finite self-similar structure L D .K; S; ¹Fi ºi2S / with K connected
and a regular harmonic structure .D; r D .ri /i2S / on L, we always equip K with the
self-similar measure � on K with weight .rdH

i /i2S , where dH 2 .0;1/ is such thatP
i2S r

dH

i D 1.
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ttt

t

Fig. 4 Sierpinski gaskets. From the left, two-dimensional level-l Sierpinski gasket (l D 2; 3; 4) and
three-dimensional level-2 Sierpinski gasket.

5.1 Sierpinski gaskets

Example 5.1 (Sierpinski gaskets). Let d; l 2 N, d � 2, l � 2, and let ¹qkºd
kD0

�

Rd be the set of the vertices of a regular d -dimensional simplex. Further let S WD

¹.ik/
d
kD1

2 .N [ ¹0º/d j
Pd

kD1 ik � l � 1º, and for each i D .ik/
d
kD1

2 S we set
qi WD q0C

Pd
kD1.ik=l/.qk �q0/ and define fi W Rd ! Rd by fi .x/ WD qi Cl

�1.x�

q0/. Let K be the self-similar set associated with ¹fi ºi2S and set Fi WD fi jK . Then
L D .K; S; ¹Fi ºi2S / is a self-similar structure, which is called the d -dimensional
level-l Sierpinski gasket (see Fig. 4 below). This is an affine nested fractal satisfying
(4.5), and we have P D ¹i 1

k
j k 2 ¹0; 1; : : : ; dºº and V0 D ¹qk j k 2 ¹0; 1; : : : ; dºº,

where ik WD ..l�1/1¹kº.j //
d
j D1 2 S . Moreover, Gs D ¹gjK j g 2 G0º (recall (4.2)).

Define D D .Dpq/p;q2V0
by Dpp WD �d and Dpq WD 1 for p; q 2 V0, p 6D q.

Note that any Gs-invariant real symmetric matrix satisfying .D1/; .D2/ is a constant
multiple of D. By the symmetry of L and D, there exists a unique r 2 .0;1/ such
that .D; r D .ri /i2S / with ri WD r is a harmonic structure on L. Moreover, [18,
Corollary 3.1.9] yields r < 1, so that .D; r/ is a regular harmonic structure on L.

The d -dimensional level-2 Sierpinski gasket (i.e. the case of l D 2) is also re-
ferred to as the d -dimensional standard Sierpinski gasket, for which we can easily
verify that r D .d C 1/=.d C 3/ and hence that ds D 2 logdC3.d C 1/. Unfortu-
nately, however, it seems impossible to calculate the value of r explicitly for a general
d -dimensional level-l Sierpinski gasket.

For this example, the assumptions of Theorem 4.5 are clearly satisfied and hence
the non-existence of the limit limt#0 t

ds=2pt .x; x/ is assured for any x 2 K n S�. In
fact, since the d -dimensional level-l Sierpinski gasket possesses a quite large group
of symmetries, we can conclude a slightly stronger result as follows.

Theorem 5.2. Let L D .K; S; ¹Fi ºi2S / be the d -dimensional level-l Sierpinski gas-
ket with d � 2, l � 2 and let .D; r/ be the harmonic structure on L as in Example
5.1. Define a closed subset OS of K by

OS WD
\

I�¹0;:::;dº; #ID3

[
i;j 2I; i 6Dj

¹x 2 K j gqi qj
.x/ D xº: (5.1)

Then the limit limt#0 t
ds=2pt .x; x/ does not exist for any x 2 K n OS� (recall that OS�

is given by (3.1) with Z D OS). If in addition the limit limt#0 t
ds=2pt .x; x/ does not

exist for any x 2 OS n V0, then neither does it for any x 2 K n V�.
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Fig. 5 N -polygasket (N D 5; 6; 7; 9). From the left, pentagasket (N D 5), hexagasket (N D 6),
heptagasket (N D 7) and nonagasket (N D 9).

