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§0. Introduction.

In this paper, we consider a problem of progressive waves, by which we mean
a fluid motion with free surface whose shape looks constant in a moving frame.
Although this classical problem has a long history, the global picture of the
set of the solutions ( bifurcation diagrams ) is not completely known. Chen
and Saffman [1,2] computed several types of bifurcating solutions numericaﬂy.
Following them, the first author presented in [12,13] numerical computations
with an emphasis on the bifurcation diagrams, on which [1,2] did not pay much
attention. It is our objective in this paper to give a mathematical legality to the
analysis in [12,13].

Our study is based on the theory of normal forms of bifurcation equations.
We can show that the structure of the progressive water waves in [12,13] is

explained by the following sets of algebraic equations:
(4) { (A +n+ar12® + agz® + aaz?2)z + (0 + 1128)22-= 0,
(X + 122 + Bo2?)z + 22 =0,
and
(B) { (eA+n+a1z? + apz? + a2’z + agz® + as2?2® + g2tz + 222 = 0,
(68X + Brz? + Boz? + B2’z + Pzt + Bsz®2® + B2z + 23 = 0,
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where A,z and z are real variables, and ¢,6,a; and 8 (j = 1,2,--- ,6) are real
constants. The equation (A) corresponds to the case of mode (1,2), which is de-
rived by the second author ([9,10]) from a certain degeneration of the equations
given in Fujii, Mimura and Nishiura [4]. The meaning of the degeneration is
that a certain coefficient of the bifurcation equation is very small. The equation
(B) corresponds to the case of the mode (1,3) which is derived in [10]. To study
a normal form, we followed the method given in [4,5]. To apply their theory,
we must prove that the present problem has an O(2)-symmetry. Due to the
O(2)-symmetry, the bifurcation equation can be simplified and we can get to
the polynomial equations above. Detail of how to derive the above polynomials
is given in [10].

In this paper we formulate the problem by using the Stokes expansion, while
Levi-Civita’s formulation is used in [9,10]. Main result is to prove that the
problem is reduced to a bifurcation problem with O(2)-equivariance. This is
done in §2 after we have introduced the Stokes expansion method in §1. The
O(2)-equivariance of the present problem is proved in [9]. However, the proof
in [9] uses Levi-Civita’s formulation, which differs from the Stokes expansion
method used in [12,13] and the present paper. Consequently, we give a proof of
O(2)-equivariance for the present formulation. We show in §3 how the equations
(A,B) explain the bifurcation diagrams in [12,13].

§1. Formulation.

In this section we introduce our formulation. We take an z-y coordinate system
moving in the same direction as the progressive wave with the same speed ¢. The
free boundary is represented by a function H as {(z,y) | y = H(z)} and the fluid
region is {(z,y) | —o0 < & < 00,0 < y < H(x)}. We assume a usual hypothesis
that the wave profile is periodic in  of the period, say, L. By the periodicity,
we may restrict our consideration to the flow in Qp = {(z,y) | |z| < Lo <
y < H(z)}. We, however, do not assume another well-accepted assumption that
the wave profile is symmetric ( this implies the function H(z) is even function ).
This inclusion of nonsymmetric waves is necessary so as to see O(2)-equivariance
in §2. This is also natural in that there is a numerical evidence of the existence
of nonsymmetric waves ( Zufiria [14] ).

Problem. Find functions H = H(z) (-% <2 < L), U(z,y) and V(z,y)
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((z,y) € Qg = {-£<a<io<y< H(z)}) satisfying the followings:

(1) U and V' are harmonic in Qp and w = w(z) = U + 1V is a complex
analytic function of 2z = z + iy,
(2) H(z) and %ﬂ are periodic functions of z with a period L,
z
(3) V=0 on y=H(z),
(4) V=—a on y=0,
. 1, dw 2 , H,
(5) 3 | e " +gH ~T (W)x = constant ony = H(z),

where a, ¢, g and T are positive constants. Subscripts mean differentiations. ¢ is
a propagation speed. ¢ is the gravity acceleration and 7' is the surface tension
coefficient. a is determined by ¢ and the mean depth of the flow and ¢ = o
corresponds to infinite depth. We remark that the constant of the right hand
side of (5) depends on «a, ¢ and the choice of origin.

