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Abstract

We present the forward self-similar profile for a particular solution of the 3D
Navier-Stokes equations, representing the late stage of decay. The existence of such
a profile has been known, but previously its precise functional form has not been
determined numerically, let alone mathematically.

In this paper we successfully capture the profile for the first time using nu-
merical methods. This has been achieved by a combination of two things; a nu-
merical method of solving the Navier-Stokes equations in the whole space and the
explicit form of the linearised solution. Taking the initial data from the explicit the
linearised solution, established in Ohkitani & Vanon (2022), we solve the fully-
nonlinear Navier-Stokes equations to observe the convergence to a steady solution
in dynamically scaled space. We have confirmed that the deviation from the lin-
earised solution is not large, but appreciable. Some applications of the self-similar
profile are discussed briefly.

Navier–Stokes equations, Turbulence theory, Vortex dynamics
MSC Codes 76D05, 35Q30,35C06

1 Introduction
In this paper we study a profile of self-similar solutions as elementary excitations (i.e.
building blocks) in viscous incompressible flow.

We review some physical and mathematical models which attempt to introduce el-
ementary excitations. There are a number of attempts to introduce elementary exci-
tations. Literature of physical interest include the following. In Synge & Lin (1943)
Hill’s spherical vortices were discussed as elementary excitations of 3D turbulent flow.
A drawback of this representation is that the skewness factor associated with the model
vanishes so that it cannot support non-zero energy transfer. In Chertkov, Pumir, &
Shraiman (1999) a phenomenological model based on Lagrangian dynamics of tetrads
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was introduced for the 3D Euler equations. This is based on and generalization of
Léorat-Vieillefosse-Cantwell model, which ignores the nonlocal term in the expression
of the pressure Hessian, Léorat (1975); Vieillefosse (1984); Cantwell (1992). A model
of vorticity localised as the Gaussian function such as the Burgers vortex was discussed
in Davidson (2015).

On the other hand, mathematical literature include the following works. In Giga &
Miyakawa (1989) an extended function class was introduced to accommodate singular
initial data for the time evolution of self-similar solutions. The existence of the self-
similar profile was proved for small data in Cannone & Planchon (1996). The existence
was proved for large data and some estimates were given in Jia & Šverák (2014). They
are well summarised in books, e.g. Lemarié-Rieusset (2002, 2018). Most of those
works concern proofs of the existence of solutions and the bounds, but estimates are
not very much explicit.

It was proved, however, in Jia & Šverák (2014) that the self-similar profile satisfies

|𝑈 (𝑥) − 𝑒4𝑢0 (𝑥) | ≤
𝐶 (𝑀)

(1 + |𝑥 |)1+𝛼 ,

where𝑈 (𝑥) denotes the self-similar profile of velocity, 0 < 𝛼 < 1,𝐶 (𝑀) a constant and
𝑀 a norm of the initial data 𝑢0. Note the significance of the symbol 𝑒4 = 𝑒𝜈𝑡4, where
the parameters are takes as 𝜈 = 𝑡 = 1. In Brandolese (2009) an explicit asymptotic
formula for far fields was given

𝑈 (𝑥) = 𝑢0 (𝑥) + 4𝑢0 (𝑥) − P∇ · (𝑢0 ⊗ 𝑢0) −
𝑄(𝑥) : 𝐵

|𝑥 |7 +𝑂 (|𝑥 |−5 log |𝑥 |),

which is valid as |𝑥 | → ∞. Here P denotes solenoidal projection, 𝑢0 (𝑥) small initial
data, 𝑄(𝑥) a homogeneous cubic polynomial and 𝐵 a constant matrix. More recent
works of related interest include Kukavica & Reis (2011) and Brandolese & Okabe
(2024).

It is helpful to recall the two kinds of critical scale invariance; type 1 for which the
unknown (vector potential) shares physical dimension with kinematic viscosity 𝜈 and
type 2, for which the 𝐿1-norm of its 𝑛-th spatial derivative shares physical dimension
with 𝜈. It should be noted that the heat flow, after dynamic scaling, is not of the Gaussian
form. In fact, it is the 𝑛-th derivative of the heat flow that takes the Gaussian form.

Our aim here is to define them on the basis of a rational foundation. Before consid-
ering the 3D Navier-Stokes equations, we recall the case of the 1D and 2D fluid dynam-
ical equations. For the 1D Burgers equation the velocity profile𝑈 (𝜉) of the self-similar
solution is well-known, e.g. Escobedo & Zuazua (1991)

𝑈 (𝜉) =
𝐶exp

(
− 𝑎𝜉2

2𝜈

)
1 − 𝐶

2𝜈

∫ 𝜉

0
exp

(
− 𝑎𝜂2

2𝜈

)
𝑑𝜂

(1)

= −2𝜈𝜕𝜉 log
(
1 − 𝐶

2𝜈

∫ 𝜉

0

exp

(
−𝑎𝜂2

2𝜈

)
𝑑𝜂

)
,
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the latter of which is reminiscent of the Cole-Hopf transform. Here 𝐶 denotes a con-
stant, 𝑎 a zooming-in parameter associated with dynamic scaling, which shares the same
physical dimension as kinematic viscosity 𝜈.

On the other hand, for the 2D Navier-Stokes equations vorticity profile Ω(𝜉) of the
self-similar solution reads

Ω(𝜉) = 𝑎Γ
2𝜋𝜈

exp

(
−𝑎 |𝜉 |2

2𝜈

)
, (2)

where Γ denotes the circulation. Unlike the Burgers equation, the case of the 2D Navier-
Stokes equations is degenerate in that no trace of nonlinear terms remains in the self-
similar profile. We will see that the case of the 3D Navier-Stokes equations is non-
degenerate in that some trace of nonlinear terms does remain in the self-similar profile.
We are interested in seeking a counterpart of (1) for the 3D Navier-Stokes equations.

