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PARTICLE TRAJECTORIES AROUND A RUNNING CYLINDER
IN BRINKMAN’S POROUS-MEDIA FLOW

HISASHI OKAMOTO AND MAYUMI SHOJI

ABSTRACT. The movement of particles around a running cylinder is consid-
ered. In 1870, J. C. Maxwell considered the problem in irrotational flow of
inviscid fluid, and found that the trajectory of a particle is a curve of elastica.
We consider here a similar problem in Brinkman’s porous-media flow. In this
case, our numerical examinations reveals some new interesting features of the
particle trajectories, which are not observed in the case of irrotational flow.
This is a brief review of HO’s talk in NIMS conference in October, 2008.

1. INTRODUCTION

Motion of fluid particles provides us with interesting problems of dynamical
systems. They are not only mathematically intriguing but also important in appli-
cations, say, to pollution problems and engineering for particle mixing. There are
many references on study of motions of particles in fluid confined in a fixed domain
(see, for instance, [8] or [3]). On the other hand, we know only a few studies in mov-
ing domains. One of the oldest of them is J.C. Maxwell [6], in which this eminent
physicist studied the trajectories of fluid particles when a circular cylinder moves
through an incompressible perfect fluid with a constant speed. Assuming that the
flow is irrotational, it was shown that the complete solution is given by the elliptic
functions and the trajectory forms one of the ’elastica’ curves. For more details,
see [6] or pages 243-246 of [7]. C. Darwin [2] considered a similar problem for a
moving sphere. In this case, the solution can not be written in terms of elliptic
functions but can be expressed by a simple definite integral.

One may well wonder what happens if we consider a similar problem for different
fluid motion, such as rotational flow and /or viscous fluid. Here we note that we must
carefully select the mathematical setting. For instance, Stokes’s paradox prevents
us from considering an analogous 2D problem for the Stokes equation. For large
Reynolds numbers, the steady-state may not be unique, and no definite answer is
expected for the Navier-Stokes equation. After surveying a general theory in the
next section, we examine several examples including Maxwell’s. Then we would like
to turn reader’s attention to a linear equation describing a viscous flow in porous
media, in which an analogous problem can be solved completely. The equation
which we are going to consider is the one proposed by Brinkman [1].
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2. PROBLEM IN GENERAL

Suppose that a fluid occupies the plain (2D flow) and suppose that an obstacle
(= a section of a cylinder) is running with a constant velocity. The problem is to
determine the trajectories of particles in the fluid. Let (x,y) be the plain coordinates
and let time ¢ be defined so that the center of gravity of the obstacle moves on the
z-axis from left to right and passes through the origin at ¢t = 0. Let (X,Y) be the
moving frame attached to the obstacle. If the velocity is denoted by ¢, we have
(z,y) = (X +¢t,Y).

In order to determine the particle movement, Maxwell [6] considered as follows.
The particle, whose coordinates in the moving frame is (X,Y), is subject to the
following equation

. OU . ov

where ¥ = W(X,Y) is the stream function. In the absolute coordinates, they are
written as
ov
0X

(2) T=c+ ‘0_\11(1. —ct,y), Y= (z — ct,y).

oY
If we solve these equationsnumerically, say by the Runge-Kutta method, then we are
given the trajectory. However, this strategy is not suitable to compute accurately.
In fact, the accumulation of errors in lareg |t| usually deteriorate the result. Instead
we compute as Maxwell did, which is suumarized as follows. If an initial data
(Xo,Yy) is given, then ¥(X,Y) = ¥U(Xy,Y)) is a constant. Suppose that we can
solve this equation to have Y = (X, Xo,Yp). Substituting this into the first
equation of (1), we obtain an equation of the following form:

X = ¥(X,p(X, Xo,Yp)) = (X, X0, Yp),

or equivalently

| dax
3) / B(X, X0 Yo) -

This equation and ¥(X,Y) = ¥(X,,Y) determine trajectories completely in the
moving coordinates.
In the absolute coordinates, we have

y(t) =Y (t) = p(X(t), X0, Yo)

z(t) = Ati(s)ds — /0\ (X(s) + c) Xd(ss)

By carrying out this integral, we obtain the trajectory in the absolute coordinates
if we carry out this integral.

