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1. Motivation

This course is an introduction to the beautiful theory of p-adic analytic groups. Informally,
p-adic analytic groups are the non-Archimedean analogue of the notion of a real Lie group. As
motivation, let us recall the latter.

Definition 1.1. A Lie group G is a group together with the structure of a smooth manifold
such that the group multiplication G×G→ G is smooth.

Note that this last condition essentially ensures that the group and smooth structures are
compatible with each other. One can show that it also follows that the group inverse map
(−)−1 : G→ G is smooth, too.

Example 1.2. The basic example of a Lie group is given by GLn(R), the group of invertible
n× n real matrices. It is a group under multiplication of matrices and a smooth manifold as an
open subset of the vector space of all matrices.

Example 1.3. Many important Lie groups arise as subgroups of GLn(R). For example, we have

O(n) ≤ GLn(R);
the subgroup of matrices which are orthonormal; equivalently, which correspond to a linear
automorphism of Rn which is an isometry. Similarly, we have

SO(n) ≤ O(n),

the subgroup of matrices with positive determinant; equivalently, which correspond to an orientation-
preserving linear automorphism.

Example 1.4. If G is a Lie group, then it is not difficult to see that so is its universal cover
G̃→ G. For example, for n > 2 the universal cover of SO(n) is given by the so-called spin group

Spin(n)→ SO(n).

Since p-adic analytic groups are the analogue of Lie groups, one might expect that the the-
orems we can prove about them would be similar in spirit to the ones we prove about real Lie
groups. As motivation, what are the kinds of things one might learn about Lie groups in a
graduate course?

(1) (The Lie correspondence) - The tangent space of the identity of a Lie group has a
structure of a Lie algebra which completely determines its local structure. Moreover, in
the simply-connected case, the group is uniquely determined by its Lie algebra, giving
an equivalence of categories.

(2) (Analycity and uniqueness) - The smooth structure of a Lie group can be uniquely
promoted to a structure of an analytic manifold. Continuous group homomorphisms
between Lie groups are automatically analytic.

(3) (Group-theoretic properties) - Closed subgroups of Lie groups are again Lie. Moreover,
any Lie group G has a no small subgroups property ; that is, there exists an open neigh-
bourhood U ⊆ G of the identity which doesn’t contain any subgroups.

In this course, we will undertake a similar study in the p-adic context. As cohomology of
p-adic analytic groups is often important in applications, we will also prove basic results about
their cohomology. In this first lecture, we give an informal overview of the kinds of objects and
results we will touch upon throughout the term.

Where do the p-adics come from? We begin with Q and look at different completions:

Q

R Q2 Q3 . . . Qp
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Completion with respect to the standard Archimidean metric gives the real field R, but com-
pletions with respect to p-adic metrics instead yield Qp. The latter can be also easily described
using algebra.

Definition 1.5. The ring of p-adic integers is given by

Zp := lim←−Z/pn.

This has a canonical limit topology, where we endow each finite ring Z/pn with the discrete
topology, which makes it into a compact Hausdorff ring. The p-adic field is given by the local-
ization

Qp := Zp[p
−1] ≃ lim−→(Zp

p−→ Zp
p−→ · · · )

which we endow with the colimit topology.

There is a metric on Qp which induces the same topology. Since Zp is a complete discrete
valuation ring, any non-zero x ∈ Zp can be written uniquely in the form x = pn ·u, where u ∈ Z×p
and n ≥ 0. The same works for Qp, where now we need to allow n ∈ Z.

Definition 1.6. The p-adic absolute value | − |p : Qp → R is given by
(1) |0|p := 0,
(2) |pn · u|p := p−n for any u ∈ Z×p .

It is not difficult to see that this really is an absolute value in the sense that it is multiplicative

|xy|p = |x|p|y|p

and subadditive
|x+ y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p.

This absolute value defines the p-adic metric

d(x, y) := |x− y|p

on Qp. It is a good exercise that this metric induces the colimit-limit topology described before.
As any complete metric field, Qp admits differential calculus; that is, standard notions of

convergence or derivatives work in this setting and satisfy the usual formulas. However, we have
a host of new phenomena due to the fact that the is the p-adic metric, unlike the standard metric
on R, is actually an ultrametric. That is, the p-adic metric satisfies the stronger form of the
triangle inequality given by

d(x, y) ≤ max(d(x, z), d(z, y))

In this course, we will not delve too deeply into p-adic analysis, but let us give two instructive
examples which convey a little bit of the flavour of the field. Among these two examples, the
first one highlights that sometimes the non-Archimedean world is much more simple than the
real one, while the second one highlights that it can also carry unexpected dangers.

Example 1.7. If ai ∈ Qp is a sequence of p-adic numbers, then the following two conditions are
equivalent:

(1)
∑

i≥0 ai converges,
(2) ai → 0 ∈ Qp; equivalently, |ai|p → 0 ∈ R.

Indeed, the ultrametric inequality implies that the p-adic absolute value of partial sums∑
m≤i≤n ai is bounded by the maximum of absolute values of their terms, so that they be-

come very small as the terms do. This makes convergence of series much easier in the p-adic
world than in the real world.
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Example 1.8. We give an example of a smooth function f : Zp → Zp whose derivative vanishes
identically, but which is injective. In particular, it is not constant.

Using the limit description Zp ≃ lim←−Zp/p
n, it is not difficult to show that any a ∈ Zp can be

uniquely represented as a convergent power series

a =
∑

aip
i,

where ai ∈ {0, 1, . . . , p− 1}. We now define f by

f(
∑

aip
i) :=

∑
aip

2i.

It is a good exercise in getting used to the p-adic metric to verify that this function satisfies

|f(x− y)|p ≤ |x− y|2p.

Since this function is highly contractive (roughly the same as x 7→ x2 is around zero, but at each
point), it is continuous and its derivative vanishes identically. However, it is immediate from the
formula that this function is injective and hence even a homeomorphism onto its image.

One way to interpret Example 1.8 is that smooth p-adic functions can be very badly behaved.
As a consequence, to define the p-adic analytic groups, we work with a more restrictive class of
functions where such pathological behaviour cannot occur.

Definition 1.9. Let U ⊆ Qn
p be an open subset. We say a function f : U → Qp is locally analytic

if it is locally given by a convergent power series.

In more detail, f is locally analytic if for any u ∈ U we can find
(1) a real ϵu > 0,
(2) a formal power series Fu ∈ Qp[[X1, . . . , Xn]]

with the properties that
(1) if we expand the formal power series

Fu =
∑

I=(i1,...,in)

aIX
I

in terms of monomials then

ϵi1+...+in
u |aI |p → 0

as |i1 + . . .+ in| → ∞,
(2) if u′ = u+ (x1, . . . , xn) ∈ U with |xi|p ≤ ϵu, then

f(u′) = Fu(u
′ − u).

Note that the first condition guarantees that in the context of the second, the right hand side of

Fu(u
′ − u) =

∑
aIx

I =
∑

a(i1,...,in) · x
i1
1 · . . . · xinn

converges, so that the equation makes sense.
To define p-adic analytic groups one mimics the definition of Lie groups. This means that we

first need an appropriate notion of a manifold which is as follows:

Definition 1.10. A p-adic manifold of dimension n is a Hausdorff, paracompact topological
space X together with a maximal atlas of charts

(Uα, φα)

where Uα ⊆ X is open and φ : Uα → Qn
p is a homeomorphism onto an open subset Vα ⊆ Qn

p

with the property that for any α, β, the transition function

Vα ⊇ φ−1α (Uα ∩ Uβ) Uα ∩ Uβ φ−1β (Uα ∩ Uβ) ⊆ Vβ
φ−1

α φβ
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is locally analytic.

The basic notions of manifold topology carry over to the setting of p-adic manifolds. For
example, it makes sense to speak of differentiable, smooth or locally analytic functions between
p-adic manifolds. Moreover, any point of a p-adic manifold has a tangent space, which is a vector
space over Qp of dimension the same as the manifold, and differentiable maps induce morphisms
between tangent spaces.

However, unlike the theory of (real) manifolds, classification of p-adic manifolds is very easy,
essentially due to the fact that the topology on Qp has too many open sets, so that it is difficult
to glue things together in an interesting way:

Warning 1.11. One can show that any compact p-adic manifold X of dimension n is isomorphic
to a disjoint union

X ≃ Z×np ⊔ . . . ⊔ Z×np

of copies of the closed p-adic unit disc. In particular, all non-empty compact p-adic manifolds
of positive dimension are homeomorphic.

However, while the theory of p-adic manifolds is not particularly interesting, p-adic analytic
groups, which we define now, have a beautiful, complex theory.

Definition 1.12. A p-adic analytic group G is a group together with a structure of a p-adic
manifold such that the multiplication m : G × G → G and inverse (−)−1 : G → G maps are
locally analytic.

These are the central objects of study in this course, and we give a few examples.

Example 1.13. The general linear group GLn(Qp), which inherits a structure of a p-adic man-
ifold as an open subset of the Qp-vector sace of n× n matrices, is a p-adic analytic group under
multiplication of matrices. This is a prototypical example of a p-adic analytic group.

Note that GLn(Qp) has a compact open subgroup given by GLn(Zp), the group of invertible
matrices with coefficients in the p-adic integers. In fact, we have a whole descending chain of
compact open subgroups of the form

. . . ≤ I + p2 ·Mn(Zp) ≤ I + p ·Mn(Zp) ≤ GLn(Zp) ≤ GLn(Qp).

One can show that these compact open subgroups form a basis of neighbourhoods of the identity
matrix I. This is one crucial way in which p-adic analytic groups differ from Lie groups: while
the latter have no small subgroups, p-adic analytic groups have arbitrarily small open subgroups.

Example 1.14. Let K be a p-adic local field; that is, a finite extension Qp ⊆ K. The ramified
part of the maximal abelian extension Kab ⊆ K is known as the Lubin–Tate extension and is
denoted by KLT. Local class field theory gives a canonical continuous isomorphism

Gal(KLT/K) ∼= O×K
which shows that the Galois group has a natural structure of a p-adic analytic group.

Example 1.15. Let G0 be the Honda formal group law over Fpn , which is the unique p-typical
formal group law whose p-series is given by [p]G0

(x) = xp
n

. One can show that the endomorphism
ring End(G0) has a natural structure of a free finite rank Zp-algebra, so that the automorphism
group

Gn := Aut(G0) = End(G0)
×

inherits a structure of a p-adic analytic group.
This group (which depends on the choice of a prime p and a height n > 0) is known as the

Morava stabilizer group. It is extremely important because its cohomology groups form the basic
building blocks of the stable homotopy groups of spheres.
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As we observed in the discussion following Example 1.13, the group GLn(Qp) has a basis of
open neighbourhoods of the identity given by compact open subgroups of the form I+pk ·Mn(Zp).
Compact groups with this property are called profinite, and it is not difficult to show that p-adic
analytic groups are always locally profinite.

One of the main results in this course is the following beautiful theorem of Lazard, which
essentially gives a local characterization of p-adic analytic groups in purely group-theoretic terms:
Theorem 1.1 (Lazard, 19.11). Let G be a topological group. The following are equivalent:

(1) G admits a structure of a p-adic analytic group compatible with its topology,
(2) there exists an open compact subgroup F ≤ G which is a pro-p group of finite subgroup

rank; that is, there exists an integer d such that all closed subgroups H ≤ F can be
generated by at most d elements

(3) there exists an open compact subgroup P ≤ G which is a finitely generated pro-p group
and which is powerful; that is, such that P/P p (the quotient by the closed subgroup
generated by p-th powers) is abelian1,

(4) there exists an open compact subgroup U ≤ G which is uniformly powerful; that is,
finitely generated, powerful and torsion-free.

More informally, condition (2) characterizes p-adic analytic groups as being locally profinite
and with good finiteness properties; while (3) characterizes them as locally profinite and “almost
abelian”. Moreover, we will show that the analytic structure is essentially determined by the
group structure alone, since:

(1) continuous maps between p-adic analytic groups are locally analytic,
(2) group homomorphisms between compact p-adic analytic groups are continuous.

In practice, it is characterization (4) of Theorem 1.1 which is most useful, as uniformly
powerful pro-p-groups are easy to understand. We will prove the following result describing the
theory of uniformly powerful groups in purely linear terms.
Theorem 1.16 (Lazard, Dixon-Du Sautoy-Mann-Segal, 17.3, 17.10). Let U be a uniformly
powerful group. Then, the group structure of U induces continuous maps +: U × U → U and
(−,−) : U × U → U such that the pair

(U,+, (−,−))
is a Zp-Lie algebra which as a Zp-module is free of finite rank and whose bracket is abelian
modulo p2; that is, such that

(U,U) ⊆ p · U.
This construction gives an equivalence of categories between uniformly powerful groups and con-
tinuous group homomorphisms and the category of Zp-Lie algebras with these two properties.

As any p-adic analytic group is locally uniform, one can interpret Theorem 1.16 as the p-adic
analogue of the Lie correspondence, describing the local structure of p-adic analytic groups in
linear terms.

Another reason why Lazard’s characterization is useful in practice is that uniformly powerful
groups have very favourable group-theoretic properties. In particular, their group algebra is
well-behaved.

Recall that if G is a group, then to give a G-representation on a Fp-vector space is the same
as to give a module over the group algebra Fp[G]. For topological groups, we have a variant of
the group algebra construction which takes the topology into account.

1When p = 2, this condition needs to be slightly modified. A pro-2-group is said to be powerful if P/P
4 is

abelian. One intuition about this change is that P/P
2 is always abelian, which is not true at odd primes. We

will discuss these differences in more detail later in the course.
2If p = 2, then the bracket is abelian modulo 4. This is related to the slightly altered definition of a powerful

group when p = 2.
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Definition 1.17. Let G = lim←−Gi be a profinite group; that is, a limit of finite groups equipped
with its limit topology. The completed group algebra is given by

FpJGK := lim←−Fp[Gi].

Understanding continuous G-representations on Fp-vector spaces is closely related to under-
standing the ring-theoretic properties of the completed group algebra. Despite being defined as
a limit of such, this ring is often better-behaved than the group algebra of a finite group, as the
following example shows.

Example 1.18. Consider the completed group algebra FpJZpK and if a ∈ Zp, write [a] ∈ FpJZpK
for the corresponding element of the group algebra. A result of Iwasawa shows that the inclusion
of x := [0]− [1] induces an isomorphism of topological rings

FpJZpK ∼= FpJxK

This shows that to define a continuous action of the topological group Zp on a finite dimensional
Fp-vector space is the same as to give a single topologically nilpotent operator. Moreover, it
implies that the completed group algebra of the p-adics is noetherian.

The following result which we prove later in the course gives a partial extension of Iwasawa’s
description to the case of an arbitrary uniformly powerful group.

Theorem 1.2 (Lazard, 15.8, 25.24). Let U be uniformly powerful p-adic analytic group of
dimension d. Let

I := ker(FpJUK→ Fp)

be the augmentation ideal given by the kernel of the map of group algebras induced by the unique
map U → 0 into the zero group. Then the associated graded of the I-adic filtration is isomorphic
as a graded ring

grI(FpJUK) ≃
⊕
k≥0

Ik/Ik+1 ≃ Fp[x1, . . . , xd]

to a polynomial algebra in d variables.

In the course, we will in fact prove a slightly stronger variant of Theorem 1.2 which essentially
describes the completed group algebra over Zp rather then the finite field Fp.

Informally, Theorem 1.2 says that the completed group algebra of a uniformly powerful group
is close to a polynomial ring, despite not being commutative. Since any compact p-adic analytic
group has a finite index uniformly powerful subgroup by Theorem 1.1, and since the property of
being noetherian is inherited from the associated graded of a ring, we deduce the following:

Corollary 1.19. If G is compact p-adic analytic, then FpJGK is both left and right noetherian.

In both number theory and other subjects, many important invariants can be expressed as
group cohomology of a profinite group G ≃ lim←−Gi. If M is a finite abelian group, the continiuous
cohomology groups

H∗(G;M)

can be defined in several equivalent ways, for example
(1) as cohomology of the continuous group cochain complex

M → mapcts(G,M)→ mapcts(G×G,M)→ . . . ,

(2) as extension groups in an appropriate abelian category of abelian groups with a contin-
uous G-action,

(3) as the colimit
lim−→H∗(Gi;M)

of cohomology groups of finite quotients of G.
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More generally, one can define cohomology with coefficients in a G-module, not necessarily
finite or with trivial G-action. We give a few examples of these groups describing important
phenomena.

Example 1.20. Let K be a field, Ksep its separable closure and Gal := Gal(Ksep/K) the
absolute Galois group. The Brauer group of K whichis given by central divison K-algebras up
to Morita equivalence, is canonically isomorphic to

H2(Gal, (Ksep)×),

continuous cohomology of the Galois group.

Example 1.21. Following up on Example 1.15, let G0 be the Honda formal group law of height
n over the finite field Fpn and let Gn be its automorphism group, the Morava stabilizer group.
Associated to G0 we have the Lubin-Tate ring E which parametrizes its deformations, together
with a free rank one module ω over E which corresponds to the tangent space of the universal
deformation. This ring is non-canonically isomorphic

E ≃W (Fpn)[[u1, . . . , un−1]]

to a power series algebra over the Witt vectors.
Since this construction is functorial in G0, the Morava stabilizer group Gn acts on both E

and ω in a compatible manner. One can show that there is a spectral sequence

Hs(Gn, ω
⊗t)⇒ π2t−sS

0
K(n),

relating the cohomology of the Morava stabilizer group to the stable homotopy groups of the
K(n)-local sphere. Informally, the latter can be thought of as “stable homotopy groups of height
exactly n” and so are of central importance in stable homotopy theory.

A combination of fundamental results of Lazard and Serre shows that p-adic analytic groups
have excellent cohomological properties:

Theorem 1.3 (Lazard, Serre, 25.2). Let G be a compact p-adic analytic group of dimension d.
If G has no p-torsion, then G is a Poincaré group of dimension d. In particular:

(1) there exists a contravariant equivalence

(−)∗G : ModG(Ab
ω
(p))

op →ModG(Ab
ω
(p))

from the category of finite abelian p-groups with a continuous G-action to iself, called
G-Pontryagin duality,

(2) for any finite abelian p-group A with a continuous G-action the cohomology groups

Hk(G,A)

are finite and vanish for k > d,
(3) there’s a canonical isomorphism

Hd−k(G,A∗G) ≃ Hk(G,A)∗

between cohomology with coefficients in the G-Pontryagin dual A∗G and the Pontryagin
dual

Hk(G,A)∗ := HomAb(H
k(G,A),Z/p∞)

of cohomology with coefficients in A.

In the context of Theorem 1.3, the G-Pontryagin duality functor is given by mapping into a
certain special G-module called the dualizing module, which can be thought of as playing a role
similar to the one played by the orientation bundle in the case of cohomology of manifolds. As
an abelian group, the dualizing module is isomorphic to Z/p∞, so that as an abelian group A∗G
can be identified with a Pontryagin dual of A, but with a possibly twisted G-action.
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Note the surprising part of Theorem 1.3 it is the group cohomology of p-adic analytic groups
which behaves very much so like the cohomology algebra of a manifold. This is in stark contrast to
the case of compact Lie groups, whose underlying topological space does have finite-dimensional
cohomology, but whose group cohomology is almost always infinite-dimensional.

2. Profinite groups

In previous lecture, we saw a fundamental characterization of p-adic analytic groups due to
Lazard, namely Theorem 1.1. In particular, the result shows that any p-adic analytic group has
an open subgroup which is a particularly nice profinite group. As a beginning of our journey
towards Lazard’s theorem, today we define and study profinite groups.

Remark 2.1. Another good reason to study profinite groups, besides their ubiquity, is the theory
of condensed mathematics due to Clausen and Scholze. Informally, condensed mathematics
provides an alternative to the theory of topological spaces where the building blocks are given
by profinite sets. This means that a good understanding of profinite objects, for example profinite
groups, is helpful when learning condensed mathematics.

The following is our main object of study in this lecture.

Definition 2.2. A topological group G is profinite if
(1) it is compact Hausdorff and
(2) normal open subgroups U ≤ G form a basis of neighborhoods of the identity e ∈ G.

Informally, a profinite group is a topological group with plenty of open subgroups.

Notation 2.3. If H ⊆ G is a subgroup, we write H ≤ G. If it closed as a subset of G, we write
H ≤c G. If it is open, we write H ≤o G. We denote normal subgroups by H ◁ G, and closed
and open ones, respectively, by H ◁c G and H ◁o G.

The following large proposition collects the basic properties of subgroups of profinite groups.

Proposition 2.4. Let G be a profinite group.
(1) If U ≤o G is open, then it is closed and of finite index.
(2) If K ≤c G is closed, then it is open if and only if it is of finite index.
(3) Any open subset is a union of cosets of open normal subgroups.
(4) If H ≤ G is a subgroup, then so is its closure H, and the latter is given as the intersection

H =
⋂

U≤oG
H≤U

U

of all open subgroups which contain H.

Proof. We prove these one by one.
(1) The set of opens Ug for g ∈ G is an open cover of G, so since G is compact there is a

finite list g1, . . . , gn such that

Ug1, . . . , Ugn

is an open cover. Two cosets of the same subgroup are either equal or don’t intersect at
all, so by making them smaller, we can assume Ugi ∩Ugj = ∅ if i ̸= j. This implies that
the index is finite, in fact |U : G| = n. To see that U is closed, notice that without loss
of generality we can assume that Ug1 = U . In this case the set-theoretic difference

G \ U =
⋃

2≤i≤n

Ugi

is a finite union of open sets hence open, so U is closed.
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(2) We have seen one direction just above, so instead suppose K is a closed finite index
subgroup. Because it is finite index, there exist elements g2, . . . , gn of G such that

K,Kg2, . . . ,Kgn

is a finite closed cover. It follows that the complement of K is

G \K =
⋃

2≤i≤n

Kgi,

so K is open.
(3) By assumption, open normal subgroups U form a basis of neighbourhoods of the identity.

Since for every g ∈ G, the right multiplication (−) · g : G→ G is a homeomorphism, Ug
forms a basis of neighborhoods of g for any g ∈ G, and the claim follows.

(4) By the first part, the intersection of all open subgroups containing H is closed and hence
contains the closure. To prove the converse, we have to show that if g /∈ H, then there
exists an open subgroup U ≤o G such that H ≤ U and g /∈ U . Since g is not in the
closure, by the third part there exists an open normal subgroup V such that V g∩H = ∅.
It easily follows that g /∈ V H, and we are done since V H is an open subgroup (it is a
subgroup since V is normal, and it is open since it is a union of cosets of V ) containing
H.

□

Using Proposition 2.4, it is not difficult to show that profinite groups are closed under various
operations, such as passing to subgroups and quotient groups.

Example 2.5. If G is profinite, and K ≤c G is a closed subgroup, then K is profinite with
respect to its subspace topology. Indeed, it is compact and Hausdorff and it has a basis of
neighbourhoods of the identity given by open normal subgroups K ∩ U , where U ≤o G is
normal.

Example 2.6. If G is profinite and K ≤c G is a closed normal subgroup, then G/K is profinite
with respect to the quotient topology induced by the projection G→ G/K. Indeed, it is clearly
compact. Moreover, it is Hausdorff since K is intersection of open subgroups which contain it
by Proposition 2.4, so that the identity of G/K is closed and has a basis of open neighbourhoods
given by images of open subgroups of G which contain K. It then also follows that G/K is
Hausdorff.

Example 2.7. Providing a partial converse to Example 2.5 and Example 2.6, if G is a compact
Hausdorff topological group with a closed subgroup K ≤c G such that both K and G/K are
profinite, then G is profinite. We leave the argument to the interested reader.

The following justifies the terminology profinite. Recall that a poset P is said to be cofiltered if
for every finite collection p1, . . . , pn ∈ P there exists a p ∈ P such that p ≤ pi for each 1 ≤ i ≤ n.

Theorem 2.8. For a topological group G, the following are equivalent:
(1) G is profinite,
(2) we can write G = lim←−Gi as a limit in the category of topological groups of diagram of

finite groups equipped with the discrete topology indexed by a cofiltered poset,
(3) we can write G = lim←−Gi as a limit of finite groups in the category of topological groups.

Proof. We first show (3⇒ 1), so let G := lim←−Gi be a limit of a diagram of finite groups indexed
by a category I. Let Idisc denote the subcategory with the same objects but only identity
morphisms, so that the natural inclusion Idisc ↪→ I induces a canonical map

lim←−Gi →
∏
i∈I

Gi.
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This presents the source as a closed subgroup of the target, so using Example 2.5 it is enough
to show that the target is profinite. It is clearly compact Haudorff, by Tychonoff’s theorem.
Moreover, any open set containing the identity contains an open subgroup of the form∏

i∈I\J

Gi ×
∏
j∈J
{eGj} ⊆

∏
i∈I\J

Gi ×
∏
j∈J

Gj ≃
∏
i∈I

Gi

for some finite subset J ⊆ I. Thus, the product is profinite, as needed.
Since (2⇒ 3) is immediate, we move to (1⇒ 2). Let P be the poset of normal open subgroups

of G. Since open normal subgroups are stable under finite intersections, this poset is cofiltered.
We have a natural comparison map

G→ lim←−
U∈P

G/U

and we claim it is a bijective homeomorphism. Note that the target is also profinite, by what
we have shown above. The comparison map is continuous since each of the quotients G→ G/U
is continuous as U is open. Since the identity is the intersection of all open normal subgroups,
the comparison map is injective. Thus, it is enough to show that the image is dense.

Since the image is a closed subgroup, it is enough to show that if V ≤ lim←−U∈P G/U is an
open subgroup containing the image of G, then it is the whole thing. Any such subgroup is a
preimage of a subgroup of G/U0 along the projection

lim←−
U∈P

G/U → G/U0.

Since the composite G → lim←−U∈P G/U → G/U0 is surjective, we deduce the subgroup is the
whole thing, as needed. □

Example 2.9. If Γ is a group, the profinite group

Γ̂ := lim←
N⊴G

[N :G]<∞

Γ/N

given by the limit of finite quotients of Γ, is profinite. It is called the profinite completion of Γ.

Example 2.10. The profinite completion of the free group Z on one generator arises naturally
as the absolute Galois group

Ẑ ≃ Gal(Fq/Fq)

of any finite field. The generator corresponding to 1 ∈ Ẑ is given by the Frobenius x 7→ xq.

Warning 2.11. Beware that the profinite completion map Γ→ Γ̂ is in general neither injective
nor surjective.

Note that a profinite group is either finite or at least of cardinality of continuum. Despite this,
there is a good theory of finite generation in the setting of profinite (more generally, topological)
groups.

Definition 2.12. Let G be a topological group. We say that elements g1, . . . , gd generate G if

⟨g1, . . . , gn⟩ = G;

that is, if the closure of the subgroup generated by them is the whole group. We say G is finitely
generated if it admits a finite list of generators.

As we have seen, any profinite group G is a limit of finite groups. Almost as if by magic, in
the profinite setting it is possible to verify that a group is finitely generated by verifying the
same about its finite quotients. To prove this, we will need the following lemma.

Lemma 2.13. Let Xα be a diagram of nonempty compact Hausdorff topological spaces indexed
by a cofiltered poset P . Then the limit lim←−α∈P Xα is also nonempty.
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Proof. As in the proof of Theorem 2.8, forgetting the poset structure of P yields a natural map

lim←−
α∈P

Xα →
∏
α

Xα

which exhibits the limit as a closed subspace of the product. To be more precise, it is the
subspace of those families (xα) such that fα,β(xα) = xβ for every α ≤ β. In particular, both are
compact Hausdorff: the product by Tychonoff’s theorem, and the limit as a closed subspace.

For every finite subposet P ′ ⊆ P , let

(
∏
α

Xα)
P

′

⊆
∏
α

Xα

denote the subspace of those families (xα) which satisfy fα,β(xα) = xβ if both α, β ∈ P ′. Since
P is cofiltered, for every such P ′ we can find an α0 such that α0 ≤ α for each α ∈ P . Since Xα0

is non-empty, we can choose a point xα0 . Then, any family (xα) such that xα = fα0,α(xα0) lies
in (

∏
αXα)

P
′

. We deduce that the latter is non-empty.
As from the explicit description of the limit we have

lim←−
α∈P

Xα =
⋂

P ′⊆P

(
∏
α

Xα)
P

′

,

where the intersection is taken over all finite subsets of P . Since it is an intersection of non-
empty closed subsets of a compact Hausdorff topological space, it is itself non-empty, ending the
argument. □

Remark 2.14. More generally, there is a notion of a cofiltered category, see [Lur09, 5.3.1.7],
generalizing that of cofiltered posets. Since any cofiltered category admits a final map from
a cofiltered poset by [Lur09, 5.3.1.16], Lemma 2.13 also holds for limits of nonempty compact
Hausdorff topological spaces taken over cofiltered categories.

Proposition 2.15. Let G be a profinite group such that for each open normal subgroup U , G/U
can be generated by at most d elements. Then G can be generated by at most d elements; in
particular, it is finitely generated.

Proof. As in the proof of Theorem 2.8, we can write

G ≃ lim←−
U◁oG

G/U

as a limit of quotients by its open normal subgroups. If H is a finite group, we write

Gend(H) ⊆ H×d

for the subset of d-tuples of elements which generate H. This is a functor on the category of
finite groups and epimorphisms. By assumption, for each open normal U ≤ G, Gend(G/U) is
nonempty. By Lemma 2.13, the limit

lim←−Gend(G/U) ⊆ lim←−(G/U)×d ≃ Gd

is nonempty. A point of the limit can be identified with a tuple (g1, . . . , gd) of elements of G
with the property their images generate G/U for every open normal U . We deduce that the only
open subgroup which contains g1, . . . , gd is all of G, so ⟨g1, . . . , gd⟩ = G as needed. □

Warning 2.16. In the context of Proposition 2.15, beware that the uniform upper bound on
the number of generators of G/U cannot be dispensed with! In fact, all of G/U are finite, so
they definitely admit some finite number of generators. However, not all profinite groups are
finitely generated. For a specific example, consider∏

n∈Z
F2,
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the product of infinitely many copies of the field with two elements. This is abelian and any
element is of order 2, so that any finitely generated subgroup is finite hence closed. However,
the product is uncountable, so this profinite group is not finitely generated.

As we now show, in finitely generated profinite groups, the structure of their open subgroups
is somewhat constrained.

Proposition 2.17. Let G be profinite and finitely generated. Then for every m ≥ 0, there’s
only finitely open subgroups H ≤o G of index m.

Proof. Let H ≤o G be an open subgroup of finite index m. Then H is the stabilizer of its own
coset in the G-set

G/H,

on which G acts continuously since H is closed. It follows that each such G arises as a preimage
of some subgroup of the symmetric group Sm along a continuous homomorphism G → Sm. As
any such homomorphism is determined by the images of the generators, there are only finitely
many such homomorphisms. We deduce that there are only finitely many such H, as needed. □

Corollary 2.18. If G is profinite and finitely generated, then any open subgroup H ≤o G
contains N ≤o H which is open and topologically characteristic in G; that is, preserved by all
continuous automorphisms of G.

Proof. If H is of index m, then we can take

N :=
⋂

H≤oG,|H:G|=m

H,

the intersection of all open subgroups of the same index. This is again open, because the
intersection is finite by Proposition 2.17. Clearly, N is topologically characteristic. □

Recall the classical fact, most easily proven using covering spaces by reducing to the case of
free groups, that if Γ is a finitely generated group and Γ′ ≤ Γ is a finite index subgroup, then Γ′ is
also finitely generated. In fact, if Γ can be generated by d elements and Γ is of index m, then the
Schreier index formula tells us that Γ′ can be generated by d′ = 1+ d(m− 1) elements. We now
show that the same is true in the setting of profinite groups and topological finite generation.

Proposition 2.19. If G is profinite and finitely generated, then any open subgroup H ≤o G is
again finitely generated.

Proof. Suppose that G can be generated by d elements and that H is of index m. Using
Proposition 2.15, it is enough to show that there exists some d′ such that any quotient H/V by
an open normal subgroup is generated by d′ elements.

By making V smaller if necessary, using Corollary 2.18 we can assume that V is normal in
G. In this case, U/V can be identified with a subgroup of index m inside G/V . Since the latter
can be generated by d elements, the Schreier index formula tells us that U/V can be generated
by at most d′ = 1 + d(m− 1) elements. This ends the argument. □

3. Pro-p-groups and the lower p-series

Before we move on to p-groups, let us say a little bit more about finite generation. In the theory
of rings, an important notion is that of a Jacobson radical, which is given by the intersection of
all maximal left ideals (equivalently, all maximal right ideals). Informally, the elements of the
Jacobson radical are “small” and can often be safely ignored.

In the theory of profinite groups, the role of the Jacobson radical is played by the following
important subgroup.
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Definition 3.1. Let G be a profinite group. The Frattini subgroup is given by

Φ(G) :=
⋂

H maximal proper
open subgroup of G

H,

the intersection of maximal proper open subgroups; that is, thoseH◁oG such that ifH < K ≤ G
for some subgroup K, then K = G.

Remark 3.2. It is immediate from the definition that the Frattini subgroup is topologically
characteristic; that is, preserved by all continuous automorphisms of G. In particular, it is
normal. Moreover, it is closed as an intersection of closed subgroups.

Importantly, the Frattini subgroup is well-behaved with respect to passing to quotient groups.

Lemma 3.3. Let K ◁c G. Then Φ(G)K/K ≤ Φ(G/K). If moreover K ≤ Φ(G), then
Φ(G)K/K = Φ(G/K).

Proof. We have to show that Φ(G)K is contained in every maximal proper open subgroup
H ≤ G/K. For each such H, its preimage p−1(H) ≤ G is a maximal proper open subgroup of
G, so that Φ(G) ≤ p−1(H) and thus Φ(G)K ≤ H.