We formulate the problem by what is called the Stokes expansion method.
Following the idea due to Stokes that z is regarded as a function of w, we
can overcome the mathematical difficulty caused by the fact that the boundary
portion {y = H(z)} is unknown. The following (6) is a modification of the Stokes
expansion so that w = U + ¢V = U — ia corresponds to the z-axis: we seek a
solution of the following form:

(6) z =2z 41y

_w N _Z_I—,- i 1 sinh(“_‘—‘*—‘zm(jzu—a)) 1B cosh(~———~———2”“(ci£"““)
¢ 2rfn " sinh( 2822 " cosh( 2274

(o +iBo)

27
where A,,B, € R are unknowns to be sought and 7 = /—1. The constant
terms, Aq and By, are determined by the positioning of the origin. There-
fore they do not affect wave profiles. The function z = z(w) is defined in
{lU] £¢cL/2,—a <V <0}. Consequently the free boundary problem is trans-
formed to a problem of fixed domain. By (3), the free surface {(z,y) |y = H(z)}
is obtained by putting V = 0 in (6). This gives us

U L3[4, 2nra, - 2nalU. B, 2n7U ] LB,
z=— %Z[“mth( ~ ) sin( 7 )—TZ—COS( "7 )}+_27r ,
L X [A, 2nnlU B, 2nma. | 2nwU LAg

y——-§7—rZ[-1—1~COS( : )—!——;—tanh( I )sin( I )}—}- 5

1
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Our task is, therefore, to determine (A4,,B,,n = 1,2,---). We determine
them by the condition (5). On the free surface, the stream function V is constant,
hence we have dw = dU there. So |dz/dw|* = (dz/dU)* + (dy/dU)?. We
define non-dimensional variables ¢ = 27U/cL, X (§) = 272(U)/L and Y (£) =
2my(U)/L. Then we have the following equivalent expression for (5).

(7) ¥(€) = constant,
where
o 1 ‘X'Y” XNy
YO =5xayye T T gyl

. = 3 —A—Eco h(nv)sin(n -—&COSN
o ) XO=r X S nmnng - 20 + 2

[ee]

Y€)= Z [él—n cos(né) + % tanh{nv) sin(nf)] + Ay,

v =2raf(cL), p=2nc*/(gL), & = 47T/ (gL?)

Here ' means differentiations about ¢. Chen and Saffman used the above equa-
tion (7-8). We, however, prefer the differential form (7°) of (7) since it is con-
venient in order to apply bifurcation theory given by Crandall and Rabinowitz
([3]) and others. Then the task is to solve

(" d%@(c‘) =0

for given x,u and v. Since only derivatives of X and Y appear in d¥/d¢, we
note that the constant terms, Ay and By, disappear and we have a formulation
which is closed in (A4, A2, -+ ,B1,Ba,--+). To state in a more mathematical
fashion, we rewrite this problem as a problem to seek zeros of a mapping F
which we define now. Suppose we are given two sequences u = (A, Az, --) and

v =(By,Bs,---) . We define sequences (A}, A3, ) and (B}, Bj,---) by

© A= (UOSR0Y) = 2 (@6 sin(n),

T

and

(0) B =20 (d%ws),cos(ns)) _ o) (g (), cos(né)),

s
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where
o 1 ! . X'V xryry!
2= (spiym) +Y Gt )
(8" X' =1+ Z[A" coth(nv) cos(n€) + B, sin(né)] + By,
1
Y'(€) = > [~Ansin(né) + B, tanh(nv) cos(né)] + Ao,

1
Then ®,,(€) is written as

(11) ®uo(€) = ) Afsin(j€) — > B tanh(jv) cos(j€).
F=1 Je=1

We define a mapping F by F(x, u, v;u,v) = (A}, A%, - - ,Bf, B3, ---).Consequently,
our task is to solve

(12) F(s, p,v;u,0) =0
for given &,y and v.
Let us define Banach spaces of series by

Vk:{u=(A1,A2,"')]anIAn]<oo} (k=1,2,---),

with the following norm:
lulle = > nl4, .
n=1

Let X} be Banach spaces of functions having absolutely convergent Fourier series

defined. by

Xp={f=) Ancos(né)+ > Bysin(nf) € C°(S)/R | (4n),(Bn) € V).

n=1 n=1

REMARK 1. If u,v € Vi (k > 1), then the functions X(£) and Y (£) are
C*—functions of €.

PROPOSITION 1. F' is a smooth mapping from U into V x Vo, where U is some
neighborhood of R® x {(0,0)} in R® x V, x V.