It should be noted that elementary excitations are not identical to the Stokeslets per
se, which are maintained as a steady solution due to the imposed pressure gradient in the
original physical space (that is, before the application of dynamic scaling). Elementary
excitations we consider here are steady on their own footing after dynamic scaling.

Motivated by our previous works, we specifically aim to achieve the following ob-
jectives.

1) Determination of elementary excitations as defined by a profile of self-similar
solutions, which describe the final period of Navier-Stokes flows.

2) Visualisation of the spatial structure of the explicit linearised solutions.
3) Implications on the non-integrability of the Navier-Stokes equations.
Below we begin reviewing some known facts about self-similar solutions of the

Navier-Stokes equations and then go through 1) and 2). As for 3), it is generally accepted
that the Navier-Stokes equations are not integrable, that is, not exactly reducible to the
heat equation. However, no evidence has been given for such an expectation. We give
a concrete evidence supporting that this view is indeed the case.

The rest of this paper is constructed as follows. In Section 2 we recall dynamic scal-
ing of the 3D Navier-Stokes equations using different dependent variables. In section
3 we study the linearised self-similar solution in detail. Section 4 is the main results,
we report the nonlinear self-similar solution by numerical methods. In section 5 we
discuss the non-integrability of the 3D Navier-Stokes equations. Section 6 is devoted
to a summary.

2 3D Navier-Stokes equations
We recapitulate the results obtained previously before presenting new results form the
numerical experiments.

The 3D Navier-Stokes equations can be written in a number of different ways, using
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the vector potential 𝜓, the velocity 𝑢, the vorticity 𝜔 and the vorticity curl 𝜒:

𝜕𝜓

𝜕𝑡
=

3

4𝜋
p.v.

∫
R3

𝑟 × (∇ × 𝜓(𝑦)) 𝑟 · (∇ × 𝜓(𝑦))
|𝑟 |5 d𝑦 + 𝜈4𝜓, (3)

𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢 = −∇𝑝 + 𝜈4𝑢, (4)

𝜕𝜔

𝜕𝑡
+ 𝑢 · ∇𝜔 = 𝜔 · ∇𝑢 + 𝜈4𝜔, (5)

𝜕𝜒

𝜕𝑡
= 4(𝑢 · ∇𝑢 + ∇𝑝) + 𝜈4𝜒, (6)

where 𝑢 = ∇ × 𝜓, 𝜔 = ∇ × 𝑢, 𝜒 = ∇ × 𝜔, ∇ · 𝜓 = ∇ · 𝑢 = ∇ · 𝜔 = ∇ · 𝜒 = 0, 𝑟 = 𝑥 − 𝑦
and p.v. denotes the principal-value integral.

We consider the dynamically-scaled Navier-Stokes equations forΨ(𝜉, 𝜏),𝑈 (𝜉, 𝜏),Ω(𝜉, 𝜏), 𝑋 (𝜉, 𝜏),
where

𝜉 =
𝑥

√
2𝑎𝑡

, 𝜏 =
1

2𝑎
log 𝑡,

𝜓 = Ψ, 𝑢 =
𝑈

𝜆(𝑡) , 𝜔 =
Ω

𝜆(𝑡)2 , 𝜒 =
𝑋

𝜆(𝑡)3 ,

with 𝜆(𝑡) =
√
2𝑎𝑡1 denoting the length scale associated with dynamic scaling. The

dynamically-scaled equations read

𝜕Ψ
𝜕𝜏

=
3

4𝜋
p.v.

∫
R3

𝜌 × (∇ ×Ψ(𝜂)) 𝜌 · (∇ ×Ψ(𝜂))
|𝜌 |5 d𝜂 + 𝜈4Ψ + 𝑎(𝜉 · ∇)Ψ, (7)

𝜕𝑈

𝜕𝜏
+ 𝑈 · ∇𝑈 = −∇𝑃 + 𝜈4𝑈 + 𝑎(𝜉 · ∇)𝑈 + 𝑎𝑈, (8)

𝜕Ω
𝜕𝜏

+ 𝑈 · ∇Ω = Ω · ∇𝑈 + 𝜈4Ω + 𝑎(𝜉 · ∇)Ω + 2𝑎Ω, (9)

𝜕𝑋

𝜕𝜏
= 4 (𝑈 · ∇𝑈 + ∇𝑃) + 𝜈4𝑋 + 𝑎(𝜉 · ∇)𝑋 + 3𝑎𝑋, (10)

where ∇ ·Ψ = ∇ ·𝑈 = ∇ ·Ω = ∇ · 𝑋 = 0, 𝜌 = 𝜉 − 𝜂. Hereafter, capitalised letters denote
those variables defined in the dynamically scaled space. Our aim to solve

4 (𝑈 · ∇𝑈 + ∇𝑃) + 𝜈4𝑋 + 𝑎∇ · (𝜉 ⊗ 𝑋) = 0

1More generally 𝜆(𝑡) =
√
2𝑎 (𝑡 + 𝑡∗) , where 𝑡∗ denotes the virtual time origin. For example, we can take

𝑡∗ = 1/(2𝑎) to make the dependent variables take identical values before and after scaling.
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Figure 1: The Gaussian function exp(−𝑟2) (solid), 𝐻 (𝑟)/2 (dashed), 𝐽 (𝑟)/2 (dotted).

as accurately and explicitly as possible. We note some basic facts about the problem:
(i) It is a steady problem. Hence we can set aside the problem of time evolution on the
back burner in the determination of the self-similar profile. (ii) It is a problem of low
Reynolds number, but it is still a nonlinear problem.

