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Heat kernel asymptotics for the measurable Riemannian
structure on the Sierpinski gasket
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Abstract For the measurable Riemannian structure on the Sierpinski gasket introduced by
Kigami, various short time asymptotics of the associated heat kernel are established, includ-
ing Varadhan’s asymptotic relation, some sharp one-dimensional asymptotics at vertices,
and a non-integer-dimensional on-diagonal behavior at almost every point. Moreover, it is
also proved that the asymptotic order of the eigenvalues of the corresponding Laplacian is
given by the Hausdorff and box-counting dimensions of the space.
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Figure 1 Sierpinski gasket Figure 2 Harmonic Sierpinski gasket

1 Introduction

Recently there have been attempts to develop a theory of “manifold-like” analysis and ge-
ometry on fractals. As a prototype of such a theory, based on Kusuoka’s construction in
[29] of “weak gradients” for Dirichlet forms on fractals, Kigami [22,25] has introduced a
measure-theoretic “Riemannian structure” on the Sierpinski gasket (Figure 1). He has fur-
ther proved in [25] that the associated heat kernel satisfies the two-sided Gaussian bound
in terms of the natural geodesic metric, unlike typical fractal diffusions treated e.g. in [5,
27,12,2,3] for whose transition densities (heat kernels) the two-sided sub-Gaussian bounds
hold. The purpose of this paper is to analyze this “Riemannian structure” on the Sierpinski
gasket more in detail. We are particularly interested in short time asymptotic behaviors of
the heat kernel, and our results include “manifold-like” ones as well as “fractal-like” ones.

Let us describe briefly our framework of the “Riemannian structure” on the Sierpinski
gasket. Let K be the Sierpinski gasket constructed from an equilateral triangle in R2 with
vertices q1; q2; q3, and set V0 WD ¹q1; q2; q3º. As studied in [1,23,34], a standard Dirichlet
form .E ;F/ is defined on K, where the domain F is in fact a dense subalgebra of C.K/.
By choosing h1; h2 2 F so that 2E.hi ; hj / D ıij and they are harmonic on K n V0, we
have a “harmonic map” ˆ W K ! R2 given by ˆ.x/ WD .h1.x/; h2.x//. ˆ is injective
by [22, Theorem 3.6] and hence a homeomorphism from K onto its image KH WD ˆ.K/,
which is called the harmonic Sierpinski gasket (Figure 2). Moreover,ˆ admits an associated
E-energy measure � on K, called the Kusuoka measure on the Sierpinski gasket after [29].

By [29, �1] and [22, �3 and �4] (see Proposition 2.15 and Theorem 2.16 below), we can
associate with the Dirichlet space .K;�; E;F/ a “one-dimensional tangent bundle with a
Riemannian metric (Riemannian structure)” onK inherited from R2 through the embedding
ˆ, where� plays the role of the “Riemannian volume measure”. The heat kernel p�.t; x; y/
of this Dirichlet space, which is the jointly continuous integral kernel of the associated
Markovian semigroup on L2.K;�/, is the main subject of our study.

Note that the “Riemannian structure” on K is different in several respects from usual
Riemannian structures on manifolds; the notion of the “tangent space TxK at x”, which is
a one-dimensional subspace of R2, makes sense only for �-a.e. x 2 K, and TxK depends
discontinuously on x 2 K. (In fact, the set of points where the tangent space cannot be
defined is dense in K; see [22, Theorem B.5-(1)].) Therefore the associated heat kernel
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p�.t; x; y/ is expected to behave differently from those on Riemannian manifolds, and this
is the case for the asymptotics of p�.t; x; x/ as t # 0, as described in Theorem 1.3 below.

Now we outline the main results of this paper. Following [25, Theorem 5.1], we define
the harmonic geodesic metric �H on K by

�H.x; y/ WD inf¹`.ˆ ı 
/ j 
 W Œ0; 1� ! K; 
 is continuous; 
.0/ D x; 
.1/ D yº (1.1)

for x; y 2 K, where `.ˆ ı 
/ is the length of ˆ ı 
 W Œ0; 1� ! R2 with respect to the
Euclidean metric. Then �H is a metric on K compatible with the original topology of K,
and the first main result of this paper is the following characterization of the metric �H.

Theorem 1.1. For any x; y 2 K,

�H.x; y/ D sup¹u.x/ � u.y/ j u 2 F ; jeruj � 1 �-a.e.º; (1.2)

where eru denotes the “gradient vector field” of u; see Theorem 2.17 below.

It is not difficult to prove the equality analogous to (1.2) for Riemannian manifolds,
whereas in the present case (1.2) is not straightforward and its proof, which is given in
Section 4, is an important step of this paper. By virtue of Theorem 1.1, the general results
of Sturm [35,36] and Ramı́rez [32] apply to the present case to yield the following off-
diagonal Gaussian behaviors of p�.t; x; y/ in terms of �H. For .r; x/ 2 .0;1/ �K we set
Br .x; �H/ WD ¹y 2 K j �H.x; y/ < rº.

Corollary 1.2. (1) There exist cL; cU 2 .0;1/ such that for any .t; x; y/ 2 .0;1/�K�K,

cL
exp

�
�
�H.x;y/2

cLt

�
�
�
Bp

t
.x; �H/

� � p�.t; x; y/ � cU

�
1C

�H.x;y/2

t

� log5 15
2 exp

�
�
�H.x;y/2

2t

�q
�
�
Bp

t
.x; �H/

�
�
�
Bp

t
.y; �H/

� : (1.3)

(2) For any x; y 2 K,

lim
t#0

2t logp�.t; x; y/ D ��H.x; y/
2: (1.4)

For the heat kernels on Riemannian manifolds, the asymptotic behavior of exactly the
same form as (1.4), called Varadhan’s asymptotic relation, is well-known and has been
obtained by Varadhan [38] (see also Norris [31]). Also the two-sided Gaussian heat kernel
bound like (1.3) is known to hold for Riemannian manifolds which are either compact or
complete with non-negative Ricci curvature; see [8,15,30,33,35,36] and references therein.

We remark that Kigami [25, Theorem 6.3] has already obtained a two-sided Gaussian
bound for p�.t; x; y/ similar to (1.3) where the upper bound involves exp

�
�
�H.x;y/2

Ct

�
with some constant C 2 .2;1/ instead of exp

�
�
�H.x;y/2

2t

�
. Here we can conclude a better

Gaussian upper bound as in (1.3) by virtue of Theorem 1.1 and Sturm’s results [35,36].
Note that Corollary 1.2 is in sharp contrast with the behaviors of the transition den-

sity p.t; x; y/ of the Brownian motion on the Sierpinski gasket K; p.t; x; y/ is nothing
but the heat kernel associated with the Dirichlet space .K; �; E;F/ where � is the log2 3-
dimensional Hausdorff measure on K with respect to the Euclidean metric, and by [5, The-
orem 1.5] we have the following sub-Gaussian bound

c1:1

tdf =dw
exp

�
�

�
jx � yjdw

c1:1t

� 1
dw�1

�
� p.t; x; y/ �

c1:2

tdf =dw
exp

�
�

�
jx � yjdw

c1:2t

� 1
dw�1

�
;
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where df WD log2 3 and dw WD log2 5 > 2. Furthermore by [28, Theorem 1.2-a)], for any

distinct x; y 2 K, the limit limt#0 t
1

dw�1 logp.t; x; y/ does not exist.
Corollary 1.2 concerns the off-diagonal Gaussian behaviors of p�.t; x; y/. On the other

hand, for its on-diagonal behaviors we will establish the following statements, which include
both “manifold-like” and “fractal-like” asymptotics.

Theorem 1.3. (1) For any x 2 V0 (recall V0 D ¹q1; q2; q3º), it holds that

p�.t; x; x/ D
1

p
2�t

�
2CO.t log5=3 3/

�
as t # 0: (1.5)

(2) There exists a constant d loc
S 2 .1; 2 log25=3 5� (note 2 log25=3 5 D 1:5181 : : :) such that

lim
t#0

2 logp�.t; x; x/
� log t

D d loc
S �-a.e. x 2 K: (1.6)

(3) dimH.K; �H/ D dimB.K; �H/ 2 Œd loc
S ; 2 log25=3 5�, where dimH and dimB denote Haus-

dorff and box-counting dimensions, respectively. Moreover, set dS WD dimH.K; �H/, let
¹�
�
n ºn2N be the eigenvalues of the Laplacian associated with .K;�; E;F/ and let N�.s/ WD

#¹n 2 N j �
�
n � sº and Z�.t/ WD

P
n2N e

�t�
�
n
�
D
R
K
p�.t; x; x/d�.x/

�
for s; t 2

.0;1/. Then there exist c1:3; c1:4 2 .0;1/ such that for any s 2 Œ1;1/ and any t 2 .0; 1�,

c1:3s
dS=2 � N�.s/ � c1:4s

dS=2 and c1:3t
�dS=2 � Z�.t/ � c1:4t

�dS=2: (1.7)

(1.5) is “manifold-like” and reflects our intuition on the picture of KH (Figure 2) that,
near ˆ.x/, KH looks very much like its “tangent line at ˆ.x/”. In fact, for each x 2 V�

(i.e. a vertex x of any level), we prove a more detailed one-dimensional asymptotic behavior
of p�.t; x; y/ when t 2 .0;1/ is small and y 2 K is close to x, as well as the existence
of the limit limr#0 �.Br .x; �H//=r 2 .0;1/. On the other hand, according to (1.6) and
(1.7), p� exhibits non-integer-dimensional behaviors at �-a.e. point in the short time limit,
thereby reflecting the fractal nature of the space.

Lastly let us give a few remarks on the framework. One may expect that the main results
of this paper can be generalized to the case of other self-similar fractals like ones in Figure
3, but such generalizations are not straightforward and the actual situation is quite subtle, as
suggested by the following facts.

First, our proof of Theorem 1.1 utilizes a complete knowledge about the structure of
geodesics due to [25, Section 5] (see Proposition 3.15 below), where the two-dimensionality
of the space has played an essential role. Therefore some additional task should be necessary
to verify Theorem 1.1 even in the (probably simplest) case of the d -dimensional (level-2)
Sierpinski gasket with d � 3, although most of our main results will be valid also for
them. Secondary, in another simple case, the case of the two-dimensional level-l Sierpinski
gasket with l � 3 (see Figure 3), we can show that the “Riemannian volume measure” is
not volume doubling with respect to the harmonic geodesic metric, based on the denseness
of vertices from which the space spreads away in three directions. Hence by [24, Theo-
rem 3.2.3], even the on-diagonal upper bound p�.t; x; x/ � cU=�

�
Bp

t
.x; �H/

�
is false

there, whereas Theorem 1.1 and part of Theorem 1.3 are still expected to be true. Finally,
for most other typical fractals, such as pentagasket and snowflake in Figure 3, non-constant
harmonic functions can be constant on non-empty open subsets and, as a consequence, har-
monic maps into finite dimensional spaces and their associated energy measures cannot be
used to introduce a “Riemannian structure”. Thus it is already a highly non-trivial problem
how we should introduce “Riemannian structures” on such fractals.
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Figure 3 From the left, three-dimensional (level-2) Sierpinski gasket, two-dimensional level-3 Sierpinski
gasket, pentagasket and snowflake.

In view of these observations, it seems reasonable for this present moment to content
ourselves with the case of the two-dimensional Sierpinski gasket only. We leave possible
extensions of our main results to other fractals for future studies.

The organization of this article is as follows. In Section 2, we collect basic facts concern-
ing the standard Dirichlet form and the measurable Riemannian structure on the Sierpinski
gasket. In Section 3 we briefly recall the results of [25] on the volume doubling property
of the Kusuoka measure and basics on the harmonic geodesic metric, with slight improve-
ments. Based on these preparations, we give the proofs of our main results in the subsequent
sections; Theorem 1.1 and consequently Corollary 1.2 are proved in Section 4, and (1), (2)
and (3) of Theorem 1.3 together with some more detailed results are treated respectively in
Sections 5, 6 and 7.

Notation. In this paper, we adopt the following notations and conventions.
(1) N D ¹1; 2; 3; : : : º, i.e. 0 62 N.
(2) The cardinality (the number of all the elements) of a set A is denoted by #A.
(3) We set sup ; WD 0 and inf ; WD 1. We write a _ b WD max¹a; bº, a ^ b WD min¹a; bº,
aC WD a _ 0 and a� WD �.a ^ 0/ for a; b 2 Œ�1;1�. We use the same notations also for
functions. All functions treated in this paper are assumed to be Œ�1;1�-valued.
(4) Let N 2 N. The Euclidean inner product and norm on RN are denoted by h�; �i and
j � j respectively. For 
 W Œa; b� ! RN continuous, where a; b 2 R, a � b, let `.
/ be its
length with respect to j � j. We set L.RN / WD ¹T j T W RN ! RN ; T is linearº, and for
T 2 L.RN / let detT be its determinant, and T � its adjoint and kT k its Hilbert-Schmidt
norm with respect to h�; �i.
(5) Let E be a topological space. The Borel � -field of E is denoted by B.E/. We set
C.E/ WD ¹f j f W E ! R; f is continuousº and kf k1 WD supx2E jf .x/j, f 2 C.E/.
(6) Let .E; �/ be a metric space. We set Br .x; �/ WD ¹y 2 E j �.x; y/ < rº for .r; x/ 2

.0;1/ � E and diam.A; �/ WD supx;y2A �.x; y/ for A � E. Also for f W E ! R we set
Lip� f WD supx;y2E;x 6Dy jf .x/ � f .y/j=�.x; y/.

2 Measurable Riemannian structure on the Sierpinski gasket

In this section, we briefly recall basic facts concerning the measurable Riemannian structure
on the Sierpinski gasket, including the definitions of the standard Dirichlet form (resistance
form) and the harmonic Sierpinski gasket, which is the geometric realization of the mea-
surable Riemannian structure. We follow mainly [25] for the presentation of this section,
but we sometimes refer to also [17,22,23,26,29] for related facts. See [37] for possible
generalizations to other finitely ramified fractals.
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Definition 2.1 (Sierpinski gasket). Let V0 D ¹q1; q2; q3º � R2 be the set of the three
vertices of an equilateral triangle, set S WD ¹1; 2; 3º, and for i 2 S define Fi W R2 ! R2
by Fi .x/ WD .x C qi /=2. The Sierpinski gasket (Figure 1) is defined as the self-similar set
associated with ¹Fi ºi2S , i.e. the unique non-empty compact subset K of R2 that satisfies
K D

S
i2S Fi .K/. We also define Vm for m 2 N inductively by Vm WD

S
i2S Fi .Vm�1/

and set V� WD
S
m2N Vm.

Note that Vm�1 � Vm for any m 2 N. K is always regarded as equipped with the
relative topology inherited from R2, and V� is dense in K in this topology. Hereafter we
always regard Fi for each i 2 S as a continuous map from K to itself.

Definition 2.2. (1) LetW0 WD ¹;º, where ; is an element called the empty word, letWm WD

Sm D ¹w1 : : : wm j wi 2 S for i 2 ¹1; : : : ; mºº for m 2 N and W� WD
S
m2N[¹0ºWm.

For w 2 W�, the unique m 2 N [ ¹0º with w 2 Wm is denoted by jwj and called the length
of w. Also for i 2 S and n 2 N [ ¹0º we write in WD i : : : i 2 Wn.
(2) We set † WD SN D ¹!1!2!3 : : : j !i 2 S for i 2 Nº, and define the shift map
� W † ! † by �.!1!2!3 : : : / WD !2!3!4 : : : . Also for i 2 S we define �i W † ! † by
�i .!1!2!3 : : : / WD i!1!2!3 : : : and set i1 WD i i i : : : 2 †. For ! D !1!2!3 : : : 2 †

and m 2 N [ ¹0º, we write Œ!�m WD !1 : : : !m 2 Wm.
(3) Forw D w1 : : : wm 2 W�, we set Fw WD Fw1 ı� � �ıFwm (F; WD idK),Kw WD Fw.K/,
�w WD �w1 ı � � � ı �wm (�; WD id†) and †w WD �w.†/.

Associated with the triple .K; S; ¹Fi ºi2S / is a natural projection � W † ! K given by
the following proposition, which is used to describe the topological structure of K.

Proposition 2.3. There exists a unique continuous surjective map � W † ! K such that
Fi ı � D � ı �i for any i 2 S , and it satisfies ¹�.!/º D

T
m2NKŒ!�m for any ! 2 †.

Moreover, #��1.x/ D 1 for x 2 K n V�, ��1.qi / D ¹i1º for i 2 S , and for m 2 N
and each x 2 Vm n Vm�1 there exist w 2 Wm�1 and i; j 2 S with i 6D j such that
��1.x/ D ¹wij1; wj i1º.

Recall the following basic fact ([23, Proposition 1.3.5-(2)]) which we will use below
without further notice: ifw; v 2 W� and†w\†v D ; thenKw\Kv D Fw.V0/\Fv.V0/.

As studied in [1,23,34], a standard Dirichlet form (or resistance form, strictly speaking)
.E ;F/ is defined on the Sierpinski gasket K as follows.

Definition 2.4. Letm 2 N[¹0º. We define a non-negative definite symmetric bilinear form
Em W RVm � RVm ! R on Vm by

Em.u; v/ WD
1

4
�
1

2

�5
3

�m X
x;y2Vm;x

m
�y

.u.x/ � u.y//.v.x/ � v.y//; (2.1)

where, for x; y 2 Vm, we write x m� y if and only if x; y 2 Fw.V0/ for some w 2 Wm and
x 6D y.

The usual definition of Em does not contain the factor 1=4 so that each edge in the
graph .Vm;

m
�/ has resistance .3=5/m. Here it has been added for simplicity of the subse-

quent arguments; see Definition 2.11. It is easily shown that, for any function u W K ! R,
¹Em.ujVm ; ujVm/ºm2N[¹0º is non-decreasing and hence has the limit in Œ0;1�. Then we
have the following theorem; see [23, Chapter 2] and [26, Part 1] for the definition and basic
properties of resistance forms.
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Theorem 2.5. Define F � C.K/ by F WD ¹u 2 C.K/ j limm!1 Em.ujVm ; ujVm/ < 1º

and E W F � F ! R by E.u; v/ WD limm!1 Em.ujVm ; vjVm/.2 R/ for u; v 2 F . Then
.E ;F/ is a resistance form onK whose resistance metricRE D RE .x; y/ W K�K ! Œ0;1/

is compatible with the original topology of K. Moreover, for any u; v 2 F ,

u ı Fi 2 F for any i 2 S and E.u; v/ D
5

3

X
i2S

E.u ı Fi ; v ı Fi /: (2.2)

.E;F/ is called the standard resistance form on the Sierpinski gasket. Furthermore [26,
Corollary 6.4, Theorems 9.4, 9.9 and 10.4], (2.2), E.1; 1/ D 0 and [24, Theorem A.4] imply
the following theorem. See [13, Section 1.1] for the notions of regular Dirichlet forms and
their strong locality, and see [13, Section 2.1] and [26, Definition 9.8] for the definition of
their associated capacity.

Theorem 2.6. Let � be a finite Borel measure onK with full support, i.e. such that �.U / > 0
for any non-empty open subset U of K. Then .E ;F/ is a strong local regular Dirichlet form
on L2.K; �/ whose associated capacity Cap� satisfies infx2K Cap�.¹xº/ > 0. Moreover,
its associated Markovian semigroup ¹T �t ºt2.0;1/ on L2.K; �/ admits a unique continuous
integral kernel p� , i.e. a continuous function p� D p�.t; x; y/ W .0;1/�K �K ! .0;1/

such that for each f 2 L2.K; �/ and t 2 .0;1/,

T �t f D

Z
K

p�.t; �; y/f .y/d�.y/ �-a.e. (2.3)

In the situation of Theorem 2.6, � is called the reference measure of the Dirichlet space
.K; �; E;F/, and p� is called the heat kernel associated with .K; �; E;F/; see [26, Theorem
10.4] for basic properties of p� .

