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Abstract

We study the boundary trace processes of reflected diffusions on uniform do-
mains. We obtain stable-like heat kernel estimates for such a boundary trace pro-
cess when the diffusion on the underlying ambient space satisfies sub-Gaussian heat
kernel estimates. Our arguments rely on new results of independent interest such
as sharp two-sided estimates and the volume doubling property of the harmonic
measure, the existence of a continuous extension of the Naim kernel to the topo-
logical boundary, and the Doob—Naim formula identifying the Dirichlet form of the
boundary trace process as the pure-jump Dirichlet form whose jump kernel with
respect to the harmonic measure is exactly (the continuous extension of) the Naim
kernel.
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1 Introduction

The goal of this work is to study the boundary trace of reflected diffusions on U, where
U is a ‘nice’ domain. Given a reflected diffusion process on U, the boundary trace pro-
cess on OU is obtained by removing the path of the reflection diffusion in the interior
U in a certain sense. The resulting boundary trace process is a jump process on OU.
From an analytic viewpoint, the generator of the boundary trace process can be viewed
as a non-local (integro-differential) operator on the boundary 0U associated to a local
(differential) operator that is the generator of the corresponding diffusion process. For
reflected Brownian motion on smooth domains, this non-local operator on the boundary
is essentially the classical Dirichlet-to-Neumann map.



Although we are motivated by probabilistic considerations related to the boundary
trace process mentioned above, the induced non-local operator on the boundary is also
widely studied in the context of electrical impedance tomography and Calderén’s inverse
problem [Uhl]. In a different direction, free boundary regularity for the obstacle problem
was obtained for the fractional Laplacian by using the fact that it arises as an induced
boundary operator corresponding to a degenerate elliptic (diffusion) operator [CSS]. More
generally, on the basis of such a correspondence between local (diffusion) operators on a
domain and non-local operators on its boundary, properties of non-local operators can be
understood by using better knowledge of the corresponding local operators [CS, §5].

A classical example of a trace process is the Cauchy process (rotationally symmetric 1-
stable process) on R¥ that arises as the boundary trace process of the reflected Brownian
motion on the upper half space RY x [0, 00). The analytic version of this probabilistic fact
is that the Dirichlet-to-Neumann map on the boundary of the (N + 1)-dimensional upper
half-space is the square-root of the Laplacian on R¥, the generator of the Cauchy process
on RY. Given this classical example, the following natural guiding question motivates
this work:

“Does the boundary operator behave like a fractional Laplace operator for more
general diffusions (elliptic operators) and domains?”

Our main results answer this question affirmatively by obtaining quantitative versions of
the following statement for a large class of reflected diffusions and domains:

“The boundary trace process behaves like a rotationally symmetric stable pro-
cess. Equivalently, the induced non-local operator on the boundary behaves like
a fractional Laplace operator.”

In this work, we quantify the above statement on the boundary trace process in various
ways by considering stable-like estimates of its jump kernel (equivalently, the integral
kernel of the induced non-local operator on the boundary), of its mean exit times from
balls, and of its transition probability density (equivalently, the heat kernel associated
to the non-local operator on the boundary). The significance of our results is that the
boundary trace process shares many desirable properties of rotationally symmetric stable
processes on RY (or equivalently, the fractional Laplace operator) such as elliptic and
parabolic Harnack inequalities. We note that stable-like heat kernel estimates for jump
processes have been extensively studied for the past two decades; see, e.g., [BL, BGKO09,
CKO03, CK08, CKW, GHL14, GHH23, GHH23+, Mal, MS19]. Our heat kernel estimates
for the boundary trace are new even for reflected Brownian motion on Lipschitz domains
in RY and for reflected diffusions on the upper half-space generated by uniformly elliptic
divergence-form operators. Our results are applicable also to diffusions on nice fractals
such as the Brownian motion on the standard Sierpinski carpet if we take as the domain
U, e.g., the complement of the bottom line segment or that of the boundary of the unit
square.

More precisely, this paper is aimed at establishing the following results (i), (ii) and
(iii) for a reflected diffusion on a uniform domain satisfying the capacity density condition
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(a natural condition guaranteeing that its boundary is thick enough everywhere in every
scale), in the general setting of a strongly local regular symmetric Dirichlet space equipped
with a complete metric and satisfying the volume doubling property and sub-Gaussian
heat kernel estimates:

(i) Two-sided estimates on the harmonic measure and the associated elliptic measure at
infinity that are sharp up to multiplicative constants (Theorem 4.6 and Proposition
4.15).

(ii) The identification of the Dirichlet form of the boundary trace process as the bilinear
form given by the Doob—Naim formula, which in particular shows that the boundary
trace process is a pure-jump process (Theorem 5.8). Equivalently, this is an expres-
sion for the non-local operator on the boundary associated with a local (diffusion)
operator on the domain.

(iii) Two-sided heat kernel estimates for the boundary trace process that are similar
to those for the rotationally symmetric stable processes on the Euclidean space
(Theorem 5.13).

Let us first start in Subsection 1.1 with an overview of the most relevant results
available in the literature and a summary of our main results. Then in Subsection 1.2 we
give the precise statements of our main results, introducing key notions needed for this
purpose but referring to the main text for the technical details underlying their definitions.

1.1 Overview

A classical theorem of Spitzer [Spi] (see also [Mol]) implies that the boundary trace process
of the reflected Brownian motion on the (N + 1)-dimensional upper half-space RY x [0, «0)
is the N-dimensional Cauchy process. Molchanov and Ostrowski [MO] discovered that
one can realize every rotationally symmetric stable process on RY as the trace process
on the boundary of a reflected diffusion on the (N + 1)-dimensional upper half-space.
This was later revisited in a celebrated work [CS] by Caffarelli and Silvestre to analyze
the fractional Laplace operator and is now known as the Caffarelli-Silvestre extension.
They demonstrated in [CS, §5] that properties of non-local operators could be understood
by using corresponding properties of the associated local operators. The local and non-
local operators in [CS] are the generators of the diffusion in the upper half-space and its
boundary trace process in [MO], respectively. Our present work is aimed at extending
this idea to understand the behavior of the boundary trace process (a jump process) by
using that of the associated diffusion process.

Let us examine the results of Molchanov—Ostrowski [MO] and Caffarelli-Silvestre [CS]
in further detail to provide context. For a € (0,2), we recall that the rotationally sym-
metric a-stable process is generated by the fractional Laplace operator (—A)o‘/ 2 on RY,

f@) — fy)

RN ’Zlf—y|N+a )

(—A)Q/Zf(x) = CNa



where ¢y, € (0,00) is a normalizing constant. Writing RN = {(z,y) : x € RN, y € R}
as RV x R, we consider the Dirichlet form

£ (uyu) = j j IVl (e, 9y dy de

on L2(RN x [0, ), ]y\l_a dy dz). The corresponding diffusion is generated by the degen-
erate elliptic operator

1 _
Lou = A + ——yu + u. (1.1)
Y

Gaussian heat kernel estimates for the diffusion generated by such a degenerate elliptic
operator follow from results of [FIKS, Gri9l, Sal]. To compute the Dirichlet form of the
trace process on the boundary, we consider the Dirichlet boundary value problem

Lou=0onRY x (0,00), wu(z,0)= f(x), (1.2)

where f: RY — R is a prescribed boundary value in a suitable function space. Then by
[CS, §3.2], the Dirichlet energy of the solution u to (1.2) can be expressed in terms of the
boundary data f as

J.. f IVl )yl dyde = | FOA)R 1) de (1.3)

The equality (1.3) implies that the boundary trace process of the reflected diffusion gen-
erated by L, is the rotationally symmetric a-stable process. We refer to [Kwa] for a
recent result in this direction characterizing the class of Lévy processes on R arising as
the boundary traces of translation-invariant diffusions on R x [0, R) for some R € (0, o0].

An earlier example of an expression analogous to (1.3) that relates a local operator on
a domain to a non-local operator on its boundary is the Douglas formula due to J. Douglas
[Dou], which states that the harmonic function « on the unit disk D := {z € R? : |z| < 1}
with boundary value regarded as a function f: [0,27) — R has Dirichlet energy given by

e L[ [ U0 = O
Jy et = ), et o o

The right-hand side of (1.4) can be viewed as the Dirichlet form of the boundary trace
process corresponding to the reflected Brownian motion on the unit disk. This result was
later extended to any finitely connected bounded domain D in R? with smooth boundary
0D by Osborn [Osb]. He proved there that, if u is a harmonic function on such D with
boundary value f: 0D — R, then

2 1 J 20%gp(&,m)
dr = = — ———==d d 1.5
| wut@ar= 5| | - ropRitag o, 05)
where o is the surface measure on 0D, gp(-,-) is the Green function on D and %, %

denote the inward-pointing normal derivatives in £, 7, respectively. More generally, now
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(1.5) is known to hold for any bounded domain D with C3-boundary in RY with N > 2
as stated, e.g., in [CF, (5.8.4)] and was also extended by M. Fukushima [Fuk, §2] to
uniformly elliptic divergence-form operators with C3-coefficients on such domains.

Soon after [Osb], J. Doob [Doo] found a remarkable extension of (1.4) and (1.5) to
domains that are not necessarily smooth. He stated the result under an abstract potential
theoretic setting of (locally Euclidean) Green spaces in the sense of Brelot and Choquet
[BC], in which the boundary values of the harmonic functions are prescribed on the Martin
boundary 0y D of the domain D. To describe Doob’s result, we recall the Naim kernel

©F (-,-) defined by

gp(z,y)
= lim lim
(é n) T—E Yy—n gD(IU) )gD(x07 y)

for fﬂ]eaMDa f7é777 (16>

where the limits are with respect to the fine topology, x¢ € D is an arbitrary base point,
and gp(-,-) is the Green function on D as before. The existence of the above limits in
the setting of Green spaces follows from the fundamental work [Nai] by L. Naim. Then
it was shown in [Doo, Theorem 9.2] that the Doob—Naim formula

| wir@an= 5[ [ - fopredemask@ a0

holds if w is a harmonic function on the domain D with fine boundary value f: 0y D —
R, where wfo denotes the harmonic measure, i.e., the probability distribution of the
position of the first hitting to dy, D, of the Brownian motion on D started at zy. There is
a version of the Doob—Naim formula for transient symmetric Markov chains on countable
state spaces due to M. Silverstein [Sil, Theorem 3.5]; see also [BGPW, Theorem 6.4]
for a simple proof of it for nearest-neighbor random walks on trees. The equality (1.3)
from [CS] mentioned above can be considered as an extension of (1.7) to the case of the
reflected diffusion generated by L, as in (1.1); see also Example 5.21 for this connection.

Our principal concern in this paper is to establish nice two-sided heat kernel estimates
for jump-type Dirichlet forms which arise from the Dirichlet forms of symmetric diffusions
in the same way the right-hand side of (1.7) does from the Dirichlet form § V()| dx of
the reflected Brownian motion on D. We consider a general symmetric diffusion with gen-
eral locally compact state space, or more precisely, an m-symmetric diffusion associated
with a strongly local regular symmetric Dirichlet form (€, F) on L?(X,m) where (X, d) is
a metric space which contains at least two elements and whose every bounded closed set
is compact and m is a Radon measure on X with full support. We call (X,d,m,E, F) a
metric measure Dirichlet space, or a MMD space for short. We refer to [FOT, CF]
for the theory of regular symmetric Dirichlet forms.

The only essential a priori requirement on the MMD space for the purpose of this
paper is that it satisfy the metric doubling property and the elliptic Harnack inequality.
The MMD space (X, d, m,E, F) is said to satisfy the metric doubling property (MD)
if there exists NV € N such that any open ball B in (X, d) can be covered by N balls with
radii half of that of B, and to satisfy the (scale-invariant) elliptic Harnack inequality



(EHI) if
esssuph < C'essinf h EHI
B(z,8r) B(z,0r)
for any open ball B(z,r) in (X, d) and any non-negative harmonic function i on B(z,r)
for some C' € (1,0) and § € (0,1). The metric doubling property is the weakest possible
requirement to guarantee decent behavior of the geometry of (X, d) in relation to heat
kernel estimates, and is easily seen to follow from the well-known volume doubling
property (VD) of m (or (X,d, m)), i.e., the existence of some C € (1,0) with

m(B(z,2r)) < Cm(B(x,r)) forall z € X and all r € (0, w0). VD

It is also reasonable to assume EHI because, in view of (1.6) and (1.7) above, we should
need to have good control on the quantitative behavior of the Green function gp(x,-) and
the harmonic measure w2, which are indeed non-negative harmonic functions on D\{z}
and in zg € D, respectively. As established in [Stu96, BGK12, GHL15], EHI is implied by
the conjunction of VD and Gaussian or sub-Gaussian heat kernel estimates. Our
setting therefore includes diffusions with Gaussian heat kernel estimates as considered
in [Gri9l, Sal, Stu96] such as Brownian motion on the Euclidean space or Riemannian
manifolds with non-negative Ricci curvature, diffusions generated by uniformly elliptic
divergence-form operators on RY [Mos61] or degenerate elliptic operators [FKS], diffu-
sions on connected nilpotent Lie groups associated with left-invariant Riemannian metrics
or with sub-Laplacians of the form A = 3% | X? for a family {X,}_, of left-invariant vec-
tor fields satisfying Hormander’s condition [VSC], and weighted Euclidean spaces and
Riemannian manifolds [GrS, Gri09]. Another significant class of examples arise from dif-
fusions on fractals such as the Sierpinski gasket, the Sierpinski carpet and their variants
[Bar98, BB&Y, BB92, BBY9, BP, BH, FHIK, Kum], where Gaussian heat kernel estimates
are no longer true but sub-Gaussian ones do hold.

As mentioned above, our goal is to prove heat kernel estimates for the Dirichlet forms
obtained from general symmetric diffusions through the counterpart of the Doob—Naim
formula (1.7). A first observation to be made toward this aim is that such a jump-type
Dirichlet form should be viewed as a quadratic form corresponding to a self-adjoint non-
local operator with respect to a reference measure p that is mutually absolutely continuous
with respect to the harmonic measure w?. Due to (1.5), in the case of the reflected
Brownian motion on a bounded domain with smooth boundary, this reference measure
1 is usually taken to be the surface measure on the boundary, and then the generator
of the boundary trace process is an integro-differential operator and can be identified as
the Dirichlet-to-Neumann (or voltage-to-current) map as shown in [Hsu, Section 4]. In
general, however, even for uniformly elliptic operators on smooth domains, the harmonic
measure might differ significantly from the surface measure, and in fact can be singular
as proved in [CFK, MM]. It is worth mentioning that our results on the stable-like heat
kernel estimates for boundary trace processes apply also to situations where the harmonic
measure is singular with respect to the surface measure (see Example 5.24).

By virtue of the nice characterizations of heat kernel estimates for jump-type Dirich-
let forms established in [CKW, GHH23, GHH23+], the proof of heat kernel estimates



for boundary trace processes is reduced to verifying a set of quantitative bounds on the
reference measure i and on the jump kernel ju(f ,n) with respect to du(§) du(n) of our
jump-type Dirichlet form. Those quantitative bounds include the volume doubling prop-
erty VD of p and matching two-sided estimates on the jump kernel ;u(f ,1), which, for
our jump-type Dirichlet form analogous to the right-hand side of (1.7), is given by

- dw?  dw?
e m) 1= O7,(€.1) =€) 2 o). (L8)

Since the Naim kernel G)g)(-, -) is defined in terms of a ratio of the Green function gp by

(1.6), a natural choice of the setting for trying to prove such bounds on p and 3# would
be a domain D for which we could expect both the volume doubling property VD of the
harmonic measure wfo and some good control on the boundary behavior of the Green
function gp. Arguably the most general class of domains D known in the literature to
satisfy these requirements is that of uniform domains satisfying the capacity density
condition (CDC). Indeed, this class of domains in RY was shown by Aikawa and Hirata
[AH] to satisfy nice two-sided bounds on the harmonic measure which imply its volume
doubling property, and by Aikawa [AikO1] to satisfy the (scale-invariant) boundary
Harnack principle (BHP), which is a well-established analogue of EHI for the ratios of
positive harmonic functions with zero Dirichlet boundary condition along domain bound-
ary. BHP for uniform domains is in fact available in our setting of an MMD space with
MD and EHI as proved in [Liel5, BM19, Che] and allows us to extend the Naim kernel
©2 (-,-) continuously to the domain boundary, and as one of our main results we ex-
tend the two-sided bounds on the harmonic measure as in [AH] to any uniform domain
satisfying CDC in any MMD space with MD and EHI.

Uniform domains were introduced independently by Martio and Sarvas [MS] and Jones
[Jon]. This class includes Lipschitz domains, and more generally non-tangentially accesible
(NTA) domains introduced by Jerison and Kenig [JIX]. We note that, due to the similarity
in the definitions, uniform domains are also referred to as one-sided NTA domains in, e.g.,
[AHMT1, HMM]. Uniform domains are relevant in various contexts such as extension
property [BS, Jon, HerK], Gromov hyperbolicity [BHK], boundary Harnack principle
[AikO1, GyS], geometric function theory [MS, GeHa, Geh], and heat kernel estimates
[GyS, CKKW, Lie22, Mur24]. One reason for the importance of uniform domains is their
close connection to Gromov hyperbolic spaces [BHK]. Another reason is their abundance;
in fact, by [Raj, Theorem 1.1] every bounded domain is arbitrarily close to a uniform
domain in a large class of metric spaces.

The NTA domains introduced in [JK] are examples of uniform domains satisfying
CDC. CDC guarantees that every boundary point is regular for the associated diffusion
and can be viewed as a stronger version of Wiener’s test of regularity. Uniform domains
satisfying CDC provide a fruitful setting to study various aspects of the harmonic measure
[Anc86, AH, AHMT1, AHMT2, CDMT]. For Brownian motion on the Euclidean space,
CDC for a domain D is formulated as the following estimate:

Cappeon(B(E,7)) < Cappon(B(E,r)\D) for all { € dD, 0 < r < diam(D), (1.9)



where Capp ¢ o,y (K) denotes the capacity between the sets K and B(, 2r)¢. The fact that
uniform domains with CDC (1.9) satisfy good properties of the harmonic measure was
recognized by Aikawa and Hirata [AH]. As we will see later, estimates on the harmonic
measure play an important role in our work.

We are thus led naturally to the setting of a uniform domain U satisfying CDC in an
MMD space (X,d,m,E, F) with MD and EHI. We could state our main results under
this setting, but for the sake of simplicity of their statements and proofs, in most parts of
this paper we will assume that (X, d, m, £, F) satisfies VD and sub-Gaussian heat kernel
estimates instead of MD and EHI. There is essentially no loss of generality in assuming
so, because it was proved in [BCM, Theorem 7.9] (see also [BCM, Theorem 5.4] and
[KM23, Theorem 4.5]) that MD and EHI hold if and only if there exist a metric # on X
quasisymmetric to d and an £-smooth Radon measure v on X with full £-quasi-support
such that the time-changed MMD space (X,0,v,E", F¥) satisfies VD and sub-Gaussian
heat kernel estimates. Here the quasisymmetry of 6 to d means that every annulus in 6 is
comparable to one in d in a uniform fashion, and the assumed properties of v guarantees
that an MMD space (X,0,v,E", F") over (X, 6,v) can be uniquely defined in such a way
that F¥nC.(X) = FnC.(X) and " (u,u) = E(u, u) for any u € FNC.(X). In particular,
(X,0,v,E", F¥) shares the same harmonic functions, Green functions, harmonic measures,
and boundary trace processes as (X,d,m,&,F), and hence studying these objects for
(X,d,m, &, F) is equivalent to doing so for (X,0,v,EY, F"). Similarly, for the notion of
uniform domain, we adopt a particular formulation of it due to [Mur24] which is stable
under the change of the metric to one quasisymmetric to the original one. Therefore
by considering (X, 0,v,E", F") instead of (X,d, m,E, F), we may assume without loss of
generality that our MMD space (X, d, m, &, F) satisfies VD and sub-Gaussian heat kernel
estimates.

The last missing piece for our study of boundary traces of reflected diffusions to make
sense in this setting is the existence of a nice reflected diffusion on U. This existence in the
present generality has recently been proved by the second-named author in [Mur24]. More
specifically, it was proved that the reflected Dirichlet space (U, d, m|g, £, F(U)) on U
defined in a standard way is an MMD space satisfying sub-Gaussian heat kernel estimates
of the same form as (X,d, m,&, F). Since (U, d, m|5) is easily seen to satisfy VD as well,
the problems of the validity of the Doob—Naim formula analogous to (1.7) and of obtaining
heat kernel estimates for the resulting jump-type Dirichlet form now make perfect sense,
and can be studied on the basis of the nice properties of the reflected Dirichlet space
(U, d, mz, ™, F(U)) proved in [Mur24]. It is precisely in this setting that we prove our
main results (i), (ii) and (iii) summarized before the beginning of this Subsection 1.1.

Remark 1.1. In fact, very similar results have been obtained independently in a recent
preprint [CC24b] by Cao and Chen. Their result on the jump kernel of the boundary trace
Dirichlet form gives only two-sided estimates on it and not its exact identification as the
Naim kernel @mUO(-, -). On the other hand, their framework is slightly more general than
ours, mainly in that they assume the validity of CDC (1.9) only for 0 < r < diam(dU)
instead of 0 < r < diam(U), and they have also proved that this weaker version of CDC is
equivalent to VD of (0U, d,wY,); see [CC24b, Theorem 6.1 and Remark 6.2]. It is possible



to extend most of our results in Sections 4 and 5 under this weaker version of CDC with
very few changes to the statements and the proofs, but we refrain from doing so in the
main text of this paper for the sake of better presentation of our results, and just briefly
explain the necessary changes to the statements and the proofs under this more general
setting in Subsection 5.4. We also provide a more detailed comparison of our results with
those of [CC24b] in Remark 5.20.

To illustrate the generality of our result on stable-like heat kernel estimates for bound-
ary trace processes, we list a few examples of diffusions and domains to which the result
applies. The most classical ones among such are reflected Brownian motion on Lipschitz
and more generally NTA domains in R, which in particular include domains with fractal
boundaries such as the von Koch snowflake domain. More generally, reflected Brown-
ian motion could be replaced with a reflected diffusion generated by a uniformly elliptic
divergence-form operator as in [Mos61] or degenerate elliptic operators corresponding to
Ay-weights as in [FI{S]. Another class of examples is given by NTA domains in the Heisen-
berg group equipped with the Carnot—Carthéodory distance and the diffusion generated by
the corresponding left-invariant sub-Laplacian satisfying the Hormander condition treated
in [VSC] as mentioned before. Specific examples of NTA domains in this setting are given
in [CG, CGN, Gre]. Our result on the stable-like heat kernel estimates for boundary trace
processes applies also to the Brownian motion on the Sierpinski carpet constructed in
[BB89], which can be seen from [Mur24, Theorem 2.9] to be identified as the reflected
diffusion on the complement of the outer square boundary and on that of the bottom line.
These sets are indeed uniform domains in the Sierpiniski carpet (see [Lie22, Proposition
4.4] and [CQ), Proposition 2.4]) and easily seen to satisfy the capacity density condition
with respect to the diffusion, and for them our other results on the two-sided estimates
of the harmonic measure and on the identification of the boundary trace Dirichlet form
through the Doob—Naim formula are also certainly new.

We conclude this subsection with a description of the relation of our result on the
Doob—Naim formula to the well-established theory of characterizing the trace Dirichlet
forms of regular symmetric Dirichlet forms in terms of the Feller measures, developed
in [FHY, CFY] and [CF, Sections 5.4-5.7] by following an old idea of M. Fukushima in
[Fuk]. The definition of the Feller measure appearing in this theory is entirely different
from that of the Naim kernel as presented in (1.6). Even though Fukushima [Fuk] proved
that they give rise to the same jump-type Dirichlet form in the (locally) Euclidean setting,
this coincidence is not at all obvious from the definitions of the Feller measure and the
Naim kernel, and it is not clear to us to what generality it could be extended. Our proof
of the Doob—Naim formula is in fact completely independent of the theory of the Feller
measures in [Fuk, FHY, CFY, CF]. It is based on direct calculations of the jump, killing
and strongly local parts of the trace form, and our argument for the jump part is much
simpler than Doob’s in [Doo] thanks to the volume doubling property VD of the harmonic
measure wfo and the continuity of the Naim kernel @fo(-, -) up to the domain boundary
(in the usual topology rather than in the fine topology as considered by Naim [Nail).
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1.2 Summary of the setting and statement of the main results

As mentioned in Subsection 1.1, in most parts of this paper we consider a metric space
(X, d) which contains at least two elements and whose every bounded closed set is com-
pact, a Radon measure m on X with full support, and a strongly local regular sym-
metric Dirichlet form (€, F) on L?*(X,m). We call (X,d,m,€,F) a metric measure
Dirichlet space, or a MMD space for short, set B(x,r) := {y € X | d(x,y) < r},
diam(A) := sup, s d(z,y) (sup J := 0) and dist(x, A) := infycs d(z,y) (inf & := )
for z € X, r € (0,0) and A X, and write A and 0A for the closure and boundary,
respectively, of A < X in X. The strongly continuous contraction semigroup on L*(X,m)
associated with (€, F) is denoted by (7})s~0. We refer to the first and second paragraphs
of Subsection 2.3 below for a brief summary of the definitions adopted here from the the-
ory of regular symmetric Dirichlet forms presented in [FOT, CF]. We collect in Section 2
plenty of other relevant definitions and results from the potential theory and heat kernel
estimates for regular symmetric Dirichlet forms.

To keep the presentation of the main results simple, throughout this subsection we
assume that (X,d, m,E, F) satisfies the volume doubling property VD (Definition 2.2)
and the heat kernel estimates HKE(W) (Definition 2.15)

Cs d(ﬂ?, y)
m(B(x, U-1(1))) Loa) (xp—l@)

C1 i~ d(x,y)
) S S B ) eXp( CQ”’( t >)
(1.10)
for m-a.e. z,y € X for each t € (0, 00) for some ¢, ¢o, c3,0 € (0,0). Here {p;};~o denotes the
heat kernel of (X, m,E, F), i.e., a family of Borel measurable functions p;: X x X — [0, o0]
such that p, is an integral kernel for 7, with respect to m for each ¢t € (0,00), ¥ is
a scale function, i.e., a homeomorphism from [0,00) to itself satisfying (2.38) for any
r,R € (0,00) with r < R for some (1, 55, C € (1,0) with 51 < [, and U [0,00) —
[0,0) is defined by (2.39); for example, if 8 € (1,0) and ¥(r) = r? for any r € [0, ),
then W(s) = 57%(6 — 1)8% for any s € [0,00). Our main results summarized in
(i), (ii) and (iii) above indeed require (X, d, m, &, F) to satisfy VD and HKE(V) as part
of their assumptions. In this setting, as stated in Proposition 2.18, X is connected,
(X,m,E, F) is irreducible (i.e., m(A)m(X\A) = 0 for any Borel subset A of X that
is E-invariant, i.e., satisfies Ty(14f) = 0 m-a.e. on X\A for any f € L*(X,m) and any
t € (0,0)), a (unique) continuous version p = p;(z,y): (0,00) x X' x X — [0, 00) of the heat
kernel of (X, m, &, F) exists, and the following holds: the Markovian transition function
Py(x,dy) := pi(x,y) m(dy) is conservative (i.e., P(z,X) = 1 for any (¢,x) € (0,0) x X))
and has the Feller and strong Feller properties, so that there exists a conservative diffusion
process X = (0, M, {X¢}ie[0,00], {Pa}aoex) on X such that P, (X, € dy) = pi(x,y) m(dy) for
any (t,z) € (0,00) x X.

Let us recall several basic notions from the theory of regular symmetric Dirichlet forms.
Let F. denote the extended Dirichlet space of (X, m,E, F) (Definition 2.9), i.e., the linear
space of m-equivalence classes of m-a.e. pointwise limits f of sequences {f,}n,eny © F with
limg e E(fx — fi, [ — fi) = 0, so that setting E(f, f) := lim, o E(fn, fn) € R gives a
canonical extension of £ to F, x F, and F = F, n L*(X,m). The Dirichlet form (&, F)
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is said to be transient if {f € F. | £(f, f) = 0} = {0}, in which case (F, &) is a Hilbert
space (see [FOT, Theorem 1.6.2]). For each f € F., let fdenote any &-quasi-continuous
m-version of f, which exists by [FOT, Theorem 2.1.7] and is unique £-g.e. (i.e., up to sets
of capacity zero) by [FOT, Lemma 2.1.4]; see [FOT, Section 2.1] and [CF, Sections 1.2,
1.3 and 2.3] for the definition and basic properties of £-quasi-continuous functions with
respect to a regular symmetric Dirichlet form.

Let D be a non-empty open subset of X', and let m|p denote the restriction of m
to the Borel o-algebra of D. The part process of X = {X;};>0 killed upon exiting D is
denoted by XP = {XP},~0 (Definition 2.10). It is an m|p-symmetric diffusion process on
D, its Dirichlet form (EP, F°(D)) is a strongly local regular symmetric Dirichlet form on
L*(D,m|p) and identified as the part Dirichlet form of (€, F) on D given by

FD)={feF|f=0&qe onX\D} and  EP = E|romyromy,  (L11)
and the extended Dirichlet space F°(D), of (D, m|p,EP, FO(D)) is identified similarly as
FOD). ={feF.| f=0E&qe on X\D}. (1.12)

As stated in Proposition 2.18-(d), it follows from VD and HKE(WV) for (X, d, m, &, F) and
the Feller and strong Feller properties of X = {X;};>o that X = {X},-( has the strong
Feller property and a continuous heat kernel p = pP(x,y): D x D — [0, 00) and satisfies
P, (XP e dy) = pP(z,y) m|p(dy) for any (t,z) € (0,0) x D. Furthermore if in addition
(EP, FO(D)) is transient, then the (0-order) capacity Capp(A) of A< D in D is defined
by (2.23), and the Green function gp: D x D — [0,0] of (£, F) on D is defined by

0

()= | 9Py d (113)
0
and satisfies Proposition 3.1-(i),(ii),(iii),(iv),(v),(vi) with A/ = & by Lemma 3.3. Note
that (EP, FO(D)) is transient if diam(D) < diam(X), and in particular if D = B(z,r) for
some (z,7) € X x (0,diam(X)/2), by the irreducibility of (X, m, &, F) from Proposition
2.18-(a) and [BCM, Proposition 2.1].

In the rest of this subsection, we fix a uniform domain U in (X,d) (Definition
2.5), i.e., a non-empty open subset U of X with U £ X such that for some ¢y € (0, 1)
and Cp € (1,00) the following holds: for every z,y € U there exists a continuous map
v:[0,1] — U with v(0) = x and (1) = y such that diam(vy([0,1])) < Cyd(z,y) and

Sy (y(t)) := dist(y(¢), X\U) = ¢y min{d(x,~(t)),d(y,v(t))} for any te[0,1]. (1.14)

This formulation of the notion of uniform domain is much less restrictive than that of
length uniform domain, the usual one in the literature, which requires instead the
last two inequalities with diam(v([0, 1])), d(z,~v(t)), d(y,v(t)) replaced by the lengths of
¥V jo,9: Yleay in (X, d), respectively. An advantage of the present formulation is that it
is stable under the change of the metric to one quasisymmetric to d. An immediate but
useful consequence of (1.14) is that for any £ € oU and any r € (0, diam(U)/4) there exists
&, € U such that

d€.6) —r and 5U(gr>>%cm~ (1.15)
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(Lemma 2.6). Throughout this paper, &, always denotes an arbitrary element of U satis-
fying (1.15) for each given (§,r) € U x (0,diam(U)/4).

The most important feature of uniform domains is that they have been proved to
satisfy the (scale-invariant) boundary Harnack principle (BHP) (Definition 3.7
and Theorem 3.8). Namely, there exist Ay, A1, C; € (1,00) such that for any £ € oU, any
r € (0,diam(U)/A;) and any non-negative £-harmonic functions u,v on U n B(§, Aor)
with Dirichlet boundary condition relative to U (Definitions 2.20 and 2.23) such that v > 0
m-a.e. on U n B(,r),

ess sup u(z) < (7 essinf M (1.16)
veUnB(er) V(T) veUnB(Er) v(T)

For length uniform domains in MMD spaces, BHP was proved first by Lierl [Liel5] under
the assumption of VD and HKE(V), and then by Barlow and the second-named author
[BM19] under the assumption of EHI and some mild technical conditions. BHP for uni-

form domains in MMD spaces (Theorem 3.8) has been proved in a recent work [Che] by
Aobo Chen.

As an important consequence of BHP, we have the local Holder continuity of the
ratios of (0,c0)-valued £-harmonic functions with Dirichlet boundary condition relative
to U (Lemma 3.10), which is an analogue of Moser’s EHI-based oscillation lemma [Mos61,
§5]. This fact leads to our first observation on the existence of a continuous extension of
the Naim kernel to U stated in the following proposition. We remark that, if the part
Dirichlet form (EY, F°(U)) on U is transient, then for each zy € U, the Green function
gu(xg,-): U\{xo} — [0, 0) is continuous by Proposition 3.1-(ii), (0, o0)-valued by Lemma
3.3 and the connectedness of U, and an £-harmonic function on U\{x¢} with Dirichlet
boundary condition relative to U by Proposition 3.1-(v) and Lemma 3.4, so that BHP
is indeed applicable to gy (xo,-). For a set A, we define Agi,e := {(z,2) | = € A} and
A% = (A x A)\Adiag (“od” stands for “off-diagonal”).

Proposition 1.2 (Part of Proposition 3.14). Assume that the part Dirichlet form
(EY, FO(U)) on U s transient. Then for each xo € U, there exists a unique continu-
ous function ©Y : (U\{zo})2q — (0,), called the Naim kernel of U with base point o,
such that

Uiz, y) = gv(2,Y) or any (x,vy) € zo})?
o6, ) = — D oy () € O\ (11D

Moreover, there exist cg,Cy € (0,00) such that for any xo € U and any (£,n) € (0U)?y,
with r = r:l?o,f,'r] = C min{d(x(]? 77)7 d(l‘m 5)7 d(nu 5)}7

qgu (nra gr)
gU(an UT)QU(%, &) '

C—l gU(T/ragr)

<05, 8 <C
1 gU(CL’O,nT)gU(xO’ST) 0(77 é-) 1

(1.18)

In the rest of this subsection (and throughout Sections 4 and 5 below), we assume
that the uniform domain U satisfies the capacity density condition (CDC) (Definition
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4.1), i.e., that there exist Ay € (8K,00) and Ay, C € (1,0) such that for any £ € 0U and
any R € (0,diam(U)/A,),

Cappe aor) (B(€, R)) < C Capge a,r)(B(E, R)\U). CDC

Here K € (1, ) is chosen so that (X, d) is K-relatively ball connected (Definition 2.26-
(b)); the existence of such K follows from VD and HKE(V) (see Remark 2.22 and Lemma
2.28-(a)), and allows us to apply EHI in a nicely controlled manner and in particular to
extend CDC from one Ay € (8K, ) to any Ag € (1,0) (with different Ay, C' for each Ayp)
(Lemma 4.4-(b1)). As already mentioned in Subsection 1.1, CDC is known to guarantee
good quantitative behavior of the harmonic measure in the case of uniform domains in
RY as proved by Aikawa and Hirata in [AH, Lemmas 3.5 and 3.6], which generalized
earlier results by Dahlberg [Dah, Lemma 1] for Lipschitz domains and Jerison and Kenig
[JK, Lemma 4.8] for NTA domains. As the first main theorem of this paper, we extend
[AH, Lemmas 3.5 and 3.6] to our present general setting by proving the following theorem
in Subsection 4.2. Note that, since X' is connected and (X, m, &, F) is irreducible by
Proposition 2.18-(a), we have U + J by & + U + X, X\U has positive capacity
with respect to (£, F) by CDC and [FOT, Theorem 4.4.3-(ii)], and hence (€Y, F°(U)) is
transient by [BCM, Proposition 2.1].

Theorem 1.3 (Theorem 4.6 and Corollary 4.7). Define the £E-harmonic measure w’,

of U with base point zy € U (Definition 2.33) by wl (A) 1= Pyo(Xy, € A, Ty < 0) for
each Borel subset A of X, where 1y := inf{t € [0,00) | X; ¢ U} (inf & := ). Then there
exist C; A € (1,00) such that for any £ € oU, any xo € U and any r € (0,d(&, z0)/A),

C™gu (0, &) CapB(§,2r)(B(€7T)) < ng(B(ﬁ, r) noU) < Cgu(xo, &) CapB({,Qr)(B(gw r)),
(1.19)

wo (B(&,r) noU) < Cwl (B(&,1/2) n aU). (1.20)
In particular, the topological support Supr[ng] of wgo in X is oU.

While our proof of the lower bound in (1.19) follows the same line of reasoning as
[AH], for the upper bound in (1.19) we give a new proof avoiding the delicate iteration
argument (the so-called box argument) in [AH]. Then (1.20) follows by combining (1.19)
with Lemma 2.29 (implied by EHI and U being a uniform domain), Remark 2.22 and
[BCM, Lemma 5.23].

Note that (1.20) means the validity of the volume doubling property of wgo only up
to the scale of dist(x, dU), which still gives VD of (U, d,wf ) when U is bounded (i.e.,
diam(U) < o) but may not when U is unbounded (i.e., diam(U) = ). Since, as
mentioned slightly before (1.8), the general results on heat kernel estimates for jump-type
Dirichlet forms in [CKW, GHH23, GHH23+] require the global version VD of the volume
doubling property of the reference measure, the £-harmonic measure wgo is not a good
candidate for our choice of the reference measure for the boundary trace Dirichlet form
when U is unbounded. In fact, as stated in the next proposition and proved in Subsection

4.3, in this case one can construct a canonical Radon measure on 0U which is mutually
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absolutely continuous with respect to wgo and satisfies VD, by utilizing BHP to take the
limit of a suitably normalized version of wl as xo tends to infinity. The consideration of
such a measure dates back to Kenig and Toro [KT, Corollary 3.2], who first studied it for
NTA domains in RY, and we call such a measure on an unbounded uniform domain the
E-elliptic measure at infinity of the domain, following [BT7, Lemma 3.5]. Assuming
that U is unbounded, for each zy € U let hgo denote the £-harmonic profile of U with
base point xg, i.e., a (0,00)-valued continuous £-harmonic function on U with Dirichlet
boundary condition relative to U such that hY (zo) = 1, whose existence (Proposition
3.20) and uniqueness (Lemma 3.19) are well-known consequences of BHP.

Proposition 1.4 (Part of Proposition 4.15). Assume that U is unbounded, and let xy € U.

Then there exists a unique Radon measure uf{o on U, called the E-elliptic measure at

infinity of U with base point xq, such that gU(xO,xn)_lwan!U converges in total vari-
ation on any compact subset of U to vY as n — o for any {z,}nen © U\{zo} with
limy, o0 d(0, ) = 0. Moreover, v0 (U) = 0, v = (hY (y))~'vi, for any y € U, and the

following hold: ’

(a) v and W |-

oo are mutually absolutely continuous, a (0, 00)-valued continuous version
of the Radon—Nikodym derivative dugo/dwgo on 0U exists, and there exist C; A €
(1,00) independent of xo such that for any & € oU, any R € (0,d(§, x0)/A) and any

ne B R)n U,

hY dv? hY
LI

-1
¢ QU(%, €R)

(b) There ezists C' € (0, 00) independent of o such that for any & € 0U and any R € (0, o0),

C_lhgo (€r) Cappeary(B(§, R)) < V;JO<B(§7 R)nadU) < Chgo (€r) Cappear)(B(€, R)).
(1.22)
In particular, suppﬁ[l/g)] = 0U and (U, d, uf{o) satisfies VD.

Lastly, we introduce the reflected Dirichlet form (£, F(U)) on U and its trace Dirich-
let form (€™, F(U)) to 0U, and state our version of the Doob—Naim formula expressing
&l in terms of the Naim kernel ©Y (Theorem 5.8) and stable-like heat kernel estimates for

(€, F(U)) (Theorem 5.13). First, we define the reflected Dirichlet form (£, F(U))
of (€,F) on U (Definition 2.14) by

FO)i= {1 € Fin0) \ [ ames [ warotg <o}, (1.23)

e (0= 3([ waru(rva v o - [ waretr-os-0). feFo)
Y Y (1.24)

where F,.(U) denotes the space of functions on U locally in F ((2.35) in Definition
2.13) and T'y(f, f) the E-energy measure of f € Fioo(U) (Definitions 2.12 and 2.13).
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Thanks to the assumption that U is a uniform domain in (X,d), it turns out that
(U, d,m|y, ™ F(U)) is an MMD space satisfying VD and HKE(¥) ([Mur24, Theorem
2.8]; Theorem 2.16-(a)), and that the 1-capacity (see (2.10)) of a subset A of U with respect
to (U, m|y, &, F(U)) is comparable to the 1-capacity of A with respect to (X, m, &, F)
([Mur24, Proposition 5.11-(i)]; Theorem 2.16-(b)). Furthermore the sets {T™" | ue F(U)}
and {0 | uw € F(U).} of £ -quasi-continuous m|g-versions @ of u € F(U) and of
u € F(U), coincide with {u\U | ue F} and {u]U | u e F.}, respectively, with any two
functions defined £-q.e. on U and equal £-q.e. on U identified ([Mur24, Proposition 5.11-
(iii)] and Theorem 2.16-(c)). In particular, a reflected diffusion on U, a diffusion process
Xreb = ({XTet} oo, {Pref} &) on U satisfying PrH( X! € dy) = pi*f(z,y) m|y(dy) for any
(t,x) € (0,00) x U for the continuous heat kernel p™f = pif(z, y) of (U, m|y, ™, F(U)),
exists by VD, HKE(V) and Proposition 2.18-(b),(c), and defines exactly the same har-
monic measure wao as the diffusion X = ({X;}i>0, {Pm}xeé‘() on X for any ¢ € U by Lemma
2.34-(e). Moreover, with respect to (U, m|y, £, F(U)), wl clearly charges no set of zero
capacity (Lemma 2.34-(a)), in particular 0U has positive capamty by w¥ (6U) > 0 from
(1.19), 0U is an E**-quasi-support of w¥ ’U by EHI and [FOT, Exercise 4. 6. 1] (Definition
2.31 and Lemma 2.34-(e)), and all these hold also for the &- elhptlc measure v at infinity
by Proposition 1.4-(a) when U is unbounded. Setting z( := fdlam )5 and p, = wU for
arbitrarily chosen E € oU when U is bounded, and p := uf{o for arbitrarily chosen xy € U
when U is unbounded, we can now apply the general theory of traces of regular symmetric
Dirichlet forms in [CF, Corollary 5.2.10] and obtain a regular symmetric Dirichlet form
(Ef, F(U)) on L2(0U, 1), called the trace Dirichlet form of (£, F(U)) on L*(U, p),
defined by

F@)elov :={flev | fe FU)},  FU):= FO)lov n LU, p), (1.25)
E (u, u) := E™( Hiw, H ), we F(U)elav. (1.26)

Here fdenotes any E™-quasi-continuous m|g-version of f € F(U)., and any two functions
equal £f-q.e. on OU are identified; since two £*f-quasi-continuous functions on U are
equal £*-q.e. on OU if and only if they are equal p-q.e. on 0U by oU being an £-

quasi-support of p and [CF, Theorem 3.3.5], we can canonically consider F(U).|or as a
linear space of u-equivalence classes of R-valued Borel measurable functions on 0U. Then

for u € F(U).|oy, Hifu denotes the function defined £-q.e. on U by (Hilu)(x) :=
B [u(X2) 1 7, <0y | (Definition 2.33), so that Hifu € F(U). by [CF, Theorem 3.4.8]

and £ (u,u) can be defined by (1.26), and any u € ‘/F'—(?j)/eb(] is £f_quasi-continuous
on oU by [CF, Theorem 5.2.6]. Also by [CF, Theorem 5.2. 15] the extended Dirichlet

space F(U), of (3U, p, £, f(U)) is identified as F(U), = .7-"( )elov and the canonical
extension of £ ]F(U «F 1o F(U). coincides with (1.26).

Now we can state our version of the Doob—Naim formula, which expresses £t in terms
of the Naim kernel @go introduced in Proposition 1.2, as follows.

Theorem 1.5 (Doob-Naim formula; Proposition 5.7 and Theorem 5.8). For any u €
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FU)., 1
£t (u, u) = —J (u(€) — u(n)? ©Y (&,n) dwl (&) dwl (n). (1.27)
2 Jovyz,

In particular, the trace Dirichlet form ((Sv’ref,.f(U)) on L*(0U, i) is of pure jump type.