By Jia & Šverák (2014) we know that𝑈 (𝜉) exists. By differentiation or integration,
we know that Ψ(𝜉),Ω(𝜉) and 𝑋 (𝜉) exist as well.

The first order approximation was obtained in Ohkitani & Vanon (2022)

𝑋 = P𝑀𝐺, 𝑟 = |𝜉 |, 𝜇 =
𝑎

2𝜈
, 𝑀 ≡

∫
R3

𝑋𝑑𝜉,

where 𝐺 (𝜉) ≡
(

𝑎
2𝜋𝜈

)3/2
exp

(
− 𝑎

2𝜈 |𝜉 |2
)

denotes the Gaussian function. It is important
to note that when we use vorticity curl 𝑋 we can easily spot the form of the linerised
solutions, because we know that it is the third spatial derivative of Ψ that behaves like a
Gaussian function (recall the type 2 scale-invariance). This is not the case when we use
more familiar dependent variables, such as velocity or vorticity. Note also that even if
the dominant term is taken in vorticity curl, it is not purely of the Gaussian form as we
see below, because we need to satisfy the incompressible condition.

3 Self-similar solutions of linearised equations
After taking into account the incompressibility condition, the first-order approximation
in terms of vorticity curl was given in Ohkitani & Vanon (2022) as follows

𝑋𝑖 = 𝑀 𝑗

(
𝛿𝑖 𝑗 −

𝜉𝑖𝜉 𝑗

𝑟2

) ( 𝜇
𝜋

)3/2
𝑒−𝜇𝑟

2−𝑀 𝑗

(
𝛿𝑖 𝑗

𝑟3
−
3𝜉𝑖𝜉 𝑗

𝑟5

) {
erf (√𝜇𝑟)

4𝜋
− 𝑟

2𝜇

( 𝜇
𝜋

)3/2
𝑒−𝜇𝑟

2

}
,

(11)
where summation is implicit for repeated indices.
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(a) (b)

(c) (d)

Figure 2: Visualisation of the linearised solution; (a) the vector potential Ψ, (b) the
velocity𝑈, (c) the vorticityΩ and (d) the vorticity curl 𝑋 . The arrow show the directions
of Ψ,𝑈,Ω, 𝑋 , with their length representing the sizes.
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We recall the definitions of the two functions introduced for convenience

𝐻 (𝑟) ≡
√
𝜋erf (𝑟) − 2𝑟𝑒−𝑟

2

𝑟3
, 𝐽 (𝑟) ≡

𝑟𝑒−𝑟
2 + √

𝜋erf (𝑟)
(
𝑟2 − 1

2

)
𝑟3

,

both of which are continuous at 𝑟 = 0 (See Figure 1). Note that

lim
𝑟→0

𝐽 (𝑟) = lim
𝑟→0

𝐻 (𝑟) = 4

3
,

which follows from

erf (𝑟) = 2𝑟
√
𝜋

(
1 − 𝑟2

3
+ . . .

)
, for small 𝑟.

Because all the fields are incompressible we also have 𝑈 = −4𝐵,Ω = −4Ψ, 𝑋 =
−4𝑈. The following expressions in vectorial form were derived in Ohkitani & Vanon
(2022);

Ψ̂ =
𝑀 × 𝜉

8𝜋3/2
𝐽 (𝑟), (12)

𝑈 =
erf (r)
4𝜋𝑟

(
𝑀 − (𝑀 · 𝜉)𝜉

𝑟2

)
− 𝐽 (𝑟)
8𝜋3/2

(
𝑀 − 3(𝑀 · 𝜉)𝜉

𝑟2

)
, (13)

Ω̂ =
𝑀 × 𝜉

4𝜋3/2
𝐻 (𝑟), (14)

𝑋 =
𝑒−𝑟

2

𝜋3/2

(
𝑀 − (𝑀 · 𝜉)𝜉

𝑟2

)
− 𝐻 (𝑟)
4𝜋3/2

(
𝑀 − 3(𝑀 · 𝜉)𝜉

𝑟2

)
, (15)

where 𝑟 = |𝜉 |.
Taking 𝑀 = (1, 1, 1) and 𝑎 = 2𝜈 for simplicity, we compare the Gaussian function

𝑒−𝜉2/𝜋3/2 to

𝑋1 (𝜉, 0, 0) =
√
𝜋erf (𝜉) − 2𝜉𝑒−𝜉2

2𝜋3/2𝜉3

(
=

𝐻 (𝜉)
2𝜋3/2

)
.

We observe in Figure 1 that 𝜋3/2𝑋1 (𝜉, 0, 0) has a longer tail than the Gaussian function
𝑒−𝜉2 .

We show in Figure 2 visualisation of the linearised solution Ψ̂,𝑈, Ω̂ and 𝑋 , respec-
tively. It is readily verified that the Frobenius integrability conditions are satisfied;

Ψ̂ ·𝑈 = 𝑈 · Ω̂ = Ω̂ · 𝑋 = 0.

This makes a marked contrast to the property of Beltrami flows, where 𝑈 × Ω̂ = 0
holds. They are definitely not Beltrami flows, rather, they have the opposite extreme
geometric configuration, where velocity and vorticity perpendicular to each other, rather
than parallel.