Since we have a regular Dirichlet form .E;F/ with state space K, by [13, pp. 110–111]
we can define E-energy measures as in the following definition.

Definition 2.7. The E-energy measure of u 2 F is defined as the unique Borel measure
�hui on K such thatZ

K

fd�hui D 2E.uf; u/ � E.u2; f / for any f 2 F : (2.4)

We also define �hui to be the unique positive Borel measure on† that satisfies �hui.†w/ D

2.5=3/jwjE.u ı Fw; u ı Fw/ for any w 2 W�, which exists by (2.2) and the Kolmogorov
extension theorem. For u; v 2 F we set �hu;vi WD .�huCvi � �hu�vi/=4 and �hu;vi WD

.�huCvi � �hu�vi/=4, so that they are finite Borel signed measures on K and on † respec-
tively and are symmetric and bilinear in .u; v/ 2 F � F .

Let u 2 F . According to [6, Proof of Theorem I.7.1.1], the strong locality of .E;F/
implies that the image measure �hui ı u�1 on .R;B.R// is absolutely continuous with
respect to the Lebesgue measure on R. In particular, �hui.¹xº/ D 0 for any x 2 K. We also
easily see the following proposition by using (2.2) and (2.4). Note that �.A/ 2 B.K/ for
A 2 B.†/ by Proposition 2.3.

Proposition 2.8. �hu;vi D �hu;vi ı � and �hu;vi ı ��1 D �hu;vi for any u; v 2 F .

The definition of the measurable Riemannian structure on the Sierpinski gasket involves
certain harmonic functions. In the present setting, harmonic functions are formulated as
follows.
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Definition 2.9. (1) We define FU WD ¹u 2 F j ujKnU D 0º for each open subset U of K.
(2) Let F be a closed subset of K. Then h 2 F is called F -harmonic if and only if

E.h; h/ D inf
u2F;ujFDhjF

E.u; u/ or equivalently, E.h; u/ D 0; 8u 2 FKnF : (2.5)

We set HF WD ¹h 2 F j h is F -harmonicº, which is a linear subspace of F , and Hm WD

HVm ,m 2 N[¹0º. Note that for u 2 F , u 2 Hm if and only if E.u; u/ D Em.ujVm ; ujVm/,
which holds if and only if u ı Fw 2 H0 for any w 2 Wm by (2.2).

The following proposition easily follows from [26, Lemma 8.2].

Proposition 2.10. Let F be a non-empty closed subset of K.
(1) Let u 2 F . Then there exists a unique h 2 HF such that hjF D ujF .
(2) Let h 2 HF . Then minF h � h.x/ � maxF h for any x 2 K.

Now we define a “harmonic embedding” ˆ of K into R2, through which we will re-
gard K as a kind of “Riemannian submanifold in R2” to obtain its measurable Riemannian
structure. We also introduce a measure �which is the E-energy measure of the “embedding”
ˆ and will play the role of the “Riemannian volume measure”. Recall V0 D ¹q1; q2; q3º,
and see [23, Section 3.2] and Proposition 2.12 below for basic properties of V0-harmonic
functions.

Definition 2.11. (0) Let i 2 S , and let j; k 2 S be such that j � i C 1 mod 3 and
k � iC2mod 3. We define hi

1
; hi
2

2 F to be the V0-harmonic functions satisfying hi
1
.qi / D

hi
2
.qi / D 0, hi

1
.qj / D hi

1
.qk/ D 1 and �hi

2
.qj / D hi

2
.qk/ D 1=

p
3, so that 2E.hi

1
; hi
1
/ D

2E.hi
2
; hi
2
/ D 1 (recall the factor 1=4 in (2.1)), E.hi

1
; hi
2
/ D 0, hi

1
ı Fi D .3=5/hi

1
and

hi
2

ı Fi D .1=5/hi
2

.
(1) We set h1 WD h1

1
and h2 WD h1

2
, and define ˆ W K ! R2 and KH by

ˆ.x/ WD .h1.x/; h2.x//; x 2 K and KH WD ˆ.K/: (2.6)

KH is called the harmonic Sierpinski gasket (Figure 2). We also set Oqi WD ˆ.qi / for i 2 S ,
so that ¹ Oq1; Oq2; Oq3º D ˆ.V0/ is the set of vertices of an equilateral triangle.
(2) We define finite Borel measures � on K and � on † by respectively

� WD �hh1i C �hh2i and � WD �hh1i C �hh2i; (2.7)

so that � D � ı � and � ı ��1 D � by Proposition 2.8. We call � the Kusuoka measure on
the Sierpinski gasket.

Notation. In what follows hi
1
; hi
2
; h1; h2 always denote the V0-harmonic functions given in

Definition 2.11. We often regard ¹hi
1
; hi
2
º as forming an orthonormal basis of .H0=R1; 2E/.

Moreover, we set

kukE WD
p
2E.u; u/; u 2 F and SH0 WD ¹h 2 H0 j khkE D 1º: (2.8)

The following proposition provides an alternative geometric definition of KH, and es-
sentially as its corollary we also see the injectivity of ˆ (Theorem 2.13), Proposition 2.14
below and that �hhi has full support for any h 2 SH0 .
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Proposition 2.12 ([22, �3]). For i 2 S , define Ti 2 L.R2/ and Hi W R2 ! R2 by

Ti
�
a. Oqj C Oqk � 2 Oqi /C b. Oqk � Oqj /

�
WD

3

5
a. Oqj C Oqk � 2 Oqi /C

1

5
b. Oqk � Oqj /; a; b 2 R;

where ¹i; j; kº D S , andHi .x/ D OqiCTi .x� Oqi /, x 2 R2. Also forw D w1 : : : wm 2 W�

let Tw WD Tw1 � � �Twm (T; WD idR2 ), which we regard as its matrix representation through
the standard basis of R2. Then we have the following statements:
(i) T1 D

�
3=5 0
0 1=5

�
, T2 D

�
3=10 �

p
3=10

�
p
3=10 1=2

�
, T3 D

�
3=10

p
3=10

p
3=10 1=2

�
.

(ii) For each w 2 W�, T �
w WD .Tw/

� is equal to the matrix representation of the linear map
F �
w W H0=R1 ! H0=R1, F �

wh WD h ı Fw by the basis ¹h1; h2º of H0=R1.
(iii) Hi ıˆ D ˆ ı Fi and hence Hi ı .ˆ ı �/ D .ˆ ı �/ ı �i for any i 2 S . In particular,
KH D

S
i2S Hi .KH/, i.e. KH is the self-similar set associated with ¹Hi ºi2S .

Theorem 2.13 ([22, Theorem 3.6]). The map ˆ W K ! KH is a homeomorphism.

Proposition 2.14. �.Kw/ D �.†w/ D .5=3/jwjkTwk2 for any w 2 W�. Moreover, it
holds that � ı ��1 D �.

Kusuoka [29, Example 1] has proved that � is ergodic with respect to the shift map � , i.e.
�.A/�.† nA/ D 0 for any A 2 B.†/ with ��1.A/ D A, and that it is singular with respect
to the Bernoulli measure on † with weight .1=3; 1=3; 1=3/. The ergodicity of � plays an
essential role in Section 6, where we provide an alternative simple proof of it.

Now we introduce the measurable Riemannian structure onK, which is formulated as a
matrix-valued Borel measurable map Z on K, as follows.

Proposition 2.15 ([29, �1], [22, Proposition B.2]). Define†Z 2 B.†/ andKZ 2 B.K/ by

†Z WD

²
! 2 †

ˇ̌̌̌
Z†.!/ WD lim

m!1

TŒ!�mT
�
Œ!�m

kTŒ!�mk2
exists in L.R2/

³
; KZ WD �.†Z/:

(2.9)
Then Z†.!/ is an orthogonal projection of rank 1 for any ! 2 †Z , �.† n†Z/ D �.K n

KZ/ D 0, ��1.V�/ � †Z and Z†.!/ D Z†.�/ for !; � 2 ��1.x/, x 2 V� n V0.
Hence (by Proposition 2.3) setting Zx WD Z.x/ WD Z†.!/, ! 2 ��1.x/ for x 2 KZ
and Zx WD Z.x/ WD

�
1 0
0 0

�
for x 2 K n KZ gives a well-defined Borel measurable map

Z W K ! L.R2/.

Theorem 2.16 ([22, �4]). Set C 1.K/ WD ¹v ıˆ j v 2 C 1.R2/º. Then for each u 2 C 1.K/,
ru WD .rv/ ıˆ is independent of a particular choice of v 2 C 1.R2/ satisfying u D v ıˆ.
Moreover, C 1.K/ � F , C 1.K/=R1 is dense in .F=R1; E/, and for any u; v 2 C 1.K/,

d�hu;vi D hZru;Zrvid� and E.u; v/ D
1

2

Z
K

hZru;Zrvid�: (2.10)

In view of Theorem 2.16, especially (2.10), we may regard Z as defining a “one-
dimensional tangent space of K at x together with a metric” for �-a.e. x 2 K in a mea-
surable way, with � considered as the associated “Riemannian volume measure” and Zru

as the “gradient vector field” of u 2 C 1.K/. Then the Dirichlet space associated with this
“Riemannian structure” is .K;�; E;F/. The main subject of the present paper is detailed
asymptotic analysis of this Dirichlet space, especially its associated heat kernel p�.

As a matter of fact, any u 2 F admits a natural “gradient vector field” eru, thereby
(2.10) extended to functions in F , as in the following theorem whose essential part is due to
Hino [17, Theorem 5.4].
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Theorem 2.17. Let h 2 SH0 . Then for any u 2 F we have the following statements:
(1) For �-a.e. x 2 K, there exists eru.x/ 2 ImZx such that for any ! 2 ��1.x/,

sup
y2KŒ!�m

ˇ̌̌
u.y/ � u.x/ � heru.x/;ˆ.y/ �ˆ.x/i

ˇ̌̌
D o.kTŒ!�mk/ as m ! 1: (2.11)

Such eru.x/ 2 ImZx as in (2.11) is unique for each x 2 KZ , and d�hui D jeruj2d�.
(2) For �hhi-a.e. x 2 K, there exists du

dh
.x/ 2 R such that for any ! 2 ��1.x/,

sup
y2KŒ!�m

ˇ̌̌̌
u.y/� u.x/�

du

dh
.x/.h.y/� h.x//

ˇ̌̌̌
D o.kh ıFŒ!�mkE / as m ! 1: (2.12)

Such du
dh
.x/ 2 R as in (2.12) is unique for each x 2 K, and d�hui D

�
du
dh

�2
d�hhi.

We need the following definition and lemma for the proof of Theorem 2.17. Recall that
the map Z W K ! L.R2/ satisfies Z2 D Z� D Z, detZ D 0 and trZ D 1.

Definition 2.18. Let Zi;j WD hei ; Zej i for i; j 2 ¹1; 2º, where e1 WD .1; 0/ and e2 WD

.0; 1/. We define � D .�1; �2/ W K ! R2 by

� WD
�p
Z1;1; Z1;2=

p
Z1;1

�
if Z1;1 6D 0; otherwise � WD .0; 1/; (2.13)

so that Zi;j D �i�j for i; j 2 ¹1; 2º, j�j D 1 and �.x/ 2 ImZx for any x 2 K. Also for
each x 2 K, we write �x D .�1x ; �

2
x/ for �.x/ D .�1.x/; �2.x// and define hx ; h?

x by

hx WD �1x.h1 � h1.x/1/C �2x.h2 � h2.x/1/;

h?
x WD ��2x.h1 � h1.x/1/C �1x.h2 � h2.x/1/;

(2.14)

so that hx ; h?
x 2 SH0 , E.hx ; h?

x / D 0 and hx.x/ D h?
x .x/ D 0.

Lemma 2.19. Let x 2 KZ and ! 2 ��1.x/. Then

lim
m!1

khx ı FŒ!�mkE

kTŒ!�mk
D 1 and lim

m!1

kh?
x ı FŒ!�mkE

kTŒ!�mk
D 0: (2.15)

Proof. This is immediate from a direct calculation using Proposition 2.12-(ii), (2.9) and
(2.14).

Proof of Theorem 2.17. By [17, Theorem 5.6], �hvi is absolutely continuous with respect to
both � and �hhi for any v 2 F . Moreover, by [23, Theorem 3.2.5] and a direct calculation
we have

kh ı FwkE � max
Kw

h � min
Kw

h �
2

p
3

kh ı FwkE for any w 2 W�: (2.16)

Therefore an application of [17, Theorem 5.4] to h and u yields (2). Thanks to (2.14), (2.15)
and (2.16), (1) follows by applying (2) to h D h1 and setting eru.x/ WD

du
dh1

.x/�1x�x ;
note that � and �hh1i are mutually absolutely continuous and that .�1/2 D jZe1j

2 D

d�hh1i=d� �-a.e.
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Remark 2.20. The “gradient vector field” eru in Theorem 2.17-(1) coincides with the “weak
gradient” Y.� Iu/ defined by Kusuoka [29, Lemma 5.1] (see also [25, Definition 4.11]). In-
deed, noting that we can naturally define ru onK nVm form 2 N and u 2 Hm in the same
way as in Theorem 2.16, from (2.15) and (2.16) we can easily verify eru.x/ D Zxru.x/

for x 2 KZ if u 2 C 1.K/ and for x 2 KZ n Vm if m 2 N and u 2 Hm. Let u 2 F , and
for each m 2 N let um 2 Hm be such that umjVm D ujVm . Then by Theorem 2.17-(1) and
[23, Lemma 3.2.17],Z

K

jeru �Zrumj
2d� D

Z
K

jer.u � um/j
2d� D ku � umk

2
E
m!1
�����! 0;

whereas Y.� Iu/ is defined as the L2.K;�/-limit of ¹Zrumºm2N in [29]. Thus eru D

Y.� Iu/ �-a.e.

3 Geometry under the measurable Riemannian structure

This section is devoted to preparing preliminary facts required for the subsequent arguments.
First we introduce basic notions and results concerning the description of geometry of K,
following [24]. Then we treat the volume doubling property of energy measures, construc-
tion of geodesic metrics and weak Poincaré inequality. For the Dirichlet space .K;�; E ;F/,
which corresponds to the measurable Riemannian structure on K, essential parts of the re-
sults of this section are already established in Kigami [25]. Here we slightly improve his
results, and prove the same results also for the Dirichlet space .K;�hhi; E ;F/, h 2 SH0 .
The extensions to .K;�hhi; E ;F/ are of independent interest and will play central roles in
Sections 4 and 5.

Definition 3.1. (1) Let w; v 2 W�, w D w1 : : : wm, v D v1 : : : vn. We define wv 2 W� by
wv WD w1 : : : wmv1 : : : vn (w; WD w, ;v WD v). We also define w1 : : : wk for k � 3 and
w1; : : : ; wk 2 W� inductively by w1 : : : wk WD .w1 : : : wk�1/wk . We write w � v if and
only if w D v� for some � 2 W�. Note that †w \†v D ; if and only if neither w � v nor
v � w.
(2) Let ƒ be a finite subset of W�. We call ƒ a partition of † if and only if †w \†v D ;

for any w; v 2 ƒ with w 6D v and † D
S
w2ƒ†w .

(3) Let ƒ1 and ƒ2 be two partitions of †. Then we say that ƒ1 is a refinement of ƒ2, and
write ƒ1 � ƒ2, if and only if for each w1 2 ƒ1 there exists w2 2 ƒ2 such that w1 � w2.

Suppose ƒ1 � ƒ2. Then we have a natural surjection ƒ1 ! ƒ2 by which w1 2 ƒ1 is
mapped to the unique w2 2 ƒ2 such that w1 � w2. In particular, #ƒ1 � #ƒ2.

Definition 3.2. (1) A family S D ¹ƒsºs2.0;1� of partitions of † is called a scale on † if
and only if S satisfies the following three properties:
.S1/ ƒ1 D W0 .D ¹;º/. ƒs1 � ƒs2 for any s1; s2 2 .0; 1� with s1 � s2.
.S2/ min¹jwj j w 2 ƒsº ! 1 as s # 0.
.Sr/ For each s 2 .0; 1/ there exists " 2 .0; 1�s� such thatƒs0 D ƒs for any s0 2 .s; sC"/.
(2) A function l W W� ! .0; 1� is called a gauge function onW� if and only if l.wi/ � l.w/

for any .w; i/ 2 W� � S and limm!1 max¹l.w/ j w 2 Wmº D 0.

There is a natural one-to-one correspondence between scales on † and gauge functions
on W�, as in the following proposition. See [24, Section 1.1] for a proof.
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Proposition 3.3. (1) Let l be a gauge function on W�. For each s 2 .0; 1�, define

ƒs.l/ WD ¹w j w D w1 : : : wm 2 W�; l.w1 : : : wm�1/ > s � l.w/º (3.1)

where l.w1 : : : wm�1/ WD 2 when w D ;. Then the collection S.l/ WD ¹ƒs.l/ºs2.0;1� is a
scale on †. We call S.l/ the scale induced by the gauge function l .
(2) Let S D ¹ƒsºs2.0;1� be a scale on †. Then there exists a unique gauge function lS on
W� such that S D S.lS/. We call lS the gauge function of the scale S.

Definition 3.4. Let S D ¹ƒsºs2.0;1� be a scale on †. For s 2 .0; 1� and x 2 K, we define

Ks.x; S/ WD
[

w2ƒs;x2Kw

Kw; Us.x; S/ WD
[

w2ƒs;Kw\Ks.x;S/6D;

Kw: (3.2)

Clearly,Ks.x; S/ and Us.x; S/ are decreasing as s decreases and ¹Ks.x; S/ºs2.0;1� and
¹Us.x; S/ºs2.0;1� are fundamental systems of neighborhoods of x in K.

Proposition 2.3 easily yields the following lemma.

Lemma 3.5. Let S D ¹ƒsºs2.0;1� be a scale on † and let s 2 .0; 1�, x 2 K and w 2 ƒs .
Then #¹v 2 ƒs j Kv \Ks.x; S/ 6D ;º � 6 and #¹v 2 ƒs j Kw \Kv 6D ;º � 4.

Definition 3.6. Let S D ¹ƒsºs2.0;1� be a scale on †.
(1) A function ' W W� ! Œ0;1/ is called gentle with respect to S if and only if there exists
cgen 2 .0;1/ such that '.w/ � cgen'.v/ whenever w; v 2 ƒs for some s 2 .0; 1� and
Kw \Kv 6D ;. We say that a finite Borel measure � on K is gentle with respect to S if and
only if the function W� 3 w 7! �.Kw/ is gentle with respect to S.
(2) A metric � on K is called adapted to S if and only if there exist ˇ1; ˇ2 2 .0;1/ such
that

Bˇ1s.x; �/ � Us.x; S/ � Bˇ2s.x; �/; .s; x/ 2 .0; 1� �K: (3.3)

Lemma 3.7. Let S D ¹ƒsºs2.0;1� be a scale on † with gauge function l and let � be
a metric on K adapted to S. Then � is compatible with the original topology of K, and
diam.Kw; �/ � ˇ2l.w/ for any w 2 W�, where ˇ2 2 .0;1/ is as in (3.3).

Proof. The first assertion is clear. Let w 2 W�, x; y 2 Kw and s WD l.w/. Then w � v

for a unique v 2 ƒs , and Kw � Kv � Us.x; S/ � Bˇ2s.x; �/ by (3.3). Thus �.x; y/ <
ˇ2s D ˇ2l.w/.

Now we discuss the volume doubling property of � and �hhi, h 2 SH0 . First we
state their volume doubling property in terms of certain scales, to which the correspond-
ing geodesic metrics are shown to be adapted later in this section.

Definition 3.8. (1) We define SH D ¹ƒH
s ºs2.0;1� to be the scale on† induced by the gauge

function lH W W� ! .0; 1�, lH.w/ WD kTwk ^ 1 D
p
.3=5/jwj�.Kw/ ^ 1.

(2) Let h 2 SH0 . We define Sh D ¹ƒhs ºs2.0;1� to be the scale on † induced by the gauge

function lh W W� ! .0; 1�, lh.w/ WD kh ı FwkE D

q
.3=5/jwj�hhi.Kw/.