Proof. For each I � ¹0; : : : ; dº with #I D 3, we define hI WD gqi qj
jK and

GI WD ¹idK ; gqi qk
gqi qj

jK ; gqi qj
gqi qk

jKº, where I D ¹i; j; kº, i < j < k, so
that GI is a subgroup of G and hI 2 G n GI . Theorem 3.4 implies that the limit
limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K n S�.GI ; hI /, which yields the
first assertion sinceT

I�¹0;:::;dº; #ID3 S�.GI ; hI / D
�T

I�¹0;:::;dº; #ID3 S.GI ; hI /
�

�
D OS�

by the compactness of S.GI ; hI /. Similarly to the second paragraph of the proof of
Theorem 3.4, the second assertion follows from Lemmas 3.6 and 3.7.

Note that OS � V� if and only if l D 2; indeed, if l � 3 then by setting i WD

.1Œ1;l/.k//
d
kD1

2 S we have �.i1/ D q0 C .l �1/�1
Pmin¹l�1;dº

kD1
.qk �q0/ 2 OS nV�,

whereas we easily see OS � V� when l D 2. This fact will be used in the next section
to show that the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K when l D 2.

5.2 Polygaskets

Example 5.3 (N -polygasket). Let N 2 N satisfy N � 3 and N=4 62 N. Let S WD

¹0; 1; : : : ; N � 1º, and for each i 2 S we set qi WD e2�.i=N /
p

�1 2 C Š R2 and
define fi W C ! C by fi .´/ WD qi C ˛N .´ � qi /, where

˛N WD

´
1 � .1C 2 sin �

2N
/�1 if N is odd;

1 � .1C sin �
N
/�1 if N is even:

(5.2)

The self-similar structure L D .K; S; ¹Fi ºi2S /, withK the self-similar set associated
with ¹fi ºi2S and Fi WD fi jK , is called theN -polygasket. The 3-polygasket is nothing
but the (two-dimensional standard) Sierpinski gasket, and theN -polygasket forN D

5; 6; 7; 9 (Fig. 5) is called the pentagasket, hexagasket, heptagasket and nonagasket,
respectively. Again L is an affine nested fractal satisfying (4.5), and it holds that
P D ¹i1 j i 2 Sº and V0 D ¹qi j i 2 Sº. Moreover, Gs D ¹gjK j g 2 G0º.

Remark 5.4. The N -polygasket is suitably defined also for N 2 N with N=4 2 N,
but then it satisfies #V0 D 1, which is why we have excluded this case in this paper.

In fact, Example 5.3 is a special case of the following example adopted from [5].
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Example 5.5 (.N; l/-polygasket). Let N; l 2 N, N � 3, l < N=2 and set S WD

¹0; 1; : : : ; N�1º. For k 2 Z, let Œk� denote the unique i 2 S such that .k�i/=N 2 Z.
Define an equivalence relation � on † D SN by saying ! � � if and only if either

¹!; �º D ¹wiŒi C l �1; wŒi C 1�Œi C 1 � l �1º for some .w; i/ 2 W� � S (5.3)

or ! D � . Let K WD †= � be equipped with the quotient topology and let � W † !

K be the quotient map. For i 2 S , since i! � i� whenever !; � 2 † and ! � � ,
we can define a continuous injective map Fi W K ! K by Fi .�.!// WD �.i!/,
! 2 †, so that Fi ı � D � ı �i . We further define P and V0 as in Definition 2.3.
Then P D ¹i1 j i 2 Sº, Kw \ Kv D Fw.V0/ \ Fv.V0/ for any w; v 2 W�

with †w \ †v D ;, and ��1.Kw n Fw.V0// D †w n �w.P/ for any w 2 W�. By
using these facts, we easily see that K is a compact metrizable topological space and
hence that L WD .K; S; ¹Fi ºi2S / is a post-critically finite self-similar structure with
K connected. We call L the .N; l/-polygasket. Let qi WD �.i1/ for i 2 S , so that
V0 D ¹qi j i 2 Sº.

For ! D .!m/m2N 2 †, define !1 ; !� 2 † by !1 WD .Œ!m C 1�/m2N and
!� WD .Œ�!m�/m2N. Then !1 � �1 and !� � �� for any !; � 2 † with ! � � ,
and therefore we can define continuous maps g; h W K ! K by g.�.!// WD �.!1/

and h.�.!// WD �.!�/, ! 2 †. Clearly g.V0/ D h.V0/ D V0 and gN D h2 D

ghgh D idK , and hence OG WD ¹idK ; g; : : : ; g
N �1; h; hg; : : : ; hgN �1º is a subgroup

of the group of symmetries of L which is isomorphic to the dihedral group of order
2N (recall Definition 4.4-(1)). We setG WD ¹idK ; g; : : : ; g

N �1º, which is a subgroup
of OG.