With use of computer algebra, it can be verified that 𝑋 = P𝑀𝐺 solves

𝜈∇2𝑋 + 𝑎∇ · (𝜉 ⊗ 𝑋) ≡ 𝜈4𝑋 + 𝑎(𝜉 · ∇𝑋 + 3𝑋) = 0
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After inverting the gradient operator, we have

𝜈∇𝑋 + 𝑎𝜉 ⊗ 𝑋 = ∇ × 𝑓

for some 𝑓 ≠ 0.
To be explicit, we take for simplicity 𝜇 = 𝑎

2𝜈 = 1 and 𝜉 = (𝑥, 𝑦, 𝑧)𝑇 . The 𝑥-
component of the right-hand side can be found, with use of computer algebra. Unfor-
tunately, it has a complicated form as follows

(∇ × 𝑓 )1 =
{
(𝑀2𝑦 + 𝑀3𝑧)𝑥4 − 𝑀1 (2𝑦2 + 2𝑧2 − 3)𝑥3 + 6(𝑀2𝑦 + 𝑀3𝑧)𝑥2

−2𝑀1

(
𝑦2 + 𝑧2 + 9

4

)
(𝑦2 + 𝑧2)𝑥 − (𝑦2 + 𝑧2)

(
𝑦2 + 𝑧2 + 3

2

)
(𝑀2𝑦 + 𝑀3𝑧)

}
𝑒−𝑟

2

𝑟3

+
{
𝑀1𝑥

5 + 3

2
(𝑀2𝑦 + 𝑀3𝑧) 𝑥4 +

𝑀1

2
(𝑦2 + 𝑧2 − 3)𝑥3 + 3

2
(𝑦2 + 𝑧2 − 2)(𝑀2𝑦 + 𝑀3𝑧)𝑥2

−𝑀1

2
(𝑦2 + 𝑧2)

(
𝑦2 + 𝑧2 − 9

2

)
𝑥 + 3

4
(𝑦2 + 𝑧2)(𝑀2𝑦 + 𝑀3𝑧)

} √
𝜋erf (𝑟)
𝑟7/2

,

where other components can be obtained by cyclic permutations.

4 Self-similar solutions of nonlinear equations
4.1 Numerical methods
In Ohkitani & Vanon (2022) we introduced an iteration scheme which yielded the lead-
ing order approximation. However, it seems difficult to extend this approach to higher
orders and obtain the nonlinear solution. We also attempted to simulate dynamically
scaled Navier-Stokes equations directly for a long time in order to achieve the conver-
gence to a steady solution. However, this did not work either, because of the badly
behaved 𝑥 · ∇ term at far distances. Furthermore, an attempt to apply the method of
integrating factors has been made, but to no avail.

That is why we have decided to solve the Navier-Stokes equations numerically in
the original physical space and dynamically-scale the solutions to see whether its pro-
file converges to a steady solution in the transformed space. Actually, this simplistic
approach does work and we will describe the results below.

To simulate flows on R3 we use the simple method of domain truncation, that is,
instead of R3, we consider a cube [−𝐿, 𝐿]3 of size 2𝐿, which is large in comparison
with the characteristic length scale of the flow field in question. Numerically, this box
has a set of grid points {(𝑥 𝑗 , 𝑦𝑘 , 𝑧𝑙); 𝑗 , 𝑘, 𝑙 = −𝑁, . . . , 𝑁}, where 𝑥 𝑗 = 𝑦 𝑗 = 𝑧 𝑗 =
𝐿 𝑗/𝑁, 𝑗 = −𝑁, . . . , 𝑁, for some positive integer 𝑁 .

Firstly, we solve the Navier-Stokes equations in the form of the vorticity equations,
using a central finite difference scheme for them. The numerical scheme is similar to
the one used in studying the 2D Navier-Stokes equations inR2, Ohkitani, K. (2023) and
its details to be described elsewhere, Ohkitani, K. (2025). We use a fast Poisson solver
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for handling the Biot-Savart relationship to recover the velocity from the vorticity. The
zero Dirichlet boundary conditions are imposed

𝜔(𝑥, 𝑦,±𝐿) = 𝜔(±𝐿, 𝑦, 𝑧) = 𝜔(𝑥,±𝐿, , 𝑧) = 0, −𝐿 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝐿,

where the vorticity can be regarded as small at the box boundaries. This approach
seems plausible and has been checked a posteori, that is, confirming the smallness of
the vorticity field near the boundaries.

We use the following numerical parameters: 𝐿 = 20, 𝑁 = 128 (corresponding to
2573 collocation points). For time marching the fourth order Runge-Kutta scheme was
used. All the computations were done in the double precision arithmetic.

For the initial condition we use the linearised solution 𝜔(𝑥, 0) = Ω̂(𝑥), defined in
(3.4), which is known to be close to the fully nonlinear solution. After obtaining 𝜔(𝑥, 𝑡)
on the time interval 0 ≤ 𝑡 ≤ 100 by numerical methods with a time step Δ𝑡 = 5× 10−3,
we dynamically-scale it as

Ω(𝜉, 𝜏) = (1 + 4𝜈𝑡) 𝜔(𝑥, 𝑡),

where 𝜉 = 𝑥√
1+4𝜈𝑡 , 𝜏 = 1

4𝜈 log(1 + 4𝜈𝑡).
Secondly, we solve the 3D Navier-Stokes equations in velocity form, again using

a central finite difference scheme. We use a fast Poisson solver for handling the Biot-
Savart relationship for estimating the pressure. Here, the Dirichlet boundary conditions
are imposed at the edges of the box as

𝑢(𝑥, 𝑦,±𝐿) = 𝑢(±𝐿, 𝑦, 𝑧) = 𝑢(𝑥,±𝐿, , 𝑧) = 0, −𝐿 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝐿,

where the velocity can be regarded as small at the box boundaries. It is clear that this
condition is harder to satisfy because, generally speaking, the velocity field decays more
slowly than the vorticity does. Time marching is done by the fourth-order Runge-Kutta
method on the time interval 0 ≤ 𝑡 ≤ 100, with Δ𝑡 = 5 × 10−3. We take 𝐿 = 20 and
𝑁 = 100which corresponds to the number of collocation points 2013. We have checked
that the numerical solutions are unaffected when we change the parameters by doubling
them like 𝐿 = 40 and/or 𝑁 = 200.