Lemma 3.9 (cf. [25, Lemma 3.5 and Proof of Theorem 3.2]). Let h 2 SH0 .
(1) For any .w; i/ 2 W� � S ,

1

15
�.Kw/ � �.Kwi / �

3

5
�.Kw/;

1

5
kTwk � kTwik �

3

5
kTwk; (3.4)

1

15
�hhi.Kw/ � �hhi.Kwi / �

3

5
�hhi.Kw/;

1

5
lh.w/ � lh.wi/ �

3

5
lh.w/: (3.5)
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(2) If w; v 2 W� satisfies jwj D jvj and Kw \Kv 6D ; then

�hhi.Kw/ � 9�hhi.Kv/; lh.w/ � 3lh.v/ and lH.w/ � 3lH.v/: (3.6)

Proof. (1) By considering khıFwk�1
E hıFw and ; instead of h andw respectively, a direct

calculation easily yields (3.5), from which (3.4) is immediate.
(2) This is proved in essentially the same way as [25, Proof of Lemma 3.5].

Proposition 3.10 (cf. [25, Theorem 6.2]). (1) There exists cG 2 .0;1/ such that for any
g; h 2 SH0 , �hgi is gentle with respect to both SH and Sh with constant cgen D cG, i.e.
�hgi.Kw/ � cG�hgi.Kv/ whenever either w; v 2 ƒH

s or w; v 2 ƒhs for some s 2 .0; 1�

and Kw \Kv 6D ;.
(2) Let � WD log5 15 and O� WD log5=3 15. Then there exists cv 2 .0;1/ such that for any
g; h 2 SH0 , x 2 K and s; t 2 .0; 1� with s � t ,

�.Ut .x; S
H//

�.Us.x; SH//
� cv

� t
s

��
;

�hhi.Ut .x; S
h//

�hhi.Us.x; Sh//
� cv

� t
s

��
; (3.7)

�hgi.Ut .x; S
H//

�hgi.Us.x; SH//
� cv

� t
s

� O�

;
�hgi.Ut .x; S

h//

�hgi.Us.x; Sh//
� cv

� t
s

� O�

: (3.8)

Proof. (1) This is proved in exactly the same way as [25, Proof of Theorem 6.2]. Here [25,
Proof of Theorem 1.4.3] together with (3.4), (3.5) and (3.6) easily shows that the constant
cG 2 .0;1/ can be chosen independently of g; h.
(2) We essentially follow [24, Proof of Theorem 1.3.5], but slightly more detailed arguments
are required to deduce the explicit constants � and O�. Let g 2 SH0 , x 2 K and ! 2 ��1.x/.
For each s 2 .0; 1/, let n.s/ be the unique n 2 N [ ¹0º satisfying Œ!�n 2 ƒH

s , so that
s=5 �



TŒ!�n.s/

 � s by (3.4). Then (1) and Lemma 3.5 easily imply that for any s 2 .0; 1/,

1 �
�.Us.x; S

H//

�
�
KŒ!�n.s/

� � 6c2G and 1 �
�hgi.Us.x; S

H//

�hgi

�
KŒ!�n.s/

� � 6c2G: (3.9)

Let s; t 2 .0; 1/, s � t . Then n.s/ � n.t/, and (3.4) yields

1

5

�1
5

�n.s/�n.t/
�



TŒ!�n.s/


5


TŒ!�n.t/

 �

s

t
�
5


TŒ!�n.s/



TŒ!�n.t/

 � 5

�3
5

�n.s/�n.t/
: (3.10)

Now from (3.9) and (3.10) we conclude that

6c2G
�.Us.x; S

H//

�.Ut .x; SH//
�
�
�
KŒ!�n.s/

�
�
�
KŒ!�n.t/

� �

� t
5s

�log5.5=3/ s2

25t2
D

3

125

� s
t

��
and, using also (3.5), that

6c2G
�hgi.Us.x; S

H//

�hgi.Ut .x; SH//
�
�hgi

�
KŒ!�n.s/

�
�hgi

�
KŒ!�n.t/

� �

� 1
15

�n.s/�n.t/
� 5� O�

� s
t

� O�

;

proving the assertions for SH; the case with t D 1 follows since U4=5.x; SH/ D K. In view
of (3.5), exactly the same proof applies to the assertions for Sh as well.
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Remark 3.11. The powers � in (3.7) and O� in (3.8) are best possible. Indeed, for n 2 N,
since T �

1n
D

�
.3=5/n 0

0 .1=5/n

�
, T �
1n32n

D

�
�1=2 �

p
3=2

p
3=2 �1=2

��
0 .

p
3=5/2nC1

�.
p
3=5/2nC1 �2.1=5/2nC1

�
,

we easily see 5n � tn=sn and hence �.Usn.xn; S
H//=�.Utn.xn; S

H// � 10cG.sn=tn/
�

by (3.9), where xn WD �.1n321/, sn WD kT1n32nk and tn WD kT1nk. Similar calculations
work with Sh and �hhi for each h 2 SH0 . For the first part of (3.8) it suffices to choose
g WD h2, x WD q1, s WD kT12nk and t WD kT1nk to let n ! 1, and similarly for the latter
of (3.8) for each h 2 SH0 .

Next we define the corresponding geodesic metrics onK and state their basic properties.

Definition 3.12. Let h 2 SH0 . We define the harmonic geodesic metric �H on K and the
h-geodesic metric �h on K by respectively

�H.x; y/ WD inf¹`H.
/ j 
 W Œ0; 1� ! K; 
 is continuous; 
.0/ D x; 
.1/ D yº;

�h.x; y/ WD inf¹`h.
/ j 
 W Œ0; 1� ! K; 
 is continuous; 
.0/ D x; 
.1/ D yº

for x; y 2 K, where we set `H.
/ WD `.ˆ ı 
/ and `h.
/ WD `.h ı 
/ for a continuous map

 W Œa; b� ! K, a; b 2 R, a � b.

Definition 3.13. (1) Let m 2 N [ ¹0º and let x; y 2 Vm satisfy x m
� y, where m� is as

in Definition 2.4. Let w.x; y/ be the unique w 2 Wm such that x; y 2 Fw.V0/, and let
xy .� Kw.x;y// denote the line segment from x to y which is also regarded as the map
Œ0; 1� 3 t 7! x C t .y � x/. Note that xy � KZ by [25, Theorem 5.4].
(2) Let m 2 N [ ¹0º. A sequence � D ¹xkºN

kD0
� Vm, where N 2 N, is called an m-

walk if and only if xk�1
m
� xk for k 2 ¹1; : : : ; N º and w.xk�1; xk/ 6D w.xk ; xkC1/

for k 2 ¹1; : : : ; N � 1º. For such � we define continuous maps � W Œ0; N � ! K andb� W Œ0; `H.�/� ! K by

�.t/ WD xk�1 C .t � k C 1/.xk � xk�1/; t 2 Œk � 1; k�; k 2 ¹1; : : : ; N º;

and b� WD � ı '�1
�

, where '� is the homeomorphism '� W Œ0; N � ! Œ0; `H.�/�, '�.t/ WD

`H.�jŒ0;t�/; note that `H.�/ < 1 and b�.Œ0; `H.�/�/ � KZ by [25, Theorem 5.4].
(3) Let 
 W Œa; b� ! K be continuous, a; b 2 R, a < b. 
 is called a harmonic m-geodesic,
where m 2 N [ ¹0º, if and only if 
.t/ D b��`H.�/ t�ab�a

�
, t 2 Œa; b� for some m-walk

� . 
 is called a harmonic geodesic if and only if there exist n 2 N [ ¹0º and sequences
¹amºm�n; ¹bmºm�n � Œa; b� with limm!1 am D a and limm!1 bm D b such that
amC1 � am < bm � bmC1 and 
 jŒam;bm� is a harmonic m-geodesic for each m � n.

Proposition 3.14 ([25, Theorem 5.4]). If m 2 N [ ¹0º and � is an m-walk, then ˆ ı b� is
C 1, and .ˆ ıb�/0.t/ 2 ImZb�.t/ and j.ˆ ıb�/0.t/j D 1 for any t 2 Œ0; `H.�/�.

For the harmonic geodesic metric �H we have the following proposition due to Kigami
[25]; it is not explicitly stated in [25, Theorem 5.1], but is actually shown in the proof there,
that we can take harmonic geodesics as shortest paths for the length `H.�/. This fact plays a
crucial role in the proof of Proposition 4.10 below.

Proposition 3.15 ([25, Theorems 5.1 and 5.11]). (1) �H is a metric on K satisfying

Bp
2s=50

.x; �H/ � Us.x; S
H/ � B10s.x; �H/; .s; x/ 2 .0; 1� �K: (3.11)

(2) For each x; y 2 K with x 6D y, there exists a harmonic geodesic 
xy W Œ0; 1� !

K such that 
xy.0/ D x, 
xy.1/ D y and �H.x; y/ D `H.
xy/, and in particular
�H.
xy.s/; 
xy.t// D `H.
xy jŒs;t�/ D .t � s/�H.x; y/ for any s; t 2 Œ0; 1� with s � t .
Moreover, if m 2 N [ ¹0º and x; y 2 Vm then we can take a harmonic m-geodesic as 
xy .
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In fact, similar assertions are valid also for �h, as follows.

Proposition 3.16. Let h 2 SH0 .
(1) �h is a metric on K satisfying

Bs=25.x; �h/ � Us.x; S
h/ � B7s.x; �h/; .s; x/ 2 .0; 1� �K: (3.12)

(2) For each x; y 2 K with x 6D y, there exists a harmonic geodesic 
hxy W Œ0; 1� !

K such that 
hxy.0/ D x, 
hxy.1/ D y and �h.x; y/ D `h.

h
xy/. In particular, if we

define 'hxy W Œ0; 1� ! Œ0; 1� to be the inverse of Œ0; 1� 3 t 7! `h.

h
xy jŒ0;t�/=�h.x; y/,

then �h.
hxy ı 'hxy.s/; 

h
xy ı 'hxy.t// D `h.


h
xy ı 'hxy jŒs;t�/ D .t � s/�h.x; y/ for any

s; t 2 Œ0; 1� with s � t . Moreover, if m 2 N [ ¹0º and x; y 2 Vm then we can take a
harmonic m-geodesic as 
hxy .

Remark 3.17. If 
 W Œ0; 1� ! K is a harmonic geodesic and h 2 SH0 , then by [25, Theorem
5.4] (see also (3.15) below), the set ¹t 2 .0; 1/ j .h ı 
/0.t/ D 0º is discrete and hence
Œ0; 1� 3 t 7! `h.
 jŒ0;t�/ is strictly increasing. Therefore 'hxy as above does exist as a
homeomorphism.

We need the following lemma for the proof of Proposition 3.16.

Lemma 3.18 (cf. [25, Lemma 5.6]). Set OscA f WD supA f � infA f for f 2 C.K/ and
A � K, A 6D ;. Let h 2 SH0 , w 2 W� and x; y 2 Fw.V0/, x 6D y. Then

`h.xy/ D inf¹`h.
/ j 
 W Œ0; 1� ! Kw; 
 is continuous; 
.0/ D x; 
.1/ D yº; (3.13)
1

5
Osc
Kw

h � `h.xy/ � 2Osc
Kw

h and
lh.w/

5
� `h.xy/ �

4
p
3
lh.w/: (3.14)

Proof. It is easy to see that we may assumew D ; without loss of generality by considering
khıFwk�1

E hıFw , ;, F�1
w .x/ and F�1

w .y/ instead of h,w, x and y. Then by the symmetry
of K and .E;F/ we may further assume that x D q2 and y D q3.

Let I WD Œ�1=
p
3; 1=

p
3�. By [25, Theorem 5.4], ˆ.q2q3/ D ¹.'.t/; t/ j t 2 I º

for some ' 2 C 1.I / and it possesses the following properties: '.�t/ D '.t/ for t 2 I ,
'0 is strictly increasing, '0.˙1=

p
3/ D ˙1=

p
3, and KH � ¹.s; t/ 2 R2 j s � '.t/º,

i.e. h1 � ' ı h2. We set 
23.t/ WD ˆ�1.'.t/; t/, t 2 I . Choose a; b; c 2 R so that
h D ah1Cbh2Cc1. Then hı
23.t/ D a'.t/CbtCc for t 2 I and .hı
23/

0 D a'0 Cb.
Since a2 C b2 D khk2E D 1 6D 0 it follows that

either .hı
23/
0.t/ 6D 0 for any t 2 I or .hı
23/

0.t0/ D 0 for a unique t0 2 I; (3.15)

from which and h1 � ' ı h2 we can easily verify (3.13) and `h.q2q3/ � 2OscK h.
To complete the proof of (3.14), let q23 WD F2.q3/ D F3.q2/, so that 5h.q23/ D

h.q1/ C 2h.q2/ C 2h.q3/ by h 2 H0 and [23, Example 3.2.6]. Since either of h.q2/ and
h.q3/ is equal to either maxV0 h or minV0 h, we see that

5`h.q2q3/ � 5jh.q2/ � h.q23/j C 5jh.q23/ � h.q3/j

D jh.q1/C 2h.q3/ � 3h.q2/j C jh.q1/C 2h.q2/ � 3h.q3/j � Osc
V0

h D Osc
K
h;

proving the former assertion of (3.14) which and (2.16) yield the latter.

Proof of Proposition 3.16. This is proved in exactly the same way as [25, Proofs of Theo-
rems 5.1 and 5.11] by using Lemma 3.18 instead of [25, Lemma 5.6].
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By virtue of Propositions 3.10, 3.15 and 3.16, now we arrive at the following theorem,
which improves and generalizes [25, Theorem 6.2] and will be used to deduce the remainder
estimates in Theorem 5.8 below.

Theorem 3.19. Let � WD log5 15 and O� WD log5=3 15, as in Proposition 3.10-(2). Then
there exists cV 2 .0;1/ such that for any g; h 2 SH0 , x; y 2 K and r; R 2 .0;1/ with
r � R,

�.BR.x; �H//

�.Br .y; �H//
� cV

�
RC �H.x; y/

r

��
;
�hhi.BR.x; �h//

�hhi.Br .y; �h//
� cV

�
RC �h.x; y/

r

��
;

(3.16)

�hgi.BR.x; �H//

�hgi.Br .y; �H//
� cV

�
RC �H.x; y/

r

� O�

;
�hgi.BR.x; �h//

�hgi.Br .y; �h//
� cV

�
RC �h.x; y/

r

� O�

:

(3.17)

Proof. Since BR.x; �/ � BRC�.x;y/.y; �/ for � D �H; �h, it suffice to prove the as-
sertions when x D y. (3.7), (3.8), (3.11) and (3.12) easily yield (3.16) and (3.17) for
R �

p
2=50, and then the case of R �

p
2=50 is easily proved by using (3.4), (3.5),

(3.11) and (3.12).

Finally we prove the weak Poincaré inequality for .K;�; E ;F/ and .K;�hhi; E ;F/,
h 2 SH0 .

Proposition 3.20. Let cG 2 .0;1/ be as in Proposition 3.10-(1) and cP WD 34106c4G. Let
h 2 SH0 and let .�; �/ denote any one of .�; �H/ and .�hhi; �h/. ThenZ

Br .x;�/

ˇ̌
u � u�;�r;x

ˇ̌2
d� � cPr

2�hui

�
B
250

p
2r
.x; �/

�
; u 2 F (3.18)

for any .r; x/ 2 .0;1/ �K, where u�;�r;x WD �.Br .x; �//
�1
R
Br .x;�/

ud�.

Proof. Let u 2 F . Recall thatRE denotes the resistance metric onK associated with .E ;F/.
Since diam.K;RE / � 6 which easily follows by using [23, Lemma 3.3.5], for any w 2 W�

and any y; ´ 2 Kw we have

ju.y/�u.´/j2 � RE
�
F�1
w .y/; F�1

w .´/
�
E.uıFw; uıFw/ � 3

�3
5

�jwj

�hui.Kw/: (3.19)

Also for s 2 .0; 1/ and w; v 2 ƒH
s withKw \Kv 6D ;, (3.4) and Proposition 3.10-(1) yield

s2

25

�5
3

�jwj

� �.Kw/ � cG�.Kv/ � cG

�5
3

�jvj

s2; thus
�3
5

�jvj

� 25cG

�3
5

�jwj

: (3.20)

Let .r; x/ 2 .0;1/�K. Suppose r <
p
2=50 and takew 2 ƒH

25
p
2r

such that x 2 Kw .

Then by considering U
25

p
2r
.x; SH/, from (3.11), (3.19) and (3.20) we easily see that

ju.y/ � u.´/j � 60
p
3cG

r�3
5

�jwj

�hui

�
B
250

p
2r
.x; �H/

�
; y; ´ 2 Br .x; �H/: (3.21)

Now since �.Br .x; �H// � �
�
U
25

p
2r
.x; SH/

�
� 6c2G�.Kw/ by (3.11) and (3.9), and

.3=5/jwj�.Kw/ D kTwk2 � 1250r2 by w 2 ƒH
25

p
2r

, (3.18) for .�; �H/ immediately
follows by integrating (3.21) in ´ under �jBr .x;�H/ and then in y after taking the square.
The case of r �

p
2=50 can be verified in a similar way by using (3.19) with w D ;

since B
250

p
2r
.x; �H/ D K by (3.11), and exactly the same proof applies to the case of

.�hhi; �h/ as well by virtue of (3.5), Proposition 3.10-(1) and (3.12).
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Notation. In the rest of this paper, we will use the constants � D log5 15, O� D log5=3 15, cG

and cV appearing in Proposition 3.10 and Theorem 3.19 without further notice. In particular,
for g; h 2 SH0 , �hgi is gentle with respect to both SH and Sh with cgen D cG. Also in what
follows, for a; b 2 Œ0;1/ we write a . b if and only if a � cb for some constant c 2 .0;1/

determined solely by �; O�; cG; cV, and write a � b if and only if both a . b and b . a hold.

4 Off-diagonal Gaussian heat kernel behavior

The main purpose of this section is further analysis of the geodesic metrics �H and �h,
h 2 SH0 , and as a consequence we will get the two-sided Gaussian bound and Varadhan’s
asymptotic relation for the heat kernels p� and p�hhi

.
Let us start this section with the following standard definition.

Definition 4.1. Let � be a finite Borel measure on K with full support. We define

��.x; y/ D sup¹u.x/ � u.y/ j u 2 F ; �hui � �º; x; y 2 K: (4.1)

Clearly, ��.x; y/ D ��.y; x/ 2 Œ0;1/, ��.x; x/ D 0 and ��.x; y/ � ��.x; ´/C ��.´; y/

for any x; y; ´ 2 K; in fact, ��.x; y/2 � �.K/RE .x; y/=2. �� is called the intrinsic metric
of the Dirichlet space .K; �; E;F/ or simply the �-intrinsic metric on K.

The notion of the intrinsic metric of a strong local Dirichlet space appears in many
places such as [35,36,32,18]. The results there suggest that the intrinsic metric is the most
“natural” metric for a given strong local Dirichlet space; for example, according to Ramı́rez
[32] and Hino and Ramı́rez [18], Varadhan’s asymptotic relation like (1.4) is true for a large
class of strong local Dirichlet spaces as long as the metric in the right-hand side is replaced
by the intrinsic metric.

Then a problem arises as to how the intrinsic metric is characterized for concrete exam-
ples. For the canonical Dirichlet space associated with a smooth Riemannian manifoldM , it
is not difficult to see that the intrinsic metric is equal to the geodesic metric on M ; see [31]
and references therein for related results on Riemannian manifolds. The same assertion is in
fact true also for our Dirichlet spaces .K;�; E ;F/ and .K;�hhi; E;F/, h 2 SH0 , which is
the main theorem of this section:

Theorem 4.2. (1) �H D ��. Moreover, �H.x; �/ 2 F and �h�H.x;�/i D � for any x 2 K.
(2) Let h 2 SH0 . Then �h D ��hhi

. Moreover, �h.x; �/ 2 F and �h�h.x;�/i D �hhi for any
x 2 K.

