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ABSTRACT

The problem discussed here is to determine the shape of the steadily mov-
ing water wave on two dimensional irrotational flow of incompressible fluid.
This classical problem involves two parameters: the surface tension coefficient
and the gravity constant. We consider the solutions in the range where the
surface tension coefficient is negative. We performed numerical computations
and found that pitchfork bifurcations occur and the branches extends toward
smaller surface tension. In the class of symmetric waves, we found no secondary
bifurcation.

1. Introduction

We study the problem of determining the shape of the steadily moving water wave on
two dimensional irrotational flow of inviscid incompressible fluid. This classical prob-
lem involves two parameters: the surface tension coefficient and the gravity constant.
It is now well-known that there exists an amazingly large number of 2D capillary-
gravity wavesh 3 & T 1011 - Among these, Chen and Saffman?® is a pioneering paper
which opened the world of rich structure of the capillary-gravity waves. Stimulated
by this, we computed® © 10 ! numerically the bifurcation diagrams rather than par-
ticular solutions. We obtained many complicated diagrams which were new to us.
An independent research by Aston' also shows very many solutions.

In the present paper, we continue to numerically compute permanent waves but
we change the sign of the surface tension and look for what phenomena can be found.
As far as we know, the case of negative surface tension has not been considered yet,
presumably because the case is unphysical. However, it seems worthwhile drawing
attention to the fact that the governing equation ( for the permanent states ) has
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a perfectly rigorous mathematical meaning. Our ultimate goal is to understand the
global structure of the complex bifurcation of the capillary gravity waves with pos-
itive surface tension. However, we hope that capturing waves with negative surface
tension may well contribute to the goal, as overlapping ( thus totally unphysical ) so-
lutions clarifies the global bifurcation and led to a discovery of new, non-overlapping,
physically meaningful solutions in our previous papers® & 10,

We are also encouraged by Prandtl and Tietjens® in which the authors briefly
consider the free surface between water and alcohol ( art. 28 of the book ), state the
surface tension is negative in the case, and hint the existence of unstable equilibrium
figures. As a final comment, we note that Peregrine® derived an equation which is
related to ours and found exact solutions to the equation. His solutions are interesting
in that they correspond to the limiting case of our equation, see the next section. If
we compare our present research with Peregrine’s waves, then our hope mentioned
above would not be an imaginary one.

Our conclusion is, roughly stated, as follows: (1) there are bifurcation points at.
which the surface tension coefficient is negative; (2) the bifurcations from them are
pitchforks in all the cases; (3) secondary bifurcations were not captured as far as we
computed.

2. Levi-Civita equation

Since we deal with 2D stationary waves only, it is most convenient to use the non-
linear equation of Levi-Civita. It has some variants and we employ here an integro-
differential equation given by the first author?. The equation, which we will introduce
below in a moment, is valid under the following hypotheses:

e the fluid is incompressible and inviscid;

e the flow is two dimensional and irrotational;

the flow depth is infinite;

aéting forces are the surface tension and the gravity, only;

the wave profile is stationary in a coordinate system moving with the same
speed as the wave speed;

e the wave profile is periodic in the horizontal coordinate.

We are now in a position to introduce the Levi-Civita equation. It is written as

follows: oHB .
d fe ~Hf d [ god
i B — =0 1
( 5 > pe~“7sinfd + q (e ) 0 (1)
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Here, 0 = 6(0) is an unknown function of o € [0,27); p and ¢ are parameters. H is
the Hilbert transform defined as follows

oo [eo]
H (Z (ansinno + b, cos na)) = > (—ancosno + by, sinno)

k=1 k=1
Two non-dimensional parameters are defined as

gL 2T
P=g—, 9= —=7

2me mctL
where L is the wave length, ¢ the wave velocity, g the gravity acceleration, m the
mass density, and T is the surface tension coefficient. Details on the equation (1) can
be found in the reference* ( see also Bridges and Dias? ) and we do not repeat them
here. However, it may be useful to recall the following theorem:

Theorem 1 (0.%) Define
‘ d [ e2H0 o d [ ,d0
F(p,q,0) = e (T) —pe~"sinf + o (e a—;) :

Then F' 1s a smooth mapping from R*x (H*(S*)/R) into H*(S') /R, where S* denotes
the circle and H® denotes usual Sobolev spaces of order s. The symbol /R implies the
function spaces with zero mean on S*. The mapping F is O(2)-equivariant?.

Thus the problem is reduced to searching for zeros of F. Once a zero (p, ¢, (o))
is obtained, then we can draw the free boundary by a certain simple formulat. All
the researches until now were concerned with the case where ¢ > 0. We consider in
what follows the case where ¢ < 0.

