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Abstract

We study boundary trace process of a reflected diffusion for uniform domains.
We obtain stable-like heat kernel estimates for the boundary trace process of a
reflected diffusion for uniform domains when the diffusion on the underlying ambient
space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new
results of independent interest such as sharp estimates and doubling properties
of the harmonic measure, continuous extension of Näım kernel to the topological
boundary, and the Doob-Näım formula for the Dirichlet energy of boundary trace
process.
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1 Introduction

A classical theorem of Spitzer implies that the trace process of the reflected Brownian
motion on the pn` 1q-dimensional upper half-space on its boundary is the n-dimensional
Cauchy process [Spi, Mol]. Molchanov and Ostrowski discovered that one can realize
all symmetric stable processes on Rn as a trace process on the boundary of a reflected
diffusion on the pn ` 1q-dimensional upper half-space [MO]. This was later revisited in
a celebrated work to analyze the fractional Laplace operator and is now known as the
Caferelli-Silvestre extension [CS]. Caferelli and Silvestre demonstrated that properties of
non-local operators could be understood using corresponding properties of the associated
local operators [CS, §5]. The local and non-local operators in [CS] are the generators of
the diffusion in the upper half-space and the boundary trace process respectively in [MO].
Our work aims to extend this idea to understand the behavior of boundary trace process
(a jump process) using that of the associated diffusion process.

In light of the work of Molchanov and Ostrowski mentioned above, the following
natural question arises: does the boundary trace process of a reflected diffusion behave
like a symmetric stable process in other settings? The goal of this work is to answer
the above question affirmatively by obtaining stable-like heat kernel estimates for the
boundary trace process of reflected diffusion in a broad class of examples. The generator
of the boundary trace process is typically a non-local (or integro-differential) operator.
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Therefore from an analytic viewpoint, our work shows that the fundamental solution of
the ‘heat equation’ corresponding to this non-local operator on the boundary behaves like
that of the fractional Laplacian on Euclidean spaces. We note that stable-like estimate
of the heat kernel for jump process has been extensively studied for the past two decades
[BL, BGK09, CK03, CK08, CKW, GHL14, GHH23, GHH23+, Mal, MS19].

Our setting is a metric measure space equipped with a m-symmetric diffusion process,
where m is a Radon measure with full support. Equivalently, we consider a metric space
pX , dq equipped with a strongly local, regular, Dirichlet form pE ,Fq on L2pX ,mq. We
call pX , d,m, E ,Fq the metric measure space with a strongly local, regular Dirichlet form
or MMD space for short. We refer to [FOT, CF] for the theory of Dirichlet forms.

We consider symmetric diffusion admitting sub-Gaussian heat kernel estimates.
Our setting includes examples with Gaussian heat kernel estimates [Gri, Sal, Stu] such
as Brownian motion in Euclidean space or manifolds with non-negative Ricci curvature,
diffusion generated by degenerate elliptic operators [FKS] and uniformly elliptic operators
in divergence-form in Rn [Mos], diffusion on connected nilpotent Lie groups associated
with a left invariant Riemannian metric or with sub-Laplacians of the form ∆ “

řk
i“1X

2
i ,

where tXi : 1 ď i ď ku is a family of left-invariant vector fields satisfying the Hörmander’s
condition [VSC], weighted Euclidean spaces and manifolds [GrS]. Another significant class
of examples arise from diffusion on fractals such as the Sierpiński gasket, Sierpiński carpet,
and their variants [Bar98, BB89, BB92, BB99, BP, BH, FHK, Kum].

Given an MMD space as above, we consider uniform domains satisfying a capacity
density condition. Uniform domains were introduced independently by Martio and
Sarvas [MS] and Jones [Jon]. This class includes Lipschitz domains, and more generally
non-tangentially accesible (NTA) domains introduced by Jerison and Kenig [JK]. Due
to similar definition, we note that uniform domains are also referred as 1-sided NTA
domains [AHMT1, HMM]. Uniform domains are relevant in various contexts such as
extension property [BS, Jon, HerK], Gromov hyperbolicity [BHK], boundary Harnack
principle [Aik01], geometric function theory [MS, GH, Geh], and heat kernel estimates
[GyS, CKKW, Mur23+]. One reason for the importance of uniform domains is its close
connection to Gromov hyperbolic spaces [BHK]. Another reason is the abundance of
uniform domains. In fact, by [Raj, Theorem 1.1] every bounded domain is arbitrarily
close to a uniform domain in a large class of metric spaces.

The NTA domains introduced by Jerison and Kenig are examples of uniform domains
satisfying the capacity density condition. The capacity density condition guarantees that
every boundary point is regular for the associated diffusion and can be viewed as a stronger
version of Wiener’s test of regularity. Uniform domains satisfying the capacity density
condition provide a fruitful setting to study various aspects of the harmonic measure
[Anc86, AH, AHMT1, AHMT2, CDMT]. For Brownian motion on the Euclidean space,
the capacity density condition of a domain Ω is expressed by the estimate:

CapBpξ,2rqpBpξ, rqq À CapBpξ,2rqpBpξ, rqzΩq, for all ξ P BΩ, 0 ă r À diampΩq,

where CapBpξ,2rqpKq denotes the capacity between the sets K and Bpξ, 2rqc. The fact
that uniform domains satisfying the capacity density condition satisfy good properties
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on harmonic measure was recognized by Aikawa and Hirata [AH]. As we will see later,
estimates on harmonic measure play an important role in our work.

Let us examine the results of Molchanov-Ostrowski, Cafferelli-Silvestre [MO, CS] in
further detail to provide context. For α P p0, 2q, we recall that the symmetric α-stable
operator is generated by the fractional Laplace operator p´∆q´α{2 on Rn,

p´∆q
α{2fpxq :“ cn,α

ż

Rn

fpxq ´ fpyq

|x ´ y|n`α dy,

where cn,α P p0,8q is a normalizing constant. Writing Rn`1 “ tpx, yq : x P Rn, y P Ru as
Rn ˆ R, we consider the Dirichlet form

Epu, uq :“

ż

Rn

ż

R
|∇u|2px, yq|y|1´α dy dx

on L2pRn`1, |y|1´α dy dxq. The corresponding diffusion is generated by the degenerate
elliptic operator

Lαu :“ ∆xu `
1 ´ α

y
uy ` uyy.

Gaussian heat kernel estimates for diffusion generated by such degenerate elliptic opera-
tors follow from results of [FKS, Sal, Gri]. To compute the Dirichlet form corresponding
to the trace process on the boundary, we consider the Dirichlet boundary value problem

Lαu “ 0 on Rn ˆ p0,8q, upx, 0q “ fpxq, (1.1)

where f : Rn Ñ R is a prescribed boundary value on a suitable function space. Then by
[CS, §3.2], the Dirichlet energy of the solution u to (1.1) can be expressed in terms of the
boundary data f as

ż

Rn

ż

p0,8q

|∇u|2px, yq|y|1´α dy dx “

ż

Rn

fpξqp´∆q
α{2fpξq dξ. (1.2)

The equality (1.2) implies that the boundary trace process of the reflected diffusion gen-
erated by Lα is the symmetric α-stable stable process. We refer to [Kwa] for new results
in this direction.

An earlier example of an expression such as (1.2) that relates a local operator on a
domain to a non-local operator on its boundary is due to J. Douglas [Dou]. The Douglas
formula states that the harmonic function u on the unit disk Bp0, 1q in R2 with boundary
value regarded as a function f : r0, 2πq Ñ R has Dirichlet energy given by

ż

Bp0,1q

|∇u|2pxq dx “
1

8π

ż 2π

0

ż 2π

0

pfpηq ´ fpξqq2

sin2ppη ´ ξq{2q
dη dξ. (1.3)

The right hand side above can be viewed as the Dirichlet form of the boundary trace
process corresponding to the reflected Brownian motion on the unit disk. This was later
extended to smooth domains in R2 by Osborn [Osb]. More generally, if u is harmonic in
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a smooth domain Ω Ă Rn with boundary value f : BΩ Ñ R, then the Dirichlet energy is
given by

ż

Ω

|∇u|2pxq dx “

ż

BΩ

ż

BΩ

pfpηq ´ fpξqq
2B2gΩpξ, ηq

Bn⃗ξBn⃗η

dσpξq dσpηq, (1.4)

where σ is the surface measure BΩ, gΩp¨, ¨q is the Green function on Ω, B

Bn⃗ξ
, B

Bn⃗η
denote the

inward pointing normal derivatives at ξ, η respectively [CF, (5.8.4)].

J. Doob found a remarkable extension of (1.2), (1.3), (1.4) to domains that are not
necessarily smooth. Doob’s result is under an abstract potential theoretic setting of
(locally Euclidean) Green spaces in the sense of Brelot and Choquet [BC, Doo]. The
boundary conditions of the harmonic function are prescribed on the Martin boundary
BMΩ of the domain Ω. To describe Doob’s result, we recall the Näım kernel defined by

ΘΩ
x0

pξ, ηq “ lim
xÑξ

lim
yÑη

gΩpx, yq

gΩpx0, xqgΩpx0, yq
, for ξ, η P BMΩ, ξ ‰ η,

where the limits are with respect to the fine topology, x0 P Ω is an arbitrary base point,
and gΩp¨, ¨q is the Green function on Ω as before. The existence of the above limits in
the setting of Green spaces follows from the fundamental work of L. Näım [Näı]. The
Doob-Näım formula states that

ż

Ω

|∇u|2pxq dx “

ż

BMΩ

ż

BMΩ

pfpξq ´ fpηqq
2ΘU

x0
pξ, ηq dωΩ

x0
pξq dωΩ

x0
pηq, (1.5)

if u is harmonic in a domain Ω with fine boundary value f : BMΩ Ñ R and ωΩ
x0

is the
harmonic measure of the corresponding diffusion started at x0 [Doo, Theorem 9.2].
Fukushima gave an alternate proof of the Doob-Näım formula for Green spaces [Fuk].
There are versions of Doob-Näım formula for Markov chains on a countable state space
due to M. Silverstein [Sil, Theorem 3.5] and for random walks on transient trees in [BGPW,
Theorem 6.4].

Even though these earlier approaches in [Doo, Fuk, Sil, BGPW] do not apply to
our setting, we obtain a version of the Doob-Näım formula with the Martin boundary
BMΩ replaced with the topological boundary BΩ (see Theorem 5.12). Using a variant of
Moser’s oscillation lemma [Mos] and the boundary Harnack principle, we show that the
Näım kernel on a uniform domain U given

ΘU
x0

px, yq “
gUpx, yq

gUpx0, xqgUpx0, yq
on pUztx0uq ˆ pUztx0uqzpUztx0uqdiag

extends to a jointly continuous function on
`

pUztx0uq ˆ pUztx0uq
˘

zpUztx0uqdiag up to the
topological boundary (see Proposition 3.15). Our proof of the Doob-Näım formula relies on
the boundary Harnack principle unlike earlier approaches. Other important ingredients in
our proof of the Doob-Näım formula is the vanishing of energy measure on the boundary
of a uniform domain recently shown in [Mur23+, Theorem 2.9] and estimates on the
harmonic measure discussed below in (1.7).
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Our version of the Doob-Näım formula states that the Dirichlet form corresponding to
the boundary trace process for the reflected diffusion on a uniform domain U satisfying
the capacity density condition is given by the Doob–Näım energy

ż

BU

ż

BU

pfpξq ´ fpηqq
2ΘU

x0
pξ, ηq dωU

x0
pξq dωU

x0
pηq. (1.6)

Equivalently, the Doob-Näım energy of a function f above is the Dirichlet energy
E refpu, uq, where E refp¨, ¨q is the Dirichlet energy corresponding to the reflected diffusion on
U , u is harmonic with respect to the generator of diffusion in U with boundary condition
f on BU .

The expression (1.6) suggests that the Doob–Näım energy should be viewed as a
quadratic form corresponding to a self-adjoint non-local operator with respect to a refer-
ence measure that is mutually absolutely continuous with respect to harmonic measure
ωΩ
x0
. In other words, the Doob–Näım formula is an expression for the kernel of an integro-

differential (non-local) operator on the boundary associated to an elliptic (local) operator
in the domain. Due to (1.4), this reference measure on the boundary is usually taken to
be the surface measure on the boundary for reflected Brownian motion in smooth settings
[Hsu]. In the smooth case, this integro-differential operator can be identified with the
Dirichlet-to-Neumann (or voltage-to-current) map [Hsu]. However, in general, even on
smooth domains for uniformly elliptic operators, the harmonic measure might differ sig-
nificantly from the surface measure, possibly being singular [CFK]. It is worth mentioning
that our results on the stable-like heat kernel estimates for boundary trace process also
apply to situations when the harmonic measure is singular with respect to the surface
measure.

From a probabilistic viewpoint, the choice of this reference measure on the boundary
is equivalent to choosing a time parametrization for the trace process due to the Revuz
correspondence [FOT, Theoren 5.1.7(i)]. More precisely, a suitable reference measure
on the boundary determines a positive continuous additive functional supported on the
boundary which can be considered as the boundary local time of the reflected diffusion.
Heuristically, the boundary local time is a continuous, non-increasing process which ‘mea-
sures’ the time spent by a reflection diffusion on the boundary. If τt denotes the right
continuous inverse of the boundary local time of the reflected diffusion Xref

t , then the trace
process on the boundary is given by t ÞÑ Xref

τt and is a Markov process on the boundary
that is symmetric with respect to the chosen reference measure on the boundary.

The above considerations naturally lead us to the study of harmonic measure and its
estimates. Aikawa and Hirata obtain doubling properties and estimates of the harmonic
measure for Brownian motion on uniform domains under the capacity density condition
[AH, Lemmas 3.5 and 3.6]. These estimates and doubling properties generalize similar
results obtained by Jerison and Kenig for NTA domains [JK, Lemma 4.8] and Dahlberg
for Lipschitz domains [Dah, Lemma 1]. The key estimate on the harmonic measure
ωU
x0

p¨q for the diffusion started at x0 that generalize the estimates for Brownian motion in
[Dah, JK, AH] is given by

ωU
x0

pBpξ, rq X BUq —
gUpx0, ξrq

gUpξ1
r, ξrq

— gUpx0, ξrqCapBpξ,2rqpBpξ, rqq (1.7)

6



for all x0 P U, ξ P BU such that r ă dpx0, ξq{A for a suitably chosen constant A P p1,8q,
where ξr, ξ

1
r P U are chosen so that distpξr, U

cq — r, distpξ1
r, U

cq — r, dpξ, ξrq — r, dpξr, ξ
1
rq —

r. We refer to Theorem 4.6 for a precise statement for our estimate on harmonic measure.
While our lower bound on the harmonic measure follows the same line of reasoning as [AH],
our argument for the upper bound provides a new proof avoiding the delicate iteration
argument (box argument) in [AH].

Next, we discuss our choice of the reference measure, denoted as µ, on the boundary
BU . This measure corresponds either to the symmetric measure for the trace process or,
equivalently, to the Revuz measure corresponding to the boundary’s local time. As men-
tioned earlier, the Doob-Näım formula suggests that the reference measure to be chosen
mutually absolutely continuous with respect to the harmonic measure ωU

x0
p¨q. Therefore

if U is bounded, we choose the reference measure µ on the boundary BU as the harmonic
measure ωU

x0
where the base point is sufficiently far away from the boundary such that

distpx0, U
cq Á diampUq which guarantees good doubling properties at many scales due to

(1.7). If U is bounded, then by the elliptic Harnack inequality the harmonic measure with
different base points sufficiently far away from the boundary are comparable in the sense
that they are mutually absolutely continuous with Radon-Nikodym derivative uniformly
bounded above and below.

In cases where U is unbounded, a canonical measure exists on the boundary, unique up
to a multiplicative constant. This measure is constructed from rescaled limits of harmonic
measures along a sequence of base points that tend toward infinity. The consideration of
such measures dates back to Kenig and Toro [KT, Corollary 3.2], who first studied this
measure in the context of non-tangentially accessible (NTA) domains within Euclidean
spaces. In our setting, the existence of such a measure follows from the boundary Harnack
principle (Proposition 4.15). Following [BTZ, Lemma 3.5], we call such a measure on
unbounded uniform domains as the elliptic measure at infinity.

Next, we describe how our choice of the reference measure above leads to the boundary
trace process. We show that our choice of the reference measure above defines a positive
continuous additive functional in the strict sense whose support is the topological bound-
ary (Lemma 5.4 and Proposition 5.7) which can be thought of as the boundary local time.

This in turn defines the trace process qXref
t as qXref

t :“ Xref
τt , where τt is the right continuous

inverse of the positive continuous additive functional mentioned above and Xref
t denotes

the reflected diffusion on the uniform domain. We show that this boundary trace process
admits a continuous heat kernel and obtain matching upper and lower bounds.

Before describing the stable-like heat kernel bounds of the boundary trace process, we
recall a few properties of symmetric α-stable process on Rn. For any α P p0, 2q, n P N,
the symmetric stable-process on Rn generated by the fractional Laplace operator p´∆qα{2

satisfies bounds on jump kernel Jp¨, ¨q, expected exit time from ball ExrτBpx,rqs, and the
heat kernel ptp¨, ¨q that can be conveniently expressed in terms of the Lebesgue measure
m, Euclidean distance dp¨, ¨q and the space-time scaling function ϕprq “ rα. There bounds
are given by

Jpx, yq —
1

mpBpx, dpx, yqqqϕpdpx, yqq
, ExrτBpx,rqs — ϕprq,
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and

ptpx, yq —
1

mpBpx, ϕ´1tqq
^

t

mpBpx, dpx, yqqqϕpdpx, yqq
.

for all x, y P Rn, t, r ą 0.

Unlike the symmetric stable process, the space-time scaling function of the boundary
trace process depends both on the starting point in BU and distance; that is, Φ : BU ˆ

p0,8q Ñ p0,8q instead of ϕ : p0,8q Ñ p0,8q as above. Except for this change, the
bounds on the jump kernel, exit times and the heat kernel are exactly same as above.
Next, we describe the space-time scaling function Φp¨, ¨q that governs the behavior the
boundary trace process. If U is bounded, then the scaling function satisfies the two-sided
bound

Φpξ, rq — gUpξr, x0q, for all ξ P BU, 0 ă r ă diampUq{A,

where A ą 1, x0 P U is the ‘central’ base point chosen as before for the reference measure,
ξr P U is chosen so that dpξ, ξrq “ r, distpξr, U

cq — r and gUp¨, ¨q denotes the Green
function of the diffusion process killed upon exiting U . In the case when U is unbounded,
the scaling function satisfies the two-sided bound,

Φpξ, rq — hUx0
pξrq, for all ξ P BU, r ą 0,

where ξr, x0 is as above and hUx0
p¨q is the unique positive harmonic function on U with

Dirichlet (zero) boundary condition on BU normalized so that hUx0
px0q “ 1. The existence

and uniqueness of such a harmonic function is a well-known consequence of the boundary
Harnack principle.

In order to prove the stable-like heat kernel bounds, it suffices to obtain stable-like
bounds on the jump kernel and exit time. This follows from results of [CKW, GHH23,
GHH23+] as shown in Theorem 2.32. The desired jump kernel bound is an easy conse-
quence of the Doob-Näım formula while the proof of exit time bound requires the heat
kernel estimate on reflected diffusion obtained in [Mur23+, Theorem 2.8].

To illustrate the generality of our results, we list a few examples of diffusion and
domain that have stable-like behavior of the boundary trace process of the corresponding
reflected diffusion. Our results on stable-like heat kernel bounds for the boundary trace
process applies to Brownian motion on Lipschitz and more generally non-tangentially
accessible domains in Rn. In particular, this class includes non-smooth domains such
as the von Koch snowflake domain. More generally, reflected Brownian motion could
be replaced a reflected diffusion generated by a uniformly elliptic operator or degenerate
elliptic operators corresponding to A2 weights [Mos, FKS]. Another class of examples
include NTA domains in Heisenberg group equipped with Carnot-Carthéodory distance
and the diffusion generated by the corresponding left-invariant sub-Laplacian satisfying
the Hörmander condition as mentioned before [VSC]. Specific examples of NTA domains
in this setting are given in [CG, CGN, Gre]. Our results on the heat kernel of boundary
trace process also applies to the complement of the outer square boundary and the domain
formed by removing the bottom line of the Sierpiński carpet. They are uniform domains
(see [Lie22, Proposition 4.4] and[CQ, Proposition 2.4]) satisfying the capacity density
condition for the Brownian motion on the Sierpiński carpet constructed in [BB92].
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To summarize, the following are our main contributions:

(i) Two-sided estimates on the harmonic measure and the associated elliptic measure at
infinity that are sharp up to multiplicative constants (Theorem 4.6 and Proposition
4.15).

(ii) The calculation of the Dirichlet form for the boundary trace process given by Doob-
Näım formula. Equivalently, this is an expression for the non-local operator on the
boundary associated with a local (diffusion) operator on the domain. In particular,
we show that the boundary trace process is a pure jump process (Theorem 5.12).

(iii) Heat kernel estimate for the boundary trace process that are similar to that of the
symmetric stable process on Euclidean space (Theorem 5.19).

2 Preliminaries

2.1 Doubling metric space and doubling measures

Throughout this paper, we consider a metric space pX , dq in which Bpx, rq :“ Bdpx, rq :“
ty P X | dpx, yq ă ru is relatively compact (i.e., has compact closure) for any px, rq P

X ˆ p0,8q, and a Radon measure m on X with full support, i.e., a Borel measure m on
X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X. Such a triple pX , d,mq is referred to as a metric measure space. We
set diampAq :“ supx,yPA dpx, yq for A Ă X (supH :“ 0).

In much of this work, we will be in the setting for a doubling metric space equipped
with a doubling measure.

Definition 2.1. A metric d on X is said to be a doubling metric (or equivalently, pX , dq

is a doubling metric space), if there exists N P N such that every ball Bpx,Rq can be
covered by N balls of radii R{2 for all x P X , R ą 0.

Next, we recall the closely related notion of doubling measures on subsets of X .

Definition 2.2. Let pX , dq be a metric space and let V Ă X . We say that a Borel
measure m is doubling on V if mpV q ‰ 0 and there exists D0 ě 1 such that

mpBpx, 2rq X V q ď D0mpBpx, rq X V q, for all x P V and all r ą 0.

We say that a non-zero Borel measure m on X is doubling, if m is doubling on X .

The basic relationship between these notions is that if there is a (non-zero) doubing
measure on a metric space pX , dq, then pX , dq is a doubling metric space. Conversely,
every complete doubling metric space admits a doubling measure [Hei, Chapter 13]. By
iterating the doubling condition, it is easy to see that for all m is a doubling measure on
pX , dq, then there exist C P p1,8q, β P p0,8q such that

mpBpy,Rqq

mpBpx, rqq
ď C

ˆ

dpx, yq ` R

r

˙β

for all x, y P X , 0 ă r ď R. (2.1)
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We recall the closely related reverse volume doubling condition. To this end, we recall
the relevant definition.

Definition 2.3. We say that a metric space pX , dq is uniformly perfect if there exists
K0 P p1,8q such that for all x P X , r ą 0 such that Bpx, rq ‰ X , we have

Bpx, rqzBpx,K´1
0 rq ‰ H.

We record the following result for later use.

Lemma 2.4 ([Hei, Exercise 13.1]). Let m be a doubling measure on a uniformly perfect
metric space pX , dq. Then the measure m satisfies the following reverse volume doubling
condition: there exist C P p1,8q, α P p0,8q such that for all x P X , 0 ă r ă R ă

diampX, dq such that
mpBpx,Rqq

mpBpx, rqq
ě C´1

ˆ

R

r

˙α

. (2.2)

2.2 Uniform domains

Let U Ă X be an open set. A curve in U is a continuous function γ : ra, bs Ñ U such that
γp0q “ x, γpbq “ y. We sometimes identify γ with it its image γpra, bsq, so that γ Ă U .
The length of a curve γ : ra, bs Ñ X is

ℓpγq :“ sup

#

n´1
ÿ

i“0

dpγptiq, γpti`1qq : a ď t0 ă t1 . . . ă tn ď b

+

.

A metric space is a length space if dpx, yq is equal to the infimum of the length of curves
joining x and y. Let U Ă X be a connected open subset. We define the intrinsic distance
dU by

dUpx, yq “ inf tLpγq : γ : r0, 1s Ñ U continuous, γp0q “ x, γp1q “ yu .

Definition 2.5. Let cU P p0, 1q, CU P p1,8q. A connected, non-empty, proper open set
U Ĺ X is said to be a length pcU , CUq-uniform domain if for every pair of points
x, y P U , there exists a curve γ in U from x to y such that its length ℓpγq ď CUdpx, yq

and for all z P γ,
δUpzq ě cU min pℓpγx,zq, ℓpγz,yqq ,

where γx,z, γz,y are subcurves of γ from x and z and from z to y respectively and δUpzq “

distpz, U cq. Such a curve γ is called a length pcU , CUq-uniform curve.

A connected, non-empty, proper open set U Ĺ X is said to be a pcU , CUq-uniform
domain if for every pair of points x, y P U , there exists a curve γ in U from x to y such
that its diameter diampγq ď CUdpx, yq and for all z P γ,

δUpzq ě cU min pdpx, zq, dpy, zqq .

Such a curve γ is called a pcU , CUq-uniform curve.
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There are different definitions of uniform domains in the literature [Mar, Väi]. The
above definition of uniform domain was introduced in [Mur23+] because of the advantage
that this notion of uniform domain is preserved under a quasisymmetric change of metric
in the underlying space. Furthermore, this definition also allows us to consider metric
spaces that does not have non-constant rectifiable curves. We note that our definition of
length uniform domain is what is usually called a uniform domain.

The following is a variant of [GyS, Proposition 3.20].

Lemma 2.6. Let pX , dq be a complete, locally compact, length metric space and let U Ă

X be an open, pcU , CUq-uniform domain for some cU P p0, 1q, CU P p1,8q. For any
ξ P BU, r P p0, diampUq{4q, there exists ξr P U such that

dpξ, ξrq “ r, δUpξrq ą
cUr

2
. (2.3)

Proof. Since r ă diampUq{4, there exists a point y P U such that dpξ, yq ą 2r. By
considering a pcU , CUq-uniform curve γ from a point x P Bpξ, r{2q X U to y and the
continuity of dpξ, ¨q along γ, there exists ξr P γ such that dpξ, ξrq “ r and

δUpξrq ě cU min pdUpx, ξrq, dUpy, ξrqq ě cU min pdpx, ξrq, dpy, ξrqq

ě cU min pdpξ, ξrq ´ dpξ, xq, dpξ, yq ´ dpξ, ξrqq ą
cUr

2
.

2.3 Dirichlet form and symmetric Hunt process

Let pE ,Fq be a symmetric Dirichlet form on L2pX ,mq; that is, F is a dense linear
subspace of L2pX ,mq, and E : F ˆ F Ñ R is a non-negative definite symmetric bilinear
form which is closed (F is a Hilbert space under the inner product E1 :“ E ` x¨, ¨yL2pX ,mq)
and Markovian (f` ^ 1 P F and Epf` ^ 1, f` ^ 1q ď Epf, fq for any f P F). Recall
that pE ,Fq is called regular if F XCcpX q is dense both in pF , E1q and in pCcpX q, } ¨ }supq,
and that pE ,Fq is called strongly local if Epf, gq “ 0 for any f, g P F with suppmrf s,
suppmrgs compact and suppmrf ´ a1X s X suppmrgs “ H for some a P R. Here CcpX q

denotes the space of R-valued continuous functions on X with compact support, and
for a Borel measurable function f : X Ñ r´8,8s or an m-equivalence class f of such
functions, suppmrf s denotes the support of the measure |f | dm, i.e., the smallest closed
subset F of X with

ş

X zF
|f | dm “ 0, which exists since X has a countable open base

for its topology; note that suppmrf s coincides with the closure of X zf´1p0q in X if f is
continuous. The pair pX , d,m, E ,Fq of a metric measure space pX , d,mq and a strongly
local, regular symmetric Dirichlet form pE ,Fq on L2pX ,mq is termed a metric measure
Dirichlet space, or an MMD space in abbreviation.

Associated with a Dirichlet form is a strongly continuous contraction semigroup pTtqtą0;
that is, a family of symmetric bounded linear operators Tt : L

2pX ,mq Ñ L2pX ,mq such
that

Tt`sf “ TtpTsfq, ∥Ttf∥2 ď ∥f∥2 , lim
tÓ0

∥Ttf ´ f∥2 “ 0,

11



for all t, s ą 0, f P L2pX ,mq. In this case, we can express pE ,Fq in terms of the semigroup
as

F “ tf P L2
pX,mq : lim

tÓ0

1

t
xf ´ Ptf, fy ă 8u, Epf, fq “ lim

tÓ0

1

t
xf ´ Ptf, fy, (2.4)

for all f P F , where x¨, ¨y denotes the inner product in L2pX,mq [FOT, Theorem 1.3.1 and
Lemmas 1.3.3 and 1.3.4]. It is known that Pt restricted to L2pX,mq XL8pX,mq extends
to a linear contraction on L8pX,mq [CF, pp. 5 and 6]. If Pt1 “ 1 (m a.e.) for all t ą 0,
we say that the corresponding Dirichlet form pE ,Fq is conservative.