Then based on Theorem 3.19 and Proposition 3.20, the general results of Sturm [35,36]
and Ramı́rez [32] imply the following Gaussian bounds and Varadhan’s asymptotic relation.

Corollary 4.3. Let h 2 SH0 and let .�; �/ denote any one of .�; �H/ and .�hhi; �h/. Let
n 2 N. Then for any .t; x; y/ 2 .0;1/ �K �K,

cL
exp

�
�
�.x;y/2

cLt

�
�
�
Bp

t
.x; �/

� � p�.t; x; y/ � cU

�
1C

�.x;y/2

t

��=2 exp
�
�
�.x;y/2

2t

�q
�
�
Bp

t
.x; �/

�
�
�
Bp

t
.y; �/

� ; (4.2)

ˇ̌
@nt p�.t; x; y/

ˇ̌
� cU.n/

�
1C

�.x;y/2

t

��=2Cn exp
�
�
�.x;y/2

2t

�
tn
q
�
�
Bp

t
.x; �/

�
�
�
Bp

t
.y; �/

� ; (4.3)

where cL; cU 2 .0;1/ are determined solely by �; cG; cV and cU.n/ 2 .0;1/ by n; �; cG; cV.



18 Naotaka Kajino

Proof. Note that @nt p� exists and is continuous on .0;1/�K�K by [8, Proof of Theorem
2.1.4]. On the basis of � D �� , (3.16) and (3.18), [36, Corollary 4.10] yields the lower bound
in (4.2), and [36, Theorem 2.6] and [35, Corollary 2.7] imply the other assertions.

Corollary 4.4. Let h 2 SH0 and let .�; �/ denote any one of .�; �H/ and .�hhi; �h/. Then

lim
t#0

2t logp�.t; x; y/ D ��.x; y/2; x; y 2 K: (4.4)

Proof. (4.2) and (3.16) yield lim supt#0 2t logp�.t; x; y/ � ��.x; y/2. We can also easily
show lim inft#0 2t logp�.t; x; y/ � ��.x; y/2 in exactly the same way as [32, Proof of
Theorem 4.1] by using � D �� and the lower bound in (4.2), since [32, Theorem 1.1] (or
[18, Theorem 1.1]) applies to the present situation by the strong locality of .E ;F/ and [13,
Theorem 3.2.2].

The rest of this section is devoted to the proof of Theorem 4.2. Unlike the case of Rie-
mannian manifolds, this result is not straightforward and requires a long complicated proof,
mainly due to the geometric singularity of the space. The proof relies heavily on Theorem
2.17, Propositions 3.15 and 3.16 and the ideas in [20].

Lemma 4.5. (1) If u 2 C.K/ and Lip�H u � 1 then u 2 F and �hui � �. Moreover,
�H.x; �/ 2 F and �h�H.x;�/i D � for any x 2 K.
(2) Let h 2 SH0 . If u 2 C.K/ and Lip�h u � 1 then u 2 F and �hui � �hhi. Moreover,
�h.x; �/ 2 F and �h�h.x;�/i D �hhi for any x 2 K.

Proof. (1) We fix x 2 K throughout this proof. Let u 2 C.K/ satisfy Lip�H u � 1. Since
ju.y/ � u.´/j � �H.y; ´/ � `H.y´/ � .4

p
6=3/kTwk for w 2 W� and y; ´ 2 Fw.V0/

with y 6D ´ by (3.14), from (2.1) we see that for m 2 N [ ¹0º,

Em.ujVm ; ujVm/ �
1

8

�5
3

�m X
w2Wm

X
y;´2Fw.V0/;y 6D´

32

3
kTwk

2
D

X
w2Wm

8�.Kw/ D 16;

i.e. u 2 F and E.u; u/ � 16. Recalling Theorem 2.17, let y 2 KZ nV�, y 6D x and suppose
that eru.y/ 2 ImZy as in (2.11) exists. We show that jeru.y/j � 1, from which �hui � �

follows since d�hui D jeruj2d�. Let ! 2 ��1.y/, and set

Ry.´/ WD u.´/ � u.y/ � heru.y/;ˆ.´/ �ˆ.y/i; ´ 2 K: (4.5)

By Proposition 3.15, there exists a harmonic geodesic 
 W Œ0; 1� ! K such that 
.0/ D x,

.1/ D y and �H.
.s/; 
.t// D js � t j�H.x; y/ for any s; t 2 Œ0; 1�.

Let m 2 N satisfy x 62 KŒ!�m . Set a WD sup¹t 2 Œ0; 1� j 
.t/ 62 KŒ!�mº, so that
a 2 .0; 1/, 
.a/ 2 FŒ!�m.V0/ and 
.Œa; 1�/ � KŒ!�m . Choose i 2 S so that 
.a/ D

FŒ!�m.qi /, and let n WD min¹k 2 N j k > m; !k 6D iº � 1, w WD Œ!�n and j WD !nC1.
Then n � m, i 6D j , 
.a/ D Fwi .qi / and y 2 Kwj n V�. Further set b WD inf¹t 2

Œa; 1� j 
.t/ 62 Kwi º, so that b 2 .a; 1/, 
.b/ 2 Fwi .V0/ and 
.Œa; b�/ � Kwi . Now
by [25, Lemma 5.6], these facts together with �H.
.a/; 
.b// D `H.
 jŒa;b�/ imply that
`H.
 jŒa;b�/ D `H.1́a´b/, where ´a WD 
.a/, ´b WD 
.b/ and 1́a´b W Œa; b� ! K denotes
the harmonic .n C 1/-geodesic determined by the .n C 1/-walk ¹´a; ´bº. Therefore if we
define 
0 W Œ0; b� ! K by 
0jŒ0;a� WD 
 jŒ0;a� and 
0jŒa;b� WD 1́a´b , then it is continuous,

0j.0;b� is C 1 with j
 0

0
.t/j D �H.x; y/ for t 2 .0; b�, and `H.
0/ D `H.
 jŒ0;b�/ D

�H.x; ´b/ D �H.x; 
0.b//. Hence

�H.
0.s/; 
0.t// D `H.
0jŒs;t�/ D .t � s/�H.x; y/ for s; t 2 Œ0; b�; s � t: (4.6)
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Since .hy ı 1́a´b/0.t/ D 0 for at most one t 2 Œa; b� by (3.15), we can take c; d 2 Œa; b�

so that d � c � .b � a/=2 and hy ı 1́a´bjŒc;d� is strictly monotone. Then letting ´c WD

1́a´b.c/ D 
0.c/ and ´d WD 1́a´b.d/ D 
0.d/ and using (3.14), (4.6) and (3.4), we have
`
h?
y
.1́a´b/ � .4=

p
3/l
h?
y
.wi/ � 3l

h?
y
.w/, `hy .1́a´bjŒc;d�/ D jhy.´c/ � hy.´d /j,

�H.´c ; ´d / D `H.1́a´bjŒc;d�/ � `hy .1́a´bjŒc;d�/C `
h?
y
.1́a´b/

� jhy.´c/ � hy.´d /j C 3l
h?
y
.w/; (4.7)

�H.´c ; ´d / D .d � c/�H.x; y/ �
b � a

2
�H.x; y/ D

`H.´a´b/

2
�

kTwik

10
p
2

�
kTwk

100
:

(4.8)
Now let cu;y 2 R be such that eru.y/ D cu;y�y . Then since heru.y/;ˆ.�/ �ˆ.y/i D

cu;yhy by (2.14), (4.7) and (4.5) yield

jcu;y j�H.´c ; ´d / � jcu;y.hy.´c/ � hy.´d //j C 3jcu;y jl
h?
y
.w/

�

ˇ̌̌
heru.y/;ˆ.´c/ �ˆ.´d /i CRy.´c/ �Ry.´d /

ˇ̌̌
C 2 sup

Kw

jRy j C 3jcu;y jl
h?
y
.w/

D ju.´c/ � u.´d /j C 2 sup
Kw

jRy j C 3jcu;y jl
h?
y
.w/

� �H.´c ; ´d /C 2 sup
Kw

jRy j C 3jcu;y jl
h?
y
.w/: (4.9)

Recalling w D Œ!�n and n � m, we divide (4.9) by �H.´c ; ´d / and use (4.8) to get

jcu;y j � 1C 100 �
2 sup´2KŒ!�n

jRy j C 3jcu;y jkh?
y ı FŒ!�nkE

kTŒ!�nk

m!1;n!1
����������! 1

by virtue of (2.11) and Lemma 2.19, proving jeru.y/j � 1. Finally, noting that Lip�H �
x
H �

1, where �xH WD �H.x; �/, we let u WD �xH in the above argument and use (4.6) to obtain

�H.´c ; ´d / D �xH.´d / � �xH.´c/ D her�xH.y/;ˆ.´d / �ˆ.´d /i CRy.´c/ �Ry.´c/

D c�xH;y.hy.´d / � hy.´c//CRy.´c/ �Ry.´c/

� jc�xH;y j�H.´c ; ´d /C 2 sup
KŒ!�n

jRy j;

from which we conclude that 1 � jc�xH;y j D jer�xH.y/j .� 1/ by using (4.8) and (2.11) to
let m ! 1, n ! 1. Thus 1 D jer�xHj2 D d�h�xHi=d� �-a.e., that is, �h�xHi D �.
(2) This is proved in exactly the same way as above by using Theorem 2.17-(2), (3.5),
Proposition 3.16 and Lemma 3.18.

Lemma 4.6. �H � �� � 9�H, and �h � ��hhi
� 6�h for any h 2 SH0 .

Proof. Let x; y 2 K. Since �H.x; �/ 2 F and �h�H.x;�/i D � by Lemma 4.5-(1), we have
�H.x; y/ D �H.x; y/ � �H.x; x/ � ��.x; y/. Next for the proof of �� � 9�H let u 2 F
satisfy �hui � �. It suffices to show that ju.x/ � u.y/j � 9�H.x; y/ when x; y 2 Vm for
some m 2 N and x 6D y since u 2 C.K/ and V� is dense in K. For any w 2 W�, from
�hui.Kw/ � �.Kw/ we easily see ku ı FwkE � kTwk and therefore

kTwk � ku ı FwkE �
p
2E0.u ı FwjV0 ; u ı FwjV0/ �

p
3

2
Osc

Fw.V0/
u: (4.10)
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By Proposition 3.15, there exists anm-walk ¹xkºN
kD0

� Vm such that x0 D x, xN D y and
�H.x; y/ D

PN
kD1 `H.xk�1xk/. Then (3.14) and (4.10) yield (recall Definition 3.13-(1))

NX
kD1

`H.xk�1xk/ �

NX
kD1

kTw.xk�1;xk/k

5
p
2

�

NX
kD1

ju.xk�1/ � u.xk/j

9
�

ju.x/ � u.y/j

9

and hence ju.x/ � u.y/j � 9�H.x; y/. Exactly the same argument using Lemma 4.5-(2),
Proposition 3.16 and (3.14) shows the other assertion, completing the proof.

We need the following two lemmas for the next proposition (Proposition 4.9). The first
lemma is elementary and easily follows from [26, Theorems 10.3 and 10.4], whereas the
latter plays a central role in the proof of Proposition 4.9.

Lemma 4.7. Let � be a finite Borel measure on K with full support, let U be a non-empty
open subset of K and set �jU WD �jB.U/ and EU WD EjFU�FU . Then .EU ;FU / is a
strong local regular Dirichlet form on L2.U; �jU / whose associated Markovian semigroup
admits a unique continuous integral kernel pU� D pU� .t; x; y/ W .0;1/�U �U ! Œ0;1/,
and pU� is extended to a continuous function on .0;1/ � K � K by setting pU� WD 0 on
.0;1/� .K �K nU �U/. pU� is called the heat kernel associated with .U; �jU ; EU ;FU /.

Lemma 4.8. lim supt#0 2t logp�hhi
.t; x; y/ � ���hhi

.x; y/2 for any x; y 2 K, h 2 SH0 .

Proof. Let h 2 SH0 . By Lemma 4.6 and (3.12), ��hhi
is a metric on K adapted to Sh. Then

.�hhi; ��hhi
/ has the volume doubling property similar to (3.16). Moreover, for .�; �/ D

.�hhi; ��hhi
/, the proof of Proposition 3.20 still works and hence (3.18) holds with the

constants 34106 and 250
p
2 suitably replaced. Now the assertion follows from [36, Theorem

2.6] and [35, Corollary 2.7].

Proposition 4.9. Let h 2 SH0 , i 2 S , b 2 .h.qi /;1/ and set a WD h.qi /. Suppose that
the connected component U of h�1..�1; b// with qi 2 U satisfies U \ V0 D ¹qi º. Let
pŒa;b/ D pŒa;b/.t; x; y/ W .0;1/� Œa; b�� Œa; b� ! Œ0;1/ be the heat kernel for 1

2
d2

dx2
on

Œa; b� with Neumann (reflecting) boundary condition at a and Dirichlet (absorbing) bound-
ary condition at b. Then

�hhi ı .hjU /
�1

D 2E.h; hi1/1Œa;b�dx (dx is the Lebesgue measure on R); (4.11)

pU�hhi
.t; qi ; x/ D .2E.h; hi1//

�1pŒa;b/.t; a; h.x//; .t; x/ 2 .0;1/ � U ; (4.12)

�h.qi ; x/ D ��hhi
.qi ; x/ D h.x/ � a; x 2 U : (4.13)

Proof. Let hb WD h1U Cb1KnU . We show hb 2 H¹qiº[.KnU/. Note that, by [13, Problem
1.4.1] and the locality of .E ;F/, given open subsets U1; U2 of K with U1 \ U2 D ; we
can verify FU1[U2 D FU1 ˚ FU2 and E.u1; u2/ D 0 for ui 2 FUi , i D 1; 2. Set bU WD

h�1..�1; b//nU . SinceU; bU are open inK and .b1�h/C 2 F
U[bU , .b1�h/C1U 2 FU

and hb D b1�.b1�h/C1U 2 F . By @U � U n.U[bU/ � h�1.b/, h D b on @U , hb�h D

.b1�h/1KnU 2 FKnU and therefore E.hb; u/ D E.hb�h; u/ D E..b1�h/1KnU ; u/ D 0

for u 2 FUn¹qiº, proving the claim.
Proposition 2.10-(2) yields a � hb � b. Moreover, we have h�1

b
.a/ D ¹qi º. Indeed,

choose n 2 N so thatKin�1 � U . Then hb ıFin�1 D hıFin�1 2 H0 nR1 by h 2 H0 nR1
and hence hb > a onKin n¹qi º by the strong maximum principle [23, Theorem 3.2.14]. Set
c WD minFin .V0/n¹qiº hb and g WD hb1KnKin

C .hb _ c/1Kin . Then g 2 HKin[.KnU/,
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and Proposition 2.10-(2) implies that hb.x/ D g.x/ � c > a for x 2 K n Kin . Thus
h�1
b
.a/ D ¹qi º.
By [11, Proposition 2.9] (see also [20, Corollary 2.11]), �hhbi ı h�1

b
D ı1Œa;b�dx for

some ı 2 .0;1/, and �hhbi.K n U/ D �hhbi.h
�1
b
.b// D 0. Since �hhijU D �hhbijU

by [13, Corollary 3.2.1] (or by Theorem 2.17) and �hhbi.K n U/ D 0, we have �hhi ı

.hjU /
�1 D �hhbi ı .hbjU /

�1 D �hhbi ı h�1
b

D ı1Œa;b�dx. Take ah; bh 2 R such that
h D ahh

i
1

C bhh
i
2

C a1. Let n 2 N satisfy Kin�1 � U . Then 2E.h; hi
1
/ D ah > 0 since

h > a on Kin n ¹qi º, and the argument in the previous paragraph together with Proposition
2.10-(2) also yields

.hjU /
�1
��
a; aC .3

5
/nah � .1

5
/n jbhj

p
3

��
� Kin � .hjU /

�1
��
a; aC .3

5
/nah C .1

5
/n jbhj

p
3

��
:

(4.14)
Taking the values of�hhi on each side of (4.14) yields ja2

h
C9�nb2

h
�ıahj � 3�nıjbhj=

p
3,

and letting n ! 1 results in ıah D a2
h

. Thus ı D ah D 2E.h; hi
1
/, proving (4.11).

We could give a probabilistic proof of (4.12) based on [20, Theorem 3.6], as in [20,
Proof of Theorem 4.1], but we provide an alternative analytic proof here. For n 2 N let
'n.x/ WD

�
2
b�a

�1=2 cos
�
2n�1
2

� x�a
b�a

�
and �n WD

�2

8

�
2n�1
b�a

�2, so that �
1
2
'00
n D �n'n,

'0
n.a/ D 'n.b/ D 0 and therefore

R b
a
pŒa;b/.t; �; y/'n.y/dy D e��nt'n for t 2 .0;1/.

Then ¹'nºn2N is a complete orthonormal system of L2.Œa; b�; dx/. On the other hand, let
�h;U be the non-positive self-adjoint operator of the Dirichlet space .U; �hhijU ; EU ;FU /
with domain DŒ�h;U �. Then 'n.hb/ 2 DŒ�h;U � and �h;U Œ'n.hb/� D

1
2
'00
n.hb/ D

��n'n.hb/ by [20, Theorem 2.12-(2)] and henceZ
U

pU�hhi
.t; �; y/'n.hb/d�hhi.y/ D e��nt'n.hb/; t 2 .0;1/: (4.15)

Let f 2 L2.Œa; b�; dx/ and an WD
R b
a
f 'ndx, n 2 N. Then f D

P
n2N an'n in

L2.Œa; b�; dx/ and hence f .hb/1U 2 L2.U; �hhijU / and f .hb/1U D
P
n2N an'n.hb/

in L2.U; �hhijU / by (4.11). Therefore for .t; x/ 2 .0;1/ �K, (4.15) yieldsZ
U

pU�hhi
.t; y; x/f .hb.y//d�hhi.y/ D

X
n2N

ane
��nt'n.hb.x//

D

Z b
a

pŒa;b/.t; y; hb.x//f .y/dy: (4.16)

Now (4.12) follows by letting s 2 .a; b/, f WD .s � a/�11Œa;s� in (4.16) and s # a since
h�1
b
.a/ D ¹qi º and �hhi

�
h�1
b
.Œa; s�/

�
D 2E.h; hi

1
/.s�a/. Finally, since pU�hhi

� p�hhi
by

[24, (C.2)], we see from Lemmas 4.6 and 4.8 and a direct calculation using [21, Proposition
2.8.10] that for x 2 U ,

.h.x/ � a/2 D � lim
t#0

2t logpŒa;b/.t; a; h.x// D � lim
t#0

2t logpU�hhi
.t; qi ; x/

� � lim sup
t#0

2t logp�hhi
.t; qi ; x/ � ��hhi

.qi ; x/
2

� �h.qi ; x/
2

� .h.x/ � a/2;

proving (4.13) for x 2 U , and hence also for x 2 U .

