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ing Varadhan’s asymptotic relation, some sharp one-dimensional asymptotics at vertices,
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Figure 1 Sierpinski gasket Figure 2 Harmonic Sierpinski gasket

1 Introduction

Recently there have been attempts to develop a theory of “manifold-like” analysis and ge-
ometry on fractals. As a prototype of such a theory, based on Kusuoka’s construction in
[29] of “weak gradients” for Dirichlet forms on fractals, Kigami [22,25] has introduced a
measure-theoretic “Riemannian structure” on the Sierpinski gasket (Figure 1). He has fur-
ther proved in [25] that the associated heat kernel satisfies the two-sided Gaussian bound
in terms of the natural geodesic metric, unlike typical fractal diffusions treated e.g. in [5,
27,12,2,3] for whose transition densities (heat kernels) the two-sided sub-Gaussian bounds
hold. The purpose of this paper is to analyze this “Riemannian structure” on the Sierpinski
gasket more in detail. We are particularly interested in short time asymptotic behaviors of
the heat kernel, and our results include “manifold-like” ones as well as “fractal-like” ones.

Let us describe briefly our framework of the “Riemannian structure” on the Sierpinski
gasket. Let K be the Sierpinski gasket constructed from an equilateral triangle in R? with
vertices ¢1,¢2, 43, and set Vo := {q1,¢2,¢3}. As studied in [1,23,34], a standard Dirichlet
form (€, F) is defined on K, where the domain F is in fact a dense subalgebra of C(K).
By choosing h1,hy € F so that 2E(h;,h;) = 6;; and they are harmonic on K \ Vo, we
have a “harmonic map” ® : K — RZ given by ®(x) := (h1(x), h2(x)). ® is injective
by [22, Theorem 3.6] and hence a homeomorphism from K onto its image Ky := ®(K),
which is called the harmonic Sierpinski gasket (Figure 2). Moreover, ® admits an associated
E-energy measure y on K, called the Kusuoka measure on the Sierpinski gasket after [29].

By [29, §1] and [22, §3 and §4] (see Proposition 2.15 and Theorem 2.16 below), we can
associate with the Dirichlet space (K, i, £, F) a “one-dimensional tangent bundle with a
Riemannian metric (Riemannian structure)” on K inherited from R? through the embedding
®, where u plays the role of the “Riemannian volume measure”. The heat kernel p,, (¢, x, y)
of this Dirichlet space, which is the jointly continuous integral kernel of the associated
Markovian semigroup on L2 (K, ), is the main subject of our study.

Note that the “Riemannian structure” on K is different in several respects from usual
Riemannian structures on manifolds; the notion of the “tfangent space Ty K at x”, which is
a one-dimensional subspace of R2, makes sense only for pu-a.e. x € K, and T K depends
discontinuously on x € K. (In fact, the set of points where the tangent space cannot be
defined is dense in K; see [22, Theorem B.5-(1)].) Therefore the associated heat kernel
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pu(t, x,y) is expected to behave differently from those on Riemannian manifolds, and this
is the case for the asymptotics of p, (¢, x,x) as ¢t | 0, as described in Theorem 1.3 below.

Now we outline the main results of this paper. Following [25, Theorem 5.1], we define
the harmonic geodesic metric pr on K by

pr(x,y) :=inf{l(®oy) |y :[0,1] > K, y is continuous, y(0) = x, y(1) = y} (1.1)

for x,y € K, where £(® o y) is the length of ® o y : [0,1] — R? with respect to the
Euclidean metric. Then p¢ is a metric on K compatible with the original topology of K,
and the first main result of this paper is the following characterization of the metric p3,.

Theorem 1.1. Forany x,y € K,

pr(x. y) = sup{u(x) —u(y) |u € F. [Vu| <1 p-ae}, (12)
where Vu denotes the “gradient vector field” of u; see Theorem 2.17 below.

It is not difficult to prove the equality analogous to (1.2) for Riemannian manifolds,
whereas in the present case (1.2) is not straightforward and its proof, which is given in
Section 4, is an important step of this paper. By virtue of Theorem 1.1, the general results
of Sturm [35,36] and Ramirez [32] apply to the present case to yield the following off-
diagonal Gaussian behaviors of p, (¢, x, y) in terms of p3. For (r, x) € (0, 00) x K we set

Br(x,pr) :={y € K| pn(x,y) <r}.
Corollary 1.2. (1) There exist ¢, cy € (0, 00) such that for any (t, x,y) € (0,00) x K x K,

exp(_&z(chy)z) (1+ pH()tc,yP)logSzlS exp(—LH L0
coo——— < put,x,y) < cy . (1.3)
w(B r(x. pro)) \/M(B\/Z(waH))M(B\/Z(y,PH))
(2) Forany x,y € K,
lim 27 log pu (1. %. ) = —pr(x. )2 (1.4)

For the heat kernels on Riemannian manifolds, the asymptotic behavior of exactly the
same form as (1.4), called Varadhan’s asymptotic relation, is well-known and has been
obtained by Varadhan [38] (see also Norris [31]). Also the two-sided Gaussian heat kernel
bound like (1.3) is known to hold for Riemannian manifolds which are either compact or
complete with non-negative Ricci curvature; see [8,15,30,33,35,36] and references therein.

We remark that Kigami [25, Theorem 6.3] has already obtained a two-sided Gaussian
bound for p, (¢, x,y) similar to (1.3) where the upper bound involves exp(—%}”z)
with some constant C € (2, 0o) instead of exp(—%{”z). Here we can conclude a better
Gaussian upper bound as in (1.3) by virtue of Theorem 1.1 and Sturm’s results [35,36].

Note that Corollary 1.2 is in sharp contrast with the behaviors of the transition den-
sity p(¢, x, y) of the Brownian motion on the Sierpinski gasket K; p(, x, y) is nothing
but the heat kernel associated with the Dirichlet space (K, v, £, F) where v is the log, 3-
dimensional Hausdorff measure on K with respect to the Euclidean metric, and by [5, The-
orem 1.5] we have the following sub-Gaussian bound

d . d 1
1.1 |x — y|%\ =T 1.2 |x — yl “’)dw—l
= < < =7
15 [ e"p( ( it ) = plx.y) = GG, P ( c1at ’
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where dy := log, 3 and dy, := log, 5 > 2. Furthermore by [28, Theorem 1.2-a)], for any

distinct x, y € K, the limit lim; | tTw=T log p(¢, x, y) does not exist.

Corollary 1.2 concerns the off-diagonal Gaussian behaviors of p,, (¢, x, y). On the other
hand, for its on-diagonal behaviors we will establish the following statements, which include
both “manifold-like” and “fractal-like” asymptotics.

Theorem 1.3. (1) For any x € Vg (recall Vo = {q1,q2, q3}), it holds that
(t.x.%) = —
X, X) =
Pu V2t

(2) There exists a constant di* € (1,2 logy5,3 5] (note 2logy5,3 5 = 1.5181...) such that

(24 0@"™e/33))  ast 0. (1.5)

21 1, x,
m M = dé"c u-a.e. x € K. (1.6)
0 —logt

(3)dimy (K, py) = dimp (K, py() € [dE, 2log,5 /3 5], where dimy and dimg denote Haus-
dorff and box-counting dimensions, respectively. Moreover, set ds = dimg(K, py), let
(A en be the eigenvalues of the Laplacian associated with (K, i1, £, F) and let Ny, (s) :=
#n € N | Ay < syand Z,(1) == Y, en e~ tAn (= [k pu(t.x,x)du(x)) for s.t €
(0, 00). Then there exist c1 3, c1.4 € (0, 00) such that for any s € [1,00) and any t € (0, 1],

ds/2

6‘1_3st/2 <Nu(s) <cy.as and C].3l‘_d5/2 <Zu() < 61_4Z_d5/2. (L.7)

(1.5) is “manifold-like” and reflects our intuition on the picture of K4 (Figure 2) that,
near ®(x), K3y looks very much like its “tangent line at ®(x)”. In fact, for each x € Vi
(i.e. a vertex x of any level), we prove a more detailed one-dimensional asymptotic behavior
of pu(t,x,y) when ¢t € (0,00) is small and y € K is close to x, as well as the existence
of the limit lim, o (B, (x, px))/r € (0,00). On the other hand, according to (1.6) and
(1.7), py exhibits non-integer-dimensional behaviors at p-a.e. point in the short time limit,
thereby reflecting the fractal nature of the space.

Lastly let us give a few remarks on the framework. One may expect that the main results
of this paper can be generalized to the case of other self-similar fractals like ones in Figure
3, but such generalizations are not straightforward and the actual situation is quite subtle, as
suggested by the following facts.

First, our proof of Theorem 1.1 utilizes a complete knowledge about the structure of
geodesics due to [25, Section 5] (see Proposition 3.15 below), where the two-dimensionality
of the space has played an essential role. Therefore some additional task should be necessary
to verify Theorem 1.1 even in the (probably simplest) case of the d-dimensional (level-2)
Sierpinski gasket with d > 3, although most of our main results will be valid also for
them. Secondary, in another simple case, the case of the two-dimensional level-/ Sierpinski
gasket with [ > 3 (see Figure 3), we can show that the “Riemannian volume measure” is
not volume doubling with respect to the harmonic geodesic metric, based on the denseness
of vertices from which the space spreads away in three directions. Hence by [24, Theo-
rem 3.2.3], even the on-diagonal upper bound p, (t,x,x) < cU/u(Bﬁ(x, pH)) is false
there, whereas Theorem 1.1 and part of Theorem 1.3 are still expected to be true. Finally,
for most other typical fractals, such as pentagasket and snowflake in Figure 3, non-constant
harmonic functions can be constant on non-empty open subsets and, as a consequence, har-
monic maps into finite dimensional spaces and their associated energy measures cannot be
used to introduce a “Riemannian structure”. Thus it is already a highly non-trivial problem
how we should introduce “Riemannian structures” on such fractals.
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Figure 3 From the left, three-dimensional (level-2) Sierpinski gasket, two-dimensional level-3 Sierpinski
gasket, pentagasket and snowflake.

In view of these observations, it seems reasonable for this present moment to content
ourselves with the case of the two-dimensional Sierpinski gasket only. We leave possible
extensions of our main results to other fractals for future studies.

The organization of this article is as follows. In Section 2, we collect basic facts concern-
ing the standard Dirichlet form and the measurable Riemannian structure on the Sierpinski
gasket. In Section 3 we briefly recall the results of [25] on the volume doubling property
of the Kusuoka measure and basics on the harmonic geodesic metric, with slight improve-
ments. Based on these preparations, we give the proofs of our main results in the subsequent
sections; Theorem 1.1 and consequently Corollary 1.2 are proved in Section 4, and (1), (2)
and (3) of Theorem 1.3 together with some more detailed results are treated respectively in
Sections 5, 6 and 7.

Notation. In this paper, we adopt the following notations and conventions.
(HN={1,2,3,...},ie. 0 &N.

(2) The cardinality (the number of all the elements) of a set A4 is denoted by #A.

(3) We set sup@ := 0 and inf @ := co. We write a vV b := max{a, b}, a A b := min{a, b},
at:=av0anda™ := —(a A0) fora, b € [-00, 00]. We use the same notations also for
functions. All functions treated in this paper are assumed to be [—00, oo]-valued.

(4) Let N € N. The Euclidean inner product and norm on R” are denoted by (-,-) and
| - | respectively. For y : [a,b] — R¥ continuous, where a,b € R, a < b, let £(y) be its
length with respect to | - |. We set L(RY) := {T | T : RY — R¥, T is linear}, and for
T e L(RN) let det T be its determinant, and T* its adjoint and | T || its Hilbert-Schmidt
norm with respect to (-, -).

(5) Let E be a topological space. The Borel o-field of E is denoted by B(E). We set
CE):={f|f:E—R, fiscontinuous} and || f |lco := sup,eg | f(X)|, f € C(E).
(6) Let (E, p) be a metric space. We set B-(x,p) :={y € E | p(x,y) < r} for (r,x) €
(0,00) x E and diam(4, p) := sup, ,e4 p(x,y) for A C E. Also for f : E — R we set
Lip, / i= Suby ye . xrey | F() = TO)I/p(x. ).

2 Measurable Riemannian structure on the Sierpinski gasket

In this section, we briefly recall basic facts concerning the measurable Riemannian structure
on the Sierpinski gasket, including the definitions of the standard Dirichlet form (resistance
form) and the harmonic Sierpinski gasket, which is the geometric realization of the mea-
surable Riemannian structure. We follow mainly [25] for the presentation of this section,
but we sometimes refer to also [17,22,23,26,29] for related facts. See [37] for possible
generalizations to other finitely ramified fractals.
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Definition 2.1 (Sierpinski gasket). Let Vo = {g1,92,93} C R? be the set of the three
vertices of an equilateral triangle, set S := {1,2, 3}, and for i € S define F; : R2 — R2
by F;(x) := (x + ¢;)/2. The Sierpinski gasket (Figure 1) is defined as the self-similar set
associated with {F; }; cs, i.e. the unique non-empty compact subset K of R? that satisfies
K = U;es Fi(K). We also define V;;, for m € N inductively by Vi, := {U;e5 Fi (Vin—1)
and set Vi := {,,,en Vin-

Note that V;;,—1 C Vj, for any m € N. K is always regarded as equipped with the
relative topology inherited from R?, and Vi is dense in K in this topology. Hereafter we
always regard F; for eachi € S as a continuous map from X to itself.

Definition 2.2. (1) Let Wy := {0}, where @ is an element called the empty word, let W, :=
S™ =A{wi...wp | w; € Sfori € {l,...,m}}form € Nand Wi := U, enuioy Win-
For w € Wy, the unique m € N U {0} with w € W, is denoted by |w| and called the length
of w. Also fori € S andn € NU {0} we write i"” :=i...i € Wp,.

(2) Weset £ := SN = {wjwpw3... | w; € Sfori € N}, and define the shift map
0:X > Xbyo(wwaws...) := waw3wyg....Alsofori € S we defineo; : ¥ — X by
gi(Wwwarws...) ;= iwjwrws ... and set i® :=iii... € X.Forw = wjww3... € X
and m € N U {0}, we write (0] := ®1...0m € Wpy,.

B)Forw = wy ... wm € Wy, weset Fy, 1= Fy,,0---0Fy,, (Fp :=idg), Ky 1= Fy(K),
Ow := Oy, 0+ 00y, (0g :=ids)and Xy 1= oy (X).

Associated with the triple (K, S, {F; };cs) is a natural projection 7 : ¥ — K given by
the following proposition, which is used to describe the topological structure of K.

Proposition 2.3. There exists a unique continuous surjective map w : ¥ — K such that
Fiom = moo; foranyi € S, and it satisfies {m(w)} = ey Kiwl, for any o € Z.
Moreover, #r~1(x) = 1 for x € K\ Vi, 1 Ngq;) = {i®} fori € S, and form € N
and each x € Vi, \ Vip—1 there exist w € Wyy—1 and i,j € S withi # j such that
a7 (x) = {wij %, wji®®).

Recall the following basic fact ([23, Proposition 1.3.5-(2)]) which we will use below
without further notice: if w, v € Wy and £, N X, = @then Kyy N Ky = Fyy (Vo) N Fy (Vo).

As studied in [1,23,34], a standard Dirichlet form (or resistance form, strictly speaking)
(€, F) is defined on the Sierpinski gasket K as follows.

Definition 2.4. Let m € NU{0}. We define a non-negative definite symmetric bilinear form
Em RVm x RYm — R on Vj;, by
1 1/5

entn)i=15(3)" X @@-u0De@-vo), @D

X Y€V, xy

where, for x, y € V,;,, we write x < y if and only if x, y € Fy,(Vy) for some w € W, and

X #y.

The usual definition of &, does not contain the factor 1/4 so that each edge in the
graph (V;,,, %) has resistance (3/5)"". Here it has been added for simplicity of the subse-
quent arguments; see Definition 2.11. It is easily shown that, for any function ¥ : K — R,
{EmW|v,, u|v,,)}menutoy is non-decreasing and hence has the limit in [0, oc]. Then we
have the following theorem; see [23, Chapter 2] and [26, Part 1] for the definition and basic
properties of resistance forms.
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Theorem 2.5. Define F C C(K) by F :={u € C(K) | limyy—s 00 Em (v, u|v,,) < 00}
and £ : Fx F — Rby E(u,v) := limy— oo Em(U|v,,. v|v,,)(€ R) for u,v € F. Then
(€, F) is a resistance form on K whose resistance metric Re = Rg(x,y) : KxK — [0, 00)
is compatible with the original topology of K. Moreover, for any u,v € F,

uoF; € Fforanyi €S and E(u,v) = > > o FivoFy). (2.2)
3 ieS
(€, F) is called the standard resistance form on the Sierpinski gasket. Furthermore [26,
Corollary 6.4, Theorems 9.4, 9.9 and 10.4], (2.2), £(1,1) = 0 and [24, Theorem A.4] imply
the following theorem. See [13, Section 1.1] for the notions of regular Dirichlet forms and
their strong locality, and see [13, Section 2.1] and [26, Definition 9.8] for the definition of
their associated capacity.