According to a fundamental theorem of Fukushima, the MMD space corresponds to
a symmetric Markov processes on X with continuous sample paths [FOT, Theorem 7.2.1
and 7.2.2]. We refer to [FOT, CF] for details of the theory of symmetric Dirichlet forms.

Recall that a Hunt process X “ tXt, t ě 0;Px, x P X u on a locally compact separable
metric space X is a strong Markov process that is right continuous and quasi-left contin-
uous on the one-point compactification XB :“ X Y tBu of X . A set C Ă XB is said to be
nearly Borel measurable if for any probability measure µ on X there are Borel sets A1, A2

such that A1 Ă C Ă A2 and

Pµ
pthere is some t ě 0 such that Xt P A2zA1q “ 0.

Let m be a Radon measure with full support on X. A Hunt process X is said to be
m-symmetric if the transition semigroup is symmetric on L2pX ,mq. For an m-symmetric
Hunt process X on X , a set N Ă X is said to be properly exceptional for X if N is nearly
Borel measurable, mpN q “ 0 and

Px
pXt P XBzN and Xt´ P XBzN for all t ą 0q “ 1 for every x P X zN .

The transition semigroup of the process X is a version of the strongly continuous semi-
group tTt; t ě 0u on L2pX ,mq corresponding to pE ,Fq, see [FOT, Theorem 7.2.1]. Fur-
thermore, for any non-negative Borel measurable f P L2pX ,mq and t ą 0,

Ptfpxq :“ ExrfpXtqs

is a quasi-continuous version of Ttf on X . The Hunt process X associated with a regular
Dirichlet form pE ,Fq on L2pX ,mq is unique in the following sense (see [FOT, Theorem
4.2.8]): if X 1 is another Hunt process associated with the regular Dirichlet form pE ,Fq on
L2pX ,mq, then there is a common properly exceptional set outside which these two Hunt
processes have the same transition functions.

We recall the definition of energy measure. Note that fg P F for any f, g P

F X L8pX ,mq by [FOT, Theorem 1.4.2-(ii)] and that tp´nq _ pf ^ nqu8
n“1 Ă F and

limnÑ8p´nq _ pf ^ nq “ f in norm in pF , E1q by [FOT, Theorem 1.4.2-(iii)].

Definition 2.7. Let pX , d,m, E ,Fq be an MMD space. The energy measure Γpf, fq of
f P F associated with pX , d,m, E ,Fq is defined, first for f P F XL8pX ,mq as the unique
(r0,8s-valued) Borel measure on X such that

ż

X
g dΓpf, fq “ Epf, fgq ´

1

2
Epf 2, gq for all g P F X CcpX q, (2.5)
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and then by Γpf, fqpAq :“ limnÑ8 Γ
`

p´nq _ pf ^ nq, p´nq _ pf ^ nq
˘

pAq for each Borel
subset A of X for general f P F .

Definition 2.8 (Local Dirichlet space and its energy measure). For an open set D Ă X
of an MMD space pX , d,m, E ,Fq, we define the local Dirichlet space FlocpDq as

FlocpDq :“

#

f

ˇ

ˇ

ˇ

ˇ

ˇ

f is anm-equivalence class of R-valued Borel measurable
functions on D such that f1V “ f#1V m-a.e. for some
f# P F for each relatively compact open subset V of D

+

(2.6)

and the energy measure ΓDpf, fq of f P FlocpDq associated with pX , d,m, E ,Fq is defined
as the unique Borel measure onD such that ΓDpf, fqpAq “ Γpf#, f#qpAq for any relatively
compact Borel subsetA ofD and any V, f# as in (2.6) withA Ă V ; note that Γpf#, f#qpAq

is independent of a particular choice of such V, f#.

For U Ă X , we define

FpUq :“ tf P FlocpUq :

ż

U

f 2 dm `

ż

U

ΓUpf, fq ă 8u, (2.7)

and the bilinear form pE ref ,FpUqq as

E ref
pf, fq “

ż

U

ΓUpf, fq, for all f P FpUq. (2.8)

The form pE ref ,FpUqq need not be a regular Dirichlet form on L2pU,mq in general.
Nevertheless, Theorem 2.12 provides a sufficient condition for pE ref ,FpUqq to be a regular
Dirichlet form on L2pU,m

ˇ

ˇ

U
q.

We recall the definition of extended Dirichlet space.

Definition 2.9 (Extended Dirichlet space). Let pX , d,m, E ,Fq be an MMD space and
let Fe denote its extended Dirichlet space. Recall that the extended Dirichlet space Fe

of pX , d,m, E ,Fq is defined as the space of m-equivalence classes of functions f : X Ñ R
such that limnÑ8 fn “ f m-a.e. on X for some E-Cauchy sequence pfnqnPN in F , that the
limit Epf, fq :“ limnÑ8 Epfn, fnq P R exists, is independent of a choice of such pfnqnPN for
each f P Fe and defines an extension of E to Fe ˆ Fe, and that F “ Fe X L2pX,mq; see
[CF, Definition 1.1.4 and Theorem 1.1.5].

Every function in the extended Dirichlet space admits a quasi continuous version
[FOT, Theorem 2.1.7]. The Dirichlet form pE ,Fq on L2pX ;mq is said to be transient if
there exists a bounded g P L1pX ;mq that is strictly positive on X so that

ż

X
|upxq|gpxqmpdxq ď Epu, uq

1{2 for every u P F .

If pE ,Fq is transient, then pFe, Eq is a Hilbert space [FOT, Theorem 1.5.3]. Denote by
tTt; t ě 0u the semigroup on L2pX ;mq corresponding to the Dirichlet form pE ,Fq. By
[CF, Lemma 2.1.4(ii)] or [FOT, p. 40], pE ,Fq is transient if and only if there is some
g P L1pX ;mq that is strictly positive on X and satisfies

ż

X
gGg dm ă 8, where Gg “

ş8

0
Ttg dt. (2.9)
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Definition 2.10 (Part process). Let D be an open subset of X . The part process XD of
X killed upon exiting D is a Hunt process on D; that is,

XD
t :“

#

Xt if t ą τD,

B if t ě τD,

where the life time of the part process is τD :“ inftt ą 0 : Xt R Du.

The associated Dirichlet form pED,F0pDqq on L2pD;m|Dq of the part process XD is
regular. Here m|D is the measure m restricted to the open set D, and

F0
pDq “

#

f P F

ˇ

ˇ

ˇ

ˇ

ˇ

f admits a quasi-continuous modification rf such that
rf “ 0 E-q.e. on Dc

+

(2.10)

and ED “ E on F0pDq [CF, Exercise 3.3.7 and Theorem 3.3.9]. We denote the extended
Dirichlet space corresponding to part process by pF0pDqqe. By [CF, Theorem 3.4.9]
pF0pDqqe can be alternately described in terms of the extended Dirichlet space Fe of
pE ,Fq as

pF0
pDqqe “ tf P Fe : rf “ 0 E ´ q.e. on X zDu. (2.11)

2.4 Sub-Gaussian heat kernel estimates

Let Ψ : p0,8q Ñ p0,8q be a continuous increasing bijection of p0,8q onto itself, such
that for all 0 ă r ď R,

C´1

ˆ

R

r

˙β1

ď
ΨpRq

Ψprq
ď C

ˆ

R

r

˙β2

, (2.12)

for some constants 1 ă β1 ă β2 and C ą 1. If necessary, we extend Ψ by setting
Ψp8q “ 8. Such a function Ψ is said to be a scale function. For Ψ satisfying (2.12),
we define

rΨpsq “ sup
rą0

ˆ

s

r
´

1

Ψprq

˙

. (2.13)

Definition 2.11 (HKEpΨq). Let pX , d,m, E ,Fq be an MMD space, and let tPtutą0 denote
its associated Markov semigroup. A family tptutą0 of non-negative Borel measurable
functions on X ˆ X is called the heat kernel of pX , d,m, E ,Fq, if pt is the integral kernel
of the operator Pt for any t ą 0, that is, for any t ą 0 and for any f P L2pX ,mq,

Ptfpxq “

ż

X

ptpx, yqfpyq dmpyq for m-almost all x P X .

We say that pX , d,m, E ,Fq satisfies the heat kernel estimates HKEpΨq, if there exist
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C1, c1, c2, c3, δ P p0,8q and a heat kernel tptutą0 such that for any t ą 0,

ptpx, yq ď
C1

m
`

Bpx,Ψ´1ptqq
˘ exp

ˆ

´c1trΨ

ˆ

c2
dpx, yq

t

˙˙

for m-almost all x, y P X ,

(2.14)

ptpx, yq ě
c3

m
`

Bpx,Ψ´1ptqq
˘ for m-almost all x, y P X with dpx, yq ď δΨ´1ptq,

(2.15)

where Φ is as defined in (2.13).

We recall the following heat kernel estimate for reflected diffusions obtained in
[Mur23+, Theorem 2.8].

Theorem 2.12 ([Mur23+, Theorem 2.8]). Let pX , d,m, E ,Fq be an MMD space that
satisfies the heat kernel estimate HKEpΨq for some scale function Ψ and let m be a
doubling measure. Then for any uniform domain U , the bi-linear form pE ref ,FpUqq is
a strongly-local regular Dirichlet form on L2pU,mq. Moreover, the corresponding MMD
space pU, d,m, E ref ,FpUqq satisfies the heat kernel estimate HKEpΨq.

Let C0pX q denote the space of all continuous functions vanishing at infinity. We
recall that the sub-Gaussian heat kernel estimates implies the strong Feller property. The
general theory of Dirichlet forms [FOT, Theorems 7.2.1 and 7.2.2] only guarantees the
existence of diffusion process starting outside a properly exceptional set as recalled in
§2.3. Nevertheless under sub-Gaussian heat kernel bounds, the Feller and strong Feller
property allows us to define the diffusion starting from every point x P X as we recall
below.

Proposition 2.13 ([Lie15, Proposition 3.2]). Let pX , d,m, E ,Fq be an MMD space that
satisfies the heat kernel estimate HKEpΨq for some scale function Ψ and let m be a
doubling measure. Then there exists a continuous heat kernel pt, x, yq ÞÑ ptpx, yq corre-
sponding to pX , d,m, E ,Fq. The Markovian transition function pPtqtě0 on X , defined by
Ptpx, dyq “ ptpx, yqmpdyq, t ą 0, x P X , has the Feller property PtC0pX q Ă C0pX q for
all t ě 0 and limtÓ0 ∥Ptf ´ f∥

8
“ 0 for any f P C0pX q, and the strong Feller property,

i.e. Ptf is continuous for any bounded Borel measurable function f : X Ñ R. In partic-
ular, there exists a diffusion process ppXtqtě0, pPxqxPX , pFtqtě0q whose transition densities
are given by the continuous heat kernel.

Due to Theorem 2.12 and Proposition 2.13, we often impose the following assumption.

Assumption 2.14. Let pX , d,m, E ,Fq be an MMD space that satisfies the heat kernel
estimate HKEpΨq for some scale function Ψ and let m be a doubling measure. We
assume that the corresponding diffusion X be defined from every starting point in X
with a continuous heat kernel, so that the transition function of X satisfies both the
Feller and strong Feller properties as given in Proposition 2.13. Furthermore, for any
uniform domain U in X , we assume that the reflected diffusion Xref corresponding to the
MMD space pU, d,m

ˇ

ˇ

U
, E ref ,FpUqq is also defined from every starting point in U with a

continuous heat kernel, so that the transition function of X satisfies both the Feller and
strong Feller properties as given in Proposition 2.13.
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2.5 Harmonic functions and the elliptic Harnack inequality

We recall the definition of harmonic functions and the elliptic Harnack inequality.

Definition 2.15. Let D be an open subset of X . We say a function h P FlocpDq is
harmonic in D if

Eph, vq “ 0 for every v P CcpDq X F . (2.16)

Here by the strong locality of pE ,Fq, we can unambiguously define Eph, vq “ Eph#, vq

where h# P F and h “ h# m-a.e. in supppvq.

Definition 2.16. We say that an MMD space pX , d,m, E ,Fq satisfies the elliptic Harnack
inequality (abbreviated as EHI), if there exist C ą 1 and δ P p0, 1q such that for all x P X ,
r ą 0 and for any h P FlocpBpx, rqq that is non-negative on Bpx, rq and harmonic on
Bpx, rq, we have

ess sup
Bpx,δrq

h ď C ess inf
Bpx,δrq

h. EHI

There is a close relationship between the heat kernel bounds HKEpΨq and the elliptic
Harnack inequality EHI as we recall below.

Remark 2.17. If pX , d,m, E ,Fq is an MMD space that satisfies HKEpΨq, then it satisfies
the elliptic Harnack inequality. Conversely, if an MMD space satisfies the elliptic Harnack
inequality, there is a suitable reparametrization of space and time by a quasisymmetric
change of metric rd and a smooth measure with full quasi support rm such that the time-
changed MMD space with respect to the new metric rd satisfies HKEpΨq for some scale
function Ψ [BM18, BCM].

We are often interested in harmonic functions with zero (or Dirichlet) boundary con-
dition on some part of the boundary as defined below.

Definition 2.18 (Dirichlet boundary condition). Let V Ă U be open subsets of X . Set

F0
locpU, V q “tf P L2

locpV,mq : @ open A Ă V relatively compact in U with

distpA,UzV q ą 0, Df 7
P F0

pUq : f 7
“ f m-a.e. on Au.

We say that a function u : V Ñ R satisfies Dirichlet boundary condition on the boundary
BU X V if u P F0

locpU, V q. Note that we always have F0
locpU, V q Ă FlocpV q.

The following lemma shows that harmonicity and Dirichlet boundary condition are
preserved under uniform convergence.

Lemma 2.19. (a) Let U Ă X be open and let hn P FlocpUq, n ě 1 be a sequence of locally
bounded harmonic functions such that hn converges to h uniformly on compact subsets
of U . Then h P FlocpUq and h is harmonic in U .

(b) Let V Ă U Ă X be such that U and V are open subsets of X and let hn P

F0
locpU, V q, n ě 1 be a sequence of bounded harmonic functions in V such that for

any A Ă V relatively compact in U with distpA,UzV q ą 0, hn converges to h uni-
formly on A. Then h P F0

locpU, V q and is harmonic in V .
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Proof. (a) Let V be relatively compact open subset of U . Since pX , dq is locally compact
there is a compact neighborhood of V , say W such that V Ă W Ă U . Since pE ,Fq is
a regular Dirichlet form, there exists a ϕ P CcpUq such that 0 ď ϕ ď 1 and ϕ

ˇ

ˇ

V
” 1

and ϕ
ˇ

ˇ

W c ” 0. Since hi is locally bounded and supprϕs is compact, by [FOT, Theorem
1.4.2(ii)] we obtain hiϕ P F . Since hn Ñ h uniformly on compact subsets of U , we
have that ϕhn converges to ϕh in L2pmq. We claim that ϕhn, n P N is an E1-Cauchy
sequence that converges to ϕh P F . To see this note that

Epϕphi ´ hjq, ϕphi ´ hjqq “

ż

W

phi ´ hjq
2 dΓpϕ, ϕq ` Ephi ´ hj, ϕ

2
phi ´ hjqq

“

ż

W

phi ´ hjq
2 dΓpϕ, ϕq (since hi ´ hj is harmonic on U)

(2.17)

Since hi converges uniformly onW , we obtain that ϕhi is a E1-Cauchy sequence whose
limit is ϕhi. By (2.17) and limiÑ8 ϕhi “ h form-almost everywhere on V , we conclude
that h P FlocpUq.

Let ψ P CcpUq X F . Let V be a relatively compact open subset containing supprψs.
Then choosing ϕ as above, by strong locality and harmonicity of hi we obtain

Eph, ψq “ Epϕh, ψq “ lim
iÑ8

Epϕhi, ψq “ lim
iÑ8

Ephi, ψq “ 0.

Therefore h is harmonic in U .

(b) Let A Ă V be open such that A is relatively compact in U with distpA,UzV q ą 0.
Since X is locally compact, there exists a neighborhood W of A such that W is
compact and satisfies distpW,UzV q ą 0. Therefore, there exists ϕ P CcpX q X F
such that ϕ is r0, 1s-valued, ϕ

ˇ

ˇ

W
” 1 and supprϕs X pUzV q “ H. Let phi P F0pUq

be such that hi “ phi m-almost everywhere on A for all i P N. By replacing phi with
p´Mi_

phiq^Mi, whereMi “ supA |hi|, we may assume that phi P L8XF0pUq. Therefore

ϕphi P F0pUq is such that it admits a quasi continuous modification which vanishes

quasi-everywhere on V c for all i P N. Therefore ϕphi P F0pV q for all i P N. Using the
harmonicity of hi in V and the same argument as used in (2.17), we conclude that the

sequence ϕphi P F0pV q is E1-Cauchy and converges to ϕh P F0pV q. Since ϕh “ h for
m-almost every A, we conclude that h P F0pU, V q. The assertion that h is harmonic
in V follows from (a).

Remark 2.20. The argument used in the proof of Lemma 2.19 implies the following
facts.

(a) If hn P FlocpUq, n ě 1 is a sequence of locally bounded, harmonic functions such that
hn converges to h uniformly on compact subsets of U , then for any ϕ P CcpUq X F ,
the sequence ϕhn P F , n P N is E1-Cauchy and converges to ϕh P F .
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(b) Let hn P F0
locpU, V q, n ě 1 be a sequence of bounded harmonic functions in V satis-

fying the assumption of Lemma 2.19(b) and let h P F0
locpU, V q be the limit. Let us

extend hn, h to by setting hn
ˇ

ˇ

Uc “ h
ˇ

ˇ

Uc ” 0 for all n P N. Then for any ϕ P CcpX qXF
such that supppϕq Ă V Y U c, distpsupppϕq, UzV q ą 0, we have hnϕ P F for all n P N
and converges in E1-norm to hϕ P F .

Harnack inequality is often used along a chain of balls. We recall the definition of
Harnack chain – see [JK, Section 3]. For a ball B “ Bpx, rq, we use the notation M´1B
to denote the ball Bpx,M´1rq.

Definition 2.21 (Harnack chain). Let D Ĺ X be a connected open set. For x, y P U , an
M-Harnack chain from x to y in U is a sequence of balls B1, B2, . . . , Bn each contained
in U such that x P M´1B1, y P M´1Bn, andM

´1BiXM
´1Bi`1 ‰ H, for i “ 1, 2, . . . , n´1.

The number n of balls in a Harnack chain is called the length of the Harnack chain. For
a domain D write NDpx, y;Mq for the length of the shortest M -Harnack chain in D from
x to y.

Let K ě 1. We say that pX , dq is K-relatively ball connected if for any ϵ ą 0,
there exists Npεq P N such that for any x0 P X , x, y P Bpx0, rq, we have

NBpx0,Krqpx, y; ϵ
´1

q ď Npϵq. (2.18)

Remark 2.22. Suppose that pE ,Fq satisfies the elliptic Harnack inequality with constants
CH and δ. If u is a positive continuous harmonic function on a domain D, then

C
´NDpx1,x2;δ´1q

H upx1q ď upx2q ď C
NDpx1,x2;δ´1q

H upx1q. (2.19)

for all x1, x2 P D.

The following lemma lists some useful estimates on length of Harnack chains.

Lemma 2.23. (a) ([BCM, Theorem 5.4]) Let pX , d,m, E ,Fq be a MMD space satisfy-
ing the elliptic Harnack inequality and such that pX , dq satisfies the metric doubling
property. Then there exists K ą 1 such that pX , dq is K-relatively ball connected.

(b) Let pX , dq be a locally compact, separable space that satisfies the metric doubling prop-
erty. Let U Ĺ X be a pcU , CUq-uniform domain in pX , dq. Then for each M ą 1 there
exists C P p0,8q, depending only on cU , CU and M , such that for all x, y P U

NUpx, y;Mq ď C log

ˆ

dpx, yq

minpδUpxq, δUpyqq
` 1

˙

` C. (2.20)

Proof. The conclusion in (a) is contained in [BCM, Theorem 5.4].

Let γ be pcU , CUq-uniform curve between x, y P U . Without loss of generality, we may
assume δUpxq ď δUpyq. Since

δUpzq ě max pcU minpdpx, zq, dpy, zqq, δUpxq ´ dpx, zq, δUpyq ´ dpy, zqq for any z P γ,

18



we have
δUpzq ě cUδUpxq{2. (2.21)

If dpx, yq ď 4δUpxq, we choose a maximal M´1cUδUpxq{2 subset of γ. Observing that
γ Ă Bpx, 2CUdpx, yqq Ă Bpx, 8CUδUpxqq and using the metric doubling property we obtain
the desired upper bound.

For i P N, choose zi P γ such that dpx, ziq “ 2´idpx, yq and such that zi`1 lies on the
subcurve from x to zi. Note that

dpzi, zi`1q ď 2´i`1dpx, yq, δUpziq ě cU2
´idpx, yq for all i ě 1.

First we show that
NUpzi, zi`1;Mq À 1 for all i ě 1.

To see this, we choose a maximal M´1c2U2
´i´2dpx, yq subset Ni of a pcU , CUq-uniform

curve γi from zi to zi`1. Since the balls tBpn,M´1c2U2
´i´2dpx, yqq : n P Niu cover γi

and diampγiq ď CU2
´i`1dpx, yq, and are contained in U by (2.21), the metric doubling

property [Hei, Exercise 10.17] implies that

NUpzi, zi`1;Mq À #Ni À 1 for all i ě 1. (2.22)

Let k P N be the smallest number such that zk`1 P Bpx,M´1δUpxqq, so that k —

1 ` log
´

dpx,yq

δU pxq
` 1

¯

. By joining M -Harnack chains of length NUpzi, zi`1;Mq from zi to

zi`1 successively and using the ball Bpx,M´1δUpxqq, we obtain a M -Harnack chain from
x to z1 they yields the estimate

NUpx, z1;Mq ď 1 `

k
ÿ

i“1

NUpzi, zi`1;Mq À log

ˆ

dpx, yq

δUpxq
` 1

˙

` 1. (2.23)

Similarly for i P N, choose wi P γ such that dpy, wiq “ 2´idpx, yq and such that wi`1

lies on the subcurve from wi to y. Similar to (2.23), we obtain

NUpy, w1;Mq ď 1 `

k
ÿ

i“1

NUpwi, wi`1;Mq À log

ˆ

dpx, yq

δUpyq
` 1

˙

` 1. (2.24)

Since δUpz1q ^ δUpw1q ě cUdpx, yq{2 and dpz1, w1q ď 2dpx, yq, by the same argument as
(2.22), we have

NUpz1, w1;Mq À 1. (2.25)

By (2.23), (2.24) and (2.25), we conclude (2.20).

We record a few more consequences of Harnack chaining.

Lemma 2.24. Let pX , d,m, E ,Fq be a MMD space satisfying the elliptic Harnack in-
equality and let U Ă X be a uniform domain. There exist A0, A1, C1 P p1,8q and
γ P p0,8q such that for any ξ P BU, 0 ă r ă R ă diampU, d{q{A1 and for any function
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h : U X Bpξ, A0Rq Ñ p0,8q non-negative, continuous and harmonic on U X Bpξ, A0Rq

then we have

C´1
1

´ r

R

¯γ

hpξrq ď hpξRq ď C1

ˆ

R

r

˙γ

hpξrq, where ξR, ξr are as given in Lemma 2.6.

(2.26)
Furthermore if ξR, ξ

1
R are two points that satisfy the conclusion of Lemma 2.6, that is

dpξ, ξRq “ dpξ, ξ1
Rq “ R, δUpξRq ^ δUpξ1

Rq ą
cUr

2
,

then
C´1

1 hpξ1
Rq ď hpξRq ď C1hpξ1

Rq. (2.27)

Proof. Let δ P p0, 1q denote the constant in EHI. By Lemma 2.23(b), for any ξ P BU, 0 ă

r ă R, we have NUpξr, ξR; δ
´1q ď C1, where C1 only depends on δ and the constants

associated to the uniformity of U . By Lemma 2.6 and the proof of Lemma 2.23(b), there
exist A0, A1 P p1,8q depending only on δ and the constants associated to the uniformity
of U such that for all ξ P BU, 0 ă r ă R ă diampU, dq

NUpξr, ξR; δ
´1

q ď NUXBpξ,A0Rqpξr, ξR; δ
´1

q ď C1 p1 ` logpR{rqq . (2.28)

The estimate (2.26) now follows from (2.28) and Remark 2.22. The estimate (2.27) also
follows from the same argument.

2.6 Trace Dirichlet form

Given an MMD space pX , d,m, E ,Fq and A Ă X , we define its 1-capacity as

Cap1pAq :“ inf
␣

E1pf, fq
ˇ

ˇ f P F , f ě 1 m-a.e. on a neighborhood of A
(

, (2.29)

where E1 :“ E ` x¨, ¨yL2pX ,mq as defined before.

Definition 2.25 (Smooth measures). Let pX , d,m, E ,Fq be an MMD space. A Radon
measure µ on X , i.e., a Borel measure µ on X which is finite on any compact subset of X ,
is said to be smooth if µ charges no set of zero capacity (that is, µpAq “ 0 for any Borel
subset A of X with Cap1pAq “ 0).

For example, the energy measure Γpf, fq of f P Fe is smooth by [FOT, Lemma 3.2.4].
An essential feature of a smooth Radon measure µ on X is that the µ-equivalence class
of each f P Fe is canonically determined by considering a quasi-continuous m-version of
f , which exists by [FOT, Theorem 2.1.7] and is unique q.e. (i.e., up to sets of capacity
zero) by [FOT, Lemma 2.1.4]; see [FOT, Section 2.1] and [CF, Sections 1.2, 1.3 and 2.3]
for the definition and basic properties of quasi-continuous functions with respect to a
regular symmetric Dirichlet form. In what follows, we always consider a quasi-continuous
m-version of f P Fe.
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An increasing sequence tFk; k ě 1u of closed subsets of an MMD space pX , d,m, E ,Fq

is said to be a nest if
Ť

kě1FFk
is

?
E1-dense in F , where

FFk
:“ tf P F | f “ 0 m-a.e. on X zFku.

Recall that D Ă X is quasi-open if there exists a nest tFnu such that D X Fn is an open
subset of Fn in the relative topology for each n P N. The complement in X of a quasi-open
set is called quasi-closed. We recall the definition of a quasi-support of a smooth measure
[CF, Definition 3.3.4].

Definition 2.26 (Quasi-support). Let pX , d,m, E ,Fq be an MMD space and let µ be a
smooth Radon measure on X . A set F Ă X is said to be the quasi-support of µ if it
satisfies:

(a) F is quasi-closed and µpX zF q “ 0.

(b) If rF is another set with property (a), then Cap1pF z rF q “ 0.

The quasi-support of a smooth measure is unique up to q.e. equivalence; that is, if F1

and F2 are two quasi-supports of a smooth Radon measure µ, then Cap1pF1∆F2q “ 0.

The quasi-support can be described more explicitly in terms of the corresponding
positive continuous additive functional (PCAF) which we recall below. Consider a m-
symmetric Hunt process X “ tΩ,M, Xt, t ě 0,Pxu, where N is a properly exceptional set
for the corresponding Dirichlet form pE ,Fq on L2pX ,mq and pΩ,M,Pxq. For any measure
ν on X, we denote by Pν the measure PνpAq “

ş

X
PxpAq dνpxq. Any function f on M is

extended to XB “ X Y t∆u by setting fp∆q “ 0, where ∆ denotes the cemetery state.
The set XB as a topological space is the one point compactification of X . Let pMtq0ďtď8

denote the minimum augmented admissible filtration on Ω.

A collection of random variables A :“ tAs : Ω Ñ R`|s P R`u, is called a positive
continuous additive functional (for short, a PCAF), if it satisfies the following conditions:

(i) Atp¨q is pMtq-measurable,

(ii) there exist a set Λ P M8 and an exceptional set N Ă M for X such that PxpΛq “ 1
for all x P MzN and θtΛ Ă Λ for all t ą 0, where θt denotes the shift map on Ω.

(iii) For any ω P Λ, t ÞÑ Atpωq is continuous, non-negative with A0pωq “ 0, Atpωq “

Aζpωqpωq for t ě ζpωq, and At`spωq “ Atpωq ` Aspθtωq for any s, t ě 0. Here ζp¨q

denotes the life time of the process.