For the second part, suppose that K◁cΦ(G). Suppose that gK ∈ Φ(G/K), so that gK ≤M
for all maximal proper open subgroups which contain K. However, all maximal proper open
subgroups contain K by assumption, so g ∈M and thus g ∈ Φ(G) as needed. □

The importance of the Frattini subgroup stems from the fact that its elements are “non-
generators” in the following sense:

Proposition 3.4. Let G be a profinite group. For a tuple g1, . . . , gd ∈ G, the following are
equivalent:

(1) gi’s generate G,
(2) the cosets giΦ(G) generate G/Φ(G).

Proof. The forward direction is clear. For the backward one, assume by contradiction that

⟨g1, . . . , gn⟩ ≠ G.

Since a closed subgroup is an intersection of open subgroups which contain it, and any proper
open subgroup is contained in a maximal one, it follows that

⟨g1, . . . , gn⟩ ≤ U
for U some maximal proper open subgroup. Since Φ(G) ≤ U , we deduce that

⟨g1, . . . , gn⟩Φ(G) ≤ U ̸= G,

which contradicts the hypothesis that the cosets giΦ(G) generate G/Φ(G). □

The theory of finite groups is quite complicated, but a particular class of groups which is much
easier to understand is that of p-groups; that is, of those finite groups whose order is a power of
a prime. Finite p-groups have many favourable properties which do not hold for a general finite
group: for example, they are always nilpotent.

The profinite analogue of a finite p-group is given by the following notion.

Definition 3.5. A profinite group G is pro-p if for every open subgroup U ≤o G, the index
|G : U | is a power of p.

The following analogue of Theorem 2.8 is proven in the same way and we leave it to the
interested reader.

Proposition 3.6. For a topological group G, the following are equivalent:
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(1) G is profinite and pro-p,
(2) we can write G = lim←−Gi as a limit of finite p-groups equipped with the discrete topology.

Remark 3.7. If G is pro-p and K ◁c G is a closed subgroup, then both K and G/K are also
pro-p. Conversely, if G is compact Hausdorff and K and G/K are pro-p, then so is G.

We observe that, similarly to finite groups, profinite groups have maximal pro-p-subgroups.

Lemma 3.8. Let G be a profinite group. Then there exists a closed subgroup S ≤ G with the
following properties:

(1) S is pro-p,
(2) for any open normal U◁oG, SU/U ≤ G/U is a Sylow subgroup of the finite group G/U .

In particular, S is maximal among all closed subgroups of G which are pro-p. Moreover, any
two such subgroups are conjugate.

Proof. For each open normal subgroup U ◁ G, write Syl(G/U) for the set of Sylow subgroups
of G/U . Since the image of a Sylow subgroup of a finite group in a quotient is again a Sylow
subgroup, Syl(−) forms a contravariant functor into sets indexed by the poset of open normal
subgroups.

By Sylow’s theorem for finite groups, Syl takes value in non-empty finite sets, and we conclude
from Lemma 2.13 that its limit

Syl(G) := lim←−
U◁G

Syl(G/U)

is non-empty. An element of this limit can be identified with a compatible family of Sylow
subgroups of G/U whose limit is the needed subgroup S ≤ G.

To see that any two such subgroups S1, S2 are conjugate, one applies the same argument to
the functor sending U to the set of elements of G/U that conjugate the images of S1 and S2 in
G/U . □

Definition 3.9. If G is a profinite group, then a subgroup S ≤ G satisfying the conditions of
Lemma 3.8 is called a p-Sylow subgroup.

We now go back to the Frattini subgroup. Our goal is to show that in the case of pro-p-groups,
it can be identified very explicitly. This rests on the following simple result:

Lemma 3.10. If G is pro-p, then every maximal proper open subgroup U ◁o G is normal and
has index p.

Proof. Since U is open, it contains an open normal subgroup V ≤ U . Then, U is determined
by its image in G/V , which is a maximal proper subgroup of the finite p-group G/V . It follows
by induction on the nilpotence index of G/V that UV ≤ G/V is normal and of index p, as
needed. □

Proposition 3.11. If G is pro-p, then

Φ(G) = Gp [G,G],

the closed subgroup generated by p-th powers and commutators.

Proof. We begin with (⊇) containment, where we have to show that if U ◁o G is a maximal
proper open subgroup, then Gp [G,G] ≤ U . By assumption, Lemma 3.10, U is normal and
G/U ≃ Cp is a cyclic group with p elements, so that it is abelian and of exponent p, as needed.

We now move on to (⊆). We have to show that if U is an open subgroup containing Gp [G,G],
then Φ(G) ≤ U . Observe that G/U is a finite elemenetary abelian p-group; in other words, we
have G/U ≃ F⊕np for some n. It follows that Φ(G/U) = 0 and since

Φ(G)U/U ≤ Φ(G/U) = 0

by Lemma 3.3, we deduce that Φ(G) ≤ U as needed. □
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Corollary 3.12. If G is pro-p and K ◁c G is a closed subgroup, then

Φ(G)K/K = Φ(G/K).

as subgroups of G/K.

Proof. Since both subgroups are closed, it is enough to show that they have the same image in
G/H where H is any open normal subgroup containing K. However, since both G and G/K are
p-groups, in both cases the image consists of

(G/U)p [G/U,G/U ] ≤ G/U
by Proposition 3.11, as needed. □

Warning 3.13. Beware that Corollary 3.12 is not true without the assumption that G is pro-p,
even in the setting of finite groups. As an explicit example, consider the cyclic group C5 with
five elements. Multiplication by three 3: C5 → C5 is a group automorphism of order four, and
we can consider the associated semidirect product

F5 := C5 ⋊ C4.

Explicitly, F5 has a presentation

F5 = ⟨a, b | a5 = e, b4 = e, b−1ab = a3⟩
It is not difficult to check that the subgroup generated by b and its conjugate generated by
aba−1 = ba2 are both maximal and do not intersect, so that Φ(F5) = 0. However, F5 has C4 as
a quotient, and Φ(C4) = 2C4 ̸= 0.

As we now show, in the case of pro-p groups, not only is the Frattini subgroup quite easy to
describe, it also essentially controls whether a given pro-p-group is finitely generated.

Theorem 3.14. If G is pro-p, then the following are equivalent:
(1) G is finitely generated,
(2) Φ(G) ≤ G is open. ‘

Proof. We first show the forward implication, so suppose that G can be generated by d < ∞
elements. Let U ◁o G be an open normal subgroup containing Φ(G) = Gp [G,G]. Then G/U is
an abelian p-group of exponent p, so that G/U ≃ F⊕np for some n.

Since G/U is also generated by d elements, we must have n ≤ d. We deduce that |U : G| ≤ pd.
Since G is finitely generated, there is at most finitely many open subgroups with this property
by Proposition 2.17. We deduce that Φ(G) is an intersection of finitely many open subgroups,
hence it is open.

The backward implication is immediate from Proposition 3.4, since if Φ(G) is open, then
G/Φ(G) is finite and hence finitely generated. □

Warning 3.15. Beware that Theorem 3.14 fails spectacularly for general profinite groups. For
example, if we consider the free profinite group on one generator

Ẑ ≃
∏
p

Zp,

then its Frattini subgroup is given by

Φ(Ẑ) =
∏
p

pZp.

This is a closed subgroup which is not open.

The construction of the Frattini subgroup can be refined to become a first step of an important
canonical filtration on any pro-p-group.
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Definition 3.16. Let G be a pro-p group. The lower p-series of G is the sequence of closed
subgroups defined inductively by

(1) P1(G) = G

(2) Pi+1(G) = Pi(G)p [Pi(G), G].

Example 3.17. For any G, we have P2(G) = Φ(G). More generally,

Φ(Pi(G)) ≤ Pi+1(G),

but beware that in general this inclusion is strict. We will later show that for “nice” pro-p-groups,
such as small open subgroups of p-adic analytic groups, this is an equality for all i.

By induction, it is easy to see that each of the subgroups Pi(G) is normal. Moreover, by
construction they have the property that for each i ≥ 1, the subgroup

Pi(G)/Pi+1(G)◁G/Pi+1(G)

of the quotient is central and of exponent p. In fact, the lower p-series is the “fastest descending”
filtration with this property in the following sense:

Proposition 3.18. Let G be a pro-p-group and let

. . . ≤ G3 ≤ G2 ≤ G1 = G

be a descending filtration by normal closed subgroups such that for each i ≥ 1,

Gi/Gi+1 ≤ G/Gi+1

is central and of exponent p. Then we have Pi(G) ≤ Gi for each i ≥ 1.

Proof. We prove this by induction on i, the case of P1(G) = G1 = G being clear. If i > 1, then
by inductive assumption Pi−1 ≤ Gi−1. To show that Pi ≤ Gi, it is enough to show that the
composite

Pi := P p
i−1 [Pi−1(G), G]→ Pi−1 → Gi−1 → Gi−1/Gi

is zero. However, the elements of P p
i−1 go to zero since Gi−1/Gi is of exponent p, and the

elements of [Pi−1(G), G] go to zero since they factor through [Gi−1, G] and Gi−1/Gi is assumed
central in G/Gi. □

Corollary 3.19. If G is a finite p-group, then Pi(G) = 0 for all i large enough.

Proof. By Proposition 3.18, it is enough to show that there exists some finite filtration

0 = Gn+1 ≤ Gn ≤ Gn−1 ≤ . . . ≤ G1 = G

where each group is central and of exponent p relative to the previous one. We prove this by
induction on the order #G = pn.

If n = 0, there is nothing to be proven. Otherwise, G has a non-zero center which contains
some cyclic group of order p. Taking Gn := Cp ≤ Z(G) and applying the inductive assumption
to G/Cp finishes the argument. □

Proposition 3.20. Let G be pro-p.
(1) If K ≤c G, then Pi(G)K/K = Pi(G/K)
(2) We have

⋂
i Pi(G) = {e}.

(3) If G is finitely generated, then all of the Pi(G) are open and hence a basis of neighbour-
hoods of the identity.

Proof. We begin with (1). Since each of Pi(G)/Pi+1(G) ≤ G/Pi+1 is central and of exponent
p, and both of these properties are stable under taking quotients, the same is true about their
images in G/K. We deduce from Proposition 3.18 that Pi(G/K) ≤ Pi(G)K/K for each i ≥ 1.

To see that Pi(G)K/K ≤ Pi(G/K), we argue by induction. The base case is clear, and the
inductive step follows from the inductive formula for the lower p-series.
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To show (2), it is enough to verify that
⋂

i Pi(G) is contained in any open normal subgroup
U . Since G is a finite p-group, by Corollary 3.19 we have

Pi(G)U/U = Pi(G/U) = 0

for i large enough, where the first equality is part (1). It follows that Pi(G) ≤ U for i large
enough, as needed.

To show (3), we argue by induction, starting with G1 = G which is open. If Gi−1 is open, it
is also finitely generated by Proposition 2.19. Since Φ(Gi−1) ≤ Gi is open by Theorem 3.14, we
deduce that so is Gi, as needed. □

The last property we show, which is a little bit more involved, is that the lower p-series
filtration is compatible with the commutator:

Theorem 3.21. Let G be a pro-p-group. Then

[Pi(G), Pj(G)] ≤ Pi+j(G).

This requires a little bit of work, so before delving into the proof, let us discuss a little bit of
the motivation. Associated to any filtration by normal subgroups we have the associated graded

gri(G) := Pi(G)/Pi+1(G).

In the case of a lower p-series, the quotients are abelian and of exponent p, hence the associated
graded is in fact a graded Fp-vector space. As a consequence of Theorem 3.21, the commutator
of G induces a function

[−,−] : gri(G)× grj(G)→ gri+j(G).

One can show that this function is in fact a Fp-Lie algebra structure. For particularly nice pro-p
groups this Lie algebra structure remembers a whole deal about G, and can be thought of as a
form of “linearization”.

To prove Theorem 3.21, we will need some basic formulas from group theory, which we recall.
If a, b, c ∈ G are elements of a group , we write

ab := b−1ab

for the conjugation and
[a, b] := a−1ab = a−1b−1ab

for the commutator. This can be extended to three elements by declaring that

[a, b, c] := [[a, b], c].

Recollection 3.22 (Hall-Witt identity). The celebrated Hall-Witt identity says that

[a, b−1, c]b · [b, c−1, a]c · [c, a−1, b]a = e

for any group G and a, b, c ∈ G. With enough patience, this can be verified by expanding the
left hand side out. As a consequence, we have the three subgroup lemma which says that if
A,B,C ◁G are the normal subgroups, then

[A,B,C] ≤ [B,C,A][C,A,B].

Note that for subgroups we have
[A,B] = [B,A]

and similarly
[A, [B,C]] = [[A,B], C].
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Recollection 3.23 (Conjugate-linearity of the commutator). In any group, the commutator is
linear up to conjugation in the sense that

[a, bc] = [a, c][a, b]c.

and
[ab, c] = [a, c]b[a, b].

Again, the proof is given by expanding both sides out. This is most useful when, for example,
we know that the commutators we’re interested are contained in the center, in which case the
conjugation can be omitted. Iterating these identities, we deduce that for any n ≥ 0 we have

[a, bn] = [a, b] · [a, b]b · [a, b]b
2

· . . . [a, b]b
n−1

and similarly
[an, b] = [a, b]a

n−1

· . . . · [a, b]a · [a, b].

Proof of Theorem 3.21: For brevity, we write Gi := Pi(G) for the lower p-series. We want to
show that

[Gm, Gn] ≤ Gm+n,

and we argue by induction on n. For the base case of n = 1, we observe that

[Gm, G] ≤ Gp
m [Gm, G] = Gm+1.

We now assume that n > 1. Since Gn+m is closed, it is enough to show that [Gm, Gn] ≤ N for
any open subgroup of G which contains Gn+m. Since the lower p-series filtration is compatible
with passing to quotients by part (1) of Proposition 3.20, we can replace G by G/N and thus
assume that

(1) G is is finite and
(2) Gn+m = 0.

It follows from the second property that Gn+m−1 is central and of exponent p. If x ∈ Gm and
y ∈ Gn−1, then by induction we have [x, y] ∈ Gn+m−1. Using the conjugate-linearity of the
commutator of Recollection 3.23, where we can ignore the conjugations since these commutators
are central, we see that

(3.1) [x, yp] = [g, x]
p
= e.

Moreover, using the three subgroup lemma of Recollection 3.22 we have that

(3.2) [Gm, [Gn−1, G]] ≤ [Gn−1, [G,Gm]] [G, [Gm, Gn−1]] = [Gn+m−1, G] [G,Gn+m−1] = {e},
where we apply the inductive assumption that

[Gn−1, Gm] = [Gm, Gn−1] ≤ Gn+m−1

which is central. Combining (3.1), (3.2) with another application of the linearity of the commu-
tator, we see that

[Gm, Gn] =
[
Gm, G

p
n−1 [Gn−1, G]

]
≤ {e}

which is what we wanted to show. □

4. Topology of finitely generated pro-p groups

The goal of this lecture is to prove the following striking result of Serre.

Theorem 4.1 (Serre). Let G be a finitely generated pro-p group. Then any finite index subgroup
H ≤ G is open.

Since the topology of a profinite group is completely determined by which of its subgroups are
open, Theorem 4.1 implies that for finitely generated pro-p groups, their topology is completely
determined by the group structure. In fact, we have the following strong consequence:
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Corollary 4.2. Let G be a finitely generated pro-p group and G′ be a profinite group. Then any
abstract group homomorphism G→ G′ is continuous.

Proof. We can write G′ ≃ lim←−G
′
α as a limit of finite groups. To show that an abstract group

homomorphism G→ G′ is continuous, it is enough to verify that each of the composites

G→ G′ → G′α

is; that is, has an open kernel. But the kernel is a finite index subgroup, hence the result follows
from Theorem 4.1. □

Before we prove Theorem 4.1, we will need a few preliminary results.

Lemma 4.3. Let G be pro-p and H ≤ G be a finite index subgroup, not necessarily closed. Then
the index |G : H| is a power of p.

Proof. By replacing H by the intersection of its conjugates, we can assume that H is normal. If
n ≥ 1, we write

G{n} := {gn | g ∈ G}
for the set of n-th powers. This is the image of the n-th power map G→ G and hence is a closed
subset. Let m = |G : H| be the order, which we can write as

m = qpr

where q is coprime to p. We will show that

(4.1) G{p
r} ⊆ G{m},

which since G{m} ⊆ H will imply that G/H is of exponent pr and hence a p-group, as needed.
Let N be an open normal subgroup. Since G/N is a p-group by assumption, we can find e ≥ r

such that the |N : G| divides pe and so G{p
e} ⊆ N . Since q is coprime to p, we can find a, b ∈ Z

such that
pr = am+ bpe

and thus for any g ∈ G we have

gp
r

= (ga)m(gb)p
e

∈ G{m}N.

Since this holds for any N and G{m} is closed, we deduce that gp
r ∈ G{m}. This shows (4.1)

and hence the needed statement. □

The second result we will need is slightly more involved, and its proof requires a little bit of
theory of nilpotent groups which we now recall.

Recollection 4.4. A finite group G is said to be nilpotent if there exists a finite filtration

0 = Gc+1 ≤ Gc ≤ . . . ≤ G1 = G

such that for each i ≥ 1, Gi/Gi+1 ≤ G/Gi+1 is central. It follows by induction that each of
Gi ≤ G is a normal subgroup. If a group is nilpotent, then its lower central series defined
inductively by

(1) γ1(G) := G,
(2) γi+1(G) := [γi(G), G]

terminates at a finite stage in the trivial subgroup. If γc(G) ̸= 0 but γc+1(G) = 0, we say that
G is of nilpotence index c.

Example 4.5. Finite p-groups are nilpotent (for example, by Corollary 3.19).
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Lemma 4.6. Let G be a finite nilpotent group generated by a1, . . . , ad ∈ G. Then any element
x ∈ [G,G] of the derived subgroup can be written as a product of d commutators

x = [g1, a1] · . . . · [gd, ad]

for some gi ∈ G.

Proof. We prove this by induction on the nilpotence index c of G. If c ≤ 1, then G is abelian
and there is nothing to prove.

Now suppose that G is of nilpotence index c > 1 and that the needed statement holds for all
nilpotent groups of smaller nilpotence index. For brevity, we write Gi := γi(G) for the lower
central series. Observe that Gc = [Gc−1, G] is in the center. Using the conjugate-linearity of the
commutator of Recollection 3.23, which is simple linearity here as all of these commutators are
in the center, we deduce that the map

[−,−] : Gc−1 ×G→ Z(G)

is multiplicative in each variable. As the target is abelian, we deduce that it factors through a
linear map

Gab
c−1 ⊗Gab → Z(G)

from the tensor product of the abelianizations. Since Gab is an abelian group generated by the
images of the ai, any of elements can be written in the form x1 ⊗ a1 + . . . + xd ⊗ ad for some
xi ∈ Gc−1. Thus, any element w ∈ Gc can be written in the form

w = [x1, a1] · . . . · [xd, ad] .

for some xi ∈ Gc−1.
By inductive assumption, the result holds for G/Gc, so that any element of the derived group

can be written as
[g1, a1] · . . . · [gd, ad]w

where w ∈ Gc. Using the previous paragraph, we deduce that any element of [G,G] can be
written as

[g1, a1] · . . . · [gd, ad] · [x1, a1] · . . . · [xd, ad]

with xi ∈ G. Since the commutators [xi, ai] are in the center, using conjugate-linearity we can
rewrite this product as

[g1x1, a1] · . . . · [gdxd, ad]

which is what we wanted to show. □

Proposition 4.7. Let G be a finitely generated pro-p group. Then the derived subgroup [G,G]
is closed.

Proof. Let a1, . . . , ad be generators of G, and consider the continuous map

[−, a1] · . . . [−, ad] : Gd → G

whose image X ⊆ G is closed and contained in [G,G]. We claim that X = [G,G] which implies
that [G,G] = [G,G] as needed. Since both X and the closure of the derived group are closed,
it is enough to verify that they have the same image in the quotient G/N for any open normal
subgroup N ◁o G, which is am immediate consequence of Lemma 4.6 as G/N is a nilpotent
group generated by the images of the ai. □

We are now ready to prove Serre’s theorem.
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Proof of Theorem 4.1: LetH be a finite index subgroup of G, which we can assume to be normal.
By Lemma 4.3, G/H is a p-group, so that |G : H| = pn. We prove the result by induction on
n ≥ 1, since the case of n = 0 is trivial.

We first tackle the case of n = 1, in which we have G/H ≃ Cp, a cyclic group of order p.
Since G is finitely genererated pro-p, we can rewrite the Frattini subgroup as

Φ(G) = Gp[G,G] = G{p}[G,G] = G{p}[G,G],

where the first equality is Proposition 3.11, the second is the fact that in G/[G,G] the p-th powers
form a subgroup, and the last one is a consequence of the fact the derived subgroup is closed by
Proposition 4.7. Since G/H is abelian of exponent p, we deduce that we have Φ(G) ≤ H. Since
the Frattini subgroup is open by Theorem 3.14, we deduce that so is H as needed.

Now assume that |G : H| = pn with n > 1. Since G/H is a p-group, by iteratively choosing a
subgroup isomorphic to Cp in the center of the quotient we can construct a sequence of normal
subgroups

H = Hn ≤ Hn−1 ≤ . . . ≤ H0 = G

where each one is of index p in the next one. By what we’ve shown in the previous paragraph,
H1 is open inside G. It follows from Proposition 2.19 that H1 is also finitely generated and
pro-p. Since |Hn : H1| = pn−1, from inductive assumption we deduce that Hn is open in H1,
and thus also in G. This ends the argument. □

5. Powerful finite p-groups

In this lecture, we will study a very important class of finite p-groups which are known as
powerful. This class the has the advantage of being quite general (for example, we will prove later
in the course that any p-adic analytic group has an open subgroup which is a limit of powerful
finite p-groups) and at the same time sharing some favourable properties of abelian groups.

Continuing from previous lectures, if G is a group, we write

G{p} := {gp | g ∈ G}
for the subset of p-th powers and

Gp := ⟨G{p}⟩
for the subgroup they generate. Two important properties of abelian groups which we will show
are shared by all powerful p-groups are that

(1) G{p
k} = Gpk

; that is, the pk-th powers form a subgroup,
(2) the map x→ xp defines a group homomorphism Gpk

/Gpk+1 → Gpk+1

/Gpk+23.
Informally, powerful p-groups are those which are “abelian up to p-th powers”. The precise

definition, which is different at odd and even primes, is as follows:

Definition 5.1. A finite p-group G is said to be powerful if
(1) [G,G] ≤ Gp and p > 2,
(2) [G,G] ≤ G4 and p = 2.

Warning 5.2 (The even prime). As we see, the definition of a powerful p-group is slightly
different when p = 2. An adjustment is in some sense necessary, since if G is a group of
exponent 2, then for any x, y ∈ G we have

e = (xy)2 = xyxy = x−1y−1xy = [x, y]

and thus the group is abelian. Thus, for any finite group we have [G,G] ≤ G2, and the obvious
analogue of the definition of being powerful at odd primes has no teeth when p = 2.

3Of course, if G is abelian, then x 7→ xp is an endomorphism of G, even before passing to quotients. In the
powerful case, this is in general only true if we consider this as a map between the quotients Gpk/Gpk+1

.
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Thus unfortunately means that some of the proofs of basic properties of powerful groups need
to be slightly adjusted when p = 2. In these notes, we take the convention of only stating results
which are true at all primes (or otherwise being specific as to what is true at what prime), but
we will usually only give the proof in the case of p > 2. The arguments for p = 2 are minor
variations; a reader interested in seeing the details should consult [DDSMS03].

Example 5.3. Abelian p-groups are powerful.

Example 5.4. Let p > 2 and consider group of order p3 given by the semi-direct product
G := (Cp2) ⋊ Cp with respect to some non-trivial homomorphism Cp → Aut(Cp2) ≃ (Z/p2)×.
Then G/Gp can be identified with

(Cp2/pCp2)⋊ Cp ≃ Cp ⋊ Cp ≃ Cp × Cp,

which is abelian. Thus, G is a powerful, non-abelian p-group.

Warning 5.5. Not all p-groups are powerful. For example, if p > 2, then the group of order p3
with explicit presentation

⟨x, y, z | xp = yp = zp = e, [x, z] = [y, z] = e, [x, y] = z⟩
is not powerful, since it is of exponent p but it is not abelian. This group can be equivalently
described as (Cp × Cp)⋊ Cp or as unitriangular 3× 3 matrices over the field Fp.

When working with powerful groups, a relative notion is often useful.

Definition 5.6. Let G be a finite p-group and let N ≤ G be a subgroup. We say that N is
powerfully embedded in G, which we denote by N p.e. G, if

(1) [N,G] ≤ Np and p > 2 or
(2) [N,G] ≤ N4 and p = 2.

Remark 5.7. A finite p-group G is powerful if and only if it is powerfully embedded in itself.

Remark 5.8. Observe that if N p.e. G, then N is a normal subgroup of G.

The following stability under quotients follows straight from the definitions:

Lemma 5.9. If N ≤ G and K ◁G are subgroups, the following hold:
(1) if N p.e. G, then NK/K p.e. G/K,
(2) if K ≤ Np, then the converse holds: if NK/K p.e. G/K, then also N p.e. G.

The following technical lemma, while strange-looking at first sight, is useful in inductive
arguments.

Lemma 5.10. Let G be a finite p-group with p > 2. Let N ◁ G be a normal subgroup and
suppose that N is not powerfully embedded in G. If p > 2, then there exists a normal J ◁ G
such that

Np[N,G,G] ≤ Y < Np[N,G]

and |Y : Np[N,G]| = p.

Proof. If N is not powerfully embedded, then Np < Np[N,G]. Since both are normal subgroups
of a p-group G, we can find a normal J ◁G such

Np ≤ J < Np[N,G]

and such that the second inclusion is of index exactly p (for example, by taking the preimage
of a maximal proper subgroup of [N,G]Np/Np, which is necessarily normal since [N,G] is).
We claim that J has the needed properties, of which the only remaining is that [N,G,G] ≤ J .
This is equivalent to saying that [N,G]J/J is central in G/J , which is clear since it is a normal
subgroup of order p, and p-groups cannot act trivially on cyclic groups of order p. □
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Remark 5.11. Lemma 5.10 has a variant at p = 2, namely one can show in the same situation
there exists a normal J such that

N4[N,G]2[N,G,G] ≤ J < N4[N,G],

where the second inclusion is of index exactly 2. This turns out to be enough to also prove
Proposition 5.13 at p = 2, which in these notes we only prove at odd primes.

Remark 5.12. The usefulness of Lemma 5.10 is as follows: suppose we have a subgroup N ◁G
which we want to show is powerfully embedded. Arguing by contradiction, we can assume that
it is not, and we can find a subgroup J as in Lemma 5.10. Writing G̃ := G/J and Ñ := NJ/J
for the image of N , we see that

(1) Ñ is of exponent p,
(2) [Ñ , G̃] is central in G̃ and is of order exactly p.

These two properties guarantee that P̃ is also not powerfully embedded in G̃. This allows one
to only study the possible failure to be powerfully embedded in the restrictive class of examples
satisfying these two properties.

Proposition 5.13. Let G be a finite p-group and N p.e. G. Then we also have Np p.e. G.

Proof. Suppose for contradiction thatNp is not powerfully embedded. Replacing G by a quotient
by a suitable subgroup produced by Lemma 5.10 as in Remark 5.12, we can assume that

(1) (Np)p = 0 and
(2) [Np, G] is of order exactly p and is central in G.

Pick elements n ∈ N and g ∈ G. Since N p.e. G, we deduce that [N,G,G] ≤ [Np, G] ≤ Z(G),
where the last subgroup is the center. Using the conjugate-linearity of the commutator of
Recollection 3.23, which is ordinary linearity here as the relevant commutators are central, we
deduce that the map

w 7→ [n, g, w]

defines a group homomorphism G→ Z(G). It follows that we have

(5.1)
p−1∏
j=0

[n, g, nj ] =

p−1∏
j=0

[n, g, n]j = ([n, g, n]p)
p−1/2 = e,

where the last equality follows from the fact that [N,G,G] ≤ [Np, G] and the latter is of order
p. We now consider the bracket

[np, g] = [n, g]n
p−1

· [n, g]n
p−2

· . . . · [n, g]x
0

which we can rewrite as

[n, g] · [n, g, np−1] · [n, g] · [n, g, np−2] · . . . · [n, g] · [n, g, n0].

Since all of the triple commutators are central, we can collect them together and moreover their
product vanishes by (5.1). It follows that we have

[np, g] = [n, g]p

which necessarily vanishes since [N,G]p ≤ (Np)p = 0. This shows that [Np, G] = 0, which
implies that Np p.e. G, as needed. □

Recall that associated to a finite p-group G we have the lower p-series of Definition 3.16. This
is a descending filtration of G by subgroups defined inductively by

(1) P1(G) := G and
(2) Pi+1(G) := Pi(G)

p[Pi(G), G] for i ≥ 1.
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We now show that the lower p-series of a powerful p-group is exceptionally well-behaved, and
in many ways resembles the filtration by p-th powers one has on any abelian p-group. The
following two theorems establish crucial properties of powerful p-groups which we alluded to at
the beginning of the lecture.

Theorem 5.14. Let G be a powerful finite p-group and write Gi := Pi(G) for its lower p-series.
Then

(1) Gi p.e. G for all i,
(2) Gi+1 = Gp

i = Φ(Gi),
(3) the map x 7→ xp defines an onto group homomorphism

Gi/Gi+1 → Gi+1/Gi+2

for any i ≥ 1.

Proof. We prove (1) and (2) together by induction on i. For the beginning of the induction,
observe that since G is powerful, we have G1 p.e. G1. Now suppose inductively that we know
that Gi p.e. G. Then, we have [Gi, G] ≤ Gp

i , so that

Φ(Gi) ≤ Pi+1(G) = Gp
i [Gi, G] ≤ Gp

i ≤ Φ(Gi)

and thus all of these groups are equal to each other. Moreover, Gi+1 = Gp
i ≤ G is powerful by

the inductive assumption and Proposition 5.13.
We now move on to (3). Since we had already shown that for powerful p-groups the lower

p-series is just the sequence of subgroups of pk-th powers, by reindexing we can take G = Gi

and thus assume that i = 1. We then have to show that x 7→ xp defines a group homomorphism

G1/G2 → G2/G3.

Since this property doesn’t depend on G3, we can assume that G3 = 0. In this case, we have
Gp

2 = 0, [G,G] ≤ G2 and G2 ◁G is central, since G is powerful and G2 p.e. G. If x, y ∈ G, then
we have

(xy)p = xpyp[x, y]
p−1
2 = xpyp

where the first equality follows from the fact that to commute the x-s past the y-s we need to
insert the commutators [x, y], all of which are central and hence be grouped together, and the
second from the fact that [x, y] ∈ G2 hence [x, y]p = e. This ends the argument. □

Lemma 5.15. If N p.e. G and x ∈ G, then the subgroup H = ⟨N, x⟩ generated by N and x is
powerful.

Proof. We claim that we have [N,H] = [H,H]. To see this, notice that H/[N,H] is has the
image of N in its center, and is generated over its centre by a single element. Since any element
commutes with itself and the center, H/[N,H] is abelian, which gives the claim. Then

[H,H] = [N,H] ≤ Np ≤ Hp,

where the first inequality is the assumption that N p.e. G, which is what we wanted to show. □

Warning 5.16. In the context of Lemma 5.15, beware that ⟨N, x⟩ ≤ G need not be powerfully
embedded. The conclusion is only that ⟨N, x⟩ is powerful as a group on its own.

Theorem 5.17. If G is powerful, then

Gp = G{p} = {gp | g ∈ G};

that is, the subset of p-th powers forms a subgroup.
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Proof. We prove this by induction on the order #G = pn. If n = 0, then the group is trivial and
there is nothing to prove.

Suppose that n > 0 and let g ∈ Gp. Since the homomorphism in part (3) of Theorem 5.14 is
onto, we know we can write

g = xpy

for x ∈ G and y ∈ G3. Let’s write H = ⟨G2, x⟩ for the subgroup generated by G2 and x, which
is powerful by Lemma 5.15. We have g ∈ Hp, since y is in G3 = Gp

2. We now have two cases:
(1) If H ̸= G, then since H has smaller order than G, the inductive hypothesis gives that

g = hp for some h ∈ H, so that g is also a p-th power in G.
(2) If H = G, then since G/G2 is a cyclic group generated by an element x, and since

G2 = Φ(G) is the Frattini subgroup, G itself is generated by x. It follows that G is
abelian, which also gives the needed claim.

□

6. Pro-p-groups of finite rank

In the last lecture, we introduced the notion of a powerful finite p-group. The condition of
being powerful naturally extends to the profinite context in the following way:

Definition 6.1. A pro-p-group G is powerful if
(1) [G,G] ≤ Gp and p > 2 or
(2) [G,G] ≤ G4 and p = 2.

We say an open subgroup N ≤o G is powerfully embedded, denoted by N p.e. G, if
(1) [G,N ] ≤ Np and p > 2 or
(2) [G,N ] ≤ N4 and p = 2.

As we will see, in the pro-p context the notion of being powerful arguably is even more
important than in the finite case, as it turns out to be closely related to a very natural finiteness
condition known as being finite rank. Since all finite p-groups are finite rank, this condition does
not naturally arise in the finite context.

We first collect basic properties of powerful pro-p-groups, all of which follow immediately from
the case of finite groups.

Proposition 6.2. Let N ≤o G be an open subgroup. Then N p.e. G if and only if for each open
normal O ◁o G we have NO/O p.e. G/O.