A simple calculation similar to [23, �4.3] immediately shows the existence of a
unique r 2 .0;1/ and a unique (up to constant multiples) real symmetric matrix
D D .Dpq/p;q2V0

with .D1/; .D2/ and Dg.p/g.q/ D Dh.p/h.q/ D Dpq , p; q 2 V0,
such that .D; r D .ri /i2S / with ri WD r is a harmonic structure on L. In fact,

r D
2N

N C 2l.N � 2l/C
p
.N � 2l.N � 2l//2 C 8l2N

< 1 (5.4)

and thus .D; r/ is a regular harmonic structure on L. Then we also have OG � G.

Theorem 3.4 clearly applies to this example to yield the non-existence of the
limit limt#0 t

ds=2pt .x; x/ for any x 2 K n S�.G; h/. We remark that S.G; h/ � V�

if and only if N is odd, which will be used in the next section to show that the limit
limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K when N is odd.
Note that for N 2 N with N � 3 and N=4 62 N, the N -polygasket is nothing but

the .N; dN=4e/-polygasket, where dae WD min¹n 2 Z j n � aº, and that we have
Gs D OG, S D S.G; h/ and S� D S�.G; h/ in this case.

6 Further results for Sierpinski gaskets and polygaskets

The purpose of this section is to prove the following theorem.
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Theorem 6.1. Let L D .K; S; ¹Fi ºi2S / be either the d -dimensional level-l Sierpin-
ski gasket with d � 2, l � 2 in Example 5.1 or the .N; l/-polygasket with N � 3,
l < N=2 in Example 5.5. Also let .D; r/ be the harmonic structure on L described
there. Then the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 V�.

Corollary 6.2. Let L D .K; S; ¹Fi ºi2S / be either the d -dimensional standard Sier-
pinski gasket with d � 2 in Example 5.1 or the .N; l/-polygasket in Example 5.5 with
N � 3 odd and l < N=2. Also let .D; r/ be the harmonic structure on L described
there. Then the limit limt#0 t

ds=2pt .x; x/ does not exist for any x 2 K.

Proof. This is immediate from Theorems 3.4, 5.2 and 6.1 since OS � V� for the d -
dimensional standard Sierpinski gasket and S.G; h/ � V� for the .N; l/-polygasket
with N odd, where OS is given by (5.1) and G and h are as in Example 5.5.

The rest of this section is devoted to the proof of Theorem 6.1. First we prove the
following lemma, which reduces the proof of Theorem 6.1 to the case of x 2 V0.

Lemma 6.3. Under the same framework and notation as in Section 3, let q 2 V0 and
suppose ¹g.q/ j g 2 Gº D V0 and that ri D r for any i 2 S for some r 2 .0; 1/.
Then there exist c9; c10 2 .0;1/ such that for any m 2 N [ ¹0º, any x 2 Vm and
any t 2 .0; 1�, with nx;m WD #¹w 2 Wm j x 2 Kwº,ˇ̌
nx;m.r

.dH C1/mt /ds=2pr.dH C1/mt .x; x/ � tds=2pt .q; q/
ˇ̌

� c9 exp
�
�c10t

�1=dH
�
:

(6.1)

Proof. Let m 2 N [ ¹0º, x 2 Vm and set Wm;x WD ¹w 2 Wm j x 2 Kwº. We also set
U x

w WD .Kw nFw.V0//[¹xº for w 2 Wm;x and U x WD
S

w2Wm;x
U x

w , which is open
inK. For each w 2 Wm;x , x 2 Kw \Vm D Fw.V0/, and hence by ¹g.q/ j g 2 Gº D