For the initial condition we use the linearised solution 𝑢(𝑥, 0) = 𝑈 (𝑥), defined in
(3.3), which is known to be close to the nonlinear solution. After obtaining 𝑢(𝑥, 𝑡)
numerically, we dynamically-scale the dependent variable, this time, as follows

𝑈 (𝜉, 𝜏) =
√
1 + 4𝜈𝑡 𝑢(𝑥, 𝑡).

Finally, to check the CFL condition we estimate 𝑢max
Δ𝑡
Δ𝑥 = 6 × 10−3 5×10−3

0.2 = 1.5 ×
10−4 � 1 at 𝑡 = 0. At later times that is even smaller, which implies stability of the
time marching scheme.

4.2 Numerical results
We present the results obtained by solving the vorticity equations, using the following
physical parameters 𝜈 = 2 × 10−2, 𝜇 = 𝑎/(2𝜈) = 1. We first check the validity of the
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Navier-Stokes solver in the whole space R3 by cutting off the nonlinear terms. In Figure
3 we show thus obtained solution after scaling transformations. A perfect agreement of
the profiles is observed, consistent with the steadiness in the dynamically-scaled space.
No matter how trivial this may seem, it gives an important check. This is because it
firstly confirms the analytical representation of the linearised solution (3.4), and sec-
ondly justifies the numerical methods employed herein. It confirms particularly that
the vorticity decays quickly to zero in the region |𝜉 | ≤ 5. Note that the computational
domain is |𝜉 | ≤ 𝐿/

√
1 + 4𝜈𝑡 =

√
20/3 ≈ 6.6 at 𝑡 = 100. At the boundaries the vorticity

𝜔(𝑥) is typically on the order of𝑂 (10−4), orΩ(𝜉) is on the order of𝑂 (10−3) at 𝑡 = 100.
Now we reinstate the nonlinear terms and solve fully nonlinear equations. In Figure

4 we show the nonlinear solution in the transformed space. We observe that the pro-
file does evolve in time, but it converges to a fixed form quickly. This confirms that
our numerical method captures the nonlinear solution successfully and the steady state
represents the profile we are after. In Figure 5 we show time evolution of the enstrophy

𝑄(𝑡) = 1

2

∫
R3

|𝜔 |2𝑑𝑥

for both linearised and linear solutions. Essentially both linear and nonlinear curves
collapse, (actually, independent of the formalism in vorticity or velocity). It shows the
enstrophy decays to about 25% of its initial value during the time interval 0 ≤ 𝑡 ≤
100. Now that the the evolution of enstrophy is virtually indistinguishable between the
linearised and nonlinear solutions, one possible interpretation of the deviation is a slight
spatial translation in vorticity.

To double-check that a solution converges in dynamically-scaled space we next solve
the Navier-Stoke equations in velocity form. Again we have confirmed that the lin-
earised solution remains unchanged in dynamically-scaled space (figure omitted). To
test the convergence of𝑈 (𝜉, 𝜏) in Figure 6 we plot𝑈1 (𝜉, 𝜉, 𝜉) at several different times.
We confirm the profile converges to a fixed form, which means the numerical method
captures the self-similarity profile in velocity as well. As noted above, the zero Dirichlet
boundary conditions are harder to meet, the velocity 𝑢(𝑥) at the boundaries is typically
on the order of 𝑂 (7 × 10−4), or, 𝑈 (𝜉) on the order of 𝑂 (10−3), say, at 𝑡 = 100.

Nonetheless, the enstrophy 𝑄(𝑡) calculated from the thus-obtained velocity field
is indistinguishable from Figure 5, both for linearised and nonlinear solutions. This
indicates that the computations are robust in spite of the boundary conditions, which
are hard to satisfy with velocity.

To estimate the deviation of the nonlinear steady solution from the linearised solu-
tion

Δ𝑈1 = 𝑈1 (𝜉, 𝜉, 𝜉) −𝑈1 (𝜉, 𝜉, 𝜉),
we plot Δ𝑈1 (𝜉, 𝜉, 𝜉) in Figure 7 at 𝑡 = 100. The size of the deviation is not large, but
appreciable. The leading-order asymptotic analysis of the self-similar profile given in
Ohkitani & Vanon (2022), shows the normalised deviation (in 𝑋) is of 𝑂 (10−2), as
opposed to the 𝑂 (10−1) deviation (in 𝑈) for the Burgers equation. This means that the
cumulative effects of higher order terms in the successive approximation give rise to an
appreciable deviation.