Theorem 2.6. Let v be a finite Borel measure on K with full support, i.e. such that v(U) > 0
for any non-empty open subset U of K. Then (€, F) is a strong local regular Dirichlet form
on L%(K,v) whose associated capacity Cap,, satisfies infyc g Cap, ({x}) > 0. Moreover,
its associated Markovian semigroup {T} };e(0.00) on L? (K, v) admits a unique continuous
integral kernel p,,, i.e. a continuous function p, = p,(t,x,y) : (0,00) x K x K — (0, 00)
such that for each f € L?>(K,v) and t € (0, 00),

TV f = /K ot ) FO)V()  v-ae 23)

In the situation of Theorem 2.6, v is called the reference measure of the Dirichlet space
(K,v,E,F), and p, is called the heat kernel associated with (K, v, £, F); see [26, Theorem
10.4] for basic properties of p,,.

Since we have a regular Dirichlet form (€, F) with state space K, by [13, pp. 110-111]
we can define £-energy measures as in the following definition.

Definition 2.7. The E-energy measure of u € F is defined as the unique Borel measure
M@y on K such that

/ Sdpay =2Eufu) —E&w?, f) forany f € F. 2.4)
K

We also define A,y to be the unique positive Borel measure on X that satisfies A () (X)) =
2(5/3)1E(u o Fy,u o Fy) for any w € Wi, which exists by (2.2) and the Kolmogorov
extension theorem. For u,v € F we set bq, v) ‘= (Hiutv) — Uu—v))/4 and Ay, )y =
(A u+v) — Au—v)y)/4, so that they are finite Borel signed measures on K and on X respec-
tively and are symmetric and bilinear in (1, v) € F x F.

Let u € F. According to [6, Proof of Theorem 1.7.1.1], the strong locality of (£, F)
implies that the image measure fi(y,) © u~! on (R, B(R)) is absolutely continuous with
respect to the Lebesgue measure on R. In particular, ¢,y ({x}) = 0 for any x € K. We also
easily see the following proposition by using (2.2) and (2.4). Note that w(A4) € B(K) for
A € B(X) by Proposition 2.3.

Proposition 2.8. A, ) = fL(u.v) © T and Ay vy © T = pypy for any u,v € F.

The definition of the measurable Riemannian structure on the Sierpinski gasket involves
certain harmonic functions. In the present setting, harmonic functions are formulated as
follows.
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Definition 2.9. (1) We define Fy := {u € F | u|x\y = 0} for each open subset U of K.
(2) Let F be a closed subset of K. Then /i € F is called F-harmonic if and only if

E(h,h) = inf E,u) orequivalently, E(h,u)=0, Yue Fr\r. (2.5)

uceF. ulp=hlr

We set HF := {h € F | his F-harmonic}, which is a linear subspace of F, and H,, :=
Hy,,,m € NU{0}. Note that foru € F,u € H,, ifand only if E(u, u) = & (ulv,,. U|v,,)s
which holds if and only if u o F, € Ho for any w € W, by (2.2).

The following proposition easily follows from [26, Lemma 8.2].

Proposition 2.10. Let F be a non-empty closed subset of K.
(1) Let u € F. Then there exists a unique h € Hf such that h|p = u| .
2)Leth € HEF. Then ming h < h(x) < maxg h forany x € K.

Now we define a “harmonic embedding” ® of K into RZ, through which we will re-
gard K as akind of “Riemannian submanifold in R>” to obtain its measurable Riemannian
structure. We also introduce a measure p which is the £-energy measure of the “embedding”
® and will play the role of the “Riemannian volume measure”. Recall Vo = {q1, 92,93},
and see [23, Section 3.2] and Proposition 2.12 below for basic properties of Vp-harmonic
functions.

Definition 2.11. (0) Leti € S, and let j,k € S be such that j = i + 1 mod 3 and
k = i+2mod 3. We define 1’ , hé € F to be the Vp-harmonic functions satisfying h’i (i) =
Wh(gs) = 0. K () = h (qe) = L and =) (q;) = I (qi) = 1//3. 50 that 26} hY) =
2E(h%, hY) = 1 (recall the factor 1/4 in (2.1)), E(h},h%) = 0, hi o F; = (3/5)h} and
hi o F; = (1/5)h5.

(1) We set hq := h} and ho = h; and define ® : K — R? and K by

d(x):=(h1(x),h2(x)), x€e K and Ky := P(K). (2.6)

K7 is called the harmonic Sierpinski gasket (Figure 2). We also set §; := ®(g;) fori € S,
so that {G1, 2,43} = ®(Vp) is the set of vertices of an equilateral triangle.
(2) We define finite Borel measures u on K and A on X by respectively

W= [inyy + hyy  and A= Agnyy + Ay @7

sothat A = womw and A o 7~ ! = by Proposition 2.8. We call  the Kusuoka measure on
the Sierpinski gasket.

Notation. In what follows h’i , hé, h1, h> always denote the Vp-harmonic functions given in
Definition 2.11. We often regard {h’ , hé} as forming an orthonormal basis of (Ho/R1, 2£).
Moreover, we set

lulle := V28, u), ueF and Sy,:=1{heHol|hle=1}. (2.8)
The following proposition provides an alternative geometric definition of K7, and es-

sentially as its corollary we also see the injectivity of @ (Theorem 2.13), Proposition 2.14
below and that (s has full support for any & € Sy, .
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Proposition 2.12 ([22, §3]). Fori € S, define T; € L(R?) and H; : R> — R? by
A . A a 3. . |
Ti(a(@) + 4k = 240) + b@x = 47)) := zal@j + 4k = 241) + bk —4)). a.beR,

where {i, j,k} = S, and H; (x) = §; + T; (x —§;), x € R2. Also forw = wy ... wy, € Ws
let Ty := Ty, *++ Tw,, (Tg := idg2), which we regard as its matrix representation through
the standard basis of R2. Then we have the following statements:

: _(3/5 0 _ 3/10 —ﬁ/lo) _ ( 3/10 ﬁ/lo)

71 = ( 0 1/5)’ 2= (—ﬁ/lo 2 )= 500 2 )

(ii) For each w € Wy, Ty := (Ty)™ is equal to the matrix representation of the linear map
F} : Ho/R1 — Ho/R1, Fjih := ho Fy, by the basis {h1, h2} of Ho/R1.

(iii) H; o ® = ® o F; and hence H; o (Porn) = (Pom)oao; foranyi € S. In particular,
Kn = Ujes Hi (Kn), i.e. Ky is the self-similar set associated with {H; };es.

Theorem 2.13 ([22, Theorem 3.6]). The map ® : K — K1y is a homeomorphism.

Proposition 2.14. 1 (Ky) = AM(Zyw) = (5/3)W| Ty for any w € Wi. Moreover, it
holds that L oo™ ! = A.

Kusuoka [29, Example 1] has proved that A is ergodic with respect to the shift map o, i.e.
AMAA(Z\ 4) = 0forany A € B(X) with 0! (A4) = A, and that it is singular with respect
to the Bernoulli measure on X with weight (1/3,1/3,1/3). The ergodicity of A plays an
essential role in Section 6, where we provide an alternative simple proof of it.

Now we introduce the measurable Riemannian structure on K, which is formulated as a
matrix-valued Borel measurable map Z on K, as follows.

Proposition 2.15 ([29, §11], [22, Proposition B.2]). Define ¥z € B(X) and Kz € B(K) by

Tiw1,, Tt
Sy, = {w ex l Zs(@) = lim —or b gy inL(RZ)}, Kz = 7(Sy2).
m=00 || T, |
2.9
Then Zx (w) is an orthogonal projection of rank 1 forany w € Xz, M(X\ Xz) = u(K \
Kz) =077 '(Vo) C 2z and Zs(w) = Zx(t) forw,t € 771 (x), x € Vi \ Vo.
Hence (by Proposition 2.3) setting Zx = Z(x) = Zx(w), ® € 17 (x) forx € Kz
and Zy = Z(x) := ((1) 8) for x € K\ Kz gives a well-defined Borel measurable map
Z K - L(R?).

Theorem 2.16 ([22, §4]). Set C1(K) := {vo® | v € CY(R?)}. Then for eachu € C'(K),
Vu := (Vv) o ® is independent of a particular choice of v € C'(R?) satisfying u = v o ®.
Moreover, C1(K) C F, CY(K)/R1 is dense in (F/R1, E), and for any u,v € C'(K),

1
dituvy =(ZVu,ZVv)ydu and E(u,v) = 5/ (ZVu, ZVv)du. (2.10)
K

In view of Theorem 2.16, especially (2.10), we may regard Z as defining a “one-
dimensional tangent space of K at x together with a metric” for u-a.e. x € K in a mea-
surable way, with u considered as the associated “Riemannian volume measure” and ZVu
as the “gradient vector field” of u € C'(K). Then the Dirichlet space associated with this
“Riemannian structure” is (K, i, €, F). The main subject of the present paper is detailed
asymptotic analysis of this Dirichlet space, especially its associated heat kernel p,, .

As a matter of fact, any v € F admits a natural “gradient vector field” Vu, thereby
(2.10) extended to functions in F, as in the following theorem whose essential part is due to
Hino [17, Theorem 5.4].
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Theorem 2.17. Let h € Sy,. Then for any u € F we have the following statements:
(1) For p-a.e. x € K, there exists Vu(x) € Im Zy such that for any o € w1 (x),

sup () =) = (Fu(). () = 0| = 0T, ) as m — 0. .11
YEK([wlm

Such AV/u(x) € Im Zy as in (2.11) is unique for each x € Kz, and dji,y = |AV/u|2du.
(2) For wpy-a.e. x € K, there exists Z—Z(x) € R such that for any w € w1 (x),

sup
YEK[wlm

u(y)—u(X)—*(X)(h(y) h(X))‘ =o(|lho Fiwy,lle) as m — oo. (2.12)

Such g—%(x) € Roas in (2.12) is unique for each x € K, and dji,y = (%)2dﬂ(h)

We need the following definition and lemma for the proof of Theorem 2.17. Recall that
the map Z : K — L(R2) satisfies Z2 = Z* = Z,detZ =Oandtr Z = 1.

Definition 2.18. Let Z/+/ = (ei,Zej) fori,j € {1,2}, where e; := (1,0) and e> :=
(0,1). We define ¢ = (¢1,¢%) : K — R? by

= (Vz11,z12/yzY) itz #£0,  otherwise ¢ := (0, 1), (2.13)

sothat Z+/ = ¢i¢/ fori, j € {1,2}, |¢| = 1 and ¢(x) € Im Z for any x € K. Also for
each x € K, we write £ = (£1,¢2) for ¢ (x) = (¢! (x), ¢?(x)) and define Ay, hi- by

hy = CL(hy —h1(0)1) + (2 (ha — ha(x)1),

(2.14)
v 1= =G5 = hi (1) + &y (h2 — ha (D)D),
so that hx,hfg € SHyp» S(hx,hfg) =0and hy(x) = hfg(x) =0.
Lemma 2.19. Letx € Kz and w € n~ 1 (x). Then
hy o F hio F
I Forlle _ g iy Vix © Flotulle _ 2.15)

Proof. This is immediate from a direct calculation using Proposition 2.12-(ii), (2.9) and
(2.14). O

Proof of Theorem 2.17. By [17, Theorem 5.6], (4 is absolutely continuous with respect to
both u and () for any v € F. Moreover, by [23, Theorem 3.2.5] and a direct calculation
we have

2
|ho Fylle < rlréaxh —%inh < —|lho Fylle foranyw € Wi. (2.16)

NE

Therefore an application of [17, Theorem 5.4] to & and u yields (2);/Thanks to (2 14), (2.15)
and (2.16), (1) follows by applying (2) to 7 = h; and setting Vu(x) := dh1 L(x)¢Lley;
note that w and /i,y are mutually absolutely continuous and that ({!)? = |Zej|? =
ditinyy/dp p-ace. O
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Remark 2.20. The “gradient vector field” Vu in Theorem 2. 17-(1) coincides with the “weak
gradient” Y (-;u) defined by Kusuoka [29, Lemma 5.1] (see also [25, Definition 4.11]). In-
deed, noting that we can naturally define Vu on K \ V,,, for m € N and u € H,y in the same
way as in Theorem 2.16, from (2.15) and (2.16) we can easily verify Vu(x) = ZVu(x)
forx € Kz ifu e C'(K)and forx € Kz \ Vy, if m € Nand u € H,,. Letu € F, and
for each m € N let u,, € H,, be such that u,,|y,, = ul|y,,. Then by Theorem 2.17-(1) and
[23, Lemma 3.2.17],

/ |'Vvu—zwm|2du=/ IV —um)Pdp = Ju—um |2 5= 0,
K K

whereas Y(-;u) is defined as the L?(K, u)-limit of {Z Vi, }men in [29]. Thus Vu =
Y(-;u) pu-ae.

3 Geometry under the measurable Riemannian structure

This section is devoted to preparing preliminary facts required for the subsequent arguments.
First we introduce basic notions and results concerning the description of geometry of K,
following [24]. Then we treat the volume doubling property of energy measures, construc-
tion of geodesic metrics and weak Poincaré inequality. For the Dirichlet space (K, i, £, F),
which corresponds to the measurable Riemannian structure on K, essential parts of the re-
sults of this section are already established in Kigami [25]. Here we slightly improve his
results, and prove the same results also for the Dirichlet space (K, t(pny, £, F), h € Sy
The extensions to (K, ft¢sy, €, F) are of independent interest and will play central roles in
Sections 4 and 5.

Definition 3.1. (1) Letw,v € Wy, w = wi ... Wy, v = V1 ...V,. We define wv € Wy by

WU 1= Wi ... Wy ...V, (WP = w, Gv := v). We also define w! ...wX fork > 3 and

wl, ..., wk e W, inductively by wl.. wk .= (w] .. .wk_l)wk. We write w < v if and

only if w = vt for some T € Wi. Note that ¥, N ¥, = @ if and only if neither w < v nor

v <uw.

(2) Let A be a finite subset of W,. We call A a partition of ¥ if and only if £, N X, = 0

forany w,v € A withw #vand X = J,,cp Zw-

(3) Let A1 and A, be two partitions of X. Then we say that A is a refinement of A», and

write A1 < A», if and only if for each w! € A there exists w2 € A» such that w! < w?2.
Suppose A1 < A». Then we have a natural surjection A; — A2 by which wl eA;is

mapped to the unique w2 € A, such that w! < w?. In particular, #A | > #A».

Definition 3.2. (1) A family § = {As}se(0.1] of partitions of X is called a scale on X if
and only if § satisfies the following three properties:

(S1) A1 = Wo (= {9}). As, < Ay, forany s1,s2 € (0, 1] with s1 < s5.

(S2) min{|w| | w € Ay} > oc0ass | 0.

(Sr) For each s € (0, 1) there exists ¢ € (0, 1—s] suchthat Ay = Ag forany s’ € (s, s +¢).
(2) A function [ : Wy — (0, 1] is called a gauge function on Wi if and only if [(wi) < I(w)
for any (w,i) € Wy x S and limy;;— o0 max{/(w) | w € W;,} = 0.

There is a natural one-to-one correspondence between scales on ¥ and gauge functions
on Wk, as in the following proposition. See [24, Section 1.1] for a proof.
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Proposition 3.3. (1) Let [ be a gauge function on W. For each s € (0, 1], define
As) ={w|w=wr...wym € Wy, (W1 ... Wn—1) >s = 1(w)} 3.1

where [(w1 ... wm—1) := 2 when w = 0. Then the collection 8(I) := {As(I)}se0.1] is a
scale on 3. We call 8(1) the scale induced by the gauge function /.

(2) Let 8 = {As}se(0.1] be a scale on X. Then there exists a unique gauge function lg on
Wi such that 8 = 8(Ig). We call lg the gauge function of the scale 8.

Definition 3.4. Let S = {A;}s5e(0.1] be ascale on X. For s € (0, 1] and x € K, we define

K(x,8) := g Kw, Us(x,8):= g Kuw. (3.2)

weAs, xeKy wWeAy, KyNKs(x,8)#0

Clearly, K (x, 8) and Us(x, 8) are decreasing as s decreases and { K (x, 8)}s<(0.17 and
{Us(x, 8)}se(0.17 are fundamental systems of neighborhoods of x in K.
Proposition 2.3 easily yields the following lemma.

Lemma 3.5. Let 8§ = {Ag}se(0.1] be a scale on Z and let s € (0,1], x € K and w € Ay.
Then #{v € As | Ky N Kg(x,8) # B} < 6and#{v € As | Ky N Ky # @} < 4.

