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§1. Introduction. The purpose of this paper is to explain certain
bifurcation equations which describe newly discovered phenomena in
the Taylor-Couette problem of the fluid motion between two concentric
cylinders. The equations to be considered here are:

(1.1) (A + o + az® + 527 + ca®z) + (B + ez¥)zz = 0,
o 2(6A + 4% +b2?) £ 22 = 0,
and
(1.2) (A + o+ az® + b2?) £ 2z = 0,
‘ 2(5A+ 622 + b2 + 22%2) + (B + dz¥)z? = 0
) )

where A,z and z are real variables, ¢, 6,a,b,¢,d,e,a,b and & are real
constants. We explain in the subsequent sections how the solutions to
(1.1,2) fit the bifurcation diagram given in Tavener and Cliffe [7] in
which Taylor vortices of new type bifurcating from the Couette flow are
computed numerically. The equations (1.1,2) are derived from a certain
degeneration of the equations given in Fujii, Mimura and Nishiura [1].
The equation (1.1) are considered in Fujii, Nishiura and Hosono [2], but
(1.2) seems to be new. Although they considers in [1,2] a reaction diffu-
sion system which has nothing to do with the Taylor-Couette problem,
the local structure of the bifurcation is of the same category. This is
because the orthogonal group O(2) acts on both problems.

In this paper we announce a results in [5,6] in which we employed
the singularity theoretic approach by Golubitsky and Schaeffer ( [3,4]
) to see systematically the structure of the equations. In §2 we state
a precise statement of the Taylor-Couette problem. In §3 the relation
between (1.1,2) and the Taylor-Couette problem is given. §4 is a final
section for discussions.
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§2. The Taylor-Couette problem. In this section we recall some
newly developped analysis for the mechanism of vortex number exchange
in [7]. The problem considered by them is to determine a fluid velocity
field (w, v, w) and the pressure p which satisfy the following stationary
Navier-Stokes equation (2.1-4):

(2.1) Ay - ;““: - R [ug—% + u:))it - 31;- fﬂ =0,
(2.2) A'u—«;% R{u%%—ugz —%ﬂ} =90
(2.3) Aw—- R [uiw w%—i gg] =0,
(2.4) %%(m,) + %—%ﬁ =0,

where the cylindrical coordinates are adopted, u, v, w are r,8,z - com-
ponent, respectively and R is the Reynolds number. In this paper, as in
[7], we consider only velocity fields which are independent of the azimu-
tal coodinate 8 and the time {. We have suitably nondimensionalized
the quantities so that (2.1-4) are satisfied in

{2 1<r<n 0<z<I}h

The following boundary conditions are imposed :

(2.5) (u,v,w) =(0,1,0) {(r=1)
(2.6) (u,v,w) = (0,0,0) (r=mn)
(2.7) (g—?j, g%,w) =(0,0,0) (z=0,IM

In this circumstance, the Couette flow

(u, v, w, p) = (0, vo(r), 0, pol{ 1)) with
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. B ) T ooy (Y2
va(7r) = Ar + — polr) = / f.‘@_%'j_.d\,.
1

satisfles all the requirements if 4 = 1/(1 — »?), B = 7°/(n® - 1).
The problem is to study the solutions bifurcating from this Couette
flow. Notice that the condition (2.7) makes it difficult to examine the
results by a laboratory experiment but there is no difficulty in performing
computer simulation. In fact, [7] presenis a penetrating description of
the stability exchange of the solutions. Let us state briefly the results in
[7]. They fix the parameter # = 1.0/0.615 and let the nondimensional
height of the cylinder " vary. It is known that the primary bifurcation
branch consists of the two-cell Taylor vortices for small value of I' and
that it consists of the four-cell Taylor vortices for larger value of I'. The
number of the vortices, however, is integer and I can vary continuocusly.
Therefore, there exist flows of "mixed type” when I is in a intermediate
range. The bifurcation diagrams in [7] describe qualitatively how this
exchange from two-cell to four cell occurs.