11
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Figure 3: A sectional plot of the
vorticity field Ω̂1 (𝜉, 𝜉, 𝜉)
(linearised solution), at 𝑡 =
0(solid), 20(dashed),
40(dotted), 60(dash-dotted),
80(thick-solid), 100(dash triple-dotted).
All six curves collapse.
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Figure 4: A sectional plot of the
vorticity field Ω1 (𝜉, 𝜉, 𝜉)
(nonlinear solution), at 𝑡 =
0(solid), 20(dashed),
40(dotted), 60(dash-dotted),
80(thick-solid), 100(dash triple-dotted).
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Figure 5: Time evolution of the enstrophy,
from vorticity form: nonlinear (solid), lin-
ear (dashed) and from velocity form: non-
linear (dotted), linear (dash-dotted). All the
four curves basically collapse.
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Figure 6: Convergence to the
self-similar profile in velocity at 𝑡 =
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100(dash triple-dotted).
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Figure 7: Subdominant term in the self-
similar profile at 𝑡 = 100.

5 Non-integrability of the Navier-Stokes equations
We begin considering the following question; Can Ψ(𝜉),𝑈 (𝜉),Ω(𝜉) and 𝑋 (𝜉) be ex-
pressed as a function of Ψ̂(𝜉),𝑈 (𝜉), Ω̂(𝜉) and 𝑋 (𝜉), respectively ? A short answer
is ’yes’ for 𝑈 (𝜉) and 𝑋 (𝜉), but ’no’ for Ψ(𝜉) or Ω(𝜉). We will give more detailed
explanations below.

Invertibility of hatted (that is, linearised) variables in scaled space means that for
Ψ̂ = Ψ̂(𝜉) we can find some function 𝐹 such that 𝜉 = 𝐹 (Ψ̂) holds, under some condi-
tions, that is,

If
𝜕 (Ψ̂1, Ψ̂2, Ψ̂3)
𝜕 (𝜉1, 𝜉2, 𝜉3)

≠ 0, then


𝜉1 =∃ 𝑓1 (Ψ̂),

𝜉2 =∃ 𝑓2 (Ψ̂),

𝜉3 =∃ 𝑓3 (Ψ̂).

When this is the case, in principle we can plug them into Ψ = Ψ(𝜉) and write Ψ(𝜉) =∃

𝐹 (Ψ̂) for some function 𝐹. In fact, it has turned out with computer algebra that

det

(
𝜕Ψ̂
𝜕𝜉

)
=

𝜕 (Ψ̂1, Ψ̂2, Ψ̂3)
𝜕 (𝜉1, 𝜉2, 𝜉3)

≡ 0,

det

(
𝜕Ω̂
𝜕𝜉

)
=

𝜕 (Ω̂1, Ω̂2, Ω̂3)
𝜕 (𝜉1, 𝜉2, 𝜉3)

≡ 0.

Hence, even though Ψ and Ψ̂ are close to each other, it is not guaranteed that the former
can be represented by a function of the latter.2 The same goes for Ω and Ω̂.

2It would be a real surprise if det
(
𝜕Ψ̂
𝜕𝜉

)
≠ 0, almost everywhere.
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(a) (b)

Figure 8: Visualisation of surfaces of zeros of Jacobian determinants: (a) the velocity
𝑈 and (b) the vorticity curl 𝑋 . Here (𝑥, 𝑦, 𝑧) = (𝜉1, 𝜉2, 𝜉3).

On the other hand, in contrast we have found

det

(
𝜕𝑈

𝜕𝜉

)
=

𝜕 (𝑈1,𝑈2,𝑈3)
𝜕 (𝜉1, 𝜉2, 𝜉3)

≠ 0,

det

(
𝜕𝑋

𝜕𝜉

)
=

𝜕 (𝑋1, 𝑋2, 𝑋3)
𝜕 (𝜉1, 𝜉2, 𝜉3)

≠ 0.

Hence 𝑈 and 𝑈 are related by some mapping and so are 𝑋 and 𝑋 . We can write in
principle

𝑈 = 𝐹1 (𝑈), 𝑋 = 𝐹2 (𝑋),
for some functions 𝐹1, 𝐹2.

More specifically, we find with computer algebra

det

(
𝜕𝑈

𝜕𝜉

)
= − 𝑧

128𝜋9/2 (𝑠2 + 𝑧2)15/2

×
{
𝜋(𝑠2 + 𝑧2 − 3

2
)
(
𝑠6 + (2𝑧2 − 9

4
)𝑠4 + (𝑧4 + 9

4
𝑧2 − 27

8
)𝑠2 + 9

4
𝑧4 − 27

8
𝑧2

)
×
√
𝑠2 + 𝑧2 (erf

√
𝑠2 + 𝑧2)2𝑒−(𝑠2+𝑧2)

+6
√
𝜋(𝑠2 + 𝑧2)

(
𝑠6 + (2𝑧2 − 9

8
)𝑠4 + (𝑧4 + 9

8
𝑧2 − 27

16
)𝑠2 + 9

8
𝑧4 − 27

4
𝑧2

)
×erf

√
𝑠2 + 𝑧2𝑒−2(𝑠

2+𝑧2)
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Figure 9: Sectional plots of zeros of (a) the Jacobian of 𝑈 and (b) that of 𝑋 , plotted 𝑧-
vs. 𝑟-axes.