Proposition 4.10. (1) ¹u 2 F j �hui � �º D ¹u 2 C.K/ j Lip�H u � 1º.
(2) Let h 2 SH0 . Then ¹u 2 F j �hui � �hhiº D ¹u 2 C.K/ j Lip�h u � 1º.
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Proof. (1) Let u 2 F satisfy �hui � �, let l 2 N and x; y 2 Vl , x 6D y. It suffices to
show ju.x/ � u.y/j � �H.x; y/, since V� is dense in K and we already have Lemma 4.5.
We follow [7, Proof of Proposition 1.11]. Note that Lip�H u � 9 < 1 by Lemma 4.6.
By Proposition 3.15, we can choose a harmonic l-geodesic 
 W Œ0; 1� ! K arising from an
l-walk � D ¹´kºN

kD0
so that 
.0/ D x, 
.1/ D y and �H.
.s/; 
.t// D js� t j�H.x; y/ for

any s; t 2 Œ0; 1�. Set  WD u ı 
 . Then we have j .s/ �  .t/j � .Lip�H u/js � t j�H.x; y/
for s; t 2 Œ0; 1� and hence  is absolutely continuous. In particular,  0.t/ exists for dt -a.e.
t 2 Œ0; 1�,  0 2 L1.Œ0; 1�; dt/ and  .t/ D

R t
0
 0.s/ds, t 2 Œ0; 1�. Thus it suffices to prove

that j 0.t/j � �H.x; y/ for dt -a.e. t 2 Œ0; 1�.
Let t 2 Œ0; 1� and suppose  0.t/ exists. We may assume that 
.t/ 62 V� since 
�1.V�/

is countable. Let ´ WD 
.t/ and ! 2 ��1.´/. Choose k 2 ¹1; : : : ; N º and i; j 2 S so that
´ 2 ´k�1´k , ´k�1 D Fw.qi / and ´k D Fw.qj /, where w WD w.´k�1; ´k/. For m � jwj

we set

um WD
u ı FŒ!�m
kTŒ!�mk

; hm WD
h´ ı FŒ!�m

kTŒ!�mk
; h?

m WD
h?
´ ı FŒ!�m

kTŒ!�mk
: (4.17)

Then kumkE � 1 by �hui � �, and Lemma 2.19 yields 1 � khmkE ! 1 and kh?
mkE ! 0

as m ! 1 since ´ 2 ´k�1´k � KZ . Choosing subsequences ¹umnºn2N and ¹hmnºn2N,
we have umn ! v weakly in .F=R1; E/ and khmn � gkE ! 0 as n ! 1 for some v 2 F
and g 2 SH0 with v.´/ D g.´/ D 0. We further define

vn WD umn � umn.´/1; gn WD hmn � hmn.´/1; g?
n WD h?

mn
� h?

mn
.´/1: (4.18)

We have limn!1 kgn�gk1 D 0 and vn.p/ D vn.p/�vn.´/ ! v.p/�v.´/ D v.p/ as
n ! 1 for any p 2 K since F=R1 3 f 7! f � f .´/1 2 C.K/ is a well-defined bounded
linear operator .F=R1; E/ ! .C.K/; k � k1/ by Theorem 2.5.

We claim that �hvi � �hgi. Let � 2 W�. Since F �
� W f 7! f ı F� is a bounded linear

operator on .F=R1; E/ by (2.2), we have kgn ı F� � g ı F�kE _ kg?
n ı F�kE ! 0 and

vn ı F� ! v ı F� weakly in .F=R1; E/ as n ! 1. By �hui � � D �hh´i C �
hh?
´ i

we see that kvn ı F�k2E � kgn ı F�k2E C kg?
n ı F�k2E , and letting n ! 1 results in

kv ı F�kE � lim infn!1 kvn ı F�kE � kg ı F�kE , i.e. �hvi.K� / � �hgi.K� /. Thus the
claim follows.

Note that either g 62 Rhi
2

C R1 or g 62 Rhj
2

C R1. Suppose g 62 Rhi
2

C R1; the proof
for the other case is similar. Take �g D .�1g; �

2
g/ 2 R2 so that g� �1gh

i
1

� �2gh
i
2

2 R1. Then
�1g 6D 0, and since hi

1
ı FiM D .3=5/Mhi

1
and hi

2
ı FiM D .1=5/Mhi

2
we can choose

M 2 N so that "g.qi / < minp2V0n¹qiº "g ı FiM .p/ DW b, where " WD �1g=j�
1
gj. Let U be

the connected component of ."g/�1..�1; b//with qi 2 U , and choose q 2 qiqj\U n¹qi º.
The definition of b implies U � KiM and hence Proposition 4.9 together with �hvi � �hgi

shows that

jv.qi / � v.q/j � ��hgi
.qi ; q/ D jg.qi / � g.q/j 6D 0: (4.19)

Now noting that 
 is injective and that FŒ!�mn .qi /; FŒ!�mn .q/ 2 ´k�1´k , we set
sn WD 
�1

�
FŒ!�mn .qi /

�
and tn WD 
�1

�
FŒ!�mn .q/

�
for n 2 N. Then limn!1 sn D

limn!1 tn D 
�1.´/ D t , and Lemma 3.7 and (3.11) imply

.jsn � t j _ jtn � t j/�H.x; y/ D �H.
.sn/; ´/ _ �H.
.tn/; ´/ � 10


TŒ!�mn

: (4.20)
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Let a WD g.qi / � g.q/. By limn!1.gn.qi / � gn.q// D a 6D 0 and (4.20), for sufficiently
large n 2 N we have jgn.qi / � gn.q/j � jaj=2 and

jsn � tnj D
�H.
.sn/; 
.tn//

�H.x; y/
�



TŒ!�mn

jgn.qi / � gn.q/j

�H.x; y/
�

jaj

20
.jsn � t j _ jtn � t j/;

(4.21)
from which limn!1

 .sn/� .tn/
sn�tn

D  0.t/ easily follows. Then the first inequality in
(4.21) and (4.19) together imply

j 0.t/j

�H.x; y/
D lim
n!1

j .sn/ �  .tn/j

jsn � tnj�H.x; y/
� lim
n!1

ˇ̌̌̌
vn.qi / � vn.q/

gn.qi / � gn.q/

ˇ̌̌̌
D

ˇ̌̌̌
v.qi / � v.q/

g.qi / � g.q/

ˇ̌̌̌
� 1;

proving ju.x/ � u.y/j D j .0/ �  .1/j � �H.x; y/ and Lip�H u � 1.
(2) Let l 2 N and x; y 2 Vl , x 6D y and set 
 WD 
hxy ı 'hxy , where 
hxy and 'hxy are as in
Proposition 3.16 with 
hxy a harmonic l-geodesic. Then exactly the same proof as that of (1)
still works with um WD kh ıFŒ!�mk�1

E u ıFŒ!�m and hm WD kh ıFŒ!�mk�1
E h ıFŒ!�m .

Proof of Theorem 4.2. Let h 2 SH0 . By Lemmas 4.5 and 4.6, it only remains to show that
�� � �H and ��hhi

� �h, which are immediate from Proposition 4.10.

5 One-dimensional asymptotics at vertices

In this section, we prove sharp “one-dimensional” asymptotic behaviors of �.Br .x; �H//
and p�.t; x; y/ for x 2 V�, which reflect our observation that, near ˆ.x/, the harmonic
Sierpinski gasket KH (Figure 2) looks very much like its “tangent line at ˆ.x/”. We treat
the results for �.Br .x; �H// and p�.t; x; y/ respectively in Subsections 5.1 and 5.2. Then
Subsection 5.3 presents an application of the result for p� to moments of displacement of
the corresponding diffusion.

The following definition is fundamental for the arguments in this section.

Definition 5.1. For each x 2 V�, we define �x ; cx ; rx 2 .0;1/ and Kx � K as follows:
(i) If x D qi 2 V0, i 2 S , then we set �qi WD 1=2, cqi WD 1, rqi WD 1 and Kqi WD Ki .
(ii) If x 2 V� nV0, let w 2 W� and i; j 2 S , i 6D j be such that ��1.x/ D ¹wij1; wj i1º

(recall Proposition 2.3) and aix ; b
i
x ; a

j
x ; b

j
x 2 R such that hx ı Fwi D aixh

j

1
C bixh

j

2
and

hx ıFwj D a
j
xh
i
1

Cb
j
xh
i
2

(recall hx.x/ D 0). Noting that ajx D �aix by the hamonicity of
hx at x (see [23, (3.2.1)]) and that aix 6D 0 by Lemma 2.19 and infn2N.5=3/

nkTwijnk > 0,
we define

�x WD

�5
3

�jwjC1

jaix j; cx WD
�

hh?
x i
.Kwi [Kwj /

jaix j O�
;

rx WD
4

3

�3
5

�Nx
jaix j; Kx WD KwijNx [KwjiNx ;

(5.1)

where Nx WD 1C min¹n 2 N [ ¹0º j .
p
3=6/3njaix j � jbix j _ jb

j
x jº.

Remark 5.2. We can write down �x ; cx ; rx explicitly in terms of Tw in the situation of
Definition 5.1-(ii), since hx and h?

x are given by (2.14) and

�x D "i jTwi�qj j
�1Twi�qj D "j jTwj �qi j

�1Twj �qi (5.2)

for some "i ; "j 2 ¹�1; 1º by Proposition 3.14.
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5.1 Measures of geodesic balls

The following is the main theorem of this subsection.

Theorem 5.3. Let x 2 V� and s 2 .0; rx �. Then

lim
r#0

�.Br .x; �H//

r
D
�hhxi.Bs.x; �hx //

s
D 2�x : (5.3)

The rest of this subsection is devoted to the proof of Theorem 5.3. We need the following
proposition and lemmas, which will play essential roles also in Subsections 5.2 and 5.3
below.

Proposition 5.4 (cf. Proposition 4.9). Let x 2 V� n V0, and let U x be the connected com-
ponent of h�1

x ..�rx ; rx// containing x. Let w 2 W�, i; j 2 S , aix ; a
j
x 2 R and Nx 2 N be

as in Definition 5.1, and without loss of generality assume ajx > 0.
(1) hx < 0 on KwijNx�1 n ¹xº and hx > 0 on KwjiNx�1 n ¹xº. Moreover, Kx � U x �

KwijNx�1 [KwjiNx�1 .
(2) For b 2 .0;1/ let pb D pb.t; y; ´/ W .0;1/ � Œ�b; b� � Œ�b; b� ! Œ0;1/ denote the
heat kernel for 1

2
d2

dy2
on Œ�b; b� with Dirichlet (absorbing) boundary condition at �b and

b. Then

�hhxi ı .hx jUx /
�1

D �x1Œ�rx;rx�dy (dy is the Lebesgue measure on R); (5.4)

pU
x

�hhx i
.t; x; y/ D ��1

x prx .t; 0; hx.y//; .t; y/ 2 .0;1/ � U x ; (5.5)

�hx .x; y/ D jhx.y/j; y 2 U x : (5.6)

(3) Br .x; �hx / D U x \ h�1
x ..�r; r// and �hhxi.Br .x; �hx // D 2�xr for any r 2 .0; rx �.

(4) B2rx;n=3.x; �hx / � Kwijn [ Kwjin � B5rx;n=6.x; �hx / for n 2 N, n � Nx , where
rx;n WD

4
3

�
3
5

�n
jaix j.

Proof. (1) In view of the definition of Nx , a direct calculation together with the strong
maximum principle [23, Theorem 3.2.14] easily shows the assertions.
(2) (5.4) and (5.6) follow by applying Proposition 4.9 with h D khx ı Fvk�1

E hx ı Fv , b D

rx=khx ı Fvk, a D 0 and U D F�1
v .U x \Kv/, where v WD wjiNx�1, and similarly on

KwijNx�1 . Also the same proof as that of (4.12) shows that for any f 2 L2.Œ�rx ; rx �; dy/

and any .t; y/ 2 .0;1/ � U x ,Z
Ux

pU
x

�hhx i
.t; ´; y/f .hx.´//d�hhi.´/ D

Z rx
�rx

prx .t; ´; hx.y//f .´/d´; (5.7)

from which (5.5) easily follows by virtue of h�1
x .0/ \ U x D ¹xº and (5.4).

(3) This is immediate from (5.4), (5.6) and the fact that jhx j D rx on @U x .
(4) Similarly to (4.14), using the definition of Nx and Proposition 2.10-(2) we have

.hx jUx /
�1
�
.�2
3
rx;n;

2
3
rx;n/

�
� Kwijn [Kwjin � .hx jUx /

�1
�
.�5
6
rx;n;

5
6
rx;n/

�
for n � Nx , which and the first assertion of (3) immediately yield (4).

Lemma 5.5. 1
225

cxr
O� � �

hh?
x i
.Br .x; �hx // � 225cxr

O� for x 2 V� and any r 2 .0; rx �.
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Proof. Suppose x 2 V� n V0. Let w 2 W�, i; j 2 S , aix ; a
j
x 2 R and Nx 2 N be as

in Definition 5.1 and set a WD jaix j D ja
j
x j. Since kh?

x ı FwijnkE _ kh?
x ı FwjinkE D

o..3=5/n/ as n ! 1 by Lemma 2.19, h?
x ı Fwi 2 Rhj

2
, h?
x ı Fwj 2 Rhi

2
and hence

�
hh?
x i
.Kxn / D .1=15/na O�cx for n 2 N [ ¹0º, whereKxn WD Kwijn [Kwjin . For n � Nx ,

Kxn � Brx;n.x; �hx / � Kx
n�1

by Proposition 5.4-(1), (4) and hence 15�1.rx;n/
O�cx �

�
hh?
x i
.Brx;n.x; �hx // � 15.rx;n/

O�cx . Now for each r 2 .0; rx �, rx;nC1 < r � rx;n for
a unique n � Nx , and then �

hh?
x i
.Br .x; �hx // � 15..5=3/rx;nC1/

O�cx � 152cxr
O� and

�
hh?
x i
.Br .x; �hx // � 15�1..3=5/rx;n/

O�cx � 15�2cxr
O� .

The assertion for x 2 V0 is proved in the same way by using Proposition 4.9.

Lemma 5.6. Let x 2 V� n V0, and let w 2 W�, i; j 2 S and aix 2 R be as in Definition
5.1. Then for any y 2 K,

lim
n!1

�5
3

�n
�H
�
x; Fwijn.y/

�
D jaix jh

j

1
.y/: (5.8)

Proof. Let y 2 K. �
h
j
1

.qj ; y/ D h
j

1
.y/ by (4.13), and by Proposition 3.16 we can choose

a harmonic geodesic 
y W Œ0; 1� ! K so that 
y.0/ D qj , 
y.1/ D y and `
h
j
1

.
y/ D

�
h
j
1

.qj ; y/ D h
j

1
.y/. Since hx.x/ D 0, Fwijn ı
y.0/ D Fwijn.qj / D x, and h?

x ıFwi D

cixh
j

2
for some cix 2 R by the proof of Lemma 5.5,

jaix jh
j

1
.y/ �

jbixh
j

2
.y/j

3n
�

�5
3

�n
jhx ı Fwijn.y/j �

�5
3

�n
�H
�
x; Fwijn.y/

�
�

�5
3

�n
`H.Fwijn ı 
y/ �

�5
3

�n�
`hx .Fwijn ı 
y/C `

h?
x
.Fwijn ı 
y/

�
D `

�
.aixh

j

1
C 3�nbixh

j

2
/ ı 
y

�
C

jcix j

3n
`.h

j

2
ı 
y/

� jaix j`
h
j
1

.
y/C
jbix j C jcix j

3n
`
h
j
2

.
y/ D jaix jh
j

1
.y/C

jbix j C jcix j

3n
`
h
j
2

.
y/; (5.9)

where bix 2 R is as in Definition 5.1. Now letting n ! 1 in (5.9) yields (5.8).

Remark 5.7. In (5.9), the author does not have any idea how to estimate `
h
j
2

.
y/ uniformly
in y. This is why no remainder estimate is given for the limits in (5.3) and (5.8), and in
(5.42) below, neither.

Proof of Theorem 5.3. �hhxi.Bs.x; �hx // D 2�xs follows from Propositions 4.9 and 5.4.
Let r 2 .0; rx �. Since Br .x; �H/ � Br .x; �hx / by �hx � �H, � D �hhxi C �

hh?
x i

and
Lemma 5.5 imply

�.Br .x; �H// � �hhxi.Br .x; �hx //C �
hh?
x i
.Br .x; �hx // � 2�xr C 225cxr

O� : (5.10)

In the rest of this proof we suppose x 2 V� n V0; the case of x 2 V0 is proved similarly
and more easily. Let w 2 W�, i; j 2 S and aix ; b

i
x ; a

j
x ; b

j
x 2 R be as in Definition 5.1.

Let r 2 .0; jaix j� and n 2 N. Since �huijKv WD �huijB.Kv/ D .5=3/jvj�huıFvi ı F�1
v for

u 2 F and v 2 W�,�5
3

�n
�
�
B.3=5/nr .x; �H/

�
�

�5
3

�n Z
Kwijn[Kwjin

1Œ0;.3=5/nr/.�H.x; y//d�hhxi.y/
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D

�5
3

�2nCjwjC1 X
.k;l/

Z
Kwkln

1Œ0;r/
��
5
3

�n
�H.x; y/

�
d
�
�hhxıFwkln i ı F�1

wkln

�
.y/

D

�5
3

�jwjC1 X
.k;l/

Z
K

1Œ0;r/
��
5
3

�n
�H
�
x; Fwkln.y/

��
d�

hakxh
l
1C3�nbkxh

l
2i
.y/

� �x jaix j
X
.k;l/

�Z
K

1Œ0;r/
��
5
3

�n
�H
�
x; Fwkln.y/

��
d�

hhl1i
.y/ �

2jbkx j

3njakx j

�
; (5.11)

where .k; l/ runs over ¹.i; j /; .j; i/º and we used �
hhl1;h

l
2i
.A/2 � �

hhl1i
.A/�

hhl2i
.A/ � 1,

A 2 B.K/. Then by using Lemma 5.6 and Fatou’s lemma to let n ! 1 in (5.11), together
with (4.11) and (5.10), we get limn!1

�
.3
5
/nr

��1
�
�
B.3=5/nr .x; �H/

�
D 2�x , from which

limr#0 r
�1�.Br .x; �H// D 2�x immediately follows since .0;1/ 3 r 7! �.Br .x; �H//

is non-decreasing.

5.2 Heat kernel

The main result of this subsection is a short time asymptotic behavior of p�.t; x; y/ for
x 2 V� and is stated in the following theorem, whose proof makes full use of Propositions
4.9 and 5.4 and Lemma 5.5. Recall Definition 5.1 and that �hx .x; y/ D jhx.y/j for x 2 V�

and y 2 Kx by (4.13) and (5.6).

Theorem 5.8. Let ı 2 .0; 1� and x 2 V�. Then there exists cR 2 .0;1/ determined solely
by �; O�; cG; cV such that for any .t; y/ 2 .0; r2x � �K

x ,ˇ̌̌̌
ˇp�.t; x; y/ �

exp
�
�
hx.y/

2

2t

�
�x

p
2�t

ˇ̌̌̌
ˇ �

 
cx

�x
t

O��1
2 C ı�C1

�
ı ^

. cx
�x
/
2
�C1 jhx.y/j

2.�C O�/
�C1

t

�
Cı

15
4 �C O�

2C2 exp
�

�
r2x
6t

�!
cR

ı
15
4 �C O�

2C2

exp
�
�
hx.y/

2

2.1Cı/t

�
�x

p
2�t

: (5.12)

In particular, there exists tx 2 .0; r2x � determined solely by rx ; cx�x ; O� such thatˇ̌̌̌
ˇp�.t; x; y/ �

exp
�
�
hx.y/

2

2t

�
�x

p
2�t

ˇ̌̌̌
ˇ � cx;ıR

�
t

O��1
2 C ı� jhx.y/j

2. O��1/
�C1

�exp
�
�
hx.y/

2

2.1Cı/t

�
�x

p
2�t

(5.13)

for any .t; y/ 2 .0; tx � �K
x , where cx;ıR WD 5cR

�
cx
�x

_ .cx
�x
/
2
�C1

�
.2=ı/

15
4 �C O�

2C2.

By virtue of Propositions 4.9 and 5.4 and Lemma 5.5, Theorem 5.8 follows from the
following general remainder estimate.

Theorem 5.9. Let h; h? 2 SH0 satisfy E.h; h?/ D 0, and let ı 2 .0; 1�. Then there exists
CR 2 .0;1/ determined solely by �; O�; cG; cV such that for any .t; x; y/ 2 .0;1/�K �K,

jp�.t; x; y/ � p�hhi
.t; x; y/j

�

 
1

t

Z t
0

�hh?i

�
Bp

s.x; �h/
�

�hhi

�
Bp

s.x; �h/
� ds C

ı�C1

t

Z ıt
0

�hh?i

�
Bp

s.y; �H/
�

�
�
Bp

s.y; �H/
� ds

C ı
9
4�C2

�hh?i

�
Bp

ıt
.y; �H/

�
�
�
Bp

ıt
.y; �H/

� !
CR

ı
15
4 �C O�

2C2

exp
�
�
�h.x;y/

2

2.1Cı/t

�
�hhi

�
Bp

t
.x; �h/

� : (5.14)
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The proof of Theorem 5.9 is given later. First we prove Theorem 5.8 based on Theorem
5.9. For this purpose we need the following lemma.