Recall that (£, F(U)) can be written as the sum of its strongly local, jump and
killing parts by [FOT, Theorem 4.5.2] (see (2.77)), so that Theorem 1.5 can be rephrased
as the identification of its jumping measure as @5{0 &,m) dwgo (€) dwgo (n) combined with the
vanishing of its strongly local and killing parts. The latter claim is a simple consequence
of the known characterization of these parts of trace Dirichlet forms in [CF, Theorems
5.6.2 and 5.6.3], but we give alternative elementary arguments for each of these parts in
Propositions 2.36 and 2.37, respectively. The former claim is the more interesting, and
we prove it by an explicit evaluation of the jumping measure based on the continuity of
the Naim kernel @go from Proposition 1.2 and the volume doubling property (1.20) of the
&-harmonic measure w .

We conclude this subsection with stating our third main theorem on stable-like heat
kernel estimates for the trace Dirichlet form (€™, F(U)) in Theorem 1.6 below. A key
observation for its statement is the following fact implied by EHI, BHP and U being a
uniform domain in (X, d) (Lemma 5.2): there exists ®: oU x [0,00) — [0, 00) such that
®(&,-): [0,00) — [0, 00) is a homeomorphism for any & € dU, (2.88) holds for any z,y € U
and any s,r € (0,0) with s < r < diam(U) (see Definition 2.38), and

CyP(E,7) < B(E,7) < Co®(E,r) for any € € OU and any r € (0, diam(U)/A;) (1.28)

for some Cy, A; € (1, 0), where

3 ») if U is bounded,
(&, r) = {QU(%af) if U is bounde

1.29
h (&) if U is unbounded. (1.29)

Theorem 1.6 (Non-probabilistic part of Theorem 5.13). Assume that (0U, d) is uniformly
perfect (Definition 2.3). Then there exist Cy € (1,00) and a continuous heat kernel pref =
FeE(E,m): (0,00)x AU x 0U — [0,90) of the trace Dirichlet form (£, F(U)) of (£, F(U))
on L*(0U, ) such that for any (t,€,n) € (0,0) x U x oU,

1 t

n(BE D1 1) noU) " u(B(E d(E n) n AU)B(E, d(E, 1))
1 t

€@(€0) na0) " u(BIE digm) n U)D(E d(€,m)
where ®~1(€,t) = (®(£, )7 (t) and B(,0) := &. Moreover, (U, p, £, F(U)) is ir-

reducible and conservative, and F(U) considered as a linear subspace of L*(0U, ) is
identified as

P& n) < 01( ) (1.30)

e =6 (oo ). wa)

Fy = {ue @un| [ ) —uln) o6 € n det )t o) <o (132
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Recall that (1.30) and (1.31) with ®(&,r) = r* for a € (0,2) are the well-known
form of the heat kernel estimates for the rotationally symmetric a-stable process on RY
with 1 and d replaced by the Lebesgue measure and the Euclidean metric on RY, re-
spectively. The estimates (1.30) and (1.31) for the present case of the trace Dirich-
let form (£, F(U)) are of exactly the same form as these classical ones, except that
the scaling relation between the space and time variables changes according to (1.28)
and (1.29), and for this reason we call (1.30) and (1.31) stable-like heat kernel es-
timates. Thanks to the recent characterization of stable-like heat kernel estimates
obtained in [CKW, GHH23, GHH23+] and adapted for the present case in Theorem
2.40, the proof of Theorem 1.6 is reduced to verifying natural two-sided estimates (5.38)

deUO

on the jump kernel 7,(£,7) := LS (f,n)%(é) g2 (1) and an exit time lower estimate
Ef [7B(erynov] = C'®(€,7); here EF[-] denotes the mean with respect to the Hunt pro-
cess X'of = (X} associated with (U, u, ™, F(U)). The former estimates follow by
combining (1.18), (1.19), (1.21), (1.22) and (1.28), whereas the latter can be proved by us-
ing HKE (W) for (U,d, m|y, £, F(U)) due to [Mur24, Theorem 2.8] and the fundamental
feature of (£, F(U)) as a trace Dirichlet form of (£, F(U)) that its Green function is
precisely the restriction of the Green function of (€™, F(U)) (Proposition 2.51-(b)). As
the probabilistic part of Theorem 5.13, in the setting of Theorem 1.6 we prove also that a
version of the Hunt process X' = {X!'},_, with continuous transition density pr*!(¢,n)
for any starting point £ € 0U can be obtained as the time change of the reflected diffusion
Xret = ({ X7t} 20, {P2f},7) by its positive continuous additive functional (PCAF) in the
strict sense with Revuz measure p; see Subsection 2.8 and Theorem 5.13-(c) for details.

As mentioned in Remark 1.1 above, the extensions of our results in Sections 4 and 5
to the case where “R € (0,diam(U)/A;)” in CDC is weakened to “R € (0, diam(0U)/A;)”
are described in some detail in Subsection 5.4. We then conclude this paper with brief
discussions of several concrete examples in Subsection 5.5, illustrating in particular various
possibilities of the quantitative behavior of the space-time scaling function @, the reference
measure 4 and the jump kernel }# of the boundary trace Dirichlet form.

Notation 1.7. Throughout this paper, we use the following notation and conventions.
(a) The symbols ¢ and > for set inclusion allow the case of the equality.

(b) For [0, 0]-valued quantities A and B, we write A < B to mean that there exists an
implicit constant C' € (0,00) depending on some unimportant parameters such that

A< CB. Wewrite A=Bif A< B and B < A.
(¢c) N:={neZ|n>0}ie,0¢N.
(d) The cardinality (the number of elements) of a set A is denoted by #A € N u {0, o0}.

(e) We set sup & := 0, inf & := o0 and 07! := 00. We set a v b := max{a,b}, a A b :=
min{a, b}, a* :=av0and a™ := —(an0) for a,b € [0, 0], and use the same notation
also for [—oo,00]-valued functions and equivalence classes of them. All numerical
functions in this paper are assumed to be [—o0, c0]-valued.

(f) For N € N, the Euclidean inner product and norm on R are denoted by (-, -) and
|-|, respectively.
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(2)
(h)

2

For a set A, we define Agi,g := {(z,2) | € A} and A2, := (A x A)\Adiag (“od” stands
for “off-diagonal”).

Let X be a non-empty set. We define 1, = 1§ € R* for A ¢ X by Iu(x) :=
13(2) i= {2H254 and set Jull i [l v = 5uDex [u(@)] for us X — [—o0,50
and oscy u := sup, .y [u(r) —u(y)| for u: & — R. We say that u: X — [0, 0] is
bounded if ||ul|,, < 0.

sup
Let (X,B) be a measurable space and let p,v be measures on (X,B). The pu-
completion of B is denoted by B¥, and we set B* := (.. . fnite measure on (x,B) B
We also set B|4 := {BnA| Be B} and m|s := m|g|, for Ae B, and we write v « p
to mean that v is absolutely continuous with respect to . When p is o-finite, the
product measure space of (X, B, 1) and itself is denoted by (X x X, B R B, u X p).

Let X be a topological space. For A < X, the closure and boundary of A in X
are denoted by A and 0A, respectively, and we say that A is relatively compact in
D < X, and write A € D, if and only if A is included in a compact subset of
D. We set C(X) := {u € RY | uis continuous}, suppy[u] := X\u"1(0) for u €
C(X), C(X) := {u € C(X) | suppy|u] is compact}, and Co(X) := {u € C(X) |
u H(R\(—¢,¢)) is compact for any ¢ € (0,0)}. The Borel o-algebra of X is denoted
by B(X), and we set B*(X) := B(X)* and call B*(X) the universal o-algebra of X.

Let X be a topological space having a countable open base, and let m be a Borel
measure on X. The (topological) support of m in X, that is, the smallest closed
subset F' of X such that m(X\F) = 0, is denoted by suppy[m]. For a B(X)™-
measurable function f: X — [—00, 0] or an m-equivalence class f of such functions,
we set supp,,[f] := suppy[|f| - m], where |f| - m denotes the Borel measure on X

defined by (| f|-m)(A) :=§,|f| dm.

Let (X,d) be a metric space. We set B(x,r) := By(z,r) := {y € X | d(z,y) < r}
and S(x,r) := Sy(x,r) := dB(x,r) for (z,r) € X x (0,0) and call each such B(x,r)
a ball in (X,d). We also set diam(A) := diam(A,d) := sup, 4 d(z,y) for A = X
and dist(A, B) := disty(A, B) := inf(, yeaxp d(z,y) and dist(x, A) := distq(x, A) :=
dist({z}, A) for A,B < X and z € X. We say that a subset A of X is bounded if
diam(A) < oo, and unbounded if diam(A) = oo.

Preliminaries

In this section, we recall basic notions and results from metric geometry and the the-
ory of regular symmetric Dirichlet forms, and prove some general results applied later in
Section 5 to the case of the boundary traces of reflected diffusions on uniform domains.
Subsections 2.1 and 2.2 concern purely metric-measure properties of the underlying state
space, introducing the metric doubling and volume doubling properties and the definition
and some basic features of uniform domains. Subsection 2.3 summarizes some basics of
the theory of regular symmetric Dirichlet forms and associated symmetric Hunt processes
as presented in [FOT, CF]. In Subsection 2.4, we give the definition and some prob-
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abilistic consequences of sub-Gaussian heat kernel estimates for MMD spaces (strongly
local regular Dirichlet spaces in which every bounded closed set is compact) and state the
second-named author’s result in [Mur24] on the regularity and sub-Gaussian heat kernel
estimates for reflected Dirichlet forms on uniform domains. Subsection 2.5 is devoted to
formulating harmonic functions, the elliptic Harnack inequality and Dirichlet boundary
condition relative to open sets, and presenting some related facts. In Subsection 2.6, we
introduce trace Dirichlet forms and relevant notions, and give new elementary proofs of
the identification of the strongly local part of trace Dirichlet forms as in [CF, Theorem
5.6.2] and of the vanishing of their killing part under a natural non-escape assumption, a
simple consequence of [CF, Theorem 5.6.3]. In Subsection 2.7 we formulate the stable-like
heat kernel estimates for pure-jump Dirichlet forms and state a nice characterization of
them, following [CKW, GHH23, GHH23+]. Lastly, Subsection 2.8 presents a sufficient
condition for a Borel measure v on an MMD space to be a Radon measure corresponding
to a positive continuous additive functional (PCAF) A®) = {Aﬁ”)}te[o,oo) in the strict sense
of the associated diffusion X (i.e., a PCAF of X defined P,-a.s. for every point x of the
state space) and for the support of v to coincide with the support of A®). We also prove
that, under the same condition on v, the time-changed process X of X by A®) is a Hunt
process on the support of v sharing the same Green functions as X under every choice of
the starting point (Proposition 2.51). We will see later in Section 5 that our boundary
trace processes are special cases of these general results.

2.1 Metric doubling and volume doubling properties

In much of this work, we will be in the setting of a metric doubling metric space equipped
with a volume doubling measure.

Definition 2.1 (Metric doubling property (MD)). Let (X,d) be a metric space. The
metric d, or the metric space (X, d), is said to be (metric) doubling, or to satisfy the
metric doubling property, abbreviated as MD, if there exists N € N such that B(zx, R)
is included in the union of some N balls of radii R/2 in (X, d) for any (z, R) € X x (0, c0).

Next, we recall the closely related volume doubling property on subsets of X’ for Borel
measures on X'. The pair (X, d, m) of a metric space (X, d) and a Borel measure m on X
is termed a metric measure space.

Definition 2.2 (Volume doubling property (VD)). Let (X,d, m) be a metric measure
space and let V' < X. The measure m, or the metric measure space (X,d, m), is said to
be (volume) doubling on V| or to satisfy the volume doubling property on V if
there exists Dg € [1,0) such that

0 <m(B(z,2r) nV) < Dym(B(z,7) n'V) <o forall zeV and all r > 0.

We say that m or (X,d,m) is (volume) doubling, or satisfies the volume doubling
property, abbreviated as VD, if (X, d, m) is volume doubling on X
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The basic relationship between these notions is that if there exists a volume doubing
measure on a metric space (X,d), then (X,d) is metric doubling. Conversely, every
complete, metric doubling metric space admits a volume doubling measure; see [Hei,
Chapter 13]. By iterating the volume doubling condition, it is easy to see that for any
metric measure space (X, d, m) satisfying VD, there exist C' € (1,00) and (5 € (0, o) such

that

B

mBWY,R) o (dey) BN s ye X andal 0<r <R (21)
m(B(z,r)) r

We further recall another closely related property known as the reverse volume doubling
property in the literature, to which the following definition is relevant.

Definition 2.3. We say that a metric space (X,d) is uniformly perfect if there exists
Ky € (1,0) such that for all z € X, r > 0 such that B(z,r) # X, we have

B(:E,T)\B(x,Ko_lr) # .

Lemma 2.4 ([Hei, Exercise 13.1]). Let m be a volume doubling measure on a uniformly
perfect metric space (X,d). Then the measure m satisfies the following reverse volume
doubling property, abbreviated as RVD: there exist C € (1,0) and o € (0,00) such that
forallze X and all 0 <r < R < diam(X),

m(B(.R) _ 1 (R\"
m(B(z, 7)) >C (r) . (2.2)

2.2 Uniform domains

Let (X, d) be a metric space and let U < X be an open set. A curve in U is a continuous
map v: [a,b] — U, and such = is said to be from z to y or to join x and y, where z,y € U,
if v(a) = z and v(b) = y. We sometimes identify v with its image y([a, b]), so that v < U.
The length (in (X,d)) of a curve 7: [a,b] — X is defined as

U(y) = sup{ 2 d(y(ti),y(ti1))

We say that (X, d) is a length space if d(x,y) is equal to the infimum of the lengths of
curves in X from z to y for any z,y € X.

Definition 2.5 (Uniform domain). Let (X, d) be a metric space, U a non-empty open
subset of X with U £+ X, ¢y € (0,1) and Cy € (1,00). Set dy(2) := dist(z, X\U) for z € U.

(a) We say that U is a length (cy,Cy)-uniform domain in (X, d) if for every pair
of points x,y € U, there exists a curve v in U from x to y such that its length
((v) < Cyd(x,y) and for all z € ~,

ou(2) = comingl(yz,2), €(7z)}, (2.4)

where 7, ., 7., denote the subcurves of v from x to z and from z to y, respectively.
Such a curve 7 is called a length (cy, Cy)-uniform curve in U.
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(b) We say that U is a (cy,Cy)-uniform domain in (X, d) if for every pair of points
x,y € U, there exists a curve v in U from = to y such that its diameter diam(y) <
Cyd(z,y) and for all z € ~,

dy(z) = cy min{d(z, z),d(y, 2)}. (2.5)
Such a curve 7 is called a (cy, Cy)-uniform curve in U.

There are different definitions of uniform domains in the literature [Mar, Vii]; note
that our definition of length uniform domain is what is usually called uniform domain in
the literature. The above definition of uniform domain was introduced in [Mur24] because
of the advantage that this notion of uniform domain is preserved under quasisymmetric
changes of the metric on the underlying space. Furthermore, this definition also allows us
to consider metric spaces that do not have non-constant rectifiable curves.

The following is a variant of [GyS, Lemma 3.20].

Lemma 2.6. Let (X,d) be a metric space, let ¢y € (0,1), and let U < X be a (cy,Cy)-
uniform domain for some Cy € (1,0). Then for any £ € OU and any r € (0,diam(U)/4),
there exists &. € U such that

cyr

A&, &) =r and dy(&) > - (2.6)

Proof. Since r < diam(U)/4 we can choose a point y € U such that d(,y) > 2r, and by
¢ € 0U we can choose a point x € B(&,7/2) nU. By considering a (cy, Cy)-uniform curve
v in U from z to y and the continuity of d(¢,-) along v, there exists &, € « such that
d(&, &) =, and then

5U(£r) = Cu mln{d(x, Sr)a d(ya 57")}
cyr

= Cu mln{d(f, 57") - d(ga £L‘), d(€7 y) - d(ga 57")} > T O

Notation 2.7. Throughout this paper, given (X,d),cy,U as in Lemma 2.6, &, always
denotes an arbitrary element of U satisfying (2.6) for each (¢,r) € oU x (0,diam(U)/4).

We recall that the volume doubling property of measures is inherited by uniform
domains.

Lemma 2.8 ([BS, Theorem 2.8], [Mur24, Lemma 3.5]). Let (X, d, m) be a metric measure
space satisfying VD, and let U be a uniform domain in (X,d). Then

m(oU) = 0, (2.7)

and (U,d,m|y) and (U,d, m|g) satisfy VD.
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2.3 Regular Dirichlet space and symmetric Hunt process

We now recall some basics of the theory of regular symmetric Dirichlet forms as presented
in [FOT, CF]. Throughout this subsection, we consider a locally compact separable
metrizable topological space X', a Radon measure m on X with full support, i.e., a Borel
measure m on X which is finite on any compact subset of X and strictly positive on any
non-empty open subset of X, and a symmetric Dirichlet form (£, F) on L*(X,m); that
is, F is a dense linear subspace of L?*(X,m), and £: F x F — R is a non-negative definite
symmetric bilinear form which is closed (F is a Hilbert space under the inner product
& = €4 )r2m) and Markovian (f* Al e F and E(f* A 1, fT A1) < E(f, f)
for any f € F). We say that (€, F) is regular if F n C.(X) is dense both in (F, &)
and in (Ce(X), [|[5,,), and that (€, F) is called strongly local if £(f,g) = 0 for any

f,g € F with supp,,[f], supp,,[¢g] compact and supp,,[f —alx] nsupp,,[g] = & for some
a € R; here C.(X) and supp,,[f] are as defined in Notation 1.7-(j),(k), and note that
supp,,[f] = X\f~1(0) if f: X — [—o0, 0] is continuous. The quadruple (X, m,E, F) is
termed a reqular Dirichlet space if (€, F) is regular, and a strongly local reqular Dirichlet
space if (€, F) is regular and strongly local. In particular, if (X, m,&, F) is a regular
Dirichlet space and d is a metric on X compatible with the topology of X such that
B(z,r) :=={y e X | d(z,y) < r} is relatively compact in X for every (z,r) € X x (0, 0),
then the quintuple (X, d, m, &, F) is termed a not-necessarily-local metric measure
Dirichlet space, or a NLMMD space in abbreviation. If (X', d,m, &, F) is a NLMMD
space such that #X > 2 and (&, F) is strongly local, then (X,d,m,&, F) is termed a
metric measure Dirichlet space, or a MMD space in abbreviation.

Associated with a symmetric Dirichlet form is a strongly continuous contraction semi-
group (T})=o; that is, a family of symmetric bounded linear operators T} : L*(X,m) —
L?*(X,m) such that

ﬂ+sf = ,Tt(Tsf>7 ||T;ff||2 < ||f||L2(X,m)7 ltll%l ||,th - f||L2(X,m) - 07

for all ¢, s € (0,00) and all f € L?(X,m). In this case, as stated in [FOT, Lemma 1.3.4-(i)]
we can express (£, F) in terms of the semigroup as

F= {feLz(X,m)

lim l<f =T f, oreem < 00}7
Ho t (2.8)
EU. 1) =lim 1 (f ~Tof Prsey forall f€ F.

As is well known, T; restricted to L*(X, m)n L*(X,m) canonically extends to a positivity-
preserving linear contraction on L* (X', m) (see, e.g., [CF, pp. 6 and 7]). We say that (£, F)
or (X, m,&,F) is conservative if T,1x = 1y m-a.e. for any ¢ € (0,0), and that (£, F) or
(X,m,E,F) is irreducible if m(A)m(X\A) = 0 for any A € B(X) that is E-invariant, i.e.,
satisfies Ty(14f) = 0 m-a.e. on X\A for any f € L*(X,m) and any ¢ € (0, 0).

We next introduce a few notions relevant to the global behavior of (T})o.

Definition 2.9 (Extended Dirichlet space). We define the extended Dirichlet space F.
of (X, m,E,F) as the space of m-equivalence classes of functions f: X — R such that
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lim,, o fn = f m-a.e. on X for some {f,}neny © F with limg .o E(fx — fi, fx — f1) = 0.
Then the limit E(f, f) := lim,, o E(fn, fn) € R exists and is independent of a choice of
such {f}nen for each f € F., so that £ is canonically extended to F, x F, and satisfies
limy, o0 E(f = fu, f— fu) = 0 for any such (f,)nen for each f € F,, and F = F,n L*(X,m);
see [CF, Definition 1.1.4 and Theorem 1.1.5].

We say that (€, F) or (X, m, &, F) is transient if there exists g € L'(X,m)n L* (X, m)
that is strictly positive m-a.e. on X and satisfies

J lu(z)|g(x) m(dz) < E(u,u)Y?  for every u e F.
x

By [CF, Theorem 2.1.5-(i)], (X, m,&,F) is transient if and only if there exists g €
LY(X,m) n L*(X,m) that is strictly positive m-a.e. on X and satisfies

N
J 9gGgdm < o, where Gg := lim J T,g dt m-a.e. (2.9)
X N—o0 0

The transience of (X, m,&,F) is equivalent to {f € F. | E(f, f) = 0} = {0}, in which
case (Fe, £) is a Hilbert space (see [CF, Theorem 2.1.9]). On the other hand, we say that
(&, F) or (X,m,E,F)is recurrent if Gf € {0,0} m-a.e. on X for any f € L*(X,m) with
f = 0 m-a.e. on X, which is equivalent to the property that 1y € F, and E(1y,1x) =0
(see [CF, Theorem 2.1.8]). By [CF, Proposition 2.1.3-(iii)], if (X, m, &, F) is irreducible,
then (X, m, &, F) is either transient or recurrent.

In the rest of this subsection, we assume that (X', m, £, F) is a regular Dirichlet space.
As indispensable pieces of the theory of regular symmetric Dirichlet forms, we now recall
some potential-theoretic notions from [FOT, Section 2.1] and [CF, Sections 1.2, 1.3 and
2.3]. First, we define the 1-capacity Cap,(A) of A < X with respect to (X, m,E, F) by

Cap,(A) := inf{& (f, f) ‘ fe€F, f=1m-ae. on aneighborhood of A}, (2.10)

where £ := & + (-, -)r2(x,m) as defined before. Note that Cap, is countably subadditive
by [FOT, Lemma 2.1.2 and Theorem A.1.2]. A subset N of X is said to be E-polar if
Cap;(N) = 0. For A ¢ X and a statement S(z) on x € A, we say that S holds &-quasi-
everywhere on A (€-q.e. on A for short), or S(x) holds for £-quasi-every v € A (€-q.e.
x € A for short), if S(z) holds for any x € A\N for some E-polar N' = X. When A = X,
we often write just “€-g.e.” instead of “€-q.e. on X”. A non-decreasing sequence { Fy}ren
of closed subsets of X is called an E-nest if limy_,,, Cap,(K\F;) = 0 for any compact
subset K of X, or equivalently (see [CF, Theorem 1.3.14-(ii)]), if |,y Fr. is dense in
(F, &), where
Fr, ={feF|f=0m-ae. on X\Fy}.

A function f: D\N — [—o0, 0], defined £-q.e. on an open subset D of X for some E-polar
N < X, is said to be E-quasi-continuous on D if there exists an E-nest { F}}ren such that
Fe n N = & and f|p~r, is an R-valued continuous function on D n F, for any k € N
(again, when D = X, we often omit “on X”). For each f € F., an £-quasi-continuous

24



m-version f of f exists by [FOT, Theorem 2.1.7] (see also [C'F, Theorem 1.3.14-(iii)]) and
is unique £-q.e. by [FOT, Lemma 2.1.4].

According to the fundamental theorem of M. Fukushima [FOT, Theorem 7.2.1], the
assumption of the regularity of (X, m,&, F) allows us to associate to (X,m,E,F) an
m~symmetric Hunt process on X in the manner described below.

Let X = (M, {X:}ieo,00], {Pa}wex,) be a Hunt process on X, i.e., a right-continuous
strong Markov process on (X, B(AX},)) which has the left limit X;_(w) := limgy; X,(w) in
X, for any (t,w) € (0,00) x Q and is quasi-left-continuous on (0, ) (see [CF, Definition
A.1.23-(ii) and Theorem A.1.24]), where X; = X U {0} denotes the one-point compacti-
fication of X. We always consider each function f: X — [—0, 0] as being defined also
at 0 by setting f(0) := 0. Let F, = {JFi}e[0,0] denote the minimum augmented admis-
sible filtration of X in Q as defined in [CF, p. 397], so that &F, is right-continuous, i.e.,
Ft = Nae(ro0) Ts for any ¢ € [0,0) by [CF, Theorem A.1.18]. Let ¢ denote the life time of
X, i.e., a [0, 0]-valued function on € satisfying {X; = 0} = {{ <t} for any ¢ € [0, 0], and
for each t € [0, 0] let 6, denote the shift operator of X by time ¢, i.e., a map 6;: Q — Q
satisfying X, 06, = X, for any s € [0,0]; the existence of ¢ and 6, is part of the
definition of X being a Hunt process on X. It then turns out (see, e.g., [CF, Exercise
A.1.20-(i)]) that the function X; 3 x — P,(A) is B*(AX,)-measurable for any A € F,
(recall Notation 1.7-(i),(j) for B*(A})), so that for each o-finite Borel measure v on X a
o-finite measure P, on F, is defined by P,(A) := SX@ P.(A) v(dzx). For each B ¢ X, we
define op,0p,65: Q. — [0,0] by

op(w) :=inf{t € (0,00) | X;(w) € B},
op(w) :=inf{t € [0,0) | X;(w) € B}, (2.11)
op(w) :=inf{t € (0,00) | X;—(w) € B},
so that op,0p,6p are F,-stopping times if B € B(AX,) by [CF, Theorem A.1.19 and
Exercise A.1.26-(ii)] (see also [FOT, Theorem A.2.3]). A set B < X} is said to be X -nearly

Borel measurable if for any Borel probability measure v on X there exist By, By € B(A))
such that By € B < By and

P, (68, B1<w)=Pu (X € B2\ By for some t € [0,0)) = 0. (2.12)

Then B¥(X;) := {B < X | B is X-nearly Borel measurable} is a g-algebra in X included
in B*(X;), and 0,05, 0p are easily seen to be F,-stopping times for any B € BX(X};) by
the definition of F, and [FOT, Theorem A.2.3]. A B*(X')-measurable function u: X —
[0, 0] is said to be X-excessive if [0,0) 3 t — E.[u(X;)] € [0, 0] is non-increasing and
limy o E [u(X:)] = u(x) for any z € X.

We say that the Hunt process X on X is m-symmetric if its Markovian transition
function Py(z,dy) := P, (X; € dy), (t,x) € (0,00) x X, is m-symmetric, i.e., if

| Bp@a@midn) = | f@)(Pg)e) mas) (2.13)

for any Borel measurable functions f,g: X — [0, 0] for each ¢t € (0,00). In this case,
an X-nearly Borel measurable subset N of X is said to be properly exceptional for X if
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m(N) =0 and
P.(6n A Gy =) =1 for any x € X\N. (2.14)

For any such N, we define the restriction X|x\n of X to X\N by

Qaw = {on A on = oo}, X|X\N = (QX\N7 ?OO|QX\N7 {Xt|QX\N}te[07oo]’ {Pm}xeﬂfa\/\/)7
(2.15)
which is a Hunt process on X\N by [CF, Lemma A.1.27]. We sometimes assume the
following absolute continuity condition, abbreviated as AC:

P,(z,-) « m (as Borel measures on X)) for any (¢,z) € (0,00) x X. AC

If X is m-symmetric and satisfies AC, then by [BCM, Proof of Theorem 3.8] there exists
a unique Borel measurable function p = pi(z,y): (0,0) x X x X — [0, 0] such that for
any t,s € (0,00) and any z,y € X,

Pt(xvdy) = pt(x’ Z) m(dz), pt(x>y> = pt(ywr)v pt-i—s(x?y) = fxpt(:v,z)ps(z,y) m(dz)
(2.16)

If X is m-symmetric, then by [FOT, (1.4.13) and Lemma 1.4.3] the Markovian transi-
tion function Pi(z,dy) of X induces a strongly continuous contraction semigroup (77):=¢
on L*(X,m) such that TX f = P,f m-a.e. for any B*(X')-measurable m-version of any
f e L*(X,m) for each t € (0,00), so that a symmetric Dirichlet form (€4 F(X)) on
L?(X,m), called the Dirichlet form of X, is defined by (2.8) with (TX);~o in place of
(T})¢=0. Fukushima’s theorem [FOT, Theorem 7.2.1] states that any regular symmetric
Dirichlet form on L?(X,m) is realized in this manner, namely that any reqular symmet-
ric Dirichlet form on L*(X,m) is the Dirichlet form (€%, FX)) of some m-symmetric
Hunt process X on X. Moreover, by [FOT, Theorem 4.2.8|, such a Hunt process on X
is essentially unique for each given regular symmetric Dirichlet form on L*(X,m) in the
following sense: if X and X’ are m-symmetric Hunt processes on X whose Dirichlet forms
coincide and are regular, then there exists a common properly exceptional set for X and
X’ outside which the Markovian transition functions of X and X’ coincide.

In the rest of this subsection, we assume that (X, m, &, F) is a regular Dirichlet space

and that X = (, M, {X;}e[0,00], {Pz }wex,) is a Hunt process on X whose Dirichlet form
is (£, F). Then by [FOT, Theorems 4.2.1-(ii) and 4.1.1],

any properly exceptional set N' < X for X is E-polar, and any E-polar

subset of X is included in some properly exceptional set ' € B(X) for X. (2.17)

Furthermore by [FOT, Theorem 4.2.3-(i)], for any [0, co]-valued Borel measurable f €
L*(X,m) and any t € (0,0), the Borel measurable function P, f: X — [0, o] given by

(P)) = [ 7(0) Pisdy) = B[ X0 .19

is an £-quasi-continuous m-version of T; f. Note also that by [FOT, Theorem 4.5.3], (£, F)
is strongly local if and only if X is a diffusion with no killing inside for £-q.e. starting
point, i.e.,

P, ([0,%0) 3t — X, € X; is continuous) = 1 (2.19)
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for £-a.e. x € X, and that by [FOT, Theorem 4.5.4-(iii)], if X satisfies AC, then (&, F) is
strongly local if and only if (2.19) holds for any z € X.

The rest of this subsection is devoted to discussions of the Dirichlet forms on open
subsets of X induced from (€, F) by assigning boundary conditions. We first consider
those resulting from Dirichlet boundary condition and their associated Hunt processes
given as follows.

Definition 2.10 (Part Dirichlet form and part process). Let D be an open subset of X.
(a) The part Dirichlet form (EP, F°(D)) of (£, F) on D is defined by

FOD):={feF|f=0&qe on X\D} and &P := E| Fo(pyxFo(D)- (2.20)

(b) The part process XP = (Q, Foo, { X }tefo,00]s {Pu}aen,) of X on D (killed upon exiting
D) is defined by

X, ift

XD = { ¢ BEETD e (0, o] (2.21)
op ift=rp,

and Py, := Py, where Dy = D U {dp} denotes the one-point compactification of D

and 7p 1= oy, p = inf{t € [0,0) | X, ¢ D}.

Let D be a non-empty open subset of X. By [FOT, Theorem 4.4.3], (£, F°(D)) is
a regular symmetric Dirichlet form on L?(D,m|p), a subset N of D is EP-polar if and
only if N is £-polar, and a [—o0, c0]-valued function f defined £-q.e. on D is EP-quasi-
continuous on D if and only if f is £-quasi-continuous on D. By [CF, Theorem 3.4.9],

the extended Dirichlet space F°(D),. of (D, m|p,EP, F°(D)) is identified as
FUD)e={feF.| f=0&-qe. on X\D}. (2.22)

Also, X P is an m|p-symmetric Hunt process on D by [FOT, Theorem A.2.10 and Lemma
4.1.3] (see also [CF, Exercise 3.3.7-(ii) and (3.3.4)]), and the Dirichlet form of X? is
(EP, FO(D)) by [FOT, Theorem 4.4.2].

Assume that the part Dirichlet form (P, F°(D)) on D is transient, and let A < D.
We define the (0-order) capacity Capp(A) of Ain D by

Capp(A) := inf{&E(f, f) | f € F'(D)e, f =1 m-a.e. on a neighborhood of A}, (2.23)

so that Cap, is countably subadditive by [FOT, the 0-order version of Lemma 2.1.2 and
Theorem A.1.2]. Then Capp(A) = 0 if and only if A is E-polar (i.e., Cap,(4) = 0)
by [FOT, Theorems 2.1.6-(i) and 4.4.3-(ii)]. By [FOT, the 0-order version of Theorem
2.1.5-(i1),(ii)], we have

Capp(A) = inf{E(f, f) | f € F/(D)., f =1 &-q.e. on A} (2.24)

and if Capp(A) < o then there exists a unique function esp € F°(D)., called the
equilibrium potential of A in D, that attains the infimum in (2.24). We describe the
corresponding equilibrium measures in the following lemma, assuming the strong locality
of (£, F). The equality (2.27) below was claimed in [Fit, (2.7)] without a proof, and here
we provide a detailed proof of it since it plays an important role in this paper.

27



Lemma 2.11. Assume that (X, m,E,F) is strongly local, and let D be a non-empty open
subset of X such that the part Dirichlet form (EP, F°(D)) on D is transient. Let A € D
be a relatively compact open subset of D.

a) There exists a unique eq p € FO(D). and a unique Radon measure \Y , on X charging
: A,D
no E-polar set (see Definition 2.30 below) such that

Capp(A) = E(eap,eap), €ap=1E-ge on A, E(u,eap)= f ﬂd)\h,D (2.25)
X

for allwe F°(D).. Furthermore suppy[A} p] < 0A and
)‘114,D(X) = )‘,14,19((914) = Capp(4). (2.26)

(b) Assume in addition that D is relatively compact in X. Then there erxists a unique
Radon measure )\?&D on X charging no E-polar set such that

E(eap,u) =J ﬂd)\iw—f ud\ (2.27)
oA ’ X ’
for any v € F. n L*(X,m), where )\}4,[) is the measure in part (a). Furthermore
suppy[A% p] © 0D and

X, p(X) = N p(2D) = Capp(A). (2.28)

Proof. (a) Note that (F°(D)., &) is a Hilbert space by [FOT, Theorem 1.5.3]. Since
A € D, the regularity of (£, F) along with [CF, Theorem 2.3.4] implies that the set

Lap:={feF (D). | f>1&qe on A}

is non-empty, closed, convex subset of the Hilbert space (F°(D),,£). Hence there
exists a unique element €4p € L4 p such that Capp(A) = E(eap,eap). Since
IneapeLapand E(Lneap,1rneap) <E(eap,eap), weconclude €4 p =1A€C4p
&-q.e. and hence €4 p = 1 £-q.e. on A.

Let v € FO(D), such that v > 0 m-a.e. Then for any ¢ > 0, e p+tv € L4 p and hence
Eleap +tv,eap +tv) = E(eap,eap) or equivalently E(ea p,v) + (t/2)E(v,v) = 0.
Letting ¢ | 0, we conclude

E(eap,v) =0, forall ve F(D), such that v = 0 m-a.e.

The existence of a Radon measure /\27 p on D satisfying the last equality in (2.25) now
follows from by applying [FOT, Theorem 2.2.5 and Lemma 2.2.10] to the Dirichlet
form (EP, FO(D)). We also consider it as a Radon measure on X by setting \}; p(-) :=
Ay.p(- 1 D). This concludes the proof of all claims in (2.25).

By the strong locality and €4 p = 1 £-q.e. on A, we conclude that e4 p is £-harmonic
on A. By the energy minimizing property of e4 p, we have that e4 p is £-harmonic
on D\A. Therefore any u € F n (C.(A) u C.(D\A)) we have £(u, e p) = 0, which
implies that A} (AU (D\A)) = 0, namely suppy[\}; ] © @A. The proof of (2.26) is
contained in [BCM, Proof of Proposition 5.21].
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(b) Let ¢ € F n C.(X) satisty suppy[¢] n A = & and ¢ < 0. Choose ) € F n C.(X) so
that 0 < ¢ <1 and w|v = 1, where V' is a neighborhood of suppy[¢]. Since e pt is
E-harmonic on (D\A) NV and €4 p1p — (Eap® + ¢)T =0 E-q.e. on ((DV\A) N V)e,
we have E(eap, eap) = E(eapt, (€apy + ¢)T) and therefore

0<E&((eap? + &) —eapth, (eap + )" —eant)
= E((eapV + &), (eapV + &)7) — 26 ((eapth + @) T, eapth) + E(eapt, eapV)
= E((eapt + @), (eap¥ + ¢)") — E(eapt, eapt))
< E(eapt + ¢,eap¥ + ¢) — E(eapt,eapy) (by the Markov property)
=E(p,0) + 2E(eapt, p) = E(P, ) + 2E(eap, ) (by the strong locality).

By replacing ¢ with t¢ and letting ¢ | 0, we obtain
E(eap,p) =0 forall pe Fn C.(X) such that ¢ <0 and suppy[¢] = A°. (2.29)

It follows that there exists a Radon measure X, , on A° such that for all ¢ € FnC.(X)
with suppy|¢] = A¢, we have

5(¢, GA,D) = - ¢dA?47D- (2-30)
Ac
Furthermore by the strong locality of (£, F), the £-harmonicity of e4 p on D\ A and
the compactness of 0D, we have
Ao p(A%) =X p(0D) < . (2.31)
We consider X)) , as a finite Borel measure on X by setting A% ,(-) := X p(- n A°),
and then the equality in (2.31) means that suppy[A% p] < 0D.

As before, we can consider A ;, as a Borel measure on X" such that

Aap(X) =Ny p(0A) < 0. (2.32)

Now let ¢ € F nC.(X) and let ¢ € F n C.(X) satisfy ¢|U = 1 for some neighborhood
Uof A 0<1v <1on X and suppy[v] € D. Then

E(p,eap) = E(@—d¢h,eap) + E(PY,eap)
| o-emax, - [ svari,

oD

= | oad\yp+ | edN\ip, (by (2:30),(2.31), (2.26),(2.32)). (2.33)
oD 0A

Also by [FOT, Theorem 4.4.3-(i),(ii) and Lemma 2.2.3], XY 5, A p, charge no E-polar
set. Finally, for any u € F.n L*(X,m), by [FOT, Theorem 2.1.7 and Corollary 1.6.3],
there exists {u, fnen = F N Co(X) with [Jun g, < [[ull o2 mys Un — @ E-q.e. on X and
lim,, o0 (U — Uy, u—u,) = 0. This along with (2.33) applied to the sequence {u, }nen,
Mi.p(0D) < 0, X} p(@A) < oo and the dominated convergence theorem implies the
desired equality (2.27). O
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We close this subsection by introducing the Dirichlet form induced by assigning re-
flected (Neumann) boundary condition, which requires the notion of £-energy measure
and the space of functions locally in F defined as follows. Note that fg € F for any
f,g€ Fn L®(X,m) by [FOT, Theorem 1.4.2-(ii)], that {(—n) v (f A n)}*; < F and
lim, o (—n) v (f An) = finnorm in (F, &) for any f € F by [FOT, Theorem 1.4.2-(iii)],
and that these two claims with (F, &) replaced by (F., &) hold by [FOT, Corollary 1.6.3].

Definition 2.12 (Energy measure; [FOT, (3.2.13), (3.2.14) and (3.2.15)]). The £-energy
measure I'(f, f) of f € F. is defined, first for f € F n L*¥(X,m) as the unique ([0, o0]-
valued) Radon measure on X" such that

| adr.n =G f0) - 5EPe)  foralgeFacr), (230

next by I'(f, f)(A) := lim, o, T ((—n) v (f An), (—n) v (f An))(A) for each A € B(X) for
f e F,and then by I'(f, f)(A) := lim,, oo ['(fy, fn)(A) for each A € B(X) for f € F.; here
{fu}nen © F is any sequence such that limy e E(fx — fi, fr — fi) = 0 and lim,, .o f, = f
m-a.e. on X (recall Definition 2.9). We remark that, if (£, F) is strongly local, then
U(f, )(X) =E(f, f) for any f e F. by [FOT, Lemma 3.2.3].

Definition 2.13 (Function locally in the form domain and its energy measure). Assume
that (X, m, &, F) is strongly local, and let D be an open subset of X'. We define the space
Floe(D) of functions on D locally in F as

functions on D such that f = f# m-a.e. on V for some

f is an m-equivalence class of R-valued Borel measurable
}, (2.35)
f# e F for each relatively compact open subset V of D

EOC(D) = {f

and define the £-energy measure U'p(f, f) of f € Foe(D) as the unique Radon measure
on D such that T'p(f, f)(A) = T(f#, f#)(A) for any relatively compact Borel subset A
of D and any V, f# as in (2.35) with A = V; note that T'(f#, f#)(A) is independent of a
particular choice of such V, f# by [FOT, Corollary 3.2.1].

Now we can define the reflected Dirichlet form on an open set as follows.

Definition 2.14 (Reflected Dirichlet form). Assume that (X, m, &, F) is strongly local,
and let D be an open subset of X. We define a linear subspace F(D) of L?(D,m|p) by

F() = { e FuD) | [ Pam s [ wpdro(ss) <o), (2.36)

and a non-negative definite symmetric bilinear form £ : F(D) x F(D) — R by

ED(f,g) = i(f LodUo(f +9.7 +9) = | 1odln(f 9.7 - 9>)- (2.37)
D D

We call (€750 F(D)) the reflected Dirichlet form of (£, F) on D.

The form (£™5P | F(D)) need not be a regular symmetric Dirichlet form on L?(D, m|5)
in general. A sufficient condition for this to hold is provided in Theorem 2.16-(a) below.
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2.4 Sub-Gaussian heat kernel estimates

Let W: [0,0) — [0,00) be a homeomorphism such that

CH(?)& < ?p((]f)) < C(7R>62 (2.38)

for all 0 < r < R for some C, 1, 53 € (1,0) with 51 < (2. If necessary, we extend ¥ by
setting W(o0) := 00. Such a function V¥ is termed a scale function. For such ¥, we define

U: [0,00) — [0, 0] by X
e = Tes(ggo)(; - ‘I’(T))’ (239)

so that W(0) = 0 and W(s) € (0,00) for any s € (0,00) by [GT12, Remark 3.16]. For
example, if 3 € (1,0) and ¥(r) = r# for any r € [0,0), then U(s) = 5_%(6 - 1)5%
for any s € [0, 0).

Definition 2.15 (HKE(¥)). Let (X, m, &, F) be a regular Dirichlet space, and let (7});~0
denote its associated strongly continuous contraction semigroup. A family {p:},., of
[0, co]-valued Borel measurable functions on X x X is called the heat kernel of (X, m, E, F),

if p; is an integral kernel of the operator T; for any t € (0,00), that is, for any ¢ € (0, o)
and any f e L?(X,m),

Tif(z) = fx pe(z,y) f(y) dm(y) for m-a.e. x € X.

Assuming further that (X,d, m,&, F) is an MMD space, we say that (X,d,m,&,F)
satisfies the heat kernel estimates HKE(W), if there exist C1, ¢q, ¢o, 3,0 € (0,00) and a
heat kernel {p;},_, of (X, m, &, F) such that for each t € (0, 0),

C ~ d(x,
pe(z,y) < m(Bla, \111—1(15))) exp (—clt\IJ (@%)) for m-a.e. x,y e X, (2.40)
pe(z,y) = e for m-a.e. z,y € X with d(x,y) < 5U1(t), (2.41)

m(B(z, U-1(t)))
where U is as defined in (2.39).

We recall the following results obtained by the second-named author in [Mur24] on
the regularity, heat kernel estimates, 1-capacity and descriptions of the domain and the
extended Dirichlet space for reflected Dirichlet forms on uniform domains.

Theorem 2.16. Let U be a scale function, let (X,d,m,E,F) be an MMD space satisfying
VD and HKE(V), and let U be a uniform domain in (X,d). Then the following hold:

(a) ([Mur24, Theorem 2.8]) (U,d, m|g, WY, F(U)) is an MMD space satisfying VD and
HKE(W), where F(U) is considered as a linear subspace of L*(U, m|gz) via (2.7).

31



(b) ([Mur24, Proposition 5.11-(i)]) There exists C € (1,0) such that for any A c U,
Cap}™(4) < Cap, (4) < C Cap™ (4), (2.42)

where Capi™™Y (A) denotes the 1-capacity of A with respect to (U, m|g, &LV, F(U)).

(¢) (Cf. [Mur24, Proposition 5.11-(iii)]) For each u € F(U)., let WY denote an E™HY-
quasi-continuous m|g-version of u. Then

{wtV | ue F(U)} = {ily | ue F}, (2.43)
{wV | uwe F(U)} = {ily | ue F.} (2.44)

with any two functions defined E-q.e. on U and equal E-q.e. on U identified.

(d) (Cf. [Mur24, Theorem 2.9]) T'(u,u)(U) = 0 for any u € F.. In particular, if U = X,
then (E™8U F(U)) = (€, F).