Proof. This is immediate from the formula

Gp =
⋂
GpO,

where the intersection is taken over all open normal subgroups of G, and similarly for G4. □

Corollary 6.3. A pro-p-groups G is a powerful if and only if it can be written as a cofiltered
limit of powerful finite p-groups and surjections.

Proof. If G is powerful, then G ≃ lim←−G/O, where the limit is taken over the poset of open
normal subgroups.

Conversely, suppose that G ≃ lim←−Gα can be written as a cofiltered limit of powerful finite
p-groups and surjections. If N ≤o G is an open subgroup, then it contains the kernel of the
surjection G → Gα for some α, so that G/K is a quotient of Gα. It follows that G/K is also
powerful. □

Recall that in Definition 3.16 we introduced the lower p-series, which is a filtration of a
pro-p-group G by subgroups defined inductively by

(1) P1(G) = G
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(2) Pi+1(G) = Pi(G)p [Pi(G), G].
We now observe that, as in the finite case, for powerful pro-p-groups the lower p-series has a
particularly simple form.

Theorem 6.4. Let G be a powerful pro-p-group. Then for any i ≥ 1 we have
(1) Pi+1(G) = Gpi = {gpi | g ∈ G} and
(2) Pi+1(G) is powerfully embedded in G.

Proof. Both Pi+1(G) and Gpi are stable under passing to finite quotients (in the sense that
their image in a finite quotient is the corresponding subgroup of the quotient group), so the
first equality is true as it is true when G is a finite p-group by Theorem 5.14. Similarly, as the
condition of being powerfully embedded is also detected in finite quotients by Proposition 6.2,
conclusion (2) also follows from the finite case.

We are left with showing that Gpi = {gpi | g ∈ G}. Since both subsets are closed, the latter
as an image of a continuous self-map of G, it is enough to verify that they have the same image
in G/O for any open normal O, which is a consequence of Theorem 5.17. □

We now move to the discussion of rank, which we first do in the finite case.

Definition 6.5. Let G be a finite group. Then we write
(1) d(G) = inf{|X| |X ⊆ G, ⟨X⟩ = G} for the minimal number of generators of G and
(2) rk(G) = sup{d(H) | H ≤ G} for the rank of G; that is, the smallest number d such that

all subgroups of G can be generated by d elements.

Warning 6.6 (Important!). In most of group theory literature, what we call in Definition 6.5
the minimal number of generators would be called rank and what we call rank would be instead
called subgroup rank. Our non-standard convention follows that of [DDSMS03], on which this
lecture is based.

We will be mainly interested in groups of finite rank, and “groups of finite subgroup rank”,
while unambiguous and consistent with the literature, does not quite have the same ring to it.

Remark 6.7. For any finite group G, we have

d(G) = d(G/Φ(G))

as a consequence of Proposition 3.4.

It is clear from the definitions that we always have

d(G) ≤ rk(G).

If G is abelian, these two quantities are in fact the same4. This is not true in general, even for
p-groups, as the following example shows.

Example 6.8. Let F3
3 be a 3-dimensional vector space over F3, the field with tree elements.

This admits a linear cyclic action of C3 defined by

(1, 0, 0) 7→ (0, 1, 0), (0, 1, 0) 7→ (0, 0, 1), (0, 0, 1) 7→ (1, 0, 0).

It is not difficult to see that the semi-direct product G := F3
3 ⋊C3 is generated by two elements

((1, 0, 0), 0) and ((0, 0, 0), 1). However, it has F3
3 as a normal subgroup which cannot be generated

by two elements. It follows that rk(G) > d(G).

The following beautiful result gives another piece of evidence that powerful p-groups are
“morally abelian”.

4For example, because any finite abelian group A is (non-canonically) isomorphic to its Pontryagin dual
Hom(A,Q/Z). Since Pontryagin duality takes monomorphisms to epimorphisms, it follows that any subgroup of
A is isomorphic to some quotient of A, and so can be generated by the same number of elements.
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Theorem 6.9. If G is a finite powerful p-group, then rk(G) = d(G).

Proof. For brevity, we write G2 := P2(G) = Gp and G3 := P3(G) = Gp
2, where the second

equality is Theorem 5.14. By induction on the order of G, we can assume the result holds for
G2, since the latter is also powerful. If we write r := d(G) and m := d(G2), then since x 7→ xp

defines an onto homomorphism
π : G/G2 → G2/G3,

of Fp-vector spaces, we have m ≤ r.
We have to show that if H ≤ G be a subgroup, then d(H) ≤ r. We write e = d(HG2/G2),

which means we can choose h1, . . . , he ∈ H such that

HG2 = ⟨h1, . . . , he⟩G2.

We have that dimFp
(ker(π)) = r −m, and thus

dim(HG2/G2 ∩ ker(π))) ≤ r −m

and therefore

(6.1) dim(π(HG2/G2)) ≥ e− r −m = m− (r − e).

Let K := H ∩ G2. Since Φ(K) ≤ Φ(G2) ≤ G3, it follows from (6.1) that the subspace of
K/Φ(K) spanned by hp1, . . . , h

p
e is of dimension at least m − (r − e). But dim(K/Φ(K)) ≤ m

since the inductive assumption holds for G2 and K ≤ G2. Thus there exist k1, . . . , kr−e such
that

K = ⟨hp1, . . . , hpe, k1, . . . , kr−e⟩Φ(K) = ⟨hp1, . . . , hpe, k1, . . . , kr−e⟩
We then have

H = H ∩HG2 = H ∩ ⟨h1, . . . , he⟩G2 = ⟨h1, . . . , he⟩K = ⟨h1, . . . , he, k1, . . . , kr−e⟩,

which shows that d(H) ≤ r, as needed. □

Let’s move to the context of profinite groups. We had previously defined a profinite group
G to be finitely generated if there exists a finite subset x1, . . . , xn such that G = ⟨x1, . . . , xn⟩ is
equal to the closure of the subgroup they generate. Thus, we have a notion of a minimal number
of generators, given by

d(G) := inf{|X| | X ≤ G, ⟨X⟩ = G}.
One would expect that there is also an analogue of rank in this context, but there are several
possible variations: one could try to look at the number of generators of closed subgroups, of
open subgroups, or perhaps at the ranks of finite quotients. Luckily, all of these are equal:

Lemma 6.10. Let G be a profinite group. Then

sup{d(H) | H ≤c G} = sup{d(O) | O ≤o G} = sup{rk(G/O) | O ◁o G}

Proof. Clearly the left hand term is greater than or equal to the middle one.
We now show that the middle term is greater than or equal to the right one. Assume that

d(O) ≤ d for all open normal subgroups O ◁o G. We have to show that if O is open normal
and K ≤ G/O, then d(K) ≤ d. Since K is a quotient of its preimage, which is also an open
normal subgroup of G and so generated by d elements, we deduce that K is also generated by d
elements.

Finally, we show that the right term is greater or equal to the left one. Assume that rk(G/O) ≤
d for all open normals O; we have to show that if H ≤c G is a closed subgroup, then d(H) ≤ d.
As a closed subgroup, H is a limit of its images in the finite quotients G/O. Since all of these
images are generated by at most d elements by the assumption about the rank, we deduce that
so is H by Proposition 2.15. □
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Definition 6.11. Let G be a profinite group. The rank of G, denoted by rk(G), is given by any
of the three equivalent expressions of Lemma 6.10.

Note that unlike for finite groups, the rank of a profinite group might very well be infinite.
For example, it is always infinite if G is not finitely generated, as is the case for the profinite
group described in Warning 2.16. The following fundamental result characterizes finite rank
pro-p-groups.

Theorem 6.12 (Lubotzky-Mann). For a pro-p group G, the following are equivalent:
(1) G has an open subgroup P ◁G which is finitely generated and powerful,
(2) G is of finite rank.

We encourage the reader to take a moment to marvel at the beauty of Theorem 6.12. This
fundamental result relates a natural finiteness condition on a pro-p-group, namely of being of
finite rank, to the condition of being powerful, which is of very different, equational nature. It
also clearly demonstrates the importance and centrality of the theory of powerful groups. In fact,
considering how natural the latter notion turns out to be, and how well p-groups are understood
overall, it is quite surprising that powerful groups were not introduced until 19875!

The rest of this lecture will be devoted to the proof of Theorem 6.12. Note that in the finite
setting, we already established a relationship between being powerful and rank in Theorem 6.9.
To begin with, we need a partial converse to the latter; that is, we show that a finite p-group of
a specified rank is not “not too far” from being powerful in a quantitative way.

Notation 6.13. If r ≥ 0, we write GLr(Fp) := Aut(Fr
p) for the general linear group over the

field with p elements. We write Ur(Fp) ≤ GLr(Fp) for the subgroup of upper unitriangular
matrices; that is, those which are upper triangular and have 1s on the diagonal.

Equivalently, Ur(Fp) is the subgroup of those automorphisms of Fp which preserve the stan-
dard complete flag

0 ≤ Fp ≤ F2
p ≤ . . . ≤ Fr

p

of subspaces and which act by the identity on the associated graded. As an upper unitriangular
matrix is uniquely determined by the entries above the diagonal, which are arbitrary, we see
that

|Ur(Fp)| = p(r−1)+(r−2)+...+1 = p
r(r−1)/2.

As we have
|GLr(Fp)| = (pr − 1) · (pr − p) · . . . · (pr − pr−1)|

by a standard argument of choosing the images of basis elements, we see that Ur(Fp) ≤ GLr(Fp)
is a p-Sylow subgroup.

Definition 6.14. Let G be a finite p-group and r ≥ 0. The subgroup V (G, r) ◁ G is the
intersection

V (G, r) :=
⋂

ϕ:G→GLr(Fp)

ker(ϕ),

of kernels of all homomorphisms G→ GLr(Fp). Equivalently, it is the intersection

V (G, r) :=
⋂

ϕ:G→Ur(Fp)

ker(ϕ),

of kernels of all homomorphisms G→ Ur(Fp).

Remark 6.15. Note that the equivalence of the two variants of Definition 6.14 follows from the
fact that Ur(Fp) ≤ GLr(Fp) is p-Sylow, hence is conjugate to all other p-Sylow subgroups. As
G is a p-group, its image is contained in some p-Sylow subgroup, and the equivalence follows.

5In the celebrated work of Lubotzky an Mann, see [LM87a] and [LM87b].
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Remark 6.16. It is clear from the definition that V (G, r)◁G can be characterized as follows:
it is the subgroup of those elements g ∈ G which act trivially on any G-representations over Fp

of dimension at most r.

Remark 6.17. If G is a finite p-group and N ◁G is a normal subgroup, then we have

V (G, r)N/N ≤ V (G/N, r),

since homomorphisms G/N → GLr(Fp) can be identified with a subset of homomorphisms
G→ GLr(Fp). If N ≤ V (G, r), then

V (G, r)/N = V (G/N, r),

as in this case such homomorphisms are in bijection.

We now show that V (G, r) differs from G itself by a relatively small number of elementary
abelian subquotients.

Notation 6.18. For r > 0, we write

λ(r) := ⌈log2(r)⌉,

the ceiling of the logarithm. In other words, λ(r) is the unique integer such that

2λ(r)−1 < r ≤ 2λ(r).

Lemma 6.19. The group Ur(Fp) can be built as an iterated extension of λ(r) elementary abelian
groups.

Proof. We prove this by induction on r, the case r = 1 being trivial. If r > 1, let s = ⌈r/2⌉
and s′ = r − s. If ϕ : Fr

p → Fr
p be an automorphism preserving the standard complete flag

of subspaces, let ϕ1, ϕ2 be the unique linear automorphisms which make the following diagram
commute

Fs
p Fr

p Fs′

p

Fs
p Fr

p Fs′

p

ϕϕ1 ϕ2
,

where we identify Fs′

p ≃ Fr
p/F

s
p. In other words, ϕ1 is the restriction of ϕ to Fs

p and ϕ2 is the
induced map on the quotient. The association ϕ→ ϕ1 × ϕ2 defines a map

(6.2) Ur(Fp)→ Us(Fp)×Us′(Fp)

whose kernel is by group of linear automorphisms which act by identity on both Fs
p and the

quotient.
Any automorphisms with this property is of the form 1 + v, where v : Fr

p → Fr
p acts by zero

on the subspace Fs
p and the quotient. Any two such v1, v2 compose to zero by a diagram chase

using the diagram above, hence

(1 + v1) · (1 + v2) = 1 + v1 + v2 + v1v2 = 1 + v1 + v2.

This shows that the kernel of (6.2) is elementary abelian. Since the inductive assumption applies
to the product Us(Fp)×Us′(Fp), we see that Ur can be built as an iterated extension of

λ(s) + 1 = λ(2s)

If r is even, then 2s = r and we are done. If r is odd, then we have 2s = r + 1, but in this case
we also have λ(2s) = λ(r) since λ is lower semicontinuous and only jumps at powers of two. □

Corollary 6.20. Let G be a p-group of rank r. Then |G : V (G, r)| ≤ prλ(r).
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Proof. Since by construction G/V (G, r) embeds as a subgroup of a product of Ur(Fp), it follows
from Lemma 6.19 that it can be built using iterated extensions out of λ(r) elementary abelian
groups. Since the groups which appear in this way are subquotients of G, they are of rank at
most r, and hence each is of order at most pr. Combining these two claims we obtain the needed
bound. □

Proposition 6.21. Let G be a finite p-group and let N ◁ G be a normal subgroup such that
d(N) ≤ r and W an arbitrary subgroup. Suppose that either

(1) p > 2 and N ≤W ≤ V (G, r) or
(2) p = 2 and N ≤W ≤ V (G, r)2.

Then N p.e. W .

Proof. We only prove the case of an odd prime. When p = 2, the obtained statement is slightly
different, since in the basic reduction step one has to use the variant of Lemma 5.10 outlined in
Remark 5.11, which takes a slightly different form.

We argue by induction on the order of N . Assume by contradiction that N is not powerfully
embedded in V (G,R). Using Lemma 5.10, we can pass to a suitable quotient of G and by
replacing N and W by their images in the quotient assume that

(1) Np = 0,
(2) |[N,W ]| = p.

Note that in the quotient we still have W ≤ V (G, r) by Remark 6.17. We can find a normal
subgroup M ◁G such that

(1) [N,W ] ≤M < G

and where the second inclusion is of index exactly p. Since N/[N,W ] is elementary abelian and
generated by at most r elements and M/[N,W ] is a proper subgroup, we have d(M/[N,W ]) ≤
r − 1. Since [N,W ] is cyclic, we deduce that d(M) ≤ r. As M is of strictly smaller order than
N , applying the inductive hypothesis we deduce that M p.e. W ; that is,

[M,W ] ≤Mp ≤ Np = 0,

so that M is central in W . Since M ≤ N is then also central with a quotient cyclic, we deduce
that N is abelian, necessarily elementary abelian of rank at most r. From the definition of
V (G, r), it necessarily acts trivially on N by conjugation, so that N is central in V (G, r) and
hence W . This is a contradiction to [N,W ] being of order exactly p, ending the argument. □

Corollary 6.22. Let G be a finite p-group of rank r. Then
(1) if p > 2, then V (G, r) is powerful,
(2) if p = 2, then V (G, r)2 is powerful.

Proof. This is an application of Proposition 6.21 to either N = V (G, r) or N = V (G, r)2. □

Combining the above results, we obtain the following useful statement.

Proposition 6.23. Let G be a finite p-group of rank r. Then G has a characteristic subgroup
P ≤ G which is powerful and of index at most

(1) prλ(r) if p > 2,
(2) prλ(r)+r if p = 2.

Proof. At odd primes, V (G, r)◁G has the needed properties by a combination of Corollary 6.20
and Corollary 6.22. When p = 2, we can take V (G, r)2, which is of index at most

2rλ(r)+r = 2r(λ(r) · 2r

since V (G, r)/V (G, r)2 is elementary abelian and hence of order at most 2r. □

We are now ready to prove the main result of this lecture.
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Proof of Theorem 6.12: Suppose first that G has an open subgroup P ◁ G which is finitely
generated and powerful. Since for any closed K ◁o G, the index |K : K ∩ P | is bounded by
|G : P |, it is enough to show that P itself is of finite rank. If P is generated by r elements, then
so can all of its finite quotients, which are thus of rank at most r by Theorem 6.9 as they are
also powerful. We deduce that P is also of rank r.

Conversely, suppose that G is of finite rank r. Consider

V (G, r) :=
⋂

ϕ:G→GLr(Fp)

ker(ϕ),

where the intersection is taken over all continuous homomorphisms. Since G is finitely generated,
there are only finitely many such homomorphisms so that V (G, r) is open. We can write G as

lim←−
O◁oG,O≤V (G,r)

G/O,

the limit of quotients indexed by the poset of open subgroups contained in V (G, r). Since V (G, r)
is closed, we have

V (G, r) ≃ lim←−V (G, r)/O ≃ lim←−V (G/O, r),

where the second equivalence is Remark 6.17. If p > 2, then each of V (G/O, r) is powerful by
Corollary 6.22, and hence so if V (G, r) as their limit. If p = 2, we can take V (G, r)2 instead. □

Remark 6.24. Using Proposition 6.23, one can give Theorem 6.12 a more quantitative form:
if G is a pro-p-group of rank r, then it has an open characteristic powerful subgroup of index at
most prλ(r) (or 2rλ(r)+r when p = 2).

7. Uniform power

In the previous lecture, we have proven the remarkable Theorem 6.12, which shows that a
pro-p-group is of finite rank if and only if it has an open subgroup which is powerful and finitely
generated. Today, we will show that such groups always have open subgroups which exhibit
strong self-similarity.

Definition 7.1. We say that a pro-p group G is uniformly powerful (or simply uniform) if
(1) G is finitely generated,
(2) G is powerful,
(3) for all i ≥ 1 we have

|Gi : Gi+1| = |Gi+1 : Gi+2|,
where Gi := Pi(G) is the lower p-series.

Note that the first two conditions are equivalent to being of finite rank; we will use this
equivalence freely in what follows. Informally, Definition 7.1 can be summarized as saying that
a group is uniform when it is ”not too large” and its lower p-series “moves at a constant pace”.

Remark 7.2. Note that a finite p-group is uniform if and only if it is zero. Indeed, for finite
groups we have Gi = 0 for i large enough, which forces all of Gi to be zero by uniformity.

We will need the following slightly more elaborate form of Theorem 6.12:

Lemma 7.3. Let G be a pro-p-group of finite rank. Then, there exists a characteristic open
subgroup V ≤ G such that if N ◁c G is normal closed and N ≤ V , then N is powerful.

Proof. If G is of rank r, we write V (G, r) for the intersection of the kernels of all continuous
homomorphisms G→ GLr(Fp). We can then take

(1) V := V (G, r) if p > 2,
(2) V := V (G, r)2 if p = 2.

The needed property then follows from Proposition 6.21. □
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Proposition 7.4. If G is a pro-p-group of finite rank, then Gi is uniform for all i large enough.

Proof. Since Gi form a basis of open neighbourhoods of the identity by Proposition 3.20, they
are powerful for i large enough as a consequence of Lemma 7.3. Since x 7→ xp defines an
epimorphism Gi/Gi+1 → Gi+1/Gi+2 for all i by Theorem 5.14, the sequence of numbers

|G1 : G2| ≥ |G2 : G3| ≥ . . .

is decreasing. Since they are non-negative, this sequence must eventually stabilize, at which
point Gi become uniform. □

Uniform groups have the following beautiful characterization.

Theorem 7.1. If G is a powerful pro-p group, then the following are equivalent:
(1) G is uniform,
(2) G is torsion-free; that is, if gn = e for n > 0, then g = e.

Proof. (1 ⇒ 2): We show that if G is not torsion-free, then it’s not uniform. Since G is pro-p,
this means there exists some g ̸= e such that gp = e. Choose an i such that g ∈ Gi \ Gi+1. It
follows that g defines a non-zero element in the kernel of the map

Gi/Gi+1 → Gi+1/Gi+2

defined by x 7→ xp. Since this map is surjective, we deduce that |Gi : Gi+1| > |Gi+1 : Gi+2|, so
that G is not uniform.

(2 ⇒ 1): We show that if G is not uniform, then G is not torsion-free. By assumption, one
of the maps Gi/Gi+1 → Gi+1/Gi+2 has non-zero kernel, so that there exists x ∈ Gi \Gi+1 such
that xp ∈ Gi+2. By replacing Gi, we can assume that i = 1.

We will inductively construct a sequence x2, x3, . . . such that
(1) x2 = x,
(2) xk+1 ≡ xk (mod Gk)
(3) xpk ∈ Gk+1.

The base case is determined by the first condition, so suppose that xn has been chosen. Since
Gn/Gn+1 → Gn+1/Gn+2 is an epimorphism, we can find zn ∈ Gn such that zpn ≡ xpn (mod Gn+2).
We can then set xn+1 := xnz

−1
n .

Finally, let x := limk→∞ xk; this limit exists as this sequence is Cauchy by the second condition
above and G is compact. Then

xp = lim
k→∞

xpk ∈
⋂
Gi = 0,

so that G is not torsion-free, since x ∈ G1 \G2. □

Corollary 7.5. Any pro-p group G of finite rank has an open characteristic subgroup U ◁o G
such that any open normal closed subgroup N ◁c G satisfying N ≤ U is uniform.

Proof. Firt, let V be an open subgroup as in Lemma 7.3. Then Vi ≤ V is uniform for some i
by Proposition 7.4 and hence torsion-free by Theorem 7.1. All of its closed subgroups are also
torsion-free, and hence uniform since they’re powerful by the choice of V . □

The following will be needed to define the dimension of a pro-p-group of finite rank.

Lemma 7.6. Let G be a pro-p group of finite rank, and A,B ≤ G be uniform open subgroups.
Then d(A) = d(B).

Proof. Since B is open and Pi(A) is a system of open neighborhoods, for some i ≫ 0 we know
Pi(A) ≤ B. Since the minimal number of generators and rank coincide for powerful pro-p-groups
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by Theorem 6.9 and the fact that a rank of a profinite group is the supremum of ranks of its
finite quotients, this gives

d(A) = d(A/P2(A)) = d(Pi(A)/Pi+1(A)) = d(Pi(A)) ≤ d(B),

where the second equality is the unifomity of A. By symmetry, we deduce that also d(B) ≤ d(A),
as needed. □

Definition 7.7. Let G be pro-p group of finite rank. The dimension of G is given by

dim(G) := d(A)

where A ≤o G is any uniform open subgroup.

Remark 7.8. To motivate Definition 7.7, observe that for real Lie groups one shows that a
small neighbourhood of the identity is diffeomorphic to an open subset of the tangent space
through the exponential map, and the dimension of a Lie group is the same as the dimension of
the tangent space. For p-adic analytic groups, the role of such a small neighbourhood is played
by uniform open subgroups.

Again, notice the curious feature that in the p-adic case, the dimension can be defined in
purely group-theoretic terms. Even the topology plays no role, as long as they’re compact, as
by Serre’s Theorem 4.1 all finite index subgroups are open.

The following is a basic consistency check of Definition 7.7.

Proposition 7.9. Let G be pro-p of finite rank and let N ◁c G be a closed normal subgroup.
Then

dim(G) = dim(N) + dim(G/N).

Proof. We first show this in the specia lcase when G, N , and G/N are all uniform. Then
dim(G) = dimFp

(G/Gp) and similarly for N and G/N . We have

dim(G) = dimFp
(G/Gp) = dimFp

(NGp/Gp) + dimFp
(G/NGp).

Ssince G/N is torsion-free by Theorem 7.1, we necessarily have Np = Gp ∩ N , so that we can
rewrite the above as

dimFp
(N/(Gp∩N))+dimFp

(G/NGp) = dimFp
(N/Np)+dimFp

(G/NGp) = dim(N)+dim(G/N),

which is the needed claim.
We now tackle the general case. By Corollary 7.5, we can find an open characteristic subgroup

G′ ≤ G such that if K ◁c G and K ≤ G′, then K is uniform. Similarly, we can choose such
subgroups N ′ ≤ N and H/(G′∩N ′) ≤ G′/G′∩N ′. Since N/(G′∩N ′) is finite and H/(G′∩N ′) is
uniform and thus torsion-free, we necessarily have N ∩H = G′ ∩N ′. Thus, all three of H ≤o G,
N ∩H ≤o N and H/(N ∩H) ≤o G/N are uniform and by the first part we have

dim(G) = dim(H) = dim(H ∩N) + dim(H/H ∩N) = dim(N) + dim(G/N).

□

Remark 7.10. Observe that in the context of Proposition 7.9, both N and G/N are automati-
cally of finite rank, as this property is clearly closed under taking quotients and closed subgroups.
Conversely, it is not difficult to show that if N and G/N are finite rank, then so is G.

We will now describe how a choice of generators of a uniform group induces a coordinate
system on the whole group. This can be seen as the first solid piece of evidence towards Lazard’s
Theorem 1.1 which characterizes p-adic analytic groups as those topological groups which are
locally uniform. In this case, we will see that uniform groups (and hence all pro-p groups of finite
rank, locally) are homeomorphic to Zn

p in a semi-canonical way. This requires some preparation.
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Lemma 7.11. Let G be a powerful finite p-group generated by a1, . . . , ad. Then any element of
G can be written in the form

aλ1
1 · a

λ2
2 · . . . · a

λd

d

for some λi ∈ Z.

Proof. We prove this by induction on the length of the p-series. If G2 = 0, then G is abelian, and
the result is clear. If we have n ≥ 2 with Gn ̸= 0 and Gn+1 = 0, then by inductive assumption
the result applies to G/Gn. It follows that any element g ∈ g can be written as

g = aλ1
1 · a

λ2
2 · . . . · a

λd

d x

with x ∈ Gn. As Gn is generated by bi := ap
n−1

i by repeated application of part (3) of Theo-
rem 5.14 and Gn is central, the result follows by writing x as a product of bi and moving things
around. □

In any group, one can make sense of expressions of the form gλ where g ∈ G and λ ∈ Z. We
now show that if G is pro-p, then λ can even be a p-adic integer.

Construction 7.12. Let G be a pro-p group. We claim that there is a unique continuous
mapping

G× Zp → G

written as
(g, λ) 7→ gλ

which restricted to G× Z gives the usual n-th power mapping gn := g · g · . . . · g.
Since Z ⊆ Zp is dense, it is enough to show existence, as uniqueness will be automatic. We

can write G ≃ lim←−Gα as a limit of finite p-groups, and thus it is enough to construct such an
extension to

G× Z→ Gα.

However, for any gα ∈ Gα we have gnα = gn+pd

α , where pd = |Gα| is the order. It follows that we
have a commutative diagram

G× Zp

G× Z G× Z/pd Gα

which provides the needed extension.

Remark 7.13. Explicitly, the p-adic powers of Construction 7.12 can be calculated as follows:
if g ∈ G and λ ∈ Zp, then

gλ = lim
i→∞

gλi

where on the right hand side we have the standard powers and λi ∈ Z is a sequence of integers
converging λi → λ in Zp. This follows from continuity, and such a sequence can always be chosen
by density of ordinary integers inside the p-adics.

Theorem 7.14. Let G be a uniform pro-p group and let a1, . . . , ad be a minimal system of
generators. Then the map

Zd
p → G

given by
(λ1, . . . , λd)→ aλ1

1 · . . . · a
λd

d ,

the p-adic powers of Construction 7.12, is a homeomorphism.
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Proof. Since U/pU ≃ U/U2 as groups as a consequence of For any k ≥ 1, G/Gk+1 is a finite
p-group of exponent pk. It follows from the construction that the above mapping fits into a
commutative diagram

Zd
p G

(Z/pk)d G/Gk+1

.

The bottom arrow is surjective by Lemma 7.11. As G is uniform of rank d, the quotient G/Gk+1

has exactly pkd elements and we deduce that the bottom arrow is a bijection. As the map
Zd
p → G can be identified with the inverse limit of these maps, we deduce that it is a bijection,

too, and hence a homeomorphism as it is continuous. □

8. The p-adic general linear group

In this lecture, we will verify that the archetypical example of a p-adic analytic group GLd(Zp),
is virtually a pro-p group of finite rank; that is, it has an open subgroup which is a pro-p group
of finite rank.

Definition 8.1. If n ≥ 1, the n-th congruence subgroup Γn ◁ GLd(Zp) is the open subgroup
given by the kernel

Γn := ker(GLd(Zp)→ GLd(Z/pn)).

Explicitly, Γn is the subgroup of matrices of the form

Γn = {1 + pna | a ∈Md(Zp)},
where 1 is the identity matrix and Md(Zp) is the set of all p-adic matrices. From this description,
it is clear that Γn is a basis of open neighbourhoods of the identity element. In particular,
GLd(Zp) is profinite.

Lemma 8.2. We have

|GLd(Zp) : Γ1| = (pd − 1) · (pd − p) · . . . · (pd − pd−1)
and

|Γn : Γn+1| = pd
2

for each n ≥ 1.

Proof. Since any invertible matrix over Fp can be lifted to a matrix over Zp, which is then
automatically invertible, too, the first index is equal to |GLd(Fp)|, which we observed is equal
to the given expression in §6. The second index is equal to |ker(GLd(Z/pn+1) → GLd(Z/pn)|,
which is pd

2

since any matrix over Z/pn has exactly pd
2

lifts to Z/pn+1. □

Corollary 8.3. The profinite group GLd(Zp) is virtually pro-p; that is, it has a pro-p open
subgroup.

Proof. This follows from the second part of Lemma 8.2, since Γ1 is open and pro-p. □

We now study the basic relationships between the congruence subgroups.

Lemma 8.4. Let a ∈ GLd(Zp) and x ∈Md(Zp). Then for any n ≥ 1, we have

a ≡ (a+ pnx) mod Γn.

Proof. Since the images of a and a + pnx in GLd(Z/pn) are the same, they generate the same
coset with respect to the kernel, which is Γn. □

Lemma 8.5. For any n ≥ 1, we have [Γn,Γn] ≤ Γ2n.
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Proof. Let 1 + pna and 1 + pnb be elements of Γn. Then

(1 + pna)(1 + pbb) ≡ (1 + pna+ pnb+ p2nab) ≡ (1 + pna+ pnb) mod Γ2n,

where the second equivalence is Lemma 8.4. The result follows since pna+ pnb = pnb+ pna.
□

Lemma 8.6. For any n ≥ 1, we have Γp
n ≤ Γn+1.

Proof. If 1 + pna ∈ Γn, then the binomial formula gives

(8.1) (1 + pna)p = 1 +

(
p

1

)
pna+

∑
2≤k≤p

(
p

k

)
pnkak

which we can rewrite as

1 +

(
p

1

)
pna+

∑
2≤k≤p

(
p

k

)
pnkak = 1 + pn+1(a+

∑(
p

k

)
pn(k−1)−1ak)

as needed. □

Proposition 8.7. Assume that either n ≥ 1 and p > 2 or n ≥ 2 and p = 2. Then every element
of Γn+1 is a p-th power of an element in Γn.

Proof. Let 1 + pn+1a ∈ Γn+1, we have to solve the equation

f(x) =
(1 + pnx)p − 1− apn+1

pn+1
= 0

for a matrix x ∈Md(Zp). Note that this equation has p-adic integral coefficients by Lemma 8.6.
We will show that such a matrix exists using Newton’s method. More precisely, we will induc-
tively construct a Cauchy sequence x1, x2, . . . of matrices in the subring generated by a such
that

f(xi) ≡ 0 mod pi

We claim that we can take x1 := a. To see this, note that the binomial expansion of the p-th
power gives

f(x) = (x− a) +
∑

2≤k≤p

(
p

k

)
pnk−n−1xk,

so that
f(a) =

∑(
p

k

)
pnkak.

This is divisible by p as needed since
(1) p = 2, in which case n ≥ 2, so that nk − n− 1 ≥ 1,
(2) p > 2, in which case

(
p
2

)
is divisible by p for k = 2, and nk − n− 1 ≥ 1 when k > 2.

Note that this is the only place where the distinction between p = 2 and p > 2 comes into play.
We also calculate that

f ′(x) = (1 + pnx)p−1,

so that f ′(a) is invertible. Since the subring of matrices generated by a is a finite Zp-algebra, it
is p-complete, and applying Hensel’s lemma6, we see that inductively defining

xr+1 := xr −
f(xr)

f ′(xr)
.

yields a Cauchy sequence which converges to the needed solution. □

6Hensel’s lemma is often stated only for local rings, see [Sta18, Tag 04GM], but since Zp is henselian, the
subalgebra of matrices generated by a is a finite product of p-complete local rings. Thus, the convergence of the
series produced by the Newton’s method can be checked in each of these local rings separately. Moreover, it is
common to assume that f is monic, but this is not necessary in the case of complete local rings.

https://stacks.math.columbia.edu/tag/04GM
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Theorem 8.8. Assume that either n ≥ 1 and p > 2 or n ≥ 2 and p = 2. Then Γn is a uniformly
powerful pro-p group of dimension d2.

Proof. By a combination of Proposition 8.7 and Lemma 8.6, we see that

Γn/Γ
p
n = Γn/Γn+1

If p > 2, then the right hand side is abelian by Lemma 8.5. If p = 2, then we deduce that

Γn/Γ
4
n = Γn/Γn+2

which is similarly abelian since n ≥ 2. We deduce that Γn is powerful. Moreover, by Lemma 8.2,
for any k ≥ 1 we have

|Pi(Γn)/Pi+1(Γn)| = |Γn+i−1/Γn+i| = pd
2

from which we deduce at once that Γn is finitely generated and uniform. □

Corollary 8.9. The general linear group GLd(Zp) is virtually a uniform pro-p group.