The sets Λ and N are referred to as a defining set and exceptional set of the PCAF At

respectively. If N can be taken to the empty set, then we say that At is a PCAF in the
strict sense.

A measure ν is called the Revuz measure of the PCAF A, if and only if for any
non-negative Borel functions h and f ,

Eh¨µ

ˆ
ż t

0

fpXspωqq dAspωq

˙

“

ż t

0

xf ¨ ν, Pshy ds, (2.30)
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where Ps denotes the Markov semigroup corresponding to the Hunt process. By [FOT,
Theorem 5.1.4], the Revuz measure ν is uniquely determined by A. Conversely, given
a smooth Radon measure µ, there exists a PCAF A whose Revuz measure is µ [FOT,
Theorem 5.1.4]. Let us consider a PCAF A whose Revuz measure is a smooth Radon
measure µ and let N denote the exceptional set of the PCAF A. Define the support of A
as

F :“ tx P X zN : PxpR “ 0q “ 1u, Rpωq :“ inftt ą 0 : Atpωq ą 0u. (2.31)

Then F is nearly Borel measurable, finely closed, quasi closed and is a quasi support of
the smooth measure µ [CF, p.175, Theorem 5.2.1(i)]. The right continuous inverse of such
a PCAF A is defined by

τtpωq :“

#

infts ą 0 : Aspωq ą tu if limrÒζpωq Arpωq ă t

8 otherwise.

By [CF, Theorem 5.2.1(ii)], the process

X̌tpωq :“ Xτtpωqpωq, t ě 0, ζ̌pωq “ lim
rÒζpωq

Arpωq (2.32)

is a µ-symmetric Markov process on the support F of A as given in (2.31).

We recall the definition of 0-order hitting distribution.

Definition 2.27 (Harmonic measure; hitting distribution). Let F be nearly Borel mea-
surable and quasi-closed subset of X . Let σF :“ inftt ą 0 : Xt P F u be the first hitting
time of the set F . The hitting distribution HF is defined as

HF px,Aq :“ PxrXσF
P A, σF ă 8s, for all x P X .

For any function u P Fe, we define

HF rupxq :“ ExrrupXσF
q1tσF ă8us, (2.33)

where ru is a quasi-continuous version of u. Finally, if U Ă X is an open set, we define the
harmonic measure ωU

x pAq as
ωU
x pAq :“ HX zUpx,Aq. (2.34)

We recall some basic properties of the harmonic measure.

Lemma 2.28. Let the MMD space pX , d,m, E ,Fq and the corresponding diffusion satisfy
Assumption 2.14. Let D be a non-empty open set and let U Ă X be a uniform domain.

(a) ([Lie15, Lemma 3.2]) For any x P D, the measure ωD
x charges no set of zero capacity

and is supported on BD.

(b) ([Lie15, Lemma 3.2]) For any bounded Borel function f : BD Ñ R, the map h : D Ñ

R defined by

hpxq :“

ż

BU

fpyqωD
x pdyq

belongs to FlocpDq and is continuous and E-harmonic in D.
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(c) For any x, y P D, we have ωD
x ! ωD

y .

(d) For any x P U , BU is a quasi support of ωU
x with respect to Dirichlet form pE ref ,FpUqq

on L2pU,m
ˇ

ˇ

U
q.

Proof. (a,b) That ωD
x is supported on BD follows from that property that pXtq has contin-

uous sample paths. The remaining properties are proved in [Lie15, Lemma 3.2]. Although
[Lie15, Lemma 3.2] assumes that D is a relatively compact open subset of X , the proofs
presented there work for an arbitrary open subset.
(c) Let A Ă BD be a Borel subset such that ωD

y pAq “ 0. By (b), the function
hApzq :“

ş

BD
1ApξqωD

z pdξq “ ωD
z pAq on D is continuous, non-negative, E-harmonic in

D and belongs to FlocpDq. Since hApyq “ ωD
y pAq “ 0, by the elliptic Harnack inequal-

ity we conclude that hA is identically zero on D. In particular ωD
x pAq “ 0 and hence

ωD
x ! ωD

y .

(d) Let x P U . For y P U , we define the 1-order hitting distribution for the reflected
Dirichlet form pE ref ,FpUqq as

H1
BUpy,Bq :“ Eref

y

“

e´σBU1BpXref
σBU

q1tσBUă8u

‰

, σBU “ inftt ą 0 : Xref
t P BUu

for any Borel set B Ă BU . Then by (c), we conclude that the first order hitting measure
H1

BUpy, ¨q is absolutely continuous with respect to ωU
x for all y P U . Since mpBUq “ 0, by

[FOT, Exercise 4.6.1] we conclude that BU is a quasi support of ωU
x for all x P U .

Definition 2.29 (Time-changed Dirichlet form). Let pX , d,m, E ,Fq be an MMD space.
If µ is a smooth Radon measure, it defines a time change of the process whose associated
Dirichlet form is called the trace Dirichlet form and denoted by pEµ,Fµq (see [FOT,
Section 6.2] and [CF, Section 5.2]). Let µ is a smooth measure with quasi support F that
is finely closed and nearly Borel measurable. Let

Fµ
“ tf

ˇ

ˇ

F
: f P Fe, f

ˇ

ˇ

F
P L2

pF, µq, and f is quasi-continuousu,

where we identify functions that coincide q.e. on F . By [CF, Theorem 3.3.5], two functions
in Fµ agree q.e. on F if and only if they agree µ-a.e. We define a quadratic form by setting

Eµ
pu
ˇ

ˇ

F
, v
ˇ

ˇ

F
q “ EpHFu,HFvq (2.35)

for all quasi-continuous functions u, v P Fe

In probabilistic terms, pEµ,Fµq is a regular Dirichlet form corresponding to the time-
changed process X̌t defined in (2.32) where the positive continuous additive functional
pAtqtě0 of pXtq has Revuz measure µ; see [FOT, Section 6.2] and [CF, Theorem 5.2.2] for
details.

2.7 Stable-like heat kernel bounds

We recall a generalization of scale function considered in §2.4 from [BCM, Defintion 7.2]
(see also [BM18, Definition 5.4]). Let pX , dq be a metric space.
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Definition 2.30. We say that a function Φ : X ˆp0,8q Ñ p0,8q on a metric space pX , dq

is a regular scale function if Φpx, ¨q : p0,8q Ñ p0,8q is an increasing homeomorphism for
all x P X , and there exist C1, β1, β2 ą 0 such that, for all x, y P X , 0 ă s ď r ď diampX , dq

we have, writing dpx, yq “ R,

C´1
1

´ r

R _ r

¯β2
´R _ r

s

¯β1

ď
Φpx, rq

Φpy, sq
ď C1

´ r

R _ r

¯β1
´R _ r

s

¯β2

. (2.36)

The definition in [BCM, Defintion 7.2] does not state that Φpx, ¨q : p0,8q Ñ p0,8q is
a homeomorphism but this condition can be achieved by replacing Φ with a comparable
function if necessary as we will see in the proof of Lemma 5.2.

Definition 2.31. Let pX , dq be a metric space with a Radon measure m equipped with
full support. Let Φ : X ˆ p0,8q Ñ p0,8q be a regular scale function. Let pE ,Fq be a
Dirichlet form on L2pX ,mq.

(a) (Jump kernel bound) We say that the Dirichlet form pE ,Fq on L2pX ,mq satisfies JpΦq

if there exist a symmetric function J : pX ˆ X qzXdiag : p0,8q and C P p1,8q such
that

C´1

mpBpx, dpx, yqqqΦpx, dpx, yqq
ď Jpx, yq ď

C

mpBpx, dpx, yqqqΦpx, dpx, yqq
,

for all px, yq P pX ˆ X qzXdiag, and for all u P F , we have

Epu, uq “

ż

X

ż

X
pupxq ´ upyqq

2Jpx, yqmpdxqmpdyq.

(b) (Exit time bound) We say that the Dirichlet form pE ,Fq on L2pX ,mq satisfies the
exit time lower bound EpΦqě, if there exist C,A P p1,8q for all x P X , 0 ă r ă

diampX , dq{A the corresponding Hunt process satisfies

ExrτBpx,rqs ě C´1Φpx, rq. (2.37)

We denote the corresponding upper bound and the two-sided bound by EpΦqď and
EpΦq respectively.

(c) (Stable-like heat kernel bound) We say that the Dirichlet form pE ,Fq on L2pX ,mq

satisfies the stable-like heat kernel bound SHKpΦq if there exists a heat kernel ptpx, yq

of the semigroup pPtq associated with pE ,Fq, and C1, A1 P p1,8q such that

ptpx, yq ď C1

ˆ

1

mpBpx,Φ´1px, tqqq
^

t

mpBpx, dpx, yqqqΦpx, dpx, yqq

˙

,

ptpx, yq ě C´1
1

ˆ

1

mpBpx,Φ´1px, tqqq
^

t

mpBpx, dpx, yqqqΦpx, dpx, yqq

˙

,

for all x, y P X and for all 0 ă t ă A´1Φpx, diampX qq, where we use the convention
that Φpx, diampX qq “ 8 if diampX q “ 8 and Φ´1px, ¨q denotes the inverse of the
homeomorphism Φpx, ¨q : p0,8q Ñ p0,8q.
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The following result plays a key role in our proof of heat kernel estimates for the bound-
ary trace process. It characterizes stable-like heat kernel estimates using a combination
of the jump kernel bound and exit time lower bound stated above. If X is unbounded
then this characterization is essentially contained in [CKW]. It is a slight modification of
the equivalence between (1) and (2) in [CKW, Theorem 1.15]. If X is bounded, we argue
using results in [GHH23]. In Theorem 2.32, we assume that the Dirichlet form pE ,Fq on
L2pX ,mq is of pure jump type. That is, there exist a Radon measure on pX ˆ X qzXdiag

such that

Epf, gq “

ż

pXˆX qzXdiag

p rfpxq ´ rfpyqqprgpxq ´ rgpyqq Jpdx, dyq,

for all f, g P F , where rf, rg denote quasi-continuous versions of f, g respectively.

Theorem 2.32. Let pX , dq be a uniformly perfect metric space and let m be a doubling
measure on pX , dq. Let Φ : X ˆ p0,8q Ñ p0,8q be a regular scale function. Let pE ,Fq

be a Dirichlet form on L2pX ,mq of pure jump type. Then the following properties of the
Dirichlet form pE ,Fq on L2pX ,mq on the metric space pX , dq are equivalent:

(1) Stable-like heat kernel bound SHKpΦq.

(2) Jump kernel bound JpΦq and exit time lower bound EpΦqě.

Furthermore, one the above conditions implies that the strongly continuous semigroup
corresponding to the Dirichlet form pE ,Fq on L2pX ,mq admits a continuous heat kernel.

Proof. We note that uniform perfectness implies the reverse volume doubling property by
Lemma 2.4. By a quasisymmetric change of metric as given in [BM18, Proposition 5.2]
and [BM18, (5.7), Proof of Lemma 5.7], it suffices to consider the case Φpx, rq “ rβ for
all x P X , r ą 0, where β ą 0 (see also [Kig12] where this kind of metric change first
appeared). Therefore we will assume without loss of generality that Φpx, rq “ rβ for all
x P X , r ą 0, for some β ą 0.

The result (1) implies (2) follows from the same argument as the proof of (1) implies
(2) in [CKW, Theorem 1.15] regardless of whether or not X is bounded.

For the converse implication (2) implies (1), the proof splits into two cases depending
on whether or not X is bounded.
Case 1: X is unbounded. By [CKW, Theorem 1.15], it suffices to show the exit time
upper bound EpΦqď. The exit time upper bound EpΦqď follows from the Faber-Krahn
inequality shown in [CKW, §4.1] along with [CKW, Lemma 4.14].

Case 2: X is bounded. The exit time upper bound EpΦqď stated in the unbounded
case also holds in the bounded case with almost the same proof. Since the proof of the
Faber-Krahn inequality relies on the reverse volume doubling estimate, the statement
of the Faber-Krahn inequality has to be modified so that it holds of all balls of radii
0 ă r ă cdiampX q, where c ą 0 as given in [GHH23, Definition 2.4].

Once the on-diagonal upper bound in the conclusion of [CKW, Theorem 4.25] is ob-
tained, then the two-sided bounds on Jump kernel JpΦq and exit time EpΦq implies the
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stable-like heat kernel bound SHKpΦq by arguments in [CKW, Chapter 5] with minor
modifications to take into account that X is bounded. Therefore it is enough to prove
the on-diagonal upper bound.

In order to show the on-diagonal bound, by [GHH23, Theorems 2.10 and 2.12], it
suffices to show the condition (Gcap) in [GHH23, Definition 2.3]. The condition (Gcap)
in turn follows from [GHH23+, Proposition 13.4 and Lemma 13.5] or [GHH23+, Theorem
14.1] along with the two-sided exit time bound EpΦq.

The assertion on the continuity of heat kernel follows from [CKW, Lemma 5.6].

Remark 2.33. If X is unbounded, the on-diagonal upper bound in the proof of (2) implies
(1) above follows from [CKW, Theorem 4.25]. However, the proof there doesn’t directly
generalize to the case when X is bounded. This is because [CKW, Proof of Theorem
4.25] relies on [CKW, Proposition 4.23] which in turn uses [CKW, Proposition 4.18] on
a sequence of radii going to infinity. However, the generalization of [CKW, Proposition
4.18] which relies on Faber-Krahn inequality requires the radii to satisfy r ă cdiampX q

for some c ą 0, which seems insufficient for the argument in [CKW, Proof of Proposition
4.23].

3 Green function, Martin kernel, and Näım kernel

3.1 Properties of Green function

We recall the notion of transient Dirichlet forms. Let pX , d,m, E ,Fq be an MMD space
and let pTtqtě0 be the strongly continuous semigroup corresponding to the Dirichlet form
pE ,Fq on L2pX ,mq. The semigroup extends pTtqtě0 uniquely to a contraction operator
on L1pX ,mq from L1pX ,mq X L2pX ,mq [FOT, p. 33]. For any non-negative function in
L1pX ,mq, we define Green operator as

Gf :“ lim
NÑ8

ż N

0

Tsf ds. (3.1)

We say that the Dirichlet space pE ,Fq on L2pX ,mq is transient if there exists a bounded
m-integrable function strictly positive m-a.e. on X such that

ş

X |u|g dm ď
a

Epu, uq for
all u P F .

The elliptic Harnack inequality implies the existence of Green function as shown in
[BCM, Theorem 4.4] which we recall below.

Proposition 3.1. Let pX , d,m, E ,Fq be an MMD space satisfying the elliptic Harnack
inequality. Let pXtqtě0 be the associated diffusion process. Let D be a non-empty open
subset of X such that the associated Dirichlet form pED,F0pDqq on L2pD;m|Dq of the
part process XD is transient. There exists a non-negative BpD ˆDq-measurable function
gDpx, yq on D ˆ D and a Borel properly exceptional set N of X such that

(i) (Symmetry) gDpx, yq “ gDpy, xq for all px, yq P D ˆ D;
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(ii) (Continuity) gDpx, yq is r0,8q-valued and jointly continuous in px, yq P DˆDzDdiag;

(iii) (Occupation density formula) For any f P B`pDq;

Ex

ż τD

0

fpXsqds “

ż

D

gDpx, yqfpyqmpdyq for every x P DzN ; (3.2)

(iv) (Harmonicity) For any fixed y P D, the function x ÞÑ gDpx, yq is in FlocpDztyuq and
harmonic in Dztyu. For any open subset U of D with y R U , Ex

“
ˇ

ˇgpXD
τU
, yq

ˇ

ˇ

‰

ă 8

and gDpx, yq “ ExrgpXD
τU
, yqs for E-q.e. x P D, where we adopt the convention that

gDpx, Bq “ gDpB, xq “ 0 for all x P D.

(v) (Maximum principles) If x0 P V Ť D, then

inf
V ztx0u

gDpx0, ¨q “ inf
BV
gDpx0, ¨q, sup

DzV

gDpx0, ¨q “ sup
BV

gDpx0, ¨q. (3.3)

We call gDpx, yq the Green function of pE ,Fq in D.

Proof. All parts except (iv) follows from [BCM, Theorem 4.4].

The claims that x ÞÑ gDpx, yq belongs to FlocpDztyuq and is harmonic in Dztyu follows
from [BCM, Remark 2.7(ii), Proposition 2.9(iii), Theorem 4.4]. The remaining claims in
(iv) are contained in [BCM, Theorem 4.4].

Definition 3.2. Let pX , d,m, E ,Fq be an MMD space and D be a non-empty open subset
of X satisfying the assumption of Proposition 3.1. For a non-negative Borel measure
function f : D Ñ r0,8q, we define

GDfpxq :“

#

ş

D
gDpx, yqmpdyq if x P D,

0 if x R D.

By [FOT, Theorem 4.2.6], for any non-negative measurable function f : U Ñ r0,8q

with
ş

D
fGDf dm ă 8, then GDf is a quasi-continuous version of the Green operator

defined in (3.1) for the Dirichlet form corresponding to the part process pED,F0pDqq and
GDf P pF0pDqqe.

The existence of Green function is closely related to the following absolute continuity
condition (AC) whose definition we recall below [CF, Definition A.2.16].

Definition 3.3. Let X be a m-symmetric Markov process on X and let tPt : t ě 0u be
the corresponding transition semigroup. We say that X satisfies the absolute continuity
pACq any t ą 0 the measure Ptpx, ¨q is absolutely continuous with respect to m.

We obtain that the exceptional sets in Proposition 3.1 can be taken to be the empty
set if we the diffusion process in Proposition 2.13.

Lemma 3.4. Let pX , d,m, E ,Fq be an MMD space and X be the corresponding diffusion
process that satisfies Assumption 2.14.
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(a) For any open set D Ă X then the corresponding part process XD defined from every
starting point on D satisfies the strong Feller property and has a continuous heat
kernel.

(b) Assume that the part Dirichlet form pED,F0pDqq on D is transient. Let gpD : DˆD Ñ

r0,8s, be defined as

gpDpx, yq :“

ż 8

0

pDt px, yq dt, for all x, y P D, (3.4)

where pDt p¨, ¨q is the continuous heat kernel of XD as given in (a). Then gpD is con-
tinuous on pD ˆ DqzDdiag. We have the occupation density formula

Ex

ż τD

0

fpXsqds “

ż

D

gpDpx, yqfpyqmpdyq for all x P D, f P B`pDq. (3.5)

If gDp¨, ¨q denote the Green function in Proposition 3.1, then

gpDpx, yq “ gDpx, yq for all px, yq P pD ˆ DqzDdiag. (3.6)

For any open subset U of D with y R U , Ex

“ˇ

ˇgpXD
τU
, yq

ˇ

ˇ

‰

ă 8 and gDpx, yq “

ExrgpXD
τU
, yqs for all x P D, where we adopt the convention that gDpx, Bq “ gDpB, xq “

0 for all x P D. Furthermore for each x P D, the function gpDpx, ¨q is XD-excessive.

Proof. (a) For the process X whose transition function is both Feller and strong Feller,
[Chu, p. 69, Section 1, Proof of Theorem] shows that the part process XD has the
semigroup strong Feller property (as a process on D).

Since X satisfies pACq so does XD. Let PD
t denote the transition semigroup of

XD which satisfies pACq and let QD
t denote the transition semigroup defined by the

continuous heat kernel of associated Dirichlet form pED,F0pDqq on L2pD;m|Dq which
exists due to [BGK12, Theorem 3.1].

Let f be a bounded continuous function on D. Then for any s, t ą 0 and any x P D,
by PD

t f “ QD
t f a.e. and pACq of Ps we obtain

PD
t pPD

s fqpxq “ pPD
t`sfqpxq “ PD

s pPD
t fqpxq “ PD

s pQD
t fqpxq,

and letting s Ó 0 yields
pPD

t fqpxq “ pQD
t fqpxq

by dominated convergence theorem, since pPD
s fqpyq Ñ fpyq as s Ó 0 for any y P D by

the continuity of f , right continuity of sample paths, and PD
s pQD

t fqpxq Ñ pQD
t fqpxq

as s Ó 0 by the continuity of QD
t f . The continuity of QD

t f can be easily verified using
HKEpΨq. Thus

PD
t px, dyq “ QD

t px, dyq for all t ą 0, x P D. (3.7)
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(b) The occupation density formula (3.5) follows from Fubini’s theorem as

Ex

ż τD

0

fpXsqds “

ż 8

0

ż

D

fpyqpDt px, yqfpyqmpdyq dt “

ż

D

fpyqgPDpx, yqfpyqmpdyq.

By the transience of XD, we have

gpDpx, yq ă 8, for m ˆ m-a.e. px, yq. (3.8)

By the heat kernel estimate HKEpΨq, the function

px, yq ÞÑ

ż 8

δ

pDt px, yq dt

converges uniformly on compact subsets of pD ˆ DqzDdiag as δ Ó 0. Therefore it
suffices to show that for each δ ą 0, px0, y0q P pD ˆ DqzDdiag, the function px, yq ÞÑ
ş8

δ
pDt px, yq dt is continuous at px0, y0q. In order to establish to continuity of px, yq ÞÑ

ş8

δ
pDt px, yq dt is continuous at px0, y0q P pD ˆ DqzDdiag, δ ą 0, by the parabolic

Harnack inequality [BGK12, Theorem 3.1], we can choose disjoint open neighborhoods
B1 and B2 of x0, y0 and constants C1, C2 ą 0 such that

sup
px,yqPB1ˆB2

pDt px, yq ď C1 inf
px,yqPB1ˆB2

pD
C´1

2 t
px, yq ď C1p

D
C´1

2 t
px1, y1

q for all t ě δ,

where px1, y1q P B1 ˆB2 is chosen using (3.8) such that gpDpx1, y1q ă 8. Combining the
above estimate with the transience of XD, and the dominated convergence theorem,
we conclude that px, yq ÞÑ

ş8

δ
pDt px, yq dt is continuous at px0, y0q.

The equality (3.6) follows from the continuity of gpD, gD along with (3.5) and (3.2).
The claim gDpx, yq “ ExrgpXD

τU
, yqs for all x P D follows Proposition 3.1(iv), the

continuity of gpD, gD along with the continuity in Lemma 2.28(b). The excessiveness
of gpDpx, ¨q follows easily from the definition.

Due to Lemma 3.4, if the MMD space pX , d,m, E ,Fq satisfies Assumption 2.14 and
D is a non-empty open subset of X such that the associated Dirichlet form pED,F0pDqq

on L2pD;m|Dq of the part process XD is transient, we adopt the convention to redefine
the gDp¨, ¨q from Proposition 3.1 to be equal to gpDp¨, ¨q from Lemma 3.4. In particular,
gDpx, ¨q is XD-excessive for all x P D.

In the next lemma, we show that the Green function has Dirichlet boundary condition
in the sense of Definition 2.18.

Lemma 3.5 (Dirichlet boundary condition of Green function). Let pX , d,m, E ,Fq be
an MMD space and D be a non-empty open subset of X satisfying the assumption of
Proposition 3.1. For any fixed y0 P D, the function x ÞÑ gDpx, yq is in F0

locpD,Dz ty0uq,
and is harmonic in Dz ty0u.
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Proof. The following argument is a variant of [BM19, Proof of Lemma 4.10].

Then by [FOT, Theorems 1.5.4(i) and 4.2.6], there exists a p0,8q-valued integrable
function f0 “ fD,0 on D such that

ş

D
f0GDf0dm ă 8 and GDf0 P pF0pDqqe. Let us

adopt the convention that f0 is extended to the whole space by setting f0 :“ 0 on Dc and
similarly for GDf for any non-negative Borel function f on D.)

Let y0 P D, and let K be any compact subset of X such that y0 R K. Choose ϕ so
that ϕ P F X CcpX q, ϕ is r0, 1s-valued, ϕ “ 1 on K, and y0 R supprϕs. For each r ą 0
with Bpy0, 2rq Ă D and r ă distpy0, supprϕsq, consider the function

gr :“ ϕmint1{r,GDpfrqu, where fr :“

ˆ
ż

Bpy0,rq

f0dm

˙´1

1Bpy0,rqf0. (3.9)

Then GDpfrq is an element of pF0pDqqe quasi-continuous on D by [FOT, Corollary
1.5.1 and Theorem 4.2.6], and hence is quasi-continuous on X by [CF, Theorem 3.4.9],
[FOT, Theorem 4.4.3] and our convention that gr “ 0 onDc. Since pF0pDqqeXL

2pX ,mq “

F0pDq, it follows that gr P F0pDq. Also, GDpfrq and gr are continuous on DzBpy0, rq by
the continuity of Green’s function gD on D and dominated convergence. Note that for any
r0 ą 0 such that Bpy0, 2r0q Ă D and r0 ă distpy0, supprϕsq, the function px, yq ÞÑ gDpx, yq

stays bounded for x P DzBpy0, 2r0q and y P Bpy0, r0q, by the latter of maximum principles
(3.3) and the joint continuity of gD. Therefore, there exists δ ą 0 such that Bpy0, 2δq Ă D
and δ ă distpy0, supprϕsq, and for any r ă δ, we have

gr :“ ϕmint1{r,GDpfrqu “ ϕGDpfrq P L8
pX q X pE0

pDqqe.

Therefore for all 0 ă r, s ă δ, by [FOT, Corollary 1.5.1] we have ϕ2pgr ´ gsq P pE0pDqqe

and hence by [FOT, (1.5.9)]

Epgr ´ gs, ϕ
2
pgr ´ gsqq “

ż

X
pfr ´ fsqϕ

2
pgr ´ gsq dm “ 0. (3.10)

Now, as r Ñ 0, gr converges pointwise on X to ϕgDp¨, y0q (and uniformly on any
compact subset of Dzty0u), by the (joint) continuity of gD, and it thus remains to prove
that this convergence takes place also in pF , E1q. The convergence in L2pX ,mq is clear by
dominated convergence because these functions are uniformly bounded and supported on
supprϕs. These functions form an E-Cauchy family as r Ñ 0 since we can apply dominated
convergence to the right-hand side of the equality

Epgr ´ gs, gr ´ gsq “

ż

supprϕs

pGDpfrq ´ GDpfsqq
2dΓpϕq.

The above equality follows from the chain rule, (3.10) and the same calculation as (2.17).

The following Dynkin-Hunt type formula is a basic ingredient in comparing the Green
function on two domains.
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Lemma 3.6 (Dyknin-Hunt formula). Let pX , d,m, E ,Fq be an MMD space satisfying the
elliptic Harnack inequality. Let D1 Ă D2 be open subsets such that the associated Dirichlet
form pED2 ,F0pD2qq on L2pD2;mzD2q of the part process XD2 is transient. Then there is
a properly exception set ND2 for XD2 such that for all x P D1zND2 , y P D1,

gD2px, yq “ gD1px, yq ` Exr1tXτD1
PD2ugD2pXτD1

, yqs (3.11)

In addition, if the MMD space pX , d,m, E ,Fq and the associated diffusion X satisfies
Assumption 2.14, then (3.11) holds for all px, yq P pD1 ˆ D1qzpD1qdiag.

Proof. By the occupation density formula (Proposition 3.1(iii)) and [BCM, Lemma 4.5],
there exists a properly exceptional set ND2 for XD2 such that for all f P B`pD2q, and for
all x P D1zND2 we have

Ex

ż τDi

0

fpXsqds “

ż

Di

gDi
px, yqfpyqmpdyq, for i “ 1, 2. (3.12)

Therefore for all f P B`pD2q, x P D1zND2 , we have
ż

D2

gD2px, zqfpzqmpdzq

(3.12)
“ Ex

ż τD2

0

fpXsq ds “ Ex

ż τD1

0

fpXsq ds ` Ex

ż τD2

τD1

fpXsq ds

(3.12)
“

ż

D1

gD1px, zqfpzqmpdzq ` Ex

„

1tXτD1
PD2uEXτD1

ˆ
ż τD2

0

fpXsq ds

˙ȷ

(3.12)
“

ż

D1

gD1px, zqfpzqmpdzq `

ż

D2

Ex

”

1tXτD1
PD2ugD2pXτD1

, zq

ı

fpzqmpdzq, (3.13)

where we use strong Markov property and Fubini’s theorem in lines 3 and 4 above respec-
tively.

For y P D1, set fp¨q :“ pmpBpy, rqqq
´1
1Bpy,rqp¨q and letting r Ó 0 in (3.13), we obtain

(3.11). This is justified using the dominated convergence theorem, the joint continuity
and maximum principles for the Green function (Proposition 3.1(ii),(v)).

If we assume that pX , d,m, E ,Fq satisfies the heat kernel estimate HKEpΨq and the
corresponding diffusion process is defined at every starting point as given in Proposition
2.13, then we can use (3.5) instead of (3.12) to obtain the above conclusion.