Definition 3.6. Let S = {A;}s5e(0.17 be a scale on X.
(1) A function ¢ : W,y — [0, 00) is called gentle with respect to 8 if and only if there exists
Cgen € (0,00) such that (w) < cgen(v) Whenever w,v € Ay for some s € (0, 1] and
Ky N Ky # 0. We say that a finite Borel measure v on K is gentle with respect to 8 if and
only if the function Wy > w — v(Ky,) is gentle with respect to 8.
(2) A metric p on K is called adapted to § if and only if there exist B, B2 € (0, 00) such
that

Bg,s(x,p) C Us(x,8) C Bg,s(x,p), (s,x) €(0,1] x K. (3.3)

Lemma 3.7. Let § = {As}se0.1] be a scale on X with gauge function | and let p be
a metric on K adapted to 8. Then p is compatible with the original topology of K, and
diam(Ky, p) < B2l(w) for any w € Wy, where B> € (0, 00) is as in (3.3).

Proof. The first assertion is clear. Let w € Wi, x,y € Ky, and s := [(w). Then w < v
for a unique v € Ay, and Ky, C Ky C Us(x,8) C Bg,s(x, p) by (3.3). Thus p(x,y) <
Bas = Bal(w). O

Now we discuss the volume doubling property of w and p(pny, h € Sy . First we
state their volume doubling property in terms of certain scales, to which the correspond-
ing geodesic metrics are shown to be adapted later in this section.

Definition 3.8. (1) We define 87" = {A7}5¢(0.1] to be the scale on ¥ induced by the gauge
function I3 : We — (0, 1], Ix(w) := | Tl A1 = v (3/5)WIw(Ky) Al
(2) Let h € Spy,. We define 8" = {A”};c(0.1] to be the scale on X induced by the gauge

function I, : Wy — (0, 1], [p(w) := |[h o Fyle = \/(3/5)|w|l/«(h)(Kw)~

Lemma 3.9 (cf. [25, Lemma 3.5 and Proof of Theorem 3.2]). Let h € Sy,.
(1) For any (w,i) € Wy x S,

1 3 1 3
TSPL(Kw) < u(Kyi) < gM(Kw)a g”Tw | < 1Twill < g”Tw“v 3.4

1 3 1 . 3
Eﬂ(h)(Kw) < pny (Kywi) < gﬂ(h)(Kw), glh(w) < lp(wi) < glh(w)~ (3.5
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2) If w,v € Wy satisfies |w| = |v| and Ky, N Ky # O then
Wiy (Kw) < 9peny(Ky),  Ip(w) <3lp(v)  and Iy (w) < 3l (v). (3.6)

Proof. (1) By considering || o Fy, ||glh o Fy, and @ instead of & and w respectively, a direct
calculation easily yields (3.5), from which (3.4) is immediate.
(2) This is proved in essentially the same way as [25, Proof of Lemma 3.5]. O

Proposition 3.10 (cf. [25, Theorem 6.2]). (1) There exists cg € (0, 00) such that for any
g.h € Sy, gy is gentle with respect to both 8™ and 8" with constant cgen = cg, ie.
Wigy(Kw) < ccit(gy(Ky) whenever either w,v € A or w,v € A? for some s € (0, 1]
and Ky, N Ky # 0.

(2) Let k := logs 15 and k := logs,3 15. Then there exists ¢y € (0,00) such that for any
g.heSy, x e Kands,t € (0,1 withs <t,

//«(Ut(x,SH)) I\K M(h)(Ut(X,Sh)) K

sy oG aaeey oG e
Pie) (U (x. 87)) [\# gy (U (x, 8M)) N
noGosy =Gl e =oG) e

Proof. (1) This is proved in exactly the same way as [25, Proof of Theorem 6.2]. Here [25,
Proof of Theorem 1.4.3] together with (3.4), (3.5) and (3.6) easily shows that the constant
¢ € (0, 00) can be chosen independently of g, h.

(2) We essentially follow [24, Proof of Theorem 1.3.5], but slightly more detailed arguments
are required to deduce the explicit constants k and . Let g € Sy, x € Kandw € 771 (x).
For each s € (0, 1), let n(s) be the unique n € N U {0} satisfying [®], € A, so that

5/5 < | Tiw) < s by (3.4). Then (1) and Lemma 3.5 easily imply that for any s € (0, 1),

n(s)

H
| (U8
M(K[(U]n(s))

1) (Us (x,870)

66(2] and 1< <
/L(g) (K[w]n(x))

6¢2. (3.9)
Lets,t € (0,1), s <t.Then n(s) > n(t), and (3.4) yields

(3.10)

5

Ly |Tiono ]l _ s _ 31 Tione | _ s(2)".
5

5 "5 Tt | T 0T [T T

5
Now from (3.9) and (3.10) we conclude that

czu(US(x,SH)) - I’L(K[(U]n(.\')) - ( t )1025(5/3) 52 3 (S)K
5s

CpU(x.8M) = w(Kiwae) 2502 125\1

and, using also (3.5), that

Cz,u(g)(Us(szH)) - 1e) (Kol - (i)”(s)_nm - S—Q(S)K
GWg)(Ul(x’SH)) - M{g)(K[w]n(t)) S ’

proving the assertions for SH.: the case with ¢ = 1 follows since Usys(x, SH) = K. In view
of (3.5), exactly the same proof applies to the assertions for §” as well. ]
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Remark 3.11. The powers k in (3.7) and & in (3.8) are best possible. Indeed, for n € N,
since T* — ((3/5)" 0 ) T* (—1/2 —ﬁ/2>( 0 (+v/3/5)2nH1 )

1 UYLV S S V372 —1/2 )\ =(/3/5)2m+1 —2(1/5)21+1 )
we easily see 5" < t, /s, and hence (Us, (xn,87))/1w(Us, (xn,8™)) < 10cG(sn/tn)*

by (3.9), where x,, := 7(1"32°°), s, := ||T1n32n || and t,, := || Ty~ ||. Similar calculations
work with 8” and ju(sy for each i € Syy,. For the first part of (3.8) it suffices to choose
g:=ho,x:=qq,s:= ||[Tj2n|| and t := || Tyn| to let n — oo, and similarly for the latter

of (3.8) for each 1 € Sy,,.
Next we define the corresponding geodesic metrics on K and state their basic properties.

Definition 3.12. Let & € Sy,,. We define the harmonic geodesic metric py on K and the
h-geodesic metric pp on K by respectively

pr(x,y) ;== inf{ly(y) | ¥ : [0,1] = K, y is continuous, y(0) = x, y(1) = y},
on(x,y) :=inf{€s(y) | y : [0, 1] = K, y is continuous, y(0) = x, y(1) = y}

for x, y € K, where we set £14(y) := £(Poy) and £;(y) := £(h o y) for a continuous map
y:la,b] > K,a,b e R,a <b.

Definition 3.13. (1) Let m € N U {0} and let x, y € V,, satisfy x ~ y, where ~ is as
in Definition 2.4. Let w(x, y) be the unique w € W, such that x,y € Fy,(Vp), and let
Xy (C Kw(x.y)) denote the line segment from x to y which is also regarded as the map
[0,1] 3¢ = x 4+ #(y — x). Note that Xy C Kz by [25, Theorem 5.4].

(2) Let m € N U {0}. A sequence ' = {xk}llcv=0 C Vi, where N € N, is called an m-
walk if and only if xzx_1 L xy fork e {1,....N} and w(xg—1,xx) # W(Xk, Xk41)
fork € {1,...,N — 1}. For such T we define continuous maps I" : [0, N] — K and
T :[0,£7(T)] — K by

T() = xp—1 + (t —k + D)(xk —xx—1). te[k—1.k], ke{l,....N}.

andT :=To gol?l, where ¢r is the homeomorphism ¢r : [0, N] — [0, £x(D)], 1 (¢) :=
£1(T|jo.77): note that £3¢(T") < oo and T'([0, £3(T)]) C Kz by [25, Theorem 5.4].

(3) Let y : [a,b] — K be continuous, a, b € I&, a < b. y is called a harmonic m-geodesic,
where m € N U {0}, if and only if y(¢) = F(KH(T)}’)_T‘;), t € |[a,b] for some m-walk
I'. y is called a harmonic geodesic if and only if there exist n € N U {0} and sequences
{amtmsn.{bm}m=n C la,b] with limy, o0 ay = a and limy,— o0 by = b such that
am+1 < am < bm < byy41 and y|[a,, .b,,] is @ harmonic m-geodesic for each m > n.

Proposition 3.14 ([25, Theorem 5.4]). If m € N U {0} and T is an m-walk, then ® o Tis

C!, and (®oT) (1) € Im Zs, and |(® o )Y (1) = 1foranyt € [0, £+(T)].

For the harmonic geodesic metric p; we have the following proposition due to Kigami
[25]; it is not explicitly stated in [25, Theorem 5.1], but is actually shown in the proof there,
that we can take harmonic geodesics as shortest paths for the length £4,(-). This fact plays a
crucial role in the proof of Proposition 4.10 below.

Proposition 3.15 ([25, Theorems 5.1 and 5.11]). (1) py is a metric on K satisfying

B\/Z;/S()(x7 IOH) C US(X’SH) C B]OS('X7 pH)5 (S,X) € (0» 1] X K (311)

(2) For each x,y € K with x # Yy, there exists a harmonic geodesic yx, : [0,1] —
K such that yxy,(0) = x, yxy(1) = y and pr(x,y) = Ly (yxy), and in particular

PH(Vxy (), Yxy (1) = Lr(yxylis.) = @ —$)pr(x,y) for any s,t € [0,1] with s < 1.
Moreover, if m € NU {0} and x,y € Vy, then we can take a harmonic m-geodesic as V.
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In fact, similar assertions are valid also for pj,, as follows.

Proposition 3.16. Let h € Syy,.
(1) pn is a metric on K satisfying

By a5(x, pn) C Us(x,8") C Byg(x,pn),  (s,x) € (0,1] x K. (3.12)

(2) For each x,y € K with x # 'y, there exists a harmonic geodesic yfc’y : [0,1] —
K such that yfgy(O) = X, yfcly(l) = y and pp(x,y) = (Zh(yfy). In particular, if we
define gafcly : [0,1] — [0, 1] to be the inverse of [0,1] > t (fh(yfcly“o,,])/ph(x,y),
then pp(yiy © 9, (), v, 0 %, (1) = Ln(ydy © 0% l1s.1) = (1 = $)pn(x, y) for any
s,t € [0,1] with s < t. Moreover, if m € N U {0} and x,y € Vi, then we can take a
harmonic m-geodesic as yfc’y.

Remark 3.17. If y : [0, 1] — K is a harmonic geodesic and i € S, then by [25, Theorem
5.4] (see also (3.15) below), the set { € (0,1) | (h o y)'(t) = 0} is discrete and hence
[0,1] 5 ¢t — Lu(yl0.r7) is strictly increasing. Therefore (pf  as above does exist as a
homeomorphism.

We need the following lemma for the proof of Proposition 3.16.
Lemma 3.18 (cf. [25, Lemma 5.6]). Set Osc4 f := supy f —infyq f for f € C(K) and
ACK A# Q. Leth € Syy, w € Wy and x,y € Fyy(Vo), x # y. Then
Lp(xy) = inf{€y(y) | y : [0,1] = Ky, v is continuous, y(0) = x, y(1) = y}, (3.13)

In(w)
5

SOsch < ,(7) £20sch  and LT = ). G
Proof. Ttis easy to see that we may assume w = @ without loss of generality by considering
o Fyllg ho Fy, @, Fiy ' (x) and Fj; ' (y) instead of 2, w, x and y. Then by the symmetry
of K and (€, F) we may further assume that x = ¢, and y = ¢3.

Let I := [—1/+/3,1/+/3]. By [25, Theorem 5.4], ®(q2q3) = {(¢(t).1) | t € I}
for some ¢ € C!(I) and it possesses the following properties: ¢(—t) = @(t) fort € I,
¢’ is strictly increasing, ¢’ (£1/+/3) = +1/+/3, and K3y C {(s.1) € R? | 5 < ¢(1)},
ie. hy < @ ohy. We set ya3(t) := ® 1 (p(t),t),t € I. Choose a,b,c € R so that
h = ahy+bhy+cl.Then hoy3(t) = ap(t)+bt +cfort € I and (hoys3) = ap’ +b.
Since a® 4+ b2 = ||| = 1 # 0 it follows that

either (hoy23)'(t) # Oforanyt € I or (hoy23) (tg) = O for a unique tg € I, (3.15)

from which and i1 < ¢ o hy we can easily verify (3.13) and £4(q293) < 2 Osck h.

To complete the proof of (3.14), let g23 := Fa(q3) = F3(q2), so that 5h(g23) =
h(q1) + 2h(q2) + 2h(g3) by h € Ho and [23, Example 3.2.6]. Since either of & (g2) and
h(q3) is equal to either maxy, & or miny,, i, we see that

50n(q293) = 5|h(q2) — h(q23)| + 5|h(q23) — h(g3)]
= |h(q) + 2h(g3) = 3h(q2)| + |h(q1) + 2h(q2) = 3h(g3)| = Osch = Osch,
0
proving the former assertion of (3.14) which and (2.16) yield the latter. O

Proof of Proposition 3.16. This is proved in exactly the same way as [25, Proofs of Theo-
rems 5.1 and 5.11] by using Lemma 3.18 instead of [25, Lemma 5.6]. O
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By virtue of Propositions 3.10, 3.15 and 3.16, now we arrive at the following theorem,
which improves and generalizes [25, Theorem 6.2] and will be used to deduce the remainder
estimates in Theorem 5.8 below.

Theorem 3.19. Let k := logs 15 and & := logs,3 15, as in Proposition 3.10-(2). Then
there exists cy € (0, 00) such that for any g.h € Sy, x,y € K and r, R € (0, 00) with
r <R,

w(BR(x, pr)) <oy (R+PH(X,y))K Hny(BR(X, pn)) <oy (R+Ph(x»Y))K
w(Br(y,pr)) ~ r winy(Br(y.pn)) ~ r '

(3.16)

Moy (BRO.pH)) _ (R+PH(st’))I% Koy (BRO.pn)) _ (1’?+ph(>c,y))’2
1y (Br (v, pr)) — r C ey Br(apn) T r '

(3.17)

Proof. Since Br(x,p) C BRr4p(x.y)(y.p) for p = p3, pn, it suffice to prove the as-
sertions when x = y. (3.7), (3.8), (3.11) and (3.12) easily yield (3.16) and (3.17) for
R < /2/50, and then the case of R > +/2/50 is easily proved by using (3.4), (3.5),
(3.11) and (3.12). O

Finally we prove the weak Poincaré inequality for (K, 1, &, F) and (K, ny, €, F),
h € Sy

Proposition 3.20. Let cg € (0, 00) be as in Proposition 3.10-(1) and cp = 34106Cé. Let
h € Sy, and let (v, p) denote any one of (i, pr) and (((ny, pr). Then

12
/;B ( )}u — u‘r’ﬂ dv < cPrzu(u)(stoﬁr(x,p)), uerF (3.18)
r(x.o

for any (r, x) € (0,00) x K, where ) := v(By(x,p))~ ljB’ (x.py UV

Proof. Letu € F.Recall that Rg denotes the resistance metric on K associated with (€, F).
Since diam(K, Rg) < 6 which easily follows by using [23, Lemma 3.3.5], for any w € W
and any y, z € Ky, we have

lwl
) —u@)P = Re(Fy 0, Fy @)wo Fuuo F) < 3(3) " g (Ku). 319

Also fors € (0,1) and w,v € A;{ with Ky, N Ky # 0, (3.4) and Proposition 3.10-(1) yield

g(;)lwl < 1(Kw) < cap(Ky) < CGG)W‘SZ’ thus @)lvl = ZSCG@)M' (320

H
Let (r, x) € (0, 00) x K. Suppose r < +/2/50 and take w € Azsﬁr

Then by considering Uzsﬁr (x, 8M), from (3.11), (3.19) and (3.20) we easily see that

such that x € Ky,.

3\ lwl
lu(y) — u(z)| < 60J§cc\/(§) 1 (Basg y3r (5 70). 9.2 € Br(x, pro). (321)

Now since pu(By(x, pr)) < p( 25f,(x 8M)) < 6ciu(Kyw) by (3.11) and (3.9), and
(/5" u(Kw) = |Twl® < 1250r> by w € AT .
follows by integrating (3.21) in z under ji|B, (x,p,,) and then in y after taking the square.
The case of r > \/5/50 can be verified in a similar way by using (3.19) with w = ¢

since B, N (x,pr) = K by (3.11), and exactly the same proof applies to the case of
((qny, pn) as well by virtue of (3.5), Proposition 3.10-(1) and (3.12). O

(3.18) for (u, pr¢) immediately
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Notation. In the rest of this paper, we will use the constants k = logs 15, & = logs,3 15, cg
and cy appearing in Proposition 3.10 and Theorem 3.19 without further notice. In particular,
for g, h € Sny, [L(g) is gentle with respect to both 8™ and 8" with Cgen = Cg. Also in what
follows, fora,b € [0, 00) we write a < b if and only ifa < cb for some constant ¢ € (0, 00)
determined solely by k, K, cg, ¢y, and write a < b if and only if botha < b and b < a hold.