Proof. By Theorem 8.8, Γ1 for p > 2 and Γ2 for p = 2 are open subgroups which are uniformly
powerful pro-p. □

9. The additive structure of a uniform group

In Theorem 7.14, we had seen that if U is a uniform group of dimension d, then any choice
of generators determines a homeomorphism

Z⊕dp ≃ G.

Using this homeomorphism, the abelian group structure of the left hand side can be transferred
to G, but this is not a good idea, as this new abelian multiplication of G depends on the choice
of generators. In this lecture, we will see that a uniform group instead supports an intrinsic
abelian multiplication, which we will refer to as addition, which is defined in terms of and related
in interesting ways to the original multiplication of G.

Remark 9.1. If G is a real Lie group, then the behaviour of its multiplication in an infinitesimal
neighbourhood of the identity (up to first order) is encoded by the induced multiplication

TeG× TeG→ TeG.

on the tangent space. It is not difficult to show (using the Eckmann-Hilton argument) that
the induced multiplication on the tangent space coincides with its addition coming from the
structure of a vector space. In this sense, the multiplication of any real Lie group is abelian up
to first order.

The main idea behind today’s construction is to replace the multiplication of a uniform group
G by multiplication induced from its small subgroups. One then hopes that as in the case of
real Lie groups discussed in Remark 9.1, in the limit the multiplication becomes abelian.

The restriction to the case of uniform groups comes from the fact that they can be canonically
identified (as topological spaces) with their subgroups appearing in the lower p-series, which we
show now.

Lemma 9.2. Let G be a pro-p group and write Gi := Pi(G) for its lower p-series. Then for any
n, k, the map x 7→ xp

n

induces a function of sets

G/Gk+1 → Gn+1/Gn+k+1.

If G is powerful, this map is a surjective, and bijective if G is moreover uniform.
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Proof. It’s enough to do the case n = 1, as the other cases are obtained by iterating the statement.
Suppose that

x ≡ y mod Gk+1

so that x = yz for z ∈ Gk+1. Then

xp ≡ ypzp mod [G,Gk+1]

which since [G,Gk+1] ≤ Gk+2 and zp ∈ Gk+2 gives

xp ≡ yp mod Gk+2,

which is what we wanted to show. If G is powerful, then every element of Gn+1 is a pn-th power
by Theorem 6.4 and surjectivity follows. If G is uniform, then both sets are of the same order
pd(G)k, and hence the surjection must be a bijection. □

Warning 9.3. We have shown in Theorem 5.14 that if G is powerful and k = 1, then x 7→ xp not
only defines a function of sets G/Gk+1 → G2/Gk+2, but even a group homomorphism. Beware
that this is not in general true for k > 1, even if G is powerful.

Corollary 9.4. Let U be uniform. Then for any n, the map x 7→ xp
n

defines a homeomorphism

U → Un+1.

Proof. This map can be identified with the limit of bijections between finite sets of Lemma 9.2
as k →∞, and hence is a homeomorphism. □

Note that the homeomorphism of Corollary 9.4 is not in general a group homomorphism.
However, using this map we can transfer the group structure of Un+1 onto U in the following
way:

Construction 9.5. Let U be a uniform pro-p group. If x, y ∈ U , we write

x+n y := (xp
n

yp
n

)p
−n

,

where p−n : Un+1 → U is the inverse to the pn-th power map.

Remark 9.6. Note that the map +n makes U into a topological group with respect to its usual
topology. This is the unique group structure such that x 7→ xp

n

defines a group isomorphism
(U,+n) ≃ (Un+1, ·), where · is the standard multiplication of Un+1.

Lemma 9.7. If U is uniform and x, y ∈ U , then

x+n y ≡ x+n−1 y mod Un.

Moreover, for any u, v ∈ Un we have

ux+n vy ≡ x+n y mod Un.

Proof. Since [Un, Un] ≤ U2n by Theorem 3.21, we have(
xp

n−1

yp
n−1

)p

≡
(
(xy)

pn−1
)p

mod U2n.

Taking pn-th roots, this yields

x+n−1 y ≡ x+n y mod Un.

as needed. For the second statement, we want to show that

ux+n vy ≡
(
(ux)

pn

(vy)
pn
)p−n

≡
(
xp

n

yp
n
)p−n

mod Un.

Taking pn-th powers shows that the above is equivalent to

(ux)
pn

(vy)
pn

≡ xp
n

yp
n

mod U2n,

which follows from Lemma 9.2. □
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Observe that as a consequence of the first part of Lemma 9.7, for any x, y ∈ U , the sequence

x+1 y, x+2 y, . . .

is Cauchy and hence has a unique limit in U . Thus, the following makes sense.

Definition 9.8. If U is uniform, the addition is a function U × U → U defined by

(x, y) 7→ x+ y := lim
n→∞

x+n y.

Informally, each of +n spreads out the multiplication of Un+1 onto the whole group U . As
Un+1 become smaller as n grows, the case of real Lie groups leads us to expect that +n should
become more and more simple. Thus, we would expect that in the limit, as in Definition 9.8,
the resulting map has a particularly simple form. We now verify that this is indeed the case.

Proposition 9.9. The map +: U ×U → U together with the original topology makes U into an
abelian topological group with identity e ∈ U and inverse given by (−)−1 : U → U .

Proof. We first check that e is the identity. Since ep
n

= e, we have x+n e = x for all x ∈ U , so
that

x+ e = limx+n e = limx = x.

For inverse, we similarly observe that x+n x
−1 = e for all n, so that

x+ x−1 = limx+n x
−1 = lim e = e.

Continuity of addition follows from the second part of Lemma 9.7.
For associativity, we again use Lemma 9.7 to observe that

(x+ y) + z ≡ (x+n y) + z mod Un+1

≡ (x+n y) +n z mod Un+1

≡ x+n (y +n z) mod Un+1

≡ x+ (y + z) mod Un+1.

Since this is true for all n, we get associativity.
We are left with showing that addition is commutative. Since [Un+1, Un+1] ≤ U2n+2 by

Theorem 3.21, we have (
xp

n

yp
n
)
≡ yp

n

xp
n

mod U2n+2.

Taking pn-th roots, we get that

x+n y ≡ y +n x mod Un+2.

Passing to the limit as n→∞, we get x+ y = y + x. □

By Proposition 9.9, a uniform pro-p group U admits a second group structure on the same
set of elements. To keep the two group structures apart, we continue to write the original
multiplication of a uniform group U using juxtaposition or · and use + to denote the addition
of Definition 9.8. These two are related in interesting ways, as we now show.

Lemma 9.10. Let U be a uniform group and x, y ∈ U . Then
(1) if [x, y] = e, then x+ y = xy,
(2) xm = mx,
(3) pkU = Uk+1.

Proof. For the first part, we have

x+n y =
(
xp

n

yp
n
)p−n

.
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Since x and y commute, this is equal to(
(xy)

pn
)p−n

= xy.

As this holds for all n, we deduce that x+ y = xy. The second part follows from the first one by
induction, since x commutes with all of its powers. The third part is a consequence of the second
one and the fact that all elements of Uk+1 are pk-th powers, as proven in Theorem 6.4. □

Note that as consequence of the third part of Lemma 9.10, Un ≤ U is a normal subgroup
with respect to either multiplication or addition. We now verify that with respect to either it
determines the same division into cosets.

Lemma 9.11. The additive cosets of Un ⊆ U coincide with the multiplicative cosets. That is,
for any a ∈ U we have

a+ Un = aUn.

Proof. If v ∈ Un, then
a+ v ≡ a+ (ve) ≡ a+ e ≡ a mod Un.

So a+ v = au for some u ∈ Un and a+ Un ⊆ aUn. Conversely,

au− a ≡ a− a ≡ e mod Un.

Thus au− a = v for some v ∈ Un, and therefore au = a+ v, showing that aUn ⊆ a+ Un. □

It follows from Lemma 9.11 that for any n and k, the two quotients

(Un,+)/(Un+k,+) ≃ (Un, ·)/(Un+k, ·)

can be canonically identified as sets. When k = 1, they even coincide as groups:

Lemma 9.12. For any n, + and · induce the same group structure on Un/Un+1.

Proof. By Theorem 5.14, x 7→ xp
k

defines a group isomorphism Un/Un+1 → Un+k/Un+k+1. It
follows that +k define the same group structure on Un/Un+1 as standard multiplication and
hence so does their limit +. □

Proposition 9.13. The addition makes U into a uniform group of dimension dim(U).

Proof. Since pnU = Un+1 form a basis of neighborhoods of the identity and

(9.1) [(U,+) : pnU ] = [(U, ·) : Un+1]

by Lemma 9.11, we see that (U,+) is a pro-p group. Since U/pU ≃ U/U2 is finite, we deduce
that (U,+) is finitely generated. It is powerful since it is abelian. It is also uniform of the same
dimension as U by 9.1, ending the argument. □

By virtue of Proposition 9.13, the additive structure of a uniform group is not entirely dissim-
ilar from the multiplicative one. However, it is much more simple as it is abelian, using which
we can describe it completely. Recall from Construction 7.12 that in a pro-p group one can take
powers of elements by p-adic integers, which defines an action of Zp.

Theorem 9.14. Let U be uniform pro-p group of dimension d. Then for any set a1, . . . , ad
of generators, (U,+) is a free Zp-module generated by a1, . . . , ad, so that we have a topological
group isomorphism

(U,+) ≃ Zd
p.
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Proof. By Lemma 9.12, addition and multiplication define the same group structure on U/U2,
so that any set of generators for U under multiplication is also a set of generators for U under
addition. By Theorem 7.14, the map Zd

p → U defined by

(λ1, . . . , λd)→ λ1a1 + . . .+ λdad

is a homeomorphism. Since it is also a group homomorphism as (U,+) is abelian, the claim
follows. □

Since the addition of a uniform group was defined by looking at its multiplication in smaller
and smaller subgroups, informally one can interpret Theorem 9.14 as saying that in an infinites-
imal neighbourhood of the identity, the multiplication is essentially linear.

Remark 9.15. One can think of (U,+) as the Lie algebra of U . In line with this heuristic,
we will later show that the commutator of U induces a Lie bracket on the Zp-module (U,+).
Using the fact that any pro-p group of finite rank has an open uniform subgroup, one can use
this construction to associate a Lie algebra to any pro-p group of finite rank (which in this case
is defined only over Qp, essentially since we have to make a choice of a uniform subgroup and
there might not be a canonical one).

One can obtain several pleasant consequences of Theorem 9.14 by observing that since addition
is defined purely in terms of the group structure and the topology, the construction

U 7→ (U,+) ∈ModZp

is clearly functorial in continuous group homomorphisms between uniform groups. This yields
the following:

Corollary 9.16. Any continuous automorphism of U acts linearly on (U,+). Thus, any choice
of a basis of (U,+) induces an identification

Aut(U) ≤c GLd(Zp)

of the group of continuous automorphisms of U with a closed subgroup of the general linear group.

Using the fact that any group acts on itself by conjugation, we can prove the following elegant
result.

Theorem 9.17. Let G be a pro-p group of finite rank and dimension dim(G) = d. Then there
exists an exact sequence of topological groups

0→ Ze
p → G→ GLd(Zp)× F,

where F is a finite p-group and e ≤ d.

Proof. By Proposition 7.4, G has a normal open uniform subgroup U ◁oG. We look at the map

G→ Aut(U)×G/U
which is a product of the conjugation action of G on U and the quotient map. By Corollary 9.16,
Aut(U) can be identified with a closed subgroup of GLd(Zp). We are left with identifying the
kernel of this map, which is the center Z(U). Since the kernel is abelian, of finite rank and
torsion-free as U is, by Theorem 7.1 it is uniform and hence isomorphic to a free module over
the p-adics by Theorem 9.14. This ends the argument. □

Corollary 9.18. A profinite group is virtually a finite rank p-group if and only if it is an
extension of closed subgroups of GLd(Zp).

Proof. We have shown in Corollary 8.9 that the general linear group is virtually a uniform
pro-p group; in particular, virtually pro-p of finite rank. This property is clearly closed under
extensions, providing one direction. The converse follows from Theorem 9.17, since both the
p-adics and any finite group can be embedded as a subgroup of the general linear group. □
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Remark 9.19. The linear action of U on (U,+) through conjugation can be thought of as the
p-adic analogue of the adjoint representation from the theory of Lie groups. In the latter case,
if G is a Lie group, conjugation induces a map G → Aut(g) into the automorphims of the Lie
algebra. The kernel of this group homomorphism is the center Z(G) ◁ G. Following the same
argument as in Theorem 9.17, this proves that any Lie group of dimension d is an extension of
a subgroup of GLd(R) (necessarily closed if G is compact) and an abelian Lie group.

10. Formal groups laws

Informally, formal group laws are a formal analogue of algebraic groups, where instead of
remembering the whole variety one remembers the multiplication only in an infinitesimal neigh-
bourhood of the identity. They arise naturally, in either the real of p-adic context, from the
Taylor series expansion of the multiplication, and are an important refinement of the Lie alge-
bra.

We will discuss more general formal group laws, as well as their relationship with p-adic
analytic groups, later in the course. Today, we will focus on a particularly nice class of formal
group laws, namely those which are 1-dimensional and commutative. These beautiful objects
naturally arise in stable homotopy theory, and their automorphism groups are often p-adic
analytic, as we will show in the next lecture.

Definition 10.1. A (1-dimensional, commutative) formal group law over a commutative ring
R is a power series F (x, y) ∈ RJx, yK such that

(1) F (x, 0) = x (right unitality),
(2) F (0, y) = y (left unitality),
(3) F (F (x, y), z)) = F (x, F (y, z)) (associativity),
(4) F (x, y) = F (y, z) (commutativity).

Warning 10.2. Beware that in addition to the notion of a formal group law, there is also a
more geometric notion of a formal group. These are closely related, but are not quite the same;
roughly, the latter is a coordinate-free version of the former, at least locally. In this course, we
will be content with only discussing formal group laws, since the additional complication is not
needed for our applications.

Remark 10.3. For a more thorough exposition of formal group laws in a language similar to
ours, including their underlying geometry, we recommend notes from the previous course [Pst21].

Notation 10.4. If F (x, y) is a formal group law, it is common to write

x+F y := F (x, y).

In this notation, the above axioms take the form
(1) x+F 0 = x,
(2) 0 +F y = y,
(3) (x+F y) +F z = x+F (y +F z),
(4) x+F y = y +F x.

In other words, +F (considered, for example, as an operation on power series with no constant
term) behaves like an ordinary addition: the sum of any finite number of objects doesn’t depend
on their order or the order of multiplication itself.

As discussed in the introduction, a natural source of formal group laws is given by algebraic
groups.

Construction 10.5 (Formal group laws from varieties). Let k be a field and let A be an abelian
group object in k-varieties which is of dimension one as a variety. Any such variety is smooth,
and using this fact one can show that the completion of the local ring

ÔA,e ≃ kJxK



P-ADIC ANALYTIC GROUPS HARVARD MATH 291Y, FALL 2023 44

at the identity e ∈ A is non-canonically isomorphic to the ring of formal power series7. The
multiplication of A induces a continuous map

ϕ : kJxK ≃ ÔA,e → ÔA,e⊗̂kÔA,e ≃ kJx1, x2K
which is determined by the image F (x1, x2) := ϕ(x) of the generator. The commutativitiy and
associativity of the group multiplication of A imply that F (x1, x2) is a formal group law.

Example 10.6 (The additive and multiplicative formal group law). Let Ga ≃ A1
k be the additive

group of a field k; that is, the affine one-space considered as a group under addition. In this
case, Construction 10.5 yields the additive formal group law

Fa(x, y) = x+ y.

If we instead take the multiplicative group Gm ≃ A1
k \ {0}, then we obtain the multiplicative

formal group law
Fm(x, y) = x+ y + xy.

Formal group laws informally encode multiplication on some geometric object. Because of
that, they naturally form a category, with morphisms a natural analogue of maps of geometric
objects they correspond to.

Definition 10.7. Let F,G be formal group laws over a ring R. Then a morphism of formal
group laws ϕ : F → G is a power series ϕ ∈ RJxK with no constant term such that we have an
equality

ϕ(F (x, y)) = G(ϕ(x), ϕ(y))

of power series in two variables.

Note that if given a ring homomorphism ϕ : R→ R′ and a formal group law

F =
∑

ai,jx
iyj ∈ RJx, yK,

applying ϕ to each coefficient separately we obtain a new formal group law

ϕ∗F :=
∑

ϕ(ai,j)x
iyj ∈ R′Jx, yK

over the target ring. Similarly, we can apply ϕ to coefficients of an endomorphism, so that it
actually assembles into a functor

ϕ∗ : {Formal groups laws over R} → {Formal groups laws over R′}
between the corresponding categories.

Remark 10.8 (The moduli stack of formal groups). Restricting to formal group laws and
isomorphisms, to each ring we can functorially associate a groupoid, which we can identify with
a 1-truncated anima. This yields a covariant functor of ∞-categories

{Formal groups laws over −} : CRing → S,

where the target is the ∞-category of anima. The Zariski sheafication of this functor is known
as the moduli stack of formal groups and often denoted by Mfg.

The functor Mfg is not far from being an algebraic stack, as one can show that it is a quotient
of an affine scheme by a flat action of an affine group scheme. This moduli stack is deeply related
to patterns in homotopy theory, as first discovered by Quillen, and an often used informal slogan
is that
“The behaviour of stable homotopy theory is controlled by the geometry of the moduli stack of

formal groups.”

7It is this non-canonical choice of a coordinate that distinguishes between formal group laws and formal groups.
We will not discuss the latter, but we mention here that the choice of a coordinate is not needed when one works
with formal groups instead.
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Note that this moduli stack is just a convenient way of packaging information about formal group
laws and their isomorphisms, so this is just saying that many phenomena in stable homotopy
theory can be directly related to formal groups. This is one piece of motivation to understand
this beautiful subject.

An interesting example of an isomorphism of formal group laws is provided by the classical
exponential function.

Example 10.9. Let k be a field of characteristic zero and consider the power series

ϕ(x) := ex − 1 =
∑
n≥1

1

n!
xn.

Then
ϕ(x+ y) = ex+y − 1 = exey − 1 = (ex − 1) + (ey − 1) + (ex − 1)(ey − 1),

so that ϕ : Fa → Fm is an isomorphism between the additive and multiplicative formal group
laws of Example 10.6.

Note that in the context of Example 10.9, it is crucial that we work in characteristic zero, or
else the exponential power series is not well-defined, as it involves division by factorials. In fact,
this is an instance of general phenomena: in characteristic zero, (one-dimensional, commutative)
formal group laws are not particularly interesting, as the following result shows.

Theorem 10.10 (Lazard). Let k be a field of characteristic zero. Then:
(1) any formal group law over k is isomorphic to the additive one,
(2) all automorphisms of the additive formal group law are of the form ϕ(x) = λx for some

λ ∈ k; that is, End(Fa/k) ≃ k as rings.

Proof. This is not difficult, see [Rav03, A.2.1.6]. □

In positive characteristic, the situation is more complex; in particular, the additive and mul-
tiplicative formal group laws are not isomorphic. To distinguish between them, it is helpful to
look at the analogue of multiplication by p.

Definition 10.11. Let F ∈ RJx, yK be a formal group law. The p-series of F is given by

[p]F (x) := x+F + . . .+F x.

Remark 10.12. Since F is commutative, the p-series is in fact an endomorphism of F , corre-
sponding to the element p in the endomorphism ring End(F/R).

Remark 10.13. Moreover, if ϕ : F → G is an isomorphism of formal group laws, then

ϕ ◦ [p]F ◦ ϕ−1 = [p]G,

so that their p-series differ only by a conjugation by an invertible power series.

The unitality axiom of the formal group laws forces the p-series to be of the form

[p]F (x) = px+ higher order terms.

Since a power series is invertible under composition if and only if the leading term is, we deduce
that the p-series is invertible if and only if p ∈ R is invertible. In particular, over a field, the
p-series is an isomorphism when and only when we’re working outside of characteristic p.

This suggests that one measure of complexity of a formal group law in positive characteristic
would be how badly does it p-series fail to be invertible, leading to the notion of a height.

Lemma 10.14. Let F be a formal group law over a field k of characteristic p. Then either
[p]F = 0 or the p-series can be written as

[p]F (x) = ϕ(xp
n

)

for an invertible power series ϕ and a unique n > 0.
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Proof. This follows from Lemma 12.10, proven in a subsequent lecture. For now, we recommend
the reader take this result on faith. □

Definition 10.15. Let F be a formal group law over a field of characteristic p. If

[p]F (x) = ϕ(xp
n

)

with ϕ invertible, then we say that F is of height n. If instead [p]F (x) = 0, then we say that F
is of infinite height.

Example 10.16. Let’s calculate the heights of the additive and multiplicative formal group
laws of Example 10.6 in positive characteristic. In the additive case, we have

[p]Fa
(x) = px = 0,

so that the height is infinite. In the multiplicative case, we have

[p]Fm
(x) = (x+ 1)p − 1 = xp,

so that height is equal to one.

Since the p-series of isomorphic formal group laws differ by a conjugation an invertible series
as observed in Remark 10.13, a corollary of the calculation of Example 10.16 is that the additive
and multiplicative formal group laws are not isomorphic in positive characteristic.

A fundamental result of Lazard shows that locally in the étale topology, height is a complete
invariant.

Theorem 10.17 (Lazard). Let k be a separably closed (for example, algebraically closed) field
of positive characteristic. Then:

(1) two formal group laws over k are isomorphic if and only if they are of the same height,
(2) formal group laws of any height 1 ≤ n ≤ ∞ exist.

Note that Theorem 10.17 does not say anything about automorphisms of formal group laws.
In fact, these behave quite differently in the case of infinite height, where the automorphism
group depends on the field and is quite enormous, and in the case of finite height, where the
automorphism group depends on the base field only very mildly and has favourable properties:
it is a p-adic analytic group. We will discuss this in more detail in the next two lectures, where
we also sketch the construction of formal group laws of arbitrary finite height.

11. Lubin-Tate formal group laws

In this lecture, we will use a technique due to Lubin-Tate to construct formal group laws of
arbitrary finite height, as well as some of their endomorphisms. In the next lecture, we will then
describe their endomorphism ring explicitly.

The axioms of a formal group law, which we described in Definition 10.1, look deceptively
simple, but when expanded out in terms of the coefficients of the power series in question become
quite complicated. Because of that, it is in general difficult to write down a formal group law
explicitly by hand, except where it comes from a algebraic group as in Construction 10.5.

An insight due to Lubin and Tate is that formal group laws in positive characteristic can be
written down essentially inductively, and the key observation is that this is easier to do in mixed
characteristic rather than positive one. We are mostly interested in the situation of perfect fields,
where a canonical lift to mixed characteristic is provided by the construction of Witt vectors
which we now recall.

Recollection 11.1. We say that a commutative ring W is a ring of Witt vectors if it satisfies
the following three properties:

(1) W is p-complete; that is, W ≃ lim←−W/p
n,

(2) W is flat over Zp,
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(3) the Fp-algebra W/pW is perfect; that is, the Frobenius x 7→ xp is an isomorphism.
The construction W 7→W/pW provides a functor

(11.1) CAlgWitt → CAlgperfFp

from the full subcategory of rings spanned by rings of Witt vectors to the full subcategory of
rings spanned by perfect Fp-algebras. One can show using obstruction theory that (11.1) is an
equivalence of categories, and so has an inverse which we write as

R ∈ CAlgperfFp
7→W (R) ∈ CAlgWitt .

We call W (R) the ring of Witt vectors of R; it is the unique lift of R to a flat, p-complete
Zp-algebra.

Example 11.2. We have
W (Fp) ≃ Zp,

since the latter is flat over itself, p-complete and reduces to Fp. More generally, if q = pn, then
we can write the finite field with q elements as Fq = Fp[ζq−1], where ζq−1 is a primitive (q−1)-th
root of unity. Using this description one can check that

W (Fq) = Zp[ζq−1].

Warning 11.3. The ring of Witt vectors of Recollection 11.1 should be more properly called
the ring of p-typical Witt vectors, since there are other variants of this construction (including
for algebras which are not perfect). For an exhaustive account, see [Hes05]. In this course, we
will not need other variants, in fact we will only work with Witt vectors of finite fields as in
Example 11.2.

Definition 11.4. Let R be a perfect Fp-algebra. The Witt vector Frobenius is the unique ring
automorphism

σ : W (R)→W (R)

which reduces to the Frobenius modulo p; that is, such that

σ(w) ≡ xp mod p

for all w ∈W (R).

Note that the Witt vector Frobenius exists since the reduction mod p functor is an equivalence
between rings of Witt vectors and perfect Fp-algebras, so that any map of the latter (such as
the Frobenius) lifts uniquely to rings of Witt vectors.

Example 11.5. In the case of the ring of Witt vectors of a finite field as in Example 11.2, the
Frobenius is given by the unique ring automorphims such that

σ(ζq−1) = ζpq−1;

that is, the Frobenius permutes the primitive (q − 1)-th roots of unity.

To construct a formal group law of arbitrary finite height over Fp, we will instead construct
it first over the ring of Witt vectors. The following technical lemma of Lubin and Tate does all
of the heavy lifting.

Lemma 11.6 (Lubin-Tate). Let R be a perfect Fp-algebra such that r = rq for all r ∈ R and
let f(x) ∈W (R)JxK be a power series such that

(1) f(x) ≡ px mod x2,
(2) f(x) ≡ xq mod p
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Then, for any linear form
ϕ(x) = a1x1 + . . . akxk

linear form with coefficients in W (R) there exists a unique unique power series

ϕ̃(x) ∈W (R)Jx1, . . . , xkK

such that
(1) ϕ̃ lifts ϕ; that is, we have

ϕ̃(x1, . . . , xk) = ϕ(x1, . . . , xk) + terms of degree two and higher,

(2) ϕ̃ commutes with f ; that is,

f(ϕ̃(x1, . . . , xk)) = ϕ̃(f(x1), . . . , f(xk))

Proof. For brevity, we write x to mean x1, . . . , xk. We will construct by induction a compatible
sequence of degree n polynomials ϕn(x) such that the second equations holds modulo terms of
degree n + 1 and higher, and that ϕn(x) is unique subject to this property. The needed power
series will be then given by

ϕ̃(x) := limϕn(x),

the limit taken in the x-adic topology. The base case holds with ϕ1(x) := ϕ(x).
Now assume that ϕn(x) is already constructed. By inductive assumption, the “error”

E(ϕn) := f(ϕn(x))− ϕn(f(x))
vanishes up to degree n. We define

ϕn+1 := ϕn(x) + c(x)

where c(x) is a “correction term”, homogeneous of degree n+ 1, such that

E(ϕn+1) = f(ϕn+1(x))− ϕn+1(f(x)).

vanishes modulo terms of degree n + 2. To see what equation c should satisfy, observe that by
our assumption on f , we have that

f(ϕn+1(x)) = f(ϕn(x) + c(x)) ≡ f(ϕn(x)) + pc(x) mod xn+2

and similarly

ϕn+1(f(x)) = ϕn(f(x)) + c(f(x)) ≡ ϕn(f(x)) + pn+1c(x) mod xn+2.

Thus E(ϕn+1) ≡ 0 mod xn+2 is equivalent to

(11.2) E(ϕn) = (−p− pn+1)c(x) mod xn+2.

The left hand side is of degree at least n+1, and we claim that its homogeneous part E(ϕn)n+1

of degree (n+ 1) is divisible by p. We can thus define

c(x) :=
−E(ϕn)n+1

p(1− pn)
,

where we use that 1 − pn is a unit in any p-complete algebra, which gives the correction term
with the needed properties. Note that since p is a non-zero divisor in W (R), a c satisfying (11.2)
is necessarily unique.

We are left with verifying the claim that E(ϕn)n+1 is divisible by p; equivalently, that its
image vanishes in W (R)/p ≃ R. Since in the quotient f(x) = xq, this amounts to checking that
ϕn(x

q) = ϕn(x)
q as a power series over R. This holds for any power series ϕn(x) =

∑
i aix

i, as∑
i

aqix
qi =

∑
i

aix
qi

because aqi = ai by our assumption on R. □
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Note that the most important part of Lemma 11.6 is that the resulting power series is unique.
This uniqueness is not true for power series over R; in fact, the proof proceeds by observing that
over R itself any power series commutes with f(x) = xq. The uniqueness is used in the proof of
the following fundamental result:

Theorem 11.7. Let R be a Fp-algebra such that r = rq for all r ∈ R and let f(x) ∈ W (R)JxK
be a power series such that

(1) f(x) ≡ px mod x2,
(2) f(x) ≡ xq mod p.

Then, there exists a unique formal group law F (x, y) ∈W (R)Jx, yK with f as an endomorphism.
Moreover, [p]F (x) = f(x); that is, f is precisely its p-series.

Proof. Note that by unitality, if F is a formal group law, then we have

F (x, y) = x+ y + higher order terms.

If f is its endomorphism, then we additionally have

F (f(x), f(y)) = f(F (x, y)).

By Lemma 11.6, there exists a unique power series with these two properties, which we denote
by

F (x, y) := ˜(x+ y).

We claim that F (x, y) is a formal group law; by construction, it is unital. To verify that it is
associative, observe that F (F (x, y), z) and F (x, F (y, z)) are both power series in three variables
which are equal to x+ y+ z modulo terms of higher degree and which commute with f . By the
uniqueness part of Lemma 11.6, we deduce that

F (F (x, y), z) = F (x, F (y, z)).

Commutativity follows from the same argument applied to F (x, y) and F (y, z), which both
reduce to x+ y and commute with f .

Finally, to see that we have [p]F = f(x), observe that both sides commute with f and are
equal to px relative to terms of higher degree. □

Definition 11.8. The unique formal group law over Ff (x, y) with p-series [p]F = f(x) is called
the Lubin-Tate formal group law of R.

Remark 11.9. Using a variation of Lemma 11.6, one can show that any two Lubin-Tate formal
group laws (associated to possibly different power series f(x), but such that f(x) ≡ xq mod p
for the same q = pn) are canonically isomorphic. For details, see the previous course [Pst21,
§14].

Note that arguably the most simple power series f(x) satisfying the conditions of Lemma 11.6
is

f(x) = px+ xq.

The Lubin-Tate series associated to this f(x) has a special name.

Definition 11.10. The Lubin-Tate formal group law Γn over Zp with p-series [p]Γn
= px+ xq

is called the Honda formal group law of height n.

Note that the reduction of Γn to Fp (which by abuse of terminology we also call the Honda
formal group law) is of height n, since f(x) ≡ xq = xp

n

mod p. In particular, we deduce the
second part of Theorem 10.17, which we state again in slightly different form:

Corollary 11.11. Over any field k of characteristic p, there exist formal group laws of arbitrary
height 1 ≤ n ≤ ∞.
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Proof. Since any such field contains Fp, it is enough to show this in this case. When n is finite,
the needed formal group law is given by the one of Honda of Definition 11.10. For n = ∞, we
can take the additive formal group law of Example 10.6. □

Remark 11.12. In this course, we will not prove the more interesting part of Theorem 10.17,
namely that over a separably closed field formal group laws are classified up to isomorphism by
their height. For a detailed proof, see [Pst21, §15].

The set of endomorphisms

End(F/R) := {f(x) ∈ RJxK | f is an endomorphism of F}

of a formal group law F over a ring R can be made into a ring, with multiplication

f(x) ·End(F/R) g(x) := f(g(x))

provided by composition and addition

f(x) +End(F/R) g(x) := f(x) +F g(x) = F (f(x), g(x))

provided by addition using F itself. This construction is functorial in the ring in the sense that
if ϕ : R→ R′ is a ring homomorphism and F ′ := ϕ∗F , then applying ϕ to ceofficients of a power
series gives a ring homomorphism

End(F/R)→ End(F ′/R′).

A useful property of Lubin-Tate formal group laws which makes them convenient from our
perspective is that they come equipped with a canonical family of endomorphisms in a way
compatible with the structure of the endomorphism ring.

Construction 11.13. Let w ∈W (R). Then, by Lemma 11.6 there exists a unique power series,
which we denote by

[w](x) := w̃x,

such that [w](x) = wx+ higher order terms and such that [w] commutes with f .

Proposition 11.14. The power series [w](x) of Construction 11.13 is an endomorphism of the
Lubin-Tate formal group law associated to f . Moreover, the construction

w 7→ [w](x)

induces an isomorphism of rings

W (R) End(Ff/W (R)).≃

Proof. To check that [w](x) is an endomorphism, we have to verify that

Ff ([w](x), [w](y)) = [w](Ff (x, y)).

However, both sides agree on linear terms and commute with f , hence this follows from the
uniqueness part of the Lubin-Tate lemma. To verify that w 7→ [w](x) is a ring homomorphism,
we have to check that

(1) [w + w′](x) = [w](x) +Ff
[w′](x) (addition),

(2) [ww′](x) = [w]([w′](x)) (multiplication),
(3) [1](x) = x (unit).

These three identities again follow from the fact that in each case both sides commute with f and
agree on linear terms. To see that w 7→ w̃ is an isomorphism, observe that any endomorphism
commutes with the p-series, hence is uniquely determined by its leading term. □
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12. The Morava stabilizer group

In previous lecture, we introduced a construction of Lubin-Tate formal group laws, which are
formal group laws over rings of Witt vectors with a prescribed p-series. In this lecture, we will
calculate their endomorphism ring of their reduction modulo p.

As we observed in Remark 11.9, up to isomorphism, a Lubin-Tate formal group law F over
W (R) depends only on the integer q such that

[p]F (x) = xq mod p.