Proof. (a), (b) and (2.43) are proved in [Mur24, Theorem 2.8, Proposition 5.11-(i) and
Proof of Proposition 5.11-(iii)], respectively, and we also have I'(u,u)(0U) = 0 for any
u € F by [Mur24, Theorem 2.9] and then for any u € F. by the definition of I'(u,u)
presented in Definition 2.12. In particular, if U = X, then F(U) = F by ((b) and) (2.43),
and Y (u,u) = Ty (u, u)(U) = T'(u,u)(U) + '(u,u)(0U) = E(u,u) for any u € F.

It thus remains to prove (2.44). If u € F,, then @i|7 is £™"Y-quasi-continuous since
{Fp 0 Ulps1 is an EWonest for any E-nest {F}}r>1 by the lower inequality in (2.42),
we see from Definitions 2.9, 2.13 and 2.14 that u|y € F(U)., and therefore @|y is an
ErtU_quasi-continuous m|g-version of uly € F(U), by (2.7). If diam(U) < oo, then the
converse inclusion claimed in (2.44) follows from (2.43) and the fact that F(U). = F(U)
by (a), [KM23, Proof of Lemma 6.49] and [HiKu, Proof of Proposition 2.9].

Assume diam(U) = oo, let u € F(U), and, recalling Definition 2.9, choose {u,}nen ©
F(U) so that limy e EFY (ug, — g, up, — w;) = 0 and lim,,_, u,, = v m-a.e. on U. Let
Eq: L*(U,m|y) — L*(X,m) be the linear map defined by [Mur24, (5.4)] (see also [Mur24,
Lemma 5.6]), so that Eq(f)|y = f for any f € L*(U,m|y) and by [Mur24, Proposition
5.8-(¢)] and diam(U) = oo there exists C € (1,00) such that

Eo(f) e F and E(Eq(f), Eq(f)) < C1E™MY(f, f) for any f e F(U). (2.45)

Moreover, since (X,d, m,E, F) satisfies the Poincaré inequality PI(V) by [GHL15, Proof
of Theorem 1.2] or [Liel5, Proof of Theorem 3.2] (see also [KM20, Remark 2.9-(b)]), it
follows from limg ;e E*0Y (up — wp, up — w;) = 0 and [KM23, Proof of Lemma 4.4, the

first paragraph] that for any (x,r) € U x (0,00) with B(z,r) c U,
Ul pary € L*(B(z,7),m|p@wr) and  lim (u — up)*dm = 0. (2.46)
=% JB(z,r)

By (2.46), the definition [Mur24, (5.4)] of Eg and [Mur24, Proposition 3.2-(d)] we can
define an extension Eg(u) of u to & by [Mur24, (5.4)] and obtain lim,, .., Eg(u,)(z) =
Eg(u)(z) € R for any x € X\U and hence for m-a.e. z € X, and {Eg(uy)}neny < F and
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limk/\lﬁoo E(EQ(uk) —EQ(ul), EQ(uk) —EQ(ul)) = O by lim;mpoo (c/‘ref,U(uk — U, Uk —Ul) = O
and (2.45). Thus Eg(u) € F. and lim, o E(Eg(un), Eg(u,)) = E(Eg(u), Eg(u)) by
Definition 2.9, hence letting n — o0 in the inequality (2.45) for f = w, yields the same

—_———

inequality with u in place of f, and E, (U)‘U is an £rHU_quasi-continuous m|g-version of

—_—

Eq(u)|ly = ue F(U). by the first paragraph of this proof, whence @' = Eq(u)|; €-q.e.
on U by the £V_q.e. uniqueness of 7tV from [FOT, Lemma 2.1.4] and (2.42). O

Remark 2.17. The above proof of (2.44) in Theorem 2.16-(c) has shown also the following
improvement on [Mur24, Proposition 5.8-(c)]:

If diam(U) = o0, then we can define an extension Eq(f) of any f € F(U). to X by
[Mur24, (5.4)] and obtain a linear map Eq: F(U). — F. such that Eq(F(U)) < F (2.47)
and the inequality in (2.45) holds for any f € F(U). for some C; € (1,00).

Note that the analogous statement is trivial when diam(U) < oo since F(U). = F(U) in
this case as we have seen in the second paragraph of the above proof of Theorem 2.16.

As recalled in Subsection 2.3, the general results [FOT, Theorems 7.2.1 and 4.5.3] from
the theory of regular symmetric Dirichlet forms guarantee the existence of an associated
diffusion with no Kkilling inside which is unique only up to a properly exceptional set
of starting points. On the other hand, under the assumption of VD and HKE(V), a
continuous heat kernel p = p;(z, y) exists and gives a Markovian transition function with
the Feller and strong Feller properties, which allow us to define canonically an associated
diffusion starting from every x € X as we recall below. Recall from Notation 1.7-(j) that
Co(&X) denotes the space of R-valued continuous functions on X vanishing at infinity.

Proposition 2.18. Let (X,d,m,E,F) be an MMD space satisfying VD and HKE(V) for
some scale function W. Then the following hold.

(a) X is connected and locally pathwise connected and (X,m,E,F) is irreducible and
conservative.

(b) ([BGKI12, Theorem 3.1]) A (unique) continuous heat kernel p = py(x,y): (0,0) x X x
X — [0,00) of (X, m,E,F) exists.

(c) ([Liel5, Proposition 3.2]) The Markovian transition function (P;)io on X defined by
Pi(x,dy) := pi(x,y) m(dy), (t,z) € (0,00) x X, has the Feller property: P;(Co(X)) <
Co(X) for any t € (0,%0) and limyo [|[Pf — flly, = 0 for any f € Co(X), and
the strong Feller property: P,f € C(X) for any bounded Borel measurable function
f: X = R. In particular, there exists a diffusion X = (£, M, {X;}iefo,00], { P }aexs)
on X such that Py (X, € dy) = pi(z,y) m(dy) for any (t,z) € (0,0) x X, and X is
conservative, i.e., P.(X; € X) =1 for any (t,z) € (0,00) x X.

(d) Let X be a diffusion on X as in (c), and let D be a non-empty open subset of X.
Then a (unique) continuous heat kernel p? = pP(z,y): (0,00) x D x D — [0,0) of
(D, m|p,EP, F°(D)) exists, and the part process X of X on D satisfies the strong
Feller property on D and P,(XP € dy) = pP(z,y) m|p(dy) for any (t,z) € (0,0) x D.
Moreover, if D is connected, then pP(z,y) € (0,0) for any (t,7,y) € (0,00) x D x D.
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Proof.  (a) (X, m,&,F) is irreducible by (2.41) from HKE(V), and X is connected and
(X, m,E,F) is conservative by [GT12, Theorem 7.4 and Lemma 7.3-(a),(b)] and
[Liel5, Theorem 3.2]. Since (X,d, m,E, F) satisfies EHI by its VD and HKE(V) as
noted in Remark 2.22 below, X is locally pathwise connected by [GH14, Proposition
5.6] and [BCM, Remark 5.3 and Lemma 5.2-(a)| (see also Lemma 2.28-(a) below).

(b) This is proved in [BGK12, Theorem 3.1].
(c¢) This is proved in [Liel5, Proposition 3.2].

(d) The first claim is proved in [BGK12, Theorem 3.1]. To show the stated properties
of XP, let (PtD )i=0 denote the Markovian transition function of X, which satisfies
AC since X satisfies AC, and define a Markovian transition function (QF)s~¢ on D
by QP (x,dy) := pP(x,y) m|p(dy), (t,z) x (0,00) x D. Then since the Dirichlet form
of XPis (EP, F(D)) as mentioned after (2.22), we have QP (f|p) = PP (f|p) < Pif
m-a.e. on D for any f e L?(X,m) and any t € (0,0), and hence p”(z,vy) < pi(z,y)
for any (t,z,y) € (0,00) x D x D, which together with VD and HKE(V) easily
implies that (QP)s~o has the strong Feller property on D. Now let f € C.(D). Then
for any s,t € (0,00) and any x € D, by the Markov property of X? PPf = QP f
m-a.e. on D and PP (z,-) < m|p we obtain

PP(PPf)(w) = (PR.f)(@) = PP(PPf)(x) = PP(Q)f)(x),

and letting s | 0 yields

(PP f)(z) = (QF (=) (2.48)
by the dominated convergence theorem since limg;o(PP f)(y) = f(y) for any y € D
and limg o PP(QP f)(z) = (QF f)(z) by the sample-path right-continuity of X%,
feC.D), and QP f € C(D) implied by the strong Feller property of QP. We thus
conclude from the validity of (2.48) for any f € C.(D) that PP (z,-) = QP(x,-) for
any (t,z) € (0,00) x D, which together with the strong Feller property of QP proves
the stated properties of XP.

Lastly, assume that D is connected, so that D is pathwise connected since X is
locally pathwise connected by (a). If diam(D) < oo, then pP(z,y) > 0 for any
(t,z,y) € (0,00) x D x D by VD, (2.40) from HKE(V), the properties of X just
shown above and [Kajl0, Proposition A.3-(2)]. If diam(D) = oo, then since D
is connected and locally pathwise connected, for any z,y € D we can choose a
pathwise connected open subset Dy of D with diam(Dy) < oo so that x,y € Dy and
thus pP(x,y) = p°(z,y) > 0 for any t € (0,0), completing the proof. O

In view of Proposition 2.18, we often impose the following assumption.

Assumption 2.19. Let ¥ be a scale function, and let (X, d, m, &, F) be an MMD space
satisfying VD and HKE(V). We assume that p = pi(z,y): (0,0) x X x X — [0,0)
is the continuous heat kernel of (X, m, &, F) as given in Proposition 2.18-(b), and that
X = (M, { X, }sefo,00]> {Pa}aen,) is a diffusion on A with minimum augmented admissible
filtration I, = {F;}eqo,00], life time ¢ and shift operators {6 },cj0,.0] such that Py (X; € dy) =
pe(z,y) m(dy) for any (t,z) € (0,00) x X as given in Proposition 2.18-(c).
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2.5 Harmonic functions and the elliptic Harnack inequality

We recall the definition of harmonic functions and the elliptic Harnack inequality.

Definition 2.20 (Harmonic function). Let (X, m, €, F) be a strongly local regular Dirich-
let space, and D an open subset of X'. We say that a function h € Fi.(D) is €-harmonic
on D if

E(h,v) =0 for every v e F n C.(D). (2.49)

Here by the strong locality of (£, F), we can unambiguously define £(h,v) := E(h#,v)
where h#* € F and h = h¥ m-a.e. on a neighborhood of supp,,[v].

Definition 2.21 (Elliptic Harnack inequality (EHI)). We say that an MMD space
(X,d,m, &, F) satisfies the (scale-invariant) elliptic Harnack inequality, abbrevi-
ated as EHI, if there exist Cy € (1,0) and § € (0, 1) such that for any (z,r) € X x (0, 0)
and any h € Fie(B(z,r)) that is non-negative m-a.e. on B(z,r) and £-harmonic on
B(z,r),

esssup h < C essinf h. EHI
B(z,0r) B(a,6r)

There is a close relationship between the heat kernel estimates HKE (W) and the elliptic
Harnack inequality EHI as we recall below.

Remark 2.22. If (X,d,m, &, F) is an MMD space satisfying the volume doubling prop-
erty VD and HKE(V), then it satisfies (the metric doubling property MD and) EHI by
[GHL15, Theorem 1.2] (see also [KM23, Theorem 4.5]). Conversely, if (X,d,m,E, F) is
an MMD space satisfying MD and EHI, then by [BCM, Theorem 7.9] (see also [BM18])
there exist a metric # on X quasisymmetric to d and an £-smooth Radon measure v on
X with full £-quasi-support (see Definitions 2.30 and 2.31 below) such that the time-
changed MMD space (X6, v,E", F¥), where (£, F*) := (£, F) is defined by (2.74) and
(2.75) below, satisfies VD and HKE(W) for some scale function W.

We are often interested in harmonic functions on an open set V' with zero (or Dirichlet)
boundary condition “along the boundary of a larger open set U” as defined below.

Definition 2.23 (Function with Dirichlet boundary condition). Let (X, m,&,F) be a
strongly local regular Dirichlet space, and let V' < U be open subsets of X'. We define

tions on V such that f = f# m-a.c. on A for some f# e FO(U)

for each open subset A of V' with A compact and AnU\V = &
(2.50)

so that FL (U, V) is a linear subspace of Fi,.(V), and call each u € F (U, V) a function on

oc loc

V' with Dirichlet boundary condition relative to U. Each u € F (U, V) that is &-harmonic

loc
on V' (recall Definition 2.20) is called an €-harmonic function on' V' with Dirichlet boundary

condition relative to U.

f is an m~equivalence class of R-valued Borel measurable func—}

‘/__i(c))c(Ua V) = {f

The following lemma shows that harmonicity and Dirichlet boundary condition are
preserved under local uniform convergence.
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Lemma 2.24. Let (X, m, &, F) be a strongly local reqular Dirichlet space.

(a) Let U < X be open and let h, € Fioc(U), n = 1 be a sequence of locally bounded
harmonic functions such that h, converges to h uniformly on any compact subset of
U. Then h € Fioe(U) and h is E-harmonic on U.

(b) Let U,V be open subsets of X with V < U and let h,, € F2 (U, V),n =1 be a sequence

loc
of bounded harmonic functions on V' such that h, converges to h uniformly on A for

any A <V relatively compact in U with AnU\V = &. Then he F (U, V) and h

loc
1s €-harmonic on V.

Proof. (a) Let V' be relatively compact open subset of U. Since X is locally compact
there is a compact neighborhood W of V such that V < W < U. Since (£, F) is a
regular Dirichlet form, there exists ¢ € F n C.(U) such that 0 < ¢ < 1, qﬁ‘v = 1 and
¢|WC = (. Since h; is locally bounded and suppy[¢] is compact, by [FOT, Theorem
1.4.2-(ii)] we obtain h;¢ € F. Since h,, — h uniformly on compact subsets of U, we
have that ¢h,, converges to ¢h in L*(X',m). We claim that ¢h,,n € N is an £ -Cauchy
sequence that converges to ¢h € F. To see this, note that by the Leibniz rule [FOT,
Lemma 3.2.5] for I" and the £-harmonicity of h; — h; on U,

E(B(hs — hy), bl — 1)) = f (hi — By dU(,6) + E(hs — hy. 6 (hs — 1)

w

_ fwm — )2 dU(6, ). (2.51)

Since h; converges uniformly on W, we obtain that ¢h; is a £-Cauchy sequence whose
limit is ¢h;. By (2.51) and lim;_,,, ¢h; = h m-a.e. on V', we conclude that h € Fioe(U).

Let ©» € FnC(U). Let V be a relatively compact open subset of U with supp[1] <
V. Then choosing ¢ as above, by strong locality and harmonicity of h; we obtain

E(h, ) = E(6h,v) = lim E(dhy, ) = lim & (hs, ) = 0.

Therefore h is £-harmonic on U.

(b) Let A © V be open such that A is relatively compact in U with A~ U\V = &. Since
X is locally compact, there exists a neighborhood W of A such that W is compact
and satisfies W n U\V = &. Therefore, there exists ¢ € F n C.(X) such that ¢ is
[0, 1]-valued, ¢‘W = 1 and suppy[¢] "U\V = &. Let h; € FO(U) be such that h; = h;
m-a.e. on A for all i € N. By replacing f; with (—=M; v ﬁ,) A M;, where M; = sup 4 |hy],
we may assume that i; € FO(U) n L2(X, m). Therefore ¢h; € FO(U) has an E-quasi-
continuous m-version which vanishes €-a.e. on V° for all i € N. Therefore ¢h; € F O(V)
for all ¢ € N. Using the harmonicity of h; in V' and the same argument as used in
(2.51), we conclude that the sequence ¢h; € F°(V) is £;-Cauchy and converges to
oh € FO(V). Since ¢h = h m-a.e. on A, we conclude that h € F°(U,V). The
assertion that h is £-harmonic on V follows from (a). O
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Remark 2.25. Let (X, m, £, F) be a strongly local regular Dirichlet space. The argument
used in the above proof of Lemma 2.24 implies also the following facts.

(a) If U, hy,,h are as in Lemma 2.24-(a), then for any ¢ € F n C.(U), the sequence
oh, € F,n € N is &-Cauchy and converges to ¢oh € F.

(b) Let U, V, hy, h be as in Lemma 2.24-(b), and extend h,, h to VUU® by setting h, |, =0

for all n € N and h‘UC = 0. Then for any ¢ € F n C.(&X') such that suppy[¢] nU\V =
&5, we have h,¢ € F for all n € N and h,,¢ converges in & -norm to h¢ € F.

Harnack inequalities are often used along a chain of balls. We recall the definition of
Harnack chain — see [JI{; Section 3]. For a ball B = B(z,r) in a metric space (X, d) and
e € (0,00), we let ¢B denote the ball B(z,er).

Definition 2.26 (Harnack chain; relatively ball connected). Let (X, d) be a metric space.

(a) Let D be an open subset of X and M € (1,). For x,y € D, an M-Harnack chain
from x to y in D is a sequence of balls By, By, ..., B, each contained in D such
that v € M~'B;, y e M~ !B, and M™'B;n M™'B;; # & fori =1,2,....,n— 1.
The number n of balls in a Harnack chain is called the length of the Harnack chain.

The infimum of the lengths of all M-Harnack chains from x to y in D is denoted by
Np(z,y; M).

(b) ([BCM, Definition 5.1-(i)]) Let K € (1,00). We say that (X,d) is K-relatively
ball connected if for each € € (0,1) there exists N = N(e) € N such that for any
(zo,R) € X x (0,00) and any z,y € B(zo, R) := {z € X | d(x0,2) < R} there exist
{z:}Y, = X such that zy = x, 2y =y, B(z;,eR) < B(zy, KR) for any i € {0,..., N}
and d(z;_1,2;) <eR forany i € {1,...,N}.

If K € (1,0) and a metric space (X,d) is K-relatively ball connected, then for any

e € (0,1), any (zo,7) € X x (0,00) and any z,y € B(xzg,r), by the triangle inequality we
have

NB(ao2r) (2, 9;67) < Ne), (2.52)

where N (e) is as given in Definition 2.26-(b).

Remark 2.27. Let (X,d,m,&, F) be an MMD space satisfying EHI with constants Cy
and 0. If w is a [0, 00)-valued continuous £-harmonic function on an open subset D of X,
then for any xy, x5 € D,

CP e Dy (21) < u(w) < ORPE Du(ay). (2.53)

The following lemma lists some useful estimates on the lengths of Harnack chains.

Lemma 2.28. (a) ([BCM, Theorem 5.4]) Let (X, d, m,E, F) be an MMD space satisfying
MD and EHI. Then (X,d) is K-relatively ball connected for some K € (1,0).
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(b) Let (X,d) be a metric space satisfying the metric doubling property MD, and let U be a
(cu, Cy)-uniform domain in (X, d). Then for each M € (1,0) there ezists C' € (0, 0),
depending only on cy, Cy and M, such that for any x,y € U,

d(z,y)
min{dy (z), ou(y)}

Proof. The conclusion in (a) is contained in [BCM, Theorem 5.4].

To see (b), let v be a (cy, Cy)-uniform curve between z,y € U. Without loss of
generality, we may assume 0y (z) < dy(y). Since

Ny(z,y; M) < C’log( + 1) + C. (2.54)

dy(2) = max (cy min{d(z, z),d(y, 2)}, 0y (z) — d(z, 2), dy(y) — d(y, z)) for any z € =,

we have

If d(x,y) < 46y(x), we choose a maximal M~ 'cydy(z)/2 subset of 7. Observing that
v < B(z,2Cyd(z,y)) < B(z,8Cydy(z)) and using the metric doubling property we obtain
the desired upper bound.

For i € N, choose z; € v such that d(z, z;) = 27'd(z, y) and such that z;,; lies on the
subcurve from z to z;. Note that

d(2i, zi41) < 27" d(z,y), Su(z) = cp27'd(x,y) for all i > 1.

First we show that
Ny(ziyziz1; M) <1 foralli > 1.

To see this, we choose a maximal M~'c}27"2d(z,y) subset N; of a (cy, Cy)-uniform
curve ~; from z; to z;11. Since the balls {B(n, M ~'c}27"2d(z,y)) : n € N;} cover
and diam(y;) < Cy2~"d(z,y), and are contained in U by (2.55), the metric doubling
property [Hei, Exercise 10.17] implies that

Ny(ziyziz1; M) < #N; <1 foralli > 1. (2.56)

Let k € N be the smallest number such that 2,1, € B(x, M~'6y(x)), so that k =

1+ log <‘;§f(’;’)) + 1). By joining M-Harnack chains of length Ny (2;, zi11; M) from z; to

241 successively and using the ball B(x, M~y (x)), we obtain a M-Harnack chain from
x to z; they yields the estimate

k

d

Ny(z,z1; M) <1+ ZNU(zi,ziH; M) < log ( ;UI(’;J)) + 1) + 1. (2.57)
i—1

Similarly for i € N, choose w; € v such that d(y,w;) = 27%d(z,y) and such that w;,,
lies on the subcurve from w; to y. Similar to (2.57), we obtain

k

d

Vo M) 1+ 3 N i M) < log (2 1) 11 (259
1=1
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Since Oy (z1) A dy(wy) = cpd(z,y)/2 and d(z1,w;) < 2d(z,y), by the same argument as
(2.56), we have
Ny(z1,wy; M) < 1. (2.59)

By (2.57), (2.58) and (2.59), we conclude (2.54). O

We record a few more consequences of Harnack chaining.

Lemma 2.29. Let (X,d,m,E,F) be an MMD space satisfying MD and EHI, and let
U be a uniform domain in (X,d). Then there exist Ay, A1,Cy € (1,00) and v € (0,0)
such that for any § € U, any 0 < r < R < diam(U)/A; and any continuous function
h: UnB(§, AgR) — (0,0) that is E-harmonic on U N B(&, AgR), with &g, &, as in Lemma
2.0,

T\ E gl
7 () (&) < h(er) < G (=) hi&): (2.60)
Furthermore if £g, R € U are two points that satisfy the conclusion of Lemma 2.6, that is
, , CUR
d(€,€r) = d(§,8k) = R and  6u(&r) A ou () > 5
then
Cr'h(€R) < h(ér) < Cih(&R). (2.61)

Proof. Let 6 € (0,1) denote the constant in EHI. By Lemma 2.28-(b), for any £ € oU
and any 0 < r < R we have Ny (&,,&r;071) < Oy, where C) depends only on ¢ and the
constants associated to the uniformity of U. By Lemma 2.6 and the proof of Lemma
2.28-(b), there exist Ay, A; € (1,90) depending only on § and the constants associated to
the uniformity of U such that for all £ € 0U and all 0 < r < R < diam(U),

Nu (&, €r;071) < Nunpeaor) (&, Er; 07 1) < Ci(1 + log(R/7)). (2.62)
The estimate (2.60) now follows from (2.62) and Remark 2.27. The estimate (2.61) also
follows from the same argument. O]

2.6 Trace Dirichlet form

Throughout this subsection, we assume that (X, m,&,F) is a regular Dirichlet space.
Recall that the 1-capacity Cap,(A) of A ¢ X with respect to (X, m, &, F) is defined by
(2.10).

Definition 2.30 (Smooth measure). A Radon measure v on X, i.e., a Borel measure v
on X which is finite on any compact subset of X', is said to be £-smooth if v charges no
E-polar set (that is, v(A) = 0 for any A € B(X') with Cap,(A) = 0).

For example, the £-energy measure I'(f, f) of any f € F. is E-smooth by [FOT,
Lemma 3.2.4]. An essential feature of an £-smooth Radon measure v on X is that the
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v-equivalence class of each f € F. is canonically determined by considering an £-quasi-
continuous m-version f of f, which is £-q.e. unique by [FOT, Lemma 2.1.4] and thus
indeed v-a.e. unique.

We say that a subset D of X is £-quasi-open if there exists an E-nest {F}}reny such
that D n F} is an open subset of Fj, in the relative topology of Fj inherited from X for
each k£ € N. The complement in X of an £-quasi-open set is said to be &-quasi-closed.
Now we recall the definition of an £-quasi-support of an £-smooth Radon measure.

Definition 2.31 (Quasi-support; [FOT, (4.6.3) and (4.6.4)], [CF, Definition 3.3.4]). Let
v be an £-smooth Radon measure on X. A subset F' of X is said to be an £-quasi-support
of v if the following two conditions hold:

(a) F is E-quasi-closed and v(X\F') = 0.
(b) If F < X is E-quasi-closed and v(X\F) = 0, then Cap, (F\F) = 0.

By definition, an £-quasi-support of v is unique up to £-q.e. equivalence; that is, if F} and
F5 are E-quasi-supports of v, then Cap, ((F1\Fs) u (F2\F1)) = 0. Furthermore by [FOT,
Theorem 4.6.3], an E-quasi-support of v indeed exists.

The &-quasi-support of an £-smooth Radon measure can be described more explicitly
in terms of the corresponding positive continuous additive functional (PCAF) of a Hunt
process X associated with (€, F), as we recall below from [CF, Sections A.3 and 4.1]
and [FOT, Section 5.1]. In the rest of this section, we fix an m-symmetric Hunt process
X = (Q, M, { X }iepo,00]s {Pr}zex,) on X whose Dirichlet form is (£,F), with minimum
augmented admissible filtration F, = {JF;}ie[0,001, life time ¢ and shift operators {6 }e[0,0]-

A collection A = {A;}e[0,0) of [0, c0]-valued random variables on €2 is called a positive

continuous additive functional (PCAF for short) of X, if the following three conditions
hold:

(i) A; is Fi-measurable for any t € [0, 0).

(ii) There exist A € F, and a properly exceptional set N < X for X such that P,(A) =1
for any z € X\N and 6,(A) = A for any t € [0, ).

(iii) For any w € A, [0,0) 3 t — Ai(w) is a [0, 00]-valued continuous function with
Ag(w) = 0 such that for any s,t € [0,0), Ay(w) < 0 if t < ((w), Ay(w) = A¢(w)(w)
if t > ((w), and Ayy(w) = Ai(w) + As(0:(w)).

The sets A and N are referred to as a defining set and an exceptional set, respectively, of
the PCAF A. Note that then A n {oa A dar = o0} is easily seen to be a defining set of A
and belongs to Fy, and recall that N' = N; for some properly exceptional set N7 € B(X)
for X by (2.17). Thus by replacing N/ with such A; and then A with An{dp; Ada, = o0},
we can always choose a defining set A and an exceptional set A of a given PCAF of X
so that A € Fy, N € B(X) and A < {on A o = o0}. If A can be taken to be the empty
set (J, then we say that A is a PCAF in the strict sense of X.
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By [CF, Theorem A.3.5-(i) and Theorem 4.1.1-(i)] (see also [CF, Theorem 4.1.1-(iii)]
and [FOT, Theorem 5.1.3]), for each PCAF A of X there exists a unique Borel measure
v on X, called the Revuz measure of A, such that

JX fdv = ltii%l %]Em UO f(Xy) dAs] (2.63)

for any Borel measurable function f: X — [0, 0], and then this measure v charges no
E-polar set and satisfies v(Fy) < oo for any k € N for some E-nest {Fj}reny. Conversely,
by [FOT, Lemma 5.1.8 and Theorem 5.1.3] (see also [CF, Theorem 4.1.1-(ii)]), given an
E-smooth Radon measure v on X, there exists a PCAF A of X whose Revuz measure
is v, and any two such PCAFs A = {A;}ie[0,00); A" = {AL}iepo,0) of X are equivalent, i.e.,
have a common defining set A and a common exceptional set A such that 4;(w) = A}(w)
for any (t,w) € [0,00) x A. Moreover, if X satisfies AC, then PCAFs in the strict sense of
X satisfy a pointwise analogue of (2.63) as in the following proposition.

Proposition 2.32. Assume that X satisfies AC, let A = {As}iefo,0) be a PCAF in the
strict sense of X, let v be the Revuz measure of A, and let D be an open subset of X.
Then for any (t,z) € (0,0] x D and any Borel measurable function f: D — [0, ],

E, [ [ sex dAs] - [ t [ st vian as (2.61)

0

(note that v is o-finite), where pP denotes the unique Borel measurable function pP =
pP(x,y): (0,0) x D x D — [0,00] satisfying (2.16) for the part process XP of X on D
(recall that X? is an m|p-symmetric Hunt process on D and satisfies AC).

Proof. Let (PSD )s>0 denote the Markovian transition function of X D Then we obtain

E, U 7(X.) dAs] _lmE, [ [ ) dAs]

0 410 IATD

(t—=6)ATD
=1mE b, mip lj f(Xy) dAS] (by the Markov property of X and AC)

D,
510 Ps 0

t—0
[ [ (PP @) vl ds - (by (CF, (41.25))

¢ ¢
~tim || Pt v ds = | | o s vidy)as =
5 Jp 0Jp

Now let v be an £-smooth Radon measure on X' and let A = {A;}c0,00) be a PCAF of X
whose Revuz measure is v with a defining set A € F and an exceptional set N € B(X) such
that A < {ox A dn = 00}, Since {A;14 }iefo,00) I8 easily seen to be a PCAF equivalent to A
with defining set A U {¢ = 0} € F; and exceptional set N, we may and do assume without
loss of generality that A;(w) = 0 for any (¢,w) € [0,0) x (Q\A) and that {( = 0} < A.
Then the support F of A defined by

F:={ze X\N |P,(R=0) =1}, where R:=inf{te (0,0) | A, > 0}, (2.65)
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is X-nearly Borel measurable and £-quasi-closed as shown in [CF, the paragraph of (5.2.1)]
and in fact an £-quasi-support of v by [FOT, Theorem 5.1.5] or [CF, Theorem 5.2.1-(i)].
Moreover, the time-changed process X = (SVI,J\V/[, {Xt}te[(),w],{lpx}mepa) of X by the
PCAF A, defined for (t,w) € [0, 0] x Q by

n(w) == inf{s € (0,0) | Ay(w) > 1}, Xi(w) = Xp)(@), C(w):= Ap(w) = lim A,(w),
Q:=An {)V(S € F, for any s € [0,0)}, M := Tolg, 0, (w) = Or, ) (w),  (2.66)

is a v-symmetric right-continuous strong Markov process on (Fj, B*(F})) with life time CY
and shift operators {et}te[o ] bY [CF, Theorems A.3.9 and 5.2.1-(ii)], where F, := F'u{d}.
More precisely, from [CF, Proposition A.3.8-(iv),(vi)] we easily obtain

{)V(S € F, for any s€ [0,0)} € Fy, P, ()v(S € F, for any s € [0,00)) = 1 for any = € Xj,
(2.67)
7 is an F,-stopping time and X; is F,,/B*(X;)-measurable for any t € [0, 0] by [CF,

Proposition A.3.8-(i) and Exercise A.1.20-(ii)], the family F, = {‘r;rt}te[o ] defined by

~

SL't = 3.'7_“ te [0, OO], (268)

is a right-continuous filtration in Q by [CF, Proposition A.3.8-(iii)], and X is strong
Markov with respect to &, by [CF, Theorem A.3.9].

In this situation, it turns out that the Dirichlet form of the time-changed process X
is identified as the trace Dirichlet form of (£, F) on L?(F,v), whose definition given in
Definition 2.35 below involves the hitting distribution of X to F' defined as follows.

Definition 2.33 (Hitting distribution; harmonic measure). Let F' be an X-nearly Borel
measurable £-quasi-closed subset of X'. Recalling the F,-stopping time op from (2.11),
we define the (0-order) hitting distribution Hp of X to F by

Hp(x,A) =P, (X,, €A, op <), xeX, AecB(X). (2.69)

Then by [CF, Theorem 3.4.8], letting & denote any £-quasi-continuous m-version of u € F,
we can define an £-q.e. defined, £-quasi-continuous function Hru € F, by

HF&("E) = Ew[ﬂ(XaF)]l{aF<oo}]7 (27())

which is independent of @|y\p for £-q.e. z € & since P, (X,, € X\F, op < 0) = 0 for
E-q.e. z € X by [CF, Theorem 3.3.3-(i)] and [FOT, Lemma A.2.7], and Hgu is £-harmonic
on X\F, i.e., satisfies

E(Hpu, f) =0 for any f € F. with f: 0 £-q.e. on F. (2.71)

Moreover, since P,(cr = 0) = 1 for £-q.e. x € F by [FOT, Theorems A.2.6-(i), 4.1.3 and
4.2.1-(ii)], it follows from (2.70) and (2.71) that

Hpu=u &-qe. on F and E(Hpu, Hru) < E(u,u). (2.72)
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Lastly, for an open subset D of X, we define the £&-harmonic measure w” of D with
base point z € D by
w?(A) := Hy\p(x, A) for each A e B(X). (2.73)

Before starting our discussion of trace Dirichlet forms, we recall some basic properties
of the harmonic measure in the following lemma.

Lemma 2.34. Let an MMD space (X,d,m,E,F) and a diffusion X on X satisfy As-
sumption 2.19. Let D be a non-empty open subset of X.

(a) ([Liel5, Lemma 3.2]) For any x € D, the measure w? charges no E-polar set and
suppy|w?] = 0D.

(b) ([Liel5, Lemma 3.2]) For any bounded Borel measurable function f: 0D — R, the
function h: D — R defined by

h(z) = . fly)w? (dy)

belongs to Foc(D) and is continuous on D and E-harmonic on D.
(¢) If D is connected, then wP « w?f for any x,y € D.

(d) If D is relatively compact in X and X\D is not E-polar, then wP(0D) = 1 for any
reD.

(e) LetU be a uniform domain in (X, d) and X**" = (0, M { X7} eq0,00, {Pr Y ociorey)
be a diffusion on U as in Assumption 2.19 for the MMD space (U, d, m|g, E*5Y, F(U))
(recall Theorem 2.16-(a)). Then for any x € U, the £°MY-harmonic measure of U
with base point x coincides with wg‘ﬁ, and oU is an £V -quasi-support of wﬂﬁ.

Proof. (a,b) We have suppy[w?] = dD by the sample-path continuity (2.19) of X, which
holds for any x € X by AC of X. The remaining properties are proved in [Liel5,
Lemma 3.2]. Although [Licl5, Lemma 3.2] assumes that D is a relatively compact
open subset of X', the proofs presented there work for an arbitrary open subset.

(c) Let A e B(dD) satisfy w)’(A) = 0. By (b), the function ha(z) := {,, La(§)w? (d€) =

D

w2’ (A) on D is continuous, non-negative, E-harmonic on D and belongs to Fio.(D).

Since ha(y) = w)(A) = 0, we conclude from EHI (recall Remark 2.22) and the
connectedness of D that h;'(0) is non-empty, both closed and open in D and thus

coincides with D. In particular, w?(A) = ha(z) = 0 and hence w? « w’.

(d) We have P,(tp < o) = 1 for £-q.e. € D by [BCM, Proposition 3.2] and the
irreducibility of (X, m, &, F) from Proposition 2.18-(a), hence P,(7p < o) =1 for
any x € D by AC of X? and the Markov property of X, and therefore w? (D) =
P,(7p < ) =1 for any = € D by the sample-path continuity (2.19) and AC of X.

(e) We see from [FOT, Exercise 1.4.1 and Theorem 1.4.2-(ii)] that F(U) n C.(U) =
FoUU) n C(U), from [FOT, Corollary 3.2.1] that £V (f, g) = EY(f,g) for any
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f,g € FO(U) n C.(U), and thus from the denseness of F(U) n C.(U) = F°(U) n
Ce(U) in (F(U), & + (., ->L2@m|ﬁ)) and in (FO(U),EY + -, r2@wmyy)) that the
part Dirichlet form of (€Y, F(U)) on U coincides with (€Y, FO(U)). Namely, the
Dirichlet form of the part process (X*)Y of X™f on U coincides with that of XY,
which together with Proposition 2.18-(d) implies that (X™)Y and XU have the
same Markovian transition function on U. It then follows by the Markov property
of (X™)V and XY that for any = € U, the law of {(X"){}c(0,50) under P2 and that
of {X }iepo,00) under P, as C([0, 0), Us)-valued random variables coincide, where
Ca([0, %), Us) — {7. [0,50) — U ~v is continuous, (t) = 0y for any}
B ' CE t € [0,00) with ¢ > infy~1(Jy) ’

equipped with the o-algebra generated by its subsets of the form {y € C5([0, o0), Us) |
v(t) € A} for some t € [0,0) and A € B(Up). In particular, for any = € U, any
f e C(Xp) with || f[|,,, < o0 and any € € (0, %), we have

B [ F(X{s o ) <oy = Ba[ f (X (ry =yt ) Limp<on} ]

and letting € | 0 yields B2 [ f (X217, <oy | = Eo| f( X7, )L iry <0y ] by (2.19) and the
dominated convergence theorem, whence P&f(X e dy) = Py (X, € dy) = w¥ (dy),
i.e., the £*Y_-harmonic measure of U with base point z coincides with w¥ }ﬁ.

Next, let x € U and, to see that U is an £™MY-quasi-support of w¥ |ﬁ, define the
l-order hitting distribution H}; of X™ to oU by
H(%U(y, B) = E;ef [e“’aU]lB(X”ef )]l{(,w«x;}] , oou = inf{t € (0,00) | Xtref e U}

goUu

for y e U and B € B(0U). Then by the result of the previous paragraph and (c) we
have H},;(y, ") « wg\ﬁ for any y € U, which implies by [FOT, Exercise 4.6.1] that

oU is an E"MU_quasi-support of wg‘ﬁ since m(AU) = 0 by Lemma 2.8.

U

The rest of this subsection is devoted to a discussion of trace Dirichlet forms, which are
the Dirichlet forms of the time-changed processes given by (2.66) and defined as follows.

Definition 2.35 (Trace Dirichlet form). Let v be an £-smooth Radon measure on X,
set F™* := suppy[v], and let F' be an X-nearly Borel measurable £-quasi-support of v.
Since Cap,(F\F*) = 0 by Definition 2.31-(a),(b), replacing F' with F\N for an arbitrary
X-nearly Borel measurable £-polar set N' < X including F\F*, we may and do assume
that F' < F*. We define

./7—'/' = {2NL|F

u € Fe, f W dv < oo}, (2.74)
F

where we identify functions that coincide £-q.e. on F’; since, for each u,v € F,, & = v
E-q.e. on Fif and only if & = ¥ v-a.e. on X by [CF, Theorem 3.3.5], and since v(X\F') = 0
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and F' < F*, we can canonically consider F as a linear subspace of L*(F*,v). Then we
further define a non-negative definite symmetric bilinear form £: F x F — R by

E(@|p,dp) = E(Hpll, Hp¥)  for u,v € F, with &|p,d|p € F, (2.75)
and call (£, F) the trace Dirichlet form of (£, F) on L2(F*,v).

Let v, F*, F, ]-v", & be as in Definition 2.35, and assume that v(X') > 0, or equivalently,
Cap,(F') > 0. Then (5, F) is indeed a regular symmetric Dirichlet form on L2(F*,v) and
F*\F is &-polar by [CF, Theorem 5.2.13-(i)], a subset N of F is &-polar if and only if
N is E-polar by [CF, Theorem 5.2.8 and Proof of Theorem 5.2.13-(ii)], and f|gn; is E-
quasi-continuous on F* for any £-quasi-continuous function f: X\N; — [—o0, 0] defined
E-q.e. for some E-polar N < X by [CF, Theorem 5.2.6 and Proof of Theorem 5.2.13-(ii)].
Furthermore by [CF, Theorem 5.2.15], the extended Dirichlet space F, of (F*,v,&,F)
and the values of £ on .7?6 X fe are identified as

Fo={tlp|lueF} and E@|p,0lp) = E(Hp, HeY) for any u,v e F.. (2.76)

In probabilistic terms, for the time-changed process X of X by a PCAF A of X with
Revuz measure v, which is a v-symmetric right-continuous strong Markov process on
(Fy, B*(F,)) defined by (2.66), its Dirichlet form is (£, F) by [CF, Theorem 5.2.2]; here,
since the support Fy of A defined by (2.65) is an X-nearly Borel measurable £-quasi-
support of v, as the sets F' and NV in Definition 2.35 we can choose F4 and an exceptional
set N4 of A including F\F*, respectively, and therefore we may and do assume that F
in Definition 2.35 is the support of A, on which we can define the time-changed process
X by (2.66).

In order to analyze the trace Dirichlet form (év’ , F ), it is desirable to compute its
Beurling-Deny decomposition [FOT, Theorems 3.2.1 and 4.5.2] (see also [CF, Theorem
4.3.3]). For the regular Dirichlet space (X, m, &, F), this decomposition can be stated as
follows: there exists a unique triple (£, .J, k) of a strongly local non-negative definite
symmetric bilinear form £ : F, x F. — R, a symmetric Radon measure J on X2 =, and
a Radon measure x on X, such that J((X x Ni) n X2) = 0 = k(N;) for any E-polar
N € B(X) and

E(u,v) = 9 (u, v)—i—%f (U(x)—u(y))(@0(x)—v(y)) J(dzx dy)+f u(z)o(x) k(dx) (2.77)

X2, X
for any u,v € F., where u,v denote £-quasi-continuous m-versions of u, v respectively.
We call £, J, k the strongly local part, the jumping measure and the killing measure,
respectively, of (X, m, &, F). Moreover, we can define the strongly local part I'.(u,u) of the
E-energy measure I'(u,u) of u € F, by replacing € with £ in the argument in Definition
2.12 on the basis of [FOT, (3.2.19), (3.2.20) and (3.2.21)], and I'.(u, u)(X) = £©(u,u)
for any u € F, by [FOT, Lemma 3.2.3].

An identification of the Beurling-Deny decomposition of the trace Dirichlet form (£, F)
is given in [CF, Theorems 5.6.2 and 5.6.3]. In the following proposition, we provide a new
simple proof of the result for the strongly local part of (£, F) in [CF, Theorem 5.6.2].
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Proposition 2.36 ([CF, Theorem 5.6.2]). Let (X, m,&,F) be a reqular Dirichlet space,
v an E-smooth Radon measure on X with v(X) > 0, set F* := suppy|v], let F be an E-
quasi-support of v satisfying F' < F*, and let (5, ]—v") be the trace Dirichlet form of (€,F)
on L*(F*,v) defined by (2.74) and (2.75). Let T'. denote the strongly local part of the

E-energy measures, and I, the strongly local part of the g—energy measures. Then
U.(@| p, @ p)(B) = Te(u,u)(B n F) for any uw e F. and any B € B(F*).  (2.78)
In particular, the strongly local part £ of (F*, v, g, f) s given by
EO g, ulp) = Tolu, u)(F) for any u e F.. (2.79)

Proof. Since F' is £-quasi-closed, we can choose an E-nest {Fj}ren so that F 0 oy Fr €
B(X), and therefore by replacing F' with F' n |,y Fr we may and do assume that
F e B(X). For any u € F, (2.79) follows from (2.78) with B = F'* and EO (@] p, ) =
U (@] p, U|p)(F*), and T (u|p,u]F)(F*\F) — 0 since I'.(ii|p, @ p) charges no E-polar set by
[FOT, Lemma 3.2.4] and F*\F is &-polar. It thus suffices to prove (2.78) for B € B(F).
Our simple proof of (2.78) is based on Mosco’s proof of the domination principle in [Mosco,
p. 389, Proof of Proposition] and goes as follows. Let u € F n C.(X).

We write £(v) 1= E(v,v), To(v) = Te(v,v), E@|p) = E@|p, D) and Te(¥]p) =
E(®|p,?|p) for ve F, in this proof. Let f € F n Co(X) and X € (0, ). Computing both
sides of the inequality (recall the second half of (2.72) and (2.75))

E(f cos(hu)|p) + E(f sin(Mu)|r) < E(f cos(hu)) + E(f sin(Au))

on the basis of the chain rule [FOT, Theorem 3.2.2] as in Mosco’s argument in [Mosco,
p. 389], dividing the resulting inequality by A\? and letting A\ — oo via the dominated
convergence theorem, we obtain

F2dU(ulp, ulp) < J f2dU(u,u). (2.80)
P x

Then for any compact subset K of F' and any open subset G of X with K < G, by [FOT,
Exercise 1.4.1] we can choose f € F n C.(X) so that 1x < f < 1, thus from (2.80) we
obtain

Fe(ulr, ulr)(K) < To(u, u)(G).