4 Off-diagonal Gaussian heat kernel behavior

The main purpose of this section is further analysis of the geodesic metrics py and pyp,
h € Sy, and as a consequence we will get the two-sided Gaussian bound and Varadhan’s
asymptotic relation for the heat kernels p,, and py,, -

Let us start this section with the following standard definition.

Definition 4.1. Let v be a finite Borel measure on K with full support. We define
pv(x.y) = suplu(x) —u(y) lu € F. puy <vj, x.yeKk. (4.1)

Clearly, py (x, y) = pv(y.x) € [0,00), oy (x,x) = 0and py(x,y) < pv(x.2) + pv(2.y)
for any x, y,z € K;in fact, p, (x, )2 < v(K)Re(x, y)/2. py is called the intrinsic metric
of the Dirichlet space (K, v, E, F) or simply the v-intrinsic metric on K.

The notion of the intrinsic metric of a strong local Dirichlet space appears in many
places such as [35,36,32,18]. The results there suggest that the intrinsic metric is the most
“natural” metric for a given strong local Dirichlet space; for example, according to Ramirez
[32] and Hino and Ramirez [18], Varadhan’s asymptotic relation like (1.4) is true for a large
class of strong local Dirichlet spaces as long as the metric in the right-hand side is replaced
by the intrinsic metric.

Then a problem arises as to how the intrinsic metric is characterized for concrete exam-
ples. For the canonical Dirichlet space associated with a smooth Riemannian manifold M, it
is not difficult to see that the intrinsic metric is equal to the geodesic metric on M ; see [31]
and references therein for related results on Riemannian manifolds. The same assertion is in
fact true also for our Dirichlet spaces (K, u, &, F) and (K, p¢py, €, F), h € Sy, which is
the main theorem of this section:

Theorem 4.2. (1) py = py,. Moreover, pr(x,+) € F and [L(p,, (x,y) = M forany x € K.
(2) Let h € Syyy. Then py = py,,- Moreover, pp(x,-) € F and pp,(x ) = M(ny for any
x e K.

Then based on Theorem 3.19 and Proposition 3.20, the general results of Sturm [35,36]
and Ramirez [32] imply the following Gaussian bounds and Varadhan’s asymptotic relation.

Corollary 4.3. Let h € Sy, and let (v, p) denote any one of (i, pr) and (Lny, pn). Let
n € N. Then for any (t,x,y) € (0,00) x K x K,

(x.»)? 2\Kk/2 2
LIPS ) ey
v(B 7 (x.p)) \/U(B\/;(x,p))v(Bﬁ(y,p))
pxX.Y)2\K/2Hn o p(x.p)?
|ai[lpv(t’x’y)} = CU(”)( L ) p( = )7 (43)

" \Jv(B i (x. )V (B (v p)

where ¢y, cy € (0, 00) are determined solely by k, cg, ¢y and cy(n) € (0,00) byn, k, cg, cy.
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Proof. Note that 87 p,, exists and is continuous on (0, 00) X K x K by [8, Proof of Theorem
2.1.4]. On the basis of p = py,, (3.16) and (3.18), [36, Corollary 4.10] yields the lower bound
in (4.2), and [36, Theorem 2.6] and [35, Corollary 2.7] imply the other assertions. O

Corollary 4.4. Let h € Sy, and let (v, p) denote any one of (i, pr) and (((ny, pn)- Then

liil(l)Zt log py(t,x,y) = —p(x,y)z, x,y € K. 4.4)
¢

Proof. (4.2) and (3.16) yield limsup; | o 2¢ log py, (¢, x, y) < —p(x, ¥)2. We can also easily
show liminf, o 2 log py (¢, x,y) > —p(x, y)? in exactly the same way as [32, Proof of
Theorem 4.1] by using p = p,, and the lower bound in (4.2), since [32, Theorem 1.1] (or
[18, Theorem 1.1]) applies to the present situation by the strong locality of (£, F) and [13,
Theorem 3.2.2]. O

The rest of this section is devoted to the proof of Theorem 4.2. Unlike the case of Rie-
mannian manifolds, this result is not straightforward and requires a long complicated proof,
mainly due to the geometric singularity of the space. The proof relies heavily on Theorem
2.17, Propositions 3.15 and 3.16 and the ideas in [20].

Lemma 4.5. (1) Ifu € C(K) and Lip,, u < 1thenu € F and pg,) < pu. Moreover,
pr(x,") € Fand p(p,,(x,)) = M forany x € K.

(2) Let h € Sy, If u € C(K) and Lip,,, u < 1 thenu € F and ji(yy < ji(n). Moreover,
pn(x,+) € Fand Wi, (x,)y = ) forany x € K.

Proof. (1) We fix x € K throughout this proof. Let u € C(K) satisfy Lip,,, u < 1. Since

() —u@)| < pr(y.2) < €n(72) < (4V6/3)| T | for w € Wy and y,z € Fy(Vo)
with y # z by (3.14), from (2.1) we see that for m € N U {0},

vy <5(3)" Y Y Rimr= X sukw =16

WEW y,z€Fy(Vo), y#2 weW,,

ie.u € Fand £(u,u) < 16. Recalling Theorem 2.17,let y € Kz \ Vi, y # x and suppose
that Vu(y) € Im Z) as in (2.11) exists. We show that [Vu(y)| < 1, from which ) < p
follows since dji(,y = |Vu|>du. Let w € 7~ (y), and set

Ry(2) == u(z) —u(y) — (Vu(y), ®(z) — ®(»)), z€K. (4.5)

By Proposition 3.15, there exists a harmonic geodesic y : [0, 1] — K such that y(0) = x,
y(1) = y and py(y(s), y(t)) = |s — t]|pn(x, y) forany s, 7 € [0, 1].

Let m € N satisfy x € Kjy1,,- Seta := sup{t € [0,1] | y(¢) & K{w],,}> sO that
a € (0,1), y(a) € Flw),, Vo) and y([a,1]) C K[w],,- Choose i € § so that y(a) =
Flwl,,(¢i), andlet n ;= min{k e N | k > m, wx #i} —1, w := [w], and j 1= w,41.
Thenn > m,i # j, y(a) = Fyi(g;) and y € Ky; \ V. Further set b := inf{r €
[a,1] | y(t) € Kyi}, so that b € (a, 1), y(b) € Fyi(Vo) and y([a,b]) C Kyi. Now
by [25, Lemma 5.6], these facts together with py(y(a). y(b)) = £+ (Y|[a.p]) imply that
L1 (Vla.p1) = €1 (Zazp), where z4 := y(a), zp := y(b) and Z,Zp : [a,b] — K denotes
the harmonic (n + 1)-geodesic determined by the (n + 1)-walk {z4, zp}. Therefore if we
define yo : [0, 5] = K by yoli0.a] := V|[0.4] a0d Y0l[a.5] := ZaZp, then it is continuous,
yol(o.61 is C1 with |[y)(1)] = pr(x,y) for 1 € (0,b], and €x(y0) = L (ylio.p) =
pr(x.z2p) = pr(x, yo(b)). Hence

pH(Y0(8), vo(?)) = Lr(yolis,c) = (t —s)pn(x,y) fors,t €[0,b], s <t. (4.6



Heat kernel asymptotics for Riemannian structure on S.G. 19

Since (hy 0Z425) (t) = 0 for at most one ¢ € [a, b] by (3.15), we can take ¢, d € [a, b]
sothatd —c¢ > (b —a)/2 and hy, o Z42p|(c.q7 is strictly monotone. Then letting z. =
Zazp(c) = yo(c) and zg := Zazp(d) = yo(d) and using (3.14), (4.6) and (3.4), we have
€1 (ZaZp) < (4/«@)lhyi(Wi) < 30,0 (W), €ny (ZaZplie,a) = lhy(ze) — hy(za)l,

Pr(Ze.2a) = €1(ZaZblic.a) = Ly (ZaZblic.a) + £y (Taln)

< |hy(ze) = hy(za)l + 31,1 (w), 4.7
_ b—a _ L1 (ZaZp) | T |l I T ||
p1(Zes2a) = (d —c)pr(x,y) = — pr(x,y) = > > i = o0
4.8)

Now let ¢;,,,, € R be such that %u(y) = ¢y.y{y. Then since (%u(y), D) —d(y)) =
cu.yhy by (2.14), (4.7) and (4.5) yield

lcu.ylor(ze, za) < leu,y(hy(ze) —hy(za))| + 3|Cu,y|lhyl(w)

=< [(Vu(), @(z¢) = D(za)) + Ry(zc) = Ry(za)| + 25up |Ry| + 3leu,y |1,y (w)

Ky

= |u(zc) —u(za)| + 2sup [Ry| + 3|Cu,y|lh)i,(w)
Ky

< pr(2c.2q) +2sup |Ry | +3|Cu,y|lhy+(w)- 4.9)

w

Recalling w = [w], and n > m, we divide (4.9) by pr(z¢, 24 ) and use (4.8) to get

2supzel([w]n |Ry| + 3|cuy|||hj% © F[a)]n ”5 m—00, n—>00
1T,

by virtue of (2.11) and Lemma 2.19, proving ﬁu (»)| < 1. Finally, noting that Lip,,,, p3, <
1, where p3, := py(x,-), we let u := pg, in the above argument and use (4.6) to obtain

lcu.y| <1+ 100-

p1(zeza) = P5(za) — pi(ze) = (Vo5,(0), D(za) — D(za)) + Ry (ze) — Ry(ze)
Cpg,y(hy(zd) —hy(ze)) + Ry(ze) — Ry(ze)
|cp;‘_¢,y|pH(ZC’Zd) +2 sup |Ry|s

[wln

IA

from which we conclude that 1 < [c,x | = |AV/p;‘1(y)| (< 1) by using (4.8) and (2.11) to
letm — co,n — oco. Thus 1 = ﬁpmz =dppy,)/dp p-ae., thatis, fLpx ) = [

(2) This is proved in exactly the same way as above by using Theorem 2.17-(2), (3.5),
Proposition 3.16 and Lemma 3.18. O

Lemma 4.6. py; < py < 9pn, and pp < py,y < 6pp for any h € Sy,

Proof. Letx,y € K. Since py(x,-) € F and ji(p,,(x,)) = 4 by Lemma 4.5-(1), we have
pr(x,y) = pr(x,y) — pr(x,x) < pu(x,y). Next for the proof of p,, < 9py letu € F
satisfy fi(,y < . It suffices to show that |u(x) —u(y)| < 9pn/(x,y) when x,y € Vj, for
some m € Nand x # y since u € C(K) and Vi is dense in K. For any w € Wi, from
My (Kw) < w(Ky) we easily see ||u o Fy |l < ||Tw]| and therefore

V3
[ Twll = o Fylle = v2E0(u o Fylve.u o Fylyy) = - FO(S‘(/: - (4.10)
w 0
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By Proposition 3.15, there exists an m-walk {xx },jcv=0 C Vin suchthat xo = x,xy = y and
or(x,y) = Z,ivzl £1¢(Xk—1Xk)- Then (3.14) and (4.10) yield (recall Definition 3.13-(1))

N
Z O (Fr=1X%) > kX_:l ||Tw()56k Lol > Z [u(xg—1) — u(xg)| - lu(x) —u(y)|

V2 9 - 9
and hence |u(x) — u(y)| < 9px(x,y). Exactly the same argument using Lemma 4.5-(2),
Proposition 3.16 and (3.14) shows the other assertion, completing the proof. O

We need the following two lemmas for the next proposition (Proposition 4.9). The first
lemma is elementary and easily follows from [26, Theorems 10.3 and 10.4], whereas the
latter plays a central role in the proof of Proposition 4.9.

Lemma 4.7. Let v be a finite Borel measure on K with full support, let U be a non-empty
open subset of K and set v|y = v|gw) and EY = E|r,xx,. Then (€Y, Fy) is a
strong local regular Dirichlet form on L(U, v|U) whose associated Markovian semigroup
admits a unique continuous integral kernel p§ = pY¥ (¢, x,y) : (0,00) xU x U — [0, 00),
and pﬁj is extended to a continuous function on (0,00) X K x K by setting p][)] :=0on

(0,00) x (K x K\U xU). pY is called the heat kernel associated with (U, v|¢, EY, Fp).

Lemma 4.8. limsup; 2t 10g pp,, (¢, X, ¥) < —pp g, (x, y)? forany x,y € K, h € Sy,

Proof. Leth € Sy,. By Lemma 4.6 and (3.12), py,,,, is a metric on K adapted to $”. Then
(14¢nys Pra(ny) has the volume doubling property similar to (3.16). Moreover, for (v, p) =
(1¢nys Prany)» the proof of Proposition 3.20 still works and hence (3.18) holds with the
constants 3*10° and 250+/2 suitably replaced. Now the assertion follows from [36, Theorem
2.6] and [35, Corollary 2.7]. O

Proposition 4.9. Leth € Sy, i € S, b € (h(gi),00) and set a := h(q;). Suppose that
the connected component U of h—1((—o0, b)) with g; € U satisfies U N Vo = {q;}. Let
Pla.b) = Pla.p)(t,x,y) 1 (0,00) x [a,b] x [a,b] — [0, 00) be the heat kernel for %f—; on
[a, b] with Neumann (reflecting) boundary condition at a and Dirichlet (absorbing) bound-
ary condition at b. Then

Wy o (hlu)™ V= 2&(h, kY M a.p7dx  (dx is the Lebesgue measure on R),  (4.11)
p,U-(h)(t’ qi’x) = (25(h,h’1))_ p[a,b)(tsayh(x))’ ([7‘x) € (07 OO) X U, (412)
Pn(qi>X) = Pugy (qix) =h(x)—a, xeU. (4.13)

Proof. Lethp := hly +blg\y. We show hp € Hiyvu(x\U)- Note that, by [13, Problem
1.4.1] and the locality of (£, F), given open subsets Uy, Uy of K with Uy N U, = @ we
can verify Fy,uv, = Fu, 69 Fu, and E(uy,uz) = 0foru; € Fy,,i = 1,2. Set U=

h~ (o0, b))\U. Since U, U are openin K and (h1—h)t ¢ Fuoh: (b1-h)t1y € Fu

andhy, = b1—(b1—h)T1y € F.BydU c U\(UUU) C h='(b),h = bondU, hy—h =
(b1—=h)1g\u € Fi\g and therefore E(hp,u) = E(hp—h,u) = E(B1—h)1k\v,u) =0
for u € Fy\(q;y» proving the claim.

Proposition 2.10-(2) yields @ < hp < b. Moreover, we have h_l(a) = {q;}. Indeed,
choose n € Nsothat K;n—1 C U.Then hyo Fjn—1 = ho Fin—1 € HO\RI by h € Ho \R1
and hence /1, > a on K;n \ {g;} by the strong maximum principle [23, Theorem 3.2.14]. Set
¢ 1= ming,, (vo\ig;3 b and g := hplg\k;n + (hp V )1k, . Then g € Hi,nw u(k\U)>
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and Proposition 2.10-(2) implies that h5(x) = g(x) > ¢ > a for x € K \ K;». Thus
hy @) = {gi}.

By [11, Proposition 2.9] (see also [20, Corollary 2.11]), up,) © hb_l = 61[4.p1dx for
some 8§ € (0,00), and pp,y (K \ U) = Ivl/(hh)(hljl(b)) = 0. Since umylv = wuylu
by [13, Corollary 3.2.1] (or by Theorem 2.17) and pn,)(K \ U) = 0, we have pi )y o
(hlp)~! = Winyy © (hply)~ ! = Whp) oh;1 = 61j4.p1dx. Take ap, by € R such that
h = ahh’i + bhhé +al. Letn € N satisty K;»—1 C U. Then 25(h,h’i) = ayp > 0 since
h > aon K;» \ {g;}, and the argument in the previous paragraph together with Proposition
2.10-(2) also yields

(hlo)™([a.a+ (3)"an — ()" 24)) € Kin € (o)~ ([a.a + (3)"an + (é)"'%'ﬂl;
Taking the values of ji() on each side of (4.14) yields |a% +9_”bﬁ—8ah| < 37"8|bp|//3,
and letting n — oo results in day = a%. Thus § = ay = 2&E(h, h’i), proving (4.11).