In other words, up to isomorphism they depend only on the height of their reduction mod p,
which we recall is the integer n such that [p](x) = xp

n

+ higher order terms. Thus, without
loss of generality we can focus on the Honda formal group law of Definition 11.10, which is the
unique formal group law Γn over Zp with p-series

[p]Γn
(x) = px+ xq,

where q = pn. Today, we calculate the automorphism group of Γn over the algebraic closure Fp,
and show that it is a p-adic analytic group of dimension n2.

Notation 12.1. We generally do not distinguish between Γn as a formal group law over Zp

and its reduction mod p, which is a formal group law over Fp. We will, however, be careful
about distinguishing between endomorphisms defined over different rings, as these can be quite
different from each other.

Note that by a result of Lazard, which we stated in Theorem 10.17, all formal groups of height
n over Fp are isomorphic, and thus so are their endomorphism rings. Thus, our calculation
would give exactly the same result for any other formal group law of height n. One reason it is
convenient to choose Γn specifically, besides its explicit construction, is the following:

Proposition 12.2. Let k be a field of characteristic p which has a primitive (q − 1)-th root of
unity. Then, any inclusion Fq ↪→ k induces an isomorphism of endomorphism rings

End(Γn/Fq) ≃ End(Γn/k).

In particular,
End(Γn/Fq) ≃ End(Γn/Fq).

Proof. Let ϕ : Γn → Γn be an endomorphism with coefficients in k and write ϕ(x) =
∑
aix

i.
Since it is an endomorphism, ϕ commutes with the p-series [p]Γn

(x) = xq, so that we have∑
aqix

qi = (
∑

aix
i)q = [p] ◦ ϕ = ϕ ◦ [p] =

∑
aix

qi.

It follows that aqi = ai for each i ≥ 0, hence ai ∈ Fq, as needed. □

As a consequence of Proposition 12.2, when working with the Honda formal group law, we can
focus on endomorphisms over Fq. In Proposition 11.14, we saw that the Lubin-Tate construction
provides a isomorphism of rings

W (Fq) End(Γn/W (Fq)).
≃

We can compose with reduction mod p to obtain a ring homomorphism

(12.1) W (Fq)→ End(Γn/Fq).

However, the latter map is no longer surjective, as there are endomorphisms of Γn over Fq which
cannot be lifted to an endomorphism over the Witt vectors. A principal example of such a
endomorphism is the Frobenius which we now define.

Lemma 12.3. The power series S(x) = xp is an endomorphism of Γn over Fp.
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Proof. Since Γn is a reduction of a formal group law over the p-adics, we have Γn(x, y) =∑
ai,jx

iyj with ai,j ∈ Fp, so that api,j = ai,j . Thus,

S(Γn(x, y)) = (
∑

ai,jx
iyj)p =

∑
ai,jx

piypj = Γn(S(x), S(y)).

□

Definition 12.4. We call the endomorphism S ∈ End(Γn,Fq) defined by S(x) = xp the Frobe-
nius of the Honda formal group law.

We now show that the endomorphism ring can be described explicitly in terms of the Lubin-
Tate construction and Frobenius:

Theorem 12.5. The ring homomorphism Equation (12.1) and the Frobenius induces an iso-
morphism of rings

End(Γn/Fq) ≃W (Fq)⟨S⟩⧸(Sn = p, Sw = wσS),

where (−)⟨S⟩ denotes the ring obtained by attaching a new non-commuting variable and w 7→ wσ

is the Witt vector Frobenius on W (Fq).

Note that the endomorphism ring inherits a canonical topology as a closed subspace

End(Γn) ⊆ FqJxK,

where we equip the target with the limit topology coming from the identification

FqJxK ≃ lim←−Fq[x]/x
n.

Concretely, a sequence of endomorphisms converges to zero if they eventually become divisible
by xn for all n. Observe that

(1) as a closed subspace, the endomorphism ring is complete with respect to this topology,
(2) since under the Lubin-Tate construction, pk 7→ [p]kΓn

(x) = xkq, which becomes highly
divisible by x as k grows, the map

W (Fq)→ End(Γn)

is continuous, where we equip the Witt vectors with the p-adic topology.
These two observations are useful, as they mean that one can evaluate certain infinite sums in
both the Witt vectors and endomorphism ring, by taking limits of finite sums, in a compatible
manner.

The proof of Theorem 12.5 will proceed in steps. We first verify that the two relations
involving the Frobenius and the endomorphisms coming from the Lubin-Tate construction do
hold.

Definition 12.6. We say that an element a ∈W (Fq) is a Teichmüller representative if aq = a.

Lemma 12.7. We have that:
(1) any element a ∈ Fq has a unique lift to a Teichmüller representative,
(2) any w ∈W (Fq) can be uniquely written as

w =
∑
i≥0

aip
i

where ai are Teichmüller representatives.

Proof. The first part is immediate from Hensel’s lemma aplied to the polynomial f(x) = xq −x,
whose derivative f ′(x) = −1 over Fq is nowhere vanishing. For the second part, let a0 be the
unique Teichmüller representative of the reduction of w mod p, so that

w = a0 + pw′
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for a uniquely defined w′. Inductively applying the construction to w′ leads to the needed series
expansion. □

Lemma 12.8. Let a ∈W (Fq) be a Teichmüller representative. Then

[a](x) = ax ∈W (Fq)JxK,

where the left hand side is Construction 11.13.

Proof. Observe that the left hand side commutes with the p-series

[p]Γn
= px+ xq

by construction. To see that so does the right hand side, we calculate

p(ax) + (ax)q = pax+ aqxq = a(px+ xq).

It follows from Lubin-Tate lemma that the two are equal, as they both have the same linear
term. □

Lemma 12.9. In End(Γn/Fq), the following equalities hold:
(1) Sn = p,
(2) Sw = wσS for each w ∈W .

Proof. The first equality is saying that

Sn(x) = [p]Γn
,

which is clear since both sides are equal to xq = xp
n

.
We move to the second equality, where in terms of power series we have to show that

S([w](x)) = [wσ](xp),

where [−] denotes Construction 11.13. We first show it in the special case when w = a is a
Teichmüller representative. In this case, we have [a](x) = ax, where a is the image of a in Fp,
and we calculate

S([a](x)) = (ax)p = apxp = ap(xp) = [ap](S(x)),

where we use that (ap)q = ap. Since by Hensel’s lemma any element of Fq has a unique lift to
an element satisfying aq = a, we deduce that aσ = ap on such elements, proving the claim.

By Lemma 12.7, a general Witt vector can be uniquely written as

w =
∑

aip
i,

where ai are Teichmüller representatives. Since p is central in the endomorphism ring, we deduce
that in End(Γn/Fq) we have

Sw = S(
∑

aip
i) =

∑
aσi p

iS = wσS,

since pσ = p as σ is a ring automorphism. This ends the argument. □

Note that Lemma 12.9 implies that the choice of the Frobenius and the Lubin-Tate construc-
tion yield a ring homomorphism

W (Fq)⟨S⟩⧸(Sn = p, Sw = wσS)→ End(Γn/Fq)

We will complete the proof of Theorem 12.5 by showing that this is an isomorphism of rings (in
fact of topological rings).

We will need the following basic result of homomorphism of formal group laws in positive
characteristic.

Lemma 12.10. Let F1, F2 be formal group laws over a field k of positive characteristic p and
let ϕ : F1 → F2 be a homomorphism. Then either
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(1) ϕ(x) = 0,
(2) ϕ(x) = ψ(xp

n

) for some n > 0 and some power series ψ invertible under composition;
that is, such that

ψ(x) = λx+ higher order terms
with λ ̸= 0.

Proof. Let ϕ be non-zero. If ϕ(x) = λ0x+ higher order terms with λ ̸= 0, then there is nothing
to be done, so suppose that λ0 = 0. Since ϕ is a homomorphism, we have

ϕ(F1(x, y)) = F2(ϕ(x), ϕ(y)).

This is an equality of power series in two variables, and taking a partial derivative in the y
direction we deduce that

(12.2) (∂yF1)(x, y) · ϕ′(F1(x, y)) = ϕ′(y) · (∂yF2)(ϕ(x), ϕ(y)).

Since for any formal group law F (x, y) unitality implies that

F (x, y) = x+ y + higher order terms,

we have
(∂fF )(x, y) = 1 + higher order terms.

Substituting y = 1 into (12.2), we obtain an equality of power series in x of the form

(1 + higher order terms) · ϕ′(x) = ϕ′(0) · (∂yF2)(ϕ(x), 0).

Since ϕ′(0) = λ0, the right hand side vanishes. As (1 + higher order terms) is invertible under
multiplication, we deduce that ϕ′(x) also vanishes. Since

ϕ′(x) = (
∑

aix
i)′ =

∑
iaix

i−1,

we deduce that the only powers appearing in ϕ(x) are p-th powers, so that ϕ(x) = ψ(xp).
If ψ(x) = λ1x+ higher order terms with λ1 ̸= 0, we are done. If not, the identity

F2(ψ(x
p), ψ(yp)) = ψ(F1(x, y)

p)

shows that ψ defines a homomorphism ψ : σ∗F1 → F2, where σ∗F1 is pullback of a formal group
law along the Frobenius σ : k → k, explicitly defined by

σ∗(
∑

ai,jx
iyj) =

∑
api,jx

iyj .

We can thus apply the previous reasoning to ψ. Inductively, we obtain the needed statement. □

Remark 12.11. One can give a much more geometric proof of Lemma 12.10 using the theory
of formal groups and invariant differentials, see [Pst21, Proposition 13.7].

Remark 12.12. If F is a formal group law with coefficients in Fp, then σ∗F = F , where
σ : k → k is the Frobenius. In this case, the proof of Lemma 12.10 shows that if ϕ is an
endomorphism of F which can be written as ϕ(x) = ψ(xp

n

), then ψ is also an endomorphism.
Note that the relationship between the two can then be written as an equality

ϕ = ψ · Sn

in End(F/k).

Proposition 12.13. Any endomorphism ϕ ∈ End(Γn/Fq) can be written uniquely as a conver-
gent sum

ϕ = a0 + a1S + a2S
2 + . . .

with ai Teichmüller representatives.
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Proof. Write ϕ(x) = λx + higher order terms. Using Hensel’s lemma, we can uniquely lift λ to
an element λ̃ ∈W (Fq) satisfying λ̃q = λ̃. Since the leading term of [λ̃] is λ by construction, the
leading term of ψ − λ̃, which in terms of power series is given by

Γn(ψ(x), [−λ̃](x)) = λx+ higher order terms + (−λ)x+ higher order terms,

vanishes. It follows from Lemma 12.10 and Remark 12.12 that in the endomorphism ring we
have

ϕ = λ̃+ ψS

for some endomorphism ψ. Applying the construction inductively to ψ we obtain the needed
expression as an infinite sum. □

Proof of Theorem 12.5: By Lemma 12.9 we have a ring homomorphism

(12.3) W (Fq)⟨S⟩⧸(Sn = p, Sw = wσS)→ End(Γn/Fq)

which we will show is an isomorphism. If ϕ is an endomorphism, then by Proposition 12.13 we
can write it uniquely as

ϕ =
∑

aiS
i,

where ai ∈ W (Fq) and aqi = ai. We can divide this sum according to the value of i modulo n,
which yields

ϕ = (
∑
i≡0

aiS
i) + . . .+ (

∑
i≡n−1

aiS
i) =

∑
0≤k≤n−1

(
∑
i≡k

aip
i−k
n Sk),

where we use that Sn = p. This means that

ϕ =
∑

0≤k≤n−1

wkS
k

for wk ∈W (Fq) defined by

wk =
∑
i≡k

aip
i−k
n .

Any any Witt vector can be uniquely written in this form for some ai satisfying aqi = ai,
we deduce that the endomorphims ring is free as a left module over W (Fq) on the basis of
{1, S, . . . , Sn−1}. As the same is true for the source ring of (12.3), the map is necessarily an
isomorphism. □

Remark 12.14. Note that if a ∈ W (Fq) is a Teichmüller representative, then we verified in
Lemma 12.8 that the element of End(Γn/Fq) corresponding to it under Theorem 12.5 is given
by

[a](x) = bx,

where b := a is the reduction mod p. Concretely, Proposition 12.13 thus implies that any
endomorphism ϕ(x) of the Honda formal group law can be uniquely written as

ϕ(x) = b0x+Γn
b1x

p +Γn
b2x

p2

+ . . .

for a sequence bi ∈ Fq. Beware, however, that

bx+Γn
b′x ̸= (b+ b′)x,

so that such expressions cannot be added naively! In terms of Theorem 12.5, this corresponds
to the fact that a sum of Teichmüller representatives is a not in general a representative itself,
so that the power series expressions of Lemma 12.7 also cannot be naively added.
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Remark 12.15. Note that under the identification of Theorem 12.5, the Witt vectors W (Fq)
are not central in the endomorphism ring, since they do not commute with the Frobenius S.
Thus, the endomorphism ring is not an algebra over the Witt vectors. It is, however, an algebra
over the p-adic numbers

Zp ≃W (Fp) ⊆W (Fq).

As it is free of rank n over W (Fq) (which itself are of rank n over Zp, as dimFp(Fq) = n), it is
free of rank n2 over Zp.

It follows that
Qp ⊗Zp

End(Γn/Fq),

which we can interpret as the ring of endomorphisms up to isogeny, is a Qp-algebra of dimension
n2. It is not difficult to see using our explicit description that it is a central division algebra;
that is, it is a division algebra whose center is exactly Qp.

Local class field theory shows that over Qp, such algebras are classified by a so-called Hasse
invariant, which is an element of Q/Z, see [Ser13, Chapter XIII]. In the case of the endomorphism
ring of the Honda formal group law, this Hasse invariant is equal to 1

n .

We now move on to the group of automorphisms.

Definition 12.16. The (non-extended)8 Morava stabilizer group at prime p and height n is the
given by

Gn := Aut(Γn/Fq),

the group of automorphisms of the Honda formal group law.

Concretely, Gn is the group of units of the endomorphism algebra
W (Fq)⟨S⟩⧸(Sn = p, Sw = wσS) ≃ End(Γn/Fq)

and it follows from Proposition 12.13 that it any of its elements can be uniquely written as a
power series

a0 + a1S + a2S
2 + . . .

where ai are Teichmüller representatives and a0 ̸= 0.
Using our description of the endomorphism ring and our previous work on the general linear

group, it is not difficult to see that Gn is a virtually a pro-p group of finite rank. To see
this, note that End(Γn/Fq) is free of rank n2 as a module over the p-adics, as we observed in
Remark 12.15. As the automorphism group acts on the endomorphism ring by multiplication
on the left, a choice of a basis determines an injective group homomorphism

Gn → GLn2(Zp)

which identifies the Morava stabilizer group with a closed subgroup of the general linear group.
As the latter is virtually pro-p and of finite rank by Theorem 8.8, we deduce the following:

Proposition 12.17. The Morava stabilizer group Gn is virtually a uniform pro-p-group.

However, the embedding into GLn2(Zp) is somewhat inefficient, as the target is much larger
than the source. Due to the importance of Gn in stable homotopy theory, we prove Proposi-
tion 12.17 directly, by identifying an explicit uniform subgroup in Proposition 12.25 below.

Remark 12.18. Our motivation for an identification of an explicit uniform subgroup is that
the needed calculations give some basic insight into the structure of the Morava stabilizer group.
For example, we will see that dim(Gn) = n2, where dimension is that of Definition 7.7.

8The extended Morava stabilizer group is the semi-direct product Gn ⋊ Gal(Fq/Fp). We will not consider
it in this course, but it is this slightly larger group which appears most naturally in applications. Beware that
many sources would use our notation Gn to denote the extended group.
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The endomorphism ring has a canonical topology induced by the identification

End(Γn/Fq) ≃ lim←−
End(Γn/Fq)⧸Sk End(Γn/Fq)

.

(note that Sk End(Γn/Fq) is actually a two-sided ideal, so this is a limit of rings). This topology
coincides with the topology inherited from the x-adic topology on FqJxK, as well as with the
p-adic topology, since Sn = p. This suggests a canonical filtration on the Morava stabilizer
group.

Definition 12.19. The canonical filtration on Gn is given by the open subgroups

FkGn := Gn ∩ ker
(
End(Γn/Fq)→ End(Γn/Fq)⧸Sk End(Γn/Fq)

)
,

so that F0Gn = Gn and

FkGn := {1 + akS
k + ak+1S

k+1 + . . .}.

Note that the canonical filtration is a filtration by normal subgroups. Using the description
in terms of power series in S and a short calculation, we see that:

Lemma 12.20. We have that
(1) the map

(a0 + a1S + . . .) 7→ a0 ∈ F×q

induces an isomorphism
Gn/F1Gn ≃ F×q

(2) for each k ≥ 1, the map

(1 + akS
k + . . .) 7→ ak ∈ Fq

induces an isomorphism
FkGn/Fk+1Gn ≃ Fq.

Corollary 12.21. The groups FkGn for k ≥ 1 are pro-p.

To prove that Gn is virutally uniform, we have to study the structure of the p-th power map,
which we do now.

Proposition 12.22. Let k > n. Then the map x→ xp restricts to a function

FkGn → Fk+nGn

and induces a bijection
FkGn/Fk+1Gn

∼= Fk+nGn/Fk+n+1Gn

Proof. Let x = 1 + akS
k + ak+1S

k+1 + . . . ∈ FkGn. Collecting the terms, we can write

x = 1 + ωSk,

where ω = ak + ak+1S + . . .. Using the binomial formula, we obtain

xp = 1 + pωSk +
∑

2≤i≤p

(
p

i

)
(ωSk)i = xp = 1 + ωSk+n +

∑
2≤i≤p

(
p

i

)
(ωSk)i.

All of the terms on the left are divisible by S2k, and since k > n and thus k + n < 2k, we see
that

xp = 1 + akS
k+n + terms with higher S powers.

It follows that under the identification of both quotients with Fq of Lemma 12.20, x 7→ xp

corresponds to the identity, hence is a bijection as needed. □
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Remark 12.23. Using the same argument as in the proof of Proposition 12.22, one can analyze
the way the p-th powers in Gn interact with the canonical filtration for general k, without the
simplifying assumption that k > n. The formulas get only slightly more involved, see [Hen98,
§3] for details.

Corollary 12.24. If k > n, then

(FkGn)p = Fk+nGn,

where the left hand side is the closure of the subgroup generated by the p-th powers. In particular,
FkGn (and hence Gn itself) is finitely generated.

Proof. Since both sides of the equality are closed subgroups, and since the canonical filtration
forms a basis of neighbourhoods of the identity, it is enough to verify that

(FkGn)
pFk+n+mGn = Fk+nGn

for all m ≥ 0. We prove this by induction. If m = 0, there is nothing to prove, so assume that
m > 0. Applying Proposition 12.22, we have

(Fk+mGn)
pFk+n+mGn = Fk+n+m−1Gn.

and thus

(FkGn)
pFk+n+mGn = (FkGn)

p(Fk+mGn)
pFk+n+mGn = (FkGn)

pFk+n+m−1Gn = Fk+nGn,

where the last equality is the inductive assumption. This ends the argument.
To see that FkGn is finitely generated, recall that by Proposition 3.4 a pro-p group is finitely

generated if and only if the quotient by the Frattini subgroup is finite. Since

Fk+nGn = (FkGn)p ≤ Φ(FkGn),

the result follows since Fk+nGn ◁FkGn is of finite index. We deduce that the Morava stabilizer
group is itself finitely generated, as FkGn ◁Gn is also of finite index. □

Proposition 12.25. Suppose that either
(1) k > n and p > 2,
(2) k > 2n and p = 2,

Then FkGn is a uniformly powerful p-group of dimension n2.

Proof. To check that FkGn is powerful, we have to verify that

FkGn/(FkGn)p ≃ FkGn/Fk+nGn

(or FkGn/Fk+2nGn when p = 2) is abelian, where the identification is Corollary 12.24.
Let x, y ∈ FkGn, which we can write as x = 1 + wSk and y = 1 + vSk, where w, v are

endomorphisms. We have to check that the images of x, y commute with each other in the
quotient ring

End(Γn/Fq)⧸Sk+n End(Γn/Fq)
,

that is; that the bracket [x, y] = xy − yx vanishes. Since the bracket is linear in each variable
and 1 is central, we have

[x, y] = [vSk, wSk] = vSkwSk − wSkvSk.

Since the left ideal and right ideal generated by Sk coincide, this is a term divisible by S2k, and
hence Sk+n (or Sk+2n if p = 2). We deduce that FkGn is powerful, as needed.

As FkGn is finitely generated by Proposition 12.25, to check that it is uniform we have to
verify that the subquotients arising in the lower p-series have the same size. However, we have

FkGn/Fk+nGn ≃ |Fq|n = pn
2

as a consequence of Proposition 12.25, ending the argument. □
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13. Normed algebras and power series

In this lecture, we begin our study of the analytic properties of p-adic groups.

Definition 13.1. A (non-archimedean) norm on a ring A is function ∥−∥ : A→ R≥0 such that
(1) ∥a∥ = 0 if and only if a = 0.
(2) ∥ab∥ ≤ ∥a∥∥b∥.
(3) ∥a+ b∥ ≤ max (∥a∥, ∥b∥).

A normed algebra is a ring equipped with a choice of a norm.

Warning 13.2. Beware that there is a more general notion of an archimedean norm, in which
the last inequality is replaced by the weaker one ∥a+ b∥ ≤ ∥a∥+ ∥b∥. A typical example would
be the classical absolute value of a rational number. We will not consider archimedean norms in
this course.

A norm on A induces a metric by the formula

d(a, b) := ∥a− b∥.
In particular, a normed ring carries a canonical topology with respect to which the norm is
continuous.

Example 13.3. Any ring A admits the trivial norm, in which

∥a∥triv := 1

for all a ̸= 0. The induced topology is discrete.

Example 13.4. If A = Q and p is a prime. If q ∈ Q, then its p-adic valuation is the unique

v(q) ∈ Z
such that q = pv(q)a/b with a, b coprime to p. The p-adic norm is defined by

∥q∥p := p−v(q)

By restriction, this determines a norm on the integers Z.

Remark 13.5. Two norms are said to be equivalent if they induce the same topology. By a
classical result of Ostrowski, all (non-archimedean) norms on Q are equivalent to the p-adic norm
for a uniquely determined prime p or the trivial norm.

Construction 13.6. A filtered ring is a ring R equipped with a decreasing filtration

. . . ⊆ R2 ⊆ R1 ⊆ R0 = R

by submodules with the property that

RiRj ⊆ Ri+j .

In particular, this implies that each Ri ≤ R is a two-sided ideal. Suppose that we have a filtration
which is separated ; that is, such that ⋂

i≥0

Ri = 0.

In this case, for each positive real c we can define a norm on R by

∥0∥ := 0,

∥x∥ := c−n if x ∈ Rn \Rn+1.

Note that all of these norms are equivalent in the sense that they induce the same topology, and
that Ri form a basis of open neighbourhoods of zero.

Example 13.7. In the context of Construction 13.6, if we take R = Z, Ri = piZ and c = p,
then we recover exactly the p-adic norm of Example 13.4.
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Definition 13.8. We say that a normed algebra is complete if it is complete with respect to
the metric induced by the norm.

Example 13.9. Any ring A is complete with respect to the trivial norm of Example 13.3.

Construction 13.10. The inclusion of the full subcategory of complete normed algebras admits
a left adjoint. In other words, any normed algebra (A, ∥−∥) admits an initial map

(A, ∥−∥)→ (Â, ∥−∥)

into a complete one. We call Â the completion of A. Concretely, Â can be constructed as
equivalence classes of Cauchy sequences, and A can be identified with the subring of sequences
equivalent to a constant one.

Example 13.11. Let R be a filtered ring equipped with the norm of Construction 13.6. In this
case the completion in the sense of Construction 13.10 can be identified with the completion
with respect to the filtration; that is

R̂ ≃ lim←−R/Rn.

Example 13.12. The completion of the rationals with their p-adic norm is given by the p-adic
numbers (Qp, ∥−∥p) with the unique extension of the norm on the rationals. Concretely, any
non-zero p-adic integers can be written as x = pnu for unique n ∈ Z and u ∈ Z×p , and

∥x∥ = p−n.

We now discuss convergence of series in a complete normed algebra. Since we only work with
non-archimedean norms, this is much easier than the corresponding story in real analysis.

Definition 13.13. Let A be a complete normed algebra, T a countable index set and let (at)t∈T
be a family of elements in A. We say that a sum

∑
t∈T at converges to s ∈ A and write∑

t∈T
as = s

if for all reals ϵ > 0 there exists a finite subset T ′ ≤ T such that for all finite subsets T ′ ⊆ T ′′ ⊆ T
we have

∥
∑
t∈T ′′

at − s∥ < ϵ.

Note that if we replace A by the real numbers, then the notion of convergence given in
Definition 13.13 corresponds to absolute convergence. In the case of non-archimedean norms,
this is equivalent to conditional convergence, as the following shows.

Lemma 13.14. Let T be a countable set, (at)t∈T a collection of elements of A and suppose that
we have an ordering t1, t2, . . . of elements of T . Then∑

t∈T at = s if and only if limn→∞
∑

1≤k≤n atk = s.

Proof. We first show forward implication. Let ϵ > 0, by assumption there exists a finite subset T ′
such that for all T ′′ ⊇ T ′ we have ∥

∑
t∈T ′′ at−s∥ < ϵ. Let N ≥ 0 be such that T ′ ⊆ {t1, . . . , tN}.

Then for all n ≥ N we have
∥

∑
1≤k≤n

atk − s∥ ≤ ϵ.

It follows that the left hand side converges to zero as n→∞, so that (
∑

1≤k≤n atk − s)→ 0 as
needed.

We move to the backward implication. Let ϵ > 0, and choose N ≥ 0 such that

∥
∑

1≤k≤n

atk − s∥ ≤ ϵ.
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for all n ≥ N . This implies that if m > n, then

∥atm∥ = ∥(
∑

1≤k≤m

atk − s)− (
∑

1≤k≤m−1

atk − s)∥ ≤ max(ϵ, ϵ) ≤ ϵ.

Take T ′ = {1, . . . , N} and suppose that T ′′ ⊇ T ′. Then∑
t∈T ′′

at − s = (
∑

1≤k≤N

atk − s) + (
∑

t∈T ′′\T ′

at) ≤ max(ϵ, ϵ),≤ ϵ,

where we use that the norm of the second sum is bounded by the norms of the summands, ending
the argument. □

Corollary 13.15. If A is a complete algebra, then
∑
at converges if and only if there exists an

(equivalently, for any) ordering of T such that ∥atn∥ → 0.

Proof. If ∥atn∥ → 0, then since

∥
∑

n≤k≤m

atk∥ ≤ max({∥atk∥ | n ≤ k ≤ m}),

the sequence
∑

1≤k≤n atk is Cauchy. Since A is assumed to be complete, it converges. □

Proposition 13.16. Let T be a countable set and (at)t∈T a collection of elements of A. Then
(1) if

∑
t∈T at = s then

∥s∥ ≤ sup
t∈T

(∥at∥),

(2) if
∑

t∈T at = s and there exists t0 ∈ T such that ∥at0∥ > ∥at∥ for any t ̸= t0, then

∥s∥ = ∥at∥.

Proof. We start with the first part. By Lemma 13.14, after choosing an ordering, we have

s = lim
n→∞

∑
1≤i≤n

ati ,

so that
∥s∥ = lim

n→∞
∥
∑

1≤i≤n

ati∥ ≤ max
1≤i≤n

∥ati∥ ≤ sup
t∈T
∥at∥.

For the second part, we have
∑

t∈T at = at0 +
∑

t̸=t0
at. Since the second term is norm-bounded

by ∥at0∥ by the assumption and the first part, the result follows. □

We will be interested in normed algebras which admit an action of the p-adics.

Definition 13.17. A normed Qp-algebra is a normed algebra A together with a Qp-algebra
structure such that

∥λa∥ ≤ ∥λ∥p∥a∥
for all λ ∈ Qp and a ∈ A.

Lemma 13.18. If A is a normed Qp-algebra then

∥λa∥ = ∥λ∥∥a∥.

Proof. It’s enough to show that ∥λa∥ ≥ ∥λ∥∥a∥ when λ ̸= 0, as otherwise both sides are equal
to zero. We have

∥a∥ = ∥λ−1λa∥ ≤ ∥λ−1∥∥λa∥
and multiplying both sides by ∥λ∥ gives the desired inequality. □
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Suppose that we have a formal power series f(x) ∈ AJXK with coefficients in a normed Qp-
algebra. If we write f(x) =

∑
aix

i, then by substituting x 7→ λ ∈ Qp we obtain a sequence of
elements of A. In good cases, this converges, and the fundamental identity property tells us that
the sums of these sequences determine the coefficients.

Proposition 13.19 (Identity). Let
∑
aix

i be a formal power series in a normed Qp-algebra.
Suppose there is an open neighborhood V ⊆ Qp of zero such that for all λ ∈ V , we have∑

aiλ
i = 0

Then an = 0 for all n.

Proof. If an = 0 for all n, there is nothing to show. Otherwise, choose m such that am ̸= 0 and
that m is smallest with this property.

Pick λ0 ∈ V , λ ̸= 0 and write r0 = ∥λ0∥. Since
∑
aiλ

i
0 is convergent, we deduce that

lim∥aiλi0∥ = lim∥ai∥ri0 = 0.

In particular, these terms are bounded, so we can choose a real constant C such that ∥ai∥ri0 < C
for all i. Now choose λ1 ∈ D such that r1 = ∥λ1∥ satisfies

r1 < min(r0,
rm+1
0 ∥am∥

C
).

Then for all n > m we have

∥an∥rn1 = ∥an∥rn−11 · r1 < ∥an∥rn1 = ∥an∥rn−11 · r
m
0 ∥am∥
C

and continuing

∥an∥rn−11 · r
m
0 ∥am∥
C

= (∥an∥rn0 ) · (
r1
r0

)n−1 · r
m
0 ∥am∥
C

≤ (
r1
r0

)n−1(rm0 ∥am∥)

and

(∥an∥rn0 )
rn−m−11

rn−m0

rm1 ∥am∥
C

≤ rn−m−11

rn−m0

rm1 ∥am∥
.

It follows that
∥anλn1∥ < ∥amλ11∥

for all n ̸= 0. As the left hand side converges to zero as n→∞, we deduce that

sup({∥anλn1∥ | n ̸= m}) < ∥amλm1 ∥,
and from the second part we deduce that Proposition 13.16

∥
∑
i

anλ
n
1∥ = ∥amλm1 ∥ ≠ 0,

which is what we wanted to show. □

Similarly, a power series with coefficients in Qp, under suitable convergence hypothesis, can
be used to define a self-map of a normed algebra. We will be interested in defining in this way
functions in more than one variable, and here we have to be a little bit careful - since multi-
plication in a normed algebra is in general not commutative, formal power series in commuting
variables are not suitable for our purposes.

Definition 13.20. Let X1, . . . , Xm denote a set of variables. The monoid of words in X is given
by the free monoid

W :=W (X1, . . . , Xm)

on {X1, . . . , Xm}. The degree function on words is defined as the unique monoid homomorphism

deg : W → (Z≥0,+)

with the property that deg(Xi) = 1 for all 1 ≤ i ≤ m.
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Concretely, any word can be written as a (possibly empty) product of the variables and the
degree is given by

deg(Xi1Xi2 . . . Xik) = k.

In other words, the degree is the number of the factors in the product expression.

Definition 13.21. The ring of non-commutative polynomials in variables X1, . . . , Xm is the free
ring

Qp⟨X1, . . . , Xm⟩ := Qp[W ]

on the monoid of words. The ring of non-commutative power series in variables X1, . . . , Xm is
the completion

Qp⟪X1, . . . , Xm⟫ := lim←−Qp[W ]/(I)n

at the double-sided ideal I generated by words of positive degree.

Concretely, non-commutative power series can be uniquely represented as (possibly infinite)
expressions ∑

w∈W
aww

indexed by words, where aw ∈ Qp. Multiplication and addition is performed using the usual
formulas, which at any step always involve only finitely many terms and so are well-defined. The
ring of non-commutative polynomials can be identified with the subring of those expressions
such that aw = 0 for all but finitely many words.

Definition 13.22. Let A be a complete normed Qp algebra and let F (X) ∈ Qp⟪X1, . . . , Xm⟫
be a formal power series in non-commuting variables. Given x = (x1, . . . , xm) ∈ A×m, we say
that F can be evaluated at x if

F (x) =
∑

aww(x)

exists, where w(−) : W → (A, ·) is the unique homomorphism of monoids satisfying Xi 7→ xi.

In the context of Definition 13.22, let Evx ⊆ Qp⟪X⟫ be the subset of those power series which
can be evaluated at x. Through some manipulation using double sums which we leave to the
interested reader, one can show that

(1) Evx is a Qp-subalgebra which contains the ring of non-commutative polynomials,
(2) on this subalgebra, the association F (X) 7→ F (x) defines a Qp-algebra homomorphism

Evx → A.

We now define a particularly nice class of functions which arise from this construction.

Definition 13.23. Let r > 0 be a real constant and consider the open subset

Vr = {(x1, . . . , xm) ∈ A×m | ∥xi∥ ≤ r for all 1 ≤ i ≤ m}

We say that a function f : Vr → A is strictly analytic if there exists a non-commuting power
series

F (X) =
∑
w∈W

aww

in m variables such that
(1) we have

lim∥aw∥rdeg(w) = 0

as deg(w)→∞,
(2) for each x ∈ D, we have

F (x) = f(x).
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Remark 13.24. The above definition only applies to functions defined in a neighbourhood
of zero. We will slightly abuse the terminology, and more generally say that if x0 ∈ A, then
f : Vr + x0 → A is strictly analytic if its translate f(−+ x0) : Vr → A is strictly analytic in the
sense of Definition 13.23.