For a MMD space pX , d,m, E ,Fq satisfying the elliptic Harnack inequality and for a
non-empty open subset D Ă X such that the associated Dirichlet form pED,F0pDqq on
L2pD;m|Dq of the part process XD is transient, we define (by a slight abuse of notation)

gDpx, rq “ inf
yPSpx,rq

gDpx, yq provided δDpxq ă r, Spx, rq :“ ty P X : dpx, yq “ ru,

(3.14)

CapDpAq “ inftEpf, fq : f P pF0
pDqqe such that rf ě 1 E-q.e. on Au, A Ť D, (3.15)
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where pF0pDqqe is as given in (2.11).

It is known that there is a unique function called the equilibrium potential eA,D P

pF0pDqqe that attains the infimum above. We describe the corresponding equilibrium
measures. The equality (3.18) in following lemma was claimed without a proof in [Fit,
(2.7)]. Since it plays an important role in our work we provide a detailed proof.

Lemma 3.7. Let pX , d,m, E ,Fq be a MMD space and let D Ă X be an open set such
that the Dirichlet form pED,F0pDqq of the part process on D is transient. Let A Ť D be
a relatively compact open subset of D.

(a) There exists a unique eA,D P pF0pDqqe and a Radon measure λ1A,D such that

CapDpAq “ EpeA,D, eA,Dq, reA,D “ 1 E-q.e. on A, Epu, eA,Dq “

ż

ru dλ1A,D (3.16)

for all u P pF0pDqqe. Furthermore λ1A,D is supported on BA with

λ1A,DpX q “ λ1A,DpBAq “ CapDpAq. (3.17)

(b) Furthermore if D is compact, there exists a measure λ0A,D such that

EpeA,D, uq “

ż

BA

ru dλ1A,D ´

ż

BB

ru dλ0A,D, (3.18)

for any u P F XL8pX ,mq, where ru is a quasicontinuous version of u and λ1A,D is the
measure in part (a). Furthermore

λ1A,DpBAq “ λ0A,DpBBq “ CappA,Bq. (3.19)

Proof. (a) Note that ppF0pDqqe, Eq is a Hilbert space by [FOT, Theorem 1.5.3]. Since
A Ť D, the regularity of pE ,Fq along with [CF, Theorem 2.3.4] implies that the set

LA,D :“ tf P pF0
pDqqe : rf ě 1 E-q.e. on Au

is non-empty, closed, convex subset of the Hilbert space ppF0pDqqe, Eq. Hence there
exists a unique element reA,D P LA,D such that CapDpAq “ EpeA,D, eA,Dq. Since
1^eA,D P LA,D and Ep1^eA,D, 1^eA,Dq ď EpeA,D, eA,Dq, we conclude reA,D “ 1^reA,D

q.e. and hence reA,D “ 1 q.e. on A.

Let v P pF0pDqqe such that v ě 0 m-a.e. Then for any t ą 0, eA,D ` tv P LA,D and
hence EpeA,D`tv, eA,D`tvq ě EpeA,D, eA,Dq or equivalently EpeA,D, vq`pt{2qEpv, vq ě

0. Letting t Ó 0, we conclude

EpeA,D, vq ě 0, for all v P pF0pDqqe such that v ě 0 m-a.e.

The existence of a Radon measure λ1A,D on D satisfying the last equality in (3.16) now
follows from by applying [FOT, Theorem 2.2.5 and Lemma 2.2.10] to the Dirichlet
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form pED,F0pDqq. We also consider it as a Radon measure on X by setting λ1A,Dp¨q :“
λ1A,Dp¨ X Dq. This concludes the proof of all claims in (3.16).

By the strong locality and reA,D “ 1 E-q.e. on A, we conclude that eA,D is harmonic in
A. By the energy minimizing property of eA,D, we have that eA,D is harmonic in DzA.
Therefore any u P F X pCcpAq YCcpDzAqq, we have Epu, eA,Dq “ 0 which implies that
λ1A,DpA Y pDzAqq “ 0. This implies λ1A,D is supported on BA. The proof of (3.17) is
contained in [BCM, Proof of Proposition 5.21].

(b) Let ϕ P F X CcpX q, supprϕs X A “ H, ϕ ď 0. Choose 0 ď ψ ď 1 and ψ
ˇ

ˇ

V
“ 1,

where V is a neighborhood of supprϕs. Since eA,Dψ is E-harmonic on pDczAq X V
and reA,Dψ ´ preA,Dψ ` ϕq` “ 0 q.e. on ppDczAq X V qc, we have EpeA,Dψ, eA,Dψq “

EpeA,Dψ, preA,Dψ ` ϕq`q and therefore

0 ď EppeA,Dψ ` ϕq` ´ eA,Dψ, peA,Dψ ` ϕq` ´ eA,Dψq

“ EppeA,Dψ ` ϕq`, peA,Dψ ` ϕq`q ´ 2EppeA,Dψ ` ϕq`, eA,Dψq ` EpeA,Dψ, eA,Dψq

“ EppeA,Dψ ` ϕq`, peA,Dψ ` ϕq`q ´ EpeA,Dψ, eA,Dψq

ď EpeA,Dψ ` ϕ, eA,Dψ ` ϕq ´ EpeA,Dψ, eA,Dψq (by Markov property).

“ Epϕ, ϕq ` 2EpeA,Dψ, ϕq “ Epϕ, ϕq ` 2EpeA,D, ϕq. (by strong locality)

By replacing ϕ with tϕ and letting t Ó 0, we obtain

EpeA,D, ϕq ě 0, for all ϕ ď 0, ϕ P CcpX q X F such that supprϕs Ă Ac. (3.20)

It follows that there exists a Radon measure λ0A,D on Ac such that for all ϕ P FXCcpX q

with supprϕs Ă Ac, we have

Epϕ, eA,Dq “ ´

ż

Ac

ϕ dλ0A,D. (3.21)

Furthermore by strong locality of pE ,Fq and E-harmonicity of eA,D on DczA and the
compactness of BD, we have

λ0A,DpAc
q “ λ0A,DpBDq ă 8. (3.22)

We consider λ0A,D is a finite Borel measure on X by setting λ0A,Dp¨q :“ λ0A,Dp¨ X Acq.

As before, we can consider λ1A,D as a Borel measure on X such that

λ1A,DpX q “ λ1A,DpBAq ă 8. (3.23)

Now let ϕ P F XCcpX q and let ψ P F XCcpX q satisfy ψ
ˇ

ˇ

U
“ 1 for some neighborhood

U of A, 0 ď ψ ď 1 on X and supprψs Ă B. Then

Epϕ, eA,Dq “ Epϕ ´ ϕψ, eA,Dq ` Epϕψ, eA,Dq

“ ´

ż

BB

pϕ ´ ϕψq dλ0A,D `

ż

BA

ϕψ dλ1A,D

“ ´

ż

BB

ϕ dλ0A,D `

ż

BA

ϕ dλ1A,D (by (3.21),(3.22), (3.17),(3.23)). (3.24)
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Also by [FOT, Theorem 4.4.3-(i),(ii) and Lemma 2.2.3], λ0A,D, λ
1
A,D charge no set

of zero capacity. Finally, for any u P Fe X L8pX ,mq, by [FOT, Theorem 2.1.7
and Corollary 1.6.3], there exists tununPN Ă F X CcpX q with supX |unp¨q| ď ∥u∥L8 ,
un Ñ ru q.e. on X and limnÑ8 Epu ´ un, u ´ unq “ 0. This along with (3.24) applied
to the sequence tunu, λ0A,DpBBq ă 8, λ1A,DpBAq ă 8 and the dominated convergence
theorem implies the desired equality (3.18).

We collect various useful estimates on the Green function from [BCM].

Lemma 3.8. Let pX , d,m, E ,Fq be a MMD space that satisfies the elliptic Harnack in-
equality. Let D Ă X be a non-empty open subset such that the Dirichlet form pED,F0pDqq

on L2pD;m|Dq corresponding to the part process on D is transient.

(a) If D ‰ X , there exist C1, A0 P p1,8q such that for all x P D, 0 ă R ď δDpxq{A0 we
have

sup
yPSpx,rq

gDpx, yq ď C1 inf
yPSpx,rq

gDpx, yq, gDpx, rq ď CapDpBpx, rqq
´1

ď C1gDpx, rq.

(3.25)
Furthermore, there exist θ, C1 P p0, 1q such that

gDpx,Rq ď gDpx, rq ď C2

ˆ

R

r

˙θ

gDpx,Rq, for all x P D, 0 ă r ă R ď δDpxq{A1.

(3.26)

(b) There exist A0, C0 P p1,8q such that for all y P D, 0 ă R ă A´1
0 δDpyq, we have

C´1
0

gDpx, yq

gDpy,Rq
ď PxrσBpy,Rq

ă σDcs ď C0
gDpx, yq

gDpy,Rq
for E-q.e. x P DzBpy,Rq. (3.27)

If pX , d,m, E ,Fq and the corresponding diffusion satisfy Assumption 2.14, then (3.27)
holds for all x P DzBpy,Rq.

Proof. (a) The estimate (3.25) follows from [BCM, Lemma 5.10 and Proposition 5.7]
and (3.26) follows from [BCM, Corollary 5.15] and maximum principle (Proposition
3.1(v)).

(b) By Lemma 2.23(a), we assume that pX , dq is K-relatively ball connected for some
K P p1,8q. Let A1 P p1,8q be as given in (a) By [BCM, Lemma 5.10] and (a), there
exist A1 P pK,8q, C1 P p1,8q such that

gDpy,Rq ď CapDpBpy,Rqq
´1

ď C1gDpy,Rq, gDpy,Rq ď gDpy, zq ď C1gDpy,Rq

(3.28)
for all y P D, 0 ă R ă A´1

1 δDpyq. Let y P D, 0 ă R ă A´1
1 δDpyq, ν denote the

equilibrium measure on BBpy,Rq corresponding to CapDpBpy,Rqq.
Case 1, dpx, yq ą KR: In this case, gDpx, ¨q is harmonic on Bpy, dpx, yqq and hence
by (2.19) and (2.18), there exists C2 ą 1 such that

C´1
2 gDpx, yq ď gDpx, zq ď C2gDpx, yq for all z P BBpy,Rq. (3.29)
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Therefore for q.e. x P DzBpy,KRq, 0 ă R ă A´1
1 δDpyq and by [FOT, Theorem 4.3.3]

PxrσBpy,Rq
ă σDcs “

ż

BBpy,Rq

gDpx, zq νpdyq
(3.29)

ď C2gDpx, yqCapDpBpy,Rqq

(3.28)

ď C2
gDpx, yq

gDpy,Rq
, (3.30)

PxrσBpy,Rq
ă σDcs “

ż

BBpy,Rq

gDpx, zq νpdyq
(3.29)

ě C´1
2 gDpx, yqCapDpBpy,Rqq

(3.28)

ě C´1
2 C´1

1

gDpx, yq

gDpy,Rq
. (3.31)

Case 2, R ď dpx, yq ď KR: For q.e. x P D such that R ď dpx, yq ď KR with
0 ă R ă A´1

1 δDpyq and by [FOT, Theorem 4.3.3]

PxrσBpy,Rq
ă σDcs ě PxrσBpy,R{p2Kqq ă σDcs

(3.31)

ě C´1
2 C´1

1

gDpx, yq

gDpy,R{p2Kqq

(3.26)

ě C´1
2 C´1

1 c1p2Kq
´θ gDpx, yq

gDpy,Rq
, (3.32)

PxrσBpy,Rq
ă σDcs ď 1

(3.26)

ď c´1
1 Kθ gDpx, yq

gDpy,Rq
. (3.33)

By (3.30), (3.31), (3.32), and (3.33), we obtain (3.27).

If if the MMD space pX , d,m, E ,Fq and the associated diffusion X satisfies Assump-
tion 2.14, then by Lemma 2.28(b) we obtain (3.27) for all x P DzBpy,Rq.

3.2 Boundary Harnack principle

In this work, we need to understand the behavior of Green function near the boundary of
a uniform domain. The following scale-invariant boundary Harnack principle is useful to
describe the behavior of Green function near the boundary of a uniform domain. Boundary
Harnack principle has been obtained in increasing generality over a long period of time
[Kem, Anc78, Dah, Wu, JK, Aik01, Lie15, BM18].

Definition 3.9. Let pX , d,m, E ,Fq be an MMD space and let U Ă X be a proper domain.
Then we say that U satisfies the boundary Harnack principle there exist A0, A1, C1 P p1,8q

such that for all ξ P BU , for all 0 ă r ă diampU, dq{A1 and any two non-negative
functions u, v that are harmonic on U X Bpξ, A0rq with Dirichlet boundary condition
along BU X Bpξ, A0rq, we have

ess sup
xPUXBpξ,rq

upxq

vpxq
ď C1 ess inf

xPUXBpξ,rq

upxq

vpxq
.

A standard consequence of the boundary Harnack principle is the following oscilla-
tion lemma and follows from [Aik01, Proof of Theorem 2]. It is an analogue of Moser’s
oscillation lemma for the elliptic Harnack inequality [Mos, §5] and has a similar proof.
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Lemma 3.10. Let pX , d,m, E ,Fq be an MMD space and let U Ă X be a proper domain
that satisfies the boundary Harnack principle. Then there exist A0, A1, C0 P p1,8q, γ ą 0
such that for all ξ P BU , for all 0 ă r ă R ă diampU, dq{A1 and any two non-negative
functions u, v that are harmonic on UXBpξ, A0Rq with Dirichlet boundary condition along
BU X Bpξ, A0Rq, we have

oscUXBpξ,rq

u

v
ď C0

´ r

R

¯γ

oscUXBpξ,Rq

u

v
.

Another important consequence of the boundary Harnack principle is the Carleson
estimate. The proof is a variant of [Aik08, Proof of Theorem 2] where we use estimates
on Green function from [BM18, BCM] instead of known estimates of the Euclidean space.
The basic idea is that Carleson estimate for one harmonic function with Dirichlet bound-
ary condition (say, the Green function at a suitably chosen point) along with boundary
Harnack principle implies Carleson estimate in general. The Carleson estimate for Green
function can be obtained using the maximum principle and comparison estimates for the
Green function obtained in [BM18, BCM]. It follows from a modification of the argument
in [GyS, Proof of (4.28)].

Proposition 3.11 (Carleson estimate). Let pX , d,m, E ,Fq be an MMD space that sat-
isfies the elliptic Harnack inequality. Let U Ă X be a uniform domain that satisfies the
boundary Harnack principle. Then there exist A0, A1, C0 P p1,8q such that for all ξ P BU ,
for all 0 ă r ă R ă diampU, dq{A1 and any non-negative function u that is harmonic and
continuous on U X Bpξ, A0Rq with Dirichlet boundary condition along BU X Bpξ, A0Rq,
we have

sup
xPBpξ,Rq

upxq ď CupξR{2q.

Proof. Let u be a harmonic function as given in the statement of the proposition. Let us
choose A0, A1, C1 as the constants in Definition 3.9.

First, we note that there exists C2, A3 P p1,8q, A4 ą A1 such that

sup
UXBpξ,Rq

gUXBpξ,A3rqpξ2A0R, ¨q ď C2gUXBpξ,A3rqpξ2A0R, ξR{2q, (3.34)

for all ξ P BU, 0 ă R ă A´1
4 diampU, dq. This follows from the chaining using elliptic

Harnack inequality by a similar argument as given in the proof of Lemma 2.23(b), the
maximum principle (Proposition 3.1) and comparison of Green functions in [BCM, Corol-
lary 5.8].

Then by the boundary Harnack principle (Definition 3.9), we have

sup
Bpξ,Rq

up¨q

gUXBpξ,A3rqpξ2A0R, ¨q
ď C1

upξR{2q

gUXBpξ,A3rqpξ2A0R, ξR{2q
, (3.35)

for all ξ P BU, 0 ă R ă A´1
4 diampU, dq. Therefore by (3.34) and (3.35), we conclude

that for all ξ P BU, 0 ă R ă A´1
4 diampU, dq and for any non-negative function u that
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is harmonic and continuous on U X Bpξ, A0Rq with Dirichlet boundary condition along
BU X Bpξ, A0Rq, we have

sup
Bpξ,Rq

up¨q ď C1

upξR{2q

gUXBpξ,A3rqpξ2A0R, ξR{2q
sup

Bpξ,Rq

gUXBpξ,A3rqpξ2A0R, ¨q ď C1C2upξR{2q.

Theorem 3.12 (Boundary Harnack Principle). [BM19, Theorem 1.1] Let pX , dq be a
complete, separable, locally compact, length space, and let m be a non atomic Radon
measure on pX , dq with full support. Let pE ,Fq be a regular strongly local Dirichlet form
on L2pX ,mq. Assume that pX , d,m, E ,Fq satisfies the elliptic Harnack inequality. Let
U Ĺ X be a length uniform domain. Then there exist A0, A1, C1 P p1,8q such that for all
ξ P BU , for all 0 ă r ă diampU, dq{A1 and any two non-negative functions u, v that are
harmonic on U X Bpξ, A0rq with Dirichlet boundary condition along BU X Bpξ, A0rq, we
have

ess sup
xPUXBpξ,rq

upxq

vpxq
ď C1 ess inf

xPUXBpξ,rq

upxq

vpxq
.

If diampU, dq ă 8, the condition 0 ă r ă diampU, dq{A1 is not explicitly stated in
[BM19] but it follows from the proof there.

It turns out that the assumption that pX , dq is a length space in Theorem 3.12 is unnec-
essary. In particular, elliptic Harnack inequality implies the boundary Harnack principle
for uniform domains on any doubling metric space as shown in a work in preparation by
Aobo Chen [Che] (instead of length uniform domains considered in Theorem 3.12). In
other words, Theorem 3.12 can be generalized to uniform domains to metric spaces that
need not contain any non-constant rectifiable curves.

3.3 Näım kernel

We introduce the Näım kernel and study some of its properties. For the remainder of the
section we make the following running assumption.

Assumption 3.13. Let pX , d,m, E ,Fq be an MMD space that satisfies the elliptic Har-
nack inequality such that pX , dq satisfies the metric doubling property. Let U Ă X be a
uniform domain that satisfies the boundary Harnack principle and such that the Dirichlet
form pEU ,F0pUqq on L2pU ;m

ˇ

ˇ

U
q corresponding to the part process on U is transient.

By the result of A. Chen mentioned above, the assumption that U satisfies the bound-
ary Harnack principle is redundant but since [Che] is not yet available, we made this
additional assumption throughout this work. In the case of length uniform domains in a
length space, we can use Theorem 3.12 instead of the upcoming work [Che] to remove the
assumption concerning the boundary Harnack principle.

For x0 P U , we define ΘU
x0

: pUztx0uq ˆ Uztx0uqzpUztx0uqdiag Ñ r0,8q as

ΘU
x0

px, yq :“
gUpx, yq

gUpx0, xqgUpx0, yq
. (3.36)
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The function ΘU
x0

satisfies the following local Hölder regularity and bounds. The proofs
are variants of Moser’s oscillation inequality [Mos, §5].

Lemma 3.14. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain as
given in Assumption 3.13. There exist A,C1, C2 P p1,8q and γ ą 0 such that the following
estimates hold:

(a) For any η P BU, z P Uztx0u, 0 ă r ă R ă p2Aq´1 pdpη, x0q ^ dpz, x0q ^ δUpzqq

osc
pBpη,rqXpUztx0uqqˆpBpz,rqXpUztx0uqq

ΘU
x0

ď A
´ r

R

¯γ

osc
pBpη,RqXpUztx0uqqˆpBpz,RqXpUztx0uqq

ΘU
x0
.

(b) For η, ξ P BU with ξ ‰ η and for all 0 ă r ă R ă p2Aq´1 pdpη, x0q ^ dpη, ξq ^ dpξ, x0qq

osc
pBpη,rqXpUztx0uqqˆpBpξ,rqXpUztx0uqq

ΘU
x0

ď A
´ r

R

¯γ

osc
pBpη,RqXpUztx0uqqˆpBpξ,RqXpUztx0uqq

ΘU
x0
.

(c) For any η P BU, z P Uztx0u, 0 ă R ă p2Aq´1 pdpη, x0q ^ dpz, x0q ^ δUpzqq,

sup
pBpη,RqXpUztx0uqqˆpBpz,RqXpUztx0uqq

ΘU
x0

ď C1

gUpz, ηR{2q

gUpx0, zqgUpx0, ηR{2q
.

(d) For η, ξ P BU with ξ ‰ η and for all 0 ă R ă p2Aq´1 pdpη, x0q ^ dpη, ξq ^ dpξ, x0qq

sup
pBpη,RqXpUztx0uqqˆpBpξ,RqXpUztx0uqq

ΘU
x0

ď C2

gUpηR{2, ξR{2q

gUpx0, ηR{2qgUpx0, ξR{2q
,

and

inf
pBpη,RqXpUztx0uqqˆpBpξ,RqXpUztx0uqq

ΘU
x0

ě C´1
2

gUpηR{2, ξR{2q

gUpx0, ηR{2qgUpx0, ξR{2q
.

(e) For any x0, x P U, ξ P BU such that 0 ă r ă R ă A´1dpξ, x0q ď A´1dpξ, xq, we have

sup
yPUXBpξ,rq

ΘU
x0

px, yq ď CΘU
x0

px, ξR{2q, inf
yPUXBpξ,rq

ΘU
x0

px, yq ě CΘU
x0

px, ξR{2q, (3.37)

and
osc

yPUXBpξ,rq
ΘU

x0
px, yq ď C

´ r

R

¯γ

ΘU
x0

px, ξR{2q. (3.38)

Proof. Let A P p1,8q be maximum of the constants δ´1 in EHI, A0 and A1 in Definition
3.9. Let us denote the corresponding constants C and C1 by CEHI and CBHP respectively.
We will use EHI and the boundary Harnack principle several times in the proof with the
above constants A,CEHI, CBHP.
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(a) For any 0 ă r ă p2Aq´1 pdpη, x0q ^ dpz, x0q ^ δUpzqq, define

Mprq :“ sup
pBpη,rqXpUztx0uqqˆpBpz,rqXpUztx0uqq

ΘU
x0
,

mprq :“ inf
pBpη,rqXpUztx0uqqˆpBpz,rqXpUztx0uqq

ΘU
x0
.

For any px1, y1q, px2, y2q P pBpη,R{Aq X pUztx0uqqˆpBpz, R{Aq X pUztx0uqq, we have

MpRqgUpx0, x1qgUpx0, y1q ´ gUpx1, y1q

gUpx0, x1qgUpx0, y1q

ď CBHP
MpRqgUpx0, x2qgUpx0, y1q ´ gUpx2, y1q

gUpx0, x2qgUpx0, y1q

ď CBHPC
2
EHI

MpRqgUpx0, x2qgUpx0, y2q ´ gUpx1, y2q

gUpx0, x2qgUpx0, y2q
. (3.39)

In the first line above, we apply boundary Harnack principle to the functions
MpRqgUpx0, ¨qgUpx0, y1q ´ gUp¨, y1q, gUpx0, ¨qgUpx0, y1q P F0

locpU,Bpη, Arq X Uq that
are non-negative and harmonic on Bpξ, Arq X U . In the last line, we use the el-
liptic Harnack inequality to MpRqgUpx0, x2qgUpx0, ¨q ´ gUpx2, ¨q, gUpx0, x2qgUpx0, ¨q P

FlocpBpz,Rqq that are non-negative and harmonic on Bpz,Rq

Taking supremum over px1, y1q and infimum over px2, y2q in (3.39), we obtain

MpRq ´ mpR{Aq ď CBHPC
2
EHI pMpRq ´ MpR{Aqq . (3.40)

By considering px, yq ÞÑ ΘU
x0

´ mprq “
gU px,yq´mpRqgU px0,xqgU px0,yq

gU px0,xqgU px0,yq
and using a similar

argument as the proof of (3.40), we obtain

MpR{Aq ´ mpRq ď CBHPC
2
EHI pmpR{Aq ´ mpRqq . (3.41)

Combining (3.40) and (3.41), we obtain

MpR{Aq ´ mpR{Aq ď
CBHPC

2
EHI ´ 1

CBHPC2
EHI ` 1

pMpRq ´ mpRqq .

Iterating the above estimate, we obtain (a) with γ “ plogAq´1 log
CBHPC

2
EHI`1

CBHPC
2
EHI´1

.

(b) For any 0 ă r ă p2Aq´1 pdpη, x0q ^ dpξ, x0q ^ dpη, ξqq, define

Mprq :“ sup
pBpη,rqXpUztx0uqqˆpBpξ,rqXpUztx0uqq

ΘU
x0
,

mprq :“ inf
pBpη,rqXpUztx0uqqˆpBpξ,rqXpUztx0uqq

ΘU
x0
.
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For any px1, y1q, px2, y2q P pBpη,R{Aq X pUztx0uqqˆpBpξ, R{Aq X pUztx0uqq, we have

MpRqgUpx0, x1qgUpx0, y1q ´ gUpx1, y1q

gUpx0, x1qgUpx0, y1q

ď CBHP
MpRqgUpx0, x2qgUpx0, y1q ´ gUpx2, y1q

gUpx0, x2qgUpx0, y1q

ď C2
BHP

MpRqgUpx0, x2qgUpx0, y2q ´ gUpx1, y2q

gUpx0, x2qgUpx0, y2q
. (3.42)

In the first line above, we apply boundary Harnack principle to the functions
MpRqgUpx0, ¨qgUpx0, y1q ´ gUp¨, y1q, gUpx0, ¨qgUpx0, y1q P F0

locpU,Bpη, Arq X Uq that
are non-negative and harmonic on Bpξ, Arq X U . In the last line, we use bound-
ary Harnack principle to MpRqgUpx0, x2qgUpx0, ¨q ´ gUpx2, ¨q, gUpx0, x2qgUpx0, ¨q P

F0
locpU,U X Bpξ, Rqq that are non-negative and harmonic on U X Bpξ, Rq

Taking supremum over px1, y1q and infimum over px2, y2q in (3.39), we obtain

MpRq ´ mpR{Aq ď C2
BHP pMpRq ´ MpR{Aqq . (3.43)

By considering px, yq ÞÑ ΘU
x0

´ mprq “
gU px,yq´mpRqgU px0,xqgU px0,yq

gU px0,xqgU px0,yq
and using a similar

argument as the proof of (3.40), we obtain

MpR{Aq ´ mpRq ď C2
BHP pmpR{Aq ´ mpRqq . (3.44)

Combining (3.40) and (3.41), we obtain

MpR{Aq ´ mpR{Aq ď
C2

BHP ´ 1

C2
BHP ` 1

pMpRq ´ mpRqq .

Iterating the above estimate, we obtain (a) with γ “ plogAq´1 log
C2

BHP`1

C2
BHP´1

.

(c) Let px, yq P pBpη,Rq X pUztx0uqq ˆ pBpz,Rq X pUztx0uqq, where η, z, R are as given
in the statement of the lemma. Then by applying the boundary Harnack principle for
the harmonic functions gUp¨, yq and gUpx0, ¨q on BUpη, ARq and by elliptic Harnack
inequality for the harmonic functions gUpηR{2, ¨q and gUpx0, ¨q on Bpz, ARq, we obtain

ΘU
x0

px, yq ď CBHP

gUpηR{2, yq

gUpx0, ηR{2qgUpx0, yq
ď CBHPC

2
EHI

gUpηR{2, zq

gUpx0, ηR{2qgUpx0, zq
.

(d) Let px, yq P pBpη,Rq X pUztx0uqqˆpBpξ, Rq X pUztx0uqq, where η, ξ, R as given. Then
by using the boundary Harnack principle for the harmonic functions gUp¨, yq and
gUpx0, ¨q on BUpη, ARq and for the harmonic functions gUpηR{2, ¨q and gUpx0, ¨q on
BUpξ, ARq, we deduce

ΘU
x0

px, yq ď CBHP

gUpηR{2, yq

gUpx0, ηR{2qgUpx0, yq
ď C2

BHP

gUpηR{2, ξR{2q

gUpx0, ηR{2qgUpx0, ξR{2q
,

and

ΘU
x0

px, yq ě C´1
BHP

gUpηR{2, yq

gUpx0, ηR{2qgUpx0, yq
ě C´2

BHP

gUpηR{2, ξR{2q

gUpx0, ηR{2qgUpx0, ξR{2q
.
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(e) By the boundary Harnack principle applied to the harmonic functions gUpx, ¨q and
gUpx0, xqgUpx0, ¨q on Bpξ, ARq X U we obtain (3.37). By Lemma 3.10, we obtain

osc
yPUXBpξ,rq

ΘU
x0

px, yq ď C0

´ r

R

¯γ

osc
yPUXBpξ,rq

ΘU
x0

px, yq ď C0

´ r

R

¯γ

sup
yPUXBpξ,rq

ΘU
x0

px, yq.