We could give a probabilistic proof of (4.12) based on [20, Theorem 3.6], as in [20,
Proof of Theorem 4.1], but we provide an alternative analytic proof here. For n € N let
on(x) == (bia)l/2 cos(znz_1 ng:“) and A,, = %Z(Zb”__al )2, so that —%(p;{ = An®n,
@y (a) = pn(b) = 0 and therefore ff Pla.my (b, Y)on(y)dy = e~ *nlg, fort € (0,00).
Then {@, }nen is a complete orthonormal system of L2([a, b], dx). On the other hand, let
Ap.u be the non-positive self-adjoint operator of the Dirichlet space (U, wny v, EY, Fu)
with domain D[A, /). Then ¢ (hp) € D[An.u] and Apulon(hp)] = L¢)(hy) =
—An@sn (hp) by [20, Theorem 2.12-(2)] and hence

/U Pil gy @ o (hp)dpseny (v) = €2 0 (hp), 1 € (0,00). (4.15)

Let f € L?([a,b].dx) and a, = f; Sfondx,n € N.Then f = ) ,.yanes in

L?([a, b], dx) and hence f(hp)ly € L*(U, wmylv) and f(hp)ly = 3, en angn(hp)
in L2(U, W¢nylu) by (4.11). Therefore for (£, x) € (0, 00) x K, (4.15) yields

[ PEy €30 £ Ny () = 3 e )

neN

b
- / Plaw .y b fO)dy.  (4.16)

Now (4.12) follows by letting s € (a,b), f := (s — a)_ll[a.s] in (4.16) and 5 | a since

h;l (a) ={qi} and u(h)(hgl ([a.s])) = 2€(h,h’i)(s —a). Finally, since p3<h) < Pug by
[24, (C.2)], we see from Lemmas 4.6 and 4.8 and a direct calculation using [21, Proposition
2.8.10] that for x € U,

2 _ 1 T U .
(h(x) = a)” = —lim 2t log pia.p)(t, @, h(x)) = —lim2tlog p ., (¢, i, X)

> —limfup 20108 Py (1. 4i %) = Puugy (G2 %)% = pn(gi. x)* = (h(x) — a)?,
t30

proving (4.13) for x € U, and hence also for x € U. O

Proposition 4.10. (1) {u € F | pgy < pu} = {u € C(K) | Lip,,, u < 1}.
(2) Leth € SHo- Then {ueF| Ky = /L(m} ={u e CK) | Lipph u < 1}.



22 Naotaka Kajino

Proof. (1) Letu € F satisfy pgy < p,let! € Nand x,y € V;, x # y. It suffices to
show |u(x) —u(y)| < pr(x,y), since Vi is dense in K and we already have Lemma 4.5.
We follow [7, Proof of Proposition 1.11]. Note that Lip,, u < 9 < oo by Lemma 4.6.
By Proposition 3.15, we can choose a harmonic /-geodesic y : [0, 1] — K arising from an
I-walk I' = {zx }2_ so that y(0) = x, (1) = y and py(y(s). (1)) = |s—t|p3(x. y) for
any s, € [0, 1]. Set ¢ := u o y. Then we have | (s) — ¥ (1) < (Lip,,, w)|s — t|pr(x, y)
for s,¢ € [0, 1] and hence ¥ is absolutely continuous. In particular, ¥’ (¢) exists for dt-a.e.
t €[0,1], ¥ € L'([0,1],d?) and ¥ (¢) = fé Y/ (s)ds, t € [0, 1]. Thus it suffices to prove
that |/ (t)| < pr(x, y) for dz-ae.t € [0, 1].

Let 7 € [0, 1] and suppose ' () exists. We may assume that y(¢) & Vi since y ! (Vi)
is countable. Let z := y(t) and w € w~!(z). Choose k € {I,...,N}andi,j € S so that
2 € ZTxk—12k» 2k—1 = Fw(gi) and zx = Fy(q;), where w := w(zx—1.2x). Form = w]
we set

Um .:uOF[w]m hm —
[Tt

R hZ o F[(U]m €1 . h? ° F[(l)]m (4 17)
ITtw1, I~ ™ 1T,

Then ||umlls < 1by iy < i, and Lemma 2.19 yields 1 > ||hy, |l — 1 and || ]le — 0
as m — oo since z € Zx—12x C Kz. Choosing subsequences {u,, }nen and {A;,,, }nen,
we have u,;,, — v weakly in (F/R1, ) and ||k, — glle — 0asn — oo for some v € F
and g € Sy, with v(z) = g(z) = 0. We further define

Un = Uy = Uy (DL, 8n =y, — b, (D1, g =l =y (D)1 (4.18)

We have limy, 0o [[gn — & lloo = 0 and vu (p) = va(p) —va(z) = v(p) —v(z) = v(p) as
n — oo for any p € K since F/R1 > f +— f — f(z)1 € C(K) is a well-defined bounded
linear operator (F/R1,E&) — (C(K), | - |lco) by Theorem 2.5.

We claim that 1) < f(g). Let T € Ws. Since F* : f + f o Fr is a bounded linear
operator on (F/R1, &) by (2.2), we have ||g, o Fz — g o Fr|e V ||lg;- o Fz|le — 0 and
vp o Fr — vo Fp weakly in (F/R1,&) asn — 00. By gy < (0 = pqpn,y + Hinty
we see that ||v,, o F,||% < |lgn o Fr ||% + |lg;- o F,||%, and letting n — oo results in
lvo Frlle <liminfy oo [|Un © Frlle < |lg o Frlle,ie. ) (Kr) < p(gy(Kr). Thus the
claim follows. .

Note that either g & Rhg + R1 or g ¢ Rhj + R1. Suppose g ¢ ]Rhé + RR1; the proof
for the other case is similar. Take {; = (;‘;,, §§,) € R? so that g — Q,h’i — (ﬁhé € R1. Then
{g, # 0, and since h’1 oFim = (3/5)Mhi1 and h’2 oFim = (l/S)Mhé we can choose
M e Nso that eg(g;) < minpey,\(q;} €8 © Fim (p) =: b, where ¢ := é‘é/|§;| Let U be
the connected component of (eg) ! ((—oo, b)) with ¢; € U, and choose ¢ € g;q;NU\{q;}-
The definition of b implies U C K;» and hence Proposition 4.9 together with () < ft(g)
shows that

[v(gi) = v(@)] < P (qi-q9) = 18(qi) — g(q)| # 0. (4.19)

Now noting that y is injective and that Fyy,,, (i), Flwl,, (@) € Tk—12k, We set
sn = ¥ (Flwlm, (@) and 1, =y~ (Flol, (@) for n € N. Then lim; oo 5, =
limy,— 00 tn = ¥~ 1(z) = t, and Lemma 3.7 and (3.11) imply

(Isn — 11V 1tn — tDpr(x, ¥) = pr(y(sn). 2) V o1 (¥ (tn). 2) < 10| Tieor,, | (4:20)
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Leta := g(qi) — g(q)- By limy—00(gn(g9:) — gn(q)) = a # 0 and (4.20), for sufficiently
large n € N we have |g,(q;) — gn(q)| = |a|/2 and

pr(yn) ¥ tn) _ |Tiwin, 181 (@i) — gn(@)] LAl i =D,

pr(x,y) - pr(x,y) =20
4.21)

= ’(t) easily follows. Then the first inequality in

lsn —tn| =

from which lim;,— co %

(4.21) and (4.19) together imply

[y’ (1) — lim ¥ (sn) — I;0(fn)| vn(gi) — vn(q) v(gi) —v(q)
P y) 100 [sn — talpre (6, v) — n0| gular) — gn(@) | | g(ar) — (@)
proving [u(x) —u(y)| = [¢(0) =¥ (1) < pp(x.y) and Lip,, u < 1.
2)Let!/ e Nandx,y € Vj, x # y andset y := y;’y o (pfc’y, where y)’c'y and <pi'y are as in
Proposition 3.16 with yfc'y a harmonic /-geodesic. Then exactly the same proof as that of (1)
still works with 1, := [|h o Fie,, |2 't © Fie1,, and by := |ho Fig, Iz ho Fiey,. O

Proof of Theorem 4.2. Let h € Sy,,. By Lemmas 4.5 and 4.6, it only remains to show that
pu < pr and py,, < pp, which are immediate from Proposition 4.10. O

5 One-dimensional asymptotics at vertices

In this section, we prove sharp “one-dimensional” asymptotic behaviors of (B (x, pr))
and p,(t,x,y) for x € Vi, which reflect our observation that, near ®(x), the harmonic
Sierpinski gasket K3, (Figure 2) looks very much like its “fangent line at ®(x)”. We treat
the results for (B (x, px)) and p,, (¢, x, y) respectively in Subsections 5.1 and 5.2. Then
Subsection 5.3 presents an application of the result for p,, to moments of displacement of
the corresponding diffusion.

The following definition is fundamental for the arguments in this section.

Definition 5.1. For each x € V., we define &x, cx, 7y € (0,00) and K* C K as follows:
O Ifx=gq; € Vo, i € S,thenwesetéy, :=1/2,¢4, == 1,74, :==1and K% := K.
(i) If x € Vi \ Vo, letw € Wy andi, j € S,i # j be such that “x) = {wij >, wji®}
(recall Proposition 2.3) and a’,, b;,ax,b] € R such that hx o Fy;i = a', h’ + bl h’ and
hxoFyj = a,’ch’ +b’ h’ (recall hx(x) = 0). Noting that a = —a’_ by the hamonicity of
hy at x (see [23, (3.2.1)]) and that ¢*, # 0 by Lemma 2.19 and 1nfn€N(5/3)” | Twijn || > 0,
we define

. 5\lwl+1 ' N(hﬁ)(KwiUij)
4 3 NX i x
Fx = g(g) |(1x|, K" = KwijNX UijiNxs

where Ny := 1 4+ min{n € N U {0} | («/§/6)3”|a§6| > |b§c| \Y |b,’c|}

Remark 5.2. We can write down &x,cx,ryx explicitly in terms of Ty, in the situation of
Definition 5.1-(ii), since hx and hi‘ are given by (2.14) and

{x =& |Twi§qj |_1Twi§4j =& |ij gqi |_1ij Eq; (5.2)

for some ¢;,¢; € {—1, 1} by Proposition 3.14.
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5.1 Measures of geodesic balls

The following is the main theorem of this subsection.

Theorem 5.3. Let x € Vi and s € (0,ry]. Then

i U(Br(x, p1)) _ peny(Bs(X.pn,))
m = =

rio r S

2. (5.3)

The rest of this subsection is devoted to the proof of Theorem 5.3. We need the following
proposition and lemmas, which will play essential roles also in Subsections 5.2 and 5.3
below.

Proposition 5.4 (cf. Proposition 4.9). Let x € Vi \ Vo, and let U* be the connected com-
ponent ofhgl((—rx, rx)) containing x. Let w € W, i,j € S, a;,a)jc' € Rand Ny € N be
as in Definition 5.1, and without loss of generality assume a){ > 0.

(D) hx < 0on Kyjine—1 \ {x} and hx > 0on K, ;;nc—1 \ {x}. Moreover, K* C U~ C
le'ij—l U ijl‘Nxfl .

(2) For b € (0,00) let pp = pp(t,y,z) : (0,00) x [=b, b] x [=b, b] — [0, 00) denote the
heat kernel for %dd—; on [—b, b] with Dirichlet (absorbing) boundary condition at —b and
b. Then

M(ny) © (hxlux)"' =& 1—,..r.3dy  (dy is the Lebesgue measure on R),  (5.4)
P (€x.3) = 67 pr (0.0, he(p). (1) € (0.00) x U, (5.5)
Py (x.y) = hx(M]. yeU*. (5.6)

(3) Br(x. pn,) = U* N h N ((—r. 1)) and pep,y (B (X, ppy)) = 26xr for any r € (0, r].
4) Bar,,,/3(x, pn,) C Kyijn U Kyjjin C Bsy,,/6(x,pp,) forn € N, n > Ny, where

ren = 5(3)" k]

Proof. (1) In view of the definition of Ny, a direct calculation together with the strong
maximum principle [23, Theorem 3.2.14] easily shows the assertions.

(2) (5.4) and (5.6) follow by applying Proposition 4.9 with h = ||hix o F, ||g1 hyoFy,b=
rx/|hx o Fyll,a = 0and U = F,; ' (U* N Ky), where v := wjiV~~!, and similarly on
KpijNx—1. Also the same proof as that of (4.12) shows that for any f € L2([—rx,7x],dy)
and any (¢, y) € (0,00) x U,

,

[ oz @@ = [ przonf@dzs 6)

—ry

from which (5.5) easily follows by virtue of A1 (0) N UX = {x} and (5.4).
(3) This is immediate from (5.4), (5.6) and the fact that |hx| = ryx on dU ™.
(4) Similarly to (4.14), using the definition of N, and Proposition 2.10-(2) we have

(hx|UX)_l ((_%rx,na %Vx,n)) C Kyijn U Kyjin C (hx|U-")_1 ((_%rx,ns %rx,n))
for n > N, which and the first assertion of (3) immediately yield (4). O

Lemma 5.5. Z]TSCX'J? < M(h%>(3r(x,,0hx)) < 225¢r* forx € Vi and any r € (0, rxl-
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Proof. Suppose x € Vi \ Vo. Let w € Wy, i,j € S, a;,a){ € Rand Ny € N be as
in Definition 5.1 and set @ := |a’.| = |aZ|. Since ||hL o Fyijnle V ||ht o Fyjinle =
0o((3/5)")asn — oo b)f Lemma 2.19, hy o Fy,; € Rh3, hy o Fyy; € Rhé and hence
um%)(l(,’{) = (1/15)"a*cx forn € NU {0}, where K, := Kyy;jn UKy jin. Forn > Ny,
K;y C By, ,(x,pn,) C K;;_; by Proposition 5.4-(1),(4) and hence 15_1(rx,n)’2cx <
[,Lm%)(BrX.n (x,pn,)) < 15(rx.n)% cx. Now for each r € (0, ry], Ix.n+1 < T < ryp for
a unique n > Ny, and then u(h_%)(Br()f,,Ohx)) =< 15((§/3)rx,n+1)’2cx < 152¢,r*% and
N“(h)%)(Br(x’ Phy)) = 1571((3/5)rx n) ex = 157 2exrk.

The assertion for x € Vj is proved in the same way by using Proposition 4.9. O

Lemma 5.6. Let x € Vi \ Vo, and let w € Wy, i,j € S and aﬁc € R be as in Definition
5.1. Then forany y € K,

5\ R,
tim (3) prelx. Fuijn(») = lak ] (). (5.8)

n—oo
Proof. Lety € K. p,;(qj,y) = h{ (y) by (4.13), and by Proposition 3.16 we can choose
1
a harmonic geodesic y) : [0,1] — K so that y,(0) = ¢;, y,(1) = y and Zhj (yy) =
’Ohj (gj.y) = h] (). Since hyx(x) = 0, Fyjjnoyy(0) = Fy;in(q;) = x, andh oFyi =
cxhé for some c’. € R by the proof of Lemma 5.5,

|bih] ()]
3}’1

5\" 5
S (g) ZH(lejn o Vy) S (5) (th(Fwijn [e] )/y) —+ eh%(le.j" o yy))

@k ] () - < (3) "1 o Fuisn ] = (3) 0. Fuijn ()

- lebl, o
= (((a’h —|— 37"pt hJ) oyy) + 3—2((}15 oyy)
; bi|+ ek n; il + ek
< 1@kl () + 2, () = kb 0) + 2 ). 59)
where b; € R is as in Definition 5.1. Now letting n — oo in (5.9) yields (5.8). O

Remark 5.7. In (5.9), the author does not have any idea how to estimate £ 0l (yy) uniformly
2

in y. This is why no remainder estimate is given for the limits in (5.3) and (5.8), and in
(5.42) below, neither.

Proof of Theorem 5.3. ji(p.y(Bs(x, pp,)) = 2£xs follows from Propositions 4.9 and 5.4.

Let r € (0,ry]. Since By (x, px) C Br(x, pn,) bY pn, < pH, b = Wenyy + Mpty and
Lemma 5.5 imply

R(Br(x, pH)) = tiny) (Br(x, pny)) + N(;&)(Br(xvphx)) < 28cr + 225¢,r%. (5.10)

In the rest of this proof we suppose x € Vi \ Vp; the case of x € V) is proved similarly
and more easily. Let w € Wy, i,j € S and a’ b’ ai,bi € R be as in Definition 5.1.
Let 7 € (0,]a%|] and n € N. Since jt(uy |k, = Mu)lB(Kv) = (5/3)"! 1o,y o Fy! for
ueFandv € W,

5\ 5\
(5) w(Baysynr(x, pr)) = (5) fK Lo,3/5 ) (e (X, ) A,y (V)

wijn UKy jin
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2n+lwl+1
= ( ) Z / 1i0.r) %)nPH(xvJ’))d(l/«(honwkln) o Fydin)(»)

(k.l) Kykin
Iw|+1

Z / 1[0 r) % PH (x Fukin (y)))d/’l“(akh/ _|_37n;,§h12>(y)
(k.D)

k
= uladl ([ 10 (3 ool Fuin 00))dia gy 0 = ). (S0

(k.1 X
where (k, ) runs over {(i, j), (j, i)} and we used /L(,Z;IJZ/2>(A)2 < /L<h/1>(A)pL<h/2>(A) <1,
A € B(K). Then by using Lemma 5.6 and Fatou’s lemma to let n — oo in (5.11), together
with (4.11) and (5.10), we get lim;, — oo ((%)”r)_lu(B(3/5)nr(x, pH)) = 2&,, from which
lim, yo ¥~ (B (x, pr)) = 2£x immediately follows since (0,00) > r + (B (x, p1))
is non-decreasing. O

5.2 Heat kernel

The main result of this subsection is a short time asymptotic behavior of p, (¢, x, y) for
Xx € Vi and is stated in the following theorem, whose proof makes full use of Propositions
4.9 and 5.4 and Lemma 5.5. Recall Definition 5.1 and that pj . (x, y) = |hx(y)| for x € Vi
and y € K* by (4.13) and (5.6).