V0 we can choose gw 2 G so that x D Fw.gw.q//. Further let U WD .K n V0/[ ¹qº.
We claim that for v 2 Wm;x and for any .t; y; ´/ 2 .0;1/ �K �K,

pU

t=r.dH C1/m.y; ´/ D rdH m
X

w2Wm;x

pU x

t .Fv ı gv.y/; Fw ı gw.´//; (6.2)

which together with (2.8), Lemmas 2.7 and 2.8 easily yields the assertion. Note here
that nx;m � #��1.x/ � #C � #S#P < 1 by [18, Proof of Lemma 4.2.3] and that
R.Fw.y/; Fw.´// � c8rwR.y; ´/ for anyw 2 W� and y; ´ 2 K for some c8 2 .0; 1�

by [19, Theorem A.1]. Thus it remains to show (6.2).
For each bijective map � W Wm;x ! Wm;x , we define R� W U x ! U x by

R� jU x
w

WD F�.w/ ıg�.w/ ıg�1
w ıF �1

w jU x
w

. Then R� is a homeomorphism with R�1
� D

R��1 , and �jU x ıR� D �jU x since ri D r for i 2 S . Moreover, regarding FU x as a
linear subspace of C.U x/, we have u ıR� 2 FU x and E.u ıR� ; u ıR� / D E.u; u/
for any u 2 FU x by (2.3), (2.4) and ri D r , i 2 S . It easily follows from these facts
that

T U x

t .u ıR� / D .T U x

t u/ ıR� ; t 2 .0;1/; u 2 L2.U x ; �jU x /: (6.3)

On the other hand, for a Borel mesurable function u W U ! R we define a Borel
measurable function �xu W U x ! R by �xujU x

w
WD uıg�1

w ıF �1
w jU x

w
,w 2 Wm;x . Then
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U x .�xu/

2d� D nx;mr
dH m

R
U
u2d�, hence �x defines an injective linear operator

�x W L2.U; �jU / ! L2.U x ; �jU x /, and furthermore �xu 2 FU x and E.�xu; �xu/ D

nx;mr
�mE.u; u/ for any u 2 FU by (2.3) and (2.4). Based on these facts and (6.3),

we can easily verify that for any t 2 .0;1/,

T U x

t �x
�
L2.U; �jU /

�
� �x.FU /; ��1

x T U x

t �x D T U

t=r.dH C1/m ; (6.4)

from which (6.2) immediately follows.

Remark 6.4. In the situation of Lemma 6.3, there exist c11 2 .0;1/ and a continuous
log.r�dH �1/-periodic function G W R ! .0;1/ such that for any x 2 V�,

pt .x; x/ D n�1
x t�ds=2G.� log t /CO

�
exp

�
�c11r

2mx=ds t�1=dH
��

as t # 0; (6.5)

where mx WD min¹m 2 N [ ¹0º j x 2 Vmº and nx WD #¹w 2 Wmx
j x 2 Kwº.

Indeed, it suffices to verify (6.5) for x D q in view of (6.1). We easily see from
(6.1) and (2.6) that, for each x 2 V�, nx D nx;m.D #¹w 2 Wm j x 2 Kwº/ for any
m 2 N [ ¹0º satisfying x 2 Vm. In particular, nq;1 D nq D 1, and (6.1) with m D 1

and x D q immediately shows (6.5) for x D q, similarly to [15, Theorem 5.3].
The assumptions of Lemma 6.3 are clearly satisfied for the d -dimensional level-l

Sierpinski gasket and for the .N; l/-polygasket. Thus it suffices to prove the non-
existence of the limit limt#0 t

ds=2pt .x; x/ for x 2 V0. We first treat the case of the
d -dimensional level-l Sierpinski gasket. The proof for the .N; l/-polygasket will be
provided later.

Lemma 6.5. Let L D .K; S; ¹Fi ºi2S / be the d -dimensional level-l Sierpinski gasket
with d � 2, l � 2 and let .D; r/ be the harmonic structure on L as in Example
5.1. Then there exists an eigenfunction ' of � such that '.q0/ D 1 > j'.q1/j and
'.qk/ D '.q1/ for any k 2 ¹2; : : : ; dº (recall V0 D ¹qk j k 2 ¹0; 1; : : : ; dºº).