Lemma 5.10. �hhi.Br .x; �h// . �.Br .x; �H// for h 2 SH0 and any .r; x/ 2 .0;1/�K.

Proof. Let h 2 SH0 and .s; x/ 2 .0; 1/ � K. Let w 2 ƒhs satisfy Kw \ Ks.x; S
h/ 6D ;.

Then Kw \ Kv 6D ; for some v 2 ƒhs with x 2 Kv , and � � v for some � 2 ƒH
s with

x 2 K� by lh � lH. Moreover khıFvkE � s � 5kT�k by (3.4), which and jvj � j� j easily
yield �hhi.Kv/ � 25�.K� /. Therefore using Proposition 3.10-(1) we see that �hhi.Kw/ .
�hhi.Kv/ . �.K� / � �.Us.x; S

H//, which and Lemma 3.5 imply �hhi.Us.x; S
h// .

�.Us.x; S
H//. Using this fact together with (3.16), (3.12) and (3.11), we conclude that

�hhi.B10s.x; �h// . �hhi.Bs=25.x; �h// � �hhi.Us.x; S
h//

. �.Us.x; S
H// � �.B10s.x; �H//:

The case of r � 10 is clear since B10.x; �H/ D B10.x; �h/ D K by (3.11) and (3.12).

Proof of Theorem 5.8 under Theorem 5.9. Let ı 2 .0; 1�, x 2 V� and y 2 Kx . For r 2

.0; rx �, Br .y; �H/ � Br .y; �hx / by �hx � �H, and then by Lemma 5.10, Theorem 3.19,
Proposition 5.4 (Proposition 4.9 when x 2 V0) and Lemma 5.5 we have

�
hh?
x i
.Br .y; �H//

�.Br .y; �H//
.
�

hh?
x i
.Br .y; �hx //

�hhxi.Br .y; �hx //
.
�
1C

jhx.y/j

r

��C O� �
hh?
x i
.Br .x; �hx //

�hhxi.Br .x; �hx //

.
�
1C

jhx.y/j
�C O�

r�C O�

�
225cx

2�x
r O��1 .

cx

�x

�
r O��1

C
jhx.y/j

�C O�

r�C1

�
: (5.15)

Let t 2 .0; r2x �. Since �
hh?
x i

� � and � C 1 > 2, (5.15) yields

Z ıt
0

�
hh?
x i

�
Bp

s.y; �H/
�

�
�
Bp

s.y; �H/
� ds .
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�x

Z ıt
0
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O��1
2 ds C

Z ıt
0

1 ^
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�C O�

�xs
�C1
2
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�x
.ıt/
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2 CDx.y/C

Z 1

Dx.y/

�Dx.y/
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2

ds if Dx.y/ � ıt
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�x
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O�C1
2 C ıt if Dx.y/ � ıt

�
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�x
.ıt/

O�C1
2 C 4t

�
ı ^

Dx.y/

t

�
; where Dx.y/ WD

�cx
�x

� 2
�C1

jhx.y/j
2.�C O�/
�C1 : (5.16)

Similarly, by using (5.15) and 1 ^ s
�C1
2 � 1 ^ s, s 2 Œ0;1/, we see that

�
hh?
x i

�
Bp

ıt
.y; �H/
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�
�
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ıt
.y; �H/

� .
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�x
.ıt/

O��1
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�
: (5.17)

Again by Proposition 5.4-(3) (Proposition 4.9 when x 2 V0) and Lemma 5.5, we also haveZ t
0

�
hh?
x i

�
Bp

s.x; �hx /
�

�
�
Bp

s.x; �hx /
� ds �

225cx

2�x

Z t
0

s
O��1
2 ds D

225

O� C 1

cx

�x
t

O�C1
2 : (5.18)
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On the other hand, let U x be the connected component of h�1
x ..�rx ; rx// containing

x and set  x.y; t/ WD 1 �
R
Ux

pU
x

�hhx i
.t; y; ´/d�hhxi.´/. Then (4.16), (5.7) and a direct

calculation using [21, Exercise 2.8.11] yield

0 �  x.y; t/ D 1 �

Z rx
�rx

prx .t; hx.y/; ´/d´ � 2 exp
�

�
.rx � jhx.y/j/

2

2t

�
: (5.19)

By [16, Theorem 5.1] (or [14, Theorem 10.4]), (5.19), (3.16), (4.2) and jhx.y/j � 5rx=6,

0 � p�hhx i
.t; x; y/ � pU

x

�hhx i
.t; x; y/

�  x
�
x; t
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�
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t

�3�=4 exp
�
�
r2x
t

�
r2x
72t
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exp
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72t
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�
r2x
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�
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�
hx.y/

2

2t

�
2�x

p
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: (5.20)

Also a direct calculation using [21, Proposition 2.8.10], t � r2x and jhx.y/j � 5rx=6 yields

0 �
exp
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�
hx.y/

2

2t

�
�x

p
2�t

� pU
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�hhx i
.t; x; y/ D

exp
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�
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2

2t

�
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p
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� ��1
x prx .t; 0; hx.y//

� 3 exp
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2rx.rx � jhx.y/j/
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�
exp
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hx.y/

2

2t

�
�x

p
2�t

� 3 exp
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�
r2x
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�
exp
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�
hx.y/

2

2t

�
�x

p
2�t

: (5.21)

Now (5.12) is immediate from the inequality (5.14) with h D hx and h? D h?
x and the

estimates (5.16), (5.17), (5.18), (5.20) and (5.21). (5.13) follows by using 2se�s=.1Cı=2/ �

5ı�1e�s=.1Cı/, s WD hx.y/
2=2t to estimate the second term in (5.12), completing the

proof of Theorem 5.8.

The rest of this subsection is devoted to the proof of Theorem 5.9. We need to prepare
several lemmas. The following lemma is immediate from (3.16) and Corollary 4.3; note that
we have .1C x/˛e�x=ˇ � .e�1˛ˇ/˛e1=ˇ for ˛; ˇ 2 .0;1/ and x 2 Œ�1;1/.

Lemma 5.11. Let h 2 SH0 . For ı 2 .0;1/ and .t; x; y/ 2 .0;1/ �K �K, define

‰H;ı.t; x; y/ WD
exp

�
�
�H.x;y/2

2.1Cı/t

�
�
�
Bp

t
.x; �H/

� ; ‰h;ı.t; x; y/ WD
exp

�
�
�h.x;y/

2

2.1Cı/t

�
�hhi

�
Bp

t
.x; �h/

� : (5.22)

Then for each n 2 N [ ¹0º there exists chk.n/ 2 .0;1/ determined solely by n; �; cG; cV

such that for any ı 2 .0; 1� and any .t; x; y/ 2 .0;1/ �K �K,ˇ̌
@nt p�.t; x; y/

ˇ̌
�

chk.n/

ı
3
4�Cntn

‰H;ı.t; x; y/; (5.23)ˇ̌
@nt p�hhi

.t; x; y/
ˇ̌

�
chk.n/

ı
3
4�Cntn

‰h;ı.t; x; y/: (5.24)
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Lemma 5.12. Let "; ı 2 .0;1/, " < ı and set �."; ı/ WD ."ı C 2" C 1/=.ı � "/. Let
h 2 SH0 , s; t 2 .0;1/ and x; y; ´ 2 K. Then

‰H;".s; x; ´/‰h;ı.t; y; ´/ � cV

� s C t

t

��=2
‰H;�.";ı/.s; x; ´/‰h;ı.s C t; y; x/; (5.25)

‰h;".s; x; ´/‰h;ı.t; y; ´/ � cV

� s C t

t

��=2
‰h;�.";ı/.s; x; ´/‰h;ı.s C t; y; x/: (5.26)

Proof. Since .1C"/�1 D .1C�."; ı//�1C.1Cı/�1 and a2=sCb2=t � .aCb/2=.sCt/ for
a; b 2 Œ0;1/, a direct calculation using (3.16) and �h � �H easily shows the assertion.

Lemma 5.13. Let g; h 2 SH0 and � 2 Œ1;1/. Then for any .t; x/ 2 .0;1/ �K,Z
K

‰� .t; x; y/d�.y/ . ��=2;

Z
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‰� .t; x; y/d�hgi.y/ . � O�=2
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t
.x; �/

�
�
�
Bp

t
.x; �/

� ;

(5.27)
where .�; �;‰� / denotes any one of .�; �H; ‰H;� / and .�hhi; �h; ‰h;� /.

Proof. Let .t; x/ 2 .0;1/ �K and s WD .1C �/t . By (3.16) we see thatZ
K

‰� .t; x; y/d�.y/
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Z
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X
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e�4n=8�
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Bp

t
.x; �/

��1
�
�
Bp

s.x; �/
�
cV
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X
n2N

2�ne�4n=8
�

. ��=2:

The latter assertion is proved in the same way by using (3.16) and (3.17).

Next we introduce several probabilistic notions required for the proof of Theorem 5.9,
which utilizes a time change argument on the diffusion. See [13, Part II and Section A.2]
for details concerning diffusions associated with symmetric Dirichlet forms and their time
changes by positive continuous additive functionals. BelowK@ WD K[¹@º denotes the one-
point compactification of K and a function f W K ! Œ�1;1� on K is always extended
to K@ by setting f .@/ WD 0 when needed. Let X D

�
�;M; ¹Xt ºt2Œ0;1�; ¹Pxºx2K@

�
be a �-symmetric diffusion on K with life time �X and minimum completed admissible
filtration F� WD ¹Ft ºt2Œ0;1� whose Dirichlet form on L2.K;�/ is .E ;F/; such X does
exist by virtue of [13, Theorem 7.2.2]. Then Px ŒXt 2 dy� D p�.t; x; y/d�.y/ for any
.t; x/ 2 .0;1/ � K by [26, Theorem 10.4], and Px Œ�X D 1� D 1 for x 2 K sinceR
K
p�.t; x; y/d�.y/ D 1, t 2 .0;1/. Expectation (i.e. integral on �) under the measure

Px is denoted by Ex Œ.�/�.
Take any h; h? 2 SH0 satisfying E.h; h?/ D 0, so that � D �hhi C�hh?i; we fix them

in the rest of this subsection. Also fix a Borel measurable version of d�hhi=d� satisfying
0 < .d�hhi=d�/.y/ � 1 for any y 2 K; such a version exists since �hhi � � and � is
absolutely continuous with respect to �hhi by [17, Theorem 5.6]. We define

At WD

Z t
0

d�hhi

d�
.Xs/ds; t 2 Œ0;1�; (5.28)
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so that A D ¹At ºt2Œ0;1/ is the positive continuous additive functional of X with Revuz
measure �hhi. For t 2 Œ0;1� we further define

�t WD inf¹s 2 Œ0;1/ j As > tº; Yt WD X�t Gt WD F�t I (5.29)

here �t is an F�-stopping time and hence F�t is defined as a sub-� -field of F1. [13,
Theorems A.2.12 and 6.2.1] imply that Y WD

�
�;M; ¹Yt ºt2Œ0;1�; ¹Pxºx2K@

�
is a �hhi-

symmetric diffusion on K with life time A1 and admissible filtration G� WD ¹Gt ºt2Œ0;1�

whose Dirichlet form on L2.K;�hhi/ is .E ;F/. Px ŒYt 2 dy� D p�hhi
.t; x; y/d�hhi.y/

for any .t; x/ 2 .0;1/ � K by [26, Theorem 10.4] and hence Px ŒA1 D 1� D 1,
x 2 K. For each t 2 Œ0;1/, clearly At � t � �t , and At is a G�-stopping time since
¹At > sº D ¹�s < tº 2 F�s D Gs , s 2 Œ0;1/. On ¹�X D 1º, A.�/ is strictly increasing
and hence �At D t and YAt D Xt for any t 2 Œ0;1/. For x 2 K, since Px ŒA1 D 1� D 1,
a direct calculation shows that

�t D

Z t
0

�d�hhi

d�
.Ys/

��1

ds < 1 for any t 2 Œ0;1/; Px-a.s. (5.30)

Lemma 5.14. For any ı 2 .0; 1�, s; t 2 .0;1/ and x; y 2 K,

Ex Œ.t � At /‰h;ı.s; y;Xt /�

‰h;ı.s C t; y; x/
.
�
sCt
s

��=2
ı2�C O�=2

Z t
0

�hh?i

�
Bp

u.x; �H/
�

�
�
Bp

u.x; �H/
� du; (5.31)

Ex Œ.�t � t/‰h;ı.s; y; Yt /�

‰h;ı.s C t; y; x/
.
�
sCt
s

��=2
ı2�C O�=2

Z t
0

�hh?i

�
Bp

u.x; �h/
�

�hhi

�
Bp

u.x; �h/
� du: (5.32)

Proof. Let ı 2 .0; 1�, s; t 2 .0;1/ and x; y 2 K. By (5.28) and the Markov property of X ,

Ex Œ.t � At /‰h;ı.s; y;Xt /� D

Z t
0

Ex
h�

1 �
d�hhi

d�

�
.Xu/‰h;ı.s; y;Xt /

i
du

D

Z t
0

Z
K

Z
K

p�.u; x; ´/p�.t � u; ´;w/
�

1 �
d�hhi

d�

�
.´/‰h;ı.s; y; w/d�.w/d�.´/du

D

Z t
0

Z
K

Z
K

p�.u; x; ´/p�.t � u; ´;w/‰h;ı.s; y; w/d�.w/d�hh?i.´/du; (5.33)

where we used � D �hhi C �hh?i in the last equality. Then (5.23) and (5.25) yield

.ı=2/3�=2p�.u; x; ´/p�.t � u; ´;w/‰h;ı.s; y; w/

. ‰H;ı=2.u; x; ´/‰H;ı=2.t � u; ´;w/‰h;ı.s; y; w/

.
� s C t � u

s

��=2
‰H;ı=2.u; x; ´/‰H;�.ı=2;ı/.t � u; ´;w/‰h;ı.s C t � u; y; ´/

.
� s C t

s

��=2
‰H;�.ı=2;ı/.u; x; ´/‰H;�.ı=2;ı/.t � u; ´;w/‰h;ı.s C t; y; x/: (5.34)

Since 2=ı � �.ı=2; ı/ � 5=ı, from (5.33) and (5.34) we get (5.31) by using (5.27) to
integrate (5.34) first by d�.w/ and then by d�hh?i.´/. The same argument using (5.24),
(5.26) and (5.27) easily shows (5.32) as well since similarly to (5.33) we have

Ex Œ.�t � t/‰h;ı.s; y; Yt /� (5.35)

D

Z t
0

Z
K

Z
K

p�hhi
.u; x; ´/p�hhi

.t � u; ´;w/‰h;ı.s; y; w/d�hhi.w/d�hh?i.´/du
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by virtue of (5.30), the Markov property of Y and 1=.d�hhi=d�/ D d�=d�hhi �hhi-a.e.

Lemma 5.15. Let s; t; a 2 .0;1/, s < a < t . Then for any x; y 2 K,

p�hhi
.t; x; y/ D Ey Œp�hhi

.t � As ; Xs ; x/�; (5.36)

p�.t; x; y/ D Ex Œ1¹�s�aºp�.t � a;Xa; y/C 1¹�s<aºp�.t � �s ; Ys ; y/�: (5.37)

Proof. Let x; y 2 K. Since As � s < t and As is a G�-stopping time, the strong Markov
property of Y together with [21, Corollary 2.6.18] implies that for any r 2 .0;1/,Z

Br .x;�h/

p�hhi
.t; y; ´/d�hhi.´/ D Py ŒYt 2 Br .x; �h/� (5.38)

D

Z
�

PYAs.!/.!/ŒYt�As.!/ 2 Br .x; �h/�dPy.!/

D Ey
�Z
Br .x;�h/

p�hhi
.t � As ; Xs ; ´/d�hhi.´/

�
:

Then noting that 0 < t�s � t�As � t , we obtain (5.36) by dividing (5.38) by�.Br .x; �h//
and using the joint continuity of p�hhi

to let r # 0. Similarly we can also show (5.37) based
on the Markov property of X at time a and the strong Markov property of X at the F�-
stopping time �s together with [21, Corollary 2.6.18].

Proof of Theorem 5.9. Let ı 2 .0; 1� and set " WD ı=4, so that .1 C "/2 � 1 C ı. Let
.t; x; y/ 2 .0;1/ �K �K . From (5.36), (5.24), (3.16) and (5.31) we see thatˇ̌̌̌

p�hhi
.t; x; y/ �

Z
K

p�."t; y; ´/p�hhi
..1 � "/t; ´; x/d�.´/

ˇ̌̌̌
D
ˇ̌
Ey Œp�hhi

.t � A"t ; X"t ; x/ � p�hhi
..1 � "/t; X"t ; x/�

ˇ̌
� Ey Œ."t � A"t / supu2Œ.1�"/t;t� j@up�hhi

.u; x;X"t /j�

. "� 3
4��1Ey Œ."t � A"t / supu2Œ.1�"/t;t� u

�1‰h;".u; x;X"t /�

. "� 3
4��1t�1Ey Œ."t � A"t /‰h;".t; x;X"t /�

.
‰h;"..1C "/t; x; y/

"
11
4 �C O�

2C1t

Z "t
0

�hh?i

�
Bp

u.y; �H/
�

�
�
Bp

u.y; �H/
� du

.
‰h;ı.t; x; y/

ı
11
4 �C O�

2C1t

Z ıt
0

�hh?i

�
Bp

u.y; �H/
�

�
�
Bp

u.y; �H/
� du: (5.39)

Furthermore let s WD .1� "/t and a WD .1� "=2/t . Since ‰H;ı.t; x; y/ . ‰h;ı.t; x; y/

and �hgi.Br .x; �H// � �hgi.Br .x; �h// by �h � �H and Lemma 5.10, by using (5.37),
¹�s � aº D ¹Aa � sº, (5.23), (3.16), Lemmas 5.14 and 5.10 we obtainˇ̌̌̌

p�.t; x; y/ �

Z
K

p�."t; y; ´/p�hhi
..1 � "/t; ´; x/d�hhi.´/

ˇ̌̌̌
D
ˇ̌
Ex Œ1¹�s�aºp�.t � a;Xa; y/C 1¹�s<aºp�.t � �s ; Ys ; y/ � p�.t � s; Ys ; y/�

ˇ̌
� Ex Œ1¹�s�aºp�.t � a; y;Xa/�C Ex Œ1¹�s�aºp�.t � s; y; Ys/�

C Ex Œ1¹�s<aºjp�.t � �s ; y; Ys/ � p�.t � s; y; Ys/j�
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� Ex Œ1¹a�Aa�a�sºp�.t � a; y;Xa/�C Ex Œ1¹�s�s�a�sºp�.t � s; y; Ys/�

C Ex Œ1¹�s<aº.�s � s/ supu2Œt�a;t�s� j@up�.u; y; Ys/j�

. "�3�=4.a � s/�1Ex Œ.a � Aa/‰H;".t � a; y;Xa/C .�s � s/‰H;".t � s; y; Ys/�

C "� 3
4��1Ex Œ.�s � s/ supu2Œt�a;t�s� u

�1‰H;".u; y; Ys/�

. "� 3
4��1t�1Ex Œ.a � Aa/‰h;".t � a; y;Xa/C .�s � s/‰h;".t � s; y; Ys/�

C "� 3
4��2t�1Ex Œ.�s � s/‰h;".t � s; y; Ys/�

.
‰h;".t; y; x/

"
13
4 �C O�

2C2t

Z t
0

�hh?i

�
Bp

u.x; �h/
�

�hhi

�
Bp

u.x; �h/
� du

.
‰h;ı.t; x; y/

ı
15
4 �C O�

2C2t

Z t
0

�hh?i

�
Bp

u.x; �h/
�

�hhi

�
Bp

u.x; �h/
� du: (5.40)

On the other hand, (5.23), (5.24), (5.25), (5.27), (3.16) and 1=ı � �."; ı/ � 4=ı together
imply that

0 �

Z
K

p�."t; y; ´/p�hhi
..1 � "/t; ´; x/d�hh?i.´/

. .2=ı/3�=2
Z
K

‰H;"."t; y; ´/‰h;ı..1 � "/t; x; ´/d�hh?i

. ı�3�=2.1 � "/��=2
Z
K

‰H;�.";ı/."t; y; ´/‰h;ı.t; x; y/d�hh?i.´/

.
�."; ı/ O�=2‰h;ı.t; x; y/

ı3�=2
�
�hh?i

�
Bp

"t
.y; �H/

�
�
�
Bp

"t
.y; �H/

�
.
‰h;ı.t; x; y/

ı
3
2�C O�

2

�
�hh?i

�
Bp

ıt
.y; �H/

�
�
�
Bp

ıt
.y; �H/

� : (5.41)

Now Theorem 5.9 is immediate from (5.39), (5.40), (5.41) and � D �hhi C �hh?i.