+9
(
𝑠4 + (𝑧2 + 3

4
)𝑠2 + 3

2
𝑧2

)
(𝑠2 + 𝑧2)3/2𝑒−3(𝑠2+𝑧2)

−1

4
(𝑠2 + 𝑧2 − 3

2
)2

(
𝑠4 + (−𝑧2 + 3

2
)𝑠2 − 2𝑧4 + 3𝑧2

)
𝜋3/2 (erf

√
𝑠2 + 𝑧2)3

}
,

and
det

(
𝜕𝑋

𝜕𝜉

)
=

2𝑧

𝜋9/2 (𝑠2 + 𝑧2)15/2

×
[
1

16
(𝑠2 + 𝑧2)3/2

(
𝑧4 (4𝑠2 + 4) + (8𝑠4 + 6𝑠2 + 6)𝑧2 + 4𝑠6 + 2𝑠4 + 3𝑠2

)
(2𝑠2 + 2𝑠𝑧2 + 3)2𝑒−3(𝑠2+𝑧2)

−3
√
𝜋

2
(𝑠2+𝑧2)erf

√
𝑠2 + 𝑧2

(
𝑧4 (𝑠2 + 3

2
) + (2𝑠4 + 9

4
𝑠2 + 9

4
)𝑧2 + 𝑠6 + 3

4
𝑠4 + 9

8
𝑠2

)
(𝑠2+𝑧2+3

2
)𝑒−2(𝑠2+𝑧2)

+9𝜋
16

√
𝑠2 + 𝑧2 (erf

√
𝑠2 + 𝑧2)2

(
𝑧4 (𝑠2 + 3) + (2𝑠4 + 9

2
𝑠2 + 9

2
)𝑧2 + 𝑠6 + 3𝑠4

2
+ 9𝑠2

4

)
𝑒−(𝑠

2+𝑧2)

− 27

128
𝜋3/2 (erf

√
𝑠2 + 𝑧2)3 (𝑠2 + 2𝑧2)

]
,

where
𝑠2 ≡ 𝑥2 + 𝑦2.

For 𝑈 and 𝑋 , the Jacobian determinants vanish on surfaces (i.e. sets of measure
zero) as in Figure 8. We also show their sectional plots in Figure 9. Invertibility is
assured almost everywhere, except for those surfaces. By the inverse function theorem
the self-similar profile in velocity (resp. vorticity curl) can be represented as a function
of their linearised counterparts. It should be noted that it is Ψ(𝜉) which corresponds to
the heat flow in the dynamically-scaled space. Recall that it is the error function which
corresponds to the heat flow in the source-type solution of the 1D Burgers equation (1).

These are non-trivial results, but not very useful with regard to the problem of inte-
grability. It doesn’t tell us how a Navier-Stokes solution can be constructed from a heat
flow, because neither 𝑈 nor 𝑋 represents the heat flow in dynamically scaled space.
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6 Applications
One application is a particular solution to the Hopf equation the late-stage of decay.
Consider the Hopf functional for the vorticity curl

Φ[𝜃 (𝜉), 𝑡] =
〈
exp

(
𝑖

∫
R3

𝜒(𝑥, 𝑡) · 𝜃 (𝜉)𝑑𝑥
)〉

,

where the brackets denote an ensemble average. Given Φ[𝜃 (𝜉), 𝜏], by reverting to the
original variables

𝜒(𝑥, 𝑡) = 1

{2𝑎(𝑡 + 𝑡∗)}3/2
𝑋 (𝜉, 𝜏), 𝜉 =

𝑥√
2𝑎(𝑡 + 𝑡∗)

, 𝜏 =
1

2𝑎
log

𝑡 + 𝑡∗
𝑡∗

,

we have

Φ = Φ

[
𝜃

(
𝑥√

2𝑎(𝑡 + 𝑡∗)

)
,
1

2𝑎
log

𝑡 + 𝑡∗
𝑡∗

]
,

which defines a particular self-similar solution to the Hopf equation, Ohkitani & Vanon
(2022).

For the 3D Navier-Stokes equations the existence of self-similar solutions is known
(in velocity) in a number of function spaces. The corresponding vorticity gradient gives
the source-type solution implicitly. With this variable it is near-Gaussian and we have
the vorticity curl in its scaled form 𝑋 (𝜉) ∼ exp

(
− 𝑎

2𝜈 |𝜉 |2
)
, where the effects of nonlin-

ear terms and incompressibility should be taken into account.
We can in principle write

𝑋 (𝜉) = 𝐹
[
exp

(
− 𝑎

2𝜈
|𝜉 |2

)
;𝑀

]
,

where 𝐹 denotes a near-identity non-local functional and 𝑀 =
∫
R3

𝑋 (𝜉)𝑑𝜉 an invariant.
With this understanding the late-stage Hopf functional can be written

Φ[𝜃 (𝜉)] =
∫

exp

(
𝑖

∫
R3

𝐹
[
exp

(
− 𝑎

2𝜈
|𝜉 |2

)
;𝑀

]
· 𝜃 (𝜉)𝑑𝜉

)
𝑑𝜇(𝑀),

where an ensemble mean is to be taken over different values of 𝑀 . In the linearised
approximation recall that we have

𝑋 (𝜉) ≡ 𝐹
[
exp

(
− 𝑎

2𝜈
|𝜉 |2

)
;𝑀

]
≈ P𝑀𝐺 ≡ 𝑋 (𝜉)

Note that 𝑋 (0) is a constant vector, as a function of 𝑀 , but we do not know its functional
form yet. We confirm that the above form is a generalisation of the Hopf-Titt solution
of the Hopf functional equation, Hopf & Titt (1953). Indeed, in their linearised ap-
proximation we have

Φ[𝜃 (𝜉)] ≈
∫

exp

(
𝑖

∫
R3
P𝑀𝐺 · 𝜃 (𝜉)𝑑𝜉

)
𝑑𝜇(𝑀).
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Let 𝑋0 (𝜉) = P𝑀𝛿(·), then the exponent reads

𝑖

∫
R3
(𝐺 ∗ 𝑋0)(𝜉) · 𝜃 (𝜉)𝑑𝜉 = 𝑖

∫
R3

𝑋0 (𝜉) · (𝐺 ∗ 𝜃)(𝜉)𝑑𝜉

= 𝑖 exp
( 𝜈

2𝑎
𝐷

) ∫
R3

𝑋0 (𝜉) · 𝜃 (𝜉)𝑑𝜉,

where the symbol exp(𝑡𝜈𝐷) represents the time development operator over an interval
[0, 𝑡] of 𝜃 (𝑥) by the heat kernel.