The above estimate along with (3.37) implies (3.38).

Thanks to the Hölder regularity estimates obtained in Lemma 3.14, we can extended
ΘU

x0
to pUztx0uq ˆ pUztx0uqzpUztx0uqdiag as shown below.

Proposition 3.15. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform do-
main as given in Assumption 3.13. For any x0 P U , the function ΘU

x0
p¨, ¨q defined

in (3.36) admits a continuous extension, which is again denoted by ΘU
x0

: pUztx0uq ˆ

pUztx0uqzpUztx0uqdiag Ñ r0,8q. There exist C1, C2, A1 P p1,8q, c0 P p0, 1{4q, γ P p0,8q

such that the following estimates hold:

C´1
1

gUpηr, ξrq

gUpx0, ηrqgUpx0, ξrq
ď ΘU

x0
pη, ξq ď C1

gUpηr, ξrq

gUpx0, ηrqgUpx0, ξrq
, (3.45)

where r “ c0pdpx0, ηq ^ dpx0, ξq ^ dpη, ξqq;

ˇ

ˇΘU
x0

pξ, ηq ´ ΘU
x0

px, yq
ˇ

ˇ ď C2Θ
U
x0

pξ, ηq

ˆ

dpη, xqγ

Rγ
`
dpξ, yqγ

Rγ

˙

(3.46)

for all η, ξ P BU with η ‰ ξ, 0 ă R ă p2Aq´1 pdpη, x0q ^ dpη, ξq ^ dpξ, x0qq , x P

U X Bpη,Rq, y P U X Bpξ, Rq. Furthermore ΘU
x0

p¨, ¨q is symmetric in pUztx0uq ˆ

pUztx0uqzpUztx0uqdiag.

Proof. The existence of a continuous extension to pUztx0uq ˆ pUztx0uqzpUztx0uqdiag of
the function defined in (3.36) follows from Lemma 3.14. More precisely, the existence
of continuous extension at all points in BU ˆ pUztx0uq and pUztx0uq Y BU follows from
Lemma 3.14(a,c) along with the symmetry of Green function. On the other hand, the
existence of continuous extension at all points in pBU ˆ BUqzpBUqdiag and follows from
Lemma 3.14(b,d).

The estimates (3.45) and (3.46) are direct consequences of Lemma 3.14(b,d). The
symmetry of ΘU

x0
follows from the symmetry of the Green function and the continuity of

ΘU
x0
.

Definition 3.16. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain as
given in Assumption 3.13. The function ΘU

x0
: pUztx0uq ˆ pUztx0uqzpUztx0uqdiag Ñ r0,8q

defined as the continuous extension of (3.36) is called the Näım kernel of the domain U
with base point x0 P U .

This function is essentially same as the one introduced by L. Näım in [Näı] where she
extends to function considered in (3.36) to the Martin boundary instead of the topological
boundary as considered above. Another difference from [Näı] is the use of Martin topology
and fine topology of H. Cartan instead of the topology arising from the metric.
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3.4 Martin kernel

We recall the definition of the closely related Martin kernel introduced by R. S. Martin
[Mar].

Definition 3.17. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain as
given in Assumption 3.13. We define the Martin kernel KU

x0
p¨, ¨q : U ˆpUztx0uqzUdiag Ñ

r0,8q as

Kx0px, ξq :“

#

gU px,ξq

gU px0,ξq
if x, ξ P U, x ‰ ξ

limyÑξ,yPU
gU px,yq

gU px0,yq
if ξ P BU .

(3.47)

The above limit exists in the second case due to the boundary Harnack principle (by
Lemma 3.10).

The following oscillation lemma is an analogue of Lemma 3.10.

Lemma 3.18. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain as
given in Assumption 3.13. There exist C,A P p1,8q and γ ą 0 such that the following
estimates hold:

(a) For any x0 P U, z P U, ξ P BU, 0 ă r ă R ă p2Aq´1pδUpzq ^ dpx0, ξqq, we have

osc
pUXBpz,rqqˆpUXBpξ,rqq

KU
x0

p¨, ¨q ď A
´ r

R

¯γ

osc
pUXBpz,RqqˆpUXBpξ,Rqq

KU
x0

p¨, ¨q (3.48)

(b) For any x0 P U, z P U, ξ P BU, 0 ă r ă R ă p2Aq´1pδUpzq ^ dpx0, ξqq, we have

sup
pUXBpz,RqqˆpUXBpξ,Rqq

KU
x0

p¨, ¨q ď CKU
x0

pz, ξR{2q.

(c) For any pη, ξq P pBUqˆpBUqzpBUqdiag, for all 0 ă r ă R ă p2Aq´1pdpξ, x0q^dpη, x0q^

dpξ, ηqq, we have

sup
xPUXBpη,Rq

osc
yPUXBpξ,rq

KU
x0

px, yq ď C
´ r

R

¯γ

KU
x0

pηR{2, ξR{2q (3.49)

Proof. We will omit the proofs (a) and (b) as it similar to that Lemma 3.10. Both
estimates follow from applying the elliptic Harnack inequality and boundary Harnack
principle to the first and second arguments respectively of the Martin kernel.

(c) By Lemma 3.10

osc
yPUXBpξ,rq

KU
x0

px, yq À

´ r

R

¯γ

osc
yPUXBpξ,Rq

KU
x0

px, yq À

´ r

R

¯γ

KU
x0

px, ξR{2q

for all x P U X Bpη,Rq. By the Carleson’s estimate (Proposition 3.11), we have

sup
xPUXBpη,Rq

KU
x0

px, ξR{2q À KU
x0

pηR{2, ξR{2q.

Combining the above two estimates, we obtain the desired result.
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Lemma 3.19. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain as
given in Assumption 3.13. For all ξ P U , the function Kx0p¨, ξq : U Ñ r0,8q belongs
to FlocpUq, harmonic in U . Furthermore Kx0p¨, ξq has Dirichlet boundary condition on
BUztξu in the following sense: for any open subset V of U such that ξ R V , Kx0p¨, ξq P

F0
locpU, V q.

Proof. Let yn P U be a sequence with limnÑ8 yn “ ξ. Define hn : Uztynu Ñ r0,8q as
hn :“ KU

x0
p¨, ynq for all n ě 1.

If K Ă U is compact then K Ă Uztynu for all but finitely many n. By Lemma
3.18(a)-(b), the sequence hn converges uniformly on compact subsets of U and is bounded
on compact sets. Therefore by Proposition 3.1(iv) and Lemma 2.19, the function Kp¨, ξq :
U Ñ r0,8q belongs to FlocpUq and is harmonic in U .

Let V be an open subset of U such that ξ R V and let A Ă V be relatively compact in
U with distpA,UzV q ą 0. Then by Lemma 3.18(c), hn converges uniformly to KU

x0
p¨, ξq

on A. Therefore by Lemma 2.19(b), KU
x0

p¨, ξq P F0
locpU, V q.

Next, we relate Martin and Näım kernels. Due to Lemma 3.19 and the continuity of
ΘU

x0
, the Näım kernel can be expressed in terms of the Martin kernel as

ΘU
x0

px, yq “

$

&

%

KU
x0

px,yq

gU px0,xq
, x P U,

limzÑx,zPU
KU

x0
pz,yq

gU px0,zq
, x P BU.

(3.50)

The above limit can be shown using to the Boundary Harnack principle using Lemmas 3.19
and Lemma 3.10. We chose the approach based on Lemma 3.14 because the symmetry
of ΘU

x0
and the joint continuity are immediate using our approach while these properties

need to be shown if we use (3.50). The equality (3.50) is closer to the original approach
to define Naïım kernel as the extension to boundary is done for one argument at a time
in [Näı].

It is well known that any unbounded domain satisfying the boundary Harnack principle
has a unique Martin kernel point at infinity. Following [GyS, Chapter 4], we call the
harmonic profile of U [Anc78, Théorème 6.1, Lemme 6.2] as the Martin kernel point at
infinity. We recall the short argument to prove its uniqueness.

Lemma 3.20. Let pX , d,m, E ,Fq be an MMD space and let U be a unbounded domain
satisfying Assumption 3.13. Let h1, h2 : U Ñ p0,8q be two continuous functions such
that h1, h2 P F0

locpU,Uq and h1, h2 are harmonic in U . Then there exists c ą 0 such that
h1pxq “ ch2pxq for all x P U .

Proof. Let A P p1,8q be the largest among constants A0, A1 in Definition 3.9 and Lemma
3.10. Let C be largest among the constants C1, C0 in Definition 3.9 and Lemma 3.10
respectively. Let γ be as given in Lemma 3.10.

Let ξ P BU, x0 P U . For all R ą Adpξ, x0q, by Definition 3.9 we have

sup
Bpx,RqXU

h1p¨q

h2p¨q
ď C

h1px0q

h2px0q
.
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Letting R Ñ 8, we obtain

osc
U
h ď sup

U
h ď C

h1px0q

h2px0q
.

For any 0 ă dpξ, x0q ă r ă R ă 8, we have

osc
Bpx,rqXU

h1p¨q

h2p¨q
ď C

´ r

R

¯γ

osc
Bpx,RqXU

h1p¨q

h2p¨q
ď C

´ r

R

¯γ

sup
U

h1p¨q

h2p¨q
ď C2

´ r

R

¯γ h1px0q

h2px0q
.

Let R Ñ 8, we obtain oscBpx,rqXU
h1p¨q

h2p¨q
“ 0 for any r P pdpx0, ξq,8q. Letting r Ñ 8, we

obtain oscU
h1p¨q

h2p¨q
“ 0.

We recall a standard construction of the harmonic profile [GyS, Chapter 4].

Proposition 3.21 (Harmonic profile). Let pX , d,m, E ,Fq be an MMD space and let U
be an unbounded domain satisfying Assumption 3.13. For any x0 P U and a sequence
pynqně1 in U such that limnÑ8 dpx0, ynq “ 8, Then the sequence KU

x0
p¨, ynq : Uztynu Ñ 8

converges to a continuous function hUx0
: U Ñ p0,8q uniformly on bounded subsets of U

such that hUx0
P F0

locpU,Uq, hx0
U px0q “ 1, hUx0

p¨q is bounded on bounded subsets of U and
is harmonic on U . Furthermore, the limit hUx0

p¨q depends only on U, x0 and not on the
sequence pynqně1.

Proof. Let A P p1,8q be the largest among constants A0, A1 in Definition 3.9 and Lemma
3.10. Let C be largest among the constants C1, C0 in Definition 3.9 and Lemma 3.10
respectively.

Let ξ P BU and let Adpx0, ξq ă r ă R. Then for any n, k P N such that AR ă

dpξ, ynq ^ dpξ, ykq, by Lemma 3.10 and Definition 3.9 we estimate

sup
UXBpξ,rq

ˇ

ˇ

ˇ

ˇ

KU
x0

p¨, ynq

KU
x0

p¨, ykq
´ 1

ˇ

ˇ

ˇ

ˇ

“ sup
UXBpξ,rq

ˇ

ˇ

ˇ

ˇ

KU
x0

p¨, ynq

KU
x0

p¨, ykq
´
KU

x0
px0, ynq

KU
x0

px0, ykq

ˇ

ˇ

ˇ

ˇ

ď osc
UXBpξ,rq

KU
x0

p¨, ynq

KU
x0

p¨, ykq

ď C
´ r

R

¯γ

osc
UXBpξ,rq

KU
x0

p¨, ynq

KU
x0

p¨, ykq

ď C
´ r

R

¯γ

sup
UXBpξ,rq

KU
x0

p¨, ynq

KU
x0

p¨, ykq

ď C2
´ r

R

¯γ KU
x0

px0, ynq

KU
x0

px0, ykq
“ C2

´ r

R

¯γ

By letting R “ p2Aq´1pdpξ, ynq ^dpξ, ykqq, we obtain that for all n,m such that dpξ, ynq ^

dpξ, ykq ą 2A2dpξ, x0q, we have

sup
UXBpξ,rq

ˇ

ˇ

ˇ

ˇ

KU
x0

p¨, ynq

KU
x0

p¨, ykq
´ 1

ˇ

ˇ

ˇ

ˇ

ď C2
p2Aq

γrγpdpξ, ynq ^ dpξ, ykqq
´γ. (3.51)

By Carelson’s estimate (Proposition 3.11) for any ξ P BU, r ą 0, there exist C1 ą 0, N P N
such that

sup
UXBpξ,rq

KU
x0

p¨, ynq À KU
x0

pξr{2, ynq for all n ě N. (3.52)
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By Harnack chaining ([BM19, p. 391]), there exist N P N, C2 “ C2px0, ξ, rq such that

KU
x0

pξr{2, ynq ď C2 for all n ě N . (3.53)

Combining (3.51), (3.52), and (3.53), we obtain

lim
n,kÑ8

sup
UXBpξ,rq

ˇ

ˇKU
x0

p¨, ynq ´ KU
x0

p¨, ykq
ˇ

ˇ ď lim
n,kÑ8

C1C2C
2
p2Aq

γrγpdpξ, ynq ^ dpξ, ykqq
´γ

“ 0.

Since r ą 0 is arbitrary, by letting r Ñ 8, we conclude that the sequence KU
x0

p¨, ynq, n P N
converges uniformly in bounded subsets of U , say hUx0

: U Ñ p0,8q. By the continuity
of KU

x0
p¨, ynq, we conclude that hUx0

is continuous. The estimate (3.52) implies that hUx0
is

bounded on bounded subsets of U . By Lemma 2.19, we obtain that hUx0
P F0

locpU,Uq and
is harmonic in U .

The assertion that the limit hUx0
p¨q depends only on U, x0 follows from hUx0

px0q “ 1 and
Lemma 3.20.

4 Estimates for harmonic and elliptic measures

To goal of this section is to estimate the harmonic measure of balls on the boundary of
a uniform domain using ratio of Green functions. We restrict to the class of uniform
domains that satisfy the following capacity density condition.

4.1 The Capacity density condition

This is a slight variant of similar conditions considered in [Anc86, AH].

Definition 4.1. Let pX , d,m, E ,Fq be a MMD space satisfying the elliptic Harnack in-
equality. Let K P p1,8q be such that pX , dq is K-relatively ball connected. We say
that a uniform domain U satisfies the capacity density condition pCDCq if there exist
A0 P p8K,8q, A1, C P p1,8q such that for all ξ P BU, 0 ă r ă diampU, dq{A1 we have

CapBpξ,A0RqpBpξ, Rqq ď C CapBpξ,A0RqpBpξ, RqzUq, pCDCq

We note that the capacity density condition implies transience.

Remark 4.2. Let D be a domain that satisfies the capacity density condition pCDCq.
Then by [FOT, Theorem 4.4.3(ii)], Dc is non-polar. Hence by [BCM, Proposition 2.1
and Theorem 4.8], the associated Dirichlet form pED,F0pDqq on L2pD;m|Dq of the part
process XD is transient.

Due to remark 2.17, it would be convenient to assume the stronger sub-Gaussian heat
kernel estimate HKEpΨq instead of the elliptic Harnack inequality EHI. Therefore, we
make the following assumption.
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Assumption 4.3. Let pX , d,m, E ,Fq be a MMD space such that the corresponding
diffusion satisfies Assumption 2.14. In particular by Remark 2.17 and Lemma 2.23(a),
pX , dq is K-relatively ball connected for some K P p1,8q. Let U be a uniform domain
satisfying the capacity density condition pCDCq and the boundary Harnack principle. We
recall by Remark 4.2 that the Dirichlet form pEU ,F0pUqq on L2pU ;m

ˇ

ˇ

U
q corresponding

to the part process on U is transient.

Ancona shows that the capacity density condition in an Euclidean domain is equivalent
to an estimate on the harmonic measure called the uniform ∆-regularity [Anc86, Definition
2 and Lemma 3]. Such a result can be extended to an arbitrary domain on any MMD
space satisfying the elliptic Harnack inequality using the estimates on hitting probability
from [BM18, BCM]. More precisely, we have the following relationships between hitting
probabilities and the capacity density condition. Part (b) of the lemma below is the
justification behind our requirement A0 P p8K,8q in Definition 4.1.

Lemma 4.4. Let pX , d,m, E ,Fq be an MMD space that satisfies the elliptic Harnack
inequality.

(a) Suppose there exist A0, A1 P p1,8q and γ P p0, 1q such that

ωUXBpξ,A0Rq
x pUXSpξ, A0Rqq ď 1´γ for q.e. x P Bpξ, Rq and 0 ă R ă diampU, dq{A1.

(4.1)
Then for all 0 ă R ă diampU, dq{A1, ξ P BU , we have

CapBpξ,A0RqpBpξ, Rqq ď γ´2CapBpξ,A0RqpBpξ, RqzUq. (4.2)

(b) Let K P p1,8q be such that pX , dq is K-relatively ball connected. Suppose there exist
A0 P p8K,8q, A1, C P p1,8q such that for all ξ P BU, 0 ă R ă diampU, dq{A1, we
have

CapBpξ,A0RqpBpξ, Rqq ď C CapBpξ,A0RqpBpξ, Rq X U c
q. (4.3)

Then for any xA0 P p1,8q, there exist xA1, pC P p1,8q such that for all ξ P BU, 0 ă R ă

diampU, dq{xA1, we have

CapBpξ,xA0Rq
pBpξ, Rqq ď pC CapBpξ,xA0Rq

pBpξ, Rq X U c
q. (4.4)

(c) Let K P p1,8q be such that pX , dq is K-relatively ball connected. Suppose there exist
A0 P p8K,8q, A1, C P p1,8q such that for all ξ P BU, 0 ă R ă diampU, dq{A1, we
have

CapBpξ,A0RqpBpξ, Rqq ď C CapBpξ,A0RqpBpξ, RqzUq, (4.5)

then there exist xA0,xA1 P p1,8q, γ P p0, 1q such that

ωUXBpξ,xA0Rq
x pU X Spξ,xA0Rqq ď 1 ´ γ (4.6)

for q.e. x P Bpξ, Rq and 0 ă R ă diampU, dq{xA1. If in addition pX , d,m, E ,Fq

satisfies Assumption 2.14, then (4.6) holds for all x P Bpξ, Rq.
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Proof. (a) Let e :“ eBpξ,RqzU,Bpξ,A0Rq denote the equilibrium potential for CapBpξ,A0RqpBpξ, RqzUq.
Then by [FOT, Theorem 4.3.3], for q.e. x P Bpξ, Rq X U , we have

repxq “ Px

`

σBpξ,RqzU ă σBpξ,A0Rqc

˘

ě Px

`

σUXSpξ,A0Rq ą σUc

˘

“ 1 ´ Px

`

σUXSpξ,A0Rq ă σUc

˘ (4.1)

ě γ.

Therefore γ´1
re ě 1 q.e. on Bpξ, A´1

0 rq and CapBpξ,A0RqpBpξ, Rqq ď Epγ´1e, γ´1eq “

γ´2CapBpξ,A0RqpBpξ, RqzUq.

(b) By [BCM, Lemma 5.22] and domain monotonicity of capacity, in order to show (4.4),

we may and will assume that xA0 ą A0. By [BCM, Lemma 5.18] there exist C2 ą

1,xA1 ě A1 such that for all ξ P BU, 0 ă R ă diampU, dq{xA1

gBpξ,A0Rqpy, zq ď gBpξ,xA0Rq
py, zq ď C1gBpξ,A0Rqpy, zq for all y, z P Bpξ, Rq. (4.7)

Let e1, ν be the equilibrium potential and measure for CapBpξ,xA1Rq
pBpξ, RqzDq such

that CapBpξ,xA1rq
pBpξ, RqzDq “ Epe1, e1q and e1p¨q “

ş

gBpξ,xA1rq
p¨, zqνpdzq, where ξ, R

satisfy the conditions associated with (4.7). Define

ep¨q :“

ż

gBpξ,A1rqp¨, zqνpdzq.

By (4.7), for q.e. y P Bpξ, RqzD, ξ P BD, we have

epyq “

ż

gBpξ,A1Rqpy, zqνpdzq ě C´1
1

ż

gBpξ,xA1Rq
py, zqνpdzq ě C´1

1 .

Therefore

CapBpξ,A1RqpDzBpξ, Rqq ď EpC1e, C1eq “ C2
1

ż

epzq νpdzq ď C2
1

ż

e1pzq νpdzq

“ C2
1Epe1, e1q “ C2

1 CapBpξ,xA1Rq
pBpξ, RqzDq.

The above estimate along with (4.3) and [BCM, Lemma 5.22] implies (4.4).

(c) By [BCM, Lemma 5.9], there exist xA0,xA1, C1 P p1,8q such that for all ξ P U, 0 ă

R ă diampU, dq{xA1, and for all x, y P Bpξ, Rq, we have

gBpξ,xA0rq
px, yq ě C´1

1 gBpξ,xA0rq
pξ, rq. (4.8)

By (b) and increasing xA0,xA1 if necessary, we may assume that (4.4) holds. By further

increasing xA0,xA1 if necessary and using [BCM, Lemma 5.10], we may assume that

there exists C2 ą 1 such that for all ξ P BU, 0 ă R ă diampU, dq{xA1, we have

gBpξ,xA0rq
pξ, rq ď CapBpξ,xA0rq

pBpξ, rqq
´1

ď C2gBpξ,xA0rq
pξ, rq. (4.9)
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Let ξ P BU, 0 ă R ă diampU, dq{xA1 and let e :“ eBpξ,RqzU,Bpξ,xA0Rq
, ν denote the

equilibrium potential and measure respectively for CapBpξ,xA0Rq
pBpξ, RqzUq. By [FOT,

Theorem 4.3.3], for q.e. x P Bpξ, Rq X U , we have

repxq “ Px

´

σBpξ,RqzU ă σBpξ,xA0Rqc

¯

“

ż

Bpξ,RqzU

gBpξ,xA0Rqc
px, yq νpdyq

(4.8)

ě C´1gBpξ,xA0rq
pξ, rqν

´

Bpξ, RqzU
¯

“ C´1gBpξ,xA0rq
pξ, rqCapBpξ,xA0Rq

pBpξ, Rq X U c
q

(4.4)

ě C´1
pC´1gBpξ,xA0rq

pξ, rqCapBpξ,xA0Rq
pBpξ, Rqq

(4.9)

ě C´1
pC´1C´1

2 . (4.10)

Setting γ “ C´1
pC´1C´1

2 P p0, 1q, we conclude

ωUXBpξ,xA0Rq
x pU X Spξ,xA0Rqq ď Px

´

σBpξ,RqzU ą σBpξ,xA0Rqc

¯ (4.10)

ď 1 ´ γ.

The final assertion under Assumption 2.14 follows from the continuity of harmonic
measure due to Lemma 2.28(b).

The estimate (4.11) in the above Lemma can be used repeatedly to obtain certain
polynomial type decay rates on the harmonic measure.

Lemma 4.5 (Uniform ∆-regularity). Let pX , d,m, E ,Fq be a MMD space and let U Ă X
be a uniform domain that satisfy Assumption 4.3.

(a) There exist C1 ą 1, A1 ą 1, δ ą 0 such that for all 0 ă r ă R ă diampU, dq{A1 and
for all ξ P BU , we have

ωUXBpξ,Rq
x pU X Spξ, Rqq ď C1

´ r

R

¯δ

, for all x P U X Bpξ, rq. (4.11)

(b) Assume in addition that U satisfies the boundary Harnack principle. Then there exist
C2, A0, A1 P p1,8q, δ ą 0 such that for all 0 ă r ă R ă diampU, dq{A1, for all
ξ P BU , and for all continuous non-negative function h : Bpξ, A0rq XU Ñ p0,8q that

is harmonic in Bpξ, A0rq with Dirichlet boundary condition on BUX

´

U X Bpξ, A0rq
¯

,

we have
hpξrq

hpξRq
ď C2

´ r

R

¯δ

. (4.12)

Proof. (a) By Lemma 4.4(a), there exist A0, A1 P p1,8q and γ P p0, 1q such that

ωUXBpξ,Rq
x pU X Spξ, Rqq ď 1 ´ γ (4.13)
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for all ξ P BU, x P Bpξ, A´1
0 Rq and 0 ă R ă diampU, dq{A1. By the strong Markov

property, for all i P N, ξ P BU, x P Bpξ, A´i
0 Rq and 0 ă R ă diampU, dq{A1

ωUXBpξ,Rq
x pU X Spξ, Rqq

ď ωUXBpξ,A´i
0 Rq

x pU X Spξ, A´i
0 Rqq sup

yPUXSpξ,A´i
0 Rq

ωUXBpξ,Rq
y pU X Spξ, Rqq

(4.13)

ď p1 ´ γq sup
yPUXSpξ,A´i`1

0 Rq

ωUXBpξ,Rq
y pU X Spξ, Rqq.

By repeatedly using the above estimate, we obtain

ωUXBpξ,Rq
x pU X Spξ, Rqq ď p1 ´ γq

i

for all i P N, ξ P BU, x P Bpξ, A´i
0 Rq and 0 ă R ă diampU, dq{A1. This implies (4.11).

(b) By the boundary Harnack principle and Proposition 3.1, it suffices to consider the
case when h is a Green function. More precisely, it suffices to show that there exist
C3, A0, A1 P p1,8q, δ ą 0 such that for all 0 ă r ă R ă diampU, dq{A1, for all ξ P BU ,
and for all x0 P U such that dpξ, x0q ą A0r, we have

gUpξr, x0q

gUpξR, x0q
ď C3

´ r

R

¯δ

. (4.14)

Let us choose A0, A1 P p1,8q such that the conclusion on (a) and the boundary
Harnack principle and Carleson’s inequality hold. For all ξ P BU, 0 ă r ă R, x0 P U
as above, we have

gUpξr, x0q “ Eξr

”

gU

´

XU
τUXBpξ,Rq

, x0

¯ı

(by Lemma 3.4(b))

ď

˜

sup
UXSpξ,Rq

gUp¨, x0q

¸

ω
UXBpξ,Rq

ξr
pU X Spξ, Rqq

À gUpξR, x0qω
UXBpξ,Rq

ξr
pU X Spξ, Rqq (by Carleson’s estimate)

À gUpξR, x0q
´ r

R

¯δ

(by (4.11)).

4.2 Two-sided bounds on harmonic measure

The following estimate of harmonic measure is the main result of this section. It is an
extension of [AH, Lemmas 3.5 and 3.6] obtained for the Brownian motion and uniform
domains satisfying the capacity density condition in Euclidean space which in turn gen-
eralize similar results obtained by Jerison and Kenig for NTA domains [JK, Lemma 4.8]
and Dahlberg for Lipschitz domains [Dah, Lemma 1]. While it is possible to follow the
‘box argument’ in [AH], our proof is new and avoids the use of a complicated iteration
argument (called the ‘box argument’) to obtain upper bound on harmonic measure [AH,
Proof of Lemma 3.6].
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Theorem 4.6. Let pX , d,m, E ,Fq be a MMD space and let U Ă X be a uniform domain
that satisfy Assumption 4.3. Then there exist C,A P p1,8q, c0 P p0, 1q such that

C´1gUpx, ξrqCapBpξ,2rqpBpξ, rqq ď ωU
x pBU X Bpξ, rqq ď CgUpx, ξrqCapBpξ,2rqpBpξ, rqq

(4.15)
for all ξ P BU, x P U such that 0 ă r ă dpξ, x0q{A.

While it is possible to prove Theorem 4.6 by adapting the techniques of Aikawa and
Hirata using the box argument and the notion of capacitary width, we follow a more
probabilistic approach. An easy consequence of Theorem 4.6, harmonicity of gUpx, ¨q on
Uztxu, Harnack chaining (Lemma 2.24), (2.12) and the doubling property of m is the
following doubling property of harmonic measure.

Corollary 4.7. Let pX , d,m, E ,Fq be a MMD space and let U Ă X be a uniform domain
that satisfy Assumption 4.3. There exist C,A P p1,8q, c0 P p0, 1q such that

ωU
x pBU X Bpξ, rqq ď CωU

x pBU X Bpξ, r{2qq (4.16)

for all ξ P BU, x P U such that 0 ă r ă dpξ, x0q{A.

Thanks to the capacity density condition, we can compare Green’s function on a the
domain U with that of a ball chosen at a suitable scale. The following is an analogue
of a lemma of Aikawa and Hirata for uniform domains in Euclidean space [AH, Lemma
3.2]. Our proof follows an argument in [BM18, Proof of Lemma 3.12] to compare Green
functions in different domains.