Theorem 5.8. Let § € (0, 1] and x € V. Then there exists cr € (0, 00) determined solely
by k, R, cg, cy such that for any (¢, y) € (0,r2] x K*,

_hx? cx\e2T A 2%<++K)
putoxy)— 2T (ex i SH](M(&) () )
éxm E)C t

hy(¥)?
+5%K+%+2ex( r)%) cw  @PCadian) (5,
P 15 2 - 5.12)

6t §ak+5+2 Ex/2mt

In particular, there exists ty € (0,r ] determined solely by x. g C" , k such that

2
exp(=":37")
ExV2mt

hy(y)?
exp(— i 57)
ExV2mt
forany (1, y) € (0,1x] x KX, where ¢i*% := SCR(% v (g—’;)ﬁ)(Z/S)%’H'%WLZ.
By virtue of Propositions 4.9 and 5.4 and Lemma 5.5, Theorem 5.8 follows from the
following general remainder estimate.

Theorem 5.9. Let h,ht € Sn, satisfy E(h, ht) =0, and let § € (0, 1]. Then there exists
Cr € (0, 00) determined solely by k, K, cg, ¢y such that for any (t,x,y) € (0,00) X K x K,

pult,x,y) — (5.13)

i 2(k—1)
= 0 (F )

[Pt X, Y) = Pug, (2, X, )]
5 (1 f’ ,U«(hi)(B\/E(vah))dS N g+l /5’ sy (B 5y, pr)) "
0 0

t u(h)(Bﬁ(x,ph)) t M(Bﬁ(y’pH))

(x.»)?
Fk+2 M(hi)(B\/g(y,pH))) Cr exp(_gh(lﬁrg)t)

+ 47 ~ .
(B /57 (v, 1)) ) §FH5+2 iy (B 7 (x, o))

(5.14)
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The proof of Theorem 5.9 is given later. First we prove Theorem 5.8 based on Theorem
5.9. For this purpose we need the following lemma.

Lemma 5.10. p(p)y (B (x, pn)) < n(Br(x, pr)) for h € Sy, and any (r, x) € (0, 00) x K.

Proof. Leth € Sy and (s,x) € (0,1) x K. Letw € A? satisfy Ky, N Kg(x,8") # @.
Then Ky N Ky # @ for some v € Aﬁ? with x € Ky, and t < v for some 7 € AZ?‘ with
x € K¢ byl < Iy Moreover ||ho Fylle <s <5|T¢| by (3.4), which and |v| < |t] easily
yield p(ny (Ky) < 251(K<). Therefore using Proposition 3.10-(1) we see that p () (Kyw) <
iiny (Ky) < u(Kr) < u(Us(x.8™)). which and Lemma 3.5 imply sy (Us(x.8")) <
w(Us(x, SH)). Using this fact together with (3.16), (3.12) and (3.11), we conclude that

Ieny (Bros (X, pn)) < 1teny (Bs25(x, ) < iy (Us(x, 8™))
< u(Ug(x,8™)) < 1(B1os(x. pr)).-

The case of r > 10 is clear since B1o(x, p) = Bio(x, pn) = Kby (3.11)and (3.12). O
Proof of Theorem 5.8 under Theorem 5.9. Let § € (0,1], x € Vi and y € K*. Forr €

0,7x], Br(y, p1) C Br(y,pn,) by pn, < pn, and then by Lemma 5.10, Theorem 3.19,
Proposition 5.4 (Proposition 4.9 when x € V() and Lemma 5.5 we have

M(h)JC—)(Br(YaPH)) < /L(h)J(-)(Br(ysPhx)) < (1 n |hx(y)|)K+kﬂ<h§.)(3r(x,phx))
W(Br(y.p1) T iy (Br (v, pny)) Wiy (Br(x, pny))

+& : ; T
. (1 L IOl ”)225‘xrk—1 < ‘i(rf—l n M) (5.15)

r

rete 2%—)( ~ %_x retl

Lett € (0, 72]. Since Wity < pand k + 1> 2, (5.15) yields

[ O] on [t 7 OIS,
0 0 0

S K
M(Bﬁ(y,PH)) Ex éxs#

. P oo K+l

& 50 +Dx(y)+f (M) > ds if Dx(y) < 8t
<Jé& 7 D S
- Cx k+1 .

— (1) 2 46t if Dx(y) > 6t

Ex
< &5 +4z(5 A DX(y)) where Dy (y) := (3)%”1 n3E . (5.16)
T & t ) T gy * C

K+1

Similarly, by using (5.15)and 1 As 2= <1 As,s € [0, 00), we see that

B /5:(y, =
Pty (Bt (v-p10) XenS 4 8—1(8 A D"f(y)) (5.17)

(B ssr (v, p10)) " b«

Again by Proposition 5.4-(3) (Proposition 4.9 when x € V) and Lemma 5.5, we also have

225 ¢y &+1
= = —1 2
kK+1E&

t B N -
/ 1ty (B s(x Phx))d - 225Cx/ = (5.18)
0 0

w(B s(rony) T 2
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On the other hand, let U~ be the connected component of 2! ((—rx, rx)) containing
x and set Yx(y,1) == 1 — [« pg<;x>(t,y,z)du(hx)(z). Then (4.16), (5.7) and a direct
calculation using [21, Exercise 2.8.11] yield

Fx

_ 2
Pr(t hx(¥),2)dz < 2€XP(—M)~ (5.19)

oswx(y,n:l—/ -

—rx

By [16, Theorem 5.1] (or [14, Theorem 10.4]), (5.19), (3.16), (4.2) and | ()| < 5ry /6,

0 < Pruguyy (6%, 3) = Ly, (1.%,)
< ¥x(x.5) sup Sup Py (5.0, 9) + Yx(y.5) sup  sup  pug,.,(5.x,2)

sE[2 tJwedU se[%,z]zEZ)UX

2 2 5 5
- (1 . 8}')%)3"/4< exp(—%_%) N exp(—%_%) )

! tiney (B iz (. pny))  tiney (B 7z (X, o))

<(1+8r%)5”4 (wr,%) exp(—2:47")
S — exp| —
! P\ Hny (B g7 (x. pny))

2 ex hx ()2
< exp( )p(Z’). (5.20)
61) 26
Also a direct calculation using [21, Proposition 2.8.10], ¢ < r2 and | (y)| < 5ry /6 yields
hx(»)? hx(»)?
exXpl——72— x exp(— _
O<M o M—leprx(lﬁ,hx(y))

= - P (tvx’ y) =
Ex2mt atled Ex2mt

_ _ha)? 2 —he)?
fSexp(—zrx(rx l|hx(Y)|))6XI;( ;th )§Sexp(—g);)expg( T ) . (5.21

Now (5.12) is immediate from the inequality (5.14) with 7 = h, and ht = hJ- and the
estimates (5.16), (5.17), (5.18), (5.20) and (5.21). (5.13) follows by using 2se ™5/ (A+8/2) <
567 1e™s/(+8) ¢ .= h.(y)2/2t to estimate the second term in (5.12), completing the
proof of Theorem 5.8. O

The rest of this subsection is devoted to the proof of Theorem 5.9. We need to prepare
several lemmas. The following lemma is immediate from (3.16) and Corollary 4.3; note that
we have (1 + x)%e /8 < (e 1apf)¥e!/B fora, B € (0,00) and x € [—1, c0).

Lemma 5.11. Let h € Sy,. For é € (0,00) and (t,x,y) € (0,00) x K x K, define

2 2
x(- St ¥Hr) exp(— 350

Wy s(t,x,y) = Yy s(t,x,y) = (5.22)

Then for each n € N U {0} there exists cp(n) € (0, 00) determined solely by n, k, cg, ¢y
such that for any § € (0, 1] and any (¢, x,y) € (0,00) x K x K,

|07 pu(t, x, y)| < Czki " Was(t.x,y), (5.23)
|07 puugy (8, %, 9)| < hk( ) S Uns(tx ). (5.24)

3k+n
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Lemma 5.12. Let 6,6 € (0,00), ¢ < § and set 0(e,8) := (86 + 2¢ + 1)/(6 — ¢€). Let
h e Sy, 5.t € (0,00)and x,y,z € K. Then

s+t

K/2
Wre (5.5, D51, 7,2) < v () Wroie) (5,6 D)W (s + 1,7, ), (525)

s+t

K/2
Wie (.0, D500 2) ey () Whoee.s) (5,5 ) Was(s +1,7,%). (5.26)

Proof. Since (1+¢)~! = (14+6(e,8)) "' +(14+8)" ' anda?/s+b>/t > (a+b)?/(s+t) for
a,b € [0, 00), a direct calculation using (3.16) and p;, < py easily shows the assertion. [

Lemma 5.13. Let g, h € Sy, and 6 € [1, 00). Then for any (t, x) € (0,00) x K,

N B R
/ Wo(t.x, y)dv(y) < 0°/2, [ Wolt, v, )iy () < 6e/2 e BvitxP)
K K v(B sz (x,p))
(5.27)

where (v, p, Wg) denotes any one of (b, pr, Y1.0) and (iny, pn. Yh.6)-
Proof. Let (t,x) € (0,00) x K and s := (1 + 6)z. By (3.16) we see that

/ Wo (t. x. y)dv(y)
K

> o (t.x. V)dV()

— [ wexdvo) +
B /5(x.p) nen? Ban /s (X.0\Byn—1 s5(x.0)

=v(B 7 (x.0) " (W(B s 0) + I e Bu(Byn s5(x.0) \ Byt s5(x.0)) )

neN
< v(Bﬁ(x,p))_lv(Bﬁ(x,p))cv(l + Z 2’(”6_4’1/8) < 6</2,
neN
The latter assertion is proved in the same way by using (3.16) and (3.17). O

Next we introduce several probabilistic notions required for the proof of Theorem 5.9,
which utilizes a time change argument on the diffusion. See [13, Part II and Section A.2]
for details concerning diffusions associated with symmetric Dirichlet forms and their time
changes by positive continuous additive functionals. Below Ky := K U{d} denotes the one-
point compactification of K and a function f : K — [—00, 0] on K is always extended
to Ky by setting f(d) := 0 when needed. Let X = (2, M,{X;};e[0,001: {Px}xek,)
be a p-symmetric diffusion on K with life time {*X and minimum completed admissible
filtration F := {F;};c[0.00] Whose Dirichlet form on L2(K, u) is (£, F); such X does
exist by virtue of [13, Theorem 7.2.2]. Then Py [X; € dy] = pu(¢,x,y)du(y) for any
(t,x) € (0,00) x K by [26, Theorem 10.4], and P[{X = oo] = 1 for x € K since
Jx pu(t.x,y)du(y) = 1,1 € (0, 00). Expectation (i.e. integral on Q) under the measure
P, is denoted by E[(-)].

Take any &, h- € Sy, satisfying £(h, ht) = 0, so that & = up) + U (pLy; we fix them
in the rest of this subsection. Also fix a Borel measurable version of dyi(p)/du satisfying
0 < (duny/dn)(y) < 1for any y € K; such a version exists since ¢y < p and p is
absolutely continuous with respect to (t(4) by [17, Theorem 5.6]. We define

t

d

A, = / ’;“ﬂ(xs)ds, 1 €0, 00], (5.28)
0 w
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so that A = {A;}se[0.00) is the positive continuous additive functional of X with Revuz
measure [Lz). For ¢ € [0, co] we further define

T =inf{s €[0,00) | As > 1},  Y;:=X., G =T, (5.29)

here 7; is an JF-stopping time and hence F, is defined as a sub-o-field of Foo. [13,
Theorems A.2.12 and 6.2.1] imply that ¥ := (Q,M, {Yr}re0.00s {Px}nga) is a ppy-
symmetric diffusion on K with life time Ao, and admissible filtration S« := {G}s€[0.00]
whose Dirichlet form on L2(K, i(p)) is (£, F). Px[Y; € dy] = Py (& X, Y)diny (3)
for any (¢,x) € (0,00) x K by [26, Theorem 10.4] and hence Px[Adoo = o00] = 1,
x € K. Foreacht € [0,00), clearly A; <t < 14, and A; is a G.-stopping time since
{A; > s} = {15 <t} € Fr, = G5, 5 € [0,00). On {{¥ = oo}, Ay, is strictly increasing
and hence 74, =t and Y4, = X, forany ¢ € [0, 00). For x € K, since Px[Adoo = 0] =1,
a direct calculation shows that

t d —1
T = / (M(YS)) ds <oo foranyt € [0,00), Py-as. (5.30)
o\ du

Lemma 5.14. Forany 6 € (0,1], s, € (0,00) and x,y € K,

du, (5.31)

Ex[( — A)Wn.s(s.y. X)) _ (S£1) /‘ oy (B (e pr)
Wps(s +1,,x) T82ARIZ oo (B y(x, pr))

/2
Ex[(re — %505, Y] _ (*F)" /’ “anty (B (¥ pn))
Wy (s +1,y,x) TO82ARIZ o puiny (B g (x, o))

du. (5.32)

Proof. Leté§ € (0,1],s,t € (0,00) and x, y € K. By (5.28) and the Markov property of X,

Bl = A)¥ns(sy X0) = [ Ef(1- d;g”)(xu)wh,s(s,y,xz)]du

! d
=[] puts ot =z (1= ) 0w 6.y o))

t
:/0 /K /K Pu(, x,2)pu —u, z,w)¥y s(s, y, wydpu(w)du 1y (2)du, (5.33)

where we used 0 = (p) + [pLy in the last equality. Then (5.23) and (5.25) yield

(8/2/2 pu(u. x. 2) pu(t —u, 2, w)Wp 5(s, y, w)
S W20, x, )W s/2(t —u, 2, w)Wp (s, y, w)
S+t—u

(——

<

~

K/2
) Wy /2, x,2) V9. 0(8/2.6)(f —u. 2, W)¥p 5(s +1—u,y,2)

S 4 1\k/2
< ( . ) Uor.06/2.6) U, X, )W 05/2.6) —u,z,w)Wp s(s +1,y,x). (5.34)
Since 2/8 < 0(8/2,8) < 5/, from (5.33) and (5.34) we get (5.31) by using (5.27) to
integrate (5.34) first by du(w) and then by dji(j1y(z). The same argument using (5.24),
(5.26) and (5.27) easily shows (5.32) as well since similarly to (5.33) we have

Ex[(ts —=0)Wp.s(s,y.Y1)] (5.35)

t
- /0 /K /K Prany (X, 2) Py (¢ — 10, 2. 0) Wi 5 (5. v, W)y (W) 1 (2)du
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by virtue of (5.30), the Markov property of Y and 1/(dpuny/dp) = di/diny piny-a.e.
O

Lemma 5.15. Let s,t,a € (0,00), s < a < t. Thenforany x,y € K,

P (&%, ¥) = Ey[pu g, (t — Ag, Xs, X)), (5.36)
put,x,y) =Ex[lir,>ay pult —a, Xa,y) + Liry<ay Pu(t — 75, Y5, ¥)]. (5.37)

Proof. Letx,y € K. Since Ay < s < t and A is a G«-stopping time, the strong Markov
property of Y together with [21, Corollary 2.6.18] implies that for any r € (0, 00),

[ by i@ = Pyl € Br(r.p] (5.38)
Br(x,0n)
= /QPYAX@)(w)[Yz—AS(w) € By (x, pn)]dPy (w)

=E, |:/ Py (t— As, X5, Z)dﬂ(h)(Z)].
Br(x.0n)

Then noting that 0 < r—s < r—A, < t, we obtain (5.36) by dividing (5.38) by w (B, (x, pn))
and using the joint continuity of p,;,, toletr | 0. Similarly we can also show (5.37) based
on the Markov property of X at time a and the strong Markov property of X at the F-
stopping time 7 together with [21, Corollary 2.6.18]. O

Proof of Theorem 5.9. Let § € (0,1] and set & := §/4, so that (1 + &) < 1 + §. Let
(t,x,y) € (0,00) x K x K . From (5.36), (5.24), (3.16) and (5.31) we see that

Dran (1.3, ¥) /K (et . 2 Pragyy (1 — £).2. ) ()

= |Ey[prgy (t = Aer, Xer, X) = Py (1= €)1, Xer, )]

< Ey[(er — Aer) SUPyerc1—eyr o7 10u Pragy (. X, Xer)|]

< e ITIR [(sf — Agr) SUDy (i —eyr 1% Whe(: X Xer)]

< 8—%"_11_'Ey[(st — Agr) W e(t, x, Xer)]

Wne((L+e)tx.y) [ oty (Bym(y. o)
gtetit Joo u(Bm(y.pn)

5 W5t x,y) (5 ,u(hL)(B\/g(vaH))

T ostets Jooo w(B (v en)

A

(5.39)

Furthermore let s := (1 —&)t and a := (1 —g/2)t. Since Wy s(¢, x, ¥) S Yy 5(t,x, )
and gy (Br(x, pr)) < W(e)(Br(x,pn)) by pn < py and Lemma 5.10, by using (5.37),
{ts = a} = {Aq < s}, (5.23), (3.16), Lemmas 5.14 and 5.10 we obtain