Proof. Let G be the subgroup of G generated by ¹gxy jK j x; y 2 V0 n ¹q0º; x 6D yº,
which is finite by Lemma 4.1, and let RG WD .#G/�1

P
g2G Tg , so that RG.F/ �

F , E.RGu; v/ D E.u;RGv/ for u; v 2 F and
R

K
.RGu/vd� D

R
K
uRGvd� for

u; v 2 L2.K;�/. Then we easily see that RGu 2 DŒ�� and �RGu D RG�u for
any u 2 DŒ��, and therefore there exist ¹'nºn2N � RG.F/ and ¹ nºn2N � .TidK

�

RG/.F/ such that ¹'nºn2N [¹ nºn2N is a complete orthonormal system ofL2.K;�/

consisting of eigenfunctions of �. Note that then for any n 2 N, 'n.qk/ D 'n.q1/

for k 2 ¹2; : : : ; dº and  n.q0/ D 0.
Suppose that j'n.q0/j � j'n.q1/j for any n 2 N. Let t 2 .0;1/, and for n 2 N

let �n; �
0
n 2 Œ0;1/ be such that ��'n D �n'n and �� n D �0

n n. Then since
pt .g.x/; g.y// D pt .x; y/ for g 2 G and x; y 2 K, from (2.12) we get

pt .q0; q0/ D
X
n2N

e��nt'n.q0/
2

�
X
n2N

e��nt'n.q1/
2

�
X
n2N

�
e��nt'n.q1/

2
C e��0

nt n.q1/
2
�

D pt .q1; q1/ D pt .q0; q0/;

which means that  n.q1/ D 0 for any n 2 N. On the other hand, choose u 2 F
so that u.q1/ D 1 and u.qk/ D 0 for k 2 ¹2; : : : ; dº, and set v WD u � RGu 2
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.TidK
� RG/.F/. Then v.q1/ > 0, but setting vn WD

Pn
kD1

�R
K
v kd�

�
 k for

n 2 N, we have kv � vnk2
1 � .diamR K/E.v � vn; v � vn/ ! 0 as n ! 1 by [20,

(3.1)] and hence v.q1/ D 0. This contradiction shows that j'j .q0/j > j'j .q1/j for
some j 2 N. Now the function ' WD .'j .q0//

�1'j has the desired properties.

Proof of Theorem 6.1 for the d -dimensional level-l Sierpinski gasket. We follow the
same notation as in Example 5.1 during this proof. It suffices to show the assertion
for x D q0 by virtue of Lemma 6.3. We set

A WD ¹u 2 C.K/ j u.q0/ D 1 > ju.q1/j; u.qk/ D u.q1/ for k 2 ¹2; : : : ; dºº;

(6.6)
and for u 2 A we define ˆu 2 C.K/ by

ˆujKi
WD u.q1/

Pd
kD1 iku ı F �1

i ; i D .ik/
d
kD1 2 S; (6.7)

so that ˆu 2 A and ˆ W A ! A. Then ˆ.F \ A/ � F \ A by (2.3). Furthermore
for u 2 A we can easily verify thatZ

K

.ˆnu/2d� � cur
dH n for any n 2 N; (6.8)

where cu WD
R

K u
2d�

Q
n2N[¹0º

�
1C .#S � 1/u.q1/

2ln�
2 .0;1/.

Now for the eigenfunction ' 2 A of � as in Lemma 6.5, let � 2 .0;1/ be such
that ��' D �' and define 'n WD

�R
K
.ˆn'/2d�

��1=2
ˆn' for n 2 N. Then for each

n 2 N,
R

K '
2
nd� D 1, 'n is an eigenfunction of �� with eigenvalue �=r .dH C1/n by

(2.4), and (6.8) yields

'n.q0/
2

.�=r .dH C1/n/ds=2
D

rdH n

�ds=2
R

K.ˆ
n'/2d�

�
1

c'�ds=2
> 0:

Therefore Lemma 2.10 implies that the limit limt#0 t
ds=2pt .q0; q0/ does not exist.