Lemma 4.8. Let pX , d,m, E ,Fq be a MMD space and let U Ă X be a uniform domain
that satisfy Assumption 4.3. There exist A1 P p1,8q and c0 P p0, 1q such that for any
0 ă c ď c0, there exists C1 such that the following estimate holds: ξ P BU, 0 ă r ă

diampU, dq{A1, we have

C´1
1 CapBpξ,2rqpBpξ, rqq

´1
ď gUpξr, crq ď C1CapBpξ,2rqpBpξ, rqq

´1. (4.17)

Proof. By Lemma 4.5(a), there exist A1, A0 P p4,8q such that for all 0 ă r ă

diampU, dq{A1 for all ξ P BU , we have

sup
zPUXBpξ,2rq

ωUXBpξ,A0rq
z pU X Spξ, A0rqq ď

1

2
. (4.18)

By [BCM, Lemmas 5.10, 5.20(a) and 5.24], there exist c0 P p0, cU{2q, rA1 P p4,8q

such that for all c P p0, c0s there exists C2 satisfying the following estimate: for all

ξ P BU, 0 ă r ă diampU, dq{ rA1, y P Spξr, crq, we have

C´1
2 CapBpξ,2rqpBpξ, rqq

´1
ď gBpξr,cUr{2qpξr, yq ď gBpξr,A0rqpξr, yq ď C2CapBpξ,2rqpBpξ, rqq

´1.
(4.19)
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Using Lemma 3.8(a) and reducing c0 further if necessary, there exists C3 P p1,8q such
that

sup
Spξr,crq

gUpξr, ¨q ď C3 inf
Spξr,crq

gUpξr, ¨q (4.20)

for all c P p0, c0s, ξ P BU, 0 ă r ă diampU, dq{ rA1 and ξr satisfying the conclusion of Lemma
2.6.

Let η P Spξr, cδUpξrqq be such that

gUpξr, ηq “ sup
yPSpξr,cδU pξrq

gUpξr, yq. (4.21)

Then by the maximum principle (the latter inequality of Proposition 3.1(v)) and Dynkin-
Hunt formula (Lemma 3.6), for all 0 ă r ă diampU, dq{A1, for all ξ P BU , by choosing
η P Spξr, cδUpξrqq satisfying (4.21), we obtain

gUpξr, ηq “ gUXBpξ,A0rqpξr, ηq ` Eη

”

1tτUXBpξ,A0rqă8,XτUXBpξ,A0rq
PUugUpXτUXBpξ,A0rq

, ξrq
ı

ď gUXBpξ,A0rqpξr, ηq ` gUpξr, ηqPη

”

τUXBpξ,A0rq ă 8, XτUXBpξ,A0rq
P U

ı

ď gUXBpξ,A0rqpξr, ηq `
1

2
gUpξr, ηq (by (4.18)).

and hence

gBpξ,cUr{2qpξr, ηq ď gUXBpξ,A0rqpξr, ηq ď gUpξr, ηq ď 2gUXBpξ,A0rqpξr, ηq ď 2gBpξ,A0rqpξr, ηq.
(4.22)

Combining (4.19), (4.22) and (4.20), we obtain the desired estimate.

Proof of Theorem 4.6. We first show the lower bound on the harmonic measure which is
considerably easier than the upper bound.
Lower bound on harmonic measure: By Lemma 4.5, there exists c1 P p0, 1{2q such
that for all ξ P BU, 0 ă r ă diampU, dq{A1, y P U X Bpξ, 2c1rq, then

ωU
y pBpξ, rq X BUq ě 1 ´ ωUXBpξ,rq

y pU X Spξ, rqq ě
1

2
. (4.23)

By Lemmas 3.8(b) and 4.8 and increasing A1 if necessary, there exist c2 P p0, c1q, C1, C2 P

p1,8q such that

C´1
1

gUpx0, ξc1rq

gUpξc1r, c2rq
ď Px0

´

σBpξc1r,c2rq
ă σUc

¯

ď C1
gUpx0, ξc1rq

gUpξc1r, c2rq
(4.24)

and
C´1

2 CapBpξ,2rqpBpξ, rqq
´1

ď gUpξc1r, c2rq ď C2CapBpξ,2rqpBpξ, rqq
´1 (4.25)

for all ξ P BU, 0 ă r ă diampU, dq{A1 and x0 P UzBpξ, 2rq.
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The lower bound on the harmonic measure is obtained by estimating the probability of
the event that diffusion first hits the set Bpξc1r, c2rq before exiting U along BU XBpξ, rq.
Setting B0 :“ Bpξc1r, c2rq, we estimate the harmonic measure as

ωU
x pBU X Bpξ, rqq ě Px pσB0 ă σUc , XσUc P BU X Bpξ, rqq

“ PxpσB0 ă σUcqEx

”

ωU
XσB0

pBU X Bpξ, rqq

ı

(strong Markov property)

ě PxpσB0 ă σUcq inf
yPB0

ωU
y pBU X Bpξ, rqq

(4.23)

ě
1

2
PxpσB0 ă σUcq

(4.24)

ě p2C1q
´1 gUpx, ξc1rq

gUpξc1r, c2rq

(4.25)

ě p2C1C2q
´1gUpx, ξc1r{2qCapBpξ,2rqpBpξ, rqq

(4.26)

for all ξ P BU, 0 ă r ă diampU, dq{A1 and x P UzBpξ, 2rq.

By Lemma 2.24 there exist A0, C3 P p1,8q such that

C3gUpx, ξrq ě gUpx, ξc1r{2q ě C´1
3 gUpx, ξrq (4.27)

for all ξ P BU, r ą 0, x P UzBpξ, A0rq. Combining (4.37) and (4.27), we obtain the desired
lower bound.

Upper bound on harmonic measure: We consider two cases depending on whether
on not pBpξ, 4rqzBpξ, 2rqq X BU is empty.

Case 1: Bpξ, 4rqzBpξ, 2rqq X BU “ H. In this case, we use the estimate

ωU
x pBU,Bpξ, rqq ď Px

`

σSpξ,3rqXU ă σUc

˘

. (4.28)

By Lemma 3.8(b) and the same argument as the proof of Lemma 4.8 (using [BCM,
Lemmas 5.10, 5.20(a) and 5.24]), there exist c1 P p0, 1q, A1, C3, C4 P p1,8q such that

gUpy, c1rq ě gBpy,rqpy, c1rq ě C´1
3 CapBpξ,2rqpBpξ, rqq

´1
ě C´1

4 CapBpξ,2rqpBpξ, rqq
´1

(4.29)
and

Px

´

σBpy,c1rq
ă σUc

¯

ď C3
gUpy, x0q

gUpy, c1rq
(4.30)

for all ξ P BU, 0 ă r ă diampU, dq{A1, y P U X Spξ, 3rq, x0 P UzBpξ, 4rq. By Lemma
2.23(b) and the proof of Lemma 2.24, there exist A0, C5 P p1,8q such that for all ξ P

BU, 0 ă r ă diampU, dq{A1, y P U X Spξ, 3rq, x0 P UzBpξ, A0rq, we have

gUpy, x0q ď C5gUpξr, x0q. (4.31)

Using the metric doubling property and by choosing a maximal c1r separated subset tyi :
1 ď i ď Nu of U XSpξ, 3rq, we have U XSpξ, 3rq Ă YN

i“1Bpyi, c1rq, where yi P U XSpξ, 3rq
for all i “ 1, . . . , N and N has an upper bound that depends only on the doubling property

52



and c1. Therefore by (4.28), we obtain

ωU
x0

pBpξ, rq X BUq ď Px0

´

σYN
i“1Bpyi,c1rq ă σUc

¯

ď

N
ÿ

i“1

Px0

´

σBpyi,c1rq
ă σUc

¯

(4.30)

ď

N
ÿ

i“1

C3
gUpy, x0q

gUpy, c1rq

(4.31)

ď NC3
gUpξr, x0q

gUpy, c1rq

(4.29)

ď NC3C4
gUpξr, x0q

gUpy, c1rq

(4.32)

for all ξ P BU, 0 ă r ă diampU, dq{A1, x0 P UzBpξ, A0rq. The desired upper bound in this
case follows from (4.32) and (4.29).

Case 2: Bpξ, 4rqzBpξ, 2rqq X BU ‰ H. Let V :“ UzpBUzBpξ, 3r{2qq (note that V is
an open subset of U). By Theorem 2.12 and Proposition 2.13, we may assume that the
reflected diffusion Xref can be defined from every starting point x P U . We denote the
corresponding probability measures and expectations by Pref

x ,Eref
x respectively.

Let η P Bpξ, 4rqzBpξ, 2rqq X BU . Since Bpη, r{2q X BU Ă UzV , by Lemma 4.5(a),
irreducibility of Xref , [CF, Theorem 3.5.6] and the part process pXrefqV on V is transient.
Hence there exists a green function on the domain V corresponding to U, d,m

ˇ

ˇ

U
, E ref ,FpUqq

denoted by grefV p¨, ¨q satisfying the properties in Proposition 3.1 and Lemma 3.4(b).

By Lemma 3.8 and arguing similarly as (4.29) and (4.30), there exist A1, C1, C2 P

p1,8q, c1 P p0, cU{4q such that

sup
yPSpξr,c1rq

grefV pξr, yq ď C1g
ref
V pξr, c1rq, (4.33)

C´1
1

grefV px, ξrq

grefV pξr, c1rq
ď Pref

x

´

σBpξr,c1rq
ă σBUzBpξ,3r{2q

¯

ď C1
grefV px, ξrq

grefV pξr, c1rq
, (4.34)

grefV pξr, c1rq ě gUpξr, c1rq ě C´1
2 CapBpξ,2rqpBpξ, rqq

´1 (4.35)

for all ξ P BU, 0 ă r ă diampU, dq{A1, x P UzBpξr, c1rq. By Harnack chaining in the do-
main V and (4.33), there exist C3 ą 1 such that for all ξ P BU, 0 ă r ă diampU, dq{A1, z P

Bpξ, rq X BU , we have
grefV pξr, zq ě C´1

3 grefV pξr, c1rq. (4.36)

Set B :“ Bpξr, c1rq and by the strong Markov property, we have

Pref
x

`

σB ă σBUzBpξ,3r{2q

˘

ě Pref
x

”

rXσBU
P BU X Bpξ, rq, σB ˝ θσBU

ă σBUzBpξ,3r{2q ˝ θσBU

ı

ě ωU
x pBU X Bpξ, rqq inf

zPBpξ,rqXBU
Pref
z pσB ă σBUzBpξ,3r{2qq

ě C´1
1 C´1

3 ωU
x pBU X Bpξ, rqq (by (4.36) and (4.34)) (4.37)

for all ξ P BU, 0 ă r ă diampU, dq{A1, x P UzBpξr, c1rq.

Next, we will obtain the estimate grefV px0, ξrq À gUpx0, ξrq for all x0 P UzBpξ, A0rq for
suitably chosen A0 P p1,8q. Recall the Dynkin-Hunt formula (Lemma 3.6) that

grefV py, zq “ gUpy, zq ` Eref
y

”

1tτUă8,Xref
τU

PV ug
ref
V pXref

τU
, zq

ı

for all y P U, z P Uztyu. (4.38)
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By Lemma 3.4(b) for any x0 P UzBpξ, 4rq, z P V X Bpξ, dpξ, ηqq, we have

grefV pz, x0q “ Eref
z

´

grefV ppXref
q
V
τV XBpξ,dpξ,ηqq

, x0q
¯

ď sup
UXSpξ,dpξ,ηqq

grefV p¨, x0q. (4.39)

Therefore, we obtain for all x0 P UzBpξ, 4rq, y P V X Bpξ, 2rq

grefV py, x0q
(4.38)

ď gUpy, x0q ` Pref
y

“

τU ă 8, Xref
τU

P V
‰

sup
zPV zU

grefV pz, x0q

(4.39)

ď gUpy, x0q ` Pref
y

“

τU ă 8, Xref
τU

P V
‰

sup
zPUXBBpξ,dpξ,ηqq

grefV pz, x0q. (4.40)

Next, we show that there exists δ P p0, 1q such that for all y P Spξ, dpξ, ηqq X U

Pref
y

“

τU ă 8, Xref
τU

P V
‰

ď 1 ´ δ. (4.41)

By Lemma 2.28(b), the function hpyq :“ Pref
y rτU ă 8, Xref

τU
P V s is harmonic and contin-

uous on U . By Lemma 4.5, there exists c2 P p0, 1{2q such that if y P U X Bpξ, dpξ, ηqq is
such that δUpyq ă c2r, then

hpyq ď
1

2
. (4.42)

If y P UXBpξ, dpξ, ηqq is such that δUpyq ă c1r then by Harnack chaining for the harmonic
function 1 ´ h on U using Lemma 2.24(b), there exists δ P p0, 1q such that hpyq ď 1 ´ δ
for all y P U X Bpξ, dpξ, ηqq. This concludes the proof of (4.41).

In particular, taking supremum over y P BBpξ, dpξ, ηqq in (4.40) and using (4.41), we
obtain

sup
yPBBpξ,dpξ,ηqq

grefV py, x0q ď sup
yPBBpξ,dpξ,ηqq

gUpy, x0q ` p1 ´ δq sup
yPBBpξ,dpξ,ηqq

grefV py, x0q

which implies for all x0 P UzBpξ, 4rq

sup
yPBBpξ,dpξ,ηqq

grefV py, x0q ď δ´1 sup
yPBBpξ,dpξ,ηqq

gUpy, x0q. (4.43)

By Carleson’s estimate (Proposition 3.11) and Harnack chaining using Lemma 2.23(b),
there exist A0 P p4,8q, A1, C4 P p1,8q such that for all ξ P BU, 0 ă r ă diampU, dq{A1

and x0 P UzBpξ, A0rq, we have

sup
yPBBpξ,dpξ,ηqq

grefV py, x0q ě C´1
4 grefV pξr, x0q, and sup

yPBBpξ,dpξ,ηqq

gUpy, x0q ď C4gUpξr, x0q.

(4.44)
Therefore we obtain the desired upper bound using

ωU
x0

pBU X Bpξ, rqq
(4.37)

ď C1C3Pref
x0

`

σB ă σBUzBpξ,3r{2q

˘ (4.34)

ď C2
1C3

grefV px0, ξrq

grefV pξr, c1rq
(4.35)

ď C2
1C2C3g

ref
V px0, ξrqCapBpξ,2rqpBpξ, rqq

ď C2
1C2C3C

2
4δ

´1gUpx0, ξrqCapBpξ,2rqpBpξ, rqq (by (4.43) and (4.44)).
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Under an additional assumption which for instance is satisfied for the Brownian motion
on Rn with n ě 2, the capacity density condition on a domain U implies the uniform
perfectness of its boundary BU . The uniform perfectness of boundary is relevant for the
stable-like heat kernel estimates for the trace process in Theorem 5.19.

Definition 4.9. Let pX , d,m, E ,Fq be an MMD space that satisfies the elliptic Harnack
inequality such that pX , dq such that pX , dq is a doubling metric space. Then we say that
pX , d,m, E ,Fq satisfies the capacity non-increasing condition if there exist C,A P

p1,8q such that

CapBpx,2RqpBpx,Rqq ď C CapBpx,2rqpBpx, rqq, for all x P X , 0 ă r ă R ă diampX , dq{A.
(4.45)

We remark that the number 2 in (4.45) can be replaced with any constant larger than
1 due to [BCM, Lemma 5.22]. If pX , d,m, E ,Fq satisfies the stronger the heat kernel
estimate HKEpΨq for some scale function Ψ, then by [GHL15, Theorem 1.2], (4.45) is
equivalent to the following estimate: there exist C,A P p1,8q such that

ΨpRq

mpBpx,Rqq
ď C

Ψprq

mpBpx, rqq
, for all x P X , 0 ă r ă R ă diampX , dq{A. (4.46)

The condition (4.46) was called fast volume growth in [JM, Definition 1.5]. The fol-
lowing lemma follows from the estimates of harmonic measure in Theorem 4.6 along with
Lemma 4.5(a) and Carleson’s estimate (Proposition 3.11). We omit the proof as it follows
from a straightforward modification of the argument in [AHMT1, Remark 2.56].

Lemma 4.10 (Cf. [AHMT1, Remark 2.56]). Let pX , d,m, E ,Fq be a MMD space and
let U Ă X be a uniform domain that satisfy Assumption 4.3. Furthermore assume that
pX , d,m, E ,Fq satisfies the capacity non-increasing condition. Then BU is uniformly per-
fect.

We provide some sufficient conditions for the capacity density condition below.

Remark 4.11. (a) Let pX , d,m, E ,Fq be an MMD space that satisfies the elliptic Har-
nack inequality such that pX , dq is a doubling metric space. Let U satisfy the exterior
corkscrew condition (see [JK, (3.2)] for the definition). Then the capacity estimates
in [BCM, §5] imply the capacity density density condition for U . In particular, non-
tangentially accessible domains (see [p. 93]JK) satisfy the capacity density condition.

(b) Let pX , d,m, E ,Fq be an MMD space that satisfies the sub-Gaussian heat kernel
estimate HKEpΨq, where Ψprq “ rdw for all r ą 0, where dw ě 2. Assume that m is
a df -Ahlfors regular measure; that is, there exist C P p1,8q such that

C´1rdf ď mpBpx, rqq ď Crdf for all x P X , 0 ă r ă diampX , dq.

If the boundary BU admits a p-Ahlfors regular measure for some p ą df ´ dw, then
U satisfies the capacity density condition. The desired lower bound on the capacity
can be obtained by adapting the arguments in [HeiK, Proof of Theorem 5.9]. In
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particular, this shows that the uniform domains obtained by removing the bottom
line or the outer square boundary of the Sierpiński carpet satisfy the capacity density
condition of the Brownian motion on the Sierpiński carpet,

We recall a simple consequence of Lebesgue differentiation theorem. We note that the
condition (4.47) is satisfied by harmonic measure on BU due to Corollary 4.7.

Lemma 4.12 (Lebesgue differentiation theorem). Let pX , d,mq be a metric measure space
such that

lim sup
rÓ0

mpBpx, 2rqq

mpBpx, rqq
ă 8 for all x P X . (4.47)

Then for any locally integrable function f : X Ñ R almost every point is a Lebesgue point
of f ; that is,

lim
rÓ0

 
Bpx,rq

|fpyq ´ fpxq| dmpyq. (4.48)

for m-almost every x P X . In particular, for any point x P X satisfying (4.48) and if
ψr, r ą 0 be a family of measurable functions such that 1Bpx,rq ď ψr ď 1Bpx,2rq, then

lim
rÓ0

ş

ψrf dm
ş

ψr dm
“ fpxq. (4.49)

Proof. The assertion given in (4.48) follows from [HKST, (3.4.10) and Theorem 3.4.3].
The conclusion (4.49) follows from (4.48) as

0 ď lim sup
rÓ0

ż

|ψrpyqfpyq ´ ψrpyqfpxq|mpdyq ď lim sup
rÓ0

ż

Bpx,2rq

|fpyq ´ fpxq|mpdyq “ 0.

The following proposition shows that the harmonic measure is the distributional Lapla-
cian of the Green function. In the proof, we use the following notation to denote the 0-th
order hitting distribution of a quasicontinuous function u P FpUqe, where FpUqe denotes
the extended Dirichlet space corresponding to pE ref ,FpUqeq on L2pU,m

ˇ

ˇ

U
q.

Href
BUupxq :“ Eref

x

“

upXref
σBU

q1tσBUă8u

‰

, for all x P U, u P FpUqe. (4.50)

Proposition 4.13. Let pX , d,m, E ,Fq be a MMD space that satisfies Assumption 2.14
and let U Ă X be an open subset such that the Dirichlet form pEU ,F0pUqq on L2pU ;m

ˇ

ˇ

U
q

corresponding to the part process on U is transient. For all x P U and for all u P

FpUq X L8pUq such that x R suppU rus, we have

E ref
pgUpx, ¨q, uq “ ´

ż

BU

ru dωU
x .
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Proof. By the transience of pEU ,F0pUqq on L2pU ;m
ˇ

ˇ

U
q, there exists f P L1pU,mq such

that f is a strictly positive function,
ş

U
fGUf dm ă 8 and suppU rf s X suppU rus “ H.

We note that GUf P pF0pUqqe by [FOT, Theorem 4.2.6]. Then

E ref
pGUf, uq “ E ref

pGUf, uq ´ E ref
pGUf,H

ref
BUruq

(since GUf P pF0pUqqe and H
ref
BUru is harmonic in U)

“ E ref
pGUf, u ´ Href

BUruq

“

ż

U

fpu ´ Href
BUruq dm (by [FOT, Theorem 4.4.1(ii), (4.3.11)])

“ ´

ż

U

fHref
BUru dm (since suppU rf s X suppU rus “ H). (4.51)

We choose a sequence fn ě 0 such that
ş

fn dm “ 1, suppmrfns Ó txu as n Ñ 8. The
existence of such a sequence follows by considering fr defined in (3.9). By quasi-continuity
of ru and using (4.51) with f “ fn and letting n Ñ 8, we obtain the desired conclusion.

The Martin kernel can be viewed as the Radon-Nikodym derivative of harmonic mea-
sures at different starting points. A similar statement on non-tangentially accessible
(NTA) domains in the Euclidean space was observed in [KT, Theorem 3.1] which is an
easy consequence of the results in [JK]. Jerison and Kenig define the Martin kernel as
such a Radon-Nikodym derivative [JK, Definition 1.3]. For NTA domains in the Euclidean
space the equivalence of our definition with [JK, Definition 1.3] follows from the unique-
ness theorem in [JK, Theorem 5.5]. Our next result is a generalization of [KT, Theorem
3.1].

Proposition 4.14. Let pX , d,m, E ,Fq be a MMD space and let U Ă X be a uniform
domain that satisfy Assumption 4.3. For all x, x0 P U , we have

dωU
x

dωU
x0

p¨q “ KU
x0

px, ¨q. (4.52)

Proof. Let A “ Bpξ, rqXBU,B “ Bpξ, 2rqc XU and eA,B denote the equilibrium potential
for A with respect to the Dirichlet form pE ref ,FpUqq for the reflected diffusion on U with
Dirichlet boundary condition on B. By Proposition 4.13 and Lemma 3.7 there exist
measures λ1A,B, λ

0
A,B supported on A and U X BBpξ, 2rq respectively such that

0 ă

ż

BU

reA,B dω
U
x “ ´E ref

pgUpx, ¨q, eA,Bq

“ ´

ˆ
ż

A

gUpx, yq dλ1A,Bpyq ´

ż

UXBBpξ,2rq

gUpx, yq dλ0A,Bpyq

˙

“

ż

UXBBpξ,2rq

gUpx, yq dλ0A,Bpyq. (4.53)
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Taking ratio of (4.53) for x and for x0 in place of x, we obtain

ˇ

ˇ

ˇ

ˇ

ş

BU
reA,B dω

U
x

ş

BU
reA,B dωU

x0

´ Kx0px, ξq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ş

UXBBpξ,2rq
gUpx, yq dλ0A,Bpyq

ş

UXBBpξ,2rq
gUpx0, yq dλ0A,Bpyq

´ Kx0px, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ş

UXBBpξ,2rq
gUpx0, yq pKx0px, yq ´ Kx0px, ξqq dλ0A,Bpyq
ş

UXBBpξ,2rq
gUpx0, yq dλ0A,Bpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ş

UXBBpξ,2rq
gUpx0, yq|Kx0px, yq ´ Kx0px, ξq| dλ0A,Bpyq
ş

UXBBpξ,2rq
gUpx0, yq dλ0A,Bpyq

(4.54)

By the boundary Hölder regularity of the Martin kernel (Lemma 3.10), there exist C1, A1 P

p1,8q, γ P p0,8q such that for all x0, x P U, ξ P BU, 0 ă r ă A´1
1 pdpx0, ξq ^ dpx, ξqq, y P

U X Bpξ, rq, we have

|Kx0px, yq ´ Kx0px, ξq| ď C1Kx0px, ξq

ˆ

r

pdpx0, ξq ^ dpx, ξqq

˙γ

. (4.55)

By using (4.54), (4.55) and letting r Ó 0, and use the continuity of gU to take the limit
to obtain the desired conclusion (4.52) ωU

x0
-a.e. using (4.49) in Lemma 4.12. The use of

Lemma 4.12 is justified by the mutually absolutely continuity in Lemma 2.28(c) and the
asymptotic doubling property in Corollary 4.7.

4.3 The elliptic measure at infinity on unbounded domains

On unbounded uniform domain the harmonic measure need not be doubling. For instance
if BU were unbounded and connected, due to [Hei, Exercise 13.1] every doubling measure
on BU must necessarily be an infinite measure. In particular, there are no doubling prob-
ability measures on BU . Nevertheless, as we will see there is a canonical doubling measure
on BU obtained as a limit of scaled harmonic measures ωU

x as x Ñ 8. Propositions
3.21 and 4.13 suggest to consider the limit of scaled harmonic measures gUpx0, xq´1ωU

x as
x Ñ 8. Following [BTZ, Lemma 3.5], we call this limit the elliptic measure at infin-
ity. Alternately, the distributional Laplacian of the harmonic profile defines the elliptic
measure at infinity on the boundary BU as shown below.

Proposition 4.15 (Elliptic measure at infinity). Let pX , d,m, E ,Fq be a MMD space and
let U Ă X be an unbounded uniform domain that satisfy Assumption 4.3. Let pxnqnPN, x0 P

U be a sequence such that xi P U for all i P N and limnÑ8 dpx0, xnq “ 8. Let hx0
U p¨q “

limnÑ8 Kx0pxn, ¨q denote the Martin kernel at infinity. Then the sequence of measure
νnp¨q :“ gUpxn, x0q

´1ωU
xn

p¨q converge weakly to νUx0
and

E ref
phUx0

p¨q, uq “ ´

ż

ru dνUx0
for all u P FpUq. (4.56)

In particular, the measure νUx0
does not depend on the choice of the sequence pxnqně1.

The measure νUx0
satisfies the following properties:
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(a) The measures νUx0
and ωU

x0
are mutually absolutely continuous. Furthermore, the

Radon-Nikodym derivative
dνUx0
dωU

x0

: BU Ñ p0,8q can be chosen to be a strictly posi-

tive continuous function satisfying the following bound: there exist C,A P p1,8q such
that for all ξ P BU, 0 ă R ă A´1dpξ, x0q, η P BU X Bpξ, Rq, we have

C´1 hUx0
pξRq

gUpx0, ξRq
ď
dνUx0

dωU
x0

pηq ď ChUx0
pξRqgUpx0, ξRq. (4.57)

(b) The measure νUx0
is smooth with quasi-support BU for the Dirichlet form pE ref ,FpUqq.

(c) There exists C ą 0 such that for all ξ P BU,R ą 0, we have

C´1hUx0
pξRqCapBpξ,2RqpBpξ, Rqq ď νUx0

pBpξ, rqq ď ChUx0
pξRqCapBpξ,2RqpBpξ, Rqq.

(4.58)
In particular, the measure νUx0

is doubling.

Proof. For any u P CcpUq X FpUq, there exists ϕ P CcpX q X F , N P N such that xn R

supprϕs for all n ě N and suppmrus Ă supprϕs. By Proposition 4.13 and strong locality,
we have

ż

BU

ru dνn “ E ref

ˆ

gUpxn, ¨q

gUpxn, x0q
, u

˙

“ ´E ref

ˆ

Φp¨q
gUpxn, ¨q

gUpxn, x0q
, u

˙

, (4.59)

where we adapt the convention of extending gUpxn, ¨q by 0 on U c. If we similarly extend
hUx0

as 0 on U c by Proposition 3.21 and Remark 2.20(b), we obtain that

lim
něN,nÑ8

E ref
1

ˆ

ϕp¨q
gUpxn, ¨q

gUpxn, x0q
´ ϕhUx0

, ϕp¨q
gUpxn, ¨q

gUpxn, x0q
´ ϕhUx0

˙

“ 0. (4.60)

Combining (4.59), (4.60) and by the strong locality of pE ref , qFpUqq, we obtain

lim
nÑ8

ż

BU

ru dνn “ ´E ref
`

ϕp¨qhUx0
, u
˘

“ ´E ref
`

hUx0
, u
˘

.

Therefore the measures νn “ gUpxn, x0q
´1ωU

xn
p¨q weakly converge to νUx0

. The claim that
νUx0

does not depend on the choice of the sequence pxnqně1 follows from (4.56) and the
similar claim in Proposition 3.21.