This method can be used in any case of incompressible fluid flow. Suppose that
a cylinder with a radius @ > 0 is moving in a porous-media. It is supposed to run on
the z-axis with a constant speed U > 0. In a moving flame (X, Y"), which is attached
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to the cylinder, the Brinkman’s flow is governed by the following equations:

(4) MAV—%V—VP = 0 (a < R < ),
(5) divVv = 0 (a < R < 0),
(6) V‘R:u = O’

(7) lim V. = (~Us,0),

where V. = (V1,V3) is a velocity vector, p > 0 is the viscosity, u* > 0 is the
second viscosity, K > 0 is a constant called the permeability, and R = v X2 + Y2,
These equations were derived by Brinkman [1] as a model for fluid motion in porous
media. Their interesting applications can be found in [4, 9, 10, 11]. For derivation
of (4)—(7), see [1] or [11]. Note that (4) is a model rather than a rigorously derived
equation. It is nothing but d‘Arcy’s law if © = 0. On the other hand, it is the
Stokes equation if pu* = 0 or if K = co. The solution of Brinkman’s equation has
some interesting properties which are not shared by the solution of Stokes equation
(see [9, 11]). Disappearance of Stokes’ paradox, which we explain immediately, is
one of them.
We employ the following non-dimensionalization:

R — aR, V- UV.

We then introduce the stream function ¥ by

ov ov
VZ(@T’_a—X>'

It satisfies

(8) AZT — NZAV =0,

ov
C = —_—— _
(9) \Ier:1 Ar - 0,
(10) U~ -—Y (R — o0),
where

w

A\ = .

(11) R

We call A Brinkman’s constant. It is known as Stokes’ paradox that the equations
(8)—(10) have no solution for A = 0. However, if A > 0, the equations of (8)—(10) is
uniquely solvable. If we follow the computation of [9, 11, 13], we easily find that

Ks(N) 2K1(AR) .
Ko(MR /\KO(/\)>S -

(12) U =U(R,0)=— <R -

where © is defined by X = Rcos® and Y = Rsin©, and K,, (n =0, 1,2) are the
modified Bessel functions of order n.

We now consider the motion of particles in the fluid which moves passively by
this flow. For this purpose, it is more convenient to use the polar coordinates (R, ©)
rather than the Cartesian coordinates (X,Y). Let (R, ©) be the polar coordinates
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of the particle in the moving frame. Then they are governed by:
. 10V Ks(X) 2K (AR)
==—=—{1- 0s O,
=750 < KoR2 T \KyWR) <
. ov Ks(X) 2K{(AR)\ .
14 =——=|1 - O.
(14) RO 3R < + Ko 2 + Ko sin
Let a quantity 7., be defined by

- _ Ky(\) | 2Ki(AR)) .
(15) s = <R" KoO)R |~ Ko\ >S 10

(13)

3. DISCUSSIONS

Finally we will discuss our numerical results of Brinkman’s porous-media flow.
Before that we would like to view the result of the problem for the Stokes equations
which corresponds to A = 0. If the moving body is a sphere, it is known that fluid
particles are drifted infinitely in the case of the Stokes flow. All particles are drifted
infinitely from the left to the right while the sphere moves from —oco to co.

When A > 0, fluid particles around a moving cylinder are drifted within finite
range while the cylinder moves from —oo to co. It is similar to the results in the case
of irrotational flow except that drifted range of particles and profile of trajectories
change depending on A. Brinkman’s porous-media flow has two distinguishing
characters. Though we cannot compute the case of A = 0 in the Brinkman’s
equation, our results suggest that drifted range of particles increase to the infinite
as A — 0. Considering the case of the Stokes flow, we think it is a convincing result.
The drifted range of particles becomes smaller as the parameter A increases.

On the other hand we have another phenomenon in the case of Brinkman’s
porous-media flow. For very small A, trajectories have profiles similar to the Stokes
case in a neighborhood of the cylinder.

If A is not so small, the shape of trajectory changes in the following way as 7).
increases: gently sloping curve = a curve with a cusp = self-intersecting curve
= non-self-intersecting curve = diminishes to a point. For larger A\ the change
to a self-intersection curve begins with a smaller 7.

If both A > 0 and 7., are small, the trajectory has no self-intersection. It is
difficult for us to see which (A, 7) this actually happens.
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