Since I'e(u, u) and I's(u|p, u|p) are outer and inner regular by [Rud, Theorem 2.18], taking
the infimum over the open subsets G of X with K < G yields

Fe(ulr,ulp)(K) < Tolu, u)(K),

and now for any B € B(F), taking the supremum over the compact subsets K of B shows

Uo(ulp,ulp)(B) < Te(u, u)(B). (2.81)
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Next, we show the lower bound matching the upper bound (2.81). Let K be any
compact subset of F', G any open subset of X with K < G, and choose f € F n C.(X)
so that 15 < f < Lg. For any A € (0,%0), since [e(v)(B)"? —T.(g)(B)"?| < Te(v —
g)(B)Y2 = 0 for any v, g € F, and any B € B(X) with B < (2 —§)~'(0) by [CF, Theorem
4.3.8], we see from the first half of (2.72), K < F', (2.77) and (2.75) that

Lo(f cos(Au))(K) + To(f sin(Au))(K)

= FC(HF(f cos()\u)))(K) ( He(f sin()\u)))(K)
E(Hp(f cos(Mu))) + E(Hp(f sin(Au)))

= &(f cos(hu)|r) + E(fsin(M)| ), (2.82)

and applying Mosco’s argument in [Mosco, p. 389] to (2.82) in the same way as the above
proof of (2.80), we obtain

Le(u,w) f fAdU.(u,u) < F2dT(ulp, ulp) < To(ulp,ulp)(G n F*).
*

Now since T.(u, u) and I'.(u|p, u|p) are outer and inner regular by [Rud, Theorem 2.18],
by taking the infimum over the open subsets G of X with K < G and then the supremum
over the compact subsets K of any given B € B(F'), we obtain

Te(u,u)(B) < To(ulr, ulr)(B),

which together with (2.81) proves (2.78) for u € F n C.(X).

Lastly, for any u € F., by [FOT, Theorem 2.1.7] we can choose {uy}neny < F N Ce(X)
so that lim,, ., £(u—u,) = 0, hence lim,, g(&\p —uy|r) = 0 by the second half of (2.72)
and (2.76), and then (2.78) for u follows by letting n — oo in (2.78) for u,, on the basis of
the triangle inequalities for T'e(-)(B n F)2 and To(-)(B)Y2, To(u — un)(X) < E(u — uy)

We will use the following proposition to show that the killing measure of the boundary
trace form is zero. This could alternatively be deduced from [CF, Theorem 5.6.3], but we
give a new self-contained proof that does not rely on the notion of supplementary Feller
measure.

Proposition 2.37. Let (X, m,E,F) be a regular Dirichlet space, v an E-smooth Radon
measure on X with v(X) > 0, set F* := suppy|v], let F' be an E-quasi-support of v
satisfying F < F*, and let (€, F) be the trace Dirichlet form of (&, F) on L2(F* v)
defined by (2.74) and (2.75). Let k denote the killing measure of (X, m,E,F), and K the
killing measure of (F*, v, F). If k(X) = 0 and

P.(cp <) =1 for&-qe xe X, (2.83)

then K(F*) = 0.
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Proof. By [FOT, Exercise 1.4.1], we can choose {f,}neny = F n Ce(X) so that for any
x € X we have 0 < f,(x) < fuoi1(x) < 1 for any n € N and lim,_,, fo(z) = 1. Let
u € F n C(X). Then by (2.34), [FOT, (3.2.23), Lemma 3.2.3] and (2.77) applied to

(F*, v, £ ,F) and the monotone convergence theorem, we have

E(ulr, faulr) — §€(U2|F7fn|F) — E(u|p,ulp) — §J u? dF. (2.84)
*

On the other hand, for any n € N, by (2.75), the first half of (2.72) and (2.71) applied
to Hpu, Hp f,,, and the extension of (2.34) to £-quasi-continuous m-versions of functions
in F, n L¥(X,m) proved in [CF, Proof of Theorem 4.3.11], we obtain

g(u|F7 fnu|F) - %g(u2|F7 fn|F) = g(HFua HF(fnu)) - %E(HF<U2)7 Han)
— E(Hyu, (Hp fu) (Hrw)) - 56 (Hpw)?, Hef,)

- f Hpf,dU(Hpu, Hpu). (2.85)
X

Since Py (X,, = 0, op <o) =0 for any x € X, {Hp f,(x)}nen < [0, 1] is non-decreasing
and converges to P, (0 < ) = 1 for £-q.e. x € X by (2.70) and (2.83), and hence

J Hrp fo dU(Hpu, Hpu) “=% T(Hpu, Hpu)(X)
X

1 ~
X

by the monotone convergence theorem and the fact that I'(Hpu, Hpu) charges no E-polar
set by [FOT, Lemma 3.2.4]. Here the second equality in (2.86) follows from (2.75) and
k(X) = 0, and the first one in (2.86) is a special case of the following general equality

1
['(v,v)(X) = E(v,v) — 5 L{ 2 dr for any v e F, (2.87)

(which holds for any regular Dirichlet space (X, m, &, F)); we can verify (2.87) first for
v e F n C(X) in the same way as (2.84) above, and for general v € F, by using [FOT,
Theorem 2.1.7] to choose {v,}nen © F N Co(X) so that lim, . E(v — vy, v — v,) = 0
and then by letting n — oo in (2.87) for v, on the basis of the triangle inequalities for
(-, ) (X)V2,E(, )2, 1)l L2 ) 2 §2(U—wp)?dr < E(v — vy, v — vy,) implied by (2.77).

It thus follows from (2.84), (2.85) and (2.86) that

J u*di = 0 for any u e F n C.(X),
*

and hence F(F*) = lim, o § . f7 ds = 0. O
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2.7 Stable-like heat kernel estimates

We recall a generalization of scale function considered in Subsection 2.4 from [BCM,
Defintion 7.2] (see also [BM18, Definition 5.4]).

Definition 2.38. Let (X, d) be a metric space. We say that a function ®: X x [0,0) —
[0,00) is a regular scale function on (X, d) with threshold Mg € (0, 0] if ®(z,-): [0,0) —
[0, 00) is a homeomorphism for all z € X', diam(X) < Mg and there exist C1, 81, B2 € (0, 00)
such that for all z,y € X and all s,r € (0,00) with s < r < M,

o (gen) () =i =aliey) ()
(2.88)

K

The definition in [BCM, Defintion 7.2] does not state that ®(x,-): [0,0) — [0,0) is
a homeomorphism but this condition can be achieved by replacing ® with a comparable
function if necessary as we will see in the proof of Lemma 5.2.

Definition 2.39. Let (X, d,m, &, F) be a NLMMD space, and let ®: X x [0,00) — [0, 0)
be a regular scale function on (X, d) with threshold Mg.

(a) (Jump kernel estimate) We say that (X, d, m, &, F) satisfies the jump kernel estimate
J(®) if there exist a symmetric Borel measurable function j: X2, — (0,00) and C €
(1,00) such that

¢ <Jjla,y) < <
m(B(z,d(x,y) @z, d(x,y) "7 m(Blz,d(x,y))) 2z, d(z,y))
for all (z,y) € X%, and

(2.89)

) =5 | | (ule) = uw)se,) md) may) (2.90)

for all u € F.

(b) (Exit time estimate) We say that (X, d, m, £, F) satisfies the exit time lower estimate
E(®)s, if there exist C, A € (1,00) such that an m-symmetric Hunt process X =
(4, M, { X+ }ief0,00]5 1P }zex,) on X whose Dirichlet form is (£, F) satisfies

E.[T@r] = C’_1<I>(a:,7“) (2.91)

for all z € X\N and all r € (0, diam(X")/A) for some properly exceptional set N’ < X
for X. We denote the corresponding upper estimate and the two-sided estimate by
E(®)< and E(®), respectively.

(c) (Stable-like heat kernel estimates) We say that (X, d,m, &, F) satisfies the stable-
like heat kernel estimates SHK(®) if there exist C} € (1,00) and a heat kernel
{pt}i=0 of (X, m, &, F) such that for each t € (0, 0),

1 t
o) <O (e ner )
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and
1 1 t
ple) = € (m<B< @) " m(Bl. dr,v)) (. d(z. )

for m-a.e. z,y € X, where ®!(x,-) denotes the inverse of the homeomorphism
O(z,-): [0,00) — [0, oo) and B(z,0) := .

> (2.93)

The following result plays a key role in our proof of heat kernel estimates for the
boundary trace process. It characterizes stable-like heat kernel estimates SHK(®) by the
conjunction of the jump kernel estimate J(®) and exit time lower estimate E(®)- stated
above. If X' is unbounded then this characterization is essentially contained in [CKW]. Tt
is a slight modification of the equivalence between (1) and (2) in [CKW, Theorem 1.15].
If X is bounded, we argue using results in [GHH23]. In Theorem 2.40, we assume that
(X, m,E, F) is a regular Dirichlet space of pure jump type, i.e., the strongly local part
£© and the killing measure x of (X, m, &, F) in its Beurling-Deny decomposition (2.77)
are identically zero, or in other words, there exists a symmetric Radon measure J on X2
such that

&9 =3 |, )= F)@) - 310) J(dady) (294)

for all f, g e F., where f, g denote £-quasi-continuous m-versions of f, g respectively.

Theorem 2.40. Let (X,d,m,E, F) be a NLMMD space of pure jump type satisfying VD,
and assume that (X, d) is uniformly perfect. Let ®: X x[0,00) — [0,0) be a reqular scale
function on (X,d) with threshold Mg. Then the following are equivalent:

(1) (X,d,m,&E, F
(2) (X,d,m,E,F

) satisfies SHK(®).
) satisfies J(P) and E(P)-.
Furthermore, either of the above conditions implies that the following hold:

(a) (X,m,E,F) is irreducible and conservative.

(b) A (unique) continuous heat kernel p = pi(x,y): (0,0) x X x X — [0,0) of
(X, m,E,F) exists and satisfies (2.92) and (2.93) for any (t,z,y) € (0,00) x X x X
for some Cy € (1, 0).

(c) Proposition 2.18-(c) with “Hunt process” in place of “diffusion” holds.
(d) Let j: X2, — (0,0) be as given in J(®). Then

F = {ue L*(X,m)

—u(y))?j(z,y) m(dz) m(dy) < OO}. (2.95)

Proof. We note that uniform perfectness implies the reverse volume doubling property by
Lemma 2.4. By a quasisymmetric change of metric as given in [BM18, Proposition 5.2]
and [BM18, (5.7), Proof of Lemma 5.7], it suffices to consider the case ®(z,r) = r? for
all z € X,r > 0, where 8 > 0 (see also [Kigl2] where this kind of metric change first
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appeared). Therefore we will assume without loss of generality that ®(z,r) = r° for all
re X,r >0, for some 5 > 0.

The implication from (1) to (2) follows from the same argument as [CKW, Proof of
(1) = (2) of Theorem 1.15] regardless of whether or not X’ is bounded.

For the converse implication from (2) to (1), the proof splits into two cases depending
on whether or not X is bounded.
Case 1: X is unbounded. By [CKW, Theorem 1.15], it suffices to show the exit time
upper bound E(®).. The exit time upper estimate E(®)< follows from the Faber—Krahn
inequality shown in [CKW, Section 4.1] along with [CK'W, Lemma 4.14].

Case 2: X is bounded. The exit time upper estimate E(®)< stated in the unbounded

case also holds in the bounded case with almost the same proof. Since the proof of the

Faber—Krahn inequality relies on the reverse volume doubling property, the statement

of the Faber-Krahn inequality has to be modified so that it holds for all balls of radii
€ (0, cdiam(&X)), where c € (0,90) as given in [GHH23, Definition 2.4].

Once the on-diagonal upper bound in the conclusion of [CKW, Theorem 4.25] is ob-
tained, then the two-sided estimates on the jump kernel J(®) and exit time E(®) imply
the stable-like heat kernel estimates SHK(®) by the arguments in [CKXW, Chapter 5] with
minor modifications to take into account that X is bounded. Therefore it is enough to
prove the on-diagonal upper bound.

In order to show the on-diagonal bound, by [GHH23, Theorems 2.10 and 2.12], it
suffices to show the condition (Geap) in [GHH23, Definition 2.3], which in turn follows
from [GHH23+, Proposition 13.4 and Lemma 13.5] or [GHH23-+, Theorem 14.1] along
with the two-sided exit time estimate E(®), completing the proof that (2) implies (1).

We next assume (1) (and (2)) and prove (a), (b), (¢) and (d).
(a) The irreducibility of (X, m, &, F) is immediate by (2.93) from SHK(®) or by J(P)

and Lemma 2.42 below. For the conservativeness of (£, F), we consider two cases
depending on whether or not (X, d) is bounded. If (X, d) is bounded, then 1y € F by
the compactness of X and [FOT, Exercise 1.4.1], E(1x,1x) = 0 by (2.94) and thus
(X, m,E, F) is conservative. If (X, d) is unbounded, then (2.93) from SHK(®) implies
that there exists ¢g € (0,00) such that Tyl (z) = ¢y m-a.e. on X for each t € (0, 0).
This along with [CIKXW, Proposition 3.1-(1)] implies that (X, m, £, F) is conservative.

(b) The existence of a continuous heat kernel p = p(z,y) of (X, m,&,F) follows from
[CKW, Lemma 5.6], and the validity of (2.92) and (2.93) for any (¢, x,y) € (0,00) x
X x X is immediate from SHK(®), VD and (2.88).

(c¢) This is proved in the same way as [Liel5, Proposition 3.2] on the basis of VD, (b)
and the conservativeness of (X, m, &, F) from (a).

(d) Using (2.8) and the conservativeness of (X, m, &, F), we obtain

F = {ueLQ(X,m

i [ [ (0o~ )G mlae) i) < 0. 299

tl0 2t

where {p:};~o denotes a heat kernel of (X', m,&, F). We then see from SHK(®) and
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J(®) that there exists C € (0, 00) such that for each ¢ € (0,00) we have

pi(x,y)

J(z,y) < OIT for m-a.e. z,y € X with d(z,y) =t/ (2.97)

and
pt(xt’ v) < Cij(z,y) for m-ae. x,ye X. (2.98)
The conclusion (2.95) now follows from (2.96), (2.97), (2.98) and the monotone con-
vergence theorem. O]

Remark 2.41. If (X, d) is unbounded, the on-diagonal upper bound in the proof of the
implication from (2) to (1) above follows from [CKW, Theorem 4.25]. However, the proof
there does not directly generalize to the case when X" is bounded. This is because [CKW,
Proof of Theorem 4.25] relies on [CKW, Proposition 4.23] which in turn uses [CKW,
Lemma 4.18] on a sequence of radii going to infinity. However, the generalization of
[CKW, Lemma 4.18], which relies on the Faber-Krahn inequality, requires the radii to
satisfy r < cdiam(X') for some ¢ € (0,00), which seems insufficient for the argument in
[CKW, Proof of Proposition 4.23]. See [CC24b, Remark 8.3] for a more direct argument
to extend the main results of [CIKKW] to the case where the state space is bounded.

We also give a simple sufficient condition for the irreducibility of a pure-jump Dirichlet
form, which in particular applies to any NLMMD space (X, d, m, &, F) satisfying J(®) for
some regular scale function ® on (X, d).

Lemma 2.42. Let (X, m,E,F) be a reqular Dirichlet space satisfying (2.90) for anyu € F
for some symmetric Borel measurable function j: X% — (0,00). Then (X,m,&,F) is
wrreducible.

Proof. Let A € B(X) be E-invariant. Then for any u,v € F, by [FOT, Theorem 1.6.1],
we have T au, 1ov, Lx\au, Ly\gv € F and

0= 5(]1Au, ]lx\AU) + S(IIX\Au, ]1,41)). (299)

Let K; < A and Ky < X\ A be arbitrary compact subsets. By the regularity of (£, F)
there exist u,v € F n C.(X) such that u,v are [0, 1]-valued, u|x, = 1 and v|g, = 1. By
using (2.99), we have

0= L JB u(z)v(y)j(z,y) m(dy) m(dz) = Ll JK2 j(z,y) m(dy) m(dz), (2.100)

which together with the strict positivity of j shows that m(K;)m(K,) = 0 for any compact
sets K, Ky with K3 < A and Ky < X\A. By the inner regularity of m (see, e.g.,
[Rud, Theorem 2.18]), we conclude m(A)m(X\A) = 0, which means the irreducibility of
(E,F). O
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2.8 Capacity good measures and their corresponding PCAFs

To define a trace process, we need an £-smooth measure and need to identify the support
of the corresponding positive continuous additive functional (PCAF). To this end, in this
subsection, we provide a general sufficient condition for a measure to be £-smooth in the
strict sense and for its support to coincide with the support of the corresponding PCAF
in the strict sense of X. We remark that the former notion of support can be larger by a
non-E-polar set than the latter for a general £-smooth Radon measure in the strict sense;
see [FOT, Example 5.1.2] for such an example, which is originally due to Sturm [Stu92,
Section 9].

The class of measures we consider in this subsection are capacity good measures. The
following definition is a slight variant of [BM 18, Definition 4.1] and [BCM, Definition 6.2].

Definition 2.43 (Capacity good measure). Let (X, d,m,&, F) be an MMD space that
satisfies Assumption 2.19. Let v be a Borel measure on X and let F' := supp,[v] denote
its support. We say that v is £-capacity good if v(X) > 0 and there exist Cy, Ag, A €
(1,00) and a regular scale function ®: F' x [0,00) — [0,00) on (F,d) with threshold
Mg € (0, diam(X)] (in the sense of Definition 2.38) such that

v(B(x,r))
Capp(z, a0 (B(2,7))

Citd(z,r) < < Co®(x,r) forall (z,r) e F x (0, Mg/A7).

(2.101)
By [BCM, Lemmas 5.22 and 5.23], by changing Cy, A; € (1,00) if necessary, we may
assume that Ag = 2 in (2.101).

We make the following assumption for the remainder of this subsection.

Assumption 2.44. Let a scale function ¥, an MMD space (X, d, m, £, F) and a diffusion
X = (M, { X }sefo,00], {Pa}oer,) on X satisfy Assumption 2.19. Let v be an £-capacity
good Borel measure on X with support F' := suppy[v] and with a regular scale function
®: F x [0,00) — [0,0) on (F,d) with threshold Mg € (0, diam(X’)] as given in Definition
2.43.

If v is as given in Assumption 2.44, then (F, d, v) satisfies VD by [BCM, Lemma 5.23].
In particular by (2.1), there exist C' € (1,00) and § € (0, 00) such that

B
% < c(?) for all € € F and all 0 < r < R. (2.102)

The following lemma is an upper bound on the integral of the heat kernel with respect
to an E-capacity good measure v. This upper bound is later used to show that any &-
capacity good measure is £-smooth in the strict sense (Lemma 2.46) and to identify the
support of the corresponding PCAF in the strict sense as the topological support of v
(Proposition 2.49).
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Lemma 2.45. Let ¥, (X,d,m,E,F),v, F be as in Assumption 2./4. Then there exists
C € (1,0) such that for any (t,z) € (0,00) x X,

prt(x,y) v(dy) < C <( ((gg;,:, <(t)))))’ (2.103)

where &, € F is any point such that dist(z, F) = d(z,&,).

Proof. By HKE(W), [GT12, Lemma 3.19] and (2.38), there exist C; € (1,20), cp € (0,1)
and 0 < oy < ap < o0 such that for all x,y € X', we have

) = mlon) < e (oo (5505) - (55) )
(2.104)

If ¢, € F satisfies dist(z, F') = d(z,&,), then
d(&,y) < d(z,y) +d(z, &) < 2d(z,y) forallye F. (2.105)

By (2.104), (2.105) and (2.1), there exist Cy € (1,00) and ¢5 € (0, 1) such that for all x € X
and all y, &, € F with dist(z, F') = d(z,&,), we have

T e R (C = =N

e (el () () ) ew

Now for all (¢,z) € (0,00) x X and all &, € F with dist(z, F) = d(x,&,), using (2.106)
and (2.1), we obtain

Lpt@,y) v(dy)

= J pe(x, ) dv + Z pe(x, ) dv
B(&z, V(1)) B(&, 28U (1)\B(&2, 281U (1)
@100 y(Blz, U1(1)

S VBE 2V

- m(B (£z, ~1(1)) m(B(&, U(t))

A AL

< Ziféfgxq’qj_ 2;; [1 +§:12’“5 exp(c2°‘3k)] (by (2.102)) (2.107)
e :

Next, we show that v is an £-smooth measure in the strict sense as defined in [FOT,
p. 238].
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Lemma 2.46. Let V, (X, d,m,E, F),v, F be as in Assumption 2.44. Then v is E-smooth
in the strict sense.

Proof. Let ®, Mg, A; be as in Assumption 2.44 and Definition 2.43. By [GHL15, Theorem
1.2] and [BCM, Lemmas 5.22 and 5.23], there exists Cy € (1, 00) such that

m(B(z,r))

c-1mUBz,r) < Capp g (B(z, 7)) < C v(r)

0 for all z € X and all r € (0, c0).

(2.108)

For { € F and r € (0, My/A;), we consider the measure vg,(-) := v(- n B({,7)). By
the same argument as for (2.104) there exist C} € (1,0), c2 € (0,1) and 0 < oy < ap < 0
such that for all x,y, z € X with d(z,y) < d(z, z), we have

e < ey e (el (55) - (55g) ) em

Note that for any = € X\B(§,2r) and z € B(§,r), we have d(x,z) = d(£, z). Hence by
(2.109) and the same argument as (2.107), we obtain

v(B(£,¥71(s)))
L pla ) dvgy < DRSO forall 2 € X\B(E 20) (2.110)
If x € B(§,2r), then by Lemma 2.45,
V(B V1(s)))
Lps(:c,y)ug,r(dy) < Lps(x,y)u(dy) S Bl T i(s))" (2.111)

where &, € B(£,3r) n F satisfies dist(z, F') = d(x,&,). For all n € F using the doubling
property of m and v, we have

—k+1

' SV(B(U,‘I/ g 8) N (B0, ¥V7(s)
Jy T ZJ (B, v (s))
S ‘1(2‘k))) —k
Z @)’
i d(n 27%))  (by (2.101) and (2.108))
k=0
= ®(n, ¥1(1)) (by (2.88) and [GT12, Lemma 3.19)),
(2.112)
and
” SV(B(WI’ ) (B(n, W"'(s))
J, e f < 0 1(s))

~1(2) e o
2k)>2 e
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= i O(n, U 1(25)e " (by (2.108) and (2.101))
< i O(n, UH(1))2"2e 2 < d(n, UTI(1).  (2.113)
k=0

Combining (2.110), (2.111), (2.112), (2.113) and using (2.88), we obtain

o0
J J e 'p(x,y)dtve,(dy) < sup  D(n, UTH(1)) < P&, ) (2.114)
FJo neFnB(,3r)
for all x € X. Since vg, is a finite measure such that the corresponding 1-potential
z— §. 57 ez, y) dt ve . (dy) is bounded, we conclude from [FOT, Exercise 4.2.2] that
Ve, is of finite energy integral for all { € F' and all r € (0, My/A;). By covering the set
B(&, R) n F with finitely many balls centered at F' and of radii less than Mg/A;, we
conclude that v¢ g() = v(- n B(&, R)) is a finite measure of finite energy integral and that
the corresponding 1-potential z — §, Sgo e 'pi(x,y) dt ve r(dy) is bounded for all £ € F
and all R € (0,00). Therefore v is £-smooth in the strict sense. O

We record another upper bound on an integral of heat kernel with respect to v similar
to Lemma 2.45.

Lemma 2.47. Let ¥, (X,d,m,E, F),v, F,®, Mg be as in Assumption 2.4/. Then there
exist C € (1,0) and A € (4,0) such that for all (§,7) € F'x (0, Mg/A) and all x € B(E, 1),

f f pl ) (@, y) dt v(dy) < CB(E, r), (2.115)
FnB(&r) JO

where pBEn = pBEn) (x,y): (0,00) x B(&, 1) x B(&,r) — [0,00) denotes the continuous
heat kernel of (B(&,r), m|per), EBE, FO(B(E,1))) as given in Proposition 2.18-(d).

Proof. By Fubini’s theorem and Lemma 2.45, there exists A; € (1,0) such that for all
(&,r) e F x (0, Mg/A;) and all x € B(§,r) we have

pe(w,y) dtv(dy)  (since pPEr () < p(-,-))

J\p(r) V(B(fm,\llfl(t))) " o0 ny(z—(k—l)r) I/(B(f’x,\llfl(t)))
o m(BE VW) Sl m(B&, VD)

dt  (by (2.103))

(B Q—kT»\Ij(Zik?ﬂ) (2.101)22.108) i (I)<§m2—kT) (2ﬁ8) o(&,,r) 2 o, r),

k=0

where &, € I is chosen as in Lemma 2.45.
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By [HS, Proof of Theorem 2.5], there exist Cy, A; € (1,0) such that for all (z,7) €
X x (0,diam(X)/A;), the first Dirichlet eigenvalue

Xo(B(z, 1)) = inf{s:ﬂw ‘ fe F(B(x, 7“))}
satisfies o1 .
g S MlB@r) < gos (2.117)

Hence by [HS, Proof of Lemma 3.9-(3)] and (2.117), there exist Cy, A; € (1,00) and
c1 € (0,00) such that for all (z,7) € X x (0,diam(X)/A;), all y,z € B(z,r) and all
t e [¥(r),o), we have

pPEn () 2y < % exp (_%) _ (2.118)

Therefore for all (§,r) € F' x (0, Mg/A;) and all x € B(&,r) we have

0
B(&,r
| e ety
FnB(&r) JU(r)

S f;) st = (g v Os 219)

) v(BEN))Y(r) 6
< fFr\B (&) ( (57 ) V(dy) B m(B(f,’f’) - (D<£77") (2119)
By (2.116) and (2.119), we obtain the desired upper bound (2.115). 0

Since v is an £-smooth measure in the strict sense as proved in Lemma 2.46, it defines
a PCAF in the strict sense due to the Revuz correspondence by [CF, Theorem 4.1.11] or
[FOT, Theorem 5.1.7].

Definition 2.48. Let (X,d,m,&,F), X,v be as in Assumption 2.44. We let A®) =
{AE”)}te[oyoo) denote a positive continuous additive functional (PCAF) in the strict sense

of X whose Revuz measure is v, with a defining set A € Fy such that A§”’ (w) = 0 for any
(t,w) € [0,00) x (Q\A) and {¢ = 0} = A; the existence of such A® follows from Lemma
2.46 and [FOT, Theorem 5.1.7].

The state space of the time-changed process X of X by the PCAF A®) is the support
of AW (recall (2.65), (2.66) and (2.67)). We now identify the support of A®) as F in the
following proposition.

Proposition 2.49. Let (X,d,m,E,F), X, v, F be as in Assumption 2.44. Then the sup-
port of the PCAF AW) is F, i.e.,

F = {xeX‘P( ) >0 for any t e (0,00)) = 1}. (2.120)

In particular, the topological support F' of v is an &£-quasi-support of v.
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Remark 2.50. In the proofs of Propositions 2.49 and 2.51 given below we will use some
basic properties of the Green functions of (£, F) from Proposition 3.1 and Lemma 3.3;
we are indeed allowed to do so, because the proofs of the latter results are independent
of the former ones and their proofs below.

Proof of Proposition 2./9. Set
R:=inf{te (0,0) | A >0}, S():={reX|P,(R=0)=1}

First we show that

P.(R>o0r)=1 forall ze X\F. (2.121)
Indeed, for all z € X\F', we see from (2.64) with D = X\F and f = 1x\p and v(X\F) = 0
that Ex[A(TZ)\F] = 0, therefore P, (A(V) = 0) = 1 and we thus obtain (2.121). By the

TX\F

sample-path right-continuity of X, P,(7xp > 0) = 1 for all z € A\F, and hence by
(2.121) we conclude

Fo{zeX|P, (A" >0 forany t € (0,00)) = 1}. (2.122)
Note that by [CF, (A.3.12) in Proposition A.3.6], we have
P,(R = o0s4)) =1 forany v e X. (2.123)
Therefore in order to obtain (2.120), by (2.122) and (2.123) it suffices to prove that
Py(0sw) =0) =1 forany z € F. (2.124)

We adapt [BCM, Proof of Proposition 6.16] to obtain (2.124). Let ®, Mg be as in
Assumption 2.44. We collect a few preliminary estimates on the Green functions. By
Lemma 2.47, there exist C1, A; € (1,00) such that for all ({,7) € F x (0, Mg/A1),

f 9B (Y, 2)v(dz) < C1®(&,r) forall ye B(E,r). (2.125)
B(&r)

By increasing A; if necessary and by [BCM, Lemmas 5.10, 5.22 and 5.23|, there exist
Cs, Ag € (1,00) such that for all z € X and all r € (0, diam(X)/A;), we have

6'2_1 Ca’pB(a:,Qr) (B(.Z’, T)>_1 < 9B(z,r) (‘TJ A517’> < CQ CapB(x,Zr) (B(ZL’, T>>_1‘ (2126>

We also recall the following inequality for capacity ([FOT, p. 441, Solution to Exercise
2.2.2]; see also [FOT, the 0-order version of Exercise 4.2.2] and [BCM, Proof of Proposition
5.21]): for any (§,7) € F x (0, Mgp/A;), any K € B(B({,r)) and any Borel measure p on

B(&,r) with pu(B(&,r)) < oo and SB(&T) 9Ben (-, 2) p(dz) <1 E-q.e. on B(E,r),

Cappiey (K) = p(K), 2.127)
which is applicable to the measure p := (C1®(&, 7)) 'v|p(e,r) by (2.125) and yields
K)
C K) = ot MK 2.128
apB(é,r)( ) 1 (I)(f,'f’) ( )
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Next we show that
Py(oxney =0) =1 forallzeX. (2.129)

Indeed, for any = € X and any ¢ € (0, o0), since (X, d, m) satisfies RVD by VD, Proposition
2.18-(a) and Lemma 2.4, we have m({z}) = 0, hence P,(X; = z) = 0 by AC of X from
Assumption 2.19, thus P,(ox,\ (3 < t) = 1, and letting ¢ | 0 yields (2.129).

Now fix any £ € F', and let t,e € (0,00) be arbitrary. By (2.129), we have

Pe(T <t)>1—¢, where T = g, (2.130)

for some r = r(§,t,¢) € (0,0). By decreasing r = r(§,t,¢) if necessary, we may assume
that r € (0, Mg/A;), where A; € (1,00) is as above. Fixing r = r(,t,¢) as above, we
define

K := B(£, Ay'r) 0 S(v).

We show that there exists a constant c¢o € (0,1) that depends only on the constants
involved in the assumption such that

]P)g(O-K < T) = Co.- (2131)

Let e denote the equilibrium measure for K such that e(K) = Capg(K), where B :=
B(&,r). To prove (2.131), we observe that

P.(ox <7B) = JgB(z, y) e(dy) for all z € B. (2.132)
K

To see (2.132), we use [FOT, Theorem 4.3.3 and the 0-order version of Exercise 4.2.2]
to conclude that both sides of (2.132) are £-quasi-continuous versions of the 0-order
equilibrium potential for K with respect to the part Dirichlet form (€2, F°(B)) on B.
Since both sides of (2.132) are XB-excessive by [CF, Lemma A.2.4-(ii)] and Lemma 3.3,
respectively, we obtain (2.132) by AC of X from Proposition 2.18-(d) and [CF', Theorem
A.2.17-(iii)]. Then by (2.132) and the maximum principle (3.2),

Pe(ox < T) = ngB@, y) e(dy) > gn(€, Ay 'r) Capp(K). (2.133)

Recalling that S(v) is an £-quasi-support of the Revuz measure v of A®) by [FOT,
Theorem 5.1.5] or [CF, Theorem 5.2.1-(i)], we have v(X\S(r)) = 0 and hence
v(K) =v(B(E Ay'r)). (2.134)

Now (2.131) follows by estimating Pe(ox < T') as

A | | »
Pe(ox <T) 2 ga(e, Ay'r) Capy() 1 EY 926 Ao Q(Vg(f)(f’flo )

V(B Ag'r) e (B Ag'r) o
Cappeor (B(E, 1)) P(E,7) v(B(E,T))

(2.126)
> (C1Co) 7t
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Then by choosing ¢ = 3¢y and using {ox < T} < {050, <t} U {T > t}, we obtain

(2.130),(2.131) .
]P)g(O'S(,,) < t) = Pg(O‘K < T) - PE(T = t) > Co — € = 3Co,
hence P¢(og) = 0) > 3¢9 > 0 since ¢ € (0,00) is arbitrary, and thus P¢(og,) = 0) = 1 by
the Blumenthal 0-1 law [CI', Lemma A.2.5], proving (2.124) and thereby (2.120).
Lastly by (2.120) and [FOT, Theorem 5.1.5], F' is an £-quasi-support of v. H

It turns out that the time-changed process Xof X by the PCAF A®™ is a Hunt process
on F' and satisfies AC with respect to v and the occupation density formula in (2.136)
below. The latter formula means that the Green function of X is the same as that of the
diffusion X, and we will use it in the proof of the exit time lower estimate E(®)- for the
boundary trace process (Proposition 5.12). Note that the relative topology of F; = F'u{d}
inherited from X coincides with its topology as the one-point compactification of F'.

Proposition 2.51. Let (X,d,m,E, F), X, v, F be as in Assumption 2.44, and let X =
(Q,M, { X iepo,00] {Px}xeFa) be the time-changed process of X by the PCAF AY) defined
by (2.66) with A¥) = {AE”’}te[O,OO) in place of A = {Ai}efo,00)- Then the following hold:

(a) The subset Qo of Q defined by
o= 0 ({Ee {0,501} U {lir&Xs - a}) (2.135)

satisfies Qo € Fo, ]Px(fvlo) =1 for any v € X, and @(&VIO) = for any t € [0, 0], and
the time-changed process X with € in (2.66) replaced by Qq is a v-symmetric Hunt
process on F with life time ( and shift operators {Qt} 1[0.00] whose Dirichlet form is
the reqular symmetric Dirichlet form (€, F) on LA(F,v) defined by (2.74) and (2.75).
Moreover, X satisfies AC, i.e., Pu(X; € dy) < v(dy) for any (t,x) € (0,0) x F.

(b) Let B be a closed subset of F' such that the part Dirichlet form (E¥\B, FO(X\B)) of
(€, F) on X\B is transient. Then for any x € X\B and any B*(F\B)-measurable
function f: F\B — [0,00], §{"" f(X,)ds is Fo-measurable and

TMB L
.| [ rEas| = [ awntei) ) vian), (2.136)
0 F\B

where Tp\p = inf{t € [0,0) ‘ X, ¢ F\B} and gx\p(z,y) = gopf\B(a:,y) dt for
the continuous heat kernel p*\B = pf\B(x,y): (0,00) x (X¥\B) x (X\B) — [0,0) of
(X\B,m|x\p, EY\E, FO(X\B)) as given in Proposition 2.18-(d).

Remark 2.52. A weaker version of (2.136) with every z replaced with &£-quasi-every
x can be obtained by following [FOT, Proof of Lemma 6.2.2] (see in particular [FOT,
(6.2.10) and (6.2.11)]).
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Proof of Proposition 2.51. (b) Note that 7pp is an f;"*—stopping time by [CF, Proof of

Proposition A.3.8-(vi)] (recall (2.68)). Set D := X\B and let (PP)o denote the
Markovian transition function of X”. We easily see from (2.67), the sample path
properties (iii) of A®), the strong Markov property of X (see, e.g., [CF, Theorem
A.1.21)), B < F and (2.120) that

P, (FF\B = A%)) =1 forany xe X. (2.137)

Let x € D, let u: F\B — [0, 0] be Borel measurable, and extend u to X by setting
u|x\ () 1= 0. Then since [O,A(TZ;)) ={s€[0,0) |7, < 7p} on Q, we obtain

m“ﬁwmﬁw%=ﬁ{f%uw@%]<waxm>

0 0

~ & [ o rute)

—E, [ JMD u(X,) dAg”)] (by [CF, Lemma A.3.7-(i)]) (2.138)

w%ﬁ@W@MWSW@wwMMDﬂ>

L\B (LOO P (z,y) ds) u(y) v(dy) = L\B gp(z, y)uly) v(dy).

Now let f: F\B — [0,%0] be B*(F\B)-measurable. Then {"” F(X)ds is Fop-
measurable by [BlGe, Chapter 0, Exercise 3.3] and Fubini’s theorem (see also [CF,
Proof of Theorem A.1.22]), and there exist Borel measurable functions f, fo: F\B —
[0, 0] such that f; < f < fo on F\B and f; = f; v-a.e. on F \B. It follows from
(2.138) for v = Lyyem B|f, (1)< f(y)} and Fubini’s theorem that A(X,) = fg( L) = f(X,)
for a.e. s € [0,7p ) P-a.s. and hence that STF\B f(X))ds = STF\B f(X,)ds P,-as.,
which, together with (2.138) for u = f; and f, = f v-a.e. on F\B, shows (2.136).

We first prove that for any ¢ € [0,00) and any A € B(F),

o
(&

the function F 3 +— P,(X, e A) is Borel measurable, (2.139)

which for ¢ = 0 is immediate from (2.120). If {z} is &-polar for any = € F', then {z}
is also &- -polar for any « € F' by [CF, Theorem 5.2.6] and (2.120), hence any function
defined &- g.e. on F' and E- quasi-continuous on F' is an R-valued Borel measurable
function on F, and (2.139) holds since the function in (2.139) is £-quasi-continuous
on F for any t € (0,00) and any A € B(F) with v(A) < o by [FOT, Theorem
6.2.1-(iv)] or the conjunction of [CF, Theorem 5.2.7] and (2.120).

Thus we may and do assume that {zo} is E-polar for some xy € F. Note that then
X\{z0} is connected. Indeed, if X\{xo} were not connected, then it would easily follow
from [FOT, Exercise 1.4.1, Theorems 1.4.2-(ii) and 1.6.1] and the regularity and strong
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locality of (X\{zo}, m|x\(zg}, EF 0}, FO(X\{0})) that this Dirichlet space would not
be irreducible. This would contradict the fact that (£¥\t#o} FO(X\{x})) coincides
with (£, F) as symmetric Dirichlet forms on L*(X,m) by (2.20) and Cap,({zo}) =0
and is hence irreducible by the irreducibility of (X', m, £, F) from Proposition 2.18-(a).

To show (2.139), let x1 € F\{xo} and, recalling that X is locally pathwise connected
by Proposition 2.18-(a), let D; be a pathwise connected open neighborhood of 7 in
X with 29 ¢ D;. Then noting that v(F n B(zg,7)) = v(B(z,7)) € (0,00) for any
r € (0,00) by (2.102) and x¢ € F' = suppy[r] and that lim, o v(B(zo,7)) = v({zo}) =0

by Cap,({zo}) = 0 and Lemma 2.46, we can choose x5 € F\(D; U {x¢}), and see from
X\{xo} being connected and locally pathwise connected that Dy U {z2} < D for some
pathwise connected open subset D of X with xy ¢ D.

Let r € (0,00) satisfy B(zo,r) n D = J, set B := B, := F'n B(xo,7), and let 7pp
be as in (b). We claim that for any ¢ € [0,00) and any A € B(D),

the function X\B3z— P (X, € A, t < Trp) is Borel measurable.  (2.140)

To see (2.140), for each o € [0,%0) and each B*(X)-measurable function f: X' —
[0, 0], noting that §"* e~ f(X,) ds is F.-measurable by [BlGe, Chapter 0, Exercise
3.3] and Fubini’s theorem, define REBf x> [0, 0] by

BPBf(z) = E, [ J T s (3 ds], (2.141)

0

so that RS2 f is B*(X')-measurable by [CF, Exercise A.1.20-(i)]. Then for any B*(X)-
measurable function f: X — [0, ], any «a, § € [0,0) with o < 5 and any = € X, we
easily see from (2.141) that

REVPf(x) =0 ifand onlyif RfVf(z) =0, (2.142)

and from the strong Markov property of X (see, e.g., [CF, Theorem A.1.21]) and
Fubini’s theorem that

REVE f(x) = R f(x) + (8 — @) RE\E (RS f)(2). (2.143)

Choose § € (0,d(z1,x2)/2) so that B(x1,0) U B(x2,0) < D, and define fg: X — [0, 1]
by fp := minjeq o) ﬁf\B(ﬂB(xj75)). Note that Cap,(B) > 0 by v(B) > 0 and Lemma
2.46 and thus that (X\B,m|x gz, EY'P, FO(X\B)) is transient by the irreducibility of
(X,m, &, F) from Proposition 2.18-(a) and [BCM, Proposition 2.1]. Therefore for any
x € X\B, by (2.143), (2.136) from (b), B(z1,0) U B(z2,0) € D < X\B, (2.102) and
the finiteness and continuity of ga\ g\ B)2, from Lemma 3.3 we have

Ry fp(r) < min Ry (Lp,)(x) = min J ga\n(@,y) v(dy) < o,
j€{1,2} ]6{172} FﬁB(:Bj,5)
(2.144)
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and hence by (2.143) and (2.136) from (b), for any a € (0, ), any B*(X')-measurable
function f: X — [0,00] and any n € N,

B E A nf)) () = By P (F n (nfm)) () — ol P (B (S A (nf)) ()
- L\B ga\p(@,y)(f A (nfB))(y) v(dy) — Ozf 9@, y)REE(f A (nfp))(y) v(dy),

F\B

which, as well as its limit Rg\B(fl{y€X|fB(y)>o})(x) as n — oo, is Borel measurable
in x € X\B by the Borel measurability of gx\p and Fubini’s theorem. Moreover,
since D is a connected open subset of X\B, gx\s|pxp is (0, 0]-valued by Proposition
2.18-(d), and we obtain fg(z) > 0 for any x € D by combining the strict positivity of
gx\B|pxp With the equality in (2.144), B(z1,0)u B(22,0) < D, 21,29 € F' = suppy[v]
and (2.142). Thus for each [0, c0)-valued f € C.(X) with supp,|f] = D, (ég\Bf)\X\B
is Borel measurable for any a € (0,0), and the right-hand side of (2.141) with the
function e=*() replaced by any [0, o0)-valued ¢ € Cy([0, 20)) is also Borel measurable in
x € X\B by the Stone-Weierstrass theorem (see, e.g., [Con, Corollary V.8.3|) applied
to the subalgebra of Cy([0, 0)) generated by {e=*") | a € (0,90)}. The same holds also
when e~) in (2.141) is replaced by e 11 ;44 for any t,e € [0,0) with € > 0, and
letting € | 0 shows the Borel measurability of X\B s x — E, [f()v(t)]l{K;F\B}] by the

sample-path right-continuity of {f ()\65)]1{3<7V-F\B}}se[0,00) and dominated convergence,
whence (2.140) follows since f € C.(X) with suppy[f] = D is arbitrary.

Now (2.139) follows from (2.140). Indeed, with r as above, set 7, := Ta\p,,, and 7, :=
TmB,,, for each n € N, 7 1= sup,cy 7, and 7 := sup,,cy Tn, 80 that {7,}nen is a non-
decreasmg sequence of F,-stopping times and {7, }nen I a non-decreasing sequence of
3" -stopping times. Then by the sample-path right-continuity of X, X for any n e N
we have X, € B/, u{d}onQ, X, = X € By, u{0} on Q hence 7,, < 73, on Q) and

T < 77 on Q. Now let x € X\{x(}. Since Px(a{xo} ) =1 by [FOT, Theorems 4.2.4
and 4.1.2] (or [CF, Theorem A.2.17-(i),(ii)]), AC of X, Cap,({zo}) = 0 and (2.17), the
quasi-left-continuity on (0, () of X as in [CF, Definition A.1.23 and Theorem A.1.24]
(or the sample-path continuity (2.19) of X along with AC of X)) yields P,(7 > () = 1.
Thus, recalling (2.67), we have 1 = P,(7 = () < Pu(m3 = () < P, (T > AY) = 5) <1,
and therefore for any t € [0, 00) and any A € B(D),

lim P, (Xee At <Fpp,,) =Puo(Xie A t <) =Pu(X € A), (2.145)
so that X 5 x — P, (X, € A) is Borel measurable by (2.140), which proves (2.139) since
P, (X, = o) = 0 for any & € X\{0} by Py(6(sp) = 0) = 1 and F\{wo} < ey Di for
some sequence {Dy}ren of pathwise connected open subsets of X' with g ¢ |,y D
We next prove the stated properties of &vlo. It is clear that 5t(£YZO) c (20 for any

e [0, 0], and € € Fo, by A € Fo, (2.66), (2.67), (2.135) and the sample-path right-
continuity of X. Since (X', m, &, F) is irreducible by Proposition 2.18-(a), (X, m, &, F)
is either transient or recurrent by [CF, Proposition 2.1.3-(iii)] or [FOT, Lemma 1.6.4-
(iii)]. If (X, m, &, F) is transient, then P, (lims_,, Xs = 0) = 1 for any = € X} by [CF,
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Theorem 3.5.2] combined with AC and the conservativeness of X from Proposition
2.18-(c). Otherwise (X, m, &, F) is irreducible and recurrent, so the function X s x —
1-E, [e*Ag?], which is X-excessive as noted in [Kajl2, Proof of Proposition 3.5], is
constant on X' by [CF, Lemma 3.5.5-(ii) and Theorem A.2.17-(i),(iii)] and AC of X.
Its constant value is actually 1 and thus IP’I(E = A((,g) = ) = 1 for any = € X; indeed,
since 1y € F. and E(1y,1x) = 0 by the recurrence of (X, m,E, F), we have 1 € fe
and E(1p, 1) = 0 by (2.76) and (2.72), namely the Dirichlet form (£, F) of X on
L?(F,v) is recurrent, and hence conservative by [CF, Proposition 2.1.10] or [FOT,
Lemma 1.6.5], so that ]P’x(z = Agg) = 0) = limy_, P, (t < Z") = 1 and Em[e_Aég)] =0
for v-a.e. x € F' and in particular for some z € F' by v(F') > 0. By these observations,
]Pg:(f =0) =1 and (2.67) we obtain Px(ﬁo) = 1 for any x € X, and thus Qo € Fo.