5.3 Moments of displacement of the diffusion

The purpose of this subsection is to present an application of Theorem 5.8 to asymptotics of
moments of displacement of the corresponding diffusion. The main result is the following.

Theorem 5.16. Let x 2 V� and ˛ 2 .�1;1/. Then

lim
t#0

1

t˛=2

Z
K

�H.x; y/
˛p�.t; x; y/d�.y/ D

Z
R

jyj
˛ e

�y2=2

p
2�

dy: (5.42)

Note that, if X D
�
�;M; ¹Xt ºt2Œ0;1�; ¹Pxºx2K@

�
is a �-symmetric diffusion on K

whose Dirichlet form on L2.K;�/ is .E;F/, as in the previous subsection, thenZ
K

�H.x; y/
˛p�.t; x; y/d�.y/ D Ex Œ�H.x;Xt /˛�; .t; x/ 2 .0;1/ �K: (5.43)

(5.42) says that, in the short time limit, the moment Ex Œ�H.x;Xt /˛� of displacement of X
at x 2 V� is asymptotically equal to that of one-dimensional Brownian motion.
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Proof of Theorem 5.16. Since (5.42) for ˛ D 0 is trivial, we assume ˛ 6D 0. The following
proof is based on the same idea as the proof of Theorem 5.3. It suffices to prove that

lim
n!1

�
.3
5
/2nt

��˛=2
Ix;˛

�
.3
5
/2nt

�
D

Z
R

jyj
˛ e

�y2=2

p
2�

dy (5.44)

for any t 2 .0; 1/, where Ix;˛.t/ WD
R
K
�H.x; y/

˛p�
�
t; x; y

�
d�.y/, t 2 .0;1/; indeed,

since r=cx:1 � �.Br .x; �H// � cx:2r for any r 2 .0; 1� for some cx:1; cx:2 2 .0;1/ by
(5.3), using (3.16) we have for any t 2 .0; 1/, similarly to the proof of Lemma 5.13,Z

K

�H.x; y/
˛‰H;1.t; x; y/d�.y/

D
X
n2Z

Z
B2n

p
t .x;�H/nB2n�1

p
t
.x;�H/

�H.x; y/
˛‰H;1.t; x; y/d�.y/

�
X
n2Z

2j˛jt˛=22˛ne�4n�2 �
�
B
2n

p
t
.x; �H/

�
�
�
Bp

t
.x; �H/

� � Cx;˛t
˛=2; (5.45)

where Cx;˛ WD 2j˛j
P
n2N[¹0º

�
cx:1cx:22

�.1C˛/nCcV2
.�C˛/ne�4n�2�

. Then by (5.23),ˇ̌̌̌
dIx;˛

dt
.t/

ˇ̌̌̌
D

ˇ̌̌̌Z
K

�H.x; y/
˛@tp�.t; x; y/d�.y/

ˇ̌̌̌
� chk.1/Cx;˛t

˛=2�1 (5.46)

for t 2 .0; 1/, from which and (5.44) we can easily verify (5.42).
For the proof of (5.44), suppose x 2 V� n V0; the case of x 2 V0 is proved in the same

way. Let w 2 W�, i; j 2 S , aix ; b
i
x ; a

j
x ; b

j
x 2 R and Nx 2 N be as in Definition 5.1, and let

cix ; c
j
x 2 R be such that h?

x ıFwi D cixh
j

2
and h?

x ıFwj D c
j
xh
i
2

(see the proof of Lemma
5.5). Let t 2 .0; 1/ and set gln.y/ WD .5=3/n�H

�
x; Fwkln.y/

�
for .k; l/ 2 ¹.i; j /; .j; i/º,

n 2 N and y 2 K. Recalling �huijKv D .5=3/jvj�huıFvi ıF�1
v , u 2 F , v 2 W�, similarly

to (5.11) we have�5
3

�n˛ Z
Kwijn[Kwjin

�H.x; y/
˛p�

�
.3
5
/2nt; x; y

�
d�.y/ (5.47)

D

�5
3

�jwjC1 X
.k;l/2¹.i;j /;.j;i/º

Z
K

gln.y/
˛
�3
5

�n
p�
�
.3
5
/2nt; x; Fwkln.y/

�
�

d
�
jaix j

2�
hhl1i

C 2 � 3�nakxb
k
x�hhl1;h

l
2i

C 9�n.jbkx j
2

C jckx j
2/�

hhl2i

�
.y/:

Let .k; l/ 2 ¹.i; j /; .j; i/º and y 2 K. (5.13) immediately implies that

lim
n!1

�3
5

�n
p�
�
.3
5
/2nt; x; Fwkln.y/

�
D

exp
�
�

jaixh
l
1.y/j

2

2t

�
�x

p
2�t

: (5.48)

Moreover for n 2 N with n � Nx , [23, Theorem 3.2.5 and Example 3.2.6] easily yield
gln.y/ � .5=3/njhx ı Fwkln.y/j � jaix jhl

1
.y/=2 and therefore by (5.23),

gln.y/
˛
�3
5

�n
p�
�
.3
5
/2nt; x; Fwkln.y/

�
. cx:1g

l
n.y/

˛
exp

�
�
gln.y/

2

4t

�
p
t

�

´
cx:1˛

˛=2t .˛�1/=2 if ˛ 2 .0;1/;

cx:12
�˛jaix j˛t�1=2hl

1
.y/˛ if ˛ 2 .�1; 0/:

(5.49)
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Here
R
K
hl
1
.y/˛d�.y/ D

P
n2N

R
.hl1/

�1..2�n;21�n�/
hl
1
.y/˛d�.y/ < 1 if ˛ 2 .�1; 0/,

since �
hhl1i

ı .hl
1
/�1 D 1Œ0;1�dy by (4.11) and �

hhl2i

�
.hl
1
/�1.Œ0; 2�n�/

�
� 225 � 2� O�n for

n 2 N by (4.13) and Lemma 5.5. Thus by virtue of dominated convergence based on (5.49),
from (5.47), (5.48), (5.8) and �

hhl1i
ı .hl

1
/�1 D 1Œ0;1�dy we conclude that

lim
n!1

�5
3

�n˛ Z
Kwijn[Kwjin

�H.x; y/
˛p�

�
.3
5
/2nt; x; y

�
d�.y/

D t˛=2
Z jaix j=

p
t

�jaix j=
p
t

jyj
˛ e

�y2=2

p
2�

dyI (5.50)

note that .
R
K
fd�hu;vi/

2 �
R
K
fd�hui

R
K
fd�hvi for u; v 2 F and a bounded Borel

measurable function f W K ! Œ0;1/.
On the other hand, let n 2 N, n � Nx and define �x;nH .y/ WD .5=3/n�H.x; y/ for

y 2 K. Then Proposition 5.4-(4) yields �x;nH .y/ � .5=3/n�hx .x; y/ � 8jaix j=9 for y 2

K n .Kwijn [Kwjin/, and therefore by (5.23) with ı D 1=2 and (5.27),�5
3

�n˛ Z
Kn.Kwijn[Kwjin /

�H.x; y/
˛p�

�
.3
5
/2nt; x; y

�
d�.y/

.
Z
Kn.Kwijn[Kwjin /

�x;nH .y/˛ exp
�

�
�x;nH .y/2

12t

�
‰H;1

�
.3
5
/2nt; x; y

�
d�.y/

.
�
.50j˛j/˛=2 _ .jaix j=2/˛

�
exp

�
�

jaix j2

16t

�
: (5.51)

Now (5.44) easily follows by substituting t by .3=5/2N t (N 2 N) in (5.50) and (5.51)
and using them to let n ! 1 first and then N ! 1. Thus the proof of Theorem 5.16 is
complete.

6 On-diagonal asymptotics at almost every point

So far we have established Gaussian off-diagonal behaviors of the heat kernels as well as
several one-dimensional asymptotics at each x 2 V�. In this and next sections, we will verify
that p�.t; x; x/ and p�hhi

.t; x; x/ for h 2 SH0 exhibit non-integer-dimensional asymptotic
behaviors as t # 0 for �-a.e. x 2 K.

The following is the main theorem of this section. Note that, for each h 2 SH0 , the term
“�-a.e.” is a synonym for “�hhi-a.e.” since � and �hhi are mutually absolutely continuous
by [17, Theorem 5.6]. Note also that 2 log25=3 5 D 1:5181 : : : < 2.

Theorem 6.1. There exists d loc
S 2 .1; 2 log25=3 5� such that for each h 2 SH0 ,

lim
t#0

2 logp�.t; x; x/
� log t

D lim
t#0

2 logp�hhi
.t; x; x/

� log t
D d loc

S �-a.e. x 2 K: (6.1)

Remark 6.2. (1) We have a concrete expression for d loc
S ; see (6.10) and (6.12).

(2) In Theorem 7.2 below we will show that d loc
S � dimH.K; �H/, where dimH denotes

Hausdorff dimension. Unfortunately, the author has no idea whether d loc
S D dimH.K; �H/

or not.
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The limit limt#0 logp�.t; x; x/=.� log t/, if exists, is often called the local spectral
dimension at x for the Dirichlet space .K; �; E;F/. (6.1) says that the local spectral dimen-
sions at x for .K;�; E;F/ and .K;�hhi; E ;F/ exist and are equal to a non-integer constant
d loc

S for �-a.e. x 2 K.
One of the keys to Theorem 6.1 is the ergodicity of the Kusuoka measure � (to be pre-

cise, of the measure � D �ı�) which has been obtained in [29, Example 1]. Unfortunately,
however, the proof of this fact in [29] is indirect and complicated. We provide an alternative
simple proof of it at the end of this section based on the self-similarity (2.2) of .E;F/.

Now we proceed to the proof of Theorem 6.1. We start with an easy lemma.

Lemma 6.3. For any ! 2 † and any x 2 R2 n ¹0º,

log

p
3

5
� lim inf
m!1

log kTŒ!�mk

m
� lim sup
m!1

log kTŒ!�mk

m
� log

3

5
; (6.2)

log
1

5
� lim inf
m!1

log
ˇ̌
T �
Œ!�m

x
ˇ̌

m
� lim sup
m!1

log
ˇ̌
T �
Œ!�m

x
ˇ̌

m
� log

3

5
: (6.3)

Proof. Since kAk2 � 2j detAj for any A 2 L.R2/, Proposition 2.12-(i) and (3.4) imply
that

p
2
�p
3=5

�jwj
D
p
2j detTwj � kTwk � .3=5/jwj

kT;k D
p
2.3=5/jwj (6.4)

for any w 2 W�, which immediately yields (6.2). Similarly (6.3) follows by applying (3.5)
to h WD jxj�1.x1h1 C x2h2/, where x D .x1; x2/.

The following two propositions completely characterize when the local spectral dimen-
sions at �.!/ exist for a given ! 2 †, in terms of the asymptotic behavior as m ! 1 of
the logarithms of the norms kTŒ!�mk and

ˇ̌
T �
Œ!�m

x
ˇ̌
, x 2 R2 n ¹0º.

Proposition 6.4. Let ! 2 †. Then it holds that

lim inf
t#0

2 logp�.t; �.!/; �.!//
� log t

D 2C
log 5

3

lim supm!1
1
m

log kTŒ!�mk
� 1;

lim sup
t#0

2 logp�.t; �.!/; �.!//
� log t

D 2C
log 5

3

lim infm!1
1
m

log kTŒ!�mk
� 2 log25=3 5:

(6.5)

In particular, the limit limt#0 2 logp�.t; �.!/; �.!//=.� log t/ exists if and only if so does
limm!1

1
m

log kTŒ!�mk, and if either of these two limits exists then

lim
t#0

2 logp�.t; �.!/; �.!//
� log t

D 2C
log 5

3

limm!1
1
m

log kTŒ!�mk
2 Œ1; 2 log25=3 5�: (6.6)

Proof. Let .s; x/ 2 .0; 1� � K and let w 2 ƒH
s satisfy x 2 Kw . Then �.Us.x; SH// �

�.Kw/ by (3.9), and therefore (3.11) and (3.16) easily imply that

�.Bs.x; �H// � �.Us.x; S
H// � �.Kw/: (6.7)

Let! 2 †, and for each t 2 .0; 1/ letm.t/ be the uniquem 2 N satisfying Œ!�m 2 ƒHp
t
.

Then for t 2 .0; 1/, p�.t; �.!/; �.!// � �
�
KŒ!�m.t/

��1 by (4.2) and (6.7), and (3.4)
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yields


TŒ!�m.t/

 �

p
t � 5



TŒ!�m.t/

. Moreover, m W .0; 1/ ! N is a non-decreasing
surjection since N 3 m 7! lH.Œ!�m/ is strictly decreasing by (3.4). It follows from these
facts that

lim sup
t#0

2 logp�.t; �.!/; �.!//
� log t

D lim sup
m!1

� log�.KŒ!�m/
� log kTŒ!�mk

D lim sup
m!1

�
2C

m log 5
3

log kTŒ!�mk

�
and similarly for lim inf, which together with (6.2) immediately shows the assertion.

Proposition 6.5. Let h 2 SH0 and take �h D .�1
h
; �2
h
/ 2 R2 so that h� �1

h
h1� �2

h
h2 2 R1.

Let ! 2 †. Then it holds that

lim inf
t#0

2 logp�hhi
.t; �.!/; �.!//

� log t
D 2C

log 5
3

lim supm!1
1
m

log
ˇ̌
T �
Œ!�m

�h
ˇ̌ � 1;

lim sup
t#0

2 logp�hhi
.t; �.!/; �.!//

� log t
D 2C

log 5
3

lim infm!1
1
m

log
ˇ̌
T �
Œ!�m

�h
ˇ̌ � �:

(6.8)

In particular, the limit limt#0 2 logp�hhi
.t; �.!/; �.!//=.� log t / exists if and only if so

does limm!1
1
m

log
ˇ̌
T �
Œ!�m

�h
ˇ̌
, and if either of these two limits exists then

lim
t#0

2 logp�hhi
.t; �.!/; �.!//

� log t
D 2C

log 5
3

limm!1
1
m

log
ˇ̌
T �
Œ!�m

�h
ˇ̌ 2 Œ1; ��: (6.9)

Proof. The proof goes in exactly the same way as that of Proposition 6.4 by using (3.5),
(3.12) and (6.3) instead of (3.4), (3.11) and (6.2) respectively.

Proposition 6.6. Let � be a Borel probability measure on † which satisfies � ı ��1 D �

and is ergodic with respect to the shift map � W † ! †. Define

�.�; ¹Ti ºi2S / WD inf
m2N

1

m

X
w2Wm

�.†w/ log kTwk: (6.10)

Then �.�; ¹Ti ºi2S / D lim
m!1

1
m

P
w2Wm

�.†w/ log kTwk 2
�
log

p
3
5
; log 3

5

�
and

lim
t#0

2 logp�.t; �.!/; �.!//
� log t

D 2C
log 5

3

�.�; ¹Ti ºi2S /
�-a.e. ! 2 †: (6.11)

Moreover, �.�; ¹Ti ºi2S / D log 3
5

if and only if �.¹11; 21; 31º/ D 1.

Proof. Apart from the final assertion, this is immediate from (6.4), Proposition 6.4 and
Kingman’s subadditive ergodic theorem [9, Theorem 10.7.1], and the same results are valid
with �.�; ¹Ti ºi2S / unchanged if the norm k � k is replaced by the operator norm k � kop given
by kAkop WD supx2R2; jxj�1 jAxj, A 2 L.R2/; note that kABk � kAkkBk and kABkop �

kAkopkBkop for A;B 2 L.R2/. If �.¹11; 21; 31º/ D 1 then clearly �.�; ¹Ti ºi2S / D

log 3
5

. Conversely suppose �.�; ¹Ti ºi2S / D log 3
5

. Let m 2 N. Since kTikop D 3=5, i 2 S ,
we have 1

m
log kTwkop � log 3

5
for w 2 Wm and hence 1

m

P
w2Wm

�.†w/ log kTwkop �

log 3
5

, where actually the equality holds by �.�; ¹Ti ºi2S / D log 3
5

and (6.10) for the norm
k�kop. Therefore for eachw 2 Wm, �.†w/

�
1
m

log kTwkop�log 3
5

�
D 0, i.e. either �.†w/ D

0 or kTwkop D .3=5/m, but the latter holds if and only if w D im for some i 2 S since
kTjkkop < .3=5/

2 for j; k 2 S with j 6D k. Thus �
�S

i2S †im
�

D 1, and letting m ! 1

yields �.¹11; 21; 31º/ D 1.
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Proof of Theorem 6.1. Since � ı ��1 D � by Proposition 2.14, � is ergodic with respect to
� by [29, Example 1] (see also Theorem 6.8 below), �.¹11; 21; 31º/ D 0 and �ı� D �,
Proposition 6.6 applies to �=2 to imply that

lim
t#0

2 logp�.t; x; x/
� log t

D 2C
log 5

3

�.�=2; ¹Ti ºi2S /
DW d loc

S �-a.e. x 2 K (6.12)

and that �.�=2; ¹Ti ºi2S / 2
�
log

p
3
5
; log 3

5

�
. Thus d loc

S 2 .1; 2 log25=3 5�.
Let h 2 SH0 and set KZ;h WD ¹x 2 KZ j Zx�h 6D 0º, where �h 2 R2 is as in

Proposition 6.5. Then�.KnKZ;h/ D 0 since d�hhi D jZ�hj2d� by (2.10) and� and�hhi

are mutually absolutely continuous. Now for x 2 KZ;h and ! 2 ��1.x/, we easily see
limm!1

ˇ̌
T �
Œ!�m

�h
ˇ̌
=kTŒ!�mk D jZx�hj and hence limt#0 2 logp�hhi

.t; x; x/=.� log t / D

d loc
S if and only if limt#0 2 logp�.t; x; x/=.� log t/ D d loc

S by Propositions 6.4 and 6.5,
proving (6.1) by virtue of (6.12) and �.K nKZ;h/ D 0.

Remark 6.7. (1) We can estimate d loc
S numerically by using (6.10); numerical computations

of the right-hand side of (6.10) with � D �=2 tell us that d loc
S � 1:27695 : : : for m D 14,

d loc
S � 1:27790 : : : for m D 15 and d loc

S � 1:27874 : : : for m D 16.
(2) Barlow and Kumagai [4, Corollary 3.6] have proved the O�-a.e. existence of the (constant)
local spectral dimension d loc

S . O�; O�/ and have explicitly calculated it for the heat kernels
p O�.t; x; y/ on post-critically finite self-similar sets and Sierpinski carpets, when both the
reference measure O� of the Dirichlet space and another measure O� are self-similar measures.
In their case, the self-similarity of O� has made the explicit calculation of d loc

S . O�; O�/ possible
and we easily see how it varies depending on the weight of O�, whereas it seems very difficult
to estimate �.�; ¹Ti ºi2S / and see its dependence on � in the situation of Proposition 6.6
above, even when � is a Bernoulli measure on †.