Pult,x,y) — fK Puet, ¥,2) Py (1 — 2 X)dpy (2)

= |Ex[1{rxza}l’u(f —a,Xa,y) + Yrg<arpu(t — s, Y5, ) — put — s, Y5, J’)”
< Ex[lzrzaypu —a,y, Xa)] + Ex[Vir;>ay pu(t — s, ¥, Ys)]
+Ex[lir,<ay|lput — 5.9, Ys) — pu(t — 5.5, Ys)l]
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< Ex[Lia—a,za—s1 Pult =@, . Xa) + Ex[Lz,—sza—s3 Pru(t = 5,7, Y5)]
+ Exlliz, <a (ts = 5) SUPycr—a.s—s1 |9 P, 3. V)]

S e M a— )T Ex[(a — Ad) W e(t —a,y. Xa) + (s — $)Wp e (t — 5. 9. Yy)]
4 eI TIE (2 — 5) SUPyeli—a.i—s1 ¥ Wr.e (v, Ys)]

< eI TIE (@ — Ad)Wn et —a.y. Xa) + (ts — 5)Wn et — 5.7, V)]
+ 8_%K_2l_lEx [(zs = )Wn et —5,y, Y]

< Wne(ty.x) 7 Mhi)(Bﬁ(x’ph))du

T oets 2 Joo (B s(xs on))

< ‘I’h,S(llx,y) ! “<hl)(3ﬁ(x’ph)) du

T osieti+2 Joo pwny (B (. pn))

On the other hand, (5.23), (5.24), (5.25), (5.27), (3.16) and 1/§ < 0(e,§) < 4/§ together
imply that

(5.40)

0= /K p,u(&‘t, Vs Z)pﬂ(h) ((1 - 8)),‘, <, x)dlL(hJ_>(Z)
< (2/8)3/ /K Wree(et. v, )W 5((1 — )., 2)dpigns,

<§T/2(1 —g)TH/2 fK Uy 0(e.8) (61, v, 2) W 5t X, ) p1y(2)

0(e. )2 Wy 5(t,x,y) Koty (B ez (0 p10))
§3K/2 (B /g7 (y. 1))

< Vst x.y) tnty (B (v p10)

§3k+5 (B /5 (v, pn))

A

(5.41)

Now Theorem 5.9 is immediate from (5.39), (5.40), (5.41) and u = wny + wpty. O

5.3 Moments of displacement of the diffusion

The purpose of this subsection is to present an application of Theorem 5.8 to asymptotics of

moments of displacement of the corresponding diffusion. The main result is the following.

Theorem 5.16. Let x € Vi and a € (—1,00). Then

e~ Y3/2
NGz

Note that, if X = (Q, M, {X¢} 0,001 {Px }XeK;,) is a u-symmetric diffusion on K
whose Dirichlet form on L2(K, ) is (£, F), as in the previous subsection, then

1
lim — X pu(tox, y)du(y) = o dy. 5.42
lim ~=75 /KPH(x )T pult,x, y)dpu(y) /Rlyl Y (5.42)

[ o D) = Erlor(v X% (1) € 0,00 X K. (5.4

(5.42) says that, in the short time limit, the moment E . [p(x, X;)¥] of displacement of X
at x € Vi is asymptotically equal to that of one-dimensional Brownian motion.
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Proof of Theorem 5.16. Since (5.42) for « = 0 is trivial, we assume o # 0. The following
proof is based on the same idea as the proof of Theorem 5.3. It suffices to prove that

—y2
lim ((D2") 1 a(D?0) = [ 191" d (5.44)
nam (5 x5 = Ry N y .

for any 1 € (0,1), where I o(t) =[x pr(x,y)* pu(t. x. y)du(y), t € (0,00); indeed,
since r/cx.1 < w(Br(x, pr)) < cx.2r for any r € (0, 1] for some cx.1,¢cx.2 € (0,00) by
(5.3), using (3.16) we have for any ¢ € (0, 1), similarly to the proof of Lemma 5.13,

/K pr(x, Y)W 1 (. x, y)dp(y)

- oY) W1 (1., )R ()
nez VY Bon i (X.0r\Byn—1 s (X.01)

< Y ledgar2gan =4t 2 MBy i (X p1)) < Cyat??, (5.45)
nez (B[(x PH))

where Cy o 1= 213" G0y (Cx.10x 227 0T +cv2("+")"e_4n_2). Then by (5.23),

dxol
"' 0)

dt

= VK P (X, »)* 3 puult, x. y)Ap(y)| < cn(1)Cr o t*/*7! (5.46)

for ¢t € (0, 1), from which and (5.44) we can easily verify (5.42).

For the proof of (5.44), suppose x € Vi \ Vy; the case of x € V) is proved in the same
way. Letw € Wy, i,j € S, a;,b;,ax',b" € R and Ny € N be as in Definition 5.1, and let
ct, C)jc € R be such that hJ- oFy;i = c’ hj and h oFy; = c)jch’ (see the proof of Lemma
5.5). Let ¢ € (0,1) and set g/ (y) := (5/3)”pH(x,ka1n(y)) for (k,1) € {(i, j),(j.i)},
n € Nand y € K. Recalling ;) |k, = (5/3)IU|M(MOFU) oF,; 1 ueF,ve Ws,similarly
to (5.11) we have

5

(3) / PH(X’Y)O’Pu((%)z"t,x,y)du(y) (5.47)
Koyijn UKy jin

=(§)le+1 2 / gn(y>°‘ ) it x. Fukn ()

3 (k.De{.)).(Jj.i)}
d(|a;| Bty 237K g e+ I IBER + ek P, )(y)

Let (k,1) € {(i,j),(j,i)} and y € K. (5.13) immediately implies that

lai.ht ()12
(V' 3yn _ (=)
Jim (2) (D1 Furn () = o (5.48)

Moreover for n € N with n > Ny, [23, Theorem 3.2.5 and Example 3.2.6] easily yield
gfl ¥) = (5/3)*hy o Fyrin(y)| = |at |hl1 (y)/2 and therefore by (5.23),

I\
en0)*(3) Pul?" .5 Furin (1)

I 2
O e v SO (L A ifo € (0.00),
~oxen Vi cx127%al |7V 2Rl ()@ ifa € (—1,0).

(5.49)
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Here [x iy (D*du(y) = Lyen finty-1(a-n 21-np B (¥du(y) < oo if a € (=1,0),
since /1y © (h})~™! =1j0,1;dy by (4.11) and M(h,z)((hll)—l([o,z—"])) <225.27%7 for
n € Nby (4.13) and Lemma 5.5. Thus by virtue of dominated convergence based on (5.49),
from (5.47), (5.48), (5.8) and Kty © (hll)_l = 1[0.11dy we conclude that

li é no o 3\2n d
im pr(x, )% pu((5)7"1, x, y)dp(y)
Ku)ij" Uiji"

n—oo\3
a/zflaﬁ/«/? ae—y2/2
=1 A Iyl dy; (5.50)
—lakl/~/t A 2m

note that ([ fdi.v))? < [x fdiay [x fdicw) for u,v € F and a bounded Borel
measurable function f : K — [0, 00).

On the other hand, let n € N, n > Ny and define p3;" (y) := (5/3)" pr(x, y) for
y € K. Then Proposition 5.4-(4) yields p3;" () = (5/3)" pp, (x.y) > 8la’|/9 for y €
K\ (Kyijn U Kyjin), and therefore by (5.23) with § = 1/2 and (5.27),

Sy\ne « 3\2n d
3 pr(x, )% pu((3)*"1, %, y)du(y)
K\ (Kyijn UKy jin)

oy (v)?

pii’”(y)"‘eXP(— o )Ww,l((%)znt,x,y)du(y)

S/
K\(Kwij” Uij,'n)

) i2
< (0la)® v a2 exp -T2 ). 651
Now (5.44) easily follows by substituting ¢ by (3/5%Nt (N e N) in (5.50) and (5.51)
and using them to let n — oo first and then N — oo. Thus the proof of Theorem 5.16 is
complete. O

6 On-diagonal asymptotics at almost every point

So far we have established Gaussian off-diagonal behaviors of the heat kernels as well as
several one-dimensional asymptotics at each x € V. In this and next sections, we will verify
that p,, (¢, x,x) and p,, ,, (1, x, x) for h € Sy, exhibit non-integer-dimensional asymptotic
behaviors as ¢ | 0 for yu-a.e. x € K.

The following is the main theorem of this section. Note that, for each & € Sy, the term
“p-a.e.” is a synonym for “j1(5y-a.e.” since p and 45y are mutually absolutely continuous
by [17, Theorem 5.6]. Note also that 21ogy5,3 5 = 1.5181... < 2.

Theorem 6.1. There exists di° € (1,2 logy5,3 5] such that for each h € Sy,

2log pu(t,x,x) . 2log pug, (1, x,x)
m = lim

= dg* -a.e. x € K. 6.1
40 —logt 140 —logt s praex ©.1)

Remark 6.2. (1) We have a concrete expression for dé"c; see (6.10) and (6.12).

(2) In Theorem 7.2 below we will show that dé‘)c < dimyx(K, py), where dimy denotes
Hausdorff dimension. Unfortunately, the author has no idea whether dé"c = dimy (K, pr)
or not.
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The limit lim; o log py (¢, x, x)/(—logt), if exists, is often called the local spectral
dimension at x for the Dirichlet space (K, v, E, F). (6.1) says that the local spectral dimen-
sions at x for (K, u, &, F) and (K, ppny, £, F) exist and are equal to a non-integer constant
d¥e for p-ae. x € K.

One of the keys to Theorem 6.1 is the ergodicity of the Kusuoka measure p (to be pre-
cise, of the measure A = p o r) which has been obtained in [29, Example 1]. Unfortunately,
however, the proof of this fact in [29] is indirect and complicated. We provide an alternative
simple proof of it at the end of this section based on the self-similarity (2.2) of (£, F).

Now we proceed to the proof of Theorem 6.1. We start with an easy lemma.

Lemma 6.3. Forany w € X and any x € R? \ {0},

3 log || T log || T 3
og 2 < timing &M 0t _ o tg 1Tl 3 6.2)
5 m—0o0 m m—00 m 5
1 log|T* , x log|T*, x 3
log = < lim infM < lim sup tog| T, x| <log >. (6.3)
5 m—00 m Mm—00 5

Proof. Since ||A||?> > 2|det A| for any A € L(R?), Proposition 2.12-(i) and (3.4) imply
that

V2(V3/5)" = V2] det T | < ||Tw |l < (3/3)™! Ty| = v2(3/5)™! (6.4)

for any w € Wi, which immediately yields (6.2). Similarly (6.3) follows by applying (3.5)
toh = |x|_1(x1h1 + x2h5), where x = (x1, x2). O

The following two propositions completely characterize when the local spectral dimen-
sions at 7 (w) exist for a given w € X, in terms of the asymptotic behavior as m — oo of

the logarithms of the norms || 7,1, || and |T[>Z)]mx . x € R2\ {0},
Proposition 6.4. Let w € X. Then it holds that
21 1,7 (), log 3
lim jnf 2108 Pu 7@ @) _ ) 5 =5
mo —log? lim sup,;; s o0 77 102 | 71,0, |l
21 1w (), log 3
lim sup 222 pult, 7(@), 7(@) _, _ gl3 = 2logys/3 5.
140 — logl lim lllfm—>oo m 10g ” T[(l)]m ”

(6.5)

In particular, the limit lim; o 21og py (¢, m(w), w(w))/(—log t) exists if and only if so does
limy; — 0o % log | Tiw,, |, and if either of these two limits exists then

log %

21
hm ngu(t’n(a))’”(w)) :2+

e[l,2lo 5]. (6.6)
110 “log1 limyn— o0 = 10g [| Tie1, 1. 210g25/33]

Proof. Let (s,x) € (0,1] x K and let w € A’ satisfy x € Ky,. Then u(Us(x,8M)) <
w(Ky) by (3.9), and therefore (3.11) and (3.16) easily imply that

(B (x, p10)) = p(Us(x,87)) < pu(Ku). (6.7)
Letw € X, and foreacht € (0, 1) let m(¢) be the unique m € N satisfying [w];; € Aijz.

Then for ¢ € (0,1), p,(t, 7(w), 7(w)) = M(K[w]mm)_1 by (4.2) and (6.7), and (3.4)
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yields H Tl ” <Vt < SH Tl H Moreover, m : (0,1) — N is a non-decreasing
surjection since N 3 m + [y ([w];,) is strictly decreasing by (3.4). It follows from these
facts that

21 3 , —log (K mlog 3
lim sup 08 pul 7(©), 7(w)) = lim sup M = lim sup (2+ i)
t40 - log[ m—oo log ” T[w]m ” m—o0 log || T[w]m ”
and similarly for lim inf, which together with (6.2) immediately shows the assertion. O

Proposition 6.5. Let h € Sy, and take {p, = (é}l, {%) € R? so that h— §}Zh1 — §,21h2 € R1.
Let w € 3. Then it holds that

21o t,m(w), m(w log 2
limint 08 P L T@) @) = =L
140 —log? lim sup,, o 7 10g| 75, C| ©5)
2108 pugy (1 T (@), 7(@)) log 3
lim sup =2+ — 1 * =K
110 —logt liminfy, o0 5 1Og|T[w]m§h’

In particular; the limit lim; o 210g py ,, (¢, T(w), w(w))/(—logt) exists if and only if so
does lim;;, — oo % log’T[z)]m tn ’, and if either of these two limits exists then

21o t,m(w), m(w log 2
110 —log? limyy— 00 7,7 log|T[w]m &n|
Proof. The proof goes in exactly the same way as that of Proposition 6.4 by using (3.5),
(3.12) and (6.3) instead of (3.4), (3.11) and (6.2) respectively. O
Proposition 6.6. Let v be a Borel probability measure on X which satisfies v oo~ ! = v
and is ergodic with respect to the shift map o : ¥ — X. Define
. 1
N {Ti}ies) = inf — " v(Ty)log || Twl. (6.10)
meN m
weWy,
Then (v {Ti}ies) = lim_ & Yyemw,, v(Zw)log [Twll € [log %2, log 2] and
21 t log 3
lim 2lgpult @) n@) _, ey e ©.11)
110 —log1? N {Ti}ies)

Moreover, n(v,{T; }ies) = log% if and only if v({1°°,2°°,3°°}) = 1.

Proof. Apart from the final assertion, this is immediate from (6.4), Proposition 6.4 and
Kingman’s subadditive ergodic theorem [9, Theorem 10.7.1], and the same results are valid
with (v, {T; }; es) unchanged if the norm || - || is replaced by the operator norm || - ||, given
by I Allop := supyepe, |xj<1 [4x], 4 € L(R?); note that [AB|| < ||A][||B|| and [|AB||op <
| Allopll Bllop for A, B € L(R?). If v({1°°,2°°,3%°}) = [ then clearly n(v,{T;}ies) =
log % Conversely suppose (v, {7; }ics) = log % Letm € N. Since || T;||op = 3/5,i € S,
we have % log | Tw llop < log% for w € W,;, and hence % > wew,, V(Ew) log [Twllop <
log %, where actually the equality holds by n(v, {T; }ics) = log % and (6.10) for the norm
[|-llop- Therefore for each w € Wy, v(Zw)(% log || Ty |lop—log %) = 0,i.e.eitherv(Xy) =
Oor |Twllop = (3/5)", but the latter holds if and only if w = i for some i € § since
ITjkllop < (3/5)% for j.k € S with j # k. Thus v(J;eg Zim) = 1, and letting m — oo
yields v({1°°,2%°,3°°}) = 1. O
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Proof of Theorem 6.1. Since A o 0! = A by Proposition 2.14, A is ergodic with respect to
o by [29, Example 1] (see also Theorem 6.8 below), A({1°°,2°°,3°°}) = 0and pox = A,
Proposition 6.6 applies to A /2 to imply that

21 t,x, log 2
lim 2108 Pl ¥ X) £3 =d* paexeK (612

1o —logt n(A/2. AT bies)

and that n(A/2,{T;}ies) € [log ?, log %) Thus di € (1,2logy5,3 5]

Leth € Sy, and set Kz, = {x € Kz | Zx{n # 0}, where & € R? is as in
Proposition 6.5. Then u(K\ Kz ;) = 0since duny = |Z¢p|?dp by (2.10) and w and je(p)
are mutually absolutely continuous. Now for x € Kz 5, and @ € 7~ !(x), we easily see
limyy— o0 |T(5y; |/ I Tt || = 1Zx$n| and hence limy o 2108 pyu, (¢, x, x)/(—log?) =
dé"c if and only if lim; o 2log p, (f, x,x)/(—logt) = déoc by Propositions 6.4 and 6.5,
proving (6.1) by virtue of (6.12) and (K \ Kz ) = 0. O

Remark 6.7. (1) We can estimate dé"c numerically by using (6.10); numerical computations
of the right-hand side of (6.10) with v = /2 tell us that i > 1.27695... form = 14,
dé"C > 1.27790... form = 15 and dg(’c > 1.27874 ... form = 16.