For any (t,w) € (0,0) x , the left limit X;_(w ) = limsTt)v( (w) in Fp exists; indeed,
setting 7 (w) := limgy 75(w) and | recalling (2.66) and (2.135), we have limg, X,(w) =
X, (o) (w) € Fyif either ¢ = C(w) and 7_(w) < © or ¢t < ((w), limgy X,(w) =
limy o Xs(w) = @ if t = (w) and 7 (w) = o0, and limgyy Xy(w) = 0if t > C(w).

To see the quasi-left-continuity on (0, 0) of X , recalling (2.68), let {0}, }nen be a non-
decreasing sequence of gf*—stopping times, set o := lim,, .4 0,, and let pu be a finite
Borel measure on X;. Then {7, }.cy is a non-decreasing sequence of F,-stopping
times by [CF, Proposition A.3.8-(v)] and, setting 7 := lim,, o 7,,, we see from the
quasi-left-continuity on (0,00) (or the sample-path continuity (2.19) and AC) of X
that

P (th —XTeFa,T<oo> — P,(r < o). (2.146)

n—0o0

On the other hand, by [CF, Lemma A.3.7-(ii)] and AEV) = AY) = ¢ we have

AY = lim AY) = limo, =0 onf{o< < {, (2.147)
o<l c{r<g={Xrextc (o< o<} (2.148)
neN

and it further follows from (2.146), (2.120), the strong Markov property of X at time
7 (see, e.g., [CF, Theorem A.1.21]) and the sample path properties (iii) of A®) that
P (7,0 =T <) = Pu(r < (), which together with (2.148) and (2.147) yields

Pur, =7 < () =P, < ). (2.149)
By the first inclusion in (2.148), we also obtain
(r=Cc{o={ and hence X, =0=X, on{r>(}. (2.150)
Combining (2.146), (2.149) and (2.150), we conclude that

P (hm X, =X, 7 < oo> =P, (1 < o). (2.151)

n—o0
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Moreover, on {0 < co = 7}, which is equal to {Z‘ <o <o =7} by (2.150), we have

IPMQLHOlO)V(Jn =X, 0<m= 7') =P, (0c <o =r1); (2.152)
indeed, clearly hmn_,OO —0=X,on{o> C} ufo=(=0},P (Q\Svlo) =0, and
on Qo N {0 < o= = ( < o = 7} we have lim, o X, = 0 by (2 135) and (e (0,0)
and therefore X = X, 2280 = X by llmn_,Oo Ty, = T = 00 and o0 = C Now
(2.151) and (2. 102) together imply (2.151) with ¢ in place of 7, i.e., that X is quasi-
left-continuous on (0, o) with respect to F,. Thus X _with Q replaced by € is a Hunt

process on F', and the other stated properties of X except AC have been already
noted in the paragraphs of (2.66) and (2.76).

Lastly, to see AC of X , we first apply the same argument as (2.138) above to show

the absolute continuity of the Markovian resolvent kernel of X. LetzeF , € (0,00),
and let B € B(F) satisty v(B) = 0. Then

Q0 Q0
E, J e “1p(X )ds] zEg{f e “1p(X,,)ds

0

Ex[f e 1 (X)) dAg”>] (by [CF, Lemma A.3.7-(i)]) (2.153)

N

E, UO B(X,) dAg”)] =0 (by (2.64) with D = X and v(B) = 0).

Given (2.153) and the fact that Xisa v-symmetric Hunt process on /' whose Dirichlet
form (€, F) on L*(F,v) is regular, we obtain AC of X from [FOT, Theorem 4.2.4] or
[CF, Proposition 3.1.11]. O

3 Green function, Martin kernel, and Naim kernel

3.1 Properties of Green function

The elliptic Harnack inequality implies the existence of Green functions as shown in [BCM,
Theorem 4.4], which we recall below.

Proposition 3.1. Let (X,d,m,E,F) be an MMD space satisfying EHI, and let X be an
m-symmetric diffusion on X whose Dirichlet form is (£, F). Let D be a non-empty open
subset of X such that the part Dirichlet form (EP,F°(D)) on D is transient. Then there
exist a Borel measurable function gp: D x D — [0,0] and a Borel properly exceptional

set N for X such that the following hold:

(i) (Symmetry) gp(x,y) = gp(y,x) for all (x,y) € D x D.

(ii) (Continuity) gp|pz, is [0,%)-valued and continuous.

65



(i) (Occupation density formula) For any Borel measurable function f: D — [0, 0],
TD
E, lj f(Xs)ds] = J gp(x,y)fly)m(dy) for every x € D\N. (3.1)
0 D

(iv) (Excessiveness) For eachy € D, x— gp(z,y) is XP|pw-excessive.

(v) (Harmonicity) For any fized y € D, the function D\{y} > x — gp(z,y) belongs to
Froc(D\{y}) and is E-harmonic on D\{y}, and gp(x,y) = P.lgp(XE ,y)] for any
open subset V of D with y ¢ V and any x € D\N', where we adopt the convention
that gp(x,0p) = gp(Op,x) =0 for all x € D.

(vi) (Mazimum principles) If V is a relatively compact open subset of D and zq € V,
then

_inf gp(zo,-) = inf gp (o, "), sup gp(Zo, ) = sup gn(Zo, ). (3.2)
V\{zo} oV D\V v

We call gp the Green function of (£, F) on D.

Proof. All parts except (v) follows from [BCM, Theorem 4.4].

The claims that 2 — gp(z,y) belongs to Fioc(D\{y}) and is harmonic in D\{y} follow
from [BCM, Remark 2.7-(ii), Proposition 2.9-(iii) and Theorem 4.4]. The remaining claims
in (v) are proved in [BCM, Proof of Theorem 4.4]. O

Definition 3.2. Let (X, d, m, &, F) be an MMD space satisfying EHI, and D a non-empty
open subset of X such that the part Dirichlet form (€7, F°(D)) on D is transient. For a
Borel measurable function f: D — [0, 00|, we define

Spgp(z,y)f(y)m(dy) ifzeD,

Gpf():= {0 itz ¢ D.

By [FOT, Theorem 4.2.6], if f: D — [0, 0] is Borel measurable and §, fGpfdm < oo,
then Gpf is an E-quasi-continuous m-version of the Green operator defined in (2.9) for
the part Dirichlet form (€7, F°(D)) on D and Gpf € F°(D)..

We see that the exceptional set N in Proposition 3.1 can be taken to be the empty set
if the diffusion process is defined from every starting point as given in Proposition 2.18.

Lemma 3.3. Let an MMD space (X,d,m,E,F) and a diffusion X on X satisfy Assump-
tion 2.19, and let D be a non-empty open subset of X such that the part Dirichlet form
(EP,FO(D)) on D is transient. Define gf,: D x D — [0,00] by

Q0

gp(z,y) == f pP(z,y)dt, z,ye D, (3.3)
0

where pP (-, ) is the continuous heat kernel of (D, m|p,EP, FO(D)) as given in Proposition
2.18-(d), and let gp(-,-) denote the Green function on D from Proposition 3.1, which is
applicable by Remark 2.22. Then, with N as in Proposition 3.1,

gp(x,y) = gp(x,y)  for all (z,y) € (D X D)\Niag, (3.4)
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and Proposition 3.1-(1),(i1),(iii),(iv),(v),(vi) with ¢}, & in place of gp, N hold. Moreover,
if D is connected, then g},(x,y) € (0,0] for any x,y € D.

Proof. The occupation density formula (3.1) for ¢%, follows from Fubini’s theorem as

E, [ j v f(Xs)dS] - f:o L F ()PP (@, 9) £ (y) mldy) dt = L £ ()b (1) £ () m(dy).

By the transience of X, we have

gh(x,y) <o for m-ae. z,y € D. (3.5)

By the heat kernel estimate HKE(V), the function

(z,y) — LOO py (z,y) dt

converges uniformly on compact subsets of D?; as § | 0. Therefore it suffices to show
that for each § > 0 and (zo,y0) € D2y, the function (z,y) — §.° pP(z,y) dt is continuous
at (zo,v0). Indeed, by the parabolic Harnack inequality [BGIK12, Theorem 3.1], we can
choose disjoint open neighborhoods By and B, of xq, 1y, and constants C,Cy > 0 such
that

D i D D o
sup  p; (x,y) < C inf  poi(x,y) < Ciprio,(2,y) forall t =9,
(xvy)EBl><BQ ! ( ) ! (xay)EleBZ 02 lt( ) 1 CQ 1t( )

where (2/,y') € By x By is chosen using (3.5) such that ¢},(2’,vy") < co. Combining the
above estimate with the transience of X?, and the dominated convergence theorem, we
conclude that (z,y) — §; pP(z,y)dt is continuous at (zo, yo).

The equality (3.4) for (z,y) € D?; follows from the continuity of g7, gp along with
(3.1) for g}, gp. The equality gp(z,y) = Es[gp(XE ,y)] for any 2,y € D and any open
subset V of D with y ¢ V follows from Proposition 3.1-(v), the continuity of ¢, gp and
the continuity of V' 5 z — E.[gp(X?Z . y)] from Lemma 2.34-(b). The X -excessiveness of
gh(-,y) for y € D follows easily from (3.3) and (2.16) for p”, and then for each y € D\N,
since m({y}) = 0 as observed in the paragraph of (2.129) and ¢,(-, v)|p\w. 9p (-, )| pv are
XP|pw-excessive by Proposition 3.1-(iv) and equal on (D\N)\{y}, we have ¢},(y,y) =
gp(y,y) by AC of XP and [CF, Theorem A.2.17-(i),(iii)]. Lastly, if D is connected, then
g} is (0, 00]-valued by (3.3) and the last claim in Proposition 2.18-(d). O

Due to Lemma 3.3, if an MMD space (X, d,m, &, F) and a diffusion X on X satisfy
Assumption 2.19 and D is a non-empty open subset of X such that the part Dirichlet
form (EP,F°(D)) on D is transient, we adopt the convention to redefine the gp(-,-)
from Proposition 3.1 to be equal to ¢ (-,-) from Lemma 3.3. In particular, gp(z,-) is
X P-excessive for all z € D.

In the next lemma, we show that the Green function has Dirichlet boundary condition
in the sense of Definition 2.23.
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Lemma 3.4 (Dirichlet boundary condition of Green function). Let (X,d,m,E,F) be
an MMD space satisfying EHI, and D a non-empty open subset of X such that the part
Dirichlet form (EP, F°(D)) on D is transient. Then for any yo € D, the function D\{yo} 3
x — gp(x,yo) belongs to F (D, D\{yo}) and is E-harmonic on D\ {yo}.

loc

Proof. The following argument is a variant of [BM19, Proof of Lemma 4.10].

By [FOT, Theorems 1.5.4-(i) and 4.2.6], there exists a (0,o0)-valued function fo =
fpo € L'(D,m|p) such that §, foGpfodm < o and Gpfo € FO(D).. Let us adopt the
convention that fy is extended to X" by setting fy := 0 on X\D, and similarly for Gpf
for any Borel measurable function f: D — [0, o0].

Let yo € D, and let K be any compact subset of X such that yo ¢ K. Choose ¢ so
that ¢ € F n C.(X), ¢ is [0, 1]-valued, ¢ = 1 on K, and yo ¢ suppy|¢]. For each r > 0
with B(yo,2r) € D and r < dist(yg, suppy[¢]), consider the function

-1
gr = ¢min{l/r,Gp(f.)}, where f, := <JB fo dm> L (yo,r) Jo- (3.6)

(yo,r)
Then Gp(f,) is an element of F°(D). E-quasi-continuous on D by [FOT, Corollary 1.5.1
and Theorem 4.2.6], and hence is £-quasi-continuous on X’ by [CF, Theorem 3.4.9], [FOT,
Theorem 4.4.3] and our convention that g, = 0 on X\D. Since F°(D). n L*(X,m) =
FO(D), it follows that g, € F°(D). Also, Gp(f,) and g, are continuous on D\B(yo,r)
by the continuity of Green’s function gp on D and dominated convergence. Note that
for any 79 > 0 such that B(y,2r0) < D and ry < dist(yo,suppy[¢]), the function
(x,y) — gp(z,y) stays bounded for x € D\B(yo,2r9) and y € B(yo,ro) by the latter
of the maximum principles (3.2) and the joint continuity of gp. Therefore, there exists
§ € (0,90) such that B(yo,26) = D, § < dist(yo, suppy[#]) and for any r € (0,0) we have

gr = ¢min{1/r,Gp(f.)} = ¢Gp(f.) € F'(D) n L*(X,m).

Thus for all 7,s € (0,d), by [FOT, Theorem 1.4.2-(ii)] and (2.20) we have ¢*(Gp(f,) —
Gp(fs)) € FO(D), and hence by [FOT, (1.5.9)]

g(GD(fr) - GD(fs)7 ¢2(GD(f7") - GD(fs))) = fx(fr - fs)¢2(GD(fT) - GD(fs)) dm = 0.

(3.7)

Now, as r | 0, g. = ¢Gp(f,) converges pointwise on X to ¢gp(+,yo) (and uniformly

on any compact subset of D\{yo}) by the joint continuity of gp, and it thus remains to

prove that this convergence takes place also in (F,&;). The convergence in L?(X,m)

is clear by dominated convergence because these functions are uniformly bounded and

supported on suppy[¢]. These functions form an £-Cauchy family as r | 0 since we can
apply dominated convergence to the right-hand side of the equality

E(Gr — G, 61— 65) = j (@l = G ()P dr(s. o)

which is implied by the Leibniz rule [FOT, Lemma 3.2.5] for T, (3.7) and the same
calculation as in (2.51). ([FOT, Lemma 3.2.5] is stated only for functions in Fn L* (X, m),
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but can be easily verified also for ones in F, n L*(X, m) by extending [FOT, Corollary
3.2.1) from u € F to u € F, on the basis of [FOT, Exercise 1.4.1, Lemma 2.1.4 and Theorem
2.3.3-(i)] and applying it together with [FOT, Exercise 1.4.1] and F.nL*(X,m) = F.) O

The following Dynkin-Hunt type formula is a basic ingredient in comparing the Green
function on two domains.

Lemma 3.5 (Dynkin—-Hunt formula). Let (X,d,m,E,F) be an MMD space satisfying
EHI, and let X be an m-symmetric diffusion on X whose Dirichlet form is (€, F). Let
Dy = D, be open subsets of X such that the part Dirichlet form (EP2, FO(Dy)) on D,
is transient. Then there exists a properly exceptional set Np, for XP2 such that for all

(.’L‘,y) € (D1>Zd with x ¢ NDzﬂ
gD, (I7 y) = 9gp, (ZE, y) + E, []l {XrDl €D2}9Dy (XTDl ) y)] (38>

In addition, if the MMD space (X,d,m,E, F) and the diffusion X on X satisfy Assump-
tion 2.19, then (3.8) holds for all (z,y) € (D1)?%y.

Proof. By the occupation density formula (Proposition 3.1-(iii)) and [BCM, Lemma 4.5],
there exists a Borel properly exceptional set Np, for XP2 such that for all Borel measur-
able function f: Dy — [0, 0] and all x € D;\Np, we have

E, [ [ f(Xs)dS] - Li g, (2, 9) f(y) m(dy), fori=1,2 (3.9)

Therefore for any such f and z, we have
| onte21peymia
(3.4 TDy TDq TDy
E, [j f(Xs) ds] =E, lf f(Xy) ds] + Ex[ f(Xs) ds]
0 0

9)
7’D1
(3.9) i

= Ll 9o, (%, 2) f(z) m(dz) + B, [H{XTDleDz}EXTDl [ o fx.) ds”

(3.9) JD gp, (z,2) f(z) m(dz) + J E, []l{XTDleDz}ng(Xml , z)]f(z) m(dz), (3.10)

Do

where we used the strong Markov property [CF, Theorem A.1.21] of X and Fubini’s
theorem in the third and fourth lines, respectively. Now for any y € D;\{z}, setting
f = (m(B(y,r))) '1pg,) and letting r | 0 in (3.10), we obtain (3.8) by the continuity
of gp,, gp,, the maximum principle for gp, (Proposition 3.1-(ii),(vi)) and the dominated
convergence theorem.

If (X¥,d,m,E, F) and X satisfy Assumption 2.19, then we have (3.9) for any x € D;
by Lemma 3.3, so that the above argument shows (3.8) for any (z,y) € (D1)?y. O
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For a MMD space (X,d, m, &, F) satisfying EHI, and for a non-empty open subset
D < X such that the part Dirichlet form (P, F°(D)) on D is transient, we define (by a
slight abuse of notation)

gp(x,r) = gr(lf )gD(a:,y) for x € D and r € (0,6p(x)), (3.11)
yeS(x,r

where S(x,r) := 0B(x,r) as defined in Notation 1.7-(1).

We collect various useful estimates on the Green function from [BCM].

Lemma 3.6. Let (X,d,m,E, F) be an MMD space satisfying MD and EHI, and let X be
an m-symmetric diffusion on X whose Dirichlet form is (€, F). Let D be a non-empty
open subset of X such that the part Dirichlet form (EP, F°(D)) on D is transient. Then
there ezist Cy, Cy,Co, Ag, 0 € (1,0) depending only on the constants associated with the
assumptions MD and EHI such that the following hold:

(a) For allz € D and all r € (0,0p(x)/Ay),

sup gp(z,y) <Ci inf gp(z,y), gp(z,r) < Capp(B(z, )" < Cigp(z,r).
yeS(z,r) yeS(z,r)
(3.12)
Furthermore,
R\?
gp(z, R) < gp(x,1) < Cy (?) gp(x,R) forallze D and 0 <r < R < dp(x)/A;.
(3.13)

(b) For each y € D and each R € (0,6p(y)/Ao),
-1 9D<x7y) gD(x’y) .
Co 9o R) <P, (Um < ope) < Com for E-q.e. x € D\B(y, R). (3.14)

If (X,d,m,E,F) and X satisfy Assumption 2.19, then (3.14) holds for all x €
D\B(y, R).

Proof. (a) The estimate (3.12) follows from [BCM, Lemma 5.10 and Proposition 5.7] and
(3.13) follows from [BCM, Corollary 5.15] and the maximum principle (Proposition
3.1-(vi)).

(b) By Lemma 2.28-(a), we can choose K € (1,00) so that (X,d) is K-relatively ball
connected. Let A; € (1,00) be as given in (a). By [BCM, Lemma 5.10] and (a), there
exist Ay € (K, ) and C € (1,0) such that

9p(y, R) < Capp(B(y, R)) ™" < Cigp(y, R), gp(y, R) < gn(y,z) < Cigp(y, R)
(3.15)
forall ye D, all Re (0, A;'6p(y)) and all z € S(y, R). Let ye D, Re (0, A7*5p(y)),
and let v denote the equilibrium measure on S(y, R) corresponding to Capp(B(y, R)).
Case 1, d(z,y) = 2K R: In this case, gp(z,-) is E-harmonic on B(y,2K R) and hence
by (2.53) and (2.52), there exists Cs € (1,0) such that

CQ_I.QD('Ia y) < gD(xa Z) < CQgD(‘Ta y) for all z € S(:I/a R) (316)
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Therefore by [FOT, Theorem 4.3.3|, for £-q.e. x € D\B(y, KR),

(3.16)
P <o) = | onle ) vidy) < Cagoa,) Capp(Bly. B)
y,R
(15 _ gp(,y)
< Oy—/——=, 3.17
“9p(y, R) (3.17)
(316)
Pw(03<y,R><0DC)=L( )gD(x,Z)V(dy) > Cy'gp(x,y) Capp(B(y, R))
y,R
(3.15)
2 e @ y). (3.18)

gD(y7 R)

Case 2, R < d(z,y) < 2KR: By [FOT, Theorem 4.3.3], for £&-q.e. € D with
R<d(z,y) < KR,

(3.18

) x,
P (0557 < 0p) = Pul0By r/eK) < ope) = Cy'Cr go(,y)

9o(y, B/ (2K))

(B13) 4 _o9p(z,y)
> C;C e (2K) =2 3.19
2 G al2K) gp(y, R) (3.19)
(313) _ 49p(T,y)
P.(0a—m <ope) <1 < ' KOZ220 3.20
( B(y,R) D ) 1 gD(y,R) ( )

By (3.17), (3.18), (3.19), and (3.20), we obtain (3.14).
If the MMD space (X, d, m,E, F) and the associated diffusion X satisfies Assumption

2.19, then by Lemma 2.34-(b) we obtain (3.14) for all z € D\B(y, R). O

3.2 Boundary Harnack principle

In this work, we need to understand the behavior of Green function near the boundary of
a uniform domain. The following scale-invariant boundary Harnack principle is useful to
describe the behavior of Green function near the boundary of a uniform domain. Boundary
Harnack principle has been obtained in increasing generality over a long period of time

[Kem, Anc78, Dah, Wu, JK, Aik01, GyS, Liel5, BM19].

Definition 3.7 (Boundary Harnack principle (BHP)). Let (X,d,m,&,F) be an MMD
space and let U be an open subset of X'. We say that U satisfies the (scale-invariant)
boundary Harnack principle, abbreviated as BHP, if there exist Agy, Ay, C; € (1,0)
such that for all £ € oU, all r € (0, diam(U)/A;) and for any two non-negative £-harmonic
functions u, v on U n B(&, Apr) with Dirichlet boundary condition relative to U such that
v >0 m-a.e. on U n B(§,r), we have

u(z) u(x)

esssup —— < essinf ——=. BHP
veUnB(r) V(T) veUnB(Er) v(T)
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The elliptic Harnack inequality implies the boundary Harnack principle for uniform
domains on any doubling metric space as shown in a recent work [Che]. This recent work
[Che] along with earlier works in more restrictive settings in [GyS, Liel5, BM19] use an
approach due to Aikawa [AikO1].

Theorem 3.8 (Boundary Harnack principle for uniform domains; [Che, Theorem 1.1]).
Let (X,d,m,E,F) be an MMD space satisfying MD and EHI, and let U be a uniform
domain in (X,d). Then U satisfies BHP.

Remark 3.9. Note that 0U + ¢ and diam(U) € (0, 0] in the setting of Theorem 3.8;
indeed, otherwise U would be both open and closed in & and satisfy ¢J + U £+ X', which
is impossible since X is connected by Lemma 2.28-(a) and [BCM, Lemma 5.2-(a)].

The following oscillation lemma is a standard consequence of the boundary Harnack
principle and follows from [AikO1, Proof of Theorem 2|. It is an analogue of Moser’s
oscillation lemma for the elliptic Harnack inequality [Mos6G1, §5] and has a similar proof.

Lemma 3.10. Let (X,d,m,E,F) be an MMD space and let U be an open subset of X
satisfying BHP. Then there exist Ay, A1,Cy € (1,00) and v € (0,00) such that for all
e dlU, all0 < r < R < diam(U)/A; and for any two non-negative continuous &-
harmonic functions u,v on U n B(&, AgR) with Dirichlet boundary condition relative to

U such that v(x) > 0 for any x € U n B(§, R), we have

u r\" u
2w <R L @21

Another important consequence of the boundary Harnack principle is the Carleson
estimate. The proof is a variant of [Aik08, Proof of Theorem 2] where we use estimates
on Green function from [BM18, BCM] instead of known estimates of the Euclidean space.
The basic idea is that Carleson estimate for one harmonic function with Dirichlet bound-
ary condition (say, the Green function at a suitably chosen point) along with boundary
Harnack principle implies Carleson estimate in general. The Carleson estimate for Green
function can be obtained by using the maximum principle and comparison estimates for
the Green function obtained in [BM18, BCM]. This is a modification of the argument in
[GyS, Proof of (4.28)].

Proposition 3.11 (Carleson estimate). Let (X,d,m,E,F) be an MMD space satisfying
MD and EHI, and let U be a uniform domain in (X,d). Then there exist Ay, A1,Cy €
(1,00) such that for all £ € U, all R € (0,diam(U)/Ay) and any non-negative continuous
E-harmonic function u on U N B(§, AgR) with Dirichlet boundary condition relative to U,

sup  u(r) < Cu(&rp). (3.22)
2eB(£,R)

Proof. Let u be an £-harmonic function as in the statement of the proposition. Noting
that U satisfies BHP by Theorem 3.8, let us choose Ag, A1, C as the constants in Definition
3.7. First, we note that there exist Cy, A3 € (1,0) and Ay € (A, 90) such that

SUP  gunBeAsR) (§240R, 7) < Cogunb(e,Asr) (E240R, ER/2), (3.23)
UnB(&,R)
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for all £ € U and all R € (0, Ay 'diam(U)). This follows from the chaining using EHI
by a similar argument as given in the proof of Lemma 2.28-(b), the maximum principle
(Proposition 3.1-(vi)) and the comparison of Green functions in [BCM, Corollary 5.8].
Then by BHP (Definition 3.7) from Theorem 3.8, we have

. U
sup u( ) < (fR/z)
B(£,R) JUAB(¢,A3R) (&240R, ) JUAB(¢,AsR) (&240R; fR/Q)

(3.24)

for all ¢ € oU and all R € (0, A;*diam(U)). Therefore by (3.23) and (3.24), we conclude
that for all £ € 0U, all R € (0, A} *diam(U)) and any non-negative continuous £-harmonic
function v on U n B(&, AgR) with Dirichlet boundary condition relative to U, we have

u(&ry2)
sup u(-) < 4 / SUP JunB(e,AsR) (§240R, ) < C1C2u(Erp). O
B(£,R) JunB(¢,A3R) (§2A0Ra §R/2) B(£,R)

3.3 Naim kernel

We introduce the Naim kernel and study some of its properties. For the remainder of the
section we make the following running assumption.

Assumption 3.12. Let (X,d,m,&, F) be an MMD space satisfying MD and EHI, and
let U be a uniform domain in (X, d) such that the part Dirichlet form (€Y, FO(U)) on U
is transient. Note that U satisfies BHP by Theorem 3.8 and that oU + ¢ and diam(U) €
(0, 0] by Remark 3.9.

Recalling that gy| vz, s (0, 00)-valued by Remark 2.22 and Lemma 3.3, for each xy € U
we define ©F : (U\{zo})Z; — (0,0) by

gU('xvy)
gu (w0, 2)gu (20, y) '

05, (7, y) = (3.25)

The function @go satisfies the following local Héolder reqularity and bounds. The proofs
are variants of Moser’s oscillation inequality [Mos61, §5].

Lemma 3.13. Let an MMD space (X,d,m,E, F) and a uniform domain U in (X,d)
satisfy Assumption 3.12. Then there exist A, C1,Cy, C5 € (1,0) and v € (0,00) such that
the following estimates hold for any xq € U:

(a) For anyne dU, z€ U\{zo} and any 0 <r < R < (2A)1(d(n, x0) A d(z,x0) A Sy (2)),

”
0sC oY < <£> 0sC S
(B(n,r)n(U\{zo})) x (B(z,r)n(U\{zo})) R/ (B(n,R)n(U\{z0})x(B(z,R)n(U\{z0}))

(b) For any (1,€) € (2U)2, and any 0 < r < R < (24)~ (d(n, z0) A d(n, €) A d(&, o)),

N
0sC el < <£> 0sC CE
(B(n,r)n(U\{z0})) x (B(&r)n(U\{zo})) R/ (B(n,R)n(U\{x0}))x(B(&,R)n(U\{z0}))
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(c) For anyne oU, any z € U\{xo} and any 0 < R < (2A)7Y(d(n, zo) A d(z, 7o) A dp(2)),

Z’
(B(n,R)(U\{z0}))x (B(z,R)~(U\{z0})) gu (o, 2)gu (o, 773/2)

and
inf el = ¢! gu(zmrp)
(B(n,R)~(U\{wo})) x (B(z,R)~(U\{zo})) gu (o, 2)gu (o, Nr/2)

(d) For any (1,€) € (OU)2y and any 0 < R < (2A)7*(d(n, z0) A d(n,€) A d(€, 20)),

sup ol < ¢, gu(Nry2:ERy2) ’
(B(n,R)(U\{w0}))x (B(&,R) A (U\{z0}) 9u (w0, Mr2)gu (o, Ery2)

and

oV = ! gU(nR/27 51%/2)

n o = 2 N
(B(n,R)~(U\{wo})) x (B(&,R)n(U\{z0})) gu (20, Mry2)9u (%0, ERs2)

(e) For any (z,€) € (U\{xo}) x U with d(&,x¢) < d(&,x) and any 0 < r < R <
Aild(g,l‘o),

Sup @:CUO (ZE, y) < 03931[;]0 ("L'v SR/Q)a inf @go (1‘7 y) = 03_1@;]0 (,I’, 53/2),
yeUNB(&,R) yeUNB(&,R)
(3.26)
and -
U U
yeU(r)\s;(&r) Oy, (7,y) < Cg(ﬁ) O (7, &Ry2). (3.27)

Proof. Let A € (1,0) be the maximum of the constants 6! in EHI, Ay and A; in Defini-
tion 3.7. Let Cgyr and Cgyp denote the corresponding constants C'y and Cf, respectively.
We will use EHI and BHP several times in this proof with these constants A, Cgyr, Ceup.

(a) For any 0 < r < (2A4)7(d(n, z0) A d(z,39) A dy(2)), define

M(r) = sup CE
(B(n,r)n(U\{z0})) x (B(z,r)n (U\{zo}))
m(r) = inf .

(B(n;r)n(U\{z0})) x (B(z,r)n(U\{z0}))

For any (x1,11), (z2,y2) € (B(n, R/A) n (U\{z0})) x (B(z, R/A) n (U\{z0})), we have

M (R)gu (o, 21)gv (20, 1) — gu (1, Y1)
gu (o, 21)gu (o, Y1)
M(R)gu(zo, v2)gu (o, y1) — gu (22, Y1)
gu (o, 2)g9u (w0, Y1)
M(R) gy (o, 22)g9u(T0, y2) — gu (21, 3/2), (3.28)
gu (o, T2)gu (2o, Ya) ’ '

< Cppp

2
< CurCEm
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here, for the first inequality we apply BHP to the functions M (R)gy (o, -)gu (o, y1) —
gu (), gu(wo, Vv (xe, 1) € F2. (U, B(n, Ar) n U), which are non-negative and
E-harmonic on B(§, Ar) n U, and for the second inequality we apply EHI to
M(R)gu(xo, x2)gu(xo, ) — gu (22, ), gu(x0, 2)gu (x0, ) € Floc(B(z, R)), which are non-
negative and £-harmonic on B(z, R).

Taking supremum over (x1,y;) and infimum over (x2,y,) in (3.28), we obtain
M(R) = m(R/A) < ConrCin(M(R) — M(R/A)). (3.29)

gu (z,y)—m(R)gu (z0,2)gu (z0,y)
gu (w0,7)gu (zo,y)

By considering (z,y) — @go(x,y) —m(R) = and using a

similar argument as the proof of (3.29), we obtain
M(R/A) — m(R) < CpupChy(m(R/A) — m(R)). (3.30)
Combining (3.29) and (3.30), we obtain

CeupChpy — 1

M(R/A) —m(R/A) <

(M(R) —m(R)).

CeupCiy+1
CpupCiy—1"

Iterating the above estimate, we obtain (a) with v = (log A) ! log
For any 0 < r < (2A)7(d(n, zo) A d(&,z0) A d(n,§)), define

M(r) = sup @xUO,
(B(n,r)n(U\{z0})) x (B(&,r)n(U\{zo}))
. U

inf O,
(B(n,r)n(UN{zo})) x (B(&r)n(U\{zo}))

For any (x1,11), (x2,y2) € (B(n, R/A) n (U\{zo})) x (B(&, R/A) n (U\{z0})), we have

M(R)gu(zo, v1)gu (0, y1) — gu (21, Y1)
gu (o, 21)gu (2o, Y1)

M(R)gu(xo, 22)gu (0, y1) — gu (T2, 41)
gu (o, 2)gu (w0, Y1)

M (R)gy (w0, v2)gu (0, y2) — gu (1, Z/2>, (3.31)
gu (o, T2)gu (2o, Y2) 7 '

< Cppp

2
< C’BHP

here, for the first line we apply BHP to the functions M (R)gy(zo,-)gv(To,y1) —

gu (1), gu(wo, Vv (xe, 1) € Fo. (U, B(n, Ar) n U), which are non-negative and

E-harmonic on B(&, Ar) n U, and for the second inequality we apply BHP to

M(‘R)gU(an $2)9U(x07 ) - gU(x27 ')7 gU(CL’(), $2)9U(~T07 ) € ‘E%C(U’ Un B(§7 R>>7 which
are non-negative and £-harmonic on U n B(¢, R).

Taking supremum over (xy, ;) and infimum over (z2,y2) in (3.28), we obtain

M(R) — m(R/A) < C3up(M(R) — M(R/A)). (3.32)
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By considering (z,y) — OY (z,y) — m(R) = guzy)—mR)gu (@o.2)ou(®04) 4nd using a

gu (zo,%)gu (T0,y)

similar argument as the proof of (3.29), we obtain
M(R/A) — m(R) < Cagp(m(R/A) — m(R)). (3.33)

Combining (3.29) and (3.30), we obtain

Céup — 1
M(R/A) —m(R/A) < —CE'HP 1 (M(R) —m(R)).
BHP
Iterating the above estimate, we obtain (a) with v = (log A) ! log %
BHP

Let (z,y) € (B(n, R) n (U\{zo})) x (B(z, R) n (U\{zo})), where 1, z, R are as given
in the statement of the lemma. Then by applying BHP to the £-harmonic functions
gu(-,y) and gy (xo, -) on U N B(n, AR) and EHI to the £-harmonic functions gy (ng/2, -)
and gy (xo,-) on B(z, AR), we obtain

gu(Nry2, 2)
gU(iL‘m 7]R/2)9U(90o, Z)

gu(Mrs2: Y)
gu (o, nrs2)gv (2o, y)

@xUO (:L‘, y) < C(BHP < CBHPC]%HI

This proves the first estimate, and the second one also follows from a similar argument.

Let (,9) € (B(1, R) ~ (U\{zo})) x (B(&, R) 2 (U\{})), where 5,€, R as given. Then
by using BHP for the &-harmonic functions gy (-,y) and gy (xg,-) on U n B(n, AR)
and for the £-harmonic functions gy (ng/2, -) and gy (zo,-) on U n B(£, AR), we deduce

gu(Mr/2,Y) 2 gu(Mr/2,ERy2)

Y (z,y) < Cup <
o(@:9) gu (o, Mrs2)9u (0, ) PP g0 (20, Mr/2) 9u (%0, ERy2)

and

gu(r/2,Y) o2 gu(Mr/2,ERs2)

0, (2,y) = Cgy o '
o(%:9) BHPQU(J;O>77R/2)9U(1?0>?J) BHP9U<330aUR/2)9U<330’€R/2)

By BHP applied to the £-harmonic functions gy(x,-) and gy (zo, z)gu(xe, ) on U N
B(&, AR) we obtain (3.26). By Lemma 3.10, we have

\7 "\
osc  OY(z,9) <C (—) osc  OY(z,9) <C (—) su oY (z,y),
yeUnB(&,r) o(#:Y) "\R/ yevnB(e.R) o(®:9) °\R yeUmBI?g,R) o)

which together with (3.26) yields (3.27). O

Thanks to the Holder regularity estimates obtained in Lemma 3.13, we can extended

OU to (U\{zo})2y as shown below.

Proposition 3.14. Let an MMD space (X,d, m,E, F) and a uniform domain U in (X, d)
satisfy Assumption 3.12. Let xg € U. Then the function ©Y (-,-) defined in (3.25) has a

continuous extension to (U\{xo})2,, which is again denoted by OV : (U\{zo})24 — [0, ),
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and there exist C1,Cy, A1 € (1,0), ¢y € (0,1/4) and v € (0,00) depending only on the
constants associated with Assumption 5.12 such that the following hold:

1 gU(éTyUr) U gU(frﬂ?r)
oh 700690 (20 < 0,,(En) < ClgU CNAIEEEN (3.34)

for all (&,m) € (0U)?%; and all 0 < r < co(d(wo, &) A d(xo,m) A d(€,7)), and
d&,2)7 d(n,y)”)

= = (3.35)

64, 6.1) — 04 o) < Ca0t )
forall (€,m) € (AU)%;, 0 < R < (24;)~Y(d(z0, &) Ad(zo,m) Ad(E,m)), € U B(£,R) and
ye U n B(n,R). Furthermore OV (¢, n) = Y (n,&) for all (§,n) € (U\{mo})2y.

0

Proof. The existence of a continuous extension to (U\{xg})?; of the function defined in
(3.25) follows from Lemma 3.13. More precisely, the existence of a continuous extension
at all points in oU x (U\{xo}) and (U\{zo}) x oU follows from Lemma 3.13(a,c) along
with the symmetry of Green function. On the other hand, the existence of a continuous
extension at all points in (0U)?2, follows from Lemma 3.13(b,d).

The estimates (3.34) and (3.35) are direct consequences of Lemma 3.13(b,d). The
symmetry of @on follows from the symmetry of gy and the continuity of @on. n

Definition 3.15. Let an MMD space (X, d, m, &, F) and a uniform domain U in (X, d)
satisfy Assumption 3.12. The function ©Y : (U\{xo})2; — [0, ) defined as the continuous
extension of (3.25) is called the Naim kernel of the domain U with base point zy € U.

This function is essentially same as the one introduced by L. Naim in [Nai] where she
extends to function considered in (3.25) to the Martin boundary instead of the topological
boundary as considered above. Another difference from [Nai] is the use of Martin topology
and fine topology of H. Cartan instead of the topology arising from the metric.

3.4 Martin kernel

We recall the definition of the closely related Martin kernel introduced by R. S. Martin
[Mar].

Definition 3.16. Let an MMD space (X,d,m,&, F) and a uniform domain U in (&X', d)
satisfy Assumption 3.12. Let 29 € U. We define KU : U x (U\{zo})\Udiag — [0, 0) by

gul,)
Kgo<m7§) = gU(Qﬁ'(),g)

lim 970V e cou
Usy—¢ gu (o, y)

if £ e U\{xg,x},
(3.36)

where the limit in the second case exists by BHP and Lemmas 3.4 and 3.10. The function
Kgo is called the Martin kernel of U with base point xj.
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The following oscillation lemma is an analogue of Lemma 3.13.

Lemma 3.17. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X,d)
satisfy Assumption 3.12. Then there exist C; A € (1,00) and v € (0,00) such that the
following estimates hold for any xq € U:

(a) For any ze U, any £ € oU and any 0 <r < R < (2A)7 6y (2) A d(xo,§)),

0sc KU ()< C(i

(UnB(z,r))x(UnB(&,r))

~
) osc_ K2 (). (3.37)
R (UnB(z,R))x(UnB(&,R))

(b) For any z€ U, any £ € 0U and any 0 <r < R < (2A)71(6y(2) A d(z0,€)),

sup Ky () < OKp (2, €rp)- (3.38)
(UnB(2,R))x(UnB(&,R))

(c) For any (n,€) € (OU)?4 and any 0 <r < R < (2A)"Y(d(&,z0) A d(n, o) A d(€, 7)),

\7
s ose K (a,y) < C(5) K (g, n). (3.39)
zeUnB(n,R) yeUNB(E,r) R

Proof. We omit the proofs of (a) and (b) as they are similar to that of Lemma 3.10.
Both estimates follow from applying EHI and BHP to the first and second arguments
respectively of the Martin kernel.

(¢) By Lemma 3.10

"\’ N\
osc KU (z,y) < (—) osc KUY (x,9) < <_) KUY (z,
veUnB(&r) o) R/ yeUnB(.R) o) R o(%:Erp2)

for all x € U n B(n, R). By Carleson’s estimate (Proposition 3.11), we have

sup Ky (x,€rp) S Ky (ry2, Erpa)-
zeUnB(n,R)

Combining the above two estimates, we obtain the desired result. O]

We discuss the £-harmonicity and Dirichlet boundary condition of the Martin kernel
Kgo(-,f), where £ € 0U.

Lemma 3.18. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X,d)
satisfy Assumption 3.12. For all £ € 0U, the function K, (-,§): U — [0,00) belongs
to Froc(U) and is E-harmonic on U. Furthermore K, (-,&) satisfies Dirichlet boundary
condition relative to U off € in the following sense: for any open subset V' of U such that
§¢V, Kxo('7§) e F (U7V>

loc

Proof. Let y, € U be a sequence with lim,, .y, = . Define h,,: U\{y,} — [0,0) as
h, := Kgo(-,yn) for all n > 1.
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If K < U is compact then K < U\{y,} for all but finitely many n. By Lemma 3.17-
(a),(b), the sequence h,, converges uniformly on compact subsets of U and is bounded

on compact sets. Therefore by Proposition 3.1-(v) and Lemma 2.24, the function
KU (-,&): U — [0,0) belongs to Fie(U) and is E-harmonic in U.

Let V' be an open subset of U such that § ¢ V and let A — V be relatively compact
in U with An U\V = &. Then by Lemma 3.17-(c), h,, converges uniformly to KU (-, &)
on A. Therefore by Lemma 2.24-(b), KU (-,&) € 2. (U, V). O

Next, we relate the Martin and Naim kernels. Due to Lemma 3.18 and the continuity
of @50, the Naim kernel can be expressed in terms of the Martin kernel as

KU
o) (= y)) ifrel,
o, X
ol (xy) =14 e 9) (3.40)
lim —z 2 e e ouU,

Usz—z gy (T, 2)

where the limit in the second case exists by BHP and Lemmas 3.18 and 3.10. We chose
the approach based on Lemma 3.13 because the symmetry of @go and the joint continuity
are immediate through our approach while these properties need to be shown if we use
(3.40). The equality (3.40) is closer to the original approach to define Naim kernel as the
extension to the boundary is done for one variable at a time in [Nai].

It is well known that any unbounded domain satisfying the boundary Harnack prin-
ciple has a unique Martin kernel point at infinity. Following [GyS, Chapter 4], we call
the Martin kernel point at infinity the £&-harmonic profile of U. We recall the short
argument to prove its uniqueness.

Lemma 3.19 (Uniqueness of harmonic profile). Let (X, d,m,E, F) be an MMD space and
let U be an unbounded open subset of X satisfying BHP and oU + &. Let hy: U — [0, 0)
and hy: U — (0,0) be two continuous functions such that hy, hy € FL(U,U) and hy, hy
are E-harmonic on U. Then there exists c € [0,00) such that hy(z) = che(x) for allz e U.

Proof. Let A € (1,00) be the largest among the constants Ag, A; in Definition 3.7 and
Lemma 3.10. Let C be the largest among the constants C;,Cy in Definition 3.7 and
Lemma 3.10 respectively. Let « be as given in Lemma 3.10.

Let £ € 0U and xy € U. For all R € (d(&, z),0), by Definition 3.7 we have

sup () < Chl(x()).
B(¢,R)nU hz(‘) hz(ﬂUo)

Letting R — o0, we obtain

ha(") ha(') hy (o)
OEC ho(+) < Sl(}p ho() s Oh2($0)'

For any d(&,z9) <r < R < o0, by Lemma 3.10 we have

h1_(~) - C(z)V hl(.) _ C’(L)VS hl(.) < CQ(ﬁ)Whl(xO)

OSC X 0OSC X u .
B(&,r)nU hg() R B(&,R)nU hQ() R P hg() R hg(l’o)
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Letting R — o0, we obtain oscp(g,r)nu 7, E = 0 for any r € (d(&, xg), ). Letting r — oo,

_0 O

we obtain oscy h

We recall a standard construction of the harmonic profile [GyS, Chapter 4].

Proposition 3.20 (Existence of harmonic profile). Let an MMD space (X,d, m,E, F) and
a uniform domain U in (X, d) satisfy Assumption 3.12, and assume that U is unbounded.
Then for any o € U and a sequence {y,}neny in U such that lim,,_, d(xo,y,) = 0, the
sequence KU( n): UN{yn} — (0,0) converges uniformly on any bounded subset of U to
a continuous functzon hY : U — (0,0) such that hJ e FL (U, U), hY (xo) = 1, hl s
bounded on any bounded subset of U and is £-harmonic on U. Furthermore, the limit h;fo
depends only on U, zq and not on the sequence {yy}nen-

Proof. Let A € (1,00) be the largest among the constants Ay, A; in Definition 3.7 and
Lemma 3.10. Let C be the largest among the constants C;,Cy in Definition 3.7 and
Lemma 3.10 respectively. Let v be as given in Lemma 3.10.