Note that the first condition of Definition 13.23 does guarantee that F (x) =
∑
aww(x) exists

for all x ∈ Vr, since

(13.1) ∥aww(x)∥ ≤ ∥aw∥rdeg(w).

However, it is strictly stronger than just asking for all of F (x) to exist. Intuitively, it asks that∑
aww(x) converges “for a good reason”; that is, with a uniform bound depending only on ∥x∥.

Remark 13.25. If a function f : Vr → A is strictly analytic, then by a repeated application of
Proposition 13.19 one can show that a power series F representing it is unique.

Proposition 13.26. Let f : Vr → A be strictly analytic. Then f is continuous.

Proof. Let ϵ > 0 be a real constant. Choose N such that ∥aw∥rdeg(w) ≤ ϵ if deg(w) ≥ N . For
any x ∈ Vr, we can write

F (x) = F1(x) + F2(x)

where
F1(x) =

∑
deg(w)<N

aww(x)

and similarly
F2(x)

∑
deg(w)≥N

w(x).

Using (13.1) and the first part of Proposition 13.16 we see that F2(x) has a norm bounded by ϵ.
The function x 7→ F1(x) can be obtained in finitely many steps using the addition, multipli-

cation, and scalar multiplication of A, all of which are continuous, so that it is continuous, too.
It follows that there exists a δ > 0 such that if ∥x′ − x∥ < δ, then

∥F1(x
′)− F1(x)∥ ≤ ϵ.

We then have

∥F (x′)− F (x)∥ = ∥(F1(x
′)− F1(x)) + (F2(x

′)− F2(x))∥ ≤ max(ϵ, ϵ) = ϵ

so that F is continuous. □

We now define two classical functions, the exponential and logarithm, which are useful in
relating pro-p-groups of finite rank to Lie algebras.

Definition 13.27. The exponential is the power-series in one variable

E(X) :=
∑
n≥0

1

n!
Xn.

The logarithm is given by

L(X) :=
∑
n≥1

(−1)n+1

n
Xn.

Warning 13.28. Be careful to observe that the way we define the logarithm power series is
the Taylor expansion of the classical logarithm function around 1 ∈ R, not around 0. The latter
does not make sense.

To verify that the power series of Definition 13.27 define functions, we need an upper bound
on the norms of their coefficients.
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Lemma 13.29. Let n ≥ 1. Then the p-adic valuation of the factorial satisfies

v(n!) ≤ n− 1

p− 1

so that
∥n!∥p ≤ p

1−n
p−1 .

Proof. We have to count how many times n! is divisible by p. Choose k ≥ 0 such that pk ≤ n ≤
pk+1. Since there are ⌊np ⌋ numbers k ≤ n divisible by p, ⌊ n

p2 ⌋ number divisible by p2 and so on,
we see that n! is divisible by p at most

n

p
+
n

p2
+ . . .+

n

pk
=
n(1− p−k)
(1− p)

≤ n− 1

p− 1

times □

As a consequence, we deduce the following:

Theorem 13.30. Let A be a complete normed Qp-algebra and write

A0 =

{
{x ∈ A | ∥x∥ ≤ 1

p} p > 2

{x ∈ A | ∥x∥ ≤ 1
4} p = 2

Then the exponential and logarithm power series define strictly analytic functions which we
denote by

exp: A0 → 1 +A0

x 7→
∑
n≥0

xn

n!

and

log : A0 + 1→ A0

(x+ 1) 7→
∑
n≥1

(−1)n+1xn

n

Proof. We only do the odd prime case; the even prime is analogous. For the exponential we have

E(X) = 1 +
∑
n≥1

Xn

n!

and the claim is that
(1) ∥ 1

n!∥p
−n ≤ p−1 for all n ≥ 1,

(2) ∥ 1
n!∥p

−n → 0 as n→∞.
Here, the second property guarantees that E defines a stritly analytic function on A0 and the
first one that exp(x) ∈ 1 +A0 if x ∈ A0. By Lemma 13.29, we have

∥ 1
n!
∥p−n ≤ p

n−1
p−1 p−n = p

n−1−np+n
p−1 = p

−(p−2)n−2
p−1

which satisfies both properties. For the logarithm, the analysis is analogous using power series
L, where we use that ∥ 1n∥ ≤ ∥

1
n!∥. □

Note that the power series E and L satisfy a number of classical properties, namely that
(1) L(E(X)− 1) = X,
(2) E(L(X)) = X + 1,
(3) E(nX) = E(X)n

(4) L((1 +X)n − 1) = nL(X).
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Under reasonable convergence conditions (which are satisfied in this case), composition of
formal power series (which is well-defined on power series with no constant term) corresponds
to composition of strictly analytic functions. This yields the following:

Proposition 13.31. Let A be a complete normed Qp-algebra and let A0 be as in Theorem 13.30.
Then for all x ∈ A0, we have

(1) log(exp(x)− 1) = x,
(2) exp(log(1 + x)) = 1 + x,
(3) exp(nx) = exp(x)n,
(4) log((1 + x)n) = n log(1 + x).

Warning 13.32. Beware that the series defining the logarithm and exponential might sometimes
converge for x ̸∈ A0, but this case, Proposition 13.31 need not hold.

As an explicit example, consider

(13.2) log(−1) = log(1− 2) =
∑
n≥1

(−2)n(−1)n+1

n
.

In the field of 2-adic numbers, this is a convergent series. In formal power series, we have

((1 +X)2 − 1) = (2X +X2) = 2 · (X)

(this is the multiplicativity of the logarithm), from which we deduce that

2 · log(−1) = 2 ·
∑
n≥1

(−2)n(−1)n+1

n
=

∑
n≥1

(2 · (−2) + (−2)2)n(−1)n+1

n
= 0.

It follows that
exp(log(−1)) = exp(0) = 1 ̸= −1.

The issue here is that the exponential converges on x = 0, but it does not converge on the
individual terms of (13.2).

14. The completed group algebra

If G is a finite group, the category of G-representations in abelian groups is equivalent to the
category of left modules over the group algebra Z[G]. In this lecture, we will study a variant of
this construction for profinite groups acting continuously on Zp-modules, which requires one to
take the topology of both the p-adics and the group itself into account.

We will show that the completed group algebra has very favourable properties when restricted
to reasonable profinite groups. Today, we will show that

(1) if G is finitely generated pro-p, then the topology of the completed group algebra is
induced by a canonical norm determined by the augmentation ideal, see Definition 14.6,

(2) if G is powerful, then the completed group algebra admits a set of topological generators
given by monomials,

(3) if G is moreover uniform, then the expression in terms of monomials is unique, see
Theorem 14.10.

The third property is one of the way in which the completed group algebra of a uniform group
behaves like a power series ring, a theme we will explore further in the next lecture.

Definition 14.1. Let G be a profinite group. The (p-adic) completed group algebra is the limit

ZpJGK := lim←−
N◁oG

Zp[G/N ]

taken over the poset of normal open subgroups of G.
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Note that each of Zp[G/N ] is a finite free Zp-algebra and so is p-complete; that is,

Zp[G/N ] ≃ lim←−Z/pn[G/N ].

This limit expression endows Zp[G/N ] with a limit topology. The maps making the diagram in
Definition 14.1 are continuous so that ZpJGK is also naturally a topological ring.

We will be mainly interested in this construction when G is finitely generated and pro-p. In
this case, we recall from Proposition 3.20 that we have a canonical basis of open neighbourhoods
of the identity given by the lower p-series we denote by

Gk = Pk(G).

As a consequence, ZpJGK can be written as a sequential limit. To see this, notice that since Gk

are open, we have canonical projection maps

ZpJGK→ Zp[G/Gk]→ Z/pk[G/Gk]

Lemma 14.2. Let G be a finitely generated pro-p group. Then

ZpJGK ≃ lim←−Z/pk[G/Gk]

as topological rings.

Proof. By construction, the map from the left hand side to the right hand side is surjective. To
see that it is injective, let x ∈ ZpJGK be non-zero, so that it has a non-zero image along

ZpJGK→ Zp[G/N ]

for some open normal N . Since the target is p-complete, x also has non-zero image in Z/pa[G/N ]
for some a. Since Gk form a basis of neighbourhoods of the identity, we have Gb ≤ N . Then we
have a factorization

ZpJGK→ Z/pc[G/Gc]→ Z/pa[G/N ]

for c = max(a, b), so that x has also non-zero image in the middle term.
As the comparison map is a continuous bijection between compact Hausdorff spaces, it is a

homeomorphism. □

We would like to apply the theory of complete normed algebra developed in previous lectures
to ZpJGK. To do so, we will equip the group algebra Zp[G] with a norm such that ZpJGK can be
identified with the completion with respect to the norm. This is a non-trivial task, as the norm
should encode at the same time the p-adic topology of Zp and the profinite topology of G.

To construct the needed norm, we will use an appropriately multiplicative family of ideals
and Construction 13.6. As motivation for our arguments, observe that one way to express
Lemma 14.2 is that

ZpJGK ≃ lim←−Zp[G]/Ik,

where
Ik := (Gk − 1) + pkZp[G]

and
(Gk − 1) := ker(Zp[G]→ Zp[G/Gk]).

Instead of working with the family of ideals Ik, it is more convenient to work with powers of a
single ideal, which we can do using the following calculation.

Notation 14.3. If G be a finitely generated, pro-p, then we write J for the ideal

J = I1 = (G− 1) + pZp[G] ⊆ Zp[G].

It coincides with the kernel of the composite

Zp[G]→ Zp → Fp

and is often called the augmentation ideal.
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Proposition 14.4. For each k ≥ 1, we have
(1) Jk ⊇ Ik,
(2) Ik ⊇ Jk·|G/Gk|.

In particular, taking either Jk or Ik as a basis of open neighbourhoods of Zp[G] defines the same
topology.

Proof. We prove the first statement by induction on k. Since it holds for k = 1 by definition, we
assume k > 1. As p ∈ J , we have pk ∈ Jk and it is thus enough to show that (Gk−1) ≤ Jk. This
is the equivalent to showing that the G-action on Zp[G]/J

k factors through G/Gk. As these are
the generators of Gk = Φ(Gk−1), we only have to check that elements of the form

(1) xp for x ∈ Gk−1,
(2) x−1y−1xy9 for x ∈ Gk−1, y ∈ G.

We analyse these cases separately. If we write u = x−1, then the binomial theorem implies that
inside Zp[G] we have

xp − 1 = (u+ 1)p − 1 = up + puw

for some element w. If x ∈ Gk−1, then u ∈ Jk−1 and so up ∈ J (k−1)p ≤ Jk and similarly
pu ∈ J · Jk−1 = Jk. Thus, xp − 1 ∈ Jk as needed.

For the case of group commutators, write u = x− 1 ∈ Jk−1 and v = y − 1 ∈ J . Then

x−1y−1xy − 1 = x−1y−1(xy − yx)x−1y−1(uv − vu)
since 1 is central. As uv − vu ∈ Jk, the result follows.

We now move to the second part, namely that Jk·|G/Gk| ⊆ Ik. Since G/Gk is a finite p-group,
there exists a basis of the Fp-vector space Fp[G/Gk] such that the action factors through the
upper unitriangular subgroup

U|G/Gk|(Fp) ⊆ GL|G/Gk|(Fp)

(studied previously in §6, see Notation 6.13), as it is a p-Sylow subgroup of the general linear
group. It follows that for any g ∈ G, the action of

g − 1 ∈ J
is an action by a strictly upper triangular matrix of size |G/Gk| × |G/Gk|. The product of any
|G/Gk| such matrices is zero and we deduce that (G−1)|G/Gk| ⊆ (Gk−1)+pZp[G] and similarly
J ⊆ (Gk − 1) + pZp[G]. It follows that

Jk|G/Gk| ≤ ((Gk − 1) + pZp[G])
k ⊆ (Gk − 1) + pkZp[G] = Ik.

□

Corollary 14.5. We have ⋂
k≥0

Jk = {0}

as ideals of Zp[G].

Proof. Any non-zero element of Zp[G] can be expressed as a finite sum x =
∑

i λigi such that
all gi ∈ G are distinct and λi ∈ Zp are non-zero. We can find a k large enough such that all gi
are distinct in G/Gk. Choosing a k′ > k such that λi ̸∈ pk

′Zp, we see that the image of x is
non-zero in

Zp[G]/((Gk′ − 1) + pk
′
Zp[G]) ≃ Z/pk

′
[G/Gk′ ].

It follows from Proposition 14.4 that x is not contained in Jk′|G/Gk′ |, ending the argument. □

9This is just the ordinary group commutator, but we don’t use the bracket notation so that we don’t confuse
it with the Lie bracket of Zp[G], which is different.
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As a consequence of Corollary 14.5, the J-adic filtration on the group algebra is separating,
so can be used to define a norm as in Construction 13.6.

Definition 14.6. Let G be a finitely generated pro-p group. The standard norm on the group
algebra is given by

∥0∥ := 0,

∥x∥ := p−n if x ∈ Jn \ Jn+1,

Proposition 14.7. The standard norm on Zp[G] has the following properties:

(1) the completion with respect to the norm can be identified as a topological ring with the
complete group algebra of Definition 14.1,

(2) the canonical map G→ Zp[G] is a homeomorphism onto its image.

Proof. For the first part, observe that we have an identification

Ẑp[G] ≃ lim←−Zp[G]/J
k ≃ lim←−Zp[G]/Ik ≃ ZpJGK,

where the left hand side is the completion with respect to the norm, the middle isomorphism is
Proposition 14.4 and the right isomorphism is Lemma 14.2.

For the second part, as G is compact and the group algebra is Hausdorff (as the topology
comes from a metric), it is enough to verify that the canonical map is continuous. The group of
units of the group algebra has a basis of open neighbourhoods of the identity given by 1 + Jk.
Since (Gk − 1) ⊆ Ik ⊆ Jk by Proposition 14.4, we deduce that the canonical map takes Gk to
1 + Jk and hence is continuous. □

Remark 14.8. Since Proposition 14.7 identifies ZpJGK with a completion with respect to a
norm, it equips the completed group algebra with its own norm which we also refer to as the
standard norm. This norm can be described explicitly analogously to that of Zp[G]: it is the
norm associated through Construction 13.6 to the filtration by powers of the ideal JZpJGK =
ker(ZpJGK→ Fp).

We wnow describe how in the case where G is powerful, a choice of generators of G gives a
convenient set of generators of the completed group algebra (as a topological Zp-module). This
requires a little bit of notation, which we introduce first.

Notation 14.9. For the rest of the lecture, G denotes a powerful, finitely generated pro-p-group.
We fix a choice

g1, . . . , gm

of topological generators of G and write

bi := gi − 1 ∈ Zp[G].

Note that we have bi ∈ J ; equivalently, ∥bi∥ ≤ p−1 with respect to the standard norm.
If (α) = (α1, . . . , αm) ∈ N×m is a multi-index, its degree is given by deg(α) = α1 + . . .+ αm.

Given generators as above, we write

g(α) = gα1
1 · . . . · gαm

m

and similarly
b(α) = bα1

1 · . . . · bαm
m .

Beware that since the group algebra is not commutative, these expressions do depend on the
order of the gi, so that we implicitly assume that our set of generators is ordered.
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Theorem 14.10. Let G be a powerful, finitely generated pro-p-group with a choice of generators
gi. Then any x ∈ ZpJGK can be written as an infinite sum

x =
∑

(α)∈N×m

λαb
(α)

with λα ∈ Zp and b(α) as in Notation 14.9. If G is uniform and gi is a minimal generating set,
then such an expression is unique.

Observe that since ∥bi∥ ≤ p−1, we have ∥λαb(α)∥ ≤ p− deg(α). It follows that any infinite sum
as in Theorem 14.10 is automatically convergent, for any finitely generated pro-p-group. This is
one of the ways in which monomials in the bi are preferable to the “obvious” basis of monomials
in gi, which are units and hence of norm one.

The proof of Theorem 14.10 will take the rest of this lecture.

Lemma 14.11. For any multi-index (β) we have

g(β) =
∑
(α)

(
β1
α1

)
· . . . ·

(
βm
αm

)
b(α),

where the sum is taken over all multi-indices (α) and similarly

b(β) =
∑
(α)

(−1)deg(β)−deg(α)
(
β1
α1

)
· . . . ·

(
βm
αm

)
g(α)

Proof. Observe that both of the sums are in fact finite, since the binomial coefficients vanish if
αi > βi for any 1 ≤ i ≤ m. Since gi = bi + 1, we have

g(β) = (b1 + 1)α1 · . . . · (bm + 1)αm .

Expanding the right hand side using the binomial theorem yields the first formula. The second
one follows by similarly expanding the right hand side of

b(β) = (g1 − 1)α1 · . . . · (gm − 1)αm .

□

Notation 14.12. If k ≥ 1, we write

Tk = {(α) ∈ N×m | αi ≤ pk−1 for all i}

for the set of multi-indices which are term-wise less than pk−1.

Lemma 14.13. The images of elements b(α) with α ∈ Tk span Zp[G/Gk]. If G is uniform and
the chosen set of generators gi is minimal, then these elements form a basis.

Proof. By Lemma 14.11, the span of images of b(α) with α ∈ Tk is the same as that of g(α) with
the same constraint. By Lemma 7.11, any element of the powerful finite p-group G/Gk can be
written as

g(α) = gα1 · . . . · gαm .

for some multi-index α. As any element of G/Gk satisfies gp
k−1

= 1, we see that we can assume
that α ∈ Tk, showing the first part.

If G is uniform with a minimal generating set of cardinality m, then |G/Gk| = p(k−1)m, which
is the rank of Zp[G/Gk] as a Zp-module. Since this is also the cardinality of Tk, we deduce that
these elements must also form a basis. □
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Proof of Theorem 14.10. Consider the map of topological abelian groups∏
α∈N×m

Zp ≃ map(N×m,Zp)→ ZpJGK

given by
(λα) 7→

∑
(α)

λαb
(α).

Since ∥b(α)∥ → 0 when deg(α)→∞, this is well-defined and continuous. As the source is com-
pact Hausdorff, the image is closed, and it is dense by Lemma 14.13 since ZpJGK ≃ lim←−Zp[G/Gk]
as topological rings. We deduce that the image is the whole completed group algebra, as needed.

Now suppose that G is uniform; we show that expressions in monomials are unique. Suppose
by contradiction that we have

(14.1)
∑

λαb
(α) = 0

and that at least one λα is non-zero. By dividing by p if necessary, we can assume that at least
one of them is non-zero mod p.

Let k be an integer. Since (14.1) holds, there exists a finite subset S ⊆ N×m such that Tk ⊆ S
and

∥
∑
α∈S

λαb
(α)∥ ≤ p−|G/Gk|,

so that ∑
α∈S

λαb
(α) ∈ J |G/Gk|.

We then have

(14.2)
∑
Tk

λαb
(α) =

∑
S

λαb
(α) −

∑
S\Tk

λαb
(α).

Since any element of (G − 1)|G/Gk| acts trivially on Fp[G/Gk], as we observed in the proof of
Proposition 14.4, we have J |G/Gk| ⊆ (Gk − 1) + pZpJGK. Thus, as a consequence of (14.2) we
have ∑

Tk

λαb
(α) ∈ (JG/Gk) + ((Gk − 1) + pZpJGK) = (Gk − 1) + pZpJGK.

Since b(α) for α ∈ Tk form a Fp-basis of Fp[G/Gk] by Lemma 14.13, this implies that λα ≡ 0
mod p for α ∈ Tk. As k was arbitrary, we deduce that λα ≡ 0 mod p for all α, which contradicts
our assumption. □

15. The group algebra of a uniform group

In Theorem 14.10, we had shown that in the completed group algebra of a uniform group G,
any element can be uniquely written as a convergent sum∑

λαb
(α)

of monomials in bi = gi− 1, where gi is a minimal set of generators. Today, we will describe the
standard norm of ZpJGK in terms of these coordinates. As applications, we will be able to show
that

(1) the standard norm of the complete group algebra extends uniquely to its rationaliza-
tion, giving a complete Qp-algebra where we can apply the logarithm and exponential
inroduced in §13 to relate a uniform group to a suitable Lie algebra, see Theorem 15.5,

(2) the completed group algebra has a canonical filtration whose associated graded is a
polynomial ring, allowing us to deduce that it has excellent ring-theoretic properties, see
Theorem 15.9.
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The following is the main result of today’s lecture:

Theorem 15.1. Let G be a uniform group with a minimal set of generators g1, . . . , gm. Then
for any element ∑

α

λαb
(α) ∈ ZpJGK

we have
∥
∑
α

λαb
(α)∥ = sup({∥pdeg(α)λα∥}) = sup({p− deg(α)∥λα∥}),

where the right hand side is the standard norm of Definition 14.6 and the sum and suprema are
taken over α ∈ N×m.

The proof of Theorem 15.1 will require some preliminaries. Throughout this lecture, G denotes
a powerful group and we write

J = ker(ZpJGK→ Fp) = (G− 1) + pZpJGK

for the ideal defining the standard norm of the complete group algebra (note that this is really
the completion of the ideal of Zp[G] introduced previously in Notation 14.3, although we use the
same notation), so that the norm is defined by

∥0∥ := 0,

∥x∥ := p−n if x ∈ Jn \ Jn+1,

We will need to study this ideal, and the way it interacts with p, in more detail.

Lemma 15.2. Let G be powerful and for each k ≥ 0, write

Jk+1,1 := pJk + Jk+2 ⊆ Jk+1.

Then for any x ∈ Jk and any g ∈ G, we have

[x, g] ∈ Jk+1,1,

where the bracket [x, g] := xg − gx denotes the Lie bracket of the group algebra.

Proof. Note that since the bracket is bilinear in each variable, we have

[x, g] = [x, g − 1] = x(g − 1)− (g − 1)x

and since g − 1 ∈ J , the bracket defines a linear map

[−, g] : Jk/Jk+1 → Jk+1/Jk+2.

We have to show that the image of this map is contained in Jk+1,1.
If k = 0, then since J0/J1 is additively spanned by 1, which is central, the bracket vanishes.

If k = 1, then since J/J2 is spanned by bi and p (which is central), we can assume that x = bi.
We have

[bi, g] = [gi, g] = ggi(g
−1
i g−1gig − 1) = ggi(z

p − 1)

where we use that since G is powerful we can write g−1i g−1gig = zp for some z ∈ G. Since
(z − 1)p ≡ zp − 1 mod p and (z − 1)p ∈ Jp, we have zp − 1 ∈ Jp + pZpJGK. If p > 2, this
is the desired statement. If p = 2, then g−1i g−1gig ∈ G3 and hence g−1i g−1gig − 1 ∈ J3 by
Proposition 14.4.

For k > 1, we argue by induction. Any element of Jk can be written as a linear combination
x = uw with u ∈ Jk and w ∈ J . Then

[uv, g] = uvg − guv = uvg − ugv + ugv − guv = u[v, g] + [u, g]v

and the result follows from the inductive assumption applied to [v, g] and [u, g]. □
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Lemma 15.3. Let G be powerful with a set of generators gi and associated elements bi = gi−1.
Then

Jk =
∑
α

pk−deg(α)Zpb
(α) + Jk+1.

where the sum is taken over α ∈ N×m with deg(α) ≤ k.

Proof. Let us write Wk = span({pk−deg(α)b(α) |deg(α) ≤ k}). Since p, bi ∈ J , we have Wk ⊆ Jk,
so that

Jk+1 +Wk ≤ Jk.

We have to show that the converse holds as well.
The case of k = 0 is clear, and we argue for k = 1. By Lemma 14.13, we have

(15.1) ZpJGK =
∑
α∈T2

b(α) + ker(ZpJGK→ Zp[G/G2]),

where T2 = {α ∈ N×m | αi < p}. Since

ker(ZpJGK→ Zp[G/G2]) ⊆ J2

by Proposition 14.4 and similarly b(α) ∈ J2 when deg(α) > 1, we can rewrite (15.1) as

ZpJGK = Zp · 1 +
∑

deg(α)=1

Zpb
(α) + J2.

Since the latter two summands are contained in J , intersecting this equality with J we obtain

J = (J ∩ Zp · 1) +
∑

deg(α)=1

Zpb
(α) + J2 =W1 + J2,

since J ∩ Zp · 1 = Zp · p, which is what we wanted to show.
For k > 1 we argue by induction. By inductive assumption applied to k − 1 and 1, we can

write
Jk = Jk−1J = (Wk−1 + Jk)(W1 + J2) ⊆Wk−1W1 + Jk+1.

Thus, to finish the proof it is enough to verify that Wk−1W1+Jk+1 ⊆Wk +Jk+1. As W1 is the
linear span of p, bi and pWk−1 ⊆Wk, we only have to check that

pk−1−deg(α)b(α)bi ∈Wk + Jk+1

for every 1 ≤ i ≤ m and every word of degree deg(α) ≤ k − 1. Note that if i = m, then
b(α)bm = b(α

′) where α′m = αm + 1 and α′i = αi for i < m, in which case

pk−1−deg(α)b(α)bm = pk−deg(α
′)b(α

′) ∈Wk.

As usual, the difficulty lies in the group algebra not being commutative.
Let f = (α1, . . . , αi, 0, . . .) and b = (. . . , 0, αi+1, . . . , αm) be the division of (α) into the “front”

and “back” parts, so that b(α) = b(f)b(b). Then

pk−1−deg(α)b(α)bi = pk−1−deg(α)b(f)b(b)bi = pk−1−deg(α)b(f)bib
(b) + pk−1−deg(α)b(f)[b(b), bi].

The left summand is pk−1−deg(α) times a monomial of degree deg(α) + 1 and thus belongs to
Wk. For the right summand, observe that by Lemma 15.2 we have

[b(b), bi] ∈ pJdeg(b) + Jdeg(b)+2

and thus
pk−1−deg(α)b(f)[b(b), bi] ∈ pk−deg(α)Jdeg(α) + Jk+1.

Since Jdeg(α) ⊆ Wdeg(α) + Jdeg(α)+1, pk−deg(α)Wdeg(α) ⊆ Wk and pk−deg(α)Jdeg(α)+1 ⊆ Jk+1,
this ends the argument. □

We are now ready to prove an explicit formula for the norm of a completed group algebra in
terms of the monomial basis.
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Proof of Theorem 15.1. We have to show that given an element x =
∑

α λαb
(α), we have

(15.2) ∥x∥ = sup
α

(p− deg(α)∥λα∥p)

Since p, bi ∈ J , we have ∥λαb(α)∥ ≤ p−v(λα)−deg(α), where v(−) is the p-adic valuation. Thus,
the left hand side of 15.2 is bounded by the right hand side, and we only have to verify the
inequality going to the other way.

If x = 0, then λα = 0 for all α and there is nothing to show. Instead, suppose that ∥x∥ = p−c,
so that x ∈ Jc \ Jc+1. Using Lemma 15.3, we can write it as

(15.3) x =
∑

deg(α)≤c

pc−deg(α)uα,cb
(α) + x′

with x′ ∈ Jc+1. Expanding x′ similarly and continuing inductively, we obtain that

x =
∑
k≥c

 ∑
deg(α)≤k

pk−deg(α)uα,cb
(α)


which we can rewrite as

x =
∑
α

∑
k≥c

pk−deg(α)uα,k

 b(α).

Since G is uniform, the uniqueness part of Theorem 14.10 applies, so that

(15.4) λα =
∑
k≥c

pk−deg(α)uα,k.

Assume by contradiction that p− deg(α)∥λα∥p < p−c for each α; equivalently, that ∥λα∥p <

pdeg(α)−c. Since ∥pk−deg(α)uα,k∥ < p−c for k > c, by (15.4) this can only happen if also

∥pc−deg(α)uα,c∥ < pdeg(α)−c;

equivalently, when each uα,c is divisible by p. Then

pc−deg(α)uα,cb
(α) ∈ pJc ⊆ Jc+1

and hence x ∈ Jc+1 as a consequence of (15.3). This contradicts the assumption that ∥x∥ = p−c,
ending the argument. □

While Theorem 15.1 can seem somewhat opaque at first sight, it has many important conse-
quences which we now outline.

Notation 15.4. The rational completed group algebra is given by

QpJGK := Qp ⊗Zp
ZpJGK.

Note that since ZpJGK ≃ lim←−Zp[G/Gk] is torsion-free, we have an inclusion

i : ZpJGK ↪→ QpJGK.

Any element of the target can be written as p−n · i(x) for some x ∈ ZpJGK and n ≥ 0.

Theorem 15.5. If G is uniform, then the standard norm on ZpJGK uniquely extends to a norm
on QpJGK which makes the latter into a normed Qp-algebra.

Proof. Any Qp-algebra norm has the property that ∥p−nx∥ = pn∥x∥ by Lemma 13.18. As any
element of the rational group algebra can be written as p−nx for some x ∈ ZpJGK, it is clear
that if an extension of the norm exists then it is unique. To see that the above formula gives a
well-defined norm, suppose that

p−kx = p−k
′
x′
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for some x, x′ ∈ ZpJGK and k, k′ ≥ 0. We have to show that in this case

∥x∥pk = ∥x′∥pk
′
.

By symmetry, we can assume that k ≥ k′. The first centered equality can then be rewritten as

x = pk−k
′
x′.

If we write x =
∑
λαb

(α) and similarly for x′, then by the uniqueness of monomial expressions
we have

λαp
k−k′

λ
′

α.

We deduce that ∥x∥ = ∥pk−k′∥p∥x′∥ as a consequence of the supremum formula for the norm of
Theorem 15.1. This shows the formula is well-defined.

Subadditivity and submultiplicativity of so-defined norm on QpJGK can be verified by mul-
tiplying by a large enough power of pn and using the corresponding property of the norm of
ZpJGK. □

As another important consequence of Theorem 15.1, observe that for any k ≥ 0, we have

Jk = {x ∈ ZpJGK | ∥x∥ ≤ p−k} = {
∑

α∈N×m

λαb
(α) | ∥λα∥ ≤ pdeg(α)−k}

The second expression immediately implies the following:

Corollary 15.6. Elements of the form

pk−deg(α) · b(α)

with deg(α) ≤ k form a basis of the Fp-vector space Jk/Jk+1.

One can rephrase Corollary 15.6 in the following way: the basis of J/J2 is given by

(15.5) p, b1, . . . , bm

and for each k ≥ 2 the basis of Jk/Jk+1 is given by ordered monomials in these elements of
length k. In particular, we deduce that the dimensions of these vector spaces are given by the
same formula as in the case of a polynomial ring:

Corollary 15.7. Let G be a uniform group of dimension m. Then

dimFp
(Jk/Jk+1) =

(
m+ k

k

)
= dimFp

({p ∈ Fp[x0, . . . , xm] | p homogenuous of degree k})

The associated graded grJ(ZpJGK) of the completed group algebra is the graded ring given in
degree k by

grJ(ZpJGK)k := Jk/Jk+1,

with product induced from that of the completed group algebra. It is an Fp-algebra which by
Corollary 15.7 is in degree k of the same dimension as the graded polynomial ring Fp[x0, . . . , xm],
where each xi is of degree 1.

One might then guess that perhaps gr∗(ZpJGK) itself is just a polynomial algebra. This is
almost true. To see this, observe that the associated graded is generated in degree one, with
generators given by images

p̃, b̃1, . . . , b̃m ∈ J/J2

of elements of (15.5). If these elements commute with each other, then we have an induced
homomorphism of graded rings

Fp[x0, . . . , xm]→ grJ(ZpJGK)

defined by
x0 7→ p̃
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and
xi 7→ b̃i

for 1 ≤ i ≤ m. This is surjective in each degree since the images of xi generate the target, and
thus must be also injective by the dimension count of Corollary 15.7. It is in this sense that the
associated graded is almost a polynomial ring, with the obstruction being that the images of bi
need not commute (the image of p certainly does, as p is central).

However, observe that by Lemma 15.2 we have

[bi, bj ] ∈ pJ + J3

for any 1 ≤ i, j ≤ m. It follows that in the associated graded we have

(15.6) [̃bi, b̃j ] ∈ p̃ · gr1(ZpJGK).

This essentially shows the following:

Theorem 15.8. Let G be a uniform group and consider the p̃ adic filtration

. . . ⊆ p̃2 · grJ(ZpJGK) ⊆ p̃ · grJ(ZpJGK) ⊆ grJ(ZpJGK)

on the associated graded of the J-adic filtration on the completed group algebra, where p̃ ∈ J/J2

is the image of p. Then the associated graded of the p̃-adic filtration is isomorphic as a bigraded
ring to

Fp[x0, x1, . . . , xm]

where |x0| = (1, 1) and |xi| = (1, 0) for 1 ≤ i ≤ m, where the first degree is J-adic and the second
p̃-adic.

Proof. The ring homomorphism is specified by

x0 7→ p̃,

which is in p̃-adic filtration one, and
xi 7→ b̃i,

which is in p̃-adic filtration zero. By (15.6) the bracket between b̃i is zero in the associated
graded of the p̃-adic filtration, and so all of these elements commute and we have the needed
ring homomorphism. Using the description of elements of grJ(ZpJGK) in terms of products of
monomials in p̃ and b̃i we see that this map is surjective and injective by (a slight refinement
of) the dimension count of Corollary 15.7. Thus, the map is an isomorphism. □

As a consequence of the description of the associated graded, we deduce that the completed
group algebra itself has excellent ring-theoretic properties.

Theorem 15.9. Let G be a uniform group of dimension m. Then the completed group algebra
ZpJGK has the following properties:

(1) it is left and right noetherian,
(2) has no zero-divisors,
(3) it is of global dimension m+ 1; that is, for any left (or right) modules we have

ExtsZpJGK(M,N)

for s > m+ 1.

Proof. One can show that if A is a ring complete with respect to a filtration whose associated
graded has any of these three properties, then so does the algebra itself. This is not difficult,
but would take us too far off course, so we instead refer the reader to the comprehensive account
given in [HVOHvO96].