(a) By Proposition 4.14 and (3.50),

dνn
dωU

x0

p¨q “
1

gUpxn, xnq

dωU
xn

dωU
x0

p¨q
(4.52)

“
KU

x0
pxn, ¨q

gUpxn, x0q

(3.50)
“ ΘU

x0
pxn, ¨q. (4.61)

By (3.37) and joint continuity of ΘU
x0
, the sequence ΘU

x0
pxn, ¨q is uniformly bounded

on every compact subset of BU . Similarly by (3.38) and joint continuity of ΘU
x0
,

the sequence ΘU
x0

pxn, ¨q is equicontinuous on every compact subset of BU . By Arzela-
Ascoli theorem and passing to a subsequence, we may assume that ΘU

x0
pxn, ¨q converges
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uniformly on compact subsets of BU to a continuous function, say ΘU
x0

p8, ¨q : BU Ñ

r0,8q. Hence by (4.56) and (4.61)

νUx0
! ωU

x0
, and

dνUx0

dωU
x0

p¨q “ ΘU
x0

p8, ¨q. (4.62)

By (4.61), (3.37), joint continuity of ΘU
x0
, for all ξ P BU,R ą 0, η P BU X Bpξ, Rq, we

have
dνn
dωU

x0

pηq
(4.61)

“ ΘU
x0

pxn, ηq
(3.37)

— ΘU
x0

pxn, ξRq “
gUpxn, ξRq

gUpxn, x0q

1

gUpx0, ξRq

for all n sufficiently large. Letting n Ñ 8 and using Proposition 3.21, we obtain the
estimate (4.57). Since ΘU

x0
p8, ¨q is strictly positive in BU , we conclude that νUx0

and
ωU
x0

are mutually absolutely continuous.

(b) By the mutual absolute continuity of νUx0
and ωU

x0
, the quasi-supports are equal. Hence

the desired conclusion follows from Lemma 2.28(d).

(c) By Proposition 3.21 and (4.56), we have

hUx0
p¨q “ hUx0

pyqhUy p¨q, νUy p¨q “
1

hUx0
pyq

νUx0
p¨q, for all y P U . (4.63)

For ξ P BU,R ą 0, we choose y P UzBpξ, ARq and estimate

νUy pBpξ, Rqq
(4.57)

— ωU
y pBpξ, Rqq

hUy pξRq

gUpy, ξRq

(4.15)
— hUx0

pξRqCapBpξ,2RqpBpξ, Rqq. (4.64)

The estimate (4.58) follows from (4.63) and (4.64).

The doubling property of νUx0
follows from (4.58) along with Proposition 3.21, Lemma

2.24, and [BCM, add. text].

5 The trace process on the boundary

In this section, we always assume that pX , d,m, E ,Fq is an MMD space and U is a uniform
domain satisfying Assumption 4.3.

5.1 The boundary measure and the corresponding PCAF

To define the boundary trace process, we choose a reference measure on the boundary BU
as given in the following definition.

Definition 5.1. If U is bounded, we choose x0 “ pξr using Lemma 2.6, where pξ P BU is
chosen arbitrarily and r “ diampU, dq{5. If U is unbounded, let x0 P U be an arbitrary
point. We define the measure µ supported on the boundary as

µp¨q :“

#

ωU
x0

p¨q, if U is bounded,

νUx0
p¨q, if U is unbounded,

(5.1)
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where ωU
x0

p¨q, νUx0
p¨q are the harmonic measure (Definition 2.27) and elliptic measure at

infinity (Proposition 4.15) respectively.

In order to describe properties of µ, we define rΦ : BU ˆ p0, diampU, dq{4q Ñ p0,8q,

rΦpξ, rq “

#

gUpx0, ξrq, if diampU, dq ă 8,

hUx0
pξrq, if diampU, dq “ 8,

(5.2)

where ξr is chosen using Lemma 2.6.

Note that by [GHL15, Theorem 1.2], and [BCM, Lemma 5.24], there exist C,A P p1,8q

such that

C´1mpBpξ, Rqq

ΨpRq
ď CapBpξ,2RqpBpξ, Rqq ď C

mpBpξ, Rqq

ΨpRq
(5.3)

for all ξ P BU, 0 ă R ă diampU, dq{A. Let us recall that the function rΦp¨, ¨q is useful to
estimate the measure µ. Indeed, by Theorem 4.6, Proposition 4.15(c), and (5.3), there
exist C,A P p1,8q such that

C´1mpBpξ, Rqq

ΨpRq
ď
µpBpξ, Rqq

rΦpξ, Rq
ď C

mpBpξ, Rqq

ΨpRq
, for all ξ P BU, 0 ă R ă diampU, dq{A.

(5.4)

We record some basic estimates on rΦp¨, ¨q and show that rΦp¨, ¨q is comparable to a function
Φp¨, ¨q that has better continuity properties.

Lemma 5.2. There exist a regular scale function Φ : BU ˆ p0,8q Ñ p0,8q in the sense
of Definition 2.30 and C1, A1 P p1,8q such that

C´1
1

rΦpξ, rq ď Φpξ, rq ď C1
rΦpξ, rq, for all ξ P BU, 0 ă r ă diampUq{A1. (5.5)

Proof. First, we show that there exist C, β1, β2 ą 0, A P p4,8q such that, for all η, ξ P BU ,
0 ă r ď R with R _ dpξ, ηq ă diampU, dq{A

C´1
´ R

dpξ, ηq _ R

¯β2
´dpξ, ηq _ R

r

¯β1

ď
rΦpξ, Rq

rΦpη, rq
ď C

´ R

dpξ, ηq _ R

¯β1
´dpξ, ηq _ R

r

¯β2

.

(5.6)

By Lemmas 2.24 and 4.5 and by the harmonicity and Dirichlet boundary conditions
of gUpx0, ¨q and hUx0

p¨q in Propositions 3.1(iv), 3.21, Lemma 2.18, there exist C1, C2, A P

p1,8q, β1, β2 P p0,8q such that

C´1
1

ˆ

R

r

˙β1

ď
rΦpξ, Rq

rΦpξ, rq
ď C1

ˆ

R

r

˙β2

, for all ξ P BU, 0 ă r ă R ă diampU, dq{A, (5.7)

and

C´1
2 ď

rΦpξ, R _ dpξ, ηqq

rΦpη,R _ dpξ, ηqq
ď C2, (5.8)
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for all η, ξ P BU, 0 ă r ď R with R _ dpξ, ηq ă diampU, dq{A.

The conclusion (5.6) follow from (5.7), (5.8) using the expression

rΦpξ, Rq

rΦpξ, rq
“

rΦpξ, Rq

rΦpξ, R _ dpξ, ηqq
¨
rΦpξ, R _ dpξ, ηqq

rΦpη,R _ dpξ, ηqq
¨
rΦpη,R _ dpξ, ηqq

rΦpξ, rq
.

By (2.12), there exists A2 P p1,8q such that for all ξ P BU,R ă diampUq{A, we have

rΦpξ, A´1
2 Rq ď

1

2
rΦpξ, Rq (5.9)

Using (5.9), we define the function as follows: If U is unbounded, we define

Φpξ, Ak
2q “ rΦpξ, Ak

2q for all ξ P BU, k P Z,

and extend Φpξ, ¨q by piecewise linear interpolation to p0,8q for each ξ P BU . Using (5.6)
and (5.5), the estimate (2.36) in Definition 2.30. The fact that Φpξ, ¨q is an increasing
homeomorphism follows from (5.9). This concludes the proof if U is unbounded.

If U is bounded, we define

Φpξ, Ak
2p2Aq

´1diampUqq “ rΦpξ, Ak
2p2Aq

´1diampUqq for all ξ P BU, k P Z, k ě 0,

and extend Φpξ, ¨q by piecewise linear interpolation to p0,8q. The conclusion follows from
the same reasoning as the bounded case.

It will be convenient to use Φp¨, ¨q in Lemma 5.2 instead of rΦp¨, ¨q due to its better con-
tinuity property. So we set Φp¨, ¨q to denote the function in Lemma 5.2 for the remainder
of the work.

The following lemma is an upper bound on the integral of heat kernel with respect to
µ. This upper bound is later used to show that µ is a smooth measure in the strict sense
(Lemma 5.4) and to identify the support of the corresponding PCAF with the topological
boundary (Proposition 5.7).

Lemma 5.3. There exists C P p1,8q such that for all ξ P BU, t P p0,8q, we have

ż

BU

preft px, yqµpdyq ď C
µ pBpξx,Ψ

´1ptqqq

mpBpξx,Ψ´1ptqq
, (5.10)

where ξx P BU is any point such that distpx, U cq “ dpx, ξxq.

Proof. By HKEpΨq, [GT12, Lemma 3.19] and (2.12), there exists C1 P p1,8q, c2 P

p0, 1q, 0 ă α1 ă α2 ă 8 such that for all x, y P U , we have

preft px, yq “ preft py, xq ď
C1

mpBpx,Ψ´1ptqqq
exp

ˆ

´c2min

ˆˆ

dpx, yq

Ψ´1ptq

˙α1

,

ˆ

dpx, yq

Ψ´1ptq

˙α2
˙˙

.

(5.11)
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If ξx P BU satisfies distpx, U cq “ dpx, ξxq, then

dpξx, yq ď dpx, yq ` dpx, ξxq ď 2dpx, yq for all y P BU . (5.12)

By (5.11), (5.12) and (2.1), there exists C2 P p1,8q, c3 P p0, 1q such that

preft px, yq ď
C1

mpBpy,Ψ´1ptqqq
exp

ˆ

´c3min

ˆˆ

dpξx, yq

Ψ´1ptq

˙α1

,

ˆ

dpξx, yq

Ψ´1ptq

˙α2
˙˙

ď
C2

mpBpξx,Ψ´1ptqqq
exp

ˆ

´
c3
2
min

ˆˆ

dpξx, yq

Ψ´1ptq

˙α1

,

ˆ

dpξx, yq

Ψ´1ptq

˙α2
˙˙

(5.13)

for all x P U, y P BU where ξx P BU satisfies distpx, U cq “ dpx, ξxq.

For all x P U, ξx P BU such that distpx, U cq “ dpx, ξxq and for all t ą 0 using (5.13)
and (2.1), we estimate

ż

BU

preft px, yqµpdyq

“

ż

Bpξx,Ψ´1ptqq

preft px, ¨q dµpyq `

8
ÿ

k“1

ż

Bpξx,2kΨ´1ptqqzBpξx,2k´1Ψ´1ptqq

preft px, ¨q dµ

(5.13)

À
µpBpx,Ψ´1ptqqq

mpBpξx,Ψ´1ptqq
`

8
ÿ

k“1

µpBpξx, 2
kΨ´1ptqqq

mpBpξx,Ψ´1ptqq
expp´c2α1kq

À
µpBpξx,Ψ

´1ptqqq

mpBpξx,Ψ´1ptqq
`

8
ÿ

k“1

µpBpξx, 2
kΨ´1ptqqq

mpBpξx,Ψ´1ptqq
expp´c2α1kq

À
µpBpξx,Ψ

´1ptqqq

mpBpξx,Ψ´1ptqq

«

1 `

8
ÿ

k“1

2kβ expp´c2α3kq

ff

(by (2.1))

À
µpBpξx,Ψ

´1ptqqq

mpBpξx,Ψ´1ptqq
. (5.14)

Next, we show that µ is a smooth measure in the strict sense for the Dirichlet form
corresponding to the reflected diffusion on U .

Lemma 5.4. The measure µ is a smooth measure in the strict sense for the reflected
Dirichlet form pE ref ,FpUqq on L2pU,m

ˇ

ˇ

U
q with quasi-support BU .

Proof. We only consider the case when U is unbounded (the bounded case is similar and
easier).

Fix ξ P BU . For any n P N, we consider the measure µξ,np¨q :“ µp¨ X Bpξ, nqq. By the
same argument in (5.11) there exists C1 P p1,8q, c2 P p0, 1q, 0 ă α1 ă α2 ă 8 such that
for all x, y, z P U with dpx, yq ď dpx, zq, we have

preft px, zq ď
C1

mpBpy,Ψ´1ptqqq
exp

ˆ

´c1min

ˆˆ

dpx, yq

Ψ´1ptq

˙α1

,

ˆ

dpx, yq

Ψ´1ptq

˙α2
˙˙

. (5.15)
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Note that for any x R Bpξ, 2nq, z P Bpξ, nq, we have dpx, zq ě dpξ, zq. Hence by (5.15)
and the same argument as (5.14), we obtain

ż

BU

prefs px, ¨q dµξ,n À
µpBpξ,Ψ´1psqqq

mpBpξ,Ψ´1psqq
for all x R Bpξ, 2nq. (5.16)

If x P Bpξ, 2nq, then by Lemma 5.3
ż

BU

preft px, yqµξ,npdyq ď

ż

BU

preft px, yqµpdyq À
µpBpξx,Ψ

´1psqqq

mpBpξx,Ψ´1psqq
, (5.17)

where ξx P Bpξ, 3nqXBU satisfies distpx, U cq “ dpx, ξxq. For all η P BU using the doubling
property of m and µ, we have
ż 1

0

e´sµpBpη,Ψ´1psqqq

mpBpη,Ψ´1psqq
ds “

8
ÿ

k“0

ż 2´k`1

2´k

e´sµpBpη,Ψ´1psqqq

mpBpη,Ψ´1psqq
ds

—

8
ÿ

k“0

µpBpη,Ψ´1p2´kqqq

mpBpη,Ψ´1p2´kqq
2´k

(5.4)
—

8
ÿ

k“0

Φpη,Ψ´1
p2´k

qq

— Φpη,Ψ´1
p1qq (by Lemmas 5.2 and [GT12, Lemma 3.19]),

(5.18)

and
ż 8

1

e´sµpBpη,Ψ´1psqqq

mpBpη,Ψ´1psqq
ds “

8
ÿ

k“1

ż 2k

2k´1

e´sµpBpη,Ψ´1psqqq

mpBpη,Ψ´1psqq
ds

À

8
ÿ

k“1

µpBpη,Ψ´1p2kqqq

mpBpη,Ψ´1p2kqq
2ke´2k´1

—

8
ÿ

k“0

Φpη,Ψ´1
p2kqqe´2k´1

(by (5.4))

À

8
ÿ

k“0

Φpη,Ψ´1
p1qq2kβe´2k´1

À Φpη,Ψ´1
p1qq. (5.19)

In the last line above, we use Lemmas 5.2 and [GT12, Lemma 3.19]. Combining (5.16),
(5.17), (5.18), (5.19) and using Lemma 5.2, we obtain

ż

BU

ż 8

0

e´tpreft px, yq dt µξ,npdyq À sup
ηPBUXBpξ,3nq

Φpη,Ψ´1
p1qq À Φpξ, nq (5.20)

for all x P U . Since µξ,n is a finite measure such that the corresponding 1-potential
x ÞÑ

ş

BU

ş8

0
e´tpreft px, yq dt µξ,npdyq is bounded, we conclude that µξ,n is of finite energy

integral for all n P N [FOT, Exercise 4.2.2]. Therefore µ is a smooth measure in the strict
sense. The assertion that BU is a quasi-support of µ follows from Lemma 2.28(d) and
Proposition 4.15(b).
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We record another upper bound on an integral of heat kernel with respect to µ similar
to Lemma 5.3.

Lemma 5.5. There exist C P p1,8q, A P p4,8q such that for all ξ P BU, 0 ă r ă

diampU, dq{A
ż

BUXBpξ,rq

ż 8

0

p
ref,UXBpξ,rq

t px, yq dt µpdyq ď CΦpξ, rq, (5.21)

where p
ref,UXBpξ,rq

t p¨, ¨q : pUXBpξ, rqqˆpUXBpξ, rqq is the continuous heat kernel as given
in Lemma 3.4(d).

Proof. By Fubini’s theorem and Lemma 5.3, there exists A1 P p1,8q such that for all
ξ P BU, 0 ă r ă diampU, dq{A1, x P U X Bpξ, rq we have

ż

BUXBpξ,rq

ż Ψprq

0

p
ref,UXBpξ,rq

t px, yq dt µpdyq

ď

ż

BU

ż Ψprq

0

preft px, yq dt µpdyq (since pref,UXBpξ,rqp¨, ¨q ď prefp¨, ¨q)

À

ż Ψprq

0

µ pBpξx,Ψ
´1ptqqq

mpBpξx,Ψ´1ptqq
dt “

8
ÿ

k“0

ż Ψp2´pk´1qrq

Ψp2´krq

µ pBpξx,Ψ
´1ptqqq

mpBpξx,Ψ´1ptqq
dt (by (5.10))

À

8
ÿ

k“0

µ
`

Bpξx, 2
´krq

˘

mpBpξx, 2´krq
Ψp2´krq

(5.4)
—

8
ÿ

k“0

Φpξx, 2
´krq

(5.6)
— Φpξx, rq

(5.6)
— Φpξ, rq, (5.22)

where ξx P BU is chosen as given in Lemma 5.3.

By [HS, Proof of Theorem 2.5], there exist C1, A1 P p1,8q such that for all x P U, 0 ă

r ă diampU, dq{A1, the first Dirichlet eigenvalue

λ0pBpx, rq X Uq :“ inf

#

E refpf, fq
ş

Bpx,rqXU
f 2 dm

: f P FpUq, f
ˇ

ˇ

pBpx,rqXUqc
“ 0 m-a.e.

+

satisfies
C´1

1

Ψprq
ď λ0pBpx, rq X Uq ď

C1

Ψprq
. (5.23)

Hence by [HS, Proof of Lemma 3.9(3)] and (5.23), there exist C2, A1 P p1,8q, c1 P p0,8q

such that all x P U, 0 ă r ă diampU, dq{A1, y, z P U X Bpx, rq, t ě Ψprq, we have

p
ref,UXBpξ,rq

t py, zq ď
C2

mpBpx, rq X Uq
exp

ˆ

´
c1t

Ψprq

˙

. (5.24)
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Therefore for all ξ P BU, 0 ă r ă diampU, dq{A1, x P U X Bpξ, rq we have

ż

BUXBpξ,rq

ż 8

Ψprq

p
ref,UXBpξ,rq

t px, yq dt µpdyq

ď

ż

BUXBpξ,rq

ż 8

Ψprq

C2

mpBpξ, rq
exp

ˆ

´
c1t

Ψprq

˙

dt µpdyq (by (5.24))

À

ż

BUXBpξ,rq

Ψprq

mpBpξ, rq
µpdyq —

µpBpξ, rqqΨprq

mpBpξ, rq

(5.4)
— Φpξ, rq. (5.25)

By (5.22) and (5.25), we obtain the desired upper bound (5.21).

Since µ is a smooth measure in the strict sense, it defines a PCAF in the strict sense
due to the Revuz correspondence.

Definition 5.6. Let A denote the positive continuous additive functional (PCAF) in
the strict sense for the reflected Dirichlet form pE ref ,FpUqq on L2pU,m

ˇ

ˇ

U
q whose Revuz

measure is µ. Note that by Lemma 5.4 and [FOT, Theorem 5.1.7], there exists a PCAF
in the strict sense pAtqtě0 whose Revuz measure in µ.

The state space of the trace process corresponding to the PCAF pAtq is the support of
the PCAF. To this end, we show that the support of A is BU in the following proposition.

Proposition 5.7. The support of the positive continuous additive functional in the strict
sense A corresponding to µ is BU ; that is,

BU “ tx P U : Pref
x rAt ą 0 for any t ą 0s “ 1u. (5.26)

Proof. Set

R :“ inftt ą 0|At ą 0u, Spµq :“ tx P U : Pref
x rR “ 0s “ 1u.

First we show that
Pref
x pR ě σBUq “ 1 for all x P U. (5.27)

Let pUt p¨, ¨q denote the continuous heat kernel for the associated part Dirichlet form of
pE ref ,FpUqq on U given by Lemma 3.4(a) and Theorem 2.12. Then for all x P U , we
obtain

Eref
x rAσBU

s “ lim
tÓ0

Eref
x

„
ż τU

t

dAs

ȷ

(by monotone convergence theorem)

“ lim
tÓ0

Eref
pUt px,¨q¨m

„
ż τU

0

dAs

ȷ

“ 0 (by [CF, (4.1.25), Proposition 4.1.10]).

Therefore Pref
x pAσBU

“ 0q “ 1 and hence we obtain (5.27). By the right continuity of
sample paths, Pref

x pσBU ą 0q “ 1 for all x P U and hence by (5.27), we conclude

BU Ě tx P U : Pref
x rAt ą 0 for any t ą 0s “ 1u. (5.28)
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Note that by [CF, (A.3.12) in Proposition A.3.6], we have

Pref
x rR “ σSpµqs “ 1 for any x P U. (5.29)

Therefore in order to obtain (5.26), by (5.28) and (5.29) it suffices to prove that

Pref
x rσSpµq “ 0s “ 1 for any x P BU. (5.30)

We adapt [BCM, Proof of Proposition 6.16] to obtain (5.30). We collect a few pre-
liminary estimates on Green function. By Lemma 5.5, there exist C1, A1 P p1,8q such
that,

ż

Bpξ,rqXU

gref
Bpξ,rqXU

py, zqµpdzq ď C1Φpξ, rq for all y P Bpξ, rq. (5.31)

By increasing A1 if necessary and by [GHL15, Theorem 1.2] and Theorem 2.12, there
exist C2, A0 P p1,8q such that for all x P U, 0 ă r ă diampU, dq{A1, we have

C´1
2

Ψprq

mpBpx, rqq
ď gref

Bpx,rqXU
px,A´1

0 rq ď C2
Ψprq

mpBpx, rqq
. (5.32)

Next we show
Pref
ξ rτξ “ 0s “ 1 for all ξ P BU . (5.33)

Indeed, for any x P U and any t ą 0, we have

Pref
x rXref

t “ xs “

ż

U

1txu ¨ preft px, ¨qdm “ 0

by the existence of heat kernel of the reflected diffusion Xref and the fact that mptxuq “ 0
thanks to the reverse volume doubling property, and hence Pref

x rτx ď ts “ 1 for any x P U .
Now letting t Ó 0 yields (5.33). Fix any ξ P BU and let t ą 0 and ϵ ą 0 be arbitrary. By
(5.33), we have

Pref
ξ pT ă tq ą 1 ´ ε, for all ξ P U , where T “ τBpξ,rqXU , (5.34)

for some r “ rpξ, t, ϵq ą 0. By decreasing r “ rpξ, t, εq if necessary, we may assume that
0 ă r ă diampU, dq{A1, where A1 P p1,8q is as above. Fixing r “ rpξ, t, ϵq as above, we
define

K1 “ Bpξ, A´1
0 rq X Spµq.

We show that there exists a constant c0 P p0, 1q that depends only on the constants
involved in the assumption such that

Pref
ξ pσK1 ă T q ě c0. (5.35)

Let e denote the equilibrium measure for K1 such that epK1q “ CapBpK1q, where B “

Bpx, rq XU and CapBpK1q denotes the capacity as defined in (3.15) corresponding to the
reflected diffusion pE ref ,FpUqq on L2pU,m

ˇ

ˇ

U
q. To prove (5.35), we observe that

Pref
z pσK1 ă τBq “

ż

K1

grefB pz, yq epdyq for all z P B. (5.36)
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To obtain (5.36), we use [FOT, Theorem 4.3.3 and the 0-order version of Exercise 4.2.2] to
conclude that both sides of (5.36) are quasi-continuous versions of the 0-order equilibrium
potential for K1 with respect to the part Dirichlet form on B. Furthermore, both sides of
(5.36) are pXrefqB-excessive from [CF, Lemma A.2.4(ii)] and Lemma 3.4(b) respectively.
By the absolute continuity property from Lemma 3.4(a) and [CF, Theorem A.2.17(iii)],
we obtain (5.36). By (5.36) and the maximum principle (3.3),

Pref
ξ pσK1 ă T q “

ż

K1

grefB pξ, yq epdyq ě grefB pξ, A´1
0 rqCapBpK1q. (5.37)

Since Spµq is a quasi-support of the Revuz measure µ of pAtqtě0 by [FOT, Theorem
5.1.5], we have µpSpµqcq “ 0 and hence

µpK1q “ µ
`

Bpξ, A´1
0 rq

˘

. (5.38)

We recall the following inequality for capacity ([FOT, p.441, Solution to Exercise 2.2.2]):
for any Radon measure ν on B with

ş

B
grefB p¨, zq νpdzq ď 1 E ref-q.e. on B and νpBzK1q “ 0,

νpK1q ď CapBpK1q.

By considering the measure νp¨q “ µpK1 X ¨q{pC1Φpξ, rqq, (5.31) and the above inequality,
we obtain

CapBpK1q
´1

ď νpK1q
´1

“ C1Φpξ, rq{µpK1q
(5.38)

“ C1
Φpξ, rq

µpBpξ, A´1
0 rqq

. (5.39)

To establish (5.35), we estimate Pref
ξ pσK1 ă T q as

Pref
ξ pσK1 ă T q

(5.37)

ě grefB pξ, A´1
0 rqCapBpK1q

(5.39)

ě C´1
1

grefB pξ, A´1
0 rqµpBpξ, A´1

0 rqq

Φpξ, rq

(5.32)

ě pC1C2q
´1ΨprqµpBpξ, A´1

0 rqq

mpBpξ, rqqΦpξ, rq

(5.4)

Á
µpBpξ, A´1

0 rqq

µpBpξ, rqq

Á 1 (by Corollary 4.7 and Proposition 4.15(c)).

By choosing ϵ “ c0{2 and using tσK1 ă T u Ă
␣

σSpµq ď t
(

Y tT ě tu ε “ c0{2, we obtain

Pref
ξ pσSpµq ď tq ě Pref

ξ pσK1 ă T q ´ Px
pT ě tq

ą c0 ´ ε “ 1
2
c0 (by (5.34) and (5.35)).

Since t ą 0 is arbitrary, the Blumenthal 0-1 law [CF, Lemma A.2.5] gives (5.30).

Remark 5.8. By the estimate in (5.39) along with [CF, Theorem 3.3.8(iii)] or [FOT,
Theorem 4.4.3(ii)], for the MMD space pU, d,m

ˇ

ˇ

U
, E ref ,FpUqq we have

Cap1pBpξ, rq X BUq ą 0 for all ξ P BU, r ą 0.
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5.2 The Doob-Näım formula

We describe trace process on the boundary and the associated trace Dirichlet form corre-
sponding to the PCAF defined in Definition 5.6.

Definition 5.9 (The boundary trace process). Let tXref
t , pPref

x qxPUu denote the reflected
diffusion process on U that satisfies the Feller and strong Feller property defined at every
starting point corresponding to the MMD space pU, d,m

ˇ

ˇ

U
, E ref ,FpUqq (see Theorem 2.12

and Proposition 2.13). Let µ and A be the smooth measure in strict sense and the corre-
sponding positive continuous additive functional in strict sense as defined in Definitions
5.1 and 5.6 respectively. We recall that the associated trace process is defined as

qXref
t :“ Xref

τt , τt :“ infts ą 0 : As ą tu. (5.40)

By Proposition 5.7 and [FOT, Theorem A.2.12] or [CF, Theorem A.3.9], Xref
t defines a

strong Markov process with right continuous sample paths on BU such that the corre-
sponding law pqPrefqxPBU satisfies qPref

x p qXref
0 “ xq “ 1 for all x P BU . By [FOT, Theorem

6.2.1(i)] and Proposition 5.7, the corresponding transition semigroup pqT ref
t qtě0 is a strongly

continuous semigroup on L2pBU, µq.

To describe the Dirichlet form pqE ref , qFpUqq on L2pBU, µq associated to the semigroup

pqT ref
t qtě0 we adopt the convention that every function in the extended Dirichlet space

FpUqe of pE ref ,FpUqq is denoted by its E ref-quasicontinuous version. By [FOT, Theorem
6.2.1(ii)] or [CF, Theorem 5.2.2] and Proposition 5.7, the associated trace Dirichlet form
is given by

qFpUq :“ tϕ P L2
pBU, µq : ϕ “ u µ-a.e. on BU and u P FpUqe,u

qE ref
pϕ, ϕq :“ E ref

pHref
BUu,H

ref
BUuq, where ϕ “ u µ-a.e. on BU and u P FpUqe, (5.41)

where Href
BUu is the 0-order hitting distribution corresponding to Xref given in (4.50). By

[FOT, Lemma 6.2.1] the form in (5.41) is well-defined.

The Dirichlet form pqE ref , qFpUqq on L2pBU, µq associated to the trace process is regular
by [FOT, Theorem 6.2.1(iii)]. By the Beurling-Deny decomposition ([FOT, Theorem
3.2.1] or [CF, Theorem 4.3.3]) every regular Dirichlet form can be uniquely decomposed
into a strongly local (or diffusion) part, a jump part and a killing part. To describe this

decomposition, let us denote by the extended Dirichlet space associated with pqE ref , qFpUqq

as qFpUqe. Then by [CF, Theorem 4.3.3], there exist symmetric strongly local bi-linear

form qE ref,pcq : qFpUqe ˆ qFpUqe, a symmetric Radon measure J on pBU ˆ BUqzpBUqdiag, and
a Radon measure κ on BU such that

qE ref
pu, vq “ qE ref,pcq

pu, vq `
1

2

ż

pBUˆBUqzpBUqdiag

prupxq ´ rupyqqprvpxq ´ rvpyqq Jpdx dyq

`

ż

BU

rupxqrvpxqκpdxq, (5.42)
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for all u, v P qFpUqe, where ru, rv denote qE ref-quasicontinuous versions of u, v respectively.
The measure κ and J are called the killing measure and jumping measure respectively.