PrOOF: First we remark that X, ® R is a Banach algebra, namely if f,g €
Xo®R, then f- g€ Xo®R. Xt ®R (k > 1) are also Banach algebras. Note
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that if w = (A1, A, +),v = (B1,Ba,-++) € Vg, then X'\ Y' € X5, X", V"
€ X; and X", Y" € Xo. If |Jullz + |Jv|l2 < 6 < tanh(yg) for 0 < vy < v, then
(X% + Y1) < oo, since [X'(6)] > 1 - coth(uo)(Julo + u]le) and [¥'(8)] <
][u“() -+ []U”o By this we see that (X’2 -+ Y'2)_1 € X() ® R. These facts and

XIXII + Y’Y” lelll o X"'Y’
3 e TY —r 3
(X2 4Y72) (X2 4Y72)3
+ K'(XIYII — X/IYI)(XIXII + YIYII)
(X2 +Y12)% )

d
a‘g‘l’uv(g) = =i

prove that ® € X,. On the other hand, we have tanh(v) < tanh(nv) < 1(1 < n).
These fact and (9,10) show that (A%) and (BX) € V,. B

Our problem is now to solve the nonlinear equation F(x,u,v;u,v) = 0 in
U. To put our problem into a bifurcation theoretic formulation, we consider a
Fréchet derivative of F' at (u,v) = (0,0), which is denoted by DF (&, u,v;0,0).
We prove the following

PROPOSITION 2. (u,v) = (0,0) is a solution for all k,u and v.
DF(k, p,v;0,0): Vo x Vy — Vo XV fails to be an isomorphism if and only if
k, it and v satisfy the following (13) for some positive integer m:

(13) W= tanh(mz/)(% + mk).

PROOF: F(k,u,v;0,0) = 0 is obvious. By linearizing (7°) at (u,v) = (0,0) we
have
__qul + YI . ,{Ym — 0.

By this equation and (8), we obtain
(14) DF(x,p,v;0,0)(u,v)

= Z{;m coth(nv) — 1 — kn®}[A, sin(né) — B, tanh(nv) cos(né)],
((u,v) & V2 X Vg),

and (13) follows immediately. §
Now we introduce the following symbol:

S ={(k,p,v) | = tanh(mz/)(—;r—t + mk)}.

DEFINITION.
(i) If (5, p,v) € Sp and (K, p,v) ¢ S (VYm # m), then we call (k, 1, v) a simple
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bifurcation point of mode n.

(ii) Let m,n be integers such that 0 < m < n. If (kypyv) € SN S, = S
and (k,p,v) ¢ Si (V1 # m,n), then we call (%, pt,v) a double bifurcation point
of mode (m,n).

For fixed v = vy and m € N, {(, ) | (5, t,v0) € S} forms straight lines.

Let m and n be fixed integers such that 0 < m < n and let (%o, tt0, v0) be the
double bifurcation point of mode (m,n). Then we have

ntanh(myg) — m tanh(nwy)

(15) Fo = mn(n tanh(nvy) — mtanh(muy,))’

2 _ 02
(16) o = (n® — m?) tanh(mu,) tanh(nu,)

mn(n tanh(nvg) — mtanh(mug))’

§2. O(2)-equivariance.

In this section we define an action of the orthogonal group O(2) on ¥y x W
and prove that the mapping F' commutes with it. Let us recall that 0(2) is
generated by rotation with angle 8 (0 < 8 < 27) and the reflection with respect
to the z-axis. Accordingly,

W — W —— and W —
o

define actions of O(2) on w. These actions define the following actions on

(AI’A23"' >B17B25"'):
(17) (A13A2a"' 7BI>B27"') — (A11>Af?a )Bi7Bé)“')7
where the entries of the right hand side are:

A=A, B, tanh in{s
(18) { v cos(nf) + anh(nv) sin(nf) for the B-rotation

B,, = —A, coth(nv) sin(nf) + B, cos(nj3)
and

(19) A=A, B,=-B, for the reflection.

n

Then we have the following theorem which is a basis of the subsequent analysis.

THEOREM 1. F commutes with the above actions of O(2). Namely the following
relation holds

F(E>H7V;7(u7 U)) = 7F(H'v Hy ViU, U) (7 € O(2>)
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PROOF: By the B-rotation, X'(£) is sent to X'(£ + f) and it holds that

X'E+p) =1+ Z[A” coth(nv) cos(n(€ + B)) + B, sin(n(§ + B))],

o0

=1+ Z[A'n coth(nv) cos(né) + By, sin(nf)].

1

We have similar expressions for the other derivatives of X and Y. Therefore
sending ¢ to ¢ + B is equivalent to sending ((4;),(B;)) to ((4}),(B5)) by the
rule (18). On the other hand ®(£) is, by the action of B-rotation, sent to

B(E+0) =) Ahsin(n(¢+ B)) — > Bj tanh(nv) cos(n(£ + 8)),
= Z{A; cos(nfB) + B tanh(nv)sin(nf)} sin(né)

- Z{B: cos(nB) — A}, coth(nv)sin(nf)} tanh(nv) cos(nf).