Let & € U and let Ad(zg,§) < r < R. Then for any n,k € N such that AR <
d(&, yn) A d(&, yx), by Lemma 3.10 and Definition 3.7 we estimate

sup M _ 1’ = sup Kg)(7yn) N Kaljjo(xmyn) < 0sC KU( )
vnsen | Koy (- ye) vaBlen | K5 () yk) KU (wo,y) |~ vnBEn KU (- ue)

Y K (5 yn)

< —
C(R) UmCJ)S(%r KU(,yk
Koy (2 ym)
K5 (o)

)
)
T\7 7y'fl)
<Cl|— su
<R> UmBE)"r Zo 7yk’)
< 2 L (ZE(), yn) 2 1 v
¢ <R> (a:o,yk) =¢ <R>
By letting R = (24) 7' (d(&, yn) A d(&,yx)), we obtain that for all n, k such that d(, y,) A
d(&, yr) > 2A%d(€, 1), we have

-TO(.’ yn)
K5 G yn)

By Carelson’s estimate (Proposition 3.11) for any & € oU, r > 0, there exist C; > 0, N € N
such that

sup — 1| < C*(2A) 17 (d(&, yn) A d(E,yr)) 7. (3.41)

UnB(&,r)

, Sg(}g )Kgo(-,yn) < Kgo(fr/g,yn) for allm > N. (3.42)

By Harnack chaining along a uniform curve in U between &, /» and  and using (2.53),
there exist N € N, Cy = Cy(xg, &, ) such that

KJ (&)2,yn) < Cy foralln > N. (3.43)
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Combining (3.41), (3.42), and (3.43), we obtain

lim sup K (- g0) = K (o) < lim CLCC(24)707 (d( ) A (€))7 = 0.

n,k—0o0 UﬁB(f T‘) n,k— o0

Since 7 € (0, o0) is arbitrary, letting r — o0, we conclude that the sequence {KY (-, yn) }new
converges uniformly on any bounded subset of U to some hY : U — (0,0), then hY is
continuous by the continuity of K U( y,) and bounded on any bounded subset of U by
(3.42), and Lemma 2.24 implies that hY € FP (U, U) and that hZ is E-harmonic on U.

loc
The assertion that the limit hY depends only on U,z follows from hY (z¢) = 1 and
Lemma 3.19. O

4 Estimates for harmonic and elliptic measures

To goal of this section is to estimate the harmonic measure of balls on the boundary of
a uniform domain using ratio of Green functions. We restrict to the class of uniform
domains that satisfy the following capacity density condition.

4.1 The capacity density condition

This is a slight variant of similar conditions considered in [Anc&86, AH].

Definition 4.1 (Capacity density condition (CDC)). Let (X,d,m,&,F) be an MMD
space satisfying MD and EHI. Recalling Lemma 2.28-(a), let K € (1,00) be such that
(X,d) is K-relatively ball connected. We say that a uniform domain U in (X, d) satisfies
the capacity density condition, abbreviated as CDC, if there exist Ag € (8K, ) and
Ay, C € (1,0) such that for all £ € U and all R € (0,diam(U)/A,),

CaPB(g,AOR)(B(§> R)) < CCapB(g,AoR)(B(£7 R\U). CDC

We note that the capacity density condition implies transience.

Remark 4.2. Let (X,d,m,E, F) and K be as in Definition 4.1, and let U be a uniform
domain in (X, d) satisfying CDC. Then X\U is not £-polar by Remark 3.9 and [FOT,
Theorems 2.1.6 and 4.4.3-(ii)], and hence the part Dirichlet form (Y, F°(U)) on U is
transient by [BCM, Theorem 4.8 and Proposition 2.1].

Due to Remark 2.22, it would be convenient to assume the stronger VD and HKE(V)
instead of MD and EHI. Therefore, we make the following assumption.

Assumption 4.3. Let a scale function ¥, an MMD space (X, d,m, €&, F) and a diffusion
X = (Q, M, {X: }iep0,0] {Pz }zex,) on X satisfy Assumption 2.19. In particular, by Remark
2.22 and Lemma 2.28-(a), (X, d) is K-relatively ball connected for some K € (1,0). Let
U be a uniform domain in (X, d) satisfying CDC, set U, := U U {0}, £ := £V and,
recalling Theorem 2.16-(a), let X = (Qref M {X7T},c10 001, {Pff}mga) be a diffusion
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on U as in Assumption 2.19 for the MMD space (U, d, m|g, £, F(U)). Then Assumption
3.12 holds by Remarks 2.22 and 4.2. In particular, U satisfies BHP by Theorem 3.8, and
oU + & and diam(U) € (0, o] by Remark 3.9.

Ancona [Anc86, Definition 2 and Lemma 3] showed that the capacity density condition
CDC in a Euclidean domain is equivalent to an estimate on the harmonic measure called
the uniform A-reqularity. Such a result can be extended to an arbitrary open set in
any MMD space satisfying MD and EHI by using the estimates on hitting probabilities
from [BM18, BCM]. More precisely, we have the following relationships between hitting
probabilities and CDC. Part (b1) of the lemma below is meant to justify our requirement
Ap € (8K, 0) in Definition 4.1.

Lemma 4.4. Let (X,d,m,E,F) be a MMD space, and let D be an open subset of X.

(a) Let Ag,A; € (1,00), v € (0,1) and assume that for each & € ¢D and each R €
(0,diam(D)/A;),

WwPNBEAR) (D ~ (€, AgR)) <1 —7~ for E-qe. xe B(,R)nD.  (4.1)
Then for all £ € 0D and all R € (0, diam(D)/A,),
CapB(g,AOR)(B(fa R)) < ’Y*Q CapB(g,AOR)<B(£7 R)\D)~ (4-2)

(b) Assume that (X,d,m,E, F) satisfies MD and EHI and, recalling Lemma 2.28-(a), let
K € (1,0) be such that (X,d) is K -relatively ball connected. Suppose that there exist
Ap € (8K, 0) and Ay, C € (1,0) such that for all{ € 0D and all R € (0,diam(D)/A;),

CapB(g,AoR)<B(£7 R)) < CCapB(f,AOR)(B<€7 R)\D). (4.3)

Then the following hold:

(1) For any Ay € (1,00), there exist A,,C e (1,00) such that for all £ € 0D and all
R € (0,diam(D)/A;),

Cabpe g (B(E, R)) < C Capye 1o (B(E, R\D). (4.4)

(2) There exist ;17),;1\1 € (1,00) and v € (0,1) such that for each & € 0D and each
R € (0,diam(D)/A;),

wPBEAR) (D A S(¢ AgR)) <1—~ forE-qe.xeB(E R nD.  (4.5)

If in addition (X,d,m,E,F) satisfies Assumption 2.19, then (4.5) holds for all
ve B(ER) A D.

Proof. (a) Let e := ep(e.r)\n.B(e,a0R) € F (B(§, AgR)). denote the equilibrium potential
for Cappe a,r)(B(§, R)\D). Then by [FOT, Theorem 4.3.3], for £-q.e. z € B(§, R) N
D,

e(x) = Pu(0Be,r\D < 0B 40R))
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(b1)

(b2)

(4.1)
> Po(0pns(e,aor) > 0pe) = 1 = Po(0pns,a0r) < Ope) = 7.

Therefore y'¢ > 1 &-q.e. on B(€, Ay 'r) and Cappe 4,5 (B(E, R)) < E(y e,y le) =
2 CapB(g,AoR)<B(5a R)\D).

By [BCM, Lemma 5.22] and domain monotonicity of capacity, in order to show (4.4),
we may and do assume that ;13 > Ay. By [BCM, Lemma 5.18] there exist Cy € (1, o0)
and A, € [A1,00) such that for all £ € 0D and all R € (0, diam(D)/;l\l),

gB(é,AoR) (y7 Z) < 93(57;153) (ya Z) < ClgB(g,AoR) (y7 Z) for all Y,z € B(f, R) (46)

Let £ € 0D, R € (O,diam(D)/;l\l), and let ey, v be the equilibrium potential and
measure for Capy . 7.5 (B(§, R)\D) such that Capp 7, (B(&, R)\D) = &(e1,€1)

and e = SgB(&AAlT)(-,z) v(dz). Define
e i= [ gmeant 2 v(d2)

By (4.6), for £&-q.e. y € B(&, R)\D, we have

e(y) = J!JB(s,Alm(y,Z) v(dz) = C' JQB(@ATR)(W) v(dz) = Cr .

Therefore
CapB(g’AlR)(B(f, R)\D) < £(Cye, Cre) = C} Je(z) v(dz) < C} Jel(z) v(dz)
= C’12‘5'(617 61) = C’12 CapB(&ZflR)(B<57 R)\D)

The above estimate along with (4.3) and [BCM, Lemma 5.22] implies (4.4).

By [BCM, Lemma 5.9], there exist Ag, A, C; € (1,00) such that for all £ € D, all
R e (0,diam(D)/A;) and all z,y € B(&, R), we have

Ine.2r) (T Y) 2 C1 (e ) (6:7): (4.7)

By (bl) and increasing ;1?),;1\1 if necessary, we may assume that (4.4) holds. By
further increasing Ay, A; if necessary and using [BCM, Lemma 5.10], we may assume
that there exists Cy € (1,0) such that for all £ € D and R € (0, diam(D)/A;),

It o (& 7) < Cappe 70 (BET)) ' < Cogpe 5,,(6:7)- (4.8)

Let £ € 0D, R € (O,diam(D)/;l\l) and let e := ep p b pe ), ¥ denote the equi-
librium potential and measure, respectively, for Cap g, 1 (B(S, R)\D). By [FOT,
Theorem 4.3.3], for £-q.e. x € B(¢, R) n D, we have
g(l’) = Px (UB(g,R)\D < O'B(S’ABR)C) = J 93(57;{03)c (I, y) V(dy>
B(&,R)\D
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(4. S o
2 0 o (€ 1W(BE RIVD)

= Cing(&,aTOT) (57 T) CapB(gy,ZBR) (B<€7 R)\D)

(4.4)

. 8)
=

A (4.
c'c 193(5720”(577’) CapB(&;‘BR)(B(f,R)) =

Setting v := C~'C~'C; " € (0,1), we conclude that

clicleyt. (4.9)

—~ — (4.9)
wf”B(g’AOR)(D N S(& AR)) <P, (UB(g,R)\D > UB(&AAOR)C) < 1l—7.

The final assertion under Assumption 2.19 follows from the continuity of £-harmonic
measure from Lemma 2.34-(b). O

The estimate (4.5) in Lemma 4.4-(b2) above can be used repeatedly to obtain certain
polynomial type decay rates on the harmonic measure.

Lemma 4.5 (Uniform A-regularity). Let an MMD space (X,d,m,E,F) and a uniform
domain U in (X,d) satisfy Assumption J.3. Then the following hold:

(a) There exist C1, Ay € (1,00) and § € (0,00) such that for all £ € OU and all 0 < r <
R < diam(U) /A,

5
WUPBER ([T A S(¢, R)) < Cl<%> for allz € U n B(, 7). (4.10)
(b) There exist Cy, Ag, Ay € (1,0) and 6 € (0,00) such that for all & € oU, all 0 <

r < R < diam(U)/A; and all (0,0)-valued continuous E-harmonic function h on
U n B(&, AgR) with Dirichlet boundary condition relative to U,

hE) _ ()
< - . 4.11
h(€r) C2(R> (4.11)
Proof. (a) By Lemma 4.4-(b2), there exist Ay, A; € (1,00) and 7 € (0,1) such that
WOBER(TT A (¢, R)) < 1— (4.12)

for all ¢ € 0U, all R € (0,diam(U)/A;) and all z € B(¢, A;*R). By the strong Markov
property, for all i e N, all £ € U, all R € (0,diam(U)/A;) and all x € B(§, A;"'R),

w, PR A S(E, R))

<WUPPEAR(W A S(6, AT'R))  sup Wl "PER(U A S(¢, R))
yeUnS(€,A; " R)
(4.12) . UnB(,R) g
< (1-9) sup  w, (UnS(E R)).
yeUnS(E,Ay "' R)
By repeatedly using the above estimate, we obtain
wy "PER(U A SER) < (1—7)
for alli e N, all £ € U, all R e (0,diam(U)/A;) and all z € B(¢, A;'R). This implies
(4.10).
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(b) By BHP from Theorem 3.8, Proposition 3.1 and Lemma 3.4, it suffices to consider
the case when h is a Green function. More precisely, it suffices to show that there
exist C3, Ag, A1 € (1,0) and ¢ € (0,00) such that for all £ € U, all 0 < r < R <
diam(U)/A; and all xy € U such that d(&, z9) > AgR, we have

9u (& x0) A%
g0(Err70) C?’(R) ‘ (4.13)

Let us choose Ay, A; € (1,00) such that the conclusion of (a), and BHP and Carleson’s
estimate (Proposition 3.11) hold. Then for all £ € oU, all 0 < r < R < diam(U)/A;
and all xy € U such that d(£, xyg) > ApR, we have

gu (&, o) = Ee, [gu (X%NB(&R),IO)] (by Lemma 3.3)

< (s gu(a0) Jwg P A S(E R))
UnS(,R)

< gu (R, wo)wgmB(g’R)(U N S(&,R)) (by Carleson’s estimate)

< gu(&r, o) (%)6 (by (4.10)). ]

4.2 Two-sided bounds on harmonic measure

The following estimate of harmonic measure is the main result of this section. It is an
extension of [AH, Lemmas 3.5 and 3.6] obtained for the Brownian motion and uniform
domains satisfying the capacity density condition in Euclidean space, which in turn gen-
eralize similar results obtained by Jerison and Kenig for NTA domains in [JK, Lemma
4.8] and by Dahlberg for Lipschitz domains in [Dah, Lemma 1]. While it is possible to
follow an iteration argument (called the ‘box argument’) for proving upper bounds on
harmonic measure from [AH, Proof of Lemma 3.6], our proof is new and avoids the use
of such a complicated argument.

Theorem 4.6. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X,d)
satisfy Assumption J.3. Then there exist C, A € (1,0) such that

CilgU(:L'Oa gr‘) CapB(ﬁ,Qr) (B<£7 r)) < WJZ)(aU N B(ga T)) < CgU(x(b 57“) CapB(§,2r) (B(f( T)) )
4.14
for all £ € 0U, all xy € U and all r € (0,d(&, z0)/A).

While it is possible to prove Theorem 4.6 by adapting the techniques of Aikawa and
Hirata using the box argument and the notion of capacitary width, we follow a more
probabilistic approach. Combining Theorem 4.6 with the £-harmonicity of gy (zo,-) on
U\{xo}, Harnack chaining (Lemma 2.29), Remark 2.22 and [BCM, Lemma 5.23], we obtain
the following volume doubling property of the harmonic measure.

Corollary 4.7. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X,d)
satisfy Assumption 4.3. Then there exist C, A € (1,0) such that

wo (U A B(&, 7)) < Cwl (0U n B(&,1/2)) (4.15)
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for all§ € 0U, all xg € U and all r € (0,d(&,x0)/A). In particular, supr[wa]O] = oU.

Thanks to the capacity density condition CDC, we can compare the Green function on
the domain U with that on a ball chosen at a suitable scale. The following is an analogue
of a lemma of Aikawa and Hirata for uniform domains in Euclidean space [AH, Lemma
3.2]. Our proof follows an argument in [BMI18, Proof of Lemma 3.12] to compare Green
functions on different open sets.

Lemma 4.8. Let an MMD space (X,d, m,E, F) and a uniform domain U in (X, d) satisfy
Assumption 4.3. Then there exist Ay € (1,0) and ¢y € (0,1) such that for each c € (0, co]
the following holds for some Cy € (1,00): for all £ € OU and all v € (0, diam(U)/A;),

Crt Cappean (B, 7)) < gu(&,cr) < Oy Cappe o (B(E, 7)) (4.16)
Proof. By Lemma 4.5-(a), there exist A;, Ay € (4,00) such that for all £ € U and all
r € (0,diam(U)/A;), we have

sup  wUNBEAT ([T A S(€, Agr)) <
ZEUﬁB(&ZT)

. (4.17)

DO | —

By (3.12) and [BCM, Lemmas 5.20-(c), 5.22 and 5.23|, there exist ¢q € (0, ¢y/2) and
Ay € (4,0) such that for all ¢ € (0,¢y] there exists Cy € (1,0) satisfying the following
estimate: for all £ € 0U, all r € (0,diam(U)/A;) and all y € S(&,, cr), we have

C;l CapB({QT)(B(fJ T>>71 < 9B (& ,cur/2) (57“7 y) < 9B(¢,Aor) (57’7 y) < CQ CapB({,QT)(B(£7 T)>71'

(4.18)
Also by (3.12) and by reducing ¢q further if necessary, there exists C3 € (1,0) such that
sup gu(&r,) < Cs _inf gu(&. ) = Cagu (&, cr) (4.19)

S(&ryer) S(&ryer)

for all ¢ € (0,¢], all € € AU and all r € (0,diam(U)/A;). On the other hand, for all
ce (0,¢0], all £ € AU and all r € (0,diam(U)/A;), by choosing n € S(&,, cr) satisfying

gu(&.n) = sup  gu(&.y), (4.20)
yGS(ET,cT)

and by the Dynkin-Hunt formula (Lemma 3.5) and the maximum principle (the latter
equality in (3.2)), we obtain

gU(gra 77) = gUmB(&,Aor) (fr, 77) + En []l{TU(\B(E,AO’V‘)<w7XTUﬁB(§’A0T)EU}gU(XTUmB(ﬁ,Aor) ) 57")]
< guane,aor) (& n) + 9u (& )Py (TuaBEa0r) < 0, Xy nie.agr € U)

< guaBEAer) (& n) + 1gU(&«,n) (by (4.17)),

2
and hence
9B .cur/2) (&) < gu(&sm) < 29u~B(e,a0m) (&5 M) < 29B(e,40r) (& 1) (4.21)
Combining (4.18), (4.21), (4.20) and (4.19), we obtain (4.16). O

86



Proof of Theorem j.6. We first show the lower bound on the harmonic measure which is
considerably easier than the upper bound.

Lower bound on harmonic measure: By Lemmas 2.34-(d) and 4.5-(a), there exists
c1 € (0,1/2) such that for all £ € oU, all r € (0,diam(U)/A;) and all y € U n B(§, 2¢17),

WU(B(Er) A aU) > 1— Wl BEN(U A S(E, 1) > % (4.92)

By Lemmas 3.6-(b) and 4.8 and increasing A; if necessary, there exist ¢ € (0,¢;) and
C1,Cs € (1,0) such that

gU(x(Ja 5017“)

gU('TOJ 5617‘) |
gU(éclTW CQT)

0_1
' qu (£Clr7 CQT)

< Py (UW <oye) <C (4.23)

and
C;l CapB(§,27")(B(£7 T))il < gU(gclTv CQT) < 02 CapB(g,Q’/‘)<B(£7 T))il (424>
for all £ € U, all r € (0,diam(U)/A;) and all xy € U\B(E, 2r).

The lower bound on the harmonic measure is obtained by estimating the probability
of the event that the diffusion X first hits the set B(&.,,, cor) before exiting U along
oU n B(&,r). Setting By := B(&.,r, cor), we estimate the harmonic measure as

wl (0U n B(&,1)) = Py(op, < ove, Xoye € 0U N B(E, 1))
=P, (0B, < ope)E, [w%m (0U n B(&,7))|  (by the strong Markov property of X)
0

(4.22) 1
> P,(0p, < ope) inf wg(éU N B ) = =P.(op, <oye)
y€Bo 2
(4.23) -1 9 x7£c1r (4.29) —
> (2C)) IM > (2C1C%) lgU(x,fclr/g) CapB(&zr)(B(f,r)) (4.25)

gU(gclrv CQT)

for all £ € oU, all r € (0,diam(U)/A;) and all z € U\B(,2r). On the other hand, by
Lemma 2.29 and increasing A; if necessary, there exist Ay, C5 € (1,00) such that

C39U(x7 57“) = gU(l’, €c1T/2) = CglgU($7 57‘) (426)

for all € € 0U, all r € (0,diam(U)/A;) and all z € U\B(&, Agr). Combining (4.25) and
(4.26), we obtain the desired lower bound.

Upper bound on harmonic measure: Fix { € oU and r € (0,diam(U)/A;), where
Ay € (1,0) may be increased from its current value in the course of this proof. We
note that all the constants in the argument below are independent of the choice of &, r
and depend only on the constants involved in Assumption 4.3. We consider two cases
depending on whether or not (B(&,4r)\B(&,2r)) n U is empty.

Case 1: (B(&,4r)\B(&,2r)) n 0U = . In this case, we use the estimate

wl(B(&, 1) noU) < Py(0sesnav < oue). (4.27)
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By Lemma 3.6-(b) and the same argument as the proof of Lemma 4.8 (by using [BCM,
Lemmas 5.10, 5.20-(a) and 5.23]) and by increasing A; if necessary, there exist ¢; € (0, 1)
and C3, Cy € (1,00) such that

gU(y7 CIT) = 9B(y,r) (y7 017’) = C:;l CapB({Qr)(B(g? T))il = szl CapB(f,Qr) (B(gv T))il
(4.28)
and
. 90y, 20)

“gu(y, car)
for all y € U n S(&,3r) and zo € U\B(§,4r). By Lemma 2.28-(b), the proof of Lemma
2.29 and by increasing Ag, A; if needed, there exist Ay, C5 € (1,0) such that for all
yeUn S 3r) and zo € U\B(§, Apr) we have

90y, %0) < Cs9u(&» o). (4.30)

]P)x (Um < UUc) < (429)

Choosing a maximal c¢;7- separated subset {y; | 1 <1 < N} of U n S(&, 3r) on the basis
of MD, we have U n S(&,3r) ¢ Ul: B(y;, c1r), where N € N has an upper bound that
depends only on MD and ¢;. Therefore by (4.27), we obtain

N

Wi (B(&,r) 0 oU) < Py (08 gy < 0ve) < D Pay (0552 < o)
i=1
120) & 4.30) (4.28)
i—1 y? CIT) g (y7 Clr) gu (y7 017’)
(4.31)

for all zyp € U\B(§, Apr). The desired upper bound in this case follows from (4.31) and
(4.28).

Case 2: (B(&,4r)\B(£,2r)) noU # &. Let n e (B(§,4r)\B(&,2r)) n oU and set V :=
U\(OU\B(&,3r/2)) (note that V is an open subset of U). Recall from Assumption 4.3 that
Xt — (e, M { X7 0,000, {P5T} e, ) 18 @ diffusion on U as in Assumption 2.19 for
the MMD space (U, d, m|g, £, F(U)). Since B(n,r/2) n U is a subset of U\V and not
Erlpolar by Lemmas 4.5-(a) and 2.34-(e),(d),(a), the part Dirichlet form of (£, F(U))
on V is transient by the irreducibility of (U, m|z, £™f, F(U)) from Proposition 2.18-(a)
and [BCM, Proposition 2.1]. Hence we have the Green function ¢i¢f of (£*°f, F(U)) on V
as given in Proposition 3.1 and Lemma 3.3.

By Lemma 3.6 and arguing similarly as (4.28) and (4.29), along with increasing A; if
needed, there exist C1,Cy € (1,00) and ¢; € (0, ¢y /4) such that

sup gy (&) < Crgi (&, ar), (4.32)
yeS(&rcar)
ref ref
-1 9v (.I 57“) < ref (]I 57“)
v ) < ) < O IV s 433
1 ref(sr7 Cl’l“) T (UB(§T761T) OoU\B(¢,3 /2)) ref(gr’ 017,.) ( )
ref(fr, 017“) = U(fm 017”) = 02_1 CapB(gzr)(B(f; 7‘))_1 (4'34>
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for all z € U\B(&,,cir). By Harnack chaining in V' and (4.32), there exists C3 € (1, 0)
such that for all z € B(&,r) n dU, we have

g (& 2) = G5 g (& aar). (4.35)

Setting B := B(&,, c17), by the strong Markov property of X* we have

PN (X € 0U n B(&,1),05 0 05ny < Totr\n(e3r/2) © Ooars)

>
> WU (0U n B(E, f  Plog < .
Y(oU n B(&,r ))ZEB(g)maU oB < Tav\B(esr/2)

> C7'C5 WY (0U n B(€,7))  (by (4.35) and (4.33))  (4.36)

P;:ef(UB < O9U\B(¢,3r/2) )

for all x € U\B(&,,c17). Now the proof of the desired upper bound in (4.14) is reduced
to showing that there exists Cy € (1, 0) such that, for suitably chosen A, € (1, o0),

9 (20, &) < Cagu(mo, &) for all zy € U\B(§, Aor); (4.37)

indeed, by combining (4.36), (4.33), (4.34) and (4.37) we obtain

(4.36) ) ref (. &
Wiy (U A B(E1) < Gy (on < danpesrn) < 01203—%((5057“))
ry C1

(4.34)
< 0202039 o (20, &) CapB(g,zr)(B(f>T))
(43

012020304%@0; &) Capp(e oy (B(E, 7).

To see (4.37), recall the Dynkin—Hunt formula (Lemma 3.5) that

ref

G (9, 2) = oy, 2) + Ef [ Limy oo xeeteny 07 (X5, 2)] forally e U, 2 € U\fy}. (4.38)

By Lemma 3.3, for any xy € U\B(,4r) and any z € V n B(§,d(&,n)) we have

9 (2, 10) = Eief[ ref«XrEf)TVmB(s d(em)” @) ] < UmS?élg(g n))g{/ef(  Zo)- (4.39)

Therefore, we obtain for all zp € U\B(,4r) and all y e U n B(&,d(§,7m)),

(4.38)

o (Y, m0) < guly,wo) + Py (1 < 00, XX e V) up 91" (2, o)
zeV\U
(4.39) ref ref ref
< gu(y,z0) + Py (v < 0, X2 e V) sup gv (z,x0). (4.40)

zeUnS(£,d(¢m))

Next, we show that there exists § € (0, 1) such that for all y € U n S(§,d(&,n)),

Pt (ry < o0, XiTe V) <1-4. (4.41)
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Indeed, by Lemma 2.34-(b), the function h(y) := Pif (1y < o0, X2 € V) is continuous
and &™-harmonic on U. Then by Lemma 4.5-(a), there exists ¢, € (0,1/4) such that

h(y) < % for all y e U\B(, 7r/4) with dy(y) < car, (4.42)

whereas by (4.42) and Harnack chaining for the £*-harmonic function 1 — h on U using
Lemma 2.28-(b), there exists d € (0, 1) such that h(y) <1—0 for all y e U n S(£,d(&,n))
with dy(y) = cor, proving (4.41). In particular, taking supremum over y € Un S(&,d(&, 7))
in (4.40) and using (4.41), for all g € U\B(§,4r) we obtain

sup g (y,m) < sup gu(y,wo) +(1-0)  sup g (y, o),
YeUnS(Ed(En)) yeUnS(E.d(Em)) YeUnS(E.d(En))

which, together with sup,cyse,aen) Gt (y, 29) < oo implied by the maximum principle
(the latter of (3.2)), yields

sup  g¥ (g, w0) <6 sup  gu(y, @), (4.43)
yeUnS(&,d(Em)) yeUnS(&,d(Em))
On the other hand, by Carleson’s estimate (Proposition 3.11), Harnack chaining using
Lemma 2.28-(b) and increasing Ay, A; if needed, there exists C5 € (1, 00) such that for all
zo € U\B(E, Aor),

sup g{ff(y7 IO) = Cglg$f(£T7 x0)7 sup gU(y7 ,’,Uo) < C59U(£7’7 Jf()). (444>
yeUnS(&,d(En)) yeUnS(&,d(En))
Combining (4.43) and (4.44), we obtain (4.37) and thereby complete the proof. O

Under an additional assumption which for instance is satisfied for the Brownian motion
on R" with n > 2, the capacity density condition CDC for a domain U implies the uniform
perfectness of its boundary oU, which is relevant to the stable-like heat kernel estimates
for the boundary trace process in Theorem 5.13 below.

Definition 4.9. Let (X,d,m,E,F) be an MMD space satisfying MD and EHI. We
say that (X, d,m, &, F) satisfies the capacity non-decreasing condition if there exist
C, A e (1,00) such that

Capp(yon(B(z,7)) < CCapp(yop (B(r,R)) forallze X, 0<r <R < diam(X)/A.
(4.45)

We remark that the number 2 in (4.45) can be replaced with any constant larger than
1 due to [BCM, Lemma 5.22]. If (X,d,m,&, F) satisfies the stronger VD and HKE(W)
for some scale function W, then by [GHL15, Theorem 1.2], (4.45) is equivalent to the
following estimate: there exist C, A € (1,0) such that

wR) )
m(B(z, R)) ~ m(B(x,r))
The condition (4.46) was called fast volume growth in [JM, Definition 1.5]. The following

lemma follows from Theorem 4.6 and Lemma 4.5-(b). We omit its proof as it is just a
straightforward modification of the argument in [AHMT1, Remark 2.17].

for all z € X and all 0 <r < R < diam(X)/A.  (4.46)
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Lemma 4.10 (Cf. [AHMT1, Remark 2.17]). Let an MMD space (X,d,m,E,F) and a uni-
form domain U in (X,d) satisfy Assumption 4.3, and assume further that (X,d,m,E,F)
satisfies the capacity non-decreasing condition. Then (0U,d) is uniformly perfect.

It is easy to see that Lemma 4.10 is not true without the capacity non-decreasing
condition. For instance, this can be seen by considering the unit interval U = (0,1) for
the Brownian motion on R.

We provide some sufficient conditions for the capacity density condition below.

Remark 4.11. (a) Let (X,d,m,E, F) be an MMD space satisfying MD and EHI, and
let U be an open subset of X" satisfying the exterior corkscrew condition (see [JI,
(3.2)] for the definition). Then the capacity estimates in [BCM, Section 5] imply the
capacity density condition for U. In particular, non-tangentially accessible domains
(see [JK, p. 93]) satisfy the capacity density condition.

(b) Let (X,d,m,E,F) be an MMD space satisfying the heat kernel estimates HKE(W)
with ¥(r) = r® for all r € [0, o0) for some d,, € [2,00). Assume that m is a d-Ahlfors
regular measure for some d; € (0, 0), i.e., there exists C' € (1, 0) such that

C~ i <m(B(x,r)) < Cr¥ for all x € X and all r € (0, 2diam(X)).  (4.47)

If U is an open subset of X and its boundary oU in X admits a p-Ahlfors regular
Borel measure for some p € (df — dy, 0) N [0,00), then U satisfies CDC; indeed, the
desired lower bound on the capacity can be obtained by adapting the arguments in
[Heill, Proof of Theorem 5.9]. In particular, this shows that the uniform domains
obtained by removing the bottom line or the outer square boundary of the Sierpiniski
carpet satisfy CDC with respect to the MMD space corresponding to the Brownian
motion on the Sierpinski carpet. More generally, a similar statement holds also for
any generalized Sierpinski carpet due to [CC24a, Lemma 3.7].

We recall a simple consequence of Lebesgue’s differentiation theorem. We note that
the condition (4.48) is satisfied by harmonic measure on dU due to Corollary 4.7.

Lemma 4.12 (Lebesgue’s differentiation theorem). Let (X, d,m) be a metric measure

space such that (X,d) is separable, m(B(z,r)) < oo for some r € (0,00) for each x € X,
and

lim sup m(B(z, 2r))

o m(B(z,r))

Then for any locally integrable function f: X — R almost every point is a Lebesgue point

of f; that is,

<o for m-a.e. v€X. (4.48)

fim o )If(y)—f(x)ldm(y) (4.49)

for m-a.e. x € X. In particular, for any x € suppy|m]| satisfying (4.49), if € € (0,00)

and v, : X — R is a Borel measurable function satisfying 1p(y,) < ¥ < Lpar for each
re (0,¢), then

- dm

lim —SX vrf

0§, dm
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Proof. The assertion given in (4.49) follows from [HIKST, Theorem 3.4.3 and (3.4.10)]. If
x € suppy|[m] satisfies (4.49), then

S [0e ) f(y) — U (y) f ()| m(dy)

0 < limsup

rl0 SX 1/}7“ dm
SB( 2r) |f(y) = f(z)| m(dy)
< i ince Lp(r) < ¥r < Lpgor
mf}lsoup m(B(z,r)) (stnce Loen < ¥ o)
. m(B(:z:,Qr))) . ][ (4.49),(4.48)
< ( limsup ————2= | limsup fly) — f(z)| m(dy = 0. 4.51
(e ey e f, 1900 = ol oy

The desired conclusion follows from (4.51) and the estimate

Sxtrfdm f(:c)‘ _ S @) f () = dely) f () m(dy)
§Urdm N § v dm

. ]

The following proposition shows that the £-harmonic measure w? of a uniform domain
U in (X, d) is the distributional Laplacian of the Green function gy (x,-). In the proof, we
use the following notation for the (0-order) hitting distribution with respect to a diffusion
Xreh = (e, VT { X7 e g0,00] {IP’ff}xegu{a}) on U as in Assumption 2.19 for the MMD
space (U, d, m|g, &, F(U)), where £ := £0U: we define Higtti € F(U). by

Higu(z) == EX [U(X0 o <o0y]  for £-qe. x € U for each ue F(U)e.  (4.52)
We will also use the fact that the strongly local part £ (recall (2.77)) of any regular
Dirichlet space (X, m, &, F) satisfies the following strengthened strong locality:

E(u,v) =0 for any u,v € F, with (u— a)(v — b) = 0 m-a.e. on X for some a,b € R;

(4.53)
indeed, extending [FOT, Corollary 3.2.1] from u € F to u € F, by using [FOT, Exercise
1.4.1, Lemma 2.1.4 and Theorem 2.3.3-(i)], and applying it together with [FOT, Exercise
1.4.1 and Corollary 1.6.3] and F, n L?(X,m) = F, we can easily extend [C'F, Theorem
4.3.8] from u € F n L¥(X,m) to u € F, and then combining it with [FOT, Lemmas 2.1.4,
3.2.3 and 3.2.4] yields (4.53).

Proposition 4.13. Let (X,d,m,E, F) be an MMD space satisfying Assumption 2.19, and
let U be a uniform domain in (X, d) such that the part Dirichlet form (Y, FO(U)) on U
is transient. Then for all x € U and allw e F(U) n L*(U, m|g) such that x ¢ supp,,_[u]

and suppm‘ﬁ[u] is compact,

EN gy (x,-),u) = —J udw? . (4.54)

ou
Proof. Note that the Green function gy of (£, F) on U is also that of (€™, F(U)) on U,
since the part Dirichlet form of (£, F(U)) on U coincides with (Y, FO(U)) as observed
in the proof of Lemma 2.34-(¢). Let x € U, let w € F(U) n L*(U, m|) be such that
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x ¢ suppm‘ﬁ[u] and suppm‘ﬁ[u] is compact, and use [FOT, Exercise 1.4.1] to choose
¢ € F(U) n C.(U) so that ¢ is [0,1]-valued, ¢ = 1 on a neighborhood of SUPP . [u]
and x ¢ suppg|¢]. By the proof of Lemma 3.4 with (X,d,m,E, F), D,yo replaced by
(U, d, ml|g, &, F(U)), U, z, under the convention of setting gy(z,-) := 0 on oU we have
égu(z,-) € F(U) and hence £ (gy(z, ), u) is canonically defined as £ (pgy (x, ), u).

Also by the proof of Lemma 3.4, for some 6 € (0, dist(, suppy[¢])) with B(z,28) = U
we can construct a family { f, },e(0,6) of [0, c0)-valued Borel measurable functions on U such
that f,'((0,00)) = B(z,r), §, frdm =1, §, f,Gu f, dn < 0 and ¢Gy f, € FO(U) for any
r € (0,9) and lim, ;o Gy fr = dgy(x,-) in norm in (F(U),EF). Then for any 7 € (0,4),
by [FOT, Theorem 4.2.6 and (1.5.9)] (see also [CF, Theorem 2.1.12-(i)]) we have

Guf. e FO(U)., frve LYU,m|y) and EN(Gyf.,v) f frvdm (4.55)

for any v € FO(U),, which in combination with (4.53), (2.22), (2.71) and (2.72) yields

GGy fr,u) = E(Gy fr,u) (by (4.53))

= &N Gy fr,u— HE)  (by Guf, € FO(U)e, (2.22) and (2.71))
J frlu — HEM) dm (by (4.55), since u — Hxti e FO(U). by (2.72) and (2.22))
- f foHTdm (by supp,, [u] < suppgls] € T\f((0,0))). (456)

Now since || < ||ull ;oo EF-q.e. on U by [FOT, Lemma 2.1.4], we have Hi(y) =

Lo (T,mlp) ou
SaU ﬁdwg for any y € U by Lemma 2.34-(a),(e), it is an R-valued continuous function of
y € U by Lemma 2.34-(b), and therefore by letting | 0 in (4.56) we obtain (4.54). O

The Martin kernel can be viewed as the Radon—Nikodym derivative of the £-harmonic
measures at different starting points. A similar statement on non-tangentially accessible
(NTA) domains in the Euclidean space was observed in [XT, Theorem 3.1] which is an
easy consequence of the results in [JK]. Jerison and Kenig defined the Martin kernel
as such a Radon—Nikodym derivative in [JI, Definition 1.3]. For NTA domains in the
Euclidean space the equivalence of our definition with [JI, Definition 1.3] follows from
the uniqueness theorem in [JI, Theorem 5.5]. Our next result is a generalization of [KT,
Theorem 3.1].

Proposition 4.14. Let an MMD space (X,d, m,E, F) and a uniform domain U in (X, d)
satisfy Assumption 4.3. Then for all x,xq € U,

dw?
dwV )
zo

U
— KV (z,"). (4.57)
Proof. Let § € oU, r € (0,diam(U)/4), set A := A¢, := B(§,r) n U, B := B, :=
B(&,2r)° n U and let esp denote the equilibrium potential for A with respect to
(U, m|g, &, F(U)) with Dirichlet boundary condition on B. By Proposition 4.13 and
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Lemma 2.11 there exist measures )\1147 B )\?4, 5 supported on A and U n S(€, 2r) respectively
such that

0 < f Eapd? = —E (gy(z,), eap)
oU

_ < J gu(z,y) dN 5(y) — J gu(z,y) dA%,B(y))

A TnS(€,2r)

= f gu(z,y) d\) p(y)- (4.58)
TAS(€,2r)
Taking ratio of (4.58) for x and for z in place of x, we obtain

SUmS(ﬁ,Qr) gu(z,y) d/\gx,B(y)
_Kxo(xag) = S e —Kxo(l’,g)
TAS(€,2r) gu (o, y) A,B(y)
Sﬁr\S 2r gU(I07 y) (Kﬂco ($7 y) T Kﬂﬂo (]I, 5)) d)‘OA,B<y>
(§2r)
SUmS(g,zr) gu (o, y) d)‘?él,B(y)
< SUGS(@‘,%) gu (.%‘0, y) |K&?0 (ZL’, y) - Kwo (xv €)| d)‘?él,B(y)

h SﬁmS(g,Qr) gu (2o, y) X} p(y)

~ U
SaU eAvB dwz

> U
SaU eA:B dwxo

N

. (4.59)

By the boundary Holder regularity of the Martin kernel implied by BHP and Lemma
3.10, there exist C, Ay € (1,00) and v € (0,_00) such that for all xg,z € U, all £ € 0U, all
0 <7< A7Nd(z0,€) Ad(x,€)) and all y e U n B(&,7), we have

|K:vo(x7y> - Kxo(l‘ag” < CleO(x7§)<d(Io 5)7;\ d(l‘ 5)) : (46())

On the other hand, since w! « wY by Lemma 2.34-(c) and wl satisfies (4.48) by Corollary
4.7, it follows from Lemma 4.12 that for wY -a.e. £ € oU,

o Sooea, B, dY dwY
h?oq SaU'” Srt, y z = 0 (). (4.61)
" oUu eA&mvB&r wwo o

By (4.60) and (4.61), for w{ -a.e. £ € OU we can let r | 0 in (4.59) to get (dwl /dwl )(€) =
K., (x,€), completing the proof. ]

4.3 The elliptic measure at infinity on unbounded domains

On unbounded uniform domain the harmonic measure need not be doubling. For instance
if 0U is unbounded and connected, then due to [Hei, Exercise 13.1] every doubling mea-
sure on 0U must necessarily be an infinite measure, and in particular there is no doubling
probability measure on 0U. Nevertheless, as we will see there is a canonical doubling mea-
sure on 0U obtained as a limit of scaled harmonic measures w? as z — 0. Propositions

3.20 and 4.13 suggest considering the limit of scaled harmonic measures gy (o, x)*lwg\ﬁ
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as * — . Following [BTZ, Lemma 3.5], we call this limit, denoted as ugo below, the
E-elliptic measure at infinity of U with base point x,. Alternatively, the distributional
Laplacian of the harmonic profile defines the elliptic measure at infinity on the boundary
oU as shown below.

Proposition 4.15 (Elliptic measure at infinity). Let an MMD space (X,d,m,E,F) and
a uniform domain U in (X, d) satisfy Assumption 4.3, and assume that U is unbounded.
Let g € U, and let {x,}nen < U\{xo} be any sequence satisfying lim,, o d(xq, x,) = 0.
Let hY (-) = limy, o0 Ky (-, 2) denote the E-harmonic profile of U with hY (xo) = 1. Then
the sequence of the measures v, := gy(xo, xn)_lwgn‘ﬁ converges in total variation on any
compact subset of U to an £ -smooth Radon measure vy on U with vy (U) =0 and
EN (MY Ju) = —f udvl (4.62)
oU
for allue F(U)nL*(U,ml|y) such that SUPP, [u] is compact. In particular, the measure

Ve does not depend on the choice of the sequence (xy)ns1, and v = (hY (y))~'vE for
any y € U. Moreover, the following hold:

a e measures vy and wy |- are mutually absolutely continuous. Furthermore, the
Th U and Wi |5 tually absolutel ti Furth th
VU . ..
Radon—Nikodym derivative jw?}) : U — (0,00) can be chosen to be a strictly positive
o

continuous function satisfying the following estimates: there exist C, A € (1,0) such
that for all € € 0U, all R € (0, A™*d(z0,&)) and allne oU n B(§, R),

. hY (r) v he (Er)
1 0 0 0
¢ gu (20, &R) < dwl () < OQU@’OafR)' (4.63)

(b) U is an E™-quasi-support of Vg).
(c¢) There exists C € (1,00) such that for all £ € OU and all R € (0, 0),

C_ltho (51%) CapB(g,2R)(B(§7 R)) < Vif)(B(él R) M é’U) < thUo (fR) CapB(g,2R)<B(f<> R)))
4.64
In particular, suppg[vl ] = 0U and (0U, d, ) satisfies VD.

Proof. Let ue F(U)n L*(U, m|) be such that SUpp,,;_[u] is compact, and let {2 }nen =
U\{zo} be any sequence satisfying lim,, o, d(zo, z,) = 00. Then there exist ¢ € F nC.(X)
and N € N such that z, ¢ suppy[@] for all n = N, supp,,[u] < suppy[¢] and ¢ = 1 on
a neighborhood of supp,,[u]. By Proposition 4.13 and the strong locality of (£, F(U)),

we have o _5ref(M,U) o (¢(')M u) (4.65)

gU(x(Ja Tn gU(xO; xn) ’

where we adopt the convention of extending gy (-, z,,) by 0 on U¢. Similarly extending hgo
as 0 on U¢, we see from Proposition 3.20 and Remark 2.25-(b) that

oU

i €54 (60) 202 gt o) ST g ) —0 (aoo)

N<n—0 gU(ZE(), l’n) o7 gU(x()?xn
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Combining (4.65), (4.66) and by the strong locality of (€™, F(U)), we obtain

lim | dv, = —E(S()nY, u) = —E* (Y, u) (4.67)
e Jou
for all u € F(U) n L*(U, m|z) such that SUppy,_[u] is compact. By Proposition 4.14 and
(3.40),
dv, , 1 dw? (4.57) Kg)(%, ) (3.40)

— " (.) = x . 0 U N 4
dng“ gu (w0, ) dwgo< gu (o, ) 'Y, () (4.68)

By (3.26) and the joint continuity of ©Y | the sequence ©Y (2, ) is uniformly bounded
on every compact subset of 0U. Similarly by (3.27) and the joint continuity of @go, the
sequence OV o(7n, ) is equicontinuous on every compact subset of JU. Therefore by the
Arzela-Ascoli theorem, we can choose a subsequence {2, }ren so that ©F (x,, , ) converges
uniformly on any compact subset of U to a continuous function ©Y (00, -): 0U — [0, ).
Recalling that w; ‘U is £*-smooth and wY (U) = 0 by Lemma 2.34—(6),(&), we can thus

define an £ ref—smooth Radon measure Vgo on U by

Voo (d€) 1= g (90, €) wg, | (dE), (4.69)

so that v (U) = 0, the measures v,, = gu(xo,2n,) WY | converge to vZ in total
variation on any compact subset of U, and from (4.67) we obtain (4.62) for all u € F(U) N
L*(U,m|g) such that suppm‘ﬁ[u] is compact. Combining (4.62) with the uniqueness
of hl in Proposition 3.20, [FOT, Exercise 1.4.1] applied to the regular Dirichlet space
(U, mlg, &, F(U)), and the outer and inner regularity of v from [Rud, Theorem 2.18],
we conclude that V:EU() is independent of particular choices of {z,},ey and its subsequence
{2y, tren in the above argument, and so is ©Y (o0,-) by (4.69), its continuity on 0U and
suppﬁ[wgo 7] = U from Corollary 4.7. Since the sequence {7, }ney in these results can
be replaced with any subsequence of {x,}nen, it follows that {©Y (., ) }nen converges to
©Y (00, -) uniformly on any compact subset of U and hence that {1, },en converges to v5)

in total variation on any compact subset of U (without passing to a subsequence).
Moreover, by Lemma 3.19 and (4.62), we have

hy = (h% (y)"'hY, and v = (A (y)) 've, forallyeU. (4.70)

zo
(a) Letting A € (1,0) be as in Lemma 3.13, by (4.68), (3.26) and the joint continuity of
OY (xn,-), for all £ € U, all R e (0, (24)1d(, z0)) and all n € OU n B(, R) we have

gU(SRa xn) 1
9u (%o, Tn) gu (o, &R)

dv,
U (n) !