Although they consider the exchange mechanism between two-cell and
six-cell or four-cell and six-cell, we consider only the exchange of two and
four, which requires the least mathematical technique to theorize.

§3. Degenerate bifurcation equations, In this section we show how
(1.1,2) are derived. Our starting point is to observe a hidden symmetry
in (2.1-7). Let us consider another problem to seek (w*, v™, w™, p* ) which
satisfles (2.1-4) in 1 < v < 7%, =1 < z < T', the boundary condition
(2.5,6) and the periodic boundary condition on z = =1, T, { Note that
the height of the cylinder is double. ) We call this problem [2T] and the
original problem [I']. This new problem [2I'] has an advantage that it is
O(2)-equivariant in the following sense: Let us define an action of the
orthogonal group O(2) by

(3.2) yulr, 2), vlr, 2}, ulr, 2 ), p(r, z)) —
(u(r,z + o), v(r, 2+ a), w(r, 2 + o). plr, 2 + @)

if v € O(2) is a rotation with angle «,

(3.3) Y(ul(ryz), vlr z), w{r, z), p(r,z)) —

(u(r, —2), 6(r, —2), —wlr, —2), p(r, —2))

if v € O(2)is a reflection. Then it is easily checked that the problem [2T']
is O(2)-equivariant: in other words, the governing equation is covariant
with the O(2)-action (3.2,3). We recall that the larger the symmetry
group is, the simpler the equation becomes. Therefore the introduction
of [2T] is an advantage, since [I'] is covariant with only a discrete group.
The relation between [21'] and [I'] is given by
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PROPOSITION 3.1. If (u*,v*,w*, p*) is a solution to [2I'] and if
(u*,v*,w*,p*) is invariant with respect to (3.3), then it satisfies [I]
in0 < z < T'. Conversely, if (u, v, w, p) satisfies [I'] and if we extend it to
(w*,v*, w*, p*) in such a way that u*,v*, p* are even extention of u, v, p,
respectively, and w* is an odd extension of w, then (u*, v*,w*,p*) is a
solution to [2I'].

In short, finding solutions to [I'] is equivalent to finding ”symmetric”
solutions to [2T"). From now we consider [2T']. In the remaining part of
this section, we explain how the analysis in [5] is applied to [2T].

There is a numerical evidence that, at some value of I, say I's , the
linearlized operator of (2.1-4) with (2.5,6) and the periodic boundary
condition has a four dimensional null space spanned by g; ~ g4 which
are of the following form:

g1(r, 2) = (Uz(r)cos (23), Va(r)cos (2¢), Wa(r)sin (29, P(r)cos(29))
where ¢ = 27z /T
g2(r, 2) = (Ua(r)sin (2¢), Va(r)sin (290) , Wa(r)eos (2¢), Po(r)sin (29)),

ga(r, z) = (Uy(r)cos (43), Va(r)cos (44p), Wa(r)sin(4v), Pu(r)cos(41))),
g4(7, 2) = (Us(r)sin (440), Va(r)sin (4%) , Walr)cos (440), Pa(r)sin (490))

In these expressions Uj(r), Vi(r), W;(r), P;(r) are functions of 7 only and
are determined through a certain ordinary differential equation ( see [6]

Let F = F(R,T;u,v,w,p) be a nonlinear functional for [2I'] realized
in some Banach space, and let P be a projection onto the 4-dimensional
space spanned by g1, -, ga. Then the bifurcation of Taylor vortices is
governed in a neighborhood of (R, T'4;0,v0,0,p0) by

G(R,T;z,y,2,w) = PF(R,T;(0,v0,0,p0) + 291 + Y92 + 293 + Wg4 + @),

where ¢ is in a complement of the range of P. Since O(2)-equivariance is
reflected in this bifurcation equation, & must be of a special form given
in [1,5].