This shows that ((A%),(B?%)) is also transformed by the rule (18). Hence (18) is
satisfied for the B-rotation. Similarly, it is easy to see the commutativity with
the reflection. B

Although this theorem is simple, it is valuable in that the presence of a symme-
try group considerably simplifies the bifurcation equation. Namely the theorem
enables us to use a classification of O(2)-equivariant mappings in [5,7]. Let inte-
gers m and n be fixed as 0 < m < n and let (ko, fto,v0) be the double bifurcation
point of mode (m,n). We now have

THEOREM 2. The kernel of DF(ky, o, v0;0,0) is of 4-dimensions, and it is

spanned by (em,0),(0,em),(€n,0) and (0,e,), where en, = (0,---,0, 1,0,--+)
and 0 = (0,0,--) € V. :

PROOF: (14) easily proves this.
Let N denote the kernel and represent it as

N = {z(em, 0)+y coth(mv)(0, em)+2z(en, 0)+w coth(nv)(0, e,) | ,y,2,w € R}.

Introducing complex variables 0 = z + iy and { = z + 1w, we identify N with
C? = {(0,¢) | 0,¢ € C}. Then the actions of O(2) on N are expressed as follows:

(20) (0,¢) — (7,0) for the reflection,
(21) (0,¢) — (e7™Po, e () for the rotation with anglef.
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Since (z,y coth(mv), z,w coth(nv)) is sent to (z, —y coth(mv), z, —w coth(nv))
by reflection (19), (20) is obvious. (z,y coth(mv), z, w coth(nv)) is sent by (18)
to

(z cos(mfB) + y sin(mB), {y cos(mf) — z sin(mp)} coth(mwv),
z cos(nf) + w sin(nf), {w cos(nf) — zsin(nB)} coth(nv))
= (Re(e”imﬁd), Im(e™"™P ) coth(mv), Re(e™"2¢), Im(e™F () coth(nv)),
which proves (21).

We now use the Lyapounov-Schmidt method to obtain a bifurcation equa-
tion. Denoting by P the L%-projection onto N, we consider an equation of

¢ = ¢(r,p,v;2,y,2,w):

(I — P)F(k, p,v;2(em,0) + ycoth(mv)(0,en) + z(en, 0)
+ w coth(nv)(0,en) + ¢(k, i, v, z,y, z,w)) = 0.

In a standard fashion, this is solved uniquely in some neighborhood of (xg,
Ko, 03 0,0,0,0) and we have a function

¢:D — (I —P)Va x Va),
where D is a neighborhood of (¢, ig, 10;0,0,0,0). We now define G by
G(K’sﬂa vz, y,Z,'LU) = PF(K"»"L7 V3 IL‘(Gm}O) + ycoth(mv)((), em) + z(en,O}
+ w coth(nv)(0, en) + é(&, p, v 2, ¥, 2, w)).

As above, we use the notation by complex variables ¢ and ( and we identify the
range of G with C? in the same way. As for G, we have the following important

property:

THEOREM 3. The mapping G is defined in a neighborhood of (kq, g, 9;0,0)
in R® x C? and takes its value in C*. If we denote its components (Gy, Gy), it
holds that

G(K') Hy V3 e—-imﬁo.7 6~inﬂ<> = (euimﬂG1(57 My V50, C)v 6_in'BG2(K’> H V50, 4))7

for all B €[0,27), and

G(Iis Vs —0—'7 Z) = (Gl(ﬁ'a Hy V50, C) GZ(K’7 H 50, C)) .

PRrROOF: As is proved in Sattinger [11], the bifurcation equation inherits the
O(2)-equivariance of the original equation. The above property is O(2)-equivari-
ance in the present notation. §



146 Mayumi SHOJI and Hisashi OKAMOTO

In this way, we have the same property as in Theorem 3.4 in Okamoto ([9]),
where Levi-Civita’s formulation is used instead of the Stokes expansion here.

Next we study the bifurcation equation G' by making use of theorems in [4,5].
We introduce a parameters A\; and Ay by Ay = £ — kg and Ay = p — o and we
fix v. Putting A = (A1, A2), we can write bifurcation equation as G = G(}; 0, ().
The following Theorem is proved in [4].

THEOREM 4. If G = G(\;0,() is a smooth mapping from a neighborhood of
the origin in R? x C? into C?, then it must be of the following form:

G1(N0,0) = f1(\ U, V, R)o + f2(\ U, V, R)g™ ~1¢™

1

Ga(Xio,0) = Fa(\ U, V, R)C + fs(\ U, V, R)e™ T Y,

where f; (1 < j < 4) is a smooth function from a neighborhood of the origin in
R® into R. U,V and R are defined by

U=|o’,V=[(]R=Re@" (™).
m' and n' are positive integers with no common divisor such that n'/m' = n/m.