468 326

@U (xn) 7]) @U (xn7 §R) =

for all n sufficiently large. Letting n — o0 and using Proposition 3.20, we obtain the
estimate (4.63). Since @U( ,-) is strictly positive on U, we conclude from (4.69)

and wf (U) = 0 that vJ and wY, 7 are mutually absolutely continuous.

(b) By the mutual absolute continuity of v and wY same E™-quasi-
supports. Hence the desired conclusion follows from Lemma 2.34-(e).
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(c) For £ € oU and R € (0,0), we choose y € U\B({,2AR) and estimate

(B R) "L WU (B, R))% "LV WU () Cappiean (B(E R)).  (4.71)

The estimate (4.64) follows from (4.70) and (4.71).

The volume doubling property of v follows from (4.64) along with Proposition 3.20,
Lemma 2.29, and [BCM, Lemma 5.23]. O

Remark 4.16. The above proof of Proposition 4.15 implies that for any £ € U the limit

li O, (2,
UxUs(z.)—(0:6) 0(2,2)

exists, and therefore this limit was suggestively denoted as O,,(c0, &) in the proof.

It is natural to ask whether unbounded uniform domains satisfying CDC have un-
bounded boundaries. This is not true in general since the positive half-line U = (0, o0)
is a uniform domain in R satisfying CDC for the Brownian motion on R. On the other
hand, such examples do not occur for the Brownian motion on RY with N > 2. More
generally, unbounded uniform domains satisfying CDC have unbounded boundaries under
the additional assumption of the capacity non-decreasing condition (recall Definition 4.9),
as follows.

Lemma 4.17. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X,d)
satisfy Assumption 4.3, and assume that U is unbounded and that (X,d, m,E, F) satisfies
the capacity non-decreasing condition. Then oU is unbounded, i.e., diam(oU) = oo.

Proof. Let xo € U be fixed and let v denote the E-elliptic measure at infinity of U with
base point zy as given in Proposition 4.15. By Lemma 4.5-(b), (4.45) and Proposition
4.15-(c), there exists A € (1, 00) such that

ve (B(&,R)) < %V;]()(B(f,AR)) for all £ € OU and all R € (0,00).

This implies that oU n (B(§, AR)\B(&, R)) + & for all £ € U and all R € (0,0), which
in turn implies that U is unbounded. O]

5 The boundary trace process

Throughout this section, we always assume that a scale function ¥, a MMD space
(X,d,m,E,F), a diffusion X = (Q, M, {X;}ie[o,00], {Pr}rex,) on X, a uniform domain
U in (X,d), and a diffusion X™" = (Qf, M { X7} 10,007, {Pr'} ) on U satisfy As-
sumption 4.3.
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5.1 The boundary measure and the corresponding PCAF

To define the boundary trace process, we choose a reference measure on the boundary oU
as given in the following definition.

Definition 5.1. If U is bounded, we choose zy = Ediam(U)/5 using Lemma 2.6, where

E € 0U is chosen arbitrarily. If U is unbounded, we choose an arbitrary point xo € U. We
define a Radon measure p on U with suppg|p] < U by

olU

wY ‘— if U is bounded,
pi=1 Y (5.1)
Vi if U is unbounded,

U

where wY ,vY denote the £-harmonic measure (Definition 2.33, Lemma 2.34) and the

Ertelliptic measure at infinity (Proposition 4.15), respectively, of U with base point .
In order to describe properties of u, we define ®: oU x (0, diam(U)/6) — (0,%0) by

(5.2)

(e, r) gu(zo, &) if U is bounded,
) r = . .
hY (&) if U is unbounded,

where &, is chosen as in Lemma 2.6.

Note that by [GHL15, Theorem 1.2] and [BCM, Lemma 5.22], there exist C, A € (1, o)

such that
(B(z, R)) m(B(z, R))

e
V(R) V(R)
for all z € X and all R € (0,diam(X)/A). Let us recall that the function & is useful to

estimate the measure p. Indeed, by Theorem 4.6, Proposition 4.15-(c) and (5.3), there
exist C, A € (1,00) such that

< CapB(m,QR)(B<x7 R)<C (5.3)

AmBER) _ p(BER) _ m(BER) U e (0o
C ¥ (R) < 3¢ R) <C U (R) for all £ € U and R € (0, diam(U)/A).

(5.4)
We record some basic estimates on ® and show that ® is comparable to a function ® that
has better continuity properties.

Lemma 5.2. There exist Cy, Ay € (1,0) and a regular scale function ®: U x [0,00) —
[0,0) on (0U,d) with threshold diam(U) in the sense of Definition 2.38 such that

CT'®(E, 1) < (€, 1) < CLD(E,r)  for all € € OU and all r € (0,diam(U)/A;).  (5.5)

Proof. First, we show that there exist C, 1, 5> € (0,0) and A € (4,00) such that for all
N, € 0U and all 0 < r < R with R v d(§,n) < diam(U)/A,

Claavn) ) <5 <legen) (F)

T r

(5.6)



Indeed, by Lemmas 2.29 and 4.5 and by the harmonicity and Dirichlet boundary con-
ditions of gy (zo,-) and A in Propositions 3.1-(v), 3.20 and Lemma 3.4, there exist
C1,Cs, A€ (1,0) and 1, 52 € (0,00) such that

L (R\& _ B(E,R) R 8 .
(2= N>y -
C; ( ) S <Cl<r> for all £ € U and 0 < r < R < diam(U)/A, (5.7)

C—l < %(gaR Vv d(&an)) < 02 (58)

®(n, B v d(&,n))
for all n,£ € 0U and 0 < r < R with R v d(§,n) < diam(U)/A. The conclusion (5.6)
follows from (5.7) and (5.8) by using the expression

DER) 0GR  SERvdEm) B RvdEn)
®(n,r) B RV AEn) P, R v d(E,n)) ®(n.7)

By (5.7), there exists Ay € (1,00) such that for all £ € U and all R € (0,diam(U)/A),
- 1~

Using (5.9), we define ®: U x [0, 0) — [0, 00) as follows: if U is unbounded, we define
D¢, AE) = D(g, AL) for € oU and ke Z,

and extend ®(&,-) by piecewise linear interpolation to [0,00) for each £ € dU. Using
(5.6) and (5.5), we get the estimate (2.88) in Definition 2.38. The fact that ®(¢, ) is a
homeomorphism follows from (5.9). This concludes the proof when U is unbounded.

If U is bounded, we define

&g, Ak(24)Mdiam(U))  if k <0,

(€, A3(24) 7 diam(U)) = {Agﬁ@(g, (24)"'diam(U)) if k> 0

for £ € OU and k € Z, and extend ®(&,-) by piecewise linear interpolation to [0, 0) for
each £ € 0U. The conclusion follows from the same reasoning as the unbounded case. [J

It will be convenient to use ® in Lemma 5.2 instead of ® due to its better continuity
property. So we set ® to denote the function in Lemma 5.2 in the rest of this section. We
apply the results in Subsection 2.8 to the measure p to obtain the following proposition.

Proposition 5.3. Let i be the Radon measure on U defined in (5.1). Then the following
hold:

(a) suppg|p] = U, and there exist Cy, Ao, Ay € (1,0) such that

O\ D(x, 1) < Capiif&ggx,r)) < Cod(z,r) for all (z,7) € AU x (0, diam(U)/A,).

(5.10)

In particular, 1 is E* -capacity good and E*f-smooth in the strict sense.
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(b) Let AW = {A }te 0,.0) be a PCAF in the strict sense of X™ with Revuz measure fi(,
which exists by (a) and [FOT, Theorem 5.1.7]). Then the support of AW is oU, i.e.,

oU ={zeU|PS[A W >0 for any t € (0,00)] = 1}. (5.11)
In particular, oU is an £ -quasi-support of .

Proof. By (5.3), (5.4) and Lemma 5.2 we obtain suppg|p] = 0U and (5.10). In particular,
p is an E-capacity good Borel measure on U in view of Theorem 2.16-(a) and Definition
2.43 and is therefore £™-smooth in the strict sense by Lemma 2.46, and (b) follows from
Proposition 2.49. O]

Remark 5.4. By the estimate in (2.128) along with [FOT', Theorems 2.1.6 and 4.4.3-(ii)],
for the MMD space (U, d, m|g, £, F(U)) we have

Cap™(B(&,7) ndU) > 0 for all ¢ € OU and all 7 € (0, ), (5.12)

where Capi®(-) denotes the 1-capacity with respect to (U, m|g, £, F(U)).

5.2 The Doob—Naim formula

Now we define the trace process and Dirichlet form on the boundary oU as follows. Recall
from Assumption 4.3 that X7 = (Qef, M { X7}, 10 o0, {PE},er7,) s a diffusion on U
as in Assumption 2.19 for the MMD space (U, d, m|g, £, F(U)).

Definition 5.5 (The boundary trace process and Dirichlet form). Set (0U)a := U v {0},
and let 1 be the Radon measure on U defined in (5.1).

(a) Let F1f = {F7*},c/0,00) denote the minimum augmented admissible filtration of X,
¢**f the life time of X' and {6 }te [0,cc] the shift operators of Xref Let AW =
{AE“ )}te[O,oo) be a PCAF in the strict sense of X with Revuz measure j as considered
in Proposition 5.3-(b), with a defining set A € F= such that A% (w) = 0 for any
(t,w) € [0,00) x (QN\A) and {¢™ = 0} = A. Recalling (2.66) and (2.135), we define
the boundary trace process X' = (Sv)ref,ﬁ/(ref, {)?fef}te[o’oo], {Pe Y eeorr),) of X
on AU as the time-changed process of X™f by AW given for (t,w) € [0, 0] x *f by
n(w) = inf{s € (0,0) | AP (W) > 1}, X[T(w) = X5, w), ()= AW (w),

Tt (w)

et = A~ { X € (0U), for any s € [0,0)} A <{C € {0,004} U {lirroéXgef = 8}),
Mref gjref eief( ) eref ( ) (513)

Tt (w)

Qret Y

where AY (w ) 1= limg o As ¥)(w), so that by Propositions 5.3-(a) and 2.51-(a), Xref

is a p-symmetric Hunt process on 0U with life time Q and shift operators {Qref} e[0,00]"
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(b) Recalling Definition 2.35, we define

FO) o= {iw

ue F(U),, J Q’ZQd,u<oo}, (5.14)
U

where % denotes any E™-quasi-continuous m|g-version of u and we identify functions
that coincide £™-q.e. on F; since, for each u,v € F(U),, & = ¥ E*-q.e. on U if
and only if % = ¥ p-a.e. on U by [CF, Theorem 3.3.5], and since suppg[u] = U
by Proposition 5.3-(a), we can canonically consider F(U) as a linear subspace of
L?(0U, u). Then we further define a non-negative definite symmetric bilinear form

gt F(U) x F(U) - R by

El (@] av, Do) := E(HEMW, HYXD)  for u,v € F(U), with @|ay, 0oy € F(U),
(5.15)
where Hi' € F(U). is defined for £*-q.e. z € U by

Higt(z) = EX @XM oay<o0y|,  0ov = inf{t € (0,00) | X;* € oU} (5.16)

ooU

(recall Definition 2.33), and call (£, 7(U)) the boundary trace Dirichlet form
of (&, F(U)) on L2(0U, ).

As mentioned after Definition 2.35, (7, F(U)) is a regular symmetric Dirichlet form
on L?*(0U, ), a subset N of oU is £™-polar if and only if N is E™-polar, and f|ann is
Er_quasi-continuous on AU for any £ quasi-continuous function f: UW — [, ]

defined Eefqe.on U for some Efpolar N c U. Moreover, the extended Dirichlet space
F(U). of (8U, p, &, F(U)) and the values of £ on F(U), x F(U), are identified as

F(U). = fillow | we FU)}, E (s, blov) = € (HE, HE®) for any u,v e F(U),,
(5.17)

and the Dirichlet form of the boundary trace process X' is (£, F(U)).
The goal of this subsection is to compute the Beurling-Deny decomposition (recall
(2.77)) of the boundary trace Dirichlet form (€t F(U)) defined in (5.14) and (5.15). Let

Erefi(©) J k denote the strongly local part, the jumping measure and the killing measure,
respectlvely, of (U, u, ™, F(U)), so that we have J((0U x N) n (0U)2) = 0 = /{(/\/)

for any £™-polar A € B(oU) and

~

&, 0) = O )+ 3 | (i) =) (@) =) Tidrdy)+ | a)ila) Fe)

(U2,

(5.18)
for any u,v € F (U)., where @,0 denote év’ref—quasi—continuous p-versions of u, v respec-
tively.

The following lemma, which is an easy consequence of the A-regularity estimate shown
in Lemma 4.5-(a), is the main ingredient to show that the killing measure & is zero.

Lemma 5.6. It holds that
P (oo < 0) =1 foranyxeU. (5.19)
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Proof. First, since the reflected diffusion X™ has the property that
Pef(Xf e U) =1 forany (t,2) e (0,0) x U

by m(oU) = 0 from (2.7) and AC and the conservativeness of X™, it suffices to show the
claim for € U. Then by the Markov property at any time ¢ > 0, X" hits oU after time
t P*f_a.s. for any z € U. In particular, we can work with the original diffusion X on the
ambient space X rather than the reflected diffusion X**f on U.

If U is bounded, then (5.19) follows by CDC, Remark 4.2 and Lemma 2.34-(d),(e).
Assume that U is unbounded, let z € U, and choose £ € 0U and R € (d(z,£),0). Then by
Lemmas 2.34-(e),(a),(d) and 4.5-(a), there exist Cy, 6 € (0, o0) such that for all K € (1, ),

P (oop < 0) = wY (OU) = Py(oapy < 0)  (by Lemma 2.34-(e),(a))
= ]P)J;(O'.,\/\U < TB(&,KR)) =1- ]P)J?(TB(f,KR) < TU) (by Lemma 234—(d))

> 1 — WwUNBEER([T A (¢, KR)) (by Lemma 2.34-(a))
>1-C,K° (by Lemma 4.5-(a)),
and we obtain P*(o,y < 00) = 1 by letting K — oo. O

Our next result shows that the only non-vanishing term in the Beurling-Deny decom-
position (5.18) is the jump part. Our main tools are Propositions 2.36 and 2.37.

Proposition 5.7. The boundary trace Dirichlet form (£, F(U)) on L*(0U, ) is of pure
jump type, that is, £ and K in (5.18) are identically zero.

Proof. The vanishing of the killing measure £ follows from Lemma 5.6 and Proposition
2.37. Alternatively, by [CF, Theorem 5.6.3] the killing measure is the supplementary
Feller measure V' as defined in [CF, (5.5.7)], which in turn vanishes due to Lemma 5.6.

By [CF, Theorem 5.6.2], for which we have given a new elementary proof in Propo-
sition 2.36 above, and Proposition 5.3-(b), the strongly local part £ of (£, F(U))
is identified as the values of the £"f-energy measures on 0U, and they are seen to vanish
by applying [Mur24, Theorem 2.9] to the MMD space (U, d, m|g, £, F(U)), which sat-
isfies VD and HKE(V) by Theorem 2.16-(a), and the uniform domain U in (U, d). This
concludes the proof that (c‘,v’ ref F (U)) is of pure jump type.

The vanishing of the £™-energy measures on 0U of any u € F(U), can be seen more
directly as follows. Let u € F(U) n L*(U, m|z). Then for any f e F(U) n C.(U), we

easily see from the Leibniz rule [FOT, Lemma 3.2.5] for £-energy measures that
Ay (u, uf) — %dl“y(uz, ) = fdly(uu), (5.20)
which together with (2.37) shows that
E° (u, uf) — %fﬁef(u?, f) = L fdly(u, ). (5.21)
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It follows from (5.21) and (2.34) that the £™-energy measure of u is given by 'y (u, u)(- N
U) and hence vanishes on 0U, and the same holds also for any u € F(U), by the definition
of the £™-energy measure of general u € F(U). presented in Definition 2.12. O

The goal of this section is the Doob—Naim formula stated in Theorem 5.8. We discuss
relevant previous works and approaches of proving the Doob—Naim formula. As mentioned
in the introduction, this was first shown by Doob [Doo] in the setting of Green spaces
introduced in [BC]. They are locally Euclidean and hence the result does not apply to
diffusions on fractals. Doob’s work relies on existence of fine limits to define the Naim
kernel and existence of ‘fine normal derivatives’ [Doo, §8] shown by Naim [Nai]. It is
unclear to the authors whether these results of Naim can be extended to our setting and
we leave it as an interesting direction for future work. M. Silverstein [Sil, Theorem 1.3]
showed the Doob—Naim formula for Markov chains on countable spaces using an excursion
measure. While it is possible to construct similar excursions in our setting as discussed in
[CF, Section 5.7], we choose a direct approach starting from the definition (5.15) of the
boundary trace Dirichlet form (Svref, F (U)) and performing a fairly simple computation.
The joint continuity of the Naim kernel established by using BHP in Proposition 3.14 and
the description of the Martin kernel as the Radon-Nikodym derivative of the harmonic
measure in Proposition 4.14 are important ingredients of our proof.

For random walks on certain trees, the trace Dirichlet form on the boundary is
amenable to explicit computations. This was first done by Kigami [Kigl0, Theorem
5.6] and was later shown to coincide with the Doob-Naim formula in [BGPW, Theorem
6.4]. Kigami [Kigl0, Theorem 7.6] also obtained stable-like heat kernel estimates for the
trace process on the boundary.

By extending the results of [Doo, Fuk, Sil], we show that the Naim kernel ©Y is the

jump kernel of the boundary trace Dirichlet form (£, F(U)) with respect to wl xwl.

Theorem 5.8 (Doob-Naim formula). The jumping measure J in the Beurling-Deny
decomposition (5.18) of the trace Dirichlet form (€™, F(U)) on L?(0U, i) is given by

d.J(&,n) = Y (&.n) dw? (€) dwl (). (5.22)

Equivalently,

£ (u,v) = lf (@(&) — u(n))([B(€) — v(n)) ©%, (&, 1) dwy, (€) dwiy, () (5.23)
2 Jovyz,

for allu,v e F(U)., where U,V denote £ -quasi-continuous p-versions of u, v respectively.

Proof. Let &,m € 0U be distinct and r < d(¢,7)/4. Let A = B(&,7)noU, B = B(£,2r)¢nU

ref

and eq p € F(U) denote the equilibrium potential for Caply (A) for the Dirichlet form
(&, F(U)) as given in Lemma 2.11 such that

CaprBCf(A) = Eref(eA,B,eA,B), €ap=1 Efq.e. on A, €ap =0 i q.e. on U\B,
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where €45 is a E™-quasi-continuous m|g-version of es 5. Let Ay 5, A% 5 denote the

associated measures as given in Lemma 2.11 supported in A and U nS(€, 2r) respectively.
By (4.58), we have

0< [ Zandet = [ gulaon) N no) (5.24)
oUu UnoB

Let u € F(U)nC.(U) be such that 1p(,,) < u < Lp( . Since Hitu is £*-harmonic
on U by (2.71) and Hies g = €ap E™-q.e. on 0U by (2.72), we have

EN(Hyu, Hy1ea5) = E (Hiu,8a5)  (by (2.71) and (2.72))

UnS(&,2r)

| (] weraste) o)
(457 _ JUGS(W) ( L U)K ,2) dwgo(z)) A\ (y).  (5.25)

= —J Hijud)y g (by (2.27) in Lemma 2.11-(b))

Note that by [CI', Theorem 5.2.8],
€anlou € f(U) and €4 plov 18 c‘,v’ref—quasi—continuous. (5.26)

Therefore by the Beurling-Deny decomposition (5.18), (5.26) and Proposition 5.7, we
obtain

E(HE u, Hy 8 5)
= & (ulov, €alov)  (by (5.15))

[ ) ) @ane) — 2a) Tidrd) by (5.26) and (5.1
(oU)2

od

~

- - f w(x)Ea,p(y) J(dz dy), (5.27)
(0U)24

where the equality in the last line above holds since u, €4 5 have disjoint supports (note
that r < d(&,m)/4) and J is symmetric. We thus obtain

S(aU)gd u(x)eas(y) j(da: dy)
Sov wdwl, §o €ap dwi,

_ _gref<H5(;qu7 Hgfff(gA,B)) (by (527))
Sov wdw, §op ap dwi

_ ulz z wU z 0
_ Sonsiean (oo 1) Kao (y, 2) duiy (2)) AN 5(9) (by (5.24) and (5.25))

Your g, S 6 0ry 90 (20 9) AX5 5 (1)
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(3£0) f @U ( u( ) dw U( ) gU<CCO; y) d)\O (
- $ ’ y).
UnS(&,2r) SaU dwU ’ SUmS(g,Qr) gU(.on, ) d)\%,B P

(5.28)

Let p be the metric on 0U x oU defined by p((z1,v1), (z2,y2)) := max{d(z1,x2), d(y1,y2)}.
For (x1,29) € U x 0U, let B,((z1,22),r) denote the open ball of radius r in the metric
p centered at (r1,z9). By [FOT, Lemma 4.5.4-(i)] and using €45 = 1 £™-q.e. on A, we
have

u(x)éap(y) =1 for J-ae. (z,y) € (B(n,r) x B(&,7)) n (30U x oU).
Hence

LULU 2)eap(y) J(da dy) > J(B,((n,€).7)). (5.29)

By Corollary 4.7, there exist C; € (1,0) and A; € (6, 0) such that for all (£,n) € oU x U
and all r € (Oa A1_1<d(l‘07 E) A d($07 n)))a

(Wi X Wiy )(By((n,€),2r)) < Culwly, x wy)(By((n,€), 7). (5.30)

Since wY |57 is £™-smooth by Lemma 2.34-(¢),(a), €45 < Lp(e2n E-q.c. implies €4 p <
12 wl -a.e. and hence

f udngJ Eapdwl < J 15(m.2n) dwgoj Lpean dwl = (Wh x wl ) (B,((n,€),2r)).
ou ou ou ou

(5.31)
Combining (5.31), (5.29) and (5.30), we obtain
J(B,((1.€),7)) Sioure, u(@)Eap(y) J(dz dy)
5 ) B ' Ty 0l S a d (532

for all (£,7) € (OU)24 and all r € (0, Ay (d(zo, &) A d(zo,n) A d(E,1))).

By using (3.35) in Proposition 3.14 and increasing A; if necessary, there exist Cy €
(1,0) and v € (0, 90) such that

Sz, w@)aply) Jdady) , . )
L w ol (o oapdal, Ol E) < GOl 5)< (xo,f)Ad(fvo,n)/\d(f,n)>

(5.33)
for all (n,€) € (0U)?%; and all r € (0, A7 (d(z0,&) A d(zo,n) A d(&,7))). By (5.32) and
(5.33), there exists ¢y € (0, A;") such that for all (1, &) € (0U)2; and all r € (0, co(d(zo, &) A
d(x07 77) A d(ga 77))], we have

~

J(By((1,€),7))
(wh, x W) (B,((n,€). 7))

Using (5.34), we will show the absolute continuity of J with respect to waO X waO ; that is

< 20,09 (n,€). (5.34)

J < wl xwl. 5.35
o

o
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By the inner regularity of .J it suffices to prove that if K < (0U)?, is compact and
(WY x wl )(K) =0, then

J(K) =0. (5.36)
If K c (0U)2, is compact and (wS xwl )(K) = 0, then by the outer regularity of wl xwl
for any € € (0,%0), there exists an open set K. < (0U)2; such that (wl x wl )(K.) < e.
By the 5B-covering lemma [Hei, Theorem 1.2], there exist balls B,((y;, z),ri) < K.,
i € I such that (y;,2;) € K and 0 < r; < ¢co(d(zo,y:) A d(zo, 2;) A d(yi,zi)) for all i € I,
Uie] B,((yi, zi), i) © K and B,((v;, 2i),7:)/5), © € I are pairwise disjoint. Hence, we have

554
ZJ yZ7ZZ Z 2201 y%,zl ( X wgo)(BP((ylvzz)7T2)>

el 1€l
< 20 sup 6 (- ->Z<w;@ < W) (By((e ), 75/5))  (by (5.30))
i€l
< 20} sup O ()Wl x wl)(K.)
(since U B,((yi, i), 1) < K. and B,((ys, 2:),7:)/5),1 € I are pairwise disjoint)
1€l

<2C!supOY (-, -)e.
K

By letting € | 0, we obtain (5.36) since supy ©Y (-,-) < oo due to the continuity of ©Y
(Proposition 3.14) and the compactness of K. This concludes the proof of (5.35).

By letting » | 0 in the Holder continuity estimate (5.33) and using the asymptotic
doubling property (5.30) and the absolute continuity (5.35) of harmonic measures along
with the Lebesgue differentiation theorem ((4.50) in Lemma 4.12), we obtain the desired
conclusion. O]

Remark 5.9. The absolute continuity (5.35) can alternatively be obtained by using the
identification of the jumping measure as the Feller measure in [CF, Theorem 5.6.3] along
with [FHY, p. 3143, equation before Example 2.1]. However, we have chosen the more
elementary approach using (5.28) because the proof of this identification presented in [CF,
Sections 5.4-5.6] is quite involved.

The following corollary of the Doob—Naim formula relates the jump density to the
boundary reference measure p and the function (-, -).

Corollary 5.10. Define j,: (0U)2, — (0, %) by
el (&n) if U is bounded,

U -1
(fa )(ZZ:U (5);12_2(”)) if U is unbounded.

Ju(€m) = (5.37)

Then the Jumping measure J of the trace Dirichlet form (5ref,]-v"(U)) on L*(0U, i) is
given by J(d¢ dn) = }M(f,n) wu(dé) p(dn), and there exist C, A € (1,00) such that for all
(57 77) € (aU)gdz
- <Tulem) < <
W(BEAEm)B(E dEn) " T U(BE A€ ) B(E d(E,n)

(5.38)
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Proof. The jump kernel formula (5.37) is a direct consequence of the Doob—Naim formula
(Theorem 5.8) along with the mutual absolute continuity in Proposition 4.15-(a).

The proof of (5.38) is based on the following two estimates: by (5.4) and Lemma 5.2,
there exist Cy, Ay € (1,00) such that

] q)f(}%]?)m(B(é, R)) < u(B(& R)) < C (I)\I(f(}%]?)m(B(g, R)) (5.39)

for all £ € OU and all R € (0,diam(U)/A;), and by (3.34) in Proposition 3.14 there exist
€ (0,1/4) and Cy € (1,0) such that for all ¢o € (0,¢;] and all (£,7n) € (0U)?, with
COd<£7n) < Cl(d<x07§) A d(x07n))7

st 9 (Eeod(en)s Neod(e.m)) <OV (6m) < 9 (Eeod(en)s Neod(e.m))
9U($07 fcod(g,n))gU(xm 770@d(€,77)> qu (%a fcod (€, n))gU(an Neod(e, n))

(5.40

We first estimate the factor gu(&cod(en)> Neod(e,n)) 0 (5.40). Let ¢o € (0,¢1] and (§,7) €

(0U)?%;. By reducing cy if necessary and by Lemma 4.8, (5.3), VD of (X, d, m) and (2.38),
there exists ¢o € (0, ¢) independent of (£, 7) such that

gU(fcod(g,n),Czd(fan)) CaPchOdgn ( (€, codl(é, 77))) Xm(igg(f{(?;))) (54)

Reducing ¢; € (0, ¢p) if necessary, by (3.12) we have

sup 9u (Eeod(en)s 2) = inf g (Eepde ), 2)- (5.42)
2€8(Ecqd(e,m) c2d(€m)) od(&m) 2€8(Ecpd(e,n)c2d(&:m)) od(&)

Take a uniform curve from & e ) t0 Meoae,n) and choose a point ze , € S(Ecode,n), C2d(€,M))
of it such that the subcurve from z, to 7sa(e,y is outside B(&qaqen), c2d(&,n)). Using a
Harnack chain similar to (and simpler than) the proof of Lemma 2.28-(b), we obtain
(2.53) (5.42)
gU(fcod(ﬁ,n)a ncod('fﬂ?)) = gu (gcod(ﬁ,n)a Z{Ji) = gU(SCOd(E,n)a CZd(fa 77))
Gay  U(d(E,n)) (5.43)

m(B(&, d(€,m)))’

Now we can deduce (5.38) from the above estimates. We first consider the case where
U is bounded. Covering oU with balls of radii czdiam(U) for some sufficiently small
c3 € (0,1), using Lemma 5.2, VD of (X, d, m) and (2.38), and increasing C} if necessary,
we can extend (5.39) to R € (0, diam(U)], i.e.,

u(B(E, R)) = %m(B(f, R)) for all € € oU and all R € (0,diam(U)].  (5.44)

Recalling our choice of zg = Ediam(U) s5 from Definition 5.1, by reducing ¢y € (0,¢;] if
necessary, for all (&,7) € (OU)?; we have cod(€,n) < ¢1(d(zo,&) A d(zo,m)), hence (5.40),
and also by Theorem 4.6, Corollary 4.7, (5.3), VD of (X, d, m) and (2.38),

W (d(&,m))
m(B(&, d(€,n)))

gu (‘T07§codfn))’“w ( (£ d(£ ))) (545>
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(and similarly for gy (2o, Neyae,n) by replacing (£, 1) with (n,&)). Combining (5.37), (5.40),
(5.1), (5.45), (5.43), (5.44), and (2.88) from Lemma 5.2, we obtain (5.38) in the case where
U is bounded.

Lastly, assume that U is unbounded. In this case, by Proposition 4.15-(c), (5.3), VD
of (X,d,m) and (2.38), for all (£,n) € (0U)?, we have

Y, Gt ) = v (BE, d(€m)) — ég(z ’(g?i]))) | (5.46)

(and similarly for hY (1e,ace,n) by replacing (€, 77) with (1,€)). Moreover, since J(d€ dn) =
j,u(f n) p(d€) pu(dn) is independent of z and 7, is continuous by Propositions 3.14 and
4.15-(a), we see by (5.37), (5.1), (4.70), and suppg[v ] = 0U from Proposition 4.15-(c)
that for all y € U,

- vy dvY -1 -
€)= @yU(f,n)(dw% (§)dwyU (n)) = (A%, ())?1u(&,m)  for all (&,1) € (OU)2,.
y y
(5.47)
Now for each (¢,n) € (0U)?4, choosing y € U so that d(£,n) < d(y,&)/A for some large
enough A € (1,00), and recalling (4.70), (5.1), (5.2) and Lemma 5.2, we see from (4.63),
(5.40), (5. 46l (5.43), (5.39), and (2.88) from Lemma 5.2, all with z, replaced by y, that
(5. 38) with 7, (hgo( )" 1, (Y (y)) '@ in place of j,,u, ® holds, which together with
(5.47) shows (5.38) in the case where U is unbounded. O

Remark 5.11. (a) The estimates (5.44) and (5.39) along with VD of (X, d, m), Lemma
5.2 and (2.38) show that (0U,d, ) is VD.

(b) If U is unbounded, we can use (4.69) and (5.37) to derive another formula for j,,(&,7)
in terms of the Green function gy (+,-) and the harmonic profile hY as follows:

- 5. vl dvl -
Tuem) 206 (e ( Vay () W <n>)

650(0075)65%[0 00777)
O, (T, y
= lim To by Remark 4.16 and Proposition 3.14
) oem, OU (z,1)0U (2, y) (by P )
z,x,yelU
: gu(r,y)
= lim by (3.25) and (3.36
(e, KE (2, 2) K (4,2) (by (3.25) and (3.36))
Z,X,YE

T it

) ..

————~ =2 (by Proposition 3.20 and (3.41)). 5.48

e, T @)Y (7) (by Prop (3.41)) (5.48)
€,y

We note that the existence of the limit in (5.48) follows from BHP by using arguments
similar to the proof of Proposition 3.14.
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5.3 Stable-like heat kernel estimates for the trace process

The following exit time lower estimate is a key ingredient in the proof of the stable-like
heat kernel estimates for the boundary trace process. It is deduced from HKE(WV) for
(U, d, m|g, &, F(U)) obtained in [Mur24] (Theorem 2.16-(a)) and the invariance of the
Green functions under the operation of taking trace Dirichlet forms (Proposition 2.51).

Proposition 5.12. There ezist C1, Ay € (1,0) such that all & € U and all v €
(0,diam(0U)/2),
E¢' [Foen] = CrIo(E, ), (5.49)

where Tp(e,) = inf{t € [0,0) | Xref ¢ B(¢,r)}.

Proof. Recall that (U, m|g, £, F(U)) is irreducible by Theorem 2.16-(a) and Proposition
2.18-(a). By Remark 5.4, this irreducibility and [BCM, Proposition 2.1}, for any £ € oU
and any r € (0,diam(0U)/2) the part Dirichlet form of (£™f, F(U)) on U\(0U n B(&,7)°)
is transient. By Theorem 2.16-(a), [GHL15, Theorem 1.2}, VD of (X, d,m), (2.38) and
the domain monotonicity of the Green functions, there exist Ay, Cy € (1,00) such that for
all z € U and all r € (0,diam(U)/2), we have

U(r)
m(B(x,r))

ref

T B (@ y) = C5 for all y € B(x, Ay'r). (5.50)

The domain monotonicity of the Green functions also yields

ref ref
Io\@unBens ) Z Ioapen () (5.51)

for all £ € U and all r € (0,diam(dU)/2). Therefore, noting that Proposition 2.51 is
applicable by Proposition 5.3-(a) and applying (2.136) in Proposition 2.51 with f = 1,
for all £ € U and all r € (0, diam(0U)/2), we have

ref [~ re (5.51) re
Eg lc[TB({J’)] = f gU\f(aUﬁB(g’T)c)(& 7]) N(dﬁ) = J gﬁfqu(gw) (57 7]) N(dﬁ)
oUNB(&,r) oUnB(&,r)
> oY) U B (by (5.50)). (5.52)
> m(B(E,r)) ’

The exit time lower estimate (5.49) follows by combining (5.52) with (5.39) or (5.44). O

Given the jump kernel estimate (Corollary 5.10) and the exit time lower estimate
(Proposition 5.12) for the boundary trace process, by Theorem 2.40 we obtain the stable-
like heat kernel estimates for it, as stated in the following main theorem of this subsection.

Theorem 5.13. Let a scale function U, a MMD space (X,d,m,E,F), a uniform domain
U in (X,d), and a diffusion X™" = (QF, M { X7} cp0,000, {PrT} er,) on U satisfy As-
sumption 4.3, and assume that (OU,d) is uniformly perfect. Let j be the Radon measure
on U defined in (5.1), and let ® be the regular scale function on (OU,d) given by (5.2)
and Lemma 5.2. Then the NLMMD space (0U, d,u,év'ref,]t"(U)) is of pure jump type and

satisfies VD and SHK(®), and consequently the following hold:
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(a) (OU, p, EF, F(U)) is irreducible and conservative.

(b) A (unique) continuous heat kernel pret = pief(&,m): (0,00) x oU x U — [0,0) of
(OU, i, £, F(U)) emists and satisfies (1.30) and (1.31) for any (t,€,m) € (0,00) x
oU x oU for some Cy € (1,00).

(¢c) The boundary trace process X™ = (Qref et {Xre Heto,01, {PE Yee(ory,) of X o
oU as defined in Definition 5.5-(a) is a conservative Hunt process on oU, and Zts
Markovian transition function is given by IP’gef(Xtref e dn) = pf(&,n) pldn) for any
(t,€) € (0,00) x AU and has the Feller property and the strong Feller property.

(d) Let j,: (0U)2, — (0,0) be as given in (5.37). Then F(U) considered as a linear
subspace of L*(0U, ) is identified as

F(U )={ueL2 oU, )

LU f DRACR <dx>u<dy><oo}. (5.53)

Proof. X™ is a p-symmetric Hunt process on dU whose Dirichlet form is (£, F(U)) as
noted after (5.13) and after (5.17), and (30U, d, p, £, F(U)) is a NLMMD space of pure
jump type by [CF, Theorem 5.2.13-(i)] and Proposition 5.7 and satisfies VD by Remark
5.11-(a), the jump kernel estimate J(®) by Corollary 5.10, and the exit time lower estimate
E(®)- by Proposition 5.12. Thus by Theorem 2.40, (0U, d, u, gref, f(U)) satisfies SHK(®)
and the claims (a), (b) and (d) hold.

It thus remains to prove (c). Let (P,)s=0 denote the Markovian transition function
of X, which satisfies P,(¢,-) « p for any (¢,€) € (0,0) x oU by Propositions 5.3-(a)
and 2.51-(a), and define a Markovian transition function (Q;);=o on U by Qy(&, dn) =
Pt (€, ) pldn), (t,€) x (0,00) x oU, so that by Theorem 2.40-(c), (Qy)i=o has the Feller
property and the strong Feller property and satisfies ét(ﬁ ,0U) = 1 for any (t,&) € (0,00) x
oU. We show (é)bo = (CVQt)t>0 by applying the argument in the proof of Proposition
2.18-(d). Since the Dirichlet form of X™ is (™, F(U)), we have P,f = Q,f p-a.e. on oU
for any f e L?(0U, u) and any t € (0,00). Now let f € C.(0U). Then for any s,t € (0, 0)
and any & € 0U, by the Markov property of )v(ref, f’tf = étf p-a.e. on oU and ]58(5, SR
we obtain . - o o

PP f)(&) = (Pras ) () = P(Bf)(§) = Po(Qef)(§),

and letting s | 0 yields

(B f)(€) = (Qef)(€) (5.54)
by the dominated convergence theorem since lim, w(}v’s f)(n) = f(n) for any n € U and
lim, o P (Quf)(€) = (Quf)(€) by the sample-path right-continuity of X™ f e C,(oU),
and @t f € C(dU) implied by the strong Feller property of Cjt. We thus conclude from the
validity of (5.54) for any f € C.(0U) that By(¢,-) = Qu(&,-) for any (¢, &) € (0,0) x oU,
proving (c). O

Remark 5.14. Let an MMD space (X,d,m,E,F) and a uniform domain U in (X, d)
satisfy the assumptions of Theorem 5.13. Let Cap, Cap™, Cap™ denote the capacities
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for the spaces (X,d,m, &, F), (U, d,m‘ﬁ, gt F(U)), and (U, d,u,gref,]-v"(U)) as defined
in (2.23) respectively. Using the Poincaré inequality in [CKW, Definition 7.5] for lower
bound on capacity across annuli and [CIKXW, Proposition 2.3-(5)] for a matching upper
bound we obtain the following estimate: there exist C, A € (1,0) such that for all £ €
oU,0 < r < diam(dU, d)/A, we obtain

C_IM < Capg(g,QT)méU(B<€7T) noU) < CM (5.55)

(&, 7) (&, r)
On the other hand, by [GHL15, Theorem 1.2], Theorem 2.16-(a) and [BCM, Lemma 5.22],

there exist C, A € (1, 00) such that
_m(B(,r ‘o — m(B(x,r
oG < ol oBler) 0T < EED so)
for all z € U and all r € (0, diam(U)/A), and
m(B(z, 1)) m(B(z,r))
C \IJ(T) < CapB(:}:,2r) (B($7r)) <C \11(7’) (557)

for all x € X and all r € (0,diam(X)/A). By combining (5.55), (5.56), (5.57) and (5.4),
there exists A € (1,00) such that

CapB(f,ZT)(B(g, r)) = Cap§€£72r)mU(B(f,r) nU) = CaptBr(E’QT)maU(B(S,T) noU) (5.58)
for all £ € 0U and all r € (0, diam(0U)/A).

By Lemma 4.10 and Remark 4.11-(a), Theorem 5.13 applies to the reflected Brownian
motion on any non-tangentially accessible domain on RY with N > 2. Theorem 5.13
applies also to the Brownian motion on the Sierpinski carpet and the uniform domain U
in it formed by removing either the bottom line or the outer square boundary (by [Lie22,
Proposition 4.4], [CQ), Proposition 2.4] and Remark 4.11-(b)); note that in this case the
reflected Dirichlet form on U coincides with the Dirichlet form of the original Brownian
motion on the Sierpinski carpet by Theorem 2.16-(d).

Another related direction of research is the Calderén’s inverse problem. In our set-
ting, we can phrase it as follows: Does the Dirichlet form of the boundary trace process
determine the Dirichlet form of the underlying reflected diffusion? We refer to [SU] for
further context, background, and a solution to this problem for a class of Dirichlet forms
in RY.

5.4 Extension to the case with weak capacity density condition

All our results, except those in this subsection, were available prior to the arXiv sub-
mission of the recent preprint [CC24b] by Cao and Chen, and they consider there, as
already described in Remark 1.1, a slightly more general framework than ours specified in
Assumption 4.3. The purpose of this subsection is to show that our methods apply with
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minor modifications to a more general setting and to compare our results with those in
[CC24b]. To this end, we introduce a weaker variant of the capacity density condition in
Definition 4.1 with the condition imposed on a smaller range of radii.

Definition 5.15 (Weak capacity density condition (wCDC)). Let (X,d, m,E, F) be an
MMD space satisfying MD and EHI. Recalling Lemma 2.28-(a), let K € (1,00) be such
that (X, d) is K-relatively ball connected. We say that a uniform domain U in (X, )
satisfies the weak capacity density condition, abbreviated as wCDC, if #(0U) 2
and there exist Ag € (8K,0) and A;,C € (1,00) such that for all £ € U and all R €
(0,diam(0U)/A,),

CapB(&AOR)(B(g, R)) < C’CapB(&AOR)(B(f, R\U). wCDC

Remark 5.16. The condition #(0U) > 2, which is equivalent to diam(dU) e (0, o], is
needed in Definition 5.15 to prevent wCDC from being vacuous. It is not strictly necessary,
though; indeed, all the discussions of this subsection on replacing CDC by wCDC remain
applicable to the case where #(0U) = 1 and wCDC with “R € (0, My/A;)” in place of
“R e (0,diam(dU)/A;)” holds for some My € (0,diam(U)], as long as My is used instead
of diam(2U).

The only difference of wCDC from CDC is that the range of radii R is (0, diam(oU)/A;)
instead of (0, diam(U)/A;); note that (0,diam(0U)/A;) < (0,diam(U)/A;) by the trivial
inequality diam(dU) < diam(U). By obvious minor modifications of our arguments,

(a) Lemma 4.4 with diam(dD) in place of diam(D) holds,

and we obtain the following slightly weaker versions of the results in Section 4 and Sub-
section 5.1 under the setting of Assumption 4.3 with CDC replaced by wCDC:

(b) Lemmas 4.5 and 4.8 with diam(0U) in place of diam(U) hold.

(¢) Theorem 4.6 and Corollary 4.7 with “r € (0, (diam(JU) A d(&,z,))/A)” in place of
“re (0,d(§,xo)/A)” hold.

(d) Lemma 4.10 holds, with the capacity non-decreasing condition (4.45) required only
for x € 0U and 0 < r < R < diam(0U)/A.

(e) Propositions 4.14, 4.15 and Remark 4.16, with “R € (0,20)” in Proposition 4.15-(c)
replaced by “R € (0,2diam(dU))”, hold.

(f) (5.4), Lemma 5.2, Proposition 5.3 and (5.12) with diam(0U) in place of diam(U) hold.

Next, we discuss how the results of Subsection 5.2 are affected by replacing CDC with
wCDC. Lemma 5.6 need not be true anymore and hence the killing measure £ of the
boundary trace Dirichlet form need not be zero in Proposition 5.7, whereas the vanishing
of the strongly local part in Proposition 5.7 holds with the same proof. The expression
(5.22) for the jumping measure of the boundary trace Dirichlet form in Theorem 5.8 holds
with the same proof under wCDC, and Corollary 5.10 and Remark 5.11 also hold under
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wCDC, with diam(U) needed to be replaced by diam(dU) and (5.44) needed to be shown
for R € (0, diam(0U)] also when diam(0U) < «o = diam(U) in the proof of Corollary 5.10.