Lemma 6.6. Let L D .K; S; ¹Fi ºi2S / be the .N; l/-polygasket with N � 3, l <
N=2 and let .D; r/ be the harmonic structure on L as in Example 5.5. (Recall that
qi D �.i1/ for i 2 S and that V0 D ¹qi j i 2 Sº.)
(1) If N D 4l , then there exists an eigenfunction ' of � such that '.ql / D '.q3l / D

0 and '.q0/ D �'.q2l / D 1.
(2) If N 6D 4l , then there exists an eigenfunction ' of � such that '.q0/ D 1,
'.ql / D '.qN �l / 2 .�1; 1/ and '.q2l / D '.qN �2l / 2 .�1; 1/.

Proof. Let g; h W K ! K be the homeomorphisms defined in Example 5.5. Similaly
to the proof of Lemma 6.5, there exist ¹'nºn2N; ¹ nºn2N � F such that 'n ı h D 'n

and  n ıh D � n for any n 2 N and ¹'nºn2N [ ¹ nºn2N is a complete orthonormal
system of L2.K;�/ consisting of eigenfunctions of �. Then in the same way as
the second paragraph of the proof of Lemma 6.5, we have j'j .q0/j > j'j .ql /j and
 k.ql / 6D 0 for some j; k 2 N.
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(1) Since  k.q0/ D  k.q2l / D 0 and  k.q3l / D � k.ql / by  k ı h D � k , the
function ' WD . k.ql //

�1 k ı gl has the desired properties.
(2) Let  WD .'j .q0//

�1'j , so that  .q0/ D 1 > j .ql /j,  .ql / D  .qN �l / and
 .q2l / D  .qN �2l /. If N D 3l , then it suffices to set ' WD  since q2l D qN �l and
qN �2l D ql . Thus we may assume that N 6D 3l; 4l , so that ql ; qN �l ; q2l ; qN �2l are
distinct and N � 5. Define ' 2 C.K/ by, for each i 2 S D ¹0; 1; : : : ; N � 1º,

'jKi
WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

 ı g�i ı F �1
i if i D 0 or i D N=2;

 .ql / ı gl�i ı F �1
i if 0 < i < N=2 and i is odd;

 .ql / ı g�l�i ı F �1
i if 0 < i < N=2 and i is even;

 .ql / ı g�l�i ı F �1
i if i > N=2 and N � i is odd,

 .ql / ı gl�i ı F �1
i if i > N=2 and N � i is even:

(6.9)

Then '.q0/ D 1, '.ql / D '.qN �l / D '.q2l / D '.qN �2l / D  .ql /
2 2 Œ0; 1/ by

N=2 62 ¹l; N � l; 2l; N � 2lº, and ' is an eigenfunction of � by (2.3) and (2.4).

Proof of Theorem 6.1 for the .N; l/-polygasket. We will use the same notation as in
Example 5.5 during this proof. Again it suffices to show the assertion for x D q0

by virtue of Lemma 6.3. Similarly to (6.6) and (6.7), we define A � C.K/ and
ˆ W A ! A by, if N D 4l ,

A WD ¹u 2 C.K/ j u.q0/ D 1; u.ql / D u.q3l / D 0º;

ˆujKi
WD 1¹0º.i/u ı F �1

i ; i 2 S D ¹0; 1; : : : ; N � 1º;
(6.10)

and if N 6D 4l ,

A WD

²
u 2 C.K/

ˇ̌̌̌
u.q0/ D 1, u.ql / D u.qN �l / 2 .�1; 1/
and u.q2l / D u.qN �2l / 2 .�1; 1/

³
;

ˆujKi
WD

8̂̂̂<̂
ˆ̂:
u ı F �1

i if i D 0;

u.ql /u.q2l /
i�1u ı gl�i ı F �1

i if 0 < i < N=2;
u.ql /u.q2l /

N �i�1u ı g�l�i ı F �1
i if i > N=2;

u.q2l /
i�1u ı g�i ı F �1

i if i D N=2

(6.11)

for i 2 S D ¹0; 1; : : : ; N�1º. Then we can easily show the non-existence of the limit
limt#0 t

ds=2pt .q0; q0/ by applying Lemma 2.10 to 'n WD
�R

K.ˆ
n'/2d�

��1=2
ˆn',

where ' is the eigenfunction of� given in Lemma 6.6, in exactly the same way as in
the previous case of the d -dimensional level-l Sierpinski gasket.
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