As is already proved*, the bifurcation may occur if and only if p and ¢ satisfy
n?q + p = n for some positive integer n. We consider the case of n = 1. This means
that we consider bifurcating solutions which have one trough and one crest in the
fundamental wave length.

Although Levi-Civita’s equation (1) has no bearing on physical phenomena if
g < 0, the following limit is interesting: Let r > 0 be a fixed parameter and let
p = —qr. If we divide (1) by ¢ and let ¢ — —oco, then the equation (1) becomes

-Hé H§
TE sin @ + — (6 ——) = 0.

This is essentially the same as the equation which was derived by Peregrine® in the
analysis of surface shear waves: For, this equation is transformed to

(e a dh/dz _
M>+M(¢H4%M@J > )
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fcosfdo, % = tanf. The equation (

by introducing z and A through dz = o
is the same as Peregrine’s equation except for scaling constants. He noted that

equation is the same as for Euler’s elastica. The situation where Peregrine deriver
equation (2) is totally different from ours but this unexpected relation is interestin,

and may have possible applications.

e-—H

3. Numerical experiment

We discretize the equation (1) as before® 7. It is a spectral-collocation method with
H'B. Keller’s path continuation algorithm. We refer the reader to these papers as
for the numerical method, since they are the same. Since the equation (1) is O(2
equivariant® 2| restriction to some subclass is necessary to find a branch. In th
paper, we restrict our attention to certain symmetric waves. This means that we
look for solutions #(c) which are odd in ¢. This restriction gives us a pitchfork
bifurcation from simple eigenvalue. To sum up, we look for approximate solution

the following form:
AT

f(c) = Y _ ansinno,

n=1
where a, (1 < n < N) are unknown. The number N determines the degree of the
approximation: we took N = 255 for the computations of —0.5 < ¢ < —0.1 and
increased it until N = 1023 for the computations of ¢ = —3.0.

sum

Figure 1: The bifurcation diagram in (sum, ¢) plane.
The pitchfork extends to left and seems to extends T
indefinitely towards infinity. The bifurcation point is
g = —0.1. No secondary bifurcation was found.
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(d)

Figure 2: Wave profiles for ¢ = —0.5(a), —1.0(b), —2.25(¢),
—3.0(d). N is equal to 255,511,1023, 1023, respectively.
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Because of the size limitation of the paper we focus on the result. We have
bifurcation points {(p,q) ;¢ = 1 — p}. We fixed p = 1.1 and considered the set of
solutions (6, q), with g as a bifurcation parameter. The bifurcation is a pitchfork
emanating from ¢ = —0.1, see Figure 1. We plotted the solutions in the (sum, g)
plane, where sum = ‘a; + ag + - -+ + ay with a, being given in (3). This quantity
measures the largeness of the solutions, since

sum = —(H8)(0),

and since exp((H6)(0)) is equal to the absolute value of the flow velocity divided by
the wave velocity®. The pitchfork is subcritical; namely the branch exists in the range
g < —0.1. As we trace the path of solutions, ¢ becomes smaller and smaller. The
wave profiles depart from nearly sinusoidal forms to some particular forms presented
in Figure 2.

When we trace the solutions, we computed the eigenvalues of the Jacobians at the
solutions, with a hope that we might have secondary bifurcations. However, we did
not find any eigenvalue which cross the origin, as far as we have computed. Similar
computations are carried out in the case of p = 1.2 and 2.1 but we find no critical
eigenvalues, either. So we conclude that secondary bifurcation is absent n g < 0
and in the symmetric waves.  There is the possibility that there is a secondary
bifurcation of non-symmetric waves. However, more careful numerical tests would be
necessary to derive any further conclusion.

4. Tanaka’s method

The above-mentioned numerical method has a limitation that the Fourier series of
f(c) tends to have a longer tail as g decrease. At ¢ = —3.0, the 1023-th Fourier
coefficient ( see the equation (3) ) satisfies a(1023)/a(1) =~ 3.8846 x 107, while it
equals approximately 2.8577 X 107" at ¢ = —4.0. The wave profile at ¢ = —4.0 with
N = 1023 is shown in Figure 3; it clearly shows inadequacy of truncation size.

In order to go further we modified our scheme following Tanaka'?’s method for very
steep gravity waves. He uses a certain variable transformation. Using his technique
we are able to trace the solution path further towards left, until ¢ ~ —7.0. The
experiments are now in progress and will be reported elsewhere.

Acknowledgment: The authors are very grateful to the referee who brought our at-
tention to the Peregrine’s paper. This work was partially supported by the Sumitomo
Foundation.
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Figure 3: Wave profile for g = —4.0. The truncation is
N = 1023. Insufficiency of the modes are clearly seen at
the crest.