We note that Lemma 5.6 and the proof of the vanishing of the killing measure K in
Proposition 5.7 hold if the uniform domain U is bounded. Therefore it remains only to
determine K when U is unbounded. In fact, it follows from the extension of Proposition
4.15 to the case with wCDC that the killing measure K is a constant multiple of the &-
elliptic measure at infinity, as we prove in the following proposition. Although the notion
of elliptic measure at infinity dates back to [KT, Corollary 3.2], its role as the killing
measure of the boundary trace Dirichlet form seems new to the best of our knowledge.

Proposition 5.17. Assume the setting of Assumption 4.3 with CDC replaced by wCDC,
and that U is unbounded. Let xog € U. Then the killing measure & in the Beurling—Deny
decomposition (5.18) of the trace Dirichlet form (€™, F(U)) on L?(0U, i) is given by

E =P (oo = o)V, (5.59)
where ugo denotes the E-elliptic measure at infinity of U with base point xo as obtained in
the extension of Proposition /.15 to the present setting.

Proof. 1f 0U is unbounded, then both sides of (5.59) are zero by Lemma 5.6 and Propo-
sition 5.7. Hence it suffices to consider the case where diam(dU) < co. Then we have
VY (0U) < oo by the extension of Proposition 4.15 to the present situation mentioned in
(e) above, and we can choose v € F(U) n C.(U) so that v is identically one on a neighbor-
hood of dU. Recalling (5.16), we define an £™f-quasi-continuous function ¢: U — [0, 1]
by q(x) = 1 — Hiv(z) = P*(0,y = o), so that ¢ = 0 E™-q.e. on U by (2.72),
qlv € Floe(U) and ¢ is continuous on U and E-harmonic on U by Lemma 2.34-(e),(b).
Moreover, for each open subset A of U with A compact, we can choose ¢ € F(U) n C.(U)
so that |4 = 14, and then we have pg = 0 £™-q.e. on U, pq € F(U) by Hxfv e F(U).,
[CF, Exercise 1.1.10] and F(U).nL?(U, m|g) = F(U), and thus the m|y-equivalence class
of q|y belongs to FO(U) since the part Dirichlet form of (£, F(U)) on U coincides with
(EY, FO(U)) as observed in the proof of Lemma 2.34-(e). It follows in view of (2.50) that
qlv € FL.(U,U), and therefore from Lemma 3.19 that

dlu () = Py (000 = 0)hg, (). (5.60)

Now, recalling Remark 2.25-(b), for any u € F(U) n L*(U,m|g) such that SUPP,yyy, [u] i
compact, we have

EN(HEI, Hytv) = (U, Hyiv)  (by (2.72) and (2.71))
= &N, —Pi 0oy = 0)hY)  (by Hijv = 1 — ¢ and (5.60))

— P (00 = o) L A, (o (462), (5.61)

where for the second equality above we also used the strong locality of £, By (5.61),
(5.15), the Beurling-Deny decomposition (5.18), and the strong locality of the strongly

113



local part £ of the boundary trace Dirichlet form (£, F(U)), we obtain

]P’;f’of(aaUzoo)f Udvl = & (HY, Hyv) = Efef(mw,mw):f U dF
oUu oUu

for all u € F(U) n L*(U, m|g) such that SUPP, ;. [u] is compact, which proves (5.59). [

Finally, we describe the changes required in Subsection 5.3 if we replace CDC with
wCDC. Proposition 5.12 holds with the same proof under wCDC. By Propositions 5.7,
5.17 and the discussion in the paragraph before Proposition 5.17, if diam(dU) = oo or
diam(U) < o or Pif(osy = ) = 0, then the killing measure % vanishes and there-
fore Theorem 5.13 still holds with the same proof in this case. On the other hand, if
diam(0U) < o0 = diam(U) and Prf (0o = o0) > 0, then & = Pr (55 = 0)v/Y is not zero
by Proposition 5.17, so that the boundary trace Dirichlet form (£, F(U)) on L2(0U, p) is
neither of pure jump type nor conservative. In this case, we can still prove a slight variant
of Theorem 5.13 as in Theorem 5.19 below. Note also the following lemma characterizing

precisely when Pi¥ (0o = c0) > 0 under the assumption that diam(0U) < oo = diam(U).

Lemma 5.18. Assume the setting of Assumption 4.3 with CDC replaced by wCDC, and
that diam(0U) < oo = diam(U). Let xg € U. Then Pxf(ooy = o0) > 0 if and only if
(U, m|g, &, F(U)) is transient.

Proof. Recall that Proposition 2.18 is applicable to (U, d, m|g, %Y, F(U)) by Theorem
2.16-(a). If (U, m|g, £, F(U)) is not transient, then it is irreducible and recurrent by
Proposition 2.18-(a) and [CF, Proposition 2.1.3-(iii)], which together with (5.12) and AC
of X* guarantees that [FOT, Theorem 4.7.1-(iii) and Exercise 4.7.1] can be applied to
X" and 0U and yield Prf (oo = o0) = 0, proving the “only if” part.

Conversely, assume that (U, m|g, £, F(U)) is transient, so that by combining [CF,
Theorem 3.5.2] with the Markov property of X™ and AC and the conservativeness of
X't from Proposition 2.18-(c) we obtain

Pl (¢ = oo and Jim X7 = 0) = PRI = o0) = 1. (5.62)

Now suppose that P=f(oay = 00) = 0. Then by (5.60) we would have Pt (oo = o) = 0
for any z € U, but since P2(X*f € U) = 1 for any n € N by m(oU) = 0 from (2.7) and
AC and the conservativeness of X, we would see from the Markov property of X™f that

Py (cou 0 O < 00) = B [P (0oy < 0)] =1 for any ne N

and hence that Pr (), y{oov © 65 < o0}) = 1. This contradicts (5.62) by the assumed
compactness of (?U and thereby proves that Pref(aaU =) > 0. O

Theorem 5.19. Assume the setting of Assumption 4.3 with CDC replaced by wCDC,
that diam(oU) < o = diam(U), and that (0U,d) is uniformly perfect. Let xo € U and
assume that P (ooy = o0) > 0. Let pu be the Radon measure on U defined in (5.1),
and let @ be the regular scale function on (0U,d) given by (5.2) and Lemma 5.2. Then
Theorem 5.13-(a),(b),(c),(d) with “conservative” in (a),(c) removed, Cy in (1.30) replaced
by Cre > and C7" in (1.31) replaced by Cy'e ™ hold, where X := P'¥ (o = o0).
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Proof. X™ is a p-symmetric Hunt process on 0U whose Dirichlet form is (£, F(U)) as
noted after (5.13) and after (5.17). We see by (5.18), £ = 0 from Proposition 5.7, ¥ =
Mi, A > 0 and [CF, Theorem 5.2.17] that (0U, d, 1, £ = A(-, Y2, F(U)) is a NLMMD
space of pure jump type, and it satisfies VD by Remark 5.11-(a) and J(®) by Corollary
5.10. It also follows from [CF, Theorem 5.2.17] and [FO'T', Theorems A.2.11 and 4.2.8] that
any p-symmetric Hunt process on 0U whose Dirichlet form is (Evref — A, 2 F (U))

has the Markovian transition function ektpgef()v({ef e dn) for all ¢ € (0,0) for £ -q.e.
¢ € 0U and has the expectations of the exit times from all open balls in (0U, d) no less than
those for X' for gref—q.e. starting point £ € dU. In particular, Proposition 5.12 implies
that (U, d, p, E™f — A(., ->L2(X7u),.7t"(U)) satisfies E(®)~. Thus Theorem 2.40 applies to
(U, d, i, E7F — A(-, DL2(X ) F(U)), its parts (a),(b),(d) respectively yield Theorem 5.13-
(a),(b),(d) with the stated changes, and its part (c¢) implies the Feller property and the
strong Feller property of the Markovian transition function t*f(&,7) u(dn) on oU. The
remaining assertion in Theorem 5.13-(c) is proved in exactly the same way as the second
paragraph of the proof of Theorem 5.13. O]

We conclude this subsection with the following remark summarizing some advantages
of our results in comparison to those of [CC24b].

Remark 5.20. (a) We prove an exact formula for the jump kernel (Theorem 5.8) as
opposed to estimates in [CC24b, Theorem 7.1-(a)]. An advantage of this exact for-
mula is that we are able to obtain the Hélder continuity of the jump kernel (see
(3.35)). Although we do not pursue this direction in this paper, it is known that
continuity estimates for the jump kernel have applications to the regularity theory for
the Poisson-type equations for the corresponding non-local operator; see, e.g., [FR,
Definition 2.1.22, Lemmas 2.2.6, 2.2.10 and Theorem 2.4.1]. We note that the proof
of the Hélder continuity estimate (3.35) of the jump kernel ju = @go for bounded

ey (77)) ! for

dwl)

~ llU
domains easily extends to the jump kernel j,(£,7) = @go (&, m) (Zw—f})(f)
z0
unbounded domains by using its expression (5.48).

(b) In the case where the uniform domain U is unbounded, we identify the killing measure
K of the boundary trace Dirichlet form as the escape probability ng)f(aw = ) to
infinity of the reflected diffusion X times the E-elliptic measure vy at infinity

(Proposition 5.17), in contrast to the corresponding result [CC24b, Theorem 7.1-(c)]
proving only two-sided estimates on .

(¢) In our construction of the rescaled limit of harmonic measures in Proposition 4.15, we
show the convergence as the base point tends to infinity and provide an independent
characterization (4.62) of the limit. This is in contrast with the subsequential limit
obtained in [CC24b, Proof of Theorem 5.7], where it is not addressed whether or not
the limit depends on the subsequence.

(d) In both (a) and (b) above, our exact formulas easily imply the estimates obtained in
[CC24b, Theorem 7.1-(a),(c)]. These estimates do not seem to follow easily from the
established identification of the jumping and killing measures of trace Dirichlet forms
as the Feller and supplementary Feller measures in [CF, Theorem 5.6.3].
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(e) We provide a simple proof of the identification (2.79) of the strongly local part of trace
Dirichlet forms in [CF, Theorem 5.6.2] (Proposition 2.36), whereas [CC24b, (1.7)] just
applies it to show that the strongly local part of the boundary trace Dirichlet form is
identically zero.

(f) We show that the £-harmonic measure wf and the E-elliptic measure Y at infinity
are £ -smooth in the strict sense and that the support of the PCAF in the strict
sense of X™ with Revuz measure wl or vl coincides with 0U(, which is also the
topological supports of wgo and z/go ) (Proposition 5.3; see also Lemma 2.46 and Propo-
sition 2.49). Moreover, we prove that the boundary trace process of X™ is a Hunt
process on U whose transition density is the continuous heat kernel prf = pref (¢, )
of the boundary trace Dirichlet form for any starting point £ € oU (Theorem 5.13-(c);
see also Proposition 2.51-(a)). The validity of these properties without removing prop-
erly exceptional sets from the set of starting points of the associated Markov process
does not follow directly from the general theory of regular symmetric Dirichlet forms

presented in [FOT, CF], and is not discussed in [CC24b].

5.5 Examples

Example 5.21 (Molchanov—Ostrowski diffusion on the upper half space). We consider
the Molchanov—Ostrowski diffusion [MO] on the closed upper half-space X = {(z,y) : x €
RY, 3y € [0,0)} = RY x [0,0) is induced by the Dirichlet form (£, F) given by

o0
E(uyu) = j j IVl (a, )|yl dy de

on L2(RYN x [0,0),|y|'"*dydz), where a € (0,2). The function w : RN*! — [0, o0)
given by w(z,y) = |y|'~* for z € RV, y € R is a Muckenhoupt A, weight. The weighted
Lebesgue measure in this case is known to satisfy the doubling property and Poincaré
inequality [FIXS, Theorem 1.5]. By the characterization of Gaussian heat kernel estimates
due to Grigor'yan [Gri91] and Saloff-Coste [Sal] in terms of the doubling property and
Poincaré inequality, we have Gaussian heat kernel estimates in this example. Then the
open upper half-space U = RY x (0,00) is a uniform domain on X. Using chain rule
and scaling property of Lebesgue measure, it is easy to see that if u € F,r > 0, then
uy(z,y) = u(re,ry) € F and E(uy,u,) = r* VE(u,u) which in turn implies that the
corresponding Green function satisfies

gu((rzy, i), (ros, 1)) = N gy (21, 11), (22, 12)) (5.63)

for all (z1,y1), (v, y2) € RY x (0,00) and all r € (0,00). Similarly, it is easy to see that
the Dirichlet energy is invariant under the Euclidean isometries in the R¥-direction. This
implies that the Green function inherits these properties; that is,

gu((@ + z1,51), (€ + 22, 92)) = gu((21, 41), (22, 42)) (5.64)

and
gu((r1,91), (T2, 92)) = gu((Az1,91), (A2, 92)) (5.65)
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for any (z1,41), (22, y2) € RY x (0,00), any z € RY and any orthogonal matrix A € O(N).
Let us fix a base point zp = (0,...,0,1) € U. Since L,(y*) = 0 where L, is given by
(1.1), the harmonic profile is given by

hY (z,y) = y* for all (z,y) e RN x (0, ). (5.66)

Let |-| denote the Euclidean norm on RY = oU. By (5.48), the corresponding jump kernel
g#(g n) can be computed for all pairs of distinct points £, € U = RY as

~ gu((§:7), (n,7)) (5.66) .. o
]u(fan) hf(r)th (&, 1), xo((n’r)) = 17}%17" gu((&,7),(n,7))

= tim gy (€ ). 0.7) 2 lim gy (r7 (€~ ), 1), (0.1))

=g —n Ve lim s~ gur((s7"J¢ 77 E=n),1),(0,1)) = c1|€ — | V7,
(5.67)

where ¢; € (0,00) does not depend on the choice £, 7 due to the rotation invariance of
the Green function in (5.65). Since the Dirichlet form is invariant under translations in
R¥-direction, by Proposition 4.15 the elliptic measure p = l/xUO is a constant multiple of
the Lebesgue measure A on RY = 0U say pu = ¢\, where ¢y € (0,00). This along with

(5.67) implies that the jumping measure of the boundary trace Dirichlet form is given by

Ju(&,m) p(d€)p(dn) = e1c3€ —n|"N " N(dE) A (dn),

which allows us to recover the extension theorem of Caffarelli and Silvestre [CS] up to
identifying the multiplicative constant as a special case of our Doob—Naim formula.

Example 5.22 (Reflected Brownian motion on the orthant). Let U := (0, )N denote
the open orthant in RY. We consider the reflected Brownian motion on U. We choose
xg = (1,...,1) € U as the base point. One can check that the harmonic profile is

hU Hyl for all y = (y1,...,yn) € U. (5.68)

i=1
In this case the space-time scaling function ®: 0U x [0,00) — [0, ) for the boundary
trace Dirichlet form can be chosen as
N

) =Bl (G +r&+r. v +r) =][&+r) forall§=(&,... &) eadU.

=1

Next, We describe our two-sided estimates on the corresponding elliptic measure at infinity
"= V and on the jump kernel ]u of the boundary trace Dirichlet form with respect to
w. By Prop081t10n 4.15-(c), there exists C' € (0, 00) such that for all (&;,...,&x) € AU and
all r € (0, 00),

N N

CHN (& +r) < (B(E ) < Cr¥ P (& + ).

i=1 =1
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Similarly, by Corollary 5.10, there exists C' € (0,00) such that for any pair of distinct
pOintS f = (51;~--;€N)777 = (7717"'777]\7) € aUa

N

Cra(em)* N [ J(& + d(&,m) ™ < Ju(€m) < Cal&,m* N [ [ (& + d(€m) >,

i=1
where d(&,n) := |£ — n| denotes the Euclidean distance between &, 7.

An interesting feature of this example is that expected exit time of the boundary trace
process started at the origin from a ball of radius r centered at origin grows like V. In
particular, this provides examples of jump process with (anchored) exit time exponent
arbitrary large. Such examples are known to exist on fractals but this example shows that
such behavior can happen also in smooth settings, which seems to be a new observation.
More generally for any £ = (&1,...,&y) € U, setting I := {i e {1,...,N} | & = 0}, we
have

lim 267) _ [l &<, lm &)

rlo  ritl rowo iV
! ie{l,...,N}\I¢

The space-time scaling exponent for the boundary trace process starting at § € 0U is #1¢
at very small scales and N at large scale. We note that #I; can be any integer between
1 and N depending on &.

Example 5.23 (Exterior of a parabola). We consider the Brownian motion on X = R?
and the domain U = {(z,y) € R? | y < 2} given by the sub-level set of the square
function. The harmonic profile with base point xy = (0, —3/4) is given in [GyS, p. 6] as

hY (z,y) = \/2(\/1‘2 + <;1 —y>2 + le —y) —1 forall (z,y)eU. (5.69)

In this case, the space-time scaling function ®: dU x [0,00) — [0,00) for the boundary
trace Dirichlet form is given by

2xr 9

T
y L — )
V1 + 422 \/1—1—4952)
1 2 1
- \/2(\/7’2 + <Z +x2> + g\/l e i ;> —1 (5.70)

O ((x,2%),7) = hY, (w +

V1 + 422

for all (z,2?) € U and all r € (0,00). From the expression (5.70) for ®(&,r), it is
immediate that r — ®(£,r) is an increasing homeomorphism from [0, c0) to itself for any
¢ € 0U. By Proposition 4.15-(c), there exists C' > 0 such that the corresponding elliptic
measure at infinity p = uf{o satisfies

Co((x,2%),r) < w(B((z,2%),71)) < C((z,27),7)

for all (z,z?) € U and all r € (0, 0). Similarly, by Corollary 5.10, there exists C € (0, o)
such that for any pair of distinct points £, n € dU, we have

CIP(E,d(E,m) 2 < Jul&m) < CO(E,d(E,m) 2,
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where d(&,n) := |£ — n| denotes the Euclidean distance between &, 7.
From (5.70), it follows that for any & € 0U, there exist ¢1(§), c2(€) € (0, 00) such that

d o
i T = e, (gf)

In other words, the boundary trace process behaves like a Cauchy process at small scales
while it is similar to a 1/2-stable process at very large scales.

= c(§).

Example 5.24 (Ahlfors—Beurling example: quasi-conformal image of Brownian motion).
This example is essentially due to Ahlfors and Beurling [BA] and was later revisited in
[CFK]. We consider the reflected Brownian motion on the closed two-dimension upper
half-space X = R x [0,00) and let m denote the restriction of the Lebesgue measure on
X. We consider the domain U = R x (0,00). Let A denote the one-dimensional Lebesgue
measure on U = R. By [BA, Theorem 3|, there exists a homeomorphism F: X — X
with the following properties:

(a) The boundary correspondence F|ay is singular in the sense that the measures A\ and
the push-forward measure (F|ay)«(A) are singular.

(b) The function F|y: U — U is a C''-bijection. Writing F(z,y) = (Fi(z,y), Fa(z,y)) in
coordinates, where F1: X — R and Fy: X — [0,0), let DF denote the differential

on U, that is
oF @]

DF = laﬁﬁl @
oy 0

There exists C' € (0, 00) such that the map F satisfies the quasiconformality condition
0 < Tr(DFT(2)DF(z)) < Cdet(DF(z)) forall ze U, (5.71)
where Tr, det denote the trace and determinant of a matrix.

We define the positive definite matrix valued function A: U — R2?*2 given by
A(2) = det(DF(w)) *DF(w)" DF(w), where w = F~!(z).

We note immediately from (5.71) that det(.A(z)) = 1 on U and the eigenvalues of A(z)
are bounded from above by C' and below by C~! for all z € U. In particular, A(-) defines a
uniformly elliptic divergence form operator f — div (A(-)V f). The Dirichlet form corre-
sponding to the image of the reflected Brownian motion on X under the homeomorphism
Fisgiven by E(f, f) = {5 § IV (f F)|*(x,y) dy dz where f varies over all functions such
that fo F belorgs (;5}3 the W2 Sobolev space on X. We identify the gradient V f as the

column vector [57, @]T. The Dirichlet energy £ can rewritten as (see also [CFK, p. 919])

B A[RJ;O )(Vf(x’ ) Az, y)V f(z,y) dy da.

By a time change we can assume that the domain F of the form is W2 space on X, so
that (£, F) is a Dirichlet form on L*(X,m). The Gaussian heat kernel bound for this
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Dirichlet form follows from the characterization in terms of doubling property of m and
the Poincaré inequality due to Grigor’yan and Saloff-Coste [Gri91, Sal] and the uniform
ellipticity condition on .A(-) mentioned before.

The elliptic measure at infinity p can be easily seen to be a positive multiple of the
measure (F|ay)«(A) and hence singular with respect to the Lebesgue measure, and the
harmonic profile can be identified as the function Gy: X — [0,0), where G1,Gy: X —
R are such that F~'(z,y) = (Gi(z,y),G2(z,y)). Hence the space-time scaling of the
boundary trace process is given by

O((x,0),r) = Go(x,r) for all (z,0) € U and all r € (0, 0).

By Proposition 4.15-(c), there exists C' € (1,00) such that the corresponding elliptic
measure at infinity p = v satisfies

CGy(z,r) < w(B((z,0),7)) < CGy(z,7)

for all (z,0) € oU and all r € (0, 00). Similarly, by Corollary 5.10, there exists C € (1, o)
such that for any pair of distinct points (u,0), (v,0) € U, we have

0_1G2<u7 |U - U|)_2 < jﬂ((ua O)a (U7 0)) < CGQ(U'7 |U - U|>_2‘

Our results apply also to some inner uniform domains (cf. [GyS, Definition 3.6]) as
they can be viewed as uniform domains by a suitable change of the metric. We illustrate
this with the case of a slit domain in the following example.

Example 5.25 (A slit domain). We consider the reflected Brownian motion on the slit
domain U = R*\{(x,0) | z € (—00,0]}. In this case, we equip U with the inner metric
dy: U x U — [0,00), where di (29, 1) is defined as the infimum of the (Euclidean) length
of paths v: [0,1] — U joining 2o and z1; that is v(0) = zo,7(1) = z; and + is continuous.
Therefore dy(zg,21) is either |zg| + |z1] or |29 — 21|, depending on whether or not the
straight line from z to z; in R? intersects {(x,0) | z € (—o0,0]}. Let (X, dy) denote the
completion of (U, dyy) and let m denote the Borel measure on X’ given by m(A) = A(AnU),
where X is the Lebesgue measure on R? (U is viewed as an open subset of X as usual).
Since every dy-Cauchy sequence is Cauchy with respect to the Euclidean metric, the
identity map on U extends uniquely to a continuous map p: X — R2. The boundary oU
of U in (X, dy) is then given as

U = p ' ({(z,0) | z € (—»0,0]}) = X\U.

The set U is not a uniform domain in R? with respect to the Euclidean metric, but is a
uniform domain in (X, dy).

Let (&€, F) denote the Dirichlet form on L*(R? ) of the Brownian motion on R?. The
corresponding reflected Dirichlet form (E™5Y F(U)) (recall Definition 2.14) is a strongly
local regular symmetric Dirichlet form on L?(X',m) (but it is not regular on L?(R? \))
and the MMD space (X, dy, m, EHY | F(U)) satisfies Gaussian heat kernel estimates due
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to the results [GyS, Theorems 3.30 and 3.34] by Gyrya and Saloff-Coste. The harmonic
profile with base point zy = (1,0) € U is given by

T+ /22 + 12 1/2
o - (Y

In this case, the space-time scaling function ®: oU x [0,00) — [0,00) for the boundary
trace Dirichlet form is given by

Te + 5 /T2 + 12 1/2
@(g,r)zhg)(xg,r)=< 25 ) X\/Tx?/\\/;

for all (¢,7) € OU x (0,0), where z¢ € (—o0,0] is given by p(§) = (z¢,0). By Proposition

4.15-(c), there exists C' € (0,00) such that the corresponding elliptic measure at infinity

— U cati
p = v, satisfies

C1B(E, 1) < p(Bay (€,7)) < CB(E, 1) for all (€,7) € U x (0, ).
Similarly, by Corollary 5.10, there exists C' € (0, o0) such that

C_ICI)(g’ dU(€7 77))_2 < 7#(67 77) < C(I)(fa dU(gv 77))_2 for all (57 77) € (aU)gd

By Theorem 5.13-(b), we have stable-like heat kernel estimates (1.30) and (1.31) for the
boundary trace Dirichlet form with respect to the metric dy .

References

[AikO1] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform
domain. J. Math. Soc. Japan 53(1), 119-145 (2001)

[Aik08] H. Aikawa. Equivalence between the Boundary Harnack Principle and the
Carleson estimate. Math. Scand. 103, no. 1 (2008), 61-76.

[AH] H. Aikawa, K. Hirata. Doubling conditions for harmonic measure in John
domains. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 2, 429-445.

[AHMT1] M. Akman, S. Hofmann, J. M. Martell, T. Toro. Square function and non-
tangential maximal function estimates for elliptic operators in 1-sided NTA

domains satisfying the capacity density condition. Adv. Calc. Var. 16 (2023),
no. 3, 731-766.

[AHMT2] M. Akman, S. Hofmann, J. M. Martell, T. Toro. Perturbation of elliptic opera-
tors in 1-sided NTA domains satisfying the capacity density condition. Forum
Math. 35 (2023), no. 1, 245-295.

121



[Anc78]

[Anc86]

[Bar9g]

[BB8Y]

[BBY2]

[BBYY]

[BH]

[BP]

[BM18]

[BM19)]

[BCM]

[BGKOY]

[BGK12]

[BL]

A. Ancona, Principe de Harnack a la frontiere et théoréeme de Fatou pour un
opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Greno-
ble) 28 (1978), no. 4, 169-213

A. Ancona. On strong barriers and an inequality of Hardy for domains in R".
J. London Math. Soc. (2) 34 (1986), no. 2, 274-290.

M. T. Barlow, Diffusions on fractals, in: Lectures on Probability Theory and
Statistics (Saint-Flour, 1995), Lecture Notes in Math., vol. 1690, Springer-
Verlag, Berlin, 1998, pp. 1-121.

M. T. Barlow and R. F. Bass, The construction of Brownian motion on the
Sierpinski carpet, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3,
225-257.

M. T. Barlow and R. F. Bass, Transition densities for Brownian motion on the
Sierpinski carpet, Probab. Theory Related Fields 91 (1992), no. 3-4, 307-330.

M. T. Barlow and R. F. Bass, Brownian motion and harmonic analysis on
Sierpiniski carpets, Canad. J. Math. 51 (1999), no. 4, 673-744.

M. T. Barlow and B. M. Hambly, Transition density estimates for Brownian
motion on scale irregular Sierpinski gaskets, Ann. Inst. H. Poincaré Probab.
Statist. 33 (1997), no. 5, 531-557.

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket,
Probab. Theory Related Fields 79 (1988), no. 4, 543-623.

M. T. Barlow and M. Murugan. Stability of elliptic Harnack inequality. Ann.
Math. 187 (2018), 777-823.

M. T. Barlow, M. Murugan, Boundary Harnack principle and elliptic Harnack
inequality. J. Math. Soc. Japan 71 (2019), no. 2, 383-412.

M. T. Barlow, Z.-Q. Chen, M. Murugan, Stability of EHI and regularity of
MMD spaces.

M. T. Barlow, A. Grigor’yan, T. Kumagai, Heat kernel upper bounds for jump
processes and the first exit time. J. Reine Angew. Math. 626 (2009), 135-157.

M. T. Barlow, A. Grigor’yan, T. Kumagai, On the equivalence of parabolic
Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64 (2012),
no. 4, 1091-1146.

R. F. Bass, D. A. Levin, Transition probabilities for symmetric jump processes,
Trans. Amer. Math. Soc. 354, no. 7 (2002), 2933-2953.

122



[BGPW]

[BA]

[BS]

[BlGe]

[BCI

[BHK]

[BTZ]

[CDMT]

[CC24a)]

[CC24b)]

[CQ]

[CFK]

CS]

[CSS]

A. Bendikov, A. Grigor'yan, C. Pittet, W. Woess. Isotropic Markov semi-
groups on ultra-metric spaces. Russian Math. Surveys 69 (2014), no. 4, 589
680.

A. Beurling, L. Ahlfors, The boundary correspondence under quasiconformal
mappings. Acta Math. 96 (1956), 125-142.

J. Bjorn, N. Shanmugalingam. Poincaré inequalities, uniform domains and
extension properties for Newton-Sobolev functions in metric spaces. J. Math.
Anal. Appl. 332 (2007), 190-208.

R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory,
Academic Press, New York, 1968, republished by Dover Publications, New
York, 2007.

M. Brelot, G. Choquet, Espaces et lignes de Green. Ann. Inst. Fourier (Greno-
ble) 3 (1951), 199-263.

M. Bonk, J. Heinonen, P. Koskela, Uniformizing Gromov hyperbolic spaces.
Astérisque No. 270 (2001), viii+99 pp.

S. Bortz, T. Toro, Z. Zhao, Elliptic measures for Dahlberg-Kenig-Pipher op-
erators: asymptotically optimal estimates. Math. Ann. 385 (2023), no. 1-2,
881-919.

M. Cao, O. Dominguez, J. M. Martell, P. Tradacete, On the A, condition for
elliptic operators in 1-sided nontangentially accessible domains satisfying the
capacity density condition. Forum Math. Sigma 10 (2022), Paper No. €59, 57

bp.

S. Cao, Z.-Q. Chen, Convergence of resistances on generalized Sierpinski car-
pets, preprint, 2024. arXiv:2402.01949

S. Cao, Z.-Q. Chen, Boundary trace theorems for symmetric reflected diffu-
sions, preprint, 2024. arXiv:2410.19201

S. Cao, H. Qiu. Uniqueness and convergence of resistance forms on uncon-
strained Sierpinski carpets, preprint, 2024. arXiv:2403.17311

L. A. Caffarelli, E. B. Fabes, C. E. Kenig, Completely singular elliptic-
harmonic measures. Indiana Univ. Math. J. 30(1981), no. 6, 917-924.

L. Caffarelli, L. Silvestre. An extension problem related to the fractional
Laplacian. Comm. Partial Differential Equations 32 (7) (2007) 1245-1260.

L. A. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution
and the free boundary of the obstacle problem for the fractional Laplacian.
Invent. Math. 171(2008), no. 2, 425-461.

123


http://arxiv.org/abs/2402.01949
http://arxiv.org/abs/2410.19201
http://arxiv.org/abs/2403.17311

[CG]

[CGN]

[Che]

[CF]

[CFY]

[CKO03]

[CKOS]

[CKW]

[CKKW]

[Con]

[Dah]

[Doo]

[Dou]

[FKS]

L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of
subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J.
Fourier Anal. Appl. 4 (1998), no. 4-5, 403-432.

L. Capogna, N. Garofalo, and D.-M. Nhieu, Examples of uniform and NTA
domains in Carnot groups, Proceedings on Analysis and Geometry (Russian)
(Novosibirsk Akademgorodok, 1999), 103-121.

A. Chen. Boundary Harnack principle on uniform domains, Potential Anal.
(to appear), 2024. arXiv:2402.03571

7.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change,
and Boundary Theory, London Math. Soc. Monogr. Ser., vol. 35, Princeton
University Press, Princeton, NJ, 2012.

7.-Q. Chen, M. Fukushima and J. Ying, Traces of symmetric Markov processes
and their characterizations, Ann. Probab. 34 (2006), no. 3, 1052-1102.

7.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes
on d-sets, Stoch. Process Appl. 108 (2003), 27-62.

7.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of
mixed types on metric measure spaces, Probab. Theory Related Fields 140
(2008), no. 1-2, 277-317.

7.-Q. Chen, T. Kumagai and J. Wang, Stability of heat kernel estimates for
symmetric non-local Dirichlet forms. Mem. Amer. Math. Soc. 271 (2021),
no. 1330, v+89 pp.

Z. Q. Chen, P. Kim, T. Kumagai and J. Wang, Heat kernels for reflected
diffusions with jumps on inner uniform domains. Trans. Amer. Math. Soc.
375 (2022), no. 10, 6797-6841.

J. B. Conway, A Course in Functional Analysis, Second edition, Grad. Texts
in Math., vol. 96, Springer-Verlag, New York, 1990.

B. E. J. Dahlberg, Estimates of harmonic measure. Arch. Rational Mech. Anal.
65(1977), no. 3, 275-288.

J. L. Doob, Boundary properties for functions with finite Dirichlet integrals.
Ann. Inst. Fourier (Grenoble) 12 (1962), 573-621.

J. Douglas. Solution of the problem of Plateau. Trans. Amer. Math. Soc. 33
(1931), no. 1, 263-321.

E. B. Fabes, C. E. Kenig, R. P. Serapioni, The local regularity of solutions of
degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982),
no. 1, 77-116.

124


http://arxiv.org/abs/2402.03571

[FR]

[Fit]

[FHK]

[Fuk]

[FHY]

[FOT]

[Geh]

[GeHa]

[Gre]

[Grigl]

[Gri09]

[GHH23|

[GHH23+]

[GH14]

[GHL14]

X. Fernandez-Real, X. Ros-Oton, Integro-differential elliptic equations. Progr.
Math., 350 Birkhduser/Springer, Cham, 2024. xvi+395 pp.

P. J. Fitzsimmons, Superposition operators on Dirichlet spaces. Tohoku Math.
J. (2) 56 (2004), no. 3, 327-340.

P. J. Fitzsimmons, B. M. Hambly and T. Kumagai, Transition density esti-
mates for Brownian motion on affine nested fractals, Comm. Math. Phys. 165
(1994), no. 3, 595-620.

M. Fukushima. On Feller’s kernel and the Dirichlet norm. Nagoya Math. J.
24 (1964), 167-175.

M. Fukushima, P. He, J. Ying. Time changes of symmetric diffusions and
Feller measures. Ann. Probab. 32 (2004), no. 4, 3138-3166.

M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric
Markov Processes, Second revised and extended edition, de Gruyter Studies
in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011.

F. W. Gehring, Uniform domains and the ubiquitous quasidisk. Jahresber.
Deutsch. Math.-Verein. 89 (1987), no. 2, 88-103.

F. W. Gehring, K. Hag, The ubiquitous quasidisk. With contributions by
O. J. Broch. Mathematical Surveys and Monographs, 184. American Mathe-
matical Society, Providence, RI, 2012. xii+171 pp.

A. V. Greshnov, On uniform and NTA-domains on Carnot groups. Siberian
Math. J. 42(2001), no. 5, 851-864.

A. Grigor’yan. The heat equation on noncompact Riemannian manifolds. (in
Russian) Matem. Sbornik. 182 (1991), 55-87. (English transl.) Math. USSR
Sbornik 72 (1992), 47-77.

A. Grigor’'yan, Heat Kernel and Analysis on Manifolds, AMS /TP Stud. Adv.
Math., vol. 47, American Mathematical Society, Providence, RI/International
Press, Boston, MA, 2009.

A. Grigor’yan, E. Hu, J. Hu. Parabolic mean value inequality and on-diagonal
upper bound of the heat kernel on doubling spaces. Math. Ann. (2023).

A. Grigor’yan, E. Hu, J. Hu. Mean value inequality and generalized capacity
on doubling spaces, Pure and Applied Funct. Anal. (to appear).

A. Grigor’yan and J. Hu, Heat kernels and Green functions on metric measure
spaces, Canad. J. Math. 66 (2014), no. 3, 641-699.

A. Grigor’yan, J. Hu, K.-S. Lau. Estimates of heat kernels for non-local regular
Dirichlet forms. Trans. Amer. Math. Soc. 366(2014), no. 12, 6397-6441.

125



[GHL15]

[GrS]

[GT12]

[Hei]

[HeiK]

[HKST]

[HerK]

[HiKu]

[HMM]

[Hsul]

[IM]

[JK]

A. Grigor’yan, J. Hu and K.-S. Lau. Generalized capacity, Harnack inequality
and heat kernels of Dirichlet forms on metric spaces. J. Math. Soc. Japan 67
(2015) 1485-1549.

A. Grigor’yan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann.
Inst. Fourier (Grenoble) 55 (2005), no. 3, 825-890.

A. Grigor'yan and A. Telcs, Two-sided estimates of heat kernels on metric
measure spaces, Ann. Probab. 40 (2012), no. 3, 1212-1284.

P. Gyrya, L. Saloff-Coste. Neumann and Dirichlet heat kernels in inner uni-
form domains, Astérisque 336 (2011).

W. Hebisch, L. Saloff-Coste. On the relation between elliptic and parabolic
Harnack inequalities, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1437—
1481.

J. Heinonen. Lectures on Analysis on Metric Spaces, Universitext. Springer-
Verlag, New York, 2001. x+140 pp.

J. Heinonen, P. Koskela. Quasiconformal maps in metric spaces with con-
trolled geometry, Acta Math. 181 (1998), no. 1, 1-61.

J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson. Sobolev spaces on
metric measure spaces. An approach based on upper gradients. New Math-
ematical Monographs, 27. Cambridge University Press, Cambridge, 2015.
xii+434

D. A. Herron, P. Koskela, Uniform and Sobolev extension domains. Proc.
Amer. Math. Soc. 114 (1992), no. 2, 483-489.

M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals, J.
Funct. Anal. 238 (2006), no. 2, 578-611.

S. Hofmann, J. M. Martell, S. Mayboroda, Uniform rectifiability and harmonic
measure III: Riesz transform bounds imply uniform rectifiability of boundaries
of 1-sided NTA domains Int. Math. Res. Not. IMRN (2014), no. 10, 2702—
2729.

P. Hsu. On excursions of reflecting Brownian motions. Trans. Amer. Math.
Soc. 296 (1) (1986) 239-264.

T. Jaschek, M. Murugan, Geometric implications of fast volume growth and
capacity estimates. Analysis and partial differential equations on manifolds,
fractals and graphs, 183-199. Adv. Anal. Geom., 3 De Gruyter, Berlin, 2021.

D. S. Jerison, C. E. Kenig. Boundary behavior of harmonic functions in non-
tangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80-147.

126



[Jon]

[Kaj10]

[Kaj12]

[KM20]

[KM23]

[Kem|

[KT]

[Kig10]

[Kig12]

[Kum]

[Kwal

[Lielb]

Lie22]

[Mal]

[Mar]

P. W. Jones, Quasiconformal mappings and extendability of functions in
Sobolev spaces. Acta Math. 147 (1981), no. 1-2, 71-88.

N. Kajino, Spectral asymptotics for Laplacians on self-similar sets, J. Funct.
Anal. 258 (2010), no. 4, 1310-1360.

N. Kajino, Time changes of local Dirichlet spaces by energy measures of har-
monic functions, Forum Math. 24 (2012), no. 2, 339-363.

N. Kajino and M. Murugan, On singularity of energy measures for symmetric
diffusions with full off-diagonal heat kernel estimates, Ann. Probab. 48 (2020),
no. 6, 2920-2951.

N. Kajino and M. Murugan, On the conformal walk dimension: quasisymmet-
ric uniformization for symmetric diffusions, Invent. Math. 231 (2023), no. 1,
263-405.

J. T. Kemper, A boundary Harnack principle for Lipschitz domains and
the principle of positive singularities. Comm. Pure Appl. Math. 25, 247-255
(1972).

C. E. Kenig, T. Toro, Free boundary regularity for harmonic measures and
Poisson kernels. Ann. of Math. (2) 150 (1999), no. 2, 369-454.

J. Kigami, Dirichlet forms and associated heat kernels on the Cantor set
induced by random walks on trees. Adv. Math. 225 (2010), no. 5, 2674-2730.

J. Kigami. Resistance forms, quasisymmetric maps and heat kernel estimates.
Mem. Amer. Math. Soc., 216 (1015):vi+132, 2012.

T. Kumagai, Estimates of transition densities for Brownian motion on nested
fractals, Probab. Theory Related Fields 96 (1993), no. 2, 205-224.

M. Kwasnicki, Boundary traces of shift-invariant diffusions in half-plane. Ann.
Inst. Henri Poincaré Probab. Stat. 59 (2023), no. 1, 411-436.

J. Lierl, Scale-invariant boundary Harnack principle on inner uniform domains
in fractal-type spaces. Potential Anal. 43 (2015), no. 4, 717-747.

J. Lierl, The Dirichlet heat kernel in inner uniform domains in fractal-type
spaces. Potential Anal. 57 (2022), no. 4, 521-543

J. Malmquist, Stability results for symmetric jump processes on metric mea-
sure spaces with atoms. Potential Anal. 59 (2023), no. 1, 167-235.

R. S. Martin, Minimal positive harmonic functions. Trans. Amer. Math. Soc.
49 (1941), 137-172.

127



[MS]

[MM]

[Mol]

[MO]

[Mosco]

[Mos61]

[MS19]

[Mur24]

O. Martio, J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci.
Fenn. Ser. A I Math. 4 (1979), no. 2, 383-401.

L. Modica and S. Mortola, Construction of a singular elliptic-harmonic mea-
sure, Manuscripta Math. 33 (1980), no. 1, 81-98.

S. A. Molchanov, On a problem in the theory of diffusion processes, Theory
Probab. Appl. 9 (1964), 472-477.

S. A. Molchanov, E. Ostrowski. Symmetric stable processes as traces of de-
generate diffusion processes. Theor. Prob. Appl. 14 128-131, 1969

U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal.
123 (1994), no. 2, 368-421.

J. Moser. On Harnack’s theorem for elliptic differential equations. Comm.
Pure Appl. Math. 14, (1961) 577-591.

M. Murugan, L. Saloff-Coste, Heat kernel estimates for anomalous heavy-
tailed random walks. Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 2,
697-719.

M. Murugan, Heat kernel for reflected diffusion and extension property on
uniform domains, Probab. Theory Related Fields 190 (2024), no. 1-2, 543—
599.

L. Naim, Sur le role de la frontiere de R. S. Martin dans la théorie du potentiel.
Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.

H. Osborn, The Dirichlet functional. I. J. Math. Anal. Appl. 1 (1960), 61-112.

T. Rajala, Approximation by uniform domains in doubling quasiconvex metric
spaces. Complex Anal. Synerg. 7 (2021), no. 1, Paper No. 4, 5 pp.

W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Co., New
York, 1987.

L. Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Inter.
Math. Res. Notices 2 (1992), 27-38.

M. L. Silverstein, Classification of stable symmetric Markov chains. Indiana
Univ. Math. J. 24(1974), 29-77.

F. Spitzer. Some theorems concerning 2-dimensional Brownian motion. Trans.

Amer. Math. Soc. 87 (1958) 187-197.

K.-T. Sturm, Measures charging no polar sets and additive functionals of
Brownian motion, Forum Math. 4 (1992), no. 3, 257-297.

128



[Stu9e]
[SU]
[ULI]
Vi)

VSC]

(Wl

K.-T. Sturm, Analysis on local Dirichlet spaces — III. The parabolic Harnack
inequality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273-297.

J. Sylvester, G. Uhlmann. A global uniqueness theorem for an inverse bound-
ary value problem. Ann. Math. 125 (1987), 153-169.

G. Uhlmann, Electrical impedance tomography and Calderén’s problem. In-
verse Problems 25 (2009), no. 12, 123011, 39 pp.

J. Viisélé, Uniform domains. Tohoku Math. J. 40 (1988), 101-118

N. Th. Varopoulos, L. Saloff-Coste, T. Couhlon, Analysis and Geometry of
Groups, Cambridge Tracts in Mathematics, 100. Cambridge University Press,
Cambridge, 1992. xii+156 pp.

J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle
and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Greno-

ble) 28(4), 147-167 (1978).

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa-Oiwake-
cho, Sakyo-ku, Kyoto 606-8502, Japan.
nkajino@kurims.kyoto-u.ac.jp

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 172,

Canada.

mathav@math.ubc.ca

129



	Introduction
	Overview
	Summary of the setting and statement of the main results

	Preliminaries
	Metric doubling and volume doubling properties
	Uniform domains
	Regular Dirichlet space and symmetric Hunt process
	Sub-Gaussian heat kernel estimates
	Harmonic functions and the elliptic Harnack inequality
	Trace Dirichlet form
	Stable-like heat kernel estimates
	Capacity good measures and their corresponding PCAFs

	Green function, Martin kernel, and Naïm kernel
	Properties of Green function
	Boundary Harnack principle
	Naïm kernel
	Martin kernel

	Estimates for harmonic and elliptic measures
	The capacity density condition
	Two-sided bounds on harmonic measure
	The elliptic measure at infinity on unbounded domains

	The boundary trace process
	The boundary measure and the corresponding PCAF
	The Doob–Naïm formula
	Stable-like heat kernel estimates for the trace process
	Extension to the case with weak capacity density condition
	Examples

	References