Hence
Φ[𝜃 (𝜉)] ≈ exp

( 𝜈

2𝑎
𝐷

)
Φ0 [𝜃 (𝜉)],

or
Φ[𝜃 (𝑥)] ≈ exp (𝜈𝑡𝐷)Φ0 [𝜃 (𝑥)]

in the original variables, which is nothing but the Hopf-Titt solution, Hopf & Titt
(1953).

Finally, it is in order to make a brief comment on a possible model of a ’point’
singularity for 3D Euler flows. In the limit of 𝑎/𝜈 → ∞ in (2), we have formally
Ω(𝜉) → 𝛿(𝜉), where 𝛿(¤) denotes the Dirac mass. This is the point vortex known for
2D Euler flows. We will consider whether its 3D counterpart is available or not.

Consider two kinds of singular distributions; the vorticity localised along a curve
(line vortex) and the vorticity curl localised at a point (like a Dirac mass) associated
with algebraically decaying terms for maintaining the incompressibility. They are dual
in that they share the strength of singularity in Sobolev norm 𝐻1/2, or equivalently, the
form of energy spectrum 𝐸 (𝑘) ∝ 𝑘−2.

Taking the limit of 𝜇 → ∞ in (11), we find formally

𝑋 → 2

3
𝑀𝛿 − 1

4𝜋

(
𝑀

𝑟3
− 3(𝑀 · 𝜉)𝜉

𝑟5

)
, (16)

under the assumption that 𝜉𝑖 𝜉 𝑗

𝑟2 𝛿 → (𝛿𝑖 𝑗/3)𝛿 as 𝑟 → 0. It is of interest to observe
that the same expression is obtained when we compute, under the assumption that
lim𝜇→∞ P𝑀𝐺 = P𝑀 lim𝜇→∞𝐺,

𝜒 = P𝑀𝛿 = (𝐼 − 4−1∇∇·)𝑀𝛿

=
2

3
𝜅𝛿 − 1

4𝜋

(
𝜅(𝑡)
𝑟3

− 3(𝜅 · 𝑥)𝑥
𝑟5

)
,

where, for simplicity, we now write 𝑥 for the spatial coordinates and denote 𝑟 = |𝑥 |. In
passing, we note that in other dependent variables the model takes the following forms

𝜔 =
1

4𝜋

𝜅 × 𝑥

𝑟3
, 𝑢 =

1

8𝜋

(
𝜅

𝑟
+ (𝜅 · 𝑥)𝑥

𝑟3

)
, 𝜓 =

1

8𝜋

𝜅 × 𝑥

𝑟
,

and that, in particular, the following relationship holds 𝜓 = 𝑟2

2 𝜔.
That being said, the limit passage is actually inconsistent in that the volume integrals

of both sides of (16) do not match, when carried over a large sphere centered at the
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singular point. The mismatch, i.e. the left-hand side = 𝑀 whereas the right-hand side
= 2

3𝑀 , due to the local diagonal term 𝛿(𝑥)/3 associated with the singular integrals,

𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

1

4𝜋 |𝑥 | = −
𝛿𝑖 𝑗

3
𝛿(𝑥) − p.v.

1

4𝜋

(
𝛿𝑖 𝑗

|𝑥 |3 −
3𝑥𝑖𝑥 𝑗

|𝑥 |5

)
.

We hence refrain from pursuing the idea further here.

7 Summary
In this paper we have studied self-similar solutions to the Navier-Stokes equations, cen-
tering on the following topics. (1) Numerical determination of the elementary excita-
tions (as self-similar solutions). (2) Characterisation of the spatial structure via visu-
alisation of linerised solutions. (3) Non-integrability of the Navier-Stokes equations,
where presence or otherwise of functions mapping linearised solutions to nonlinear
ones is studied.

We have reported on the successful capture of the nonlinear profile of self-similar
solution to the Navier-Stokes equations. It is of interest to seek an analytical expression
of the profile approximately, because this has been achieved by numerical methods. That
would be useful for asymptotic analysis of the decaying process of the Navier-Stokes
flows. This is left for future study.
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A Different forms of linearised solutions
We can alternatively write

𝑈 =
1

8𝜋3/2

(
2𝐽 (𝑟)𝑀 + 𝜉 × (𝑀 × 𝜉) 𝐽

′(𝑟)
𝑟

)
,

𝑋 =
1

4𝜋3/2

(
2𝐻 (𝑟)𝑀 + 𝜉 × (𝑀 × 𝜉)𝐻

′(𝑟)
𝑟

)
,

where

𝐽 ′(𝑟) = 2
√
𝜋erf (𝑟) − 3𝑟𝐽 (𝑟)

𝑟2
, 𝐻 ′(𝑟) = 4𝑒−𝑟

2 − 3𝐻 (𝑟)
𝑟

.
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Note (𝑀 × 𝜉) ·𝑈 = (𝑀 × 𝜉) · 𝑋 = 0.
Yet another equivalent expression is as follows

𝑈 =

(
erf (𝑟)
8𝜋𝑟

+ 𝐻 (𝑟)
16𝜋3/2

)
𝑀 +

(
erf (𝑟)
8𝜋𝑟

− 3𝐻 (𝑟)
16𝜋3/2

)
(𝑀 · 𝜉)𝜉

𝑟2
.

This is convenient for numerical computations.
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