The following lemma is the main ingredient to show that the killing measure κ is zero
as is an easy consequence of the ∆-regularity estimate shown in Lemma 4.5(a).

Lemma 5.10. Under the capacity density condition, we have

Pref
x rσBU “ 8s “ 0, for all x P U .

Proof. First, since the reflected diffusion has the property that

Pref
x rXref

t P U s “ 1 for any x P U and any t ą 0

by pACq for Xref and mpBUq “ 0, it suffices to show the claim for x P U . Then by the
Markov property at any time t ą 0, Xref hits BU after time t Pref

x -a.s. for any x P BU .
In particular, we can work with the original diffusion X on the ambient space X rather
than the reflected diffusion Xref on U .

We claim that any relatively compact open subset D Ă X with Dc non-E-polar,

PxrτD ă 8s “ 1 for any x P D. (5.43)

This follows by [BCM, Proposition 3.2], and pACq for the part process XD on D. In
particular, if U is bounded, then the desired claim follows by U “ X , (CDC) and Remark
4.2.

Thus we may and will assume that U is unbounded. Let x P U and choose ξ P

BU,R ą 0 such that R ą dpx, ξq. By Lemma 4.5(a) there exist C1, δ ą 0 such that for all
K P p1,8q

Px pτU ă 8q
(5.43)

ě Px

`

τU ď τBpξ,KRq

˘

“ 1 ´ Px

`

τBpξ,KRq ă τU
˘

ě 1 ´ ωUXBpξ,KRq
x pU X Spξ,KRqq

ě 1 ´ C1K
´δ (by Lemma 4.5(a)).

Letting K Ñ 8, we obtain the desired conclusion.

Our next result shows that the only non-vanishing term in the Beurling-Deny decom-
position (5.42) is the jump part. Our main tool is [CF, Corollary 5.6.1] that identifies
the Beurling-Deny decomposition in terms of the energy measure and the supplementary
Feller measures and Feller measures.

Proposition 5.11. The trace Dirichlet form pqE ref , qFpUqq on L2pBU, µq is of pure jump

type; that is κ and qE ref,pcq in (5.42) are identically zero.

Proof. By [CF, Corollary 5.6.1] the killing measure is the supplementary Feller measure
as defined in [CF, (5.5.7)] which in turn vanishes due to Lemma 5.10.
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By [CF, Corollary 5.6.1] and [Mur23+, Theorem 2.9], the strongly local part of

pqE ref , qFpUqq vanishes. More precisely, we view U as a uniform domain in U and ap-
ply [Mur23+, Theorem 2.9] on the MMD space pU, d,m

ˇ

ˇ

U
, E ref ,FpUqq to conclude that

the energy measure of any function f P FpUq on the boundary BU is zero. This concludes
the proof that the trace form is of pure jump type.

The goal of this section is the Doob-Näım formula stated in Theorem 5.12. We discuss
relevant previous works and approaches of proving the Doob-Näım formula. As mentioned
in the introduction, this was first shown by Doob in the setting of Green spaces [Doo].
Green spaces are locally Euclidean and hence the result does not apply to diffusion on
fractals [BC]. Doob’s work relies on existence of fine limits to define the Näım kernel and
existence of ‘fine normal derivatives’ [Doo, §8] shown by Näım [Näı]. It is unclear to the
authors whether these results of Näım can be extended to our setting and we leave it as
an interesting direction for future work. M. Silverstein showed Doob-Näım formula for
Markov chains on countable spaces using an excursion measure [Sil, Theorem 1.3]. While
it is possible to construct similar excursions in our setting [CF, §5.7], we choose a direct
approach starting from the definition of the trace Dirichlet form in (5.41) and performing
a fairly simple computation. The joint continuity of the Näım kernel established using
the boundary Harnack principle in Proposition 3.15 and the description of Martin kernel
as the Radon-Nikodym derivative of harmonic measure in Proposition 4.14 are important
ingredients in our proof.

For random walks on certain trees, the trace Dirichlet form on the boundary is
amenable to explicit computations. This was first done by Kigami [Kig10, Theorem
5.6] and was later shown to coincide with the Doob-Näım formula in [BGPW, Theorem
6.4]. Kigami also obtained stable-like heat kernel estimates [Kig10, Theorem 7.6] for the
trace process on boundary.

By extending the results of [Doo, Fuk, Sil], we show that ΘU
x0

p¨, ¨q is the jump kernel
of the trace process with respect to ωU

x0
ˆ ωU

x0
.

Theorem 5.12 (Doob-Näım formula). Let pX , d,m, E ,Fq be an MMD space and let U be
a uniform domain satisfying Assumption 4.3. Then the jump measure J of the Beurling-
Deny decomposition of the trace Dirichlet form pqE ref , qFpUqq on L2pBU, µq as given in
(5.42) is

dJpξ, ηq “ ΘU
x0

pξ, ηq dωU
x0

pξq dωU
x0

pηq.

Equivalently,

qE ref
pu, vq “

1

2

ż

pBUˆBUqzpBUqdiag

prupxq ´ rupyqqprvpxq ´ rvpyqqΘU
x0

pξ, ηq dωU
x0

pξq dωU
x0

pηq

for all u, v P qFpUq, where ru, rv denote qE ref-quasicontinuous versions of u, v respectively.

Proof. Let ξ, η P BU be distinct and r ă dpξ, ηq{4. Let A “ Bpξ, rqXBU,B “ Bpξ, 2rqcXU
and eA,B P FpUq denote the equilibrium potential for CapBpAq for the Dirichlet form
pE ref ,FpUqq as given in Lemma 3.7 such that

CapBpAq “ E ref
peA,B, eA,Bq, reA,B “ 1 E ref-q.e. on A, reA,B “ 0 E ref-q.e. on UzB,
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where reA,B is a E ref-quasicontinuous version of eA,B. Let λ
1
A,B, λ

0
A,B denote the associated

measures as given in Lemma 3.7 supported in A and UXBBpξ, 2rq respectively. By (4.53),
we have

0 ă

ż

BU

reA,B dω
U
x0

“

ż

UXBB

gUpx0, yq dλ0A,Bpyq. (5.44)

Let u P CcpUq X FpUq be such that 1Bpη,rq ď u ď 1Bpη,2rq. Since H
ref
BUu is harmonic in

U and Href
BU preA,Bq ´ reA,B “ 0 E ref-q.e. on BU , we have

E ref
pHref

BUu,H
ref
BU preA,Bqq “ E ref

pHref
BU puq, reA,Bq (by [FOT, (4.3.11), (4.3.12)])

“ ´

ż

UXBBpξ,2rq

Href
BUu dλ

0
A,B (by Lemma (3.18))

“ ´

ż

UXBBpξ,2rq

ˆ
ż

BU

upzq dωU
y pzq

˙

dλ0A,Bpyq

(4.52)
“ ´

ż

UXBBpξ,2rq

ˆ
ż

BU

upzqKx0py, zq dωU
x0

pzq

˙

dλ0A,Bpyq. (5.45)

Note that by [FOT, Lemma 6.2.4] and [CF, Theorem 5.2.8],

reA,B

ˇ

ˇ

BU
P qFpUq and reA,B

ˇ

ˇ

BU
is qE ref-quasicontinuous. (5.46)

Therefore by, the Beurling-Deny decomposition (5.42), (5.46), and Proposition 5.11, we
obtain

E ref
pHref

BUu,H
ref
BU preA,Bqq

“ qE ref
pu
ˇ

ˇ

BU
, reA,B

ˇ

ˇ

BU
q, (by (5.41))

“
1

2

ż

pBUˆBUqzpBUqdiag

pupxq ´ upyqqpreA,Bpxq ´ reA,Bpyqq Jpdx, dyq (by (5.42), (5.46))

“ ´

ż

pBUˆBUqzpBUqdiag

upxqreA,Bpyq Jpdx, dyq, (5.47)

where in the last line above we use that u, reA,B have disjoint supports (note that r ă

dpξ, ηq{4) and J is symmetric (see [CF, Proposition 4.3.2]). Therefore, we obtain
ş

pBUˆBUqzpBUqdiag
upxqreA,Bpyq Jpdx, dyq

ş

BU
u dωU

x0

ş

BU
reA,B dωU

x0

“
´E refpHref

BUu,H
ref
BU preA,Bqq

ş

BU
u dωU

x0

ş

BU
reA,B dωU

x0

(by (5.47))

“

ş

UXBBpξ,2rq

`ş

BU
upzqKx0py, zq dωU

x0
pzq

˘

dλ0A,Bpyq
ş

BU
u dωU

x0

ş

UXBBpξ,2rq
gUpx0, yq dλ0A,Bpyq

(by (5.44) and (5.45))

(3.50)
“

ż

UXBBpξ,2rq

ż

BU

ΘU
x0

py, zq
upzq

ş

BU
u dωU

x0

dωU
x0

pzq
gUpx0, yq

ş

UXBBpξ,2rq
gUpx0, ¨q dλ0A,B

dλ0A,Bpyq.

(5.48)
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Let ρ be the metric on BU ˆ BU defined by ρppx1, y1q, px2, y2qq “ maxpdpx1, x2q, dpy1, y2qq.
For px1, x2q P BU ˆ BU , let Bρppx1, x2q, rq denote the open ball of radius r in the metric
ρ centered at px1, x2q. By [FOT, Lemma 4.5.4(i)] and using reA,B “ 1 E ref-q.e. on A, we
have

upxqreA,Bpyq “ 1 for J-almost every px, yq P pBpη, rq ˆ Bpξ, rqq X pBU ˆ BUq.

Hence
ż

BU

ż

BU

upxqreA,Bpyq Jpdx, dyq ě JpBρppη, ξq, rqq. (5.49)

By Corollary 4.7, there exist C1 P p1,8q, A1 P p6,8q such that for all pξ, ηq P BUˆBU, 0 ă

r ă A´1
1 pdpx0, ξq ^ dpx0, ηqq, we have

pωU
x0

ˆ ωU
x0

q pBρppη, ξq, 2rqq ď C1pωU
x0

ˆ ωU
x0

q ppBρppη, ξq, rqq . (5.50)

Since ωU
x0

is smooth, reA,B ď 1Bpξ,2rq E ref-q.e. implies reA,B ď 1Bpξ,2rq ω
U
x0
-a.e. and hence

ż

BU

u dωU
x0

ż

BU

reA,B dω
U
x0

ď

ż

BU

1Bpη,2rq dω
U
x0

ż

BU

1Bpξ,2rq dω
U
x0

“ pωU
x0

ˆ ωU
x0

q pBρppη, ξq, 2rqq .

(5.51)
Combining (5.51), (5.49) and (5.50), we obtain

JpBρppη, ξq, rqq

pωU
x0

ˆ ωU
x0

q pBρppη, ξq, rqq
ď C1

ş

pBUˆBUqzpBUqdiag
upxqreA,Bpyq Jpdx, dyq

ş

BU
u dωU

x0

ş

BU
reA,B dωU

x0

(5.52)

for all pξ, ηq P pBU ˆ BUqzpBUqdiag, 0 ă r ă A´1
1 pdpx0, ξq ^ dpx0, ηq ^ dpξ, ηqq.

By using (3.46) in Proposition 3.15 and increasing A1 if necessary, there exist C2 P

p1,8q, γ P p0,8q such that

ˇ

ˇ

ˇ

ˇ

ˇ

ş

pBUˆBUqzpBUqdiag
upxqreA,Bpyq Jpdx, dyq

ş

BU
u dωU

x0

ş

BU
reA,B dωU

x0

´ ΘU
x0

pη, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2Θ
U
x0

pη, ξq

ˆ

r

dpx0, ξq ^ dpx0, ηq ^ dpξ, ηq

˙γ

(5.53)

for all pη, ξq P pBU ˆ BUqzpBUqdiag, 0 ă r ă A´1
1 pdpx0, ξq ^ dpx0, ηq ^ dpξ, ηqq. By (5.52)

and (5.53), there exist c0 P p0, A´1
1 q such that for all pη, ξq P pBU ˆ BUqzpBUqdiag, 0 ă r ď

c0pdpx0, ξq ^ dpx0, ηq ^ dpξ, ηqq, we have

JpBρppη, ξq, rqq

pωU
x0

ˆ ωU
x0

q pBρppη, ξq, rqq
ď 2C1Θ

U
x0

pη, ξq. (5.54)

Using (5.54), we will show the absolute continuity of J with respect to ωU
x0

ˆ ωU
x0
; that is

J ! ωU
x0

ˆ ωU
x0
. (5.55)
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By the inner regularity of J it suffices to to that if K Ă pBU ˆ BUqzpBUqdiag is compact
and pωU

x0
ˆ ωU

x0
qpKq “ 0, then

JpKq “ 0. (5.56)

IfK Ă pBUˆBUqzpBUqdiag is compact and pωU
x0

ˆωU
x0

qpKq “ 0, then by the outer regularity
of ωU

x0
ˆ ωU

x0
, for any ϵ ą 0, there exists an open set Kϵ Ă pBU ˆ BUqzpBUqdiag such that

pωU
x0

ˆ ωU
x0

qpKϵq ă ϵ. By the 5B-covering lemma [Hei, Theorem 1.2], there exists balls
Bρppyi, ziq, riq Ă Kϵ, i P I such that pyi, ziq P K, 0 ă ri ď c0pdpx0, yiq ^ dpx0, ziq ^ dpyi, ziqq

for all i P I,
Ť

iPI Bρppyi, ziq, riq Ą K and Bρppyi, ziq, riq{5q, i P I are pairwise disjoint.
Hence, we have

JpKq ď
ÿ

iPI

JpBρppyi, ziq, riqq
(5.54)

ď
ÿ

iPI

2C1Θ
U
x0

pyi, ziqpωU
x0

ˆ ωU
x0

q pBρppyi, ziq, riqq

ď 2C4
1 sup

K
ΘU

x0
p¨, ¨q

ÿ

iPI

pωU
x0

ˆ ωU
x0

q pBρppyi, ziq, ri{5qq (by (5.50))

ď 2C4
1 sup

K
ΘU

x0
p¨, ¨qpωU

x0
ˆ ωU

x0
qpKϵq

(since
Ť

iPI Bρppyi, ziq, riq Ă Kϵ and Bρppyi, ziq, riq{5q, i P I are pairwise disjoint)

ď 2C4
1 sup

K
ΘU

x0
p¨, ¨qϵ

By letting ϵ Ó 0, we obtain (5.56) since supK ΘU
x0

p¨, ¨q ă 8 due to continuity of ΘU
x0

(Proposition 3.15) and compactness of K. This concludes the proof of (5.55).

By letting r Ó 0 in the Hölder continuity estimate (5.53) and using the asymptotic
doubling property of harmonic measures in (5.51), absolute continuity in (5.55) along
with Lebesgue differentiation theorem ((4.49) in Lemma 4.12), we obtain the desired
conclusion.

Remark 5.13. The absolute continuity (5.55) can alternately be obtained using the iden-
tification of the Feller measure with jumping measure in [CF, Theorem 5.6.3] along with
[FHY, p. 3143, equation before Example 2.1]. However, we choose the more elemen-
tary approach using (5.48) because the identification of Feller measure with the jumping
measure in [CF, Theorem 5.6.3] is quite involved.

The following corollary of Doob-Näım formula relates the jump density to the bound-
ary reference measure µ and the function Φp¨, ¨q.

Corollary 5.14. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain sat-
isfying Assumption 4.3. The jumping measure is given by Jpdξ, dηq “ Jµpξ, ηqµpdξqµpdηq,
where

Jµpξ, ηq “

$

&

%

ΘU
x0

pξ, ηq, if U is bounded,

ΘU
x0

pξ, ηq

´

dνUx0
dωU

x0

pξq
dνUx0
dωU

x0

pηq

¯´1

if U is unbounded.
(5.57)

and there exists C,A P p1,8q such that for all pξ, ηq P pBU ˆ BUqzpBUqdiag such that
dpξ, ηq ă diampU, dq{A, we have

C´1 1

µ pBpξ, dpξ, ηqqqΦpξ, dpξ, ηqq
ď Jµpξ, ηq ď C

1

µ pBpξ, dpξ, ηqqqΦpξ, dpξ, ηqq
. (5.58)
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Proof. The jump kernel formula (5.57) is a direct consequence of the Doob-Naim formula
(Theorem 5.12) along with the mutual absolute continuity in Proposition 4.15(a).

By Theorem 4.6 and Proposition 4.15(c), there exist C1, A1 P p1,8q such that

C´1
1

Φpξ, Rq

ΨpRq
mpBpξ, Rqq ď µpBpξ, rqq ď C1

Φpξ, Rq

ΨpRq
mpBpξ, Rqq (5.59)

for all ξ P BU, 0 ă R ă diampUq{A1.

If U is unbounded, the estimate (5.58) follows from (4.57), Lemma 5.2 and (5.59)
provided dpξ, ηq ă dpx0, ξq{A for some large enough A P p1,8q. If dpξ, ηq ă dpx0, ξq{A
is not satisfied, then by changing the base point from x0 to y as given in the argument
using (4.63) in the proof of Theorem 4.15(c) and using (4.57), we obtain (5.58) in the case
when U is unbounded.

If U is bounded, then (3.45) in Proposition 3.15 along with Lemma 5.2, there exist
c0 P p0, 1q, C2 P p1,8q such that

C´1
2

gUpηc0dpξ,ηq, ξc0dpξ,ηqq

gUpx0, ηc0dpξ,ηqqgUpx0, ξc0dpξ,ηqq
ď Jµpη, ξq ď C2

gUpηc0dpξ,ηq, ξc0dpξ,ηqq

gUpx0, ηc0dpξ,ηqqgUpx0, ξc0dpξ,ηqq
, (5.60)

for all pξ, ηq P pBU ˆ BUq zpBUqdiag. By covering BU with balls of radii c1diampUq for
c1 P p0, 1q sufficiently and using Lemma 5.2 and increasing C1 if necessary, we can improve
(5.59) as

C´1
1

Φpξ, Rq

ΨpRq
mpBpξ, Rqq ď µpBpξ, rqq ď C1

Φpξ, Rq

ΨpRq
mpBpξ, Rqq (5.61)

for all ξ P BU, 0 ă R ď diampUq. Combining (5.61), (5.60) and Lemma 5.2, we obtain
(5.58) in the bounded case as well.

Remark 5.15. The estimates (5.61) and (5.59) along with the doubling property of m,
Lemma 5.2 and (2.12) shows that µ is a doubling measure on BU .

5.3 Heat kernel bounds for the trace process

The following occupation density formula for the boundary trace process shows that the
Green function for the trace process is same as that of the reflected diffusion.

Lemma 5.16. Let F Ă BU be a closed subset such that the part process pXrefqUzF of the
reflected diffusion on UzF is transient. Then we have the following occupation density
formula:

qEref
ξ

ż τBUzF

0

fp qXref
s q ds “

ż

BUzF

gref
UzF

pξ, yqfpyqµpdyq for all ξ P BUzF, f P B`pBUzF q.

(5.62)

Proof. Let D “ UzF and pref,Dt p¨, ¨q denote the continuous heat kernel corresponding

to the part process pXrefqUzF with respect to m
ˇ

ˇ

U
which exists due to Lemma 3.4 and
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Theorem 2.12. Let P ref,D
t denote the corresponding semigroup.

qEref
ξ

ż τBUzF

0

fp qXref
s q ds “ Eref

ξ

ż τBUzF

0

fpXref
τs q ds

“ Eref
ξ

ż 8

0

fpXref
s^τD

q dAs (by [CF, Lemma A.3.7(i)])

“ lim
δÓ0

Eref
ξ

ż 8

δ

fpXref
s^τD

q dAs

“ lim
δÓ0

Eref

pref,Dδ pξ,¨q dm

ż 8

0

fpXref
s^τD

q dAs

“ lim
δÓ0

ż 8

0

ż

BUzF

´

Psp
ref,D
δ pξ, ¨q

¯

pyqfpyqµpdyq ds (by [CF, (4.1.25)])

“ lim
δÓ0

ż 8

δ

ż

BUzF

pref,Ds pξ, yqfpyqµpdyq ds

“

ż 8

0

ż

BUzF

pref,Ds pξ, yqfpyqµpdyq ds

“

ż

BUzF

ˆ
ż 8

0

pref,Ds pξ, yq ds

˙

fpyqµpdyq “

ż

BUzF

gref
UzF

pξ, yqfpyqµpdyq.

Remark 5.17. A weaker version of (5.62) with every ξ replaced with quasi-every ξ can
be obtained following [FOT, Proof of Lemma 6.2.2] (see in particular [FOT, (6.2.10) and
(6.2.11)]).

The following exit time lower bound is a key ingredient in heat kernel estimates for
the trace process. The proof uses sub-Gaussian heat kernel estimates for the reflected
diffusion obtained in [Mur23+] (see Theorem 2.12).

Proposition 5.18. There exist C1, A1 P p1,8q such that all ξ P BU, 0 ă r ă

diampBU, dq{2, we have
qEref
ξ rτBpξ,rqs ě C´1

1 Φpξ, rq. (5.63)

Proof. By Remark 5.8 for any ξ P BU, 0 ă r ă diampBUq{2, then the part process

pXrefqUzpBUXBpξ,rqcq of the reflected diffusion is transient.

By Theorem 2.12 and [GHL15, Theorem 1.2], there exist A0, A1, C2 P p1,8q such that
for all x P U, 0 ă r ă diampUq{2, we have

gref
Bpx,rqXU

py, zq ě C´1
2

Ψprq

mpBpx, rqq
for all y, z P Bpx,A´1

0 rq. (5.64)

By domain monotonicity of Green function, we have

gref
UzpBUXBpξ,rqcq

p¨, ¨q ě gref
Bpξ,rqXU

p¨, ¨q (5.65)
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for all ξ P BU, r ă diampBUq{2.

Therefore by applying (5.62) with f ” 1, for all ξ P BU, 0 ă r ă diampBUq{2, we have

qEref
ξ rτBpξ,rqs “

ż

BUzpBpξ,rqcq

gref
UzpBUXBpξ,rqcq

pξ, yqµpdyq
(5.65)

ě

ż

BUzpBpξ,rqcq

gref
Bpξ,rqXU

pξ, yqµpdyq

ě C´1
2

Ψprq

mpBpξ, rqq
µpBU X Bpξ, rq (by (5.64)). (5.66)

The exit time lower bound (5.63) follows from (5.66) and (5.61).

Given the exit time bound (Proposition 5.18) and jump kernel bound (Corollary 5.14)
for the trace process on the boundary, we obtain stable-like heat kernel bound for the
trace process using Theorem 2.32.

Theorem 5.19. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain

satisfying Assumption 4.3 such that pBU, dq is a uniformly perfect metric space. Let p qXref
t q

denote the µ-symmetric boundary trace process of the reflected diffusion Xref as given in
Definition 5.9. Then p qXref

t q admits a continuous heat kernel and satisfies the stable-like
heat kernel bound SHKpΦq, where Φ is as given in Lemma 5.2 and (5.2).

Proof. Let pqE ref , qFpUqq on L2pBU, µq denote the corresponding Dirichlet form as given

in Definition 5.9. We recall from Proposition 5.11 that pqE ref , qFpUqq is of pure-jump
type. By Theorem 2.32, the doubling property of µ in Remark 5.15, the exit time lower
in Proposition 5.18 and the jump kernel bound in Corollary 5.14, we obtain that the
stronlgy continuous contraction semigroup pQtqtą0 corresponding to the trace Dirichlet

form pqE ref , qFpUqq on L2pBU, µq admits a continuous heat kernel satisfying the stable-like
estimate SHKpΦq.

Next, we identify this continuous heat kernel with the heat kernel of the transition
semigroup pPtqtą0 corresponding to the trace process qXref

t using an argument similar to
Lemma 3.4(a). By the same argument as the proof of (5.62) using [CF, Lemma A.3.7(i)
and (4.1.26)] we obtain that the resolvent is absolutely continuous with respect to µ.
Hence by [FOT, Theorem 4.2.4.] the transition semigroup pPtq satisfies the absolute
continuity condition pACq with respect to µ. Due to [FOT, Theorem 6.2.1], we can use
[FOT, Proof of Theorem 4.2.8] to obtain

Ptpx, dyq “ Qtpx, dyq for any t P p0,8q and for q.e. x P BU.

Let f be a bounded continuous function on BU . Then for any s, t ą 0 and any x P BU ,
by Ptf “ Qtf q.e. and pACq of Ps we obtain

PtpPsfqpxq “ pPt`sfqpxq “ PspPtfqpxq “ PspQtfqpxq,

and letting s Ó 0 yields
pPtfqpxq “ pQtfqpxq

by dominated convergence theorem, since pPsfqpyq Ñ fpyq as s Ó 0 for any y P BU by the
continuity of f , right continuity of sample paths, and PspQtfqpxq Ñ pQtfqpxq as s Ó 0 by
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the continuity of Qtf . The continuity of QD
t f can be easily verified using HKpΦq. Thus

Ptpx, dyq “ Qtpx, dyq for any t ą 0 and any x P BU .

Remark 5.20. Let pX , d,m, E ,Fq be an MMD space and let U be a uniform domain
satisfying the assumptions of Theorem 5.19. Let Cap,Capref ,Captr denote the capacities
for the spaces pX , d,m, E ,Fq, pU, d,m

ˇ

ˇ

U
, E ref ,FpUqq, and pBU, d, µ, qE ref , qFpUqq as defined

in (3.15) respectively. Using the Poincaré inequality in [CKW, Definition 7.5] for lower
bound on capacity across annuli and [CKW, Proposition 2.3(5)] for a matching upper
bound we obtain the following estimate: there exist C,A P p1,8q such that for all ξ P

BU, 0 ă r ă diampBU, dq{A, we obtain

C´1µpBpξ, rqq

Φpξ, rq
ď Captr

Bpξ,2rqXBUpBpξ, rq X BUq ď C
µpBpξ, rqq

Φpξ, rq
(5.67)

On the other hand, by [GHL15, Theorem 1.2], Theorem 2.12 and [BCM, Lemma 5.24],
there exist C,A P p1,8q such that

C´1mpBpξ, rqq

Ψprq
ď Capref

Bpx,2rqXU
pBpx, rq X Uq ď C

mpBpx, rqq

Ψprq
(5.68)

for all x P U, 0 ă r ă diampU, dq{A, and

C´1mpBpx, rqq

Ψprq
ď CapBpx,2rqpBpx, rqq ď C

mpBpx, rqq

Ψprq
(5.69)

for all x P X , 0 ă r ă diampX , dq{A. Combining (5.67), (5.68) (5.69), and (5.4), there
exist A P p1,8q such that

CapBpξ,2rqpBpξ, rqq — Capref
Bpξ,2rqXU

pBpξ, rq X Uq — Captr
Bpξ,2rqXBUpBpξ, rq X BUq

for all ξ P BU, 0 ă r ă diampBU, dq{A.

By Lemma 4.10 and Remark 4.11(a), Theorem 5.19 applies to the reflected Brownian
motion on any non-tangentially accessible domain on Rn, n ě 2. Theorem 5.19 also applies
to the reflected Brownian motion on the Sierpiński carpet domain formed by removing
either the bottom line or the outer square boundary (by [Lie22, Proposition 4.4] and[CQ,
Proposition 2.4] and Remark 4.11(b)).

Another related direction of research is the Calderón’s inverse problem. In our set-
ting, we can phrase it as follows: Does the Dirichlet form of the boundary trace process
determine the Dirichlet form of the underlying reflected diffusion? We refer to [SU] for
further context, background, and a solution to this problem for a class of Dirichlet forms
in Rn.

References

[Aik01] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform
domain. J. Math. Soc. Japan 53(1), 119–145 (2001)

78



[Aik08] H. Aikawa. Equivalence between the Boundary Harnack Principle and the
Carleson estimate. Math. Scand. 103, no. 1 (2008), 61–76.

[AH] H. Aikawa, K. Hirata. Doubling conditions for harmonic measure in John
domains. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 2, 429–445.

[AHMT1] M. Akman, S. Hofmann, J. M. Martell, T. Toro. Square function and non-
tangential maximal function estimates for elliptic operators in 1-sided NTA
domains satisfying the capacity density condition. Adv. Calc. Var. 16(2023),
no.3, 731–766.

[AHMT2] M. Akman, S. Hofmann, J. M. Martell, T. Toro. Perturbation of elliptic opera-
tors in 1-sided NTA domains satisfying the capacity density condition. Forum
Math. 35 (2023), no. 1, 245–295.
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