In the case at hand, the bigraded polynomial ring Fp[x0, . . . , xm] has all three of these proper-
ties, and hence so does grJ(ZpJGK) by Theorem 15.8 (note that the p̃-adic filtration is complete
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by degree considerations). We deduce that the completed group algebra also has these three
properties. □

Corollary 15.10. Let G be a profinite group which is virtually uniform (for example, this is
true if G is pro-p of finite rank by Corollary 7.5). Then ZpJGK is both left and right noetherian.

Proof. Let U ◁G be an open uniform subgroup and let g1, . . . , gk ∈ G be a set of representatives
for cosets G/U . Then ZpJGK is free on the images of gi as a module over ZpJUK, in particular
finitely generated. Since the latter ring is left and right noetherian by Theorem 15.9, we deduce
that so is ZpJGK. □

16. Baker-Campbell-Hausdorff formula

The logarithm and exponential functions of Proposition 13.31 allow one to relate the addition
and multiplication of a complete normed Qp-algebra. Applied to a group algebra of a suitably
nice profinite group, this allows one to identify the group itself with a linear subset of its group
algebra (namely the image of the logarithm). This subset should rightfully be thought of as the
Lie algebra, as we will explore in the next lecture.

Transporting the multiplication through the exponential, we obtain a group structure on the
image of the logarithm, and it is natural to ask about a formula for this induced multiplication.
This is the subject of the Baker-Campbell-Hausdorff formula which we discuss today.

Recall that in Definition 13.27 we introduced the exponential

E(X) =
∑
n≥0

1

n!
Xn

and logarithm

L(X) =
∑
n≥1

(−1)n+1

n
Xn

power series. If A is a complete normed Qp-algebra, then these two power series define the
logarithm and exponential functions which are inverse bijections

exp: A0 ⇄ 1 +A0 : log

An elementary calculation shows that in the ring QpJX,Y K of power series in two commuting
variables, we have an equality

(16.1) L(E(X)E(Y )− 1) = L(X) + L(Y ).

This means that for commutative normed algebras, the exponential and logarithm exchange
multiplication and addition. In particular, in a group algebra of an abelian group, the only trace
of the group multiplication is the module structure of the Lie algebra. This is not surprising, since
we have seen in §9 that abelian uniform groups are very easy to describe, all being isomorphic
to a free Zp-module. Today, we will analyze the difference between the two sides of (16.1) in
non-commuting variables, which is encoded by the following power series.

Definition 16.1. Let Qp⟪X,Y ⟫ be the power series ring in two non-commuting variables. The
Baker-Campbell-Hausdorff power series Φ(X,Y ) ∈ Qp⟪X,Y ⟫ is given by

Φ(X,Y ) := L(E(X)E(Y )− 1).

To get some practice in working with power series in non-commuting variables, let’s calculate
the low degree terms. Since

E(X) = 1 +X +
X2

2
+ terms of degree at least three
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and similarly for E(Y ), we have

E(X)E(Y )− 1 = X + Y +XY +
X2

2
+
Y 2

2
+ terms of degree at least three.

Substituting this into the logarithm, we obtain

Φ(X,Y ) = X + Y +XY +
X2

2
+
Y 2

2
− 1

2
(X + Y )2 + terms of degree at least three,

which since (X + Y )2 = X2 + Y 2 +XY + Y X we can rewrite as

Φ(X,Y ) = X + Y +
1

2
(X,Y ) + terms of degree at least three,

where (X,Y ) = XY − Y X is the Lie bracket. The following celebrated theorem tells us that
the appearance of the bracket is not an accident, and that the whole failure of (16.1) to hold in
non-commuting variables is expressible in these terms.

Notation 16.2. If L is a Lie algebra (for example, an associative algebra with the induced Lie
structure (a1, a2) := a1a2 − a2a1), then the iterated bracket of length n is defined inductively as

(a1, a2, . . . , an) = ((a1, . . . , an−1), an).

Theorem 16.3 (Baker-Campbell-Hausdorff). Write the homogeneous decomposition of Φ(X,Y )
as

Φ(X,Y ) =
∑
n≥1

un(X,Y ),

so that each un(X,Y ) is a linear combination of words of degree n. Then
(1) u1(X,Y ) = X + Y ,
(2) for each n ≥ 2, un(X,Y ) is a linear combination with rational coefficients of brackets in

X and Y of length n.

Remark 16.4. The algebra Q⟨X,Y ⟩ is the free associative Q-algebra in two variables, and
by inspecting universal properties thus be identified with the universal enveloping algebra of
L(X,Y ), the free Lie algebra in two variables. By Poincaré-Birkhoff-Witt theorem, see [KK96,
§3.1], the canonical map

(16.2) L(X,Y )→ ⟨X,Y ⟩

is injective. In this langauge, Theorem 16.3 is saying that each of the polynomials un(X,Y ) is
in the image of (16.2), and so defines an expression which can be evaluated in any Lie algebra,
despite the fact that its definition uses associative algebras in an essential way.

This is important, as it allows one to define a multiplication on any Lie algebra in which
Φ(X,Y ) can be shown to be convergent. We will use this in the next lecture to show that
certain Zp-Lie algebras can be used to produce uniform groups.

Note that we have already calculated that Theorem 16.3 holds for n ≤ 2. With enough
patience, one can also calculate by hand that

u3(X,Y ) =
1

12
(X,Y, Y )− 1

12
(X,Y,X).

After that, the formulas become quite involved and our proof will proceed in a different way.
Since Theorem 16.3 is a purely algebraic statement about certain formal power series over

the rationals, it admits purely algebraic proofs. Since in this class we’re working with complete
normed Qp-algebras, it will be convenient to give a proof using this technology, but we also
outline the more usual argument.
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Remark 16.5 (The “standard” proof). To highlight a variety of approaches to this problem, we
sketch the more standard algebraic argument leading to the Baker-Campbell-Hausdorff formula.
After spelling out the necessary theory, it is not much shorter than the one given here, but it
is arguably more conceptual, resting on a few fundamental properties of Lie algebras which are
important in their own right. For details, see [Sch11, §16].

The algebra of non-commutative polynomials Q⟨X,Y ⟩ has a canonical Hopf-algebra structure
with comultiplication determined by ∆(X) = X ⊗ 1 + 1⊗ Y and ∆(Y ) = Y ⊗ 1 + 1⊗ Y . This
comultiplication extends continuously to one on Q⟪X,Y ⟫, the ring of power series.

Given a Hopf algebra, one says that an element z is

(1) primitive if ∆(z) = z ⊗ 1 + 1⊗ Z,
(2) groupike if ∆(z) = z ⊗ z.

An easy calculation shows that primitive elements form a Lie-subalgebra, and grouplike elements
form a subgroup of multiplicative units.

As observed in Remark 16.4, the ring Q⟨X,Y ⟩ can be identified with the enveloping algebra
of the free Lie algebra L(X,Y ) generated by X,Y . As a consequence of Poincaré-Birkhoff-Witt
theorem [KK96, §3.1], Q⟨X,Y ⟩ has a basis given by ordered monomial in basis elements of
L(X,Y ). Calculating in this basis we see that the subspace of primitive elements of Q⟨X,Y ⟩
is exactly L(X,Y ), so that they are all linear combinations of brackets in X,Y . Passing to the
completion Q⟪X,Y ⟫, we see that any primitive formal power series is a possibly infinite sum of
the brackets.

Using basic properties of the exponential and logarithm, one calculates that if I ⊆ Q⟪X,Y ⟫
is the maximal ideal of power series with no constant term, then E(−) and L(−) give a bijection

I ⇆ 1 + I

(there are no convergence issues here, since these are formal power series). An easy calculation
shows that this restricts to a bijection between primitive and grouplike elements. Since X,Y are
primitive, E(X),E(Y ) are grouplike and thus is their product E(X) · E(Y ). It follows that

Φ(X,Y ) = L(E(X)E(Y )− 1)

is primitive and thus a sum of brackets by the discussion above.

Let A be a complete normed Qp-algebra. As previously, we write

A0 =

{
{x ∈ A | ∥x∥ ≤ 1

p} p > 2

{x ∈ A | ∥x∥ ≤ 1
4} p = 2

so that the exponential and logarithm converge on, respectively, A0 and A0 + 1. Given such an
algebra, we can introduce another normed algebra by considering bounded operators.

Definition 16.6. We say that a Qp-linear map T : A→ A is bounded if its operator norm

∥T∥ := sup({∥Ta∥
∥a∥

| a ∈ A, a ̸= 0})

is finite.

Notation 16.7. We write B(A) for the Qp-vector space of bounded operators on A. Using
composition and the operator norm appearing in Definition 16.6, it becomes a complete normed
Qp-algebra.

The space of bounded operators is related to the original algebra A by a variety of maps. The
three particularly important maps A→ B(A) are the left multiplication, right multiplication and
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the adjoint representation denoted by

a 7→ la,

a 7→ ra,

a 7→ ada

and defined by

la(b) = ab,

ra(b) = ba,

ada(b) = la(b)− ra(b) = ab− ba = (a, b)

Note that each of these is Qp-linear and norm-nonincreasing; in particular, they are continuous.
Moreover, since

lab(c) = abc = la(lb(c)),

l− is a map of algebras. By the same calculation, r− is an anti-map of algebras; that is, it
reverses the order of multiplication. On the other hand, the adjoint operator does not respect
multiplication.

Lemma 16.8. Let a ∈ A0. Then

lexp(a) = exp(la),

rexp(a) = exp(ra)

as bounded operators.

Proof. Notice that both sides make sense under given assumption, since la ∈ B(A)0. The formula
is clear for l, since it is a continuous map of algebras, and exp is a limit of linear combinations
of an. For r, we observe that a commutes with itself, so that similarly ran = (ra)

n. □

Recall that un(X,Y ) denotes the degree n part of the Baker-Campbell-Hausdorf power series
Φ. The key step in the proof of Theorem 16.3 is the observation that while the operator ad : A→
B(A) is not a map of algebras, it does respect these polynomials.

Lemma 16.9. For any a, b ∈ A, we have an equality of bounded operators on A

adun(a,b) = un(ada, adb).

Proof. Suppose first that a, b ∈ A0, so that the exponential converges on them. In this case, we
have

exp(la) exp(lb) = lexp(a)lexp(b) = lexp(a) exp(b) = lexp(Φ(exp(a),exp(b)) = exp(lΦ(a,b)),

where we use the defining property of Φ, namely that

(16.3) E(Φ(X,Y )) = E(X)E(Y ).

By the same argument, we have

exp(rb) exp(ra) = exprΦ(a,b)

(notice the reversed order of a and b, since r reverses multiplication).
We have ada = la − ra, and since the latter two operators commute with each other, we have

(16.4) exp(ada) = exp(la) exp(−ra) = exp(la) exp(r
−1
a ) = lexp(a)r

−1
exp(b).

We now calculate

exp(Φ(ada, adb)) = exp(ada) exp(adb) = lexp(a)r
−1
exp(a)lexp(b)r

−1
exp(b) = (lexp(a)lexp(b))(rexp(b)rexp(a))

−1,
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where the first equality is (16.3), the second one is (16.4) and the third one again uses that left
and right multiplication operators commute. We can further rewrite this as

lexp(a) exp(b)(rexp(a) exp(b))
−1 = exp(lΦ(a,b) exp(rΦ(a,b))

−1 = exp(adΦ(a,b)).

Taking logarithms, we deduce that

Φ(ada, adb) = adΦ(a,b)

or, more concretely, that ∑
n≥1

un(ada, adb) =
∑
n≥1

adun(a,b)

holds for all a, b ∈ A0. If λ ∈ Zp, then since un is homogeneous of degree n and ad− is linear,
the above equality applied to λa, λb ∈ A0 becomes∑

λnun(ada, adb) =
∑

λnadun(a,b).

As Zp ⊆ Qp is an open neighbourhood of zero, the identity property of Proposition 13.19 implies
that

un(ada, adb) = adun(a,b)

for all n ≥ 1, which is what we wanted to show. □

We are now ready to prove the Baker-Campbell-Hausdorff theorem.

Proof of Theorem 16.3. Let us write A for the quotient of the free algebra Qp⟨X,Y, t⟩ on three
variables by the relations

tX = Xt+X

tY = Y t+ Y.

Explicitly, any element of A can be uniquely expressed as a finite sum∑
n≥0,w∈W (X,Y )

ak,wt
kw

indexed by the product of non-negative integers (specifying the power of t) and the monoid
of words in X,Y , where ak,w ∈ Qp. Notice that A contains Qp⟨X,Y ⟩ as a subalgebra. As a
consequence of (16), we have

adt(X) = X

and analogously for Y , from which we deduce that if p(X,Y ) ∈ Qp⟨X,Y ⟩ is homogeneous of
degree n, then

(16.5) adt(p(X,Y )) = n · p(X,Y ).

This algebra A is specifically designed to be an enlargement of Qp⟨X,Y ⟩ where the degree
decomposition becomes an eigenspace decomposition for an operator adt attached to a new
element t.

The formula
∥
∑

ak,wt
nw∥ := sup({∥ak,w∥ | k ≥ 0, w ∈W (X,Y )})

defines a norm on A that makes it into a Qp-normed algebra and we write Â for its completion,
which can be identified with the algebra of possibly infinite sums, but with the property that∑
ak,w exists.
We now work in the algebra of bounded operators on Â. Using (16.5), we have

−n · un(X,Y ) = −adt(un(X,Y )) = adun(X,Y )(t) = un(adX , adY )(t),

where the last equality is Lemma 16.9. If we write

un(X,Y ) =
∑

deg(w)=n

cww(X,Y ),
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the above can be rewritten as

−n · un(X,Y ) =
∑

cww(adX , adY )(t),

where by w(adX , adY ) we mean the element of the algebra of operators obtained by substituting
X 7→ adX and Y 7→ adY . We claim that

w(adX , adY )(t)

is a bracket of length n in X,Y when w is a word of length n ≥ 2, which will finish the proof.
To see this, write

w = Z1 · . . . · Zn,

where Zi ∈ {X,Y }. Then

w(adX , adY )(t) = adZ1
. . . adZn

(t) = adZ1
. . . adZn−1

(Zn) = (Z1, (Z2, . . . , (Zn−1Zn) . . .)

which since the bracket is anti-symmetric gives

w(adX , adY )(t) = (−1)n(Zn, Zn−1, . . . , Z1)

which is an iterated bracket in X,Y as claimed. □

The Baker-Campbell-Hausdorff formula is an algebraic statement, but to apply it to p-adic
analytic groups, we will need some control over its coefficients to guarantee the convergence of
Φ(x, y) for suitable x, y.

Notation 16.10. The bounds are different at odd primes and at the even prime, so to state
the result, we write

ϵ =

{
1 p > 2,

2 p = 2,

so that A0 = {x | ∥x∥ ≤ p−ϵ}.

Proposition 16.11. Write the n-th Baker-Campbell-Hausdorff polynomial as

un(X,Y ) =
∑

deg(w)=n

cww(X,Y ).

Then the p-adic valuation v(−) of the coefficients satisfies
(1) ϵ(n− 1) + v(cw) ≥ ϵ if n ≥ 3,
(2) ϵ(n− 1) + v(cw)→∞ as n→∞.

Proof. We only prove the second part. The reader interested in seeing also the first part (which
is similar, but more tedious) should consult [DDSMS03, Lemma 6.41, §6.Exercise 10].

Observe that E(X)E(Y )− 1 is given by∑
i,j≥1

1

i!j!
XiY j .

Applying the logarithm to calculate Φ(X,Y ) = L(E(X)E(Y )−1), we see that the terms of degree
n are all sums of terms of the form

(−1)k+1

k

1

i1!j1! . . . ik!jk!
Xi1Y j1 · · ·XikY jk ,

where
(1) 1 ≤ k ≤ n,
(2) il + jl ≥ 1 for all 1 ≤ l ≤ k,
(3) i1 + j1 + . . .+ ik + jk = n.
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Using Lemma 13.29, we see that the p-adic valuation of a coefficient of such a term is given by

v(
(−1)k+1

k

1

i1!j1! . . . ik!jk!
) ≥ −k − 1

p− 1
−

∑
1≤l≤k

(
il − 1

p− 1
+
jl − 1

p− 1
) ≥ −n− 1

p− 1
,

where the second bound uses that il, jl sum to n. It follows that

v(cw) ≥ −
n− 1

p− 1

for each word of length n, since the p-adic valuation of a sum is bounded below by the p-adic
valuations of the summands. This ends the argument, since

ϵ(n− 1) + v(cw) ≥ ϵ(n− 1)− n− 1

p− 1
≥ ϵ

2
(n− 1)

and the last terms diverges to infinity when n→∞. □

17. The Lie correspondence

Let G be a uniform group. Recall that in §9 we introduced the addition of G, given by the
explicit formula

g +G h := lim
n→∞

(gp
n

hp
n

)p
−n

,

which we had shown in Theorem 9.14 makes G into a free Zp-module of rank equal to its
dimension.

In this lecture, we will enrich this construction to a Zp-Lie algebra, and show that this furnishes
an equivalence of categories between uniform groups and certain Lie algebras, see Theorem 17.10.
This result, which can be thought as the p-adic analogue of the classical correspondence between
real Lie algebras and simply-connected Lie groups, is a cornerstone of the theory of p-adic
analytic groups.

Definition 17.1. Let G be a uniform group. Its additive bracket is defined by

(g, h)G := lim
n→∞

(g−p
n

hp
−n

gp
n

hp
n

)p
−2n10.

Remark 17.2. Observe that since gp
n

, hp
n ∈ Gn+1, we have

g−p
n

hp
−n

gp
n

hp
n

∈ G2n+2

by Theorem 3.21, so that the p2n-th roots in the definition above make sense. It also follows
that we have

(g, h)G ∈ G2

for any g, h ∈ G. If p = 2, then we have

g−1h−1gh ∈ G3

since G/G3 is abelian, and using arguments similar to the proof of Lemma 9.7 one can show
that

(g, h)G ∈ G3;

see [DDSMS03, Lemma 4.28].

We now show the following:

Theorem 17.3. If G is a uniform group, then the addition of Definition 9.8 and the additive
bracket of Definition 17.1 make G into a Zp-Lie algebra.

10In terms of group commutators, we can write (g, h)G = limn→∞[gp
n
, hpn ]p

−2n
. As in some of the previous

lectures, we will avoid using the group commutator notation to not confuse it with the other kinds of “brackets”
we use, such as the additive bracket of a uniform group or a Lie bracket of a normed algebra.
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To prove Theorem 17.3, we will use the theory of normed algebras and the exponential and
logarithm functions. We first set up the notation.

Notation 17.4. We write G for a fixed uniform group. We assume that we are given a completed
normed Qp-algebra and a continuous monomorphism G→ A× into the group of units such that

G ≤ 1 +A0,

where

A0 =

{
{x ∈ A | ∥x∥ ≤ 1

p} p > 2

{x ∈ A | ∥x∥ ≤ 1
4} p = 2

.

In other words, A is a normed algebra containing G as a subgroup of units and such that

∥g − 1∥ ≤ p−1

(or ∥g − 1∥ ≤ 2−2 for p = 2) for all g ∈ G.

Example 17.5. If p is odd, then an example of a algebra satisfying the conditions of Nota-
tion 17.4 is the rational group algebra QpJGK, which we verified admits a complete norm with
the needed property in Theorem 15.5.

If p = 2, this algebra might not work, as we are only guaranteed that the norms of g − 1
are bounded by 1/2, rather than 1/4. If G = P2(H) for some other uniform pro-2-group H, then
we can take A = QpJHK, which has the needed property by part (1) of Proposition 14.4. In
the general case, one can show that there is a different norm on QpJGK which has the needed
property, see [DDSMS03, §7.Exercise 10], but we leave the details to an interested reader.

Recall from Proposition 13.31 that logarithm and exponential define mutually inverse func-
tions

exp: A0 ⇄ 1 +A0 : log .

Since G ≤ 1 + A0, the logarithm is well-defined on elements of the group. We now relate the
additive structure of the uniform group G to the algebra structure of A0 using the logarithm.

Proposition 17.6. The logarithm log : G → A0 satisfies the following three identities for any
g, h ∈ G, λ ∈ Zp:

(1) log(g +G h) = log(g) + log(h),
(2) log(gλ) = λ log(g),
(3) log((g, h)G) = (log(g), log(h)) = log(g) log(h)− log(h) log(g).

Proof. Throughout the proof, we use the shorthand γ := log(g) and η := log(h). We write

Φ(X,Y ) = X + Y +
∑
k≥2

uk(X,Y )

for the degree decomposition of the Baker-Campbell-Hausdorff series of Definition 16.1. As a
consequence of Proposition 16.11, Φ(X,Y ) defines a strictly analytic function

A0 ×A0 → A0.

Using the defining property E(Φ(X,Y )) = E(X)E(Y ), we see that

log(gh) = γ + η +
∑
k≥2

uk(γ, η).

Since log(xn) = n log(x) for x ∈ 1 + A0 by Proposition 13.31 and since uk is homogeneous of
degree k, we have

log(gp
n

hp
n

) = pnγ + pnη +
∑
k≥2

pknuk(γ, η).
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We then have
log((gp

n

hp
n

)p
−n

) = γ + η + pn
∑
k≥2

p(k−1)nuk(γ, η).

Since the logarithm is continuous, we deduce that

log(g +G h) = γ + η + lim
n→∞

pn(
∑
k≥2

p(k−1)nuk(γ, η)) = γ + η,

since uk(γ, η) ∈ A0 for all k. This proves part (1).
For part (2), observe that log(gλ) = λ log(g) for all λ ∈ Z. Since the integers are dense in Zp

and both sides are continuous in λ, we deduce that this holds for all p-adic numbers.
For part (3), we argue in a way similar to (1), using instead of Φ(X,Y ) the formal power

series
C(X,Y ) := L(E(X)−1E(Y )−1E(X)E(Y ))

which has the property that
C(γ, η) = log(g−1h−1g, h).

A direct calculation shows that

C(X,Y ) = XY − Y X +
∑
k≥3

vk(X,Y )

where vk is homogeneous of degree k. We then have

log((g, h)G) = lim
n→∞

[γ, η] + pn(
∑
k≥3

p(k−3)nvk(γ, η)) = [γ, η]

which is what we wanted to show. □

Proof of Theorem 17.3. We have to show that the additive bracket of Definition 17.1 is Zp-linear
in each variable and satisfies the Jacobi identity. By Proposition 17.6, parts (1) and (2), the
logarithm defines a Zp-module isomorphism between G and a submodule of A. By part (3), this
isomorphism takes the additive bracket to the Lie bracket of A, which is linear in each variable
and satisfies the Jacobi identity. This ends the argument. □

Keeping Theorem 17.3 in mind, we make the following definition.

Definition 17.7. Let G be a uniform group. The Lie algebra of G is the Zp-Lie algebra

L(G) := (G,+G, (−,−)G)
given by the group itself together with its addition and the additive bracket.

Remark 17.8. Our definition of the Lie algebra of a uniform group is potentially confusing in
that, as a set, the Lie algebra coincides with the group itself. Alternatively, one could define the
Lie algebra as

L(G) := log(G) ⊆ A0,

the image of the logarithm. This has the advantage of being perhaps less confusing and the
disadvantage of obscuring the fact that this structure does not depend on the choice of A:
any normed group algebra as in Notation 17.4 would define the same L(G), up to canonical
isomorphism.

Observe that as a consequence of Theorem 9.14, addition makes a uniform group into a free
Zp-module of finite rank equal to the dimension. Moreover, Remark 17.2 shows the additive
bracket vanishes modulo p (or modulo 4 when p = 2). Thus, the Lie algebra of Definition 17.7
is always of the following kind:

Definition 17.9. We say a Zp-Lie algebra L is uniformly powerful if it has the following two
properties:
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(1) as a Zp-module, it is free of finite rank,
(2) (L,L) ⊆ p · L (resp. (L,L) ⊆ 4 · L when p = 2).

The notion of a uniformly powerful Lie algebra is precisely designed to state the following
p-adic analogue of the correspondence between Lie groups and Lie algebras:

Theorem 17.10 (The p-adic Lie correspondence). The construction

G 7→ L(G)

of the Lie algebra of Definition 17.7 gives an equivalence between
(1) the category of uniformly powerful pro-p-groups and continuous group homomorphism,
(2) the category of uniformly powerful Zp-Lie algebras and Lie algebra homomorphisms.

To prove Theorem 17.10, we will construct an explicit inverse to the functor G 7→ L(G). Let
L be a uniformly powerful Lie algebra and write

Φ(X,Y ) = X + Y +
∑
k≥2

uk(X,Y )

for the Baker-Campbell-Hausdorff series. As a consequence of Theorem 16.3, see Remark 16.4,
each of uk(X,Y ) can be (uniquely) identified with an element of a free Q-Lie algebra in two
variables, namely a linear combination of iterated brackets of length k. It follows that for any
l1, l2 ∈ L, the expression uk(l1, l2) can be evaluated to yield an element of the rationalization
LQ.

Since (L,L) ⊆ pϵ · L, where ϵ = 1 when p > 2 and ϵ = 2 when p = 2, we have that
(1) u2(l1, l2) = 1

2 (l1, l2) ∈ p · L,
(2) uk(l1, l2) ∈ pϵ · L for all k ≥ 3,
(3) uk(l1, l2)→ 0 as k →∞, uniformly in l1, l2.

where the second and third parts are Proposition 16.11. This furnishes the following definition.

Definition 17.11. Let L be a uniformly powerful Lie algebra. The multiplication of L is the
binary operation

(17.1) l1 ∗ l2 := Φ(l1, l2) = l1 + l2 +
∑
k≥2

uk(l1, l2)

Remark 17.12. Using properties (1) and (2) of uk(l1, l2) outlined above, we see that

l1 ∗ l2 ≡ l1 + l2 mod p

and additionally

l1 ∗ l2 ≡ l1 + l2 +
1

2
(l1, l2) mod 4

when p = 2.

Lemma 17.13. The multiplication ∗ makes L into a group.

Proof. Applying the formal logarithm L to

(E(X)E(Y ))E(Z) = E(X)(E(Y )E(Z))

we see that the Baker-Campbell-Hausdorff series is associative in the sense that we have an
equality

Φ(Φ(X,Y ), Z) = Φ(X,Φ(Y,Z)).

It follows that the operation ∗ of (17.1) is associative. To see that it makes L into a group,
observe that immediately from the definition we see that

l ∗ 0 = 0 ∗ l = l
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and
l ∗ (−l) = 0

since the brackets defining uk for k ≥ 2 vanish in this case. □

Proposition 17.14. If L is uniformly powerful Lie algebra, then (L, ∗) with its p-adic topology
is a uniformly powerful group.

Proof. Since (l, l) = 0 for any l ∈ L, we have

l∗p = p · l.

From bilinearity of the bracket we see that

{l∗p | l ∈ L} = p · L,

the subset of ∗-p-th powers, is a ∗-subgroup. Since l1 ∗ l2 ≡ l1 + l2 mod p,

(L, ∗)/(p · L, ∗)

is abelian so that (L, ∗) is powerful when p > 2. When p = 2, we instead observe that

l1 ∗ l2 = l1 + l2 +
1

2
(l1, l2) mod 4,

so that

l1 ∗ l2 ∗ −(l2 ∗ l1) ≡ l1 + l2 +
1

2
(l1, l2)− l2 − l1 −

1

2
(l2, l1) ≡ (l1, l2) ≡ 0 mod 4,

where we used the anti-symmetry of the bracket and the assumption that (L,L) ⊆ 4 · L. We
conclude that (L, ∗) is powerful also when p = 2.

Since l1 ∗ l2 ≡ l1 + l2 mod p, the +- and ∗-cosets of L with respect to p · L = L∗p coincide,
and since L/p ·L is finite by assumption, we deduce that (L, ∗) is finitely generated. To see that
(L, ∗) is uniform, observe that pk · L is a uniformly powerful Lie algebra for each k ≥ 0, so that
the arguments above apply to it equally well. Since

pkL/pk+1L ≃ L∗p
k

/L∗p
k+1

and the order of the left hand size does not depend on k by the assumption that L is free over
Zp, we deduce that (L, ∗) is uniform. □

Proof of Theorem 17.10. By construction, both of the functors G 7→ L(G) and L 7→ (L, ∗) are
faithful (since they do not change the underlying set). In this situation, to show that they are
inverse to each other, it is enough to verify that at least one of their composites is equal to the
identity.

Let G be a uniformly powerful group with Lie algebra L(G), which by Remark 17.8 we can
identify with a Lie subalgebra

L(G) = log(G) ⊆ A0.

of a suitable a complete normed Qp-algebra as in Notation 17.4. Since

g · h = exp(Φ(log(g), log(h))) = exp(log(g) ∗ log(h))

we see that the exponential defines an isomorphism

exp: (L(G), ∗)→ (G, ·)

of groups. This ends the argument. □
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18. Analytic groups

In this lecture, we begin our study of p-adic analytic groups, buildings towards the theorem
of Lazard which characterizes them in terms of open uniform subgroups.

As expected from the name, we will need a little bit of analysis. We have previously studied
functions defined by power series in the context of normed algebras in §13. Today, we will be
only interested in functions from (the products of) the p-adics to themselves, which allows for
some simplifications. For example, since Qp is commutative, it will be enough to work with
the classical rings QpJX1, . . . , XnK of power series in commutative variables, rather than their
noncommutative variants.

We make a recollection of the relevant notions in this context.

Notation 18.1. If the number of variables n is understood from context, we often use the
shorthand X to denote the variables X1, . . . , Xn. In particular, we write

QpJXK := QpJX1, . . . , XnK.

If I = (i1, . . . , in) ∈ N×n is a multi-index, we write

XI := Xi1
1 . . . Xin

n

so that a general power series can be uniquely expressed as

f(X) =
∑
I

aIX
I =

∑
(i1,...,in)

a(i1,...,in)X
i1
1 . . . Xin

n

with aI ∈ Qp. We call the number i1 + . . . + in the degree of a multi-index and denote it by
deg(I).

Recollection 18.2. If f(X) is a formal power series, we say that it can be evaluated at

x = (x1, . . . , xn) ∈ Q×np

if the sum
f(x) :=

∑
I

aIx
I =

∑
(i1,...,in)

aix
i1
1 . . . x

in
n

converges. In this case, we call f(x) the value at x.

Definition 18.3. Let V ⊆ Q×np be an open subset. We say a function f : V → Qp

(1) is analytic at v ∈ V if there exists an open neighbourhood v ∈ U ⊆ V and a formal
power series Fv(X) ∈ QpJXK such that for each v′ ∈ U , Fv can be evaluated at v′ − v
and

Fv(v
′ − v) = f(v′).

(2) is locally analytic if it is analytic at v for all v ∈ V .
More generally, we say that function f : V → Q×mp is locally analytic if each of its coordinate
functions is analytic.

Remark 18.4. It is clear from the definition that a function f : V → Qp is analytic at v ∈ V if
and only if the function g : (V − v)→ Qp defined by g(x) := f(v+ x) is analytic at 0. It follows
that locally analytic functions are invariant under translation (in both source and target).

We now verify the basic properties of a power series locally defining an analytic function,
namely that they coefficients enjoy bounded growth, and that they are unique.

Lemma 18.5. Let f : V → Qp be analytic at v ∈ V and let

F (X) =
∑
I

aIX
I
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be a power series locally defining it, so that

f(v′) = F (v′ − v)
in some neighbourhood of v. Then there exists an N ≥ 0 such that

|aI |p− deg(I)·N → 0

as deg(I)→∞.

Proof. Choose an N ≥ 0 such that

f(v + (pN , . . . , pN )) = F (pN , . . . , pN ) =
∑
I

aIp
deg(I)·N .

Since the sum on the right is convergent by assumption, we deduce that the norms of the
summands converge to zero, which gives the desired statement. □

Corollary 18.6. If f : V → Qp is locally analytic, then it is continuous.

Proof. By Lemma 18.5, locally analytic functions in the sense of Definition 18.3 are locally given
by a strictly analytic function in the sense of Definition 13.23 (which we defined more generally
for complete normed algebras), so this is Proposition 13.26. □

Lemma 18.7. Let f : V → Qp be analytic at v and let F,G ∈ QpJXK be such that

f(v′) = F (v′ − v) = G(v′ − v)
for v′ in some neighbourhood of v. Then F = G.

Proof. Considering the difference H := F −G, it’s enough to show that if H ∈ QpJXK is a formal
power series such that H(x) = 0 for x in some neighbourhood of zero in Q×np , then H = 0. This
follows from the identity property Proposition 13.19 by induction on the number of variables,
see [DDSMS03, Lemma 8.26] for details. □

One can show that locally analytic functions are closed under composition, and that the
power series locally representing the composite corresponds to the algebraic composition of
power series [DDSMS03, Lemma 8.5]. Moreover, they are differentiable, and the power series
locally representing the derivative is given by the algebraic derivative of power series [Sch11,
Proposition 6.1].

The class of locally analytic functions avoids many of the pathologies of smooth functions in
the p-adic context; for example, a locally analytic function with vanishing derivative is locally
constant [Sch11, Remark 6.2], so that in particular the ill-behaved function of Example 1.8 is
smooth, but not locally analytic.

Remark 18.8. One might wonder why we call functions of Definition 18.3 locally analytic, while
in either the real or complex setting the same definition would lead to the notion of an analytic
function. The reason is that for many purposes, this class of functions is still too broad, due to
the totally disconnected nature of the p-adics. For example, the locally constant function

b : Zp → Zp

given by

b(x) =

{
1 ∥x∥ = 1

0 ∥x∥ < 1

is locally analytic. Thus, from the point of view of locally analytic functions, the open unit disk
is disconnected (and indeed it is disconnected in its p-adic topology).