At the end of this section, we give a new simple proof of the ergodicity of the measure
� D � ı � .

Theorem 6.8 ([29]). The measure � is ergodic with respect to the shift map � W † ! †.

Proof. Let A 2 B.†/ satisfy ��1.A/ D A. Set EA.u; v/ WD �hu;vi.A/=2 for u; v 2 F ,
so that EA W F � F ! R is a non-negative definite symmetric bilinear form satisfying
EA.u; u/ � E.u; u/, u 2 F . We claim that there exists cA 2 Œ0; 1� such that

EA.u; v/ D cAE.u; v/; u; v 2 F : (6.13)

Note that �hu;vi ı �i D .5=3/�huıFi ;vıFi i for u; v 2 F and i 2 S . Since A D ��1.A/ DS
i2S �i .A/ we see that for any u; v 2 F ,

EA.u; v/ D
1

2

X
i2S

�hu;vi.�i .A// D
5

3

X
i2S

1

2
�huıFi ;vıFi i.A/ D

5

3

X
i2S

EA.u ıFi ; v ıFi /:

(6.14)
By EA.1; 1/ D 0 we can regard EA as a non-negative definite symmetric bilinear form
on H0=R1, and let QA be its matrix representation through the basis ¹h1; h2º of H0=R1.
Then (6.14) together with Proposition 2.12-(ii) yields QA D .5=3/

P
i2S TiQAT

�
i

, based
on which a direct calculation using Proposition 2.12-(i) easily shows thatQA D cA

�
1 0
0 1

�
for

some cA 2 Œ0; 1�. Thus (6.13) holds for any u; v 2 H0, hence for any u; v 2
S
m2N Hm by

(6.14) and (2.2), and then also for any u; v 2 F since
S
m2N Hm=R1 is dense in .F=R1; E/

and EA.u; u/ � E.u; u/, u 2 F .
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Let u; f 2 F . By [13, Lemma 3.2.5] and the strong locality of .E ;F/,

d
�
�huf;ui �

1

2
�hu2;f i

�
D ud�hf;ui C fd�hui � ud�hu;f i D fd�hui: (6.15)

By Propositon 2.8, (6.13) and (2.4), the value of (6.15) on �.A/ results inZ
�.A/

fd�hui D �huf;ui.A/�
1

2
�hu2;f i.A/ D 2EA.uf; u/�EA.u2; f / D cA

Z
K

fd�hui;

which implies that 1�.A/ ��hui D cA�hui since F is dense in .C.K/; k � k1/. In particular,
we have 0 D cA�hui.K n �.A// D cA�hui.† n A/. Now suppose �.A/ > 0. Then cA > 0
by (6.13) and hence �hui.† n A/ D 0 for any u 2 F . Thus �.† n A/ D 0.

7 Eigenvalues of the Laplacian

In this last section, we show that the Hausdorff and box-counting dimensions of .K; �H/
naturally arise as the asymptotic order of the eigenvalues of the Laplacian associated with
.K;�; E;F/ and that those dimensions are not integers, as in Theorem 1.3-(3).

Let us first recall the following standard notations and definitions. See e.g. [10, Section
2.1] and references therein for details of Hausdorff measure, Hausdorff dimension and box-
counting dimension; note that the definitions there apply to any metric space although they
are stated only for subsets of the Euclidean spaces.

Notation. Let .E; �/ be a metric space and let A � E be non-empty.
(1) For ˛ 2 .0;1/, the ˛-dimensional Hausdorff measure and the Hausdorff dimension of
A with respect to � are denoted by H˛.A; �/ and dimH.A; �/, respectively.
(2) The lower and upper box-counting dimensions of A with respect to � are denoted by
dimB.A; �/ and dimB.A; �/, respectively. If they are equal, their common value, called the
box-counting dimension of A with respect to �, is denoted by dimB.A; �/.

Note that 0 � dimH.A; �/ � dimB.A; �/ � dimB.A; �/ � 1 by [10, (2.14)].

Definition 7.1. Let � be a finite Borel measure on K with full support. Noting that the
non-positive self-adjoint operator �� of .K; �; E ;F/ (the generator of ¹T �t ºt2.0;1/) has
discrete spectrum and that trT �t < 1 for t 2 .0;1/ by [8, Theorem 2.1.4], let ¹��nºn2N
be the non-decreasing enumeration of all the eigenvalues of ��� , where each eigenvalue is
repeated according to its multiplicity. The eigenvalue counting function N� and the partition
function Z� of the Dirichlet space .K; �; E ;F/ are defined respectively by

N�.s/ WD #¹n 2 N j ��n � sº; s 2 R; (7.1)

Z�.t/ WD
X
n2N

e�t��n D

Z
Œ0;1/

e�tsdN�.s/ D

Z
K

p�.t; x; x/d�.x/; t 2 .0;1/: (7.2)

In the situation of Definition 7.1, N�.0/ D 1 by ��
1

D 0 < ��
2

, and N�.s/ < 1 for any
s 2 Œ0;1/ since limn!1 ��n D 1. Moreover, Z� is .0;1/-valued and continuous.

We now state the main theorem of this section. Recall the constant d loc
S 2 .1; 2 log25=3 5�

given in Theorem 6.1.
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Theorem 7.2. Set dS WD dimH.K; �H/. Then HdS.K; �H/ 2 .0;1/, and for any h 2 SH0 ,

dS D dimB.K; �H/ D dimB.K; �h/ 2 Œd loc
S ; 2 log25=3 5�: (7.3)

Moreover, there exist c7:1; c7:2 2 .0;1/ such that for any h 2 SH0 , any s 2 Œ1;1/ and
any t 2 .0; 1�,

c7:1s
dS=2 � N�.s/ � c7:2s

dS=2; c7:1s
dS=2 � N�hhi

.s/ � c7:2s
dS=2; (7.4)

c7:1t
�dS=2 � Z�.t/ � c7:2t

�dS=2; c7:1t
�dS=2 � Z�hhi

.t/ � c7:2t
�dS=2: (7.5)

Remark 7.3. The author has no idea whether dS D dimH.K; �h/ for h 2 SH0 . Also the
estimate dS � 2 log25=3 5 is by no means best possible.

The limits lims!1 2 log N�.s/= log s and limt#0 2 log Z�.t/=.� log t/, if exist, are
usually called the (global) spectral dimension of the Dirichlet space .K; �; E;F/. Theorem
7.2 in particular implies that the spectral dimensions of .K;�; E ;F/ and .K;�hhi; E ;F/,
where h 2 SH0 , exist and are equal to dimH.K; �H/, dimB.K; �H/ and dimB.K; �h/.

The rest of this section is devoted to the proof of Theorem 7.2, for which the following
proposition is fundamental.

Proposition 7.4. There exist c7:3; c7:4 2 .0;1/ such that for any h 2 SH0 , any s 2 Œ1;1/

and any t 2 .0; 1�,

c7:3#ƒH
s�1=2 � N�.s/ � c7:4#ƒH

s�1=2 ; c7:3#ƒh
s�1=2 � N�hhi

.s/ � c7:4#ƒh
s�1=2 ; (7.6)

c7:3#ƒHp
t

� Z�.t/ � c7:4#ƒHp
t
; c7:3#ƒhp

t
� Z�hhi

.t/ � c7:4#ƒhp
t
: (7.7)

Proof. (7.6) follows from [19, Theorem 4.3 and Proposition 4.4], (3.4), (3.5) and N�.0/ D

N�hhi
.0/ D 1. Then noting that #ƒH

3s=5
� 3#ƒH

s and #ƒh
3s=5

� 3#ƒhs for s 2 .0; 1/ by
(3.4), (3.5) and [19, Proposition 2.7], we can easily verify (7.7) from (7.6); note also that
Z�.t/ D

R1

0
e�sN�.s=t/ds for � 2 ¹�;�hhiº and t 2 .0;1/.

Lemma 7.5. Let h 2 SH0 . Then #ƒhst � #ƒht #ƒH
s � 39#ƒhst for any s; t 2 .0; 1�. In

particular, #ƒhs � #ƒH
s � 39#ƒhs for any s 2 .0; 1�.

Proof. Since ƒH
1

D ƒh
1

D ¹;º, the latter assertion follows by setting t D 1 in the former,
which in turn is trivial for s D 1. Let s; t 2 .0; 1�, s < 1 and take �h D .�1

h
; �2
h
/ 2 R2 such

that h � �1
h
h1 � �2

h
h2 2 R1. Then for each .v; w/ 2 ƒht � ƒH

s , lh.vw/ D jT �
wT

�
v �hj �

kTwkjT �
v �hj D lH.w/lh.v/ � st and hence vw � �.v; w/ for a unique �.v; w/ 2 ƒhst .

Thus we have a mapping � W ƒht � ƒH
s ! ƒhst , which is surjective; indeed, if u 2 ƒhst ,

then u11 2 †v for some v 2 ƒht and � jvj.u11/ 2 †w for some w 2 ƒH
s , so that

u11 2 †u \†�.v;w/ and u D �.v; w/. Therefore #ƒhst � #ƒht #ƒH
s .

Let � W S ! S denote the bijection i 7! i C 1 mod 3, so that � naturally defines a
bijection W� ! W� given by w1 : : : wm 7! �.w1/ : : : �.wm/, which we also write as �.
Let R WD

�
�1=2 �

p
3=2

p
3=2 �1=2

�
. Then for w 2 W�, clearly T�.w/ D RTwR

�1 and kT�.w/k D

kRTwR
�1k D kTwk, and therefore w 2 ƒH

s if and only if �.w/ 2 ƒH
s . Thus, with w1 2 S

denoting the first component of w 2 W� n ¹;º,

ƒH
s D

[
w2ƒH

s ;w1D1

¹w; �.w/; �2.w/º (disjoint union): (7.8)
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Let .v; w/ 2 ƒht � ƒH
s . Since

ˇ̌P2
kD0R

kAR�kx
ˇ̌

D .3=2/
p

kAk2 C 2 detAjxj for
A 2 L.R2/ and x 2 R2 by a direct calculation, we obtain

2X
kD0

lh.v�
k.w// D

2X
kD0

ˇ̌
T �

�k.w/
T �
v �h

ˇ̌
�

ˇ̌̌̌
ˇ 2X
kD0

RkT �
wR

�kT �
v �h

ˇ̌̌̌
ˇ > 3

2
kTwkjT �

v �hj >
3st

50

by detTw D .3=25/jwj > 0, (3.4) and (3.5). Thus lh.v�k.w// > st=50 for at least one
k 2 ¹0; 1; 2º, and it follows from (7.8) that 3#ƒt;s � #ƒht #ƒH

s , where we set ƒt;s WD

¹.v; w/ 2 ƒht � ƒH
s j lh.vw/ > st=50º. Each .v; w/ 2 ƒt;s admits u.v;w/ 2 ƒh

st=50

such that u.v;w/ � vw, and then the mapping ƒt;s 3 .v; w/ 7! u.v;w/ 2 ƒh
st=50

is
clearly injective. Therefore, noting also that #ƒh

3r=5
� 3#ƒhr for r 2 .0; 1� by (3.5) and

[19, Proposition 2.7], we get #ƒht #ƒH
s � 3#ƒt;s � 3#ƒh

st=50
� 39#ƒhst .

Proposition 7.6. There exists dB 2 Œ1; 2 log25=3 5� such that for any h 2 SH0 ,

3�10s�dB � #ƒhs � #ƒH
s � 319s�dB ; s 2 .0; 1�: (7.9)

Proof. Let s 2 .0; 1/. Noting (3.4) and that kAk2 � 2j detAj for A 2 L.R2/, we have
s ^ .3=5/jwj�1 � kTwk � .s=5/ _ .3=25/jwj=2 and .5=3/jwj � s�2 log25=3

5
3 for w 2 ƒH

s .
Therefore

2s#ƒH
s � 2 D

X
w2ƒH

s

�5
3

�jwj

kTwk
2

� s�2 log25=3
5
3
s2

25
#ƒH
s D

s2 log25=3 5

25
#ƒH
s : (7.10)

Let h 2 SH0 . Then since 3�9#ƒhs #ƒht � #ƒhst � 39#ƒhs #ƒht for any s; t 2 .0; 1� by
Lemma 7.5, a standard argument for subadditive and superadditive sequences together with
(7.10) immediately shows the assertion; recall that #ƒh

3s=5
� 3#ƒhs for s 2 .0; 1� by (3.5)

and [19, Proposition 2.7] and that #ƒhs � #ƒH
s � 39#ƒhs for s 2 .0; 1� by Lemma 7.5.

Lemma 7.7. Letƒ be a finite subset ofW� satisfyingK D
S
w2ƒKw . Then there exists a

subset ƒ0 of ƒ which is a partition of †.

Proof. K D
S
w2ƒKw and K 6D V0 imply † D

S
w2ƒ†w , and then an induction on

#ƒ easily shows the lemma.

Lemma 7.8. Let ˛; ı;M 2 .0;1/, and let H˛
ı
.�; �H/ be the ˛-dimensional pre-Hausdorff

measure on .K; �H/ as defined in [10, (2.7)] and [23, Definition 1.5.1]. If ı 2 .0;
p
2=50/

and H˛
ı
.K; �H/ < M , then there exists a partition ƒ of † such that

P
w2ƒ kTwk˛ <

4.25
p
2/˛M and maxw2ƒ kTwk � 25

p
2ı.

Proof. By H˛
ı
.K; �H/ < M we can choose a sequence ¹Anºn2N of non-empty subsets of

K with Ln WD diam.An; �H/ � ı so that K D
S
n2N An and

P
n2N L

˛
n < M . Take

" 2 .0; .ı=3/˛� such that 3˛"C
P
n2N L

˛
n < M . For n 2 N, we set Dn WD Ln if Ln > 0

and Dn WD 3.2�n"/1=˛ if Ln D 0, so that Dn � ı and
P
n2ND

˛
n < M . We also set

Bn WD
S
x2An

B"n.x; �H/, where "n WD .2�n"/1=˛ if Ln D 0 and otherwise "n 2 .0; 1�

is chosen so that Ln C 3"n <
p
2=50 and ƒH

25
p
2Ln

D ƒH
25

p
2.LnC3"n/

; recall .Sr/ in
Definition 3.2-(1). Then diam.Bn; �H/ � Ln C 2"n and

An � Bn � BLnC3"n.xn; �H/ � U
25

p
2.LnC3"n/

.xn; S
H/ D U

25
p
2Dn

.xn; S
H/
(7.11)
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by (3.11), where we have chosen xn 2 Bn n V�. By Lemma 3.5, U
25

p
2Dn

.xn; S
H/ DSmn

iD1
Kwn;i for some mn 2 ¹1; 2; 3; 4º and ¹wn;i º

mn
iD1

� ƒH
25

p
2Dn

, so that Bn �Smn
iD1

Kwn;i by (7.11), kTwn;i k � 25
p
2Dn � 25

p
2ı and

P
n2N

Pmn
iD1

kTwn;i k
˛ �P

n2N 4.25
p
2Dn/

˛ < 4.25
p
2/˛M . Since K is compact, K D

SN
kD1 Bnk for some

N 2 N and ¹nkºN
kD1

� N. Now we apply Lemma 7.7 to ¹wnk;i j k 2 ¹1; : : : ; N º; i 2

¹1; : : : ; mnk ºº to have a partition ƒ of † with the desired properties.

Proof of Theorem 7.2. Let h 2 SH0 . Lemma 3.5, (3.11), (3.12), Proposition 7.6 and [19,
Proposition 2.24] together imply that

dS D dimH.K; �H/ � dimB.K; �H/ D dimB.K; �h/ D dB 2 Œ1; 2 log25=3 5�: (7.12)

We follow [10, Proof of Theorem 3.1] in this paragraph. Let ˛ 2 .0;1/. We suppose
H˛
1=36

.K; �H/ �
1
4
6�2˛ and deduce dB < ˛, from which we conclude that dS D dB

by letting ˛ # dS, that HdS
1=36

.K; �H/ >
1
4
6�2dS and that (7.4) and (7.5) hold by virtue

of Propositions 7.4 and 7.6. By Lemma 7.8, there exists a partition ƒ of † such thatP
w2ƒ kTwk˛ < 1. Then ; 62 ƒ. Choose ˇ 2 .0; ˛/ so that rƒ.ˇ/ WD

P
w2ƒ kTwkˇ < 1.

Let s 2 .0; 1�. We define W�.ƒ/ WD ¹;º [
S
m2Nƒ

m and

�ƒs WD ¹w j w D w1 : : : wm 2 W�.ƒ/; lH.w
1 : : : wm�1/ > s � lH.w/º (7.13)

with the convention lH.w1 : : : wm�1/ WD 2 for w D ;, where we naturally regard w D

w1 : : : wm 2 W�.ƒ/ as an element of W� in the way of Definition 3.1-(1); note that this
natural identificationW�.ƒ/ ! W� is injective sinceƒ is a partition of†. Then as a subset
ofW�, �ƒs is easily seen to be a partition of† with �ƒs � ƒH

s . Since �ƒs � ¹w 2 W�.ƒ/ j

bƒs < kTwkº by (3.4), where bƒ WD 5� maxw2ƒ jwj, we have

#ƒH
s � #�ƒs � #¹w 2 W�.ƒ/ j bƒs < kTwkº �

X
m2N[¹0º

X
w2ƒm

kTwk
ˇb

�ˇ

ƒ
s�ˇ

�
X

m2N[¹0º

X
w1;:::;wm2ƒ

kTw1k
ˇ

� � � kTwmk
ˇb

�ˇ

ƒ
s�ˇ

D

X
m2N[¹0º

rƒ.ˇ/
mb

�ˇ

ƒ
s�ˇ

D
�
1 � rƒ.ˇ/

��1
b

�ˇ

ƒ
s�ˇ;

which and (7.9) yield dB � ˇ < ˛.
Next we show HdS.K; �H/ < 1. Let s 2

�
0; 1�. Then diam.Kw; �H/ � 10lH.w/ �

10s for w 2 ƒH
s by Lemma 3.7 and (3.11) and hence

HdS
10s
.K; �H/ �

X
w2ƒH

s

diam.Kw; �H/dS � .10s/dS #ƒH
s � .10s/dS319s�dB D 31910dS

by (7.9) and dS D dB. Letting s # 0, we obtain HdS.K; �H/ � 31910dS < 1.
Finally, we prove d loc

S � dS. By Jensen’s inequality and (7.2),

1

2

Z
K

2 logp�.t; x; x/
� log t

d�.x/ �
2

� log t
log
�
1

2

Z
K

p�.t; x; x/d�.x/

�
D
2 log.Z�.t/=2/

� log t

for t 2 .0; 1/, and letting t # 0 results in d loc
S � dS by (6.1), Fatou’s lemma and (7.5); note

that t 7! p�.t; x; x/ is .0;1/-valued and non-increasing for each x 2 K by [8, Theorem
2.1.4].
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Remark 7.9. A simple direct argument shows the following lower bound

dS D dimH.K; �H/ D dimB.K; �H/ � 1C 2 log25=3
6
5

D 1:17198 : : : (7.14)

although it is weaker than the numerical estimate dS � d loc
S � 1:27874 : : : implied by

Theorem 7.2 and Remark 6.7. Indeed, since
P
i2S Ti D

6
5

�
1 0
0 1

�
by Proposition 2.12-(i),P

w2ƒ.
5
6
/jwjTw D

�
1 0
0 1

�
for any partition ƒ of †. Therefore for s 2 .0; 1/,

p
2 �

X
w2ƒH

s

�5
6

�jwj

kTwk �
X
w2ƒH

s

kTwk
1C2 log25=3

6
5 � s1C2 log25=3

6
5 #ƒH

s (7.15)

by virtue of the lower bound in (6.4). Now (7.14) follows from (7.15), (7.9) and dS D dB.
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