(2) Barlow and Kumagai [4, Corollary 3.6] have proved the D-a.e. existence of the (constant)
local spectral dimension di*(/i, ) and have explicitly calculated it for the heat kernels
pa(t, x,y) on post-critically finite self-similar sets and Sierpinski carpets, when both the
reference measure [ of the Dirichlet space and another measure D are self-similar measures.
In their case, the self-similarity of {i has made the explicit calculation of dé‘)c (&, D) possible
and we easily see how it varies depending on the weight of D, whereas it seems very difficult
to estimate (v, {7} }ies) and see its dependence on v in the situation of Proposition 6.6
above, even when v is a Bernoulli measure on X.

At the end of this section, we give a new simple proof of the ergodicity of the measure
A=pom.

Theorem 6.8 ([29]). The measure A is ergodic with respect to the shift map o : ¥ — X.

Proof. Let A € B(Z) satisfy 071 (A) = A. Set E4(u,v) := d(y.0y(A)/2 foru,v € F,
so that £4 : F x F — R is a non-negative definite symmetric bilinear form satisfying
Eqa(u,u) < E(u,u),u € F. We claim that there exists ¢4 € [0, 1] such that

Eq(u,v) =cq€(u,v), u,vezr. (6.13)

Note that Ay, vy © 6; = (5/3)AuoF; vorF;y foru,v € Fandi € S. Since A = o 1(4) =
U;es 0i (A) we see that for any u, v € F,

£4060) = 3 3 My @i(A) = 2 Y Shiuor wor (A) = 2 3 Eatuo Frvo Fy).
ieS ieS ieS

(6.14)
By £4(1,1) = 0 we can regard £4 as a non-negative definite symmetric bilinear form
on Ho/R1, and let Q 4 be its matrix representation through the basis {h1, 2} of Ho/R1.
Then (6.14) together with Proposition 2.12-(ii) yields Q4 = (5/3) ;e Ti Q4 T;", based
on which a direct calculation using Proposition 2.12-(i) easily shows that Q4 = c4 ( (1) (1) ) for
some c4 € [0, 1]. Thus (6.13) holds for any u, v € Ho, hence for any u, v € |,y Hm by
(6.14) and (2.2), and then also for any u, v € F since | J,,,cyy Hm/R1 is dense in (F/R1, £)
and E4(u,u) < E(u,u),u € F.
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Letu, f € F.By [13, Lemma 3.2.5] and the strong locality of (£, F),

1 ,
d(Muf,u) - EV“(uz,f)) = udpray + fdpoy —udp. ry = fdpy.  (6.15)

By Propositon 2.8, (6.13) and (2.4), the value of (6.15) on 7 (A) results in

1
Fabin = hupan (=33 () = 2600 -E462. 1) = e [ fdnan.
7 (A) K

which implies that 1,4 - ft () = ¢4ty since F is dense in (C(K), || ||oo). In particular,
we have 0 = cq ) (K \ m(A)) = caAr@y (2 \ A). Now suppose A(4) > 0. Thencyq > 0
by (6.13) and hence A,y (X \ A) = 0 forany u € F. Thus A(X \ 4) = 0. O

7 Eigenvalues of the Laplacian

In this last section, we show that the Hausdorff and box-counting dimensions of (K, py)
naturally arise as the asymptotic order of the eigenvalues of the Laplacian associated with
(K, u, £, F) and that those dimensions are not integers, as in Theorem 1.3-(3).

Let us first recall the following standard notations and definitions. See e.g. [10, Section
2.1] and references therein for details of Hausdorff measure, Hausdorff dimension and box-
counting dimension; note that the definitions there apply to any metric space although they
are stated only for subsets of the Euclidean spaces.

Notation. Let (E, p) be a metric space and let A C E be non-empty.
(1) For a € (0, 00), the a-dimensional Hausdorff measure and the Hausdorff dimension of
A with respect to p are denoted by H% (A, p) and dimy (4, p), respectively.
(2) The lower and upper box-counting dimensions of A with respect to p are denoted by
dimg (4, p) and dimg (A4, p), respectively. If they are equal, their common value, called the
box-counting dimension of A with respect to p, is denoted by dimg (4, p).

Note that 0 < dimg(4, p) < dimy(4, p) < dimp (4, p) < oo by [10, (2.14)].

Definition 7.1. Let v be a finite Borel measure on K with full support. Noting that the
non-positive self-adjoint operator A, of (K, v, &, F) (the generator of {7} };e(0.00)) has
discrete spectrum and that tr 7,” < oo for ¢ € (0, 00) by [8, Theorem 2.1.4], let {4 }nen
be the non-decreasing enumeration of all the eigenvalues of —A,,, where each eigenvalue is
repeated according to its multiplicity. The eigenvalue counting function N, and the partition
function Z,, of the Dirichlet space (K, v, E, F) are defined respectively by

Ny(s) :=#{neN| A, <s}, seR, (7.1)

Zo(t) =Y e~ =/ e_”dNU(s)zf po(t.x,x)dv(x), t€(0,00). (7.2)
[0.00) K

neN

In the situation of Definition 7.1, N}, (0) = 1 by A] = 0 < A}, and N,,(s) < oo for any
s € [0, 00) since limy;, 00 A}, = 00. Moreover, Z,, is (0, 00)-valued and continuous.

We now state the main theorem of this section. Recall the constant g™ € (1, 21log,s /391
given in Theorem 6.1.
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Theorem 7.2. Set ds := dimy(K, px). Then H (K, p) € (0, 00), and for any h € SHo»

ds = dimg (K. py) = dimg (K, pp) € [d§™, 210gss /3 5. (7.3)
Moreover, there exist ¢7.1,¢7.2 € (0,00) such that for any h € Sy, any s € [1,00) and
anyt € (0,1],

dS/2 ds/2

71552 < Ny () < c7.25B/2, (1.4

C7.ll‘_dS/2 = Z’/L(h) (t) = c7.2t_d5/2~ (75)

€7.18 <Nu(s) <c7.28

et 7N/ < 2, (t) < 07017 D)2,
Remark 7.3. The author has no idea whether ds = dimy(K, pp) for h € Sy,. Also the
estimate ds < 2log,5,3 5 is by no means best possible.

The limits limg_— o0 2logNy, (s)/logs and lim; o 2logZ, (¢)/(—logt), if exist, are
usually called the (global) spectral dimension of the Dirichlet space (K, v, E, F). Theorem
7.2 in particular implies that the spectral dimensions of (K, i, &, F) and (K, pny, €, F),
where h € Sy, exist and are equal to dimy (K, py), dimg (K, px) and dimg (K, pp).

The rest of this section is devoted to the proof of Theorem 7.2, for which the following
proposition is fundamental.

Proposition 7.4. There exist c¢7.3,¢7.4 € (0, 00) such that for any h € Sy, any s € [1, 00)
and any t € (0, 1],

c73#AT ) S Nu(s) < c7a#A™h o, e L <N () < cra#tA 5. (7.6)

c7.3#AT7 < 2u(0) < c7.a#AT c73#A" < 2y, () < c7.a#A L0 (1)
Proof. (7.6) follows from [19, Theorem 4.3 and Proposition 4.4], (3.4), (3.5) and N, (0) =
Nizyy (0) = 1. Then noting that #A% 5 < 3#A and #A% . < 3#A% for s € (0,1) by
(3.4), (3.5) and [19, Proposition 2.7], we can easily verify (7.7) from (7.6); note also that
Zu(t) = fooo e SNy (s/t)ds forv € {i, (ny} and ¢ € (0, 00). O

Lemma 7.5. Let h € Sy. Then #A%?, < #A"#ATt < 3%A%, for any s,t € (0,1]. In
particular, #A" < #AT < 3%%A” for any s € (0, 1].

Proof. Since A71" = A{’ = {@}, the latter assertion follows by setting # = 1 in the former,
which in turn is trivial for s = 1. Let s,¢ € (0, 1], s < 1 and take ¢, = (é‘}l, Z}ZZ) € R? such
that h — é‘}zhl - {ﬁhz € R1. Then for each (v, w) € A? x AT, I (vw) = |TET) ¢ <
1 Tw T Cn| = In(w)lp(v) < st and hence vw < (v, w) for a unique (v, w) € Aﬁ’t.
Thus we have a mapping 7 : A? X A;" — Aé’t, which is surjective; indeed, if u € A?t,
then ul®® € X, for some v € Ai’ and ¢/V!(u1°) € %, for some w € AT, so that
ul® € Ty, N Xy and u = (v, w). Therefore #A%, < #AP#ATL.

Lett : S — S denote the bijection i + i + 1 mod 3, so that ¢ naturally defines a
bijection Wy — Wi given by wy ... w;; + t(wy)...t(wy), which we also write as ¢.

Let R := (\_/%//z __*5/22). Then for w € Wy, clearly T,y = RTyR™" and ||T, ()| =

|RTw R~ = ||Ty ||, and therefore w € A’ if and only if «(w) € A*. Thus, withw; € S
denoting the first component of w € W, \ {0},

/\z,1 = U {w,(w),>(w)}  (disjoint union). (7.8)

weAl, wi=1
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Let (v,w) € A7 x AL Since |Y7_o RXAR x| = (3/2) /| A|?> + 2det A|x| for

A € L(R?) and x € R? by a direct calculation, we obtain

2

2 2
_ 3 3st
D n ) = Y |y T n] = | 30 RETGRTN T | > SITwlIT Enl > 5
k=0 k=0 k=0

by det Ty, = (3/25)!"! > 0, (3.4) and (3.5). Thus I;, (vik(w)) > st/50 for at least one
k € {0,1,2}, and it follows from (7.8) that 3#A; ¢ > #A?#A?, where we set A; g =
{(v,w) € A? x ATt | Ip(vw) > st/50}. Each (v,w) € A/ s admits u(v, w) € A?t/SO
h .

st/50 18
clearly injective. Therefore, noting also that #Aé’r /5 = 3#A” for r € (0,1] by (3.5) and

[19, Proposition 2.7], we get #AT#A T < 3#A, 5 < 3#A" - < 3%#AL,. O

such that u(v, w) < vw, and then the mapping A; s > (v,w) > u(v,w) € A

Proposition 7.6. There exists dg € [1,210g,5,3 5] such that for any h € Sy,
371057 < yAl < AT <3957 s e (0.1]. (7.9)

Proof. Let s € (0,1). Noting (3.4) and that ||A]|?> > 2|det A| for A € L(R?), we have
s A B/ > Ty = (s/5) v (3/25)1W)/2 and (5/3)%! > s=20&25/33 forw € AT
Therefore

g2logas/35

> #AM. (7.10)

5y wl s 52
H 2 —21 3 H
2s#A > 2 = E (§> [T ||? = s™210825/33 25#/\‘? =

weA

Let i € Syy,. Then since 37 #A#A”" < #A", < 3%%#A#A” for any 5,1 € (0, 1] by
Lemma 7.5, a standard argument for subadditive and superadditive sequences together with
(7.10) immediately shows the assertion; recall that #Ags /5 = 3#A§’ for s € (0, 1] by (3.5)

and [19, Proposition 2.7] and that #Aé’ < #A}" < 39#A§’ fors € (0,1] by Lemma 7.5. O

Lemma 7.7. Let A be a finite subset of W satisfying K =\ J,,c o Kw- Then there exists a
subset Ao of A which is a partition of .

Proof. K = |Jyepn Kw and K # Vo imply ¥ = (J,,cp Zw, and then an induction on
#A easily shows the lemma. O

Lemma 7.8. Let o, 8, M € (0, 00), and let H§ (-, pr) be the a-dimensional pre-Hausdorff

measure on (K, p) as defined in [10, (2.7)] and [23, Definition 1.5.1). If § € (0, +/2/50)
and H§ (K, pr) < M, then there exists a partition A of X such that ), cp I Tw % <

4(25+/2)% M and maxyen || Ty < 25+/26.

Proof. By H§ (K, pr) < M we can choose a sequence {4, },en of non-empty subsets of
K with L, := diam(4,,pn) < § so that K = (J,, ey An and Y, cy LY < M. Take
g€ (0,(8/3)*] such that 3% + >, .y LY < M.Forn e N,weset D, := L, if L, >0
and D, := 32 "e)V/® if L, = 0, so that D,, < § and Y nen DY < M. We also set
By = Uxea, Be,(x,pr), where &, := 2 "e)V/@ if L,, = 0 and otherwise &, € (0, 1]

; H _ AH . ;
is chosen so that L,, + 3¢, < ﬁ/SO and AzsﬁL,, = Azsﬁ(Ln+3sn)’ recall (Sr) in

Definition 3.2-(1). Then diam(B,,, pr) < L, + 2¢&, and

An C By C Br, 436, (5ns p1) € Uss s31, 436, n8™) = Uss sz, (6,879
(7.11)
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by (3.11), where we have chosen x,, € By \ Vi. By Lemma 3.5, UzsﬁD,, (xn, SH) =

U;'Z:”l Kn.i for some m;, € {1,2,3,4} and {w”’i};”z”1 C A;{S\/ED,,’ so that B, C

U Kyni by (1.11), [ Tyni | < 258/2Dy < 25428 and 3, S0 [ Typni | <
Y en 4(25v2D,)% < 4(25v/2)* M. Since K is compact, K = (JN_, By, for some
N € Nand {nk}/{cvz1 C N. Now we apply Lemma 7.7 to {w”%% | k € {1,...,N},i €
{1,....my, }} to have a partition A of ¥ with the desired properties. O

Proof of Theorem 7.2. Let h € Sy,. Lemma 3.5, (3.11), (3.12), Proposition 7.6 and [19,
Proposition 2.24] together imply that

ds = dimu (K, py) < dimp (K, py) = dimp(K, pp) = dp € [1,210gy5,35].  (7.12)

We follow [10, Proof of Theorem 3.1] in this paragraph. Let o € (0, 00). We suppose
H‘l)’/%(K, oH) < %6_2“ and deduce dg < «, from which we conclude that ds = dp

by letting o | ds, that Hff%(K, PH) > %6‘2‘15 and that (7.4) and (7.5) hold by virtue
of Propositions 7.4 and 7.6. By Lemma 7.8, there exists a partition A of ¥ such that
> wea ITwl® < 1. Then @ & A. Choose B € (0,) sothatra (B) := Y en I Twll? < 1.
Let s € (0, 1]. We define Wi (A) := {0} U |J,,,ey A and

A i={w|w=w'.. . w"eWiA), Iy ... w" ) >s>Iyw)}  (7.13)

with the convention Iy (w! ... w”™!) := 2 for w = @, where we naturally regard w =
w! ... w™ € Wi(A) as an element of Wy in the way of Definition 3.1-(1); note that this
natural identification Wi (A) — W, is injective since A is a partition of . Then as a subset
of Wi, FSA is easily seen to be a partition of X with Fg’\ < At Since FSA C{w € Wi (A) |

bas < ||Twl} by (3.4), where bp := 5~ maxwea Wl we have

#AT <HT] <#w e Wu(A) |bas < ITwll} = Y. D ITwlPby s™*
meNU{0} weA™

< 3 Yoo TP T Ph P s
meNU{0} wl, ..., wmeA

—B — -1, -8 _—
= Y raB)"bREsTE = (1=raB)” bR,
meNU{0}

which and (7.9) yield dg < B < «.
Next we show H9 (K, py) < oo. Let s € (O, 1]. Then diam(Ky,, px) < 10/x(w) <
10s forw € A;{ by Lemma 3.7 and (3.11) and hence

Mg (K. pr) < Y diam(Ky. pr)® < (105)5#AT < (105) 95319574 = 31910
weAlt

by (7.9) and ds = dg. Letting s | 0, we obtain H (K, pyy) < 319109 < oo.
Finally, we prove dé"c < ds. By Jensen’s inequality and (7.2),

1/ 2log pu(t, x,x)
2 Jx —logt

2 1  210g(2,.(1)/2)
o5 [ puttorndut ) = LD

fort € (0, 1), and letting ¢ |, O results in dé‘)c < ds by (6.1), Fatou’s lemma and (7.5); note
that ¢ — p, (¢, x, x) is (0, 00)-valued and non-increasing for each x € K by [8, Theorem
2.1.4]. O

du(x) <



42 Naotaka Kajino

Remark 7.9. A simple direct argument shows the following lower bound
ds = dimg(K, py) = dimp (K, p3) > 1 + 2logy5,3 g =1.17198... (7.14)

although it is weaker than the numerical estimate ds > di°° > 1.27874... implied by
Theorem 7.2 and Remark 6.7. Indeed, since ZieS T, = g((l) (1)) by Proposition 2.12-(i),
S wea(DWITy, = (§ Q) for any partition A of X. Therefore for s € (0, 1),

|lw]
V2 Y (%)w”TwllE 3 Tl 2o S < g1 2oms s Sya T (7.15)

weAlt weAlt

by virtue of the lower bound in (6.4). Now (7.14) follows from (7.15), (7.9) and ds = dg.
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