The equation (A) in §0 is derived in [9] from degeneration of f4 for the case
of n/m = 2. The equation (B) in §0 is the case of n/m = 3. For the derivation,
see [10,13].

In the next section, we compare the bifurcation diagrams obtained by our
simulation with those of zero sets of (A) and (B).

§3. Bifurcation diagrams.

In this section, we show our results and compare them with the diagrams of
zeros of the equations (A) and (B). Here we consider only symmetric waves, so
we put Bj = 0for all j > 1in (6). The figures in this paper are those of infinite
depth, i.e v = co. The waves of finite depth are presented in [13].

The outline of our numerical algorithm is as follows. By replacing (A1, Az, +)
with (A1, 4z, -+ ,AN,0,--+) and truncating, (A}, A3, ---) at n = N, we have
the discrete version of the equation (12). The resulting nonlinear equations,
combined with one more equation of controlling bifurcation parameter, can be
solved by the BEuler-Newton method. In order to follow the bifurcation branch,
we employed H.B. Keller’s method ([6]). Details of numerical procedure are
written in [13]. We computed bifurcating solutions from the double bifurcation
points of mode (1,2) and (1,3).

First we explain the case of mode (1,2). By (15,18), (o, to, ¥o) = (0.5,1.5, 00)
is the double bifurcation point. Figure 1 shows wave profiles of bifurcating so-
lutions for x = 0.7 and each wave is drawn in one wavelength (0 < 2 < L).
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Wave configurations of solutions, which bifurcate from the simple bifurcation
point of mode 2 or mode 1, are transformed as figures a; —as or ¢;—c3 respec-
tively. From the branch of mode 2 there emanates a secondary bifurcation, the
wave configuration of which is transformed as figures b;—bs and as. The sec-
ondary branch rejoins the branch of mode 2 again. Waves of figures aq4, as, bs
and c3 have overlapped fluid regions like Figure 2. Such solutions are physi-
cally meaningless, but they have equally rigorous meaning as solutions of (12).
Although Chen and Saffman stopped computing when waves touch themselves
in such a way as Figures ag, by and c3, we continued the computation further.
We would like to emphasize the importance of such unphysical solitions for the
understanding of the global bifurcation diagrams. It is important to notice the
difference of the diagram in Figure 1 and that of Figure 4 (ii): a turning point
appears or disappears as the bifurcation parameter x changes. Such a difference
is clarified only when we consider all the solutions to (12). In Figure 1, all the
lowest parts of self-intersecting waves appear to have sharp corners, but they are
actually smooth as shown within the dotted circle. Figure 3 shows the bifurca-
tion diagram of these drawn in 4y-A,-p-space. In Figure 4, we show bifurcation
diagrams for various & near ko. Here dotted parts of branches indicate solutions
which have overlapped regions as above.

Now we show that these diagrams can be produced by (A). Figure 5 shows
diagrams of zero sets of (A) for appropriately chosen coefficients. We may regard
(i) - (iv) of Figure 4 are qualitatively the same as (i) - (iv) of Figure 3 respectively.

In Figure 6-7, we show the case of mode (1,3). (ko,po,v0) = (1/3,4/3,00)
is the double bifurcation point. The numerical results are shown in Figure 6.
Meaning of dotted parts of bifurcation branches is the same as above. In Figure
7, we show diagrams of zero sets of the equation (B). These figures show qualita-
tively the same phenomena. Each secondary bifurcation branch is transcritical
and forms a closed loop. As & increases, the closed loop becomes smaller, it
comes to have no intersection with the branch of mode 3 and then disappears.
These are new bifurcation structures we have discovered.

84, Conclusions.

Chen and Saffman used the Stokes expansion method in [1,2]. To write it
mathematically, we modified their algorithm and used the equation (7°) instead
of (7). By this formulation we proved O(2)-equivariance which is a basis for the
subsequent theoretic analysis.

For our results we emphasize the following facts. First, we can not see qualita-
tive agreement of the numerical results with the mathematical analysis unless we
consider not only ordinary solutions but also those which have self-intersections.
Secondly, the structures for mode (1,2) are new examples for O(2)-equivariant
systems which have analyzed only theoretically in [9]. Thirdly, new bifurcation
diagrams were found in the case of mode (1,3). To explain these we introduced
(B). For a mathematical proof, see [10].
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We could hardly compute for small k. In particular, we could not compute
asymptotic behavior to the pure gravity waves. These are left to the future.
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Figure 6