In order to explain the form in [1,5], we identify real (x, ¥, z, w) space
with C? by £ = 2 + iy, = z + tw. Then & must be of the following
form: G = (G, Ga),

(3.4) Gy = f1€ + f2£¢,
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(3.5) Go = f3¢ + fa€7,

where f;(j = 1,2,3,4) are functions of R, T, |€]% [¢]* and Re(£2C) only.
For the proof, see [1]. Since G is a bifurcation equation, it holds that
71(0,0;0,0,0,0) = f5(0,0;0,0,0,0) = 0. Under this conditions, the
most general case is

(—A) f2<050;09070$0)¢ 07 f“&(O)O*O)O'\UO)# 0

which is considered in [1]. The degeneration which we mentioned at the
beginning of the present paper is

(B) f2(0,0;0,0,0,0) = G, f4(0,0;0,0,0,0) # 0,
and
(C) fE(OaO;O‘:O: 07 O) # 03 f‘i(o*,o;o) 07030,) = 0.

The case (B) is considered in [2] but (C) seems to be new. Since (3.4,5)
is applicable to a number of problems, we think it is useful to study
(3.4.,5) systematically. To this end, the machinaries by Golubitsky and
Schaeffer [3,4] are easy to handle for application-oriented mathemati-
cians. Below we summarize the resulis in [5], where a computations of
normal forms for (3.4,5) via the method in [3,4] are given. In the case
of (A), the bifurcation equation is, when slightly perturbed, generically
O(2)-equivalent to

fl

0,

(3.6)
0,

Il

{ﬁ@A+a+Md5iE<

CEX+ D¢ £ ¢&7
where ¢ is a perturbation ( unfolding ) parameter. Note that we only
consider an O(2)-equivariant perturvation. By the O(2)-equivalence we
mean that the bifurcation equation is transformed to one of this form
by a suitable coordinates change which preserves the O(2)- equivariance.

Roughly, we can say that (3.6) is a normal form in the case of (A). In
the case of (B),

(3.7) { E(ed + o+ alé]? + ¢ + cRe(£70)) + (8 + ¢|¢]*)EC
COEN+ alé? +B|¢)7) £ &7 =

o
s 2

is @ normal form. In the case of (C),

{ E(eA+ o+ alg]® + I £ EC =0,
C(5A+ alé]” + DICI® + eRe(£70)) + (B + dIE]*)E" = 0,

is a normal form. When we consider the problem [I'], the solutions are

invariant with respect to the reflection (3.3). Therefore we obtain the

bifurcation equations for [I'] by restricting complex variables &, ¢ to real
ones x, z. This restriction produces (1.1,2) from (3.7,3), respectively.

(3.8)
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§4., Discussions. We first remark that, when R is taken as a bifur-
cation parameter, there are additional splitting parameters T' and 7.
Therrefore there is a good possibility that the following scenario holds
true: In the (I, 7) plane there is a 1-dimensional variety where the criti-
cal Reynolds number of 2-cell flow and that of 4-cell flow coincide. And
on this variety there are points at which {B) or (C) holds. If we assume
that these points exist and are not far from the values taken in [7], then
it is natural that the figures in [7] are captured by (1.1,2).

We now show how the phenomana in [7] is explained by (1.1,2). We
choose « and @ suitably to have zero sets of (1.1). In Fig. 2-6, we
give drawings by a computer and a X-Y plotter. These explain the
bifurcation diagrams in [7] for large T’ { Fig. 4.3 (D-1) ). From (1.2) we
obtain Fig. 1, which explains diagrams for smaller I' ( Fig. 4.3 (C) of [7]
). Although there is a pitchpork bifurcation in Fig. 4.3 (A,B,C) of [7],
this cannot be explained by (1.2). This ,however, may be a consequence
of more global bifurcation. Except for this, our pictures fit the diagrams
in [7] quite well. For the complete set of the bifurcation diagrams of
(1.1,2), see [6].
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