In more serious approaches to adic geometry, such as Tate’s theory of rigid analytic spaces,
one works with more restricted class of functions (and a more restricted class of open coverings)
which do not allow for such a decomposition and thus lead to a more interesting theory. Our
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use of the term locally analytic is to distinguish our naive approach (which will be sufficient for
our purposes) from these more involved ones.

Having define a good class of functions, we can now mimic a definition of a real or complex
manifold.

Definition 18.9. We define a/an n-dimensional
(1) chart on a topological space X to be a triple

(U, V, ϕ),

where U ⊆ X is open, V ⊆ Q×np is open, and ϕ : U → V is a homeomorphism,
(2) atlas to be a collection of charts (Uα, Vα, ϕα)α∈I such that Uα cover X and such that

for any pair α, β ∈ I, the transition function

ϕ−1α (Uα ∩ Uβ) Uα ∩ Uβ ϕβ(Uα ∩ Uβ)
φ−1

α φβ

is locally analytic,
(3) p-adic manifold to be a Hausdorff, second countable topological space together with a

choice of a maximal atlas.

As with real or complex manifolds, given p-adic manifolds M and N , one can speak of locally
analytic functions f : M → N . These are functions which are locally analytic in the sense of
Definition 18.3 after composing with any chart of M and N .

Since locally analytic functions are differentiable, p-adic manifolds have at any point a tangent
space, which is an n-dimensional Qp-vector space [Sch11, §9]. These can be assembled into a
tangent bundle, and locally analytic functions induces maps between tangent bundles through
differentiation. Our encounter with p-adic manifolds in this course will be somewhat brief, so
we will not expand on these matters.

Example 18.10. If X is a countable discrete topological space, then it can be made into a
0-dimensional p-adic manifold in a unique way.

Example 18.11. If V ⊆ Q×np is an open subset, then it can be made into a p-adic manifold by
declaring the identity id : V → V to be a chart (and extending to a maximal atlas).

Example 18.12. Suppose that L is a free Zp-module of finite rank. Then L can be made into
a p-adic manifold by declaring any linear isomorphism L ≃ Z×np ⊆ Q×np to be a chart. Any two
such linear automorphisms differ by a linear transition functions, which is thus locally analytic.

The same strategy works for finite-dimensional Qp-vector spaces.

Example 18.13. Building on Example 18.12, recall from Theorem 9.14 that if G is a finitely
generated uniform pro-p-group, then the addition of Definition 9.8 makes G into a free Zp-module
of finite rank. It follows that a uniform group has a canonical structure of a p-adic manifold.
Note that the dimension of G as a manifold is the same as its dimension as a group (that is, the
minimal number of generators).

Our main interest is not so much in p-adic manifolds, but in the following p-adic analogue of
the notion of a Lie group:

Definition 18.14. An p-adic analytic group is a topological group G together with a structure
of a p-adic manifold such that

(1) the multiplication map m : G×G→ G,
(2) the inverse map (−)−1 : G→ G

are both locally analytic.

Using the p-adic analogue of the implicit function theorem, see [DDSMS03, Theorem 6.17],
one can show that the first condition implies the second one, but we will not need this fact.
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Example 18.15. The group GLn(Qp) is a p-adic analytic Lie group of dimension n2 with
respect to the manifold structure inherited as an open subset of Mn(Qp) ≃ Qn2

p . Indeed, group
structure is given by matrix multiplication which is defined by a polynomial formula and hence
in particular a power series. This is the archetypical example of a p-adic analytic group.

Example 18.16. If G is p-adic analytic and U ≤ G is an open subgroup, then U is also p-adic
analytic (with respect to the open submanifold structure). In particular,

GLn(Zp) ≤ GLn(Qp)

and its open subgroups are p-adic analytic.

Example 18.17. As a variation on Example 18.15, the group of units in any Zp-algebra (or Qp-
algebra) which is free of finite rank as a module is p-adic analytic. Looking at the endomorphism
ring of the Honda formal group law, we see that the Morava stabilizer group of Definition 12.16
is canonically p-adic analytic.

As we have seen in Example 18.13, a uniform pro-p group has a canonical structure of a p-adic
manifold induced from its addition. It is natural to ask whether this structure is compatible
with its multiplication, which we now verify using our hard work from previous lectures.

Theorem 18.18. Let G be a uniform pro-p-group. Then the manifold structure of Exam-
ple 18.13 makes G into a p-adic analytic group.

Proof. By Theorem 17.10, G can be identifed with its Lie algebra L equipped with mutiplication
−∗− := Φ(−,−) defined by the Baker-Campbell-Hausdorff series. Since the manifold structure
comes from the addition of G, which gets identified with the Zp-module structure of L, it is
enough to verify that the multiplication ∗ : L × L → L and the inverse −id : L → L are locally
analytic.

Since Φ can be written as power series in iterated brackets, which are polynomial (the bracket
itself being bilinear and hence defined by a polynomial of degree 2), we see that Φ gives a
power series representing multiplication as needed. Similarly. −id is linear and hence locally
analytic. □

In the next lecture, we will prove Lazard’s beautiful characterization of p-adic analytic groups
by providing a partial converse to Theorem 18.18. Namely, we will show that a topological group
admits a p-adic analytic structure if and only if it is locally uniform in the sense that it has an
open uniform subgroup.

As a preparation for Lazard’s theorem in the next lecture, today we prove that admitting a
p-adic analytic structure is indeed a local property in the following sense:

Proposition 18.19. Let G be a topological group with open subgroup H ≤ G and suppose that
H has a p-adic analytic structure. Then there is at most one p-adic analytic structure on G such
that the inclusion H ↪→ G is locally analytic and it exists if and only if the following condition
holds:

(1) for every g ∈ G, the conjugation

(−)g : (gHg−1) ∩H → H

is locally analytic.

Proof. Let tα ∈ G be a set of representatives for cosets G/H. Then tαH forms an open over of
G. If G is p-adic analytic in a way compatible with the inclusion, then for any tα the map

(18.1) tα · − : H → tαH

is a locally analytic isomorphism. This determines the p-adic manifold structure of an open
cover of G and hence of G itself.
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The needed condition is certainly necessary, as if G is p-adic analytic, then the conjugation
map is locally analytic. We will show that it is sufficient under the simplifying assumption that
H is normal. For the general case (which is almost identical, but with more involved notation)
see [DDSMS03, Proposition 8.15].

The collection of products tαH × tβH form an open cover of G and hence to show that the
multiplication of G is locally analytic, it is enough to verify that for each α, β, the restricted
mutiplication

tαH × tβH → tγH

is locally analytic, where tγ is the representative for the coset of the product tαtβ . This map is
given by

(tαh1)(tβh2) = tαtβh
tβ
1 h2 = tγ(t

−1
γ tαtβ)h

tβ
1 h2.

If we declare the maps of 18.1 to be locally analytic isomorphisms, this function is analytic if
and only if the map

H ×H → H

defined by
(h1, h2) 7→ (t−1γ tαtβ)h

tβ
1 h2

is locally analytic. This is a composite of multiplication, multiplication by a fixed element on the
left, both of which are locally analytic, and conjugation by an element tβ ∈ G, which is locally
analytic by assumption. We deduce that so is this map. □

Remark 18.20. We observe that a combination of Theorem 18.18 and Proposition 18.19 already
gives one half of Lazard’s theorem: a topological group which has a uniform subgroup can be
made p-adic analytic.

To see this, note that the p-adic manifold structure of a uniform group is uniquely determined
by its addition, and hence by its multiplication and topology. It follows that the condition
appearing in Proposition 18.19 is automatically satisfied: the conjugation is a continuous group
automorphism and hence is linear with respect to addition and thus locally analytic.

19. Lazard’s characterization

In this lecture, we prove one of the main results of this course, namely Lazard’s characteriza-
tion of p-adic analytic groups as those topological groups which admit an open uniform subgroup,
see Theorem 19.11. As a consequence, we will be able to deduce that closed subgroups of p-adic
analytic groups are themselves canonically p-adic analytic Corollary 19.14.

A key step in Lazard’s argument is an extraction of a suitable power series from an analytic
group, which we describe now.

Construction 19.1 (Local expansion of the product). Suppose that G is an n-dimensional
p-adic analytic group. Translating as needed, we can find a neighbourhood U of e ∈ G which
admits a chart

ϕ : U → pk · Z×np

centered at the identity; that is, such that ϕ(e) = 0. By assumption, the product m : G×G→ G
is locally analytic, so that the induced function

(Z×np )2 ⊇ (ϕ× ϕ)(m−1(U) ∩ U × U)→ ϕ(U) = Z×np

can be expanded around zero into a collection of power series

Fi(X,Y) ∈ QpJX,YK

where 1 ≤ i ≤ n in variables X1, . . . , Xn and Y1, . . . , Yn.
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Since the multiplication m is associative and unital with unit e, Fi are also suitably associative
and unital with unit 0. More precisely, they are an example of a formal group law, a notion
which we have previously introduced in the case of dimension one in Definition 10.1, and we now
introduce in general.

Definition 19.2. Let R be a commutative ring. An n-dimensional formal group law over R is
a collection of power series

F (X,Y) = (F1(X),Y), . . . , Fn(X,Y)) ∈ RJX,YK×n

in variables X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) such that
(1) F (X, 0) = X (right unitality),
(2) F (0,Y) = Y (left unitality)
(3) F (F (X,Y),Z) = F (X, F (Y,Z)) (associativity).

We invite the reader to make sure they are comfortable with our abusive notation above.
Each of the three axioms in Definition 19.2 is actually n different equations between power series
in 2n-variables; for example, the first one asks that

Fi(X1, . . . , Xn, 0, . . . , 0) = Xi

and the last one that

Fi(F1(X,Y), . . . , Fn(X,Y), Z1, . . . , Zn) = Fi(X1, . . . , Xn, F1(Y,Z), . . . , Fn(Y,Z)).

for all 1 ≤ i ≤ n.

Example 19.3. The local expansion of a product in an n-dimensional p-adic analytic group of
Construction 19.1 is an n-dimensional formal group law. This follows from the corresponding
axioms of group multiplication and the fact that a local power series expansion of a function is
unique.

Beware that this formal group law depends on the choice of an analytic chart around e ∈ G
and so as a power series is not an invariant of G. One can introduce a notion of a morphism
of n-dimensional formal group laws, similarly to what we have done in the case of n = 1 in
Definition 10.7, and show that the formal group law of Construction 19.1 is well-defined up to
isomorphism, but we will not need it in this course.

Lemma 19.4. Let F (X,Y) be an n-dimensional formal group law over a ring R. Then

Fi(X,Y) = Xi + Yi + terms of degree two and above

for each 1 ≤ i ≤ n.

Proof. By right unitality, we have

Fi(X1, . . . , Xn, 0, . . . , 0) = Xi

so that
Fi(X,Y) = Xi + terms divisible by Yk for some 1 ≤ k ≤ n.

Similarly, by left unitality we have

Fi(X,Y) = Yi + terms divisible by Xk for some 1 ≤ k ≤ n.

Combining these two together yields the desired statement. □

What makes formal group laws very useful in the non-archimedean context is that the process
of extracting it from an actual group can be partially reversed, as we now explain.
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Construction 19.5. Suppose that we have an n-dimensional formal group law F (X,Y) over
the p-adic integers; ie.

Fi(X,Y) =
∑
I,J

ai,I,JX
IYJ ∈ ZpJX,YK,

where I, J are multi-indices. In this case, given x1, . . . , xn, y1, . . . , yn ∈ p · Zp, the series

Fi(x,y) =
∑
I,J

ai,I,Jx
IyJ

is convergent for each 1 ≤ i ≤ n. Since F is a formal group law, this produces an associative
multiplication

S×2 → S

with 0 = (0, . . . , 0) as a two-sided unit, where S = p · Z×np .
We claim that this multiplication actually makes S into a group. To see this, observe that

Lemma 19.4, we have

(19.1) F (x,y) ≡ x+ y mod p.

It follows that
F (x,−x) ≡ 0 mod p

so that F (x,−x) ∈ p2 · Z×np . We then have

F (x,−x− F (x,−x)) = 0 mod p2.

Proceeding inductively, we find an inverse of x as a sum of a convergent power series.

Remark 19.6. Observe that as a consequence of the explicit description of the inverse as a
convergent power series, if y is the F -inverse of x ∈ p · Z×np in the sense that F (x,y) = 0, then

y ≡ −x mod p2 · Z×np .

More generally, if x ∈ pk · Z×np , then y ≡ −x mod pk+1 · Z×np .

The group structure on p · Z×np obtained from Construction 19.5 is p-adic analytic by con-
struction, since its multiplication is described by a convergent power series, namely the formal
group law. Groups of this form are very convenient to work with and so deserve the following
name:

Definition 19.7. Let F be an n-dimensional formal group law over Zp. The associated standard
group is the p-adic analytic group given by

(1) p · Z×np if p > 2,
(2) 4 · Z×n2 if p = 2

with the multiplication defined by F as in Construction 19.5.

Remark 19.8. Note that even if p = 2, a formal group law over Zp defines a group structure
on p · Z×np . In the context of Definition 19.7, our convention of considering 4 · Z×n2 rather than
2 · Z×n2 has little to do with analysis and is instead made to ensure that standard groups are
powerful, which has a different meaning depending on whether p > 2 or p = 2. Our convention
follows [DDSMS03], but is different from that of Bourbaki [Bou89, Chapter III §7.3].

Proposition 19.9. As standard group of Definition 19.7 is uniform of dimension n, and its
analytic structure as an open subset of Z×np coincides with the uniform p-adic analytic structure
of Theorem 18.18.
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Proof. We first show that a standard group is uniform as a topological group. It is clear from
(19.1) that for each k ≥ 2, pk · Z×np is a subgroup. These form a basis of open neighbourhoods
of the identity.

We claim that these are of finite index, which is the same as their index as additive subgroups,
which is pn·(k−1) (or pn·(k−2) when p = 2). This in particular shows that a standard group is
profinite. To see this, note that if x ≡ y mod pk · Z×np , then

F (x,−y) ≡ 0 mod pk+1 · Z×np

which implies that x,y are in the same group coset. Arguing the other way, we see that multi-
plicative and additive cosets agree, giving the index formula.

By Lemma 19.4, we see that the series describing p-th powers in a standard group satisfies

(19.2) F (X, F (X, F (. . . ,X) . . .) = p ·X+ terms of degree two and higher.

Using an inductive argument as in the proof that a standard group admits inverses outlined in
Construction 19.5 we see that the set of p-th powers of a standard group is exactly p2 ·Z×np when
p > 2 or p3 · Z×np when p = 2. This shows that the standard group is finitely generated. To see
that it is powerful, observe that by Lemma 19.4, if x,y ∈ pk · Z×p , then

F (x,y) ≡ x+ y mod p2k · Z×np ,

so that the F -multiplication agrees with addition modulo p2 ·Z×p for p > 2 and p4 ·Z×p for p = 2.
Uniformity and the given dimension are immediate consequences of the index formula for the

subgroups pk · Z×np .
We are left with comparing the analytic structures. Since the analytic structure of a uniform

group appearing in Theorem 18.18 is induced from its additive structure, it is enough to check
that the uniform addition of Definition 9.8 yields, when applied to a multiplication on p ·Zk

p (or
p2 · Z×np when p = 2) induced by F , the standard addition of p-adic numbers. By inspection,
this follows from (19.2) and Lemma 19.4. □

We will deduce from Proposition 19.9 by showing that, locally, any p-adic analytic group is
standard.

Proposition 19.10. Let G be a p-adic analytic group. Then there exists an open subgroup
H ≤ G which is isomorphic to a standard group in the sense of Definition 19.7.

Proof. Using Construction 19.1, we can find an open neighbourhood of the identity U ⊆ G which
admits a chart ϕ : U → pk · Z×np in which the multiplication is expressed by a formal group law

Fi(X,Y) ∈ Qp =
∑
I,J

ai,I,JX
IYI ∈ QpJX,YK

By Lemma 18.5, there exists a k′ ≥ k such that Fi are convergent on pk
′ · Z×np , so that

∥ai,I,Jpk
′·(deg(I)+deg(J))∥ → 0

as deg(I) + deg(J)→∞, for each 1 ≤ i ≤ n. By making the chart smaller if necessary, we can
assume that k = k′, so that the formal power series converges on the whole chart.

Suppose that we change the chart ϕ : U → pk ·Z×kp to ψ := 1
pk · ϕ, so that ψ : U → Z×np . This

changes the coefficients of the formal group law by

ai,I,J 7→ aI,J · pk·(deg(I)+deg(J)−1).

Thus, by making this substitution, we can assume that k = 0 and that

∥ai,I,J∥ → 0.

In particular, all but finitely many coefficients are p-adic integers. We will now modify the chart
again so that all of the coefficients are integral.
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Note that since 0 is a unit, there are no constant terms, and the linear terms are already
integers by Lemma 19.4. Let w be the minimum of the p-adic valuations of ai,I,J with deg(I) +
deg(J) ≥ 2. By first restricting the chart to pw · Z×np and then replacing it by ψ′ := 1

pwψ, the
above formula for the change of coefficients shows that they are all integral.

By construction, the preimage under the new chart ψ′ of p · Z×np when p > 2 or p2 · Z×np is a
standard group, since it has multiplication defined by an integral formal group law. □

The following is the main result of this lecture, and one of the main results of this course.

Theorem 19.11 (Lazard). For a topological group G, the following are equivalent:
(1) G admits a structure of a p-adic analytic group compatible with its topology,
(2) G is locally uniform in the sense that it has an open subgroup H ≤ G which is a uniform

pro-p-group of rank equal to the dimension of G,
(3) G is locally a pro-p group of finite rank in the sense that it has an open subgroup which

is a pro-p-group of finite rank.

Proof. The implication (1) ⇒ (2) is a combination of Proposition 19.9 and Proposition 19.10.
That (2 ⇒ 1) holds is a consequence of Theorem 18.18 and Proposition 18.19, as explained in
Remark 18.20.

The equivalence of (2) and (3) is Theorem 6.12 and Proposition 7.4. □

Remark 19.12 (Groups with p-valuations). While we attribute Theorem 19.11 to Lazard, who
started the serious study of p-adic analytic groups and was first to prove a variant of it. However,
we note that Lazard worked in slightly different terms than the one presented in this course.

In more detail, Lazard worked with groups equipped with p-valuations, which are maps

v : G \ {e} → R>0

satisfying a variety of conditions (some of which relate to p-th powers, hence “p” in the name),
see [Sch11, §23]. He then showed that a group is p-adic analytic if and only if it has an open
subgroup admitting a certain kind of p-valuation, see [Sch11, Theorem 27.1] (or better yet, the
original works of Lazard [Laz65], who wrote in French).

In our account, the technical notion of valuations is replaced by the theory of powerful and
uniformly powerful groups and their lower p-series. This approach, while equivalent in some
respects, is much more recent, as powerful groups were introduced by Lubotzky and Mann in
[LM87a] and uniformly powerful groups by Dixon, Du Sautoy, Mann and Segal in [DDSMS03].

While Theorem 19.11 gives a characterization of groups which can be made p-adic analytic
in concrete, group-theoretic terms, it is also natural to ask about the uniqueness of the resulting
analytic structure. Here, we have the following striking result:

Theorem 19.13 (Lazard). The forgetful functor from p-adic analytic groups and locally analytic
homomorphisms into topological groups is fully faithful. In particular:

(1) if a topological group admits a p-adic analytic structure, then it admits a unique one,
(2) all continuous maps between p-adic analytic groups are locally analytic.

Proof. It is enough to prove the second assertion, so let G1 and G2 be p-adic analytic and let
f : G1 → G2 be a continuous map. Since being locally analytic is a local property and f is a
group homomorphism, it is enough to verify that f is locally analytic on some open subgroup.
By a combination of Proposition 19.9 and Proposition 19.10, we can thus assume that G1 and
G2 are uniform groups equipped with their analytic structures of Theorem 18.18.

Since f is a continuous group homomorphism, it preserves the uniform addition of Defini-
tion 9.8 in the sense that

f(g +G1
h) = f(g) +G2

f(h).

It follows that it is linear in additive coordinates of Example 18.13 and hence locally analytic. □
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Corollary 19.14 (Closed subgroup theorem). If G is p-adic analytic, then any closed subgroup
K ≤ G admits a unique p-adic analytic structure such that the inclusion K ↪→ G is locally
analytic.

Proof. The third characterization in Theorem 19.11 is clearly closed under passing to closed
subgroups, so that K admits a p-adic analytic structure. This structure is unique and the
inclusion is locally analytic by Theorem 19.13. □

Remark 19.15. The analogues of Theorem 19.13 and Corollary 19.14 are also true in the
classical setting of real Lie groups, see [Lee, Theorem 20.12].

Note that all group homomorphisms between uniform groups are continuous, as a conse-
quence of Serre’s Theorem 4.1 and Corollary 4.2. Thus, for compact p-adic analytic groups,
Theorem 19.13 has the following striking variant:

Theorem 19.16. The forgetful functor from the category of compact p-adic analytic groups and
locally analytic homomorphisms into the category of groups is fully faithful.

20. Cohomology of profinite groups

One of the reasons why it is often important to establish that a given group is p-adic analytic
is that they have excellent cohomological properties, which in many ways mirror the behaviour
of cohomology of finite-dimensional manifolds. In this lecture, we begin our study with a recol-
lection on cohomology of profinite groups in general.

If G is a topological group, then a topological G-module is a topological abelian group M
together with a continuos action of G, ie. with the property that the action map G×M → M
is continuous. To a topological G-module, one can associate a sequence of groups

M 7→ H∗(G,M)

given by (continuous) cohomology of G with coefficients in M .
These cohomology groups can be defined in a variety of different ways, perhaps the most

flexible of which is the use of condensed mathematics of [Sch19] (in which case M can be more
generally a consensed G-module). However, most important properties of group cohomology are
arguably already visible when M has discrete topology, and so to avoid complexity, today we
will only work with cohomology in this special case.

Definition 20.1. Let G be a profinite group. A discrete G-module is an abelian group M
together with a left action of G such that the action map G×M →M is continuous if we equip
M with the discrete topology.

We denote the category of discrete G-modules and equivariant maps by ModG(Ab).

Remark 20.2. The condition of being a discrete G-module can be phrased purely algebraically.
Namely, it asks that for any m ∈M , the map G→M given by

g → g ·m
is locally constant and hence factors through a finite quotient of G. This is equivalent to the
stabilizer subgroup Stab(m) ≤ G being open. Thus, an abelian group with a G-action is a
discrete G-module if and only if

M =
⋃

U≤G

MU ,

where the union is taken over all open subgroups of G.

Observe that a diagram X : I → ModG(Ab) of discrete G-modules can be identified with an
action of G on X considered as a functor valued in the category of abelian groups. It follows that
the limit lim←−X and colimit lim−→X calculated in the category of abelian groups have an induced
action of G. Moreover, one verifies using Remark 20.2 that
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(1) the colimit lim−→X is again a discrete G-module,
(2) the limit lim←−X is again a discrete G-module if the diagram I is finite.

This implies the following:

Lemma 20.3. The category ModG(Ab) of discrete G-modules is abelian. Moreover, the forgetful
functor into abelian groups is exact and preserves filtered colimits.

Recall that an abelian category is said to be Grothendieck if it has exact filtered colimits and
is generated under colimits by a set of objects. We now verify that ModG(Ab) is Grothendieck.

Lemma 20.4. Objects of the form Z[G/U ], where U ◁ G is a normal open subgroup of G,
generate ModG(Ab) under colimits.

Proof. If M is a discrete G-module and m ∈M is an element, then by Remark 20.2 there exists
an open normal U ◁G such that m ∈MU . It follows m is in the image of a map Z[G/U ]→M .
Finding such a map for every m ∈M , we deduce that M is a quotient of a suitably large direct
sum of modules of the needed form, which implies the claim. □

Proposition 20.5. The category ModG(Ab) of discrete G-modules is Grothendieck abelian and
the forgetful functor ModG(Ab)→ Ab is an exact left adjoint.

Proof. The first part is a combination of Lemma 20.3 and Lemma 20.4. The second follows from
Lemma 20.3 since any cocontinuous functor between Grothendieck categories is a left adjoint. □

Warning 20.6. Beware that a limit of discrete G-modules, calculated in abelian groups, need
not be discrete. In terms of Proposition 20.5, this is saying that the forgetful functor need not
preserve infinite limits.

For a specific example, recall from Definition 14.1 that the (p-adic) completed group algebra
of a profinite group G is defined as

ZpJGK := lim←−Zp[G/U ],

where the limit is taken over the poset of open subgroups U ≤ G. Each of Zp[G/U ] is a discrete
G-module, but the completed group algebra itself is not unless G is finite: the stabilizer of
1 ∈ ZpJGK is the trivial group.

The forgetful functor appearing in Proposition 20.5 can be identified with restriction of rep-
resentations along the unique map 1→ G from the trivial group. More generally, given a closed
subgroup H ≤ G, we have a restriction (ie. forgetful) functor

resGH : ModG(Ab)→ModH(Ab)

and this is also an exact left adjoint, as a consequence of Proposition 20.5. It will be useful to
have an explicit description of the right adjoint, which we give now.

Definition 20.7. Let G be a profinite group, H ≤ G a closed subgroup and let M be a discrete
H-module. The coinduced G-module is given by

coindGH(M) := mapH
cts(G,M) = { f : G→M | f is continuous,∀h∈H,g∈Gf(h · g) = h · f(g) }

the module of continuous, H-equivariant maps, with G-action defined by

(g · f)(g0) := f(g0g).

The following is a fundamental property of coinduction.

Lemma 20.8. The coinduction functor coindGH : ModH(Ab) → ModG(Ab) is exact and pre-
serves filtered colimits.
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Proof. One can show that the quotient map G→ G/H (of topological spaces) admits a continu-
ous section s : G/H → G, see [Ser97, §1.2, Proposition 1], which we can think of as a continuous
choice of representatives for each coset.

Since an H-equivariant map G → M is uniquely determined by its values at the set of
representatives, any choice of a section s determines an isomorphism of abelian groups

coindGH(M) ≃ mapcts(G/H,M).

As M is equipped with the discrete topology, the right hand side is the module of locally constant
functions. This can be written as a filtered colimit of functions constant with respect to a chosen
open cover, with the colimit taken over the poset of all open covers. Since filtered colimits and
finite products are exact and commute with filtered colimits in the category of abelian groups,
we deduce that M 7→ mapcts(G/H,M) has these properties as well. □

We recall the classical fact that restriction and coinduction functors form an adjunction of
signature

resGH : ModG(Ab) ⇄ ModH(Ab) : coindGH .

Construction 20.9. Suppose that M is a G-module, N is an H-module and that we have
an H-equivariant map ϕ : M → N , which we can identify with a morphism resGH(M) → N in
ModH(Ab). We can then define a map ψ : M → coindGH(N) by

ψ(m)(g) = ϕ(gm).

One then verifies that the construction ϕ 7→ ψ define a natural isomorphism

HomModH(Ab)(res
G
H(M), N) ≃ HomModG(Ab)(M, coindGH(N)).

Remark 20.10. The restriction functor between categories of discrete modules does not have
a left adjoint in general, as it may fail to preserve limits. However, it does have a left adjoint
when H ≤ G is open, given by the classical induced representation construction. Concretely, if
we identify abelian groups with a G-action with Z[G]-modules, the left adjoint is given by

indGH(M) := Z[G]⊗Z[H] M.

One can verify directly that this is a discrete G-module if M is a discrete H-module.

Remark 20.11 (Induction and coinduction are isomorphic). If H ≤ G is of finite index, then as
we observed in Remark 20.10, the restriction functor has both left and right adjoints, given by
induction and coinduction. These two are naturally isomorphic; that is, for any M ∈ModH(Ab),
there is a canonical isomorphism

indGH(M) ≃ coindGH(M).

After unwrapping the definition, we see that we have to produce a canonical map

Z[G]⊗Z[H] M → mapH
cts(G,M).

By adjunction, such a map is determined by a map ψ : M → mapH
cts(G,M) of discrete H-

modules, which we define by

ψ(m)(g) =

{
gm, g ∈ H
0 otherwise

A direct calculation shows the induced morphism of G-modules is an isomorphism.

We want to define the cohomology groups of a profinite group as derived functors of the
invariants functor

M ∈ModG(Ab) 7→MG ∈ Ab.
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A convenient way to do this is to observe that if we equip Z with the trivial G-action, then we
have a canonical isomorphism

HomModG(Ab)(Z,M) ≃MG.

This motivates the following definition.

Definition 20.12. Let G be a profinite group and M a discrete G-module. The continuous
cohomology groups with coefficients in M are given by extension groups

Hs(G,M) := ExtsModG(Ab)(Z,M)

in the category of discrete G-modules.

Continuous cohomology groups are often denoted with subscript “cts”, ie. one writes

Hs
cts(G,M) = Hs(G,M)

to emphasize that this depends on the topology of G. To avoid clutter, we omit the subscript,
since there is no other kind of group cohomology we will consider in this course.

Remark 20.13. If G is finite, then ModG(Ab) is just the category of all G-representations in
abelian groups and Definition 20.12 reduces to cohomology of finite groups in the usual sense.

Construction 20.14. The cohomology groups are covariantly functorial in continuous maps. To
see this, suppose that f : G1 → G2 is a continuous map of profinite groups. Then, via restriction,
any discrete G2-module yields a discrete G1-module, providing an exact, cocontinuous functor

res(f) : ModG1
(Ab)→ModG2

(Ab).

Since res(f)(Z) ≃ Z, where both sides have the trivial action, the morphism on Ext-groups
induced by res(f) provides a natural transformation

resM : H∗(G1,M)→ H∗(G2, res(f)(M)).

called the restriction.

We now show that Definition 20.12 is equivalent to a construction of cohomology groups in
terms of group cochains.

Lemma 20.15 (Shapiro’s lemma). Let H ≤ G be a closed subgroup and let M be a discrete
H-module. Then there is a natural isomorphism

Hs(G, coindGH(M)) ≃ Hs(H,M).

Proof. Since coindGH(−) is exact by Lemma 20.8, the left hand side can be identified with derived
functors of

M 7→ H0(G, coindGH(M)).

Thus, it is enough to construct the needed natural isomorphism when s = 0. We have an
identification

H0(G, coindGH(M)) ≃ (mapH
cts(G,M))G

and we observe that a function G → M is a fixed point for the G action on the source if and
only if it is constant. However, a constant function is H-equivariant if and only if its value is
fixed by H, so that

mapH
cts(G,M)G ≃MH .

□
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Construction 20.16 (Coinduction complex). The adjunction resG1 ⊣ coindG1 induced by the
inclusion of the trivial subgroup determines a monad S := coindGH ◦ resGH on ModG(Ab) and thus
for any discrete G-module M we obtain an augmented cosimplicial object

(20.1) M → S(M) ⇒ S2(M) . . . .

This in turn determines a cochain complex of discrete G-modules of the form

S(M)→ S2(M)→ S3(M)→ . . .

where the differentials are given by alternating sums of cobundary maps of (20.1), together with
an augmentation map M → S(M).

Definition 20.17. The group cochain complex associated to M is the complex of abelian groups

Cs(G,M) := (Ss+1(M))G

obtained by taking invariants in the complex of Construction 20.16.

Remark 20.18 (Explicit form of group cochains). By unwrapping the definition of coinduction,
the complex of discrete G-modules of Construction 20.16 can be rewritten as

mapcts(G,M)→ mapcts(G×G,M)→ mapcts(G×G×G,M)→ . . . .

Applying invariants, we see that the group cochain complex is of the form

(20.2) M → mapcts(G,M)→ mapcts(G×G,M)→ . . . .

With enough patience, one can calculate that in these terms the differential

d : Cs(G,M)→ Cs+1(G,M)

is given by the formula

(df)(g1, . . . , gs+1) = g1f(g2, . . . , gs+1)+
∑

1≤i≤s

(−1)if(g1, . . . , gigi+1, . . . , gs+1)+(−1)s+1f(g1, . . . , gs).

Proposition 20.19. Let M be a discrete G-module. Then the groups H∗(G,M) of Defini-
tion 20.12 can be calculated as cohomology of the group cochain complex of (20.2).

Proof. By construction, the cosimplicial object used to define the coinduction complex of Con-
struction 20.16 is split after applying resG1 : ModG(Ab)→ Ab, and hence the resulting augmented
complex is exact as a complex of abelian groups. It follows that it is exact and hence can be
thought of as a resolution of M .

To check that the Ext-group defining group cohomology can be calculated using this resolution
it is enough to verify that

Hs(G, coindG1 (M)) ≃ ExtsModG(Ab)(Z, coind
G
1 (M))

vanishes for s > 0. By Shapiro’s Lemma 20.15, this can be identified with

Hs(1,M) ≃ ExtsAb(Z,M)

which vanishes in positive degrees since Z is projective as an abelian group. □

Remark 20.20. If f : G1 → G2 is a continuous homomorphism of profinite groups, then com-
posing with products of f yields a map of chain complexes

C∗(G1,M)→ C∗(G2,M),

where on the right hand side we consider M with the restricted G2-action. The induced map
on cohomology coincides with the one obtained through abstract considerations of Construc-
tion 20.14.
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Example 20.21 (Zero-th cohomology). After retracing the definitions, we see that the first
differential

d : M → mapcts(G,M)

in the group cochain complex is given by the formula

d(m)(g) = g ·m−m.

Thus, the kernel of the first differential is exactly the subgroup of invariants.

Example 20.22 (First cohomology). The second differential d : mapcts(G,M)→ mapcts(G
2,M)

in the group cochain complex is given by

d(f)(g1, g2) = g1f(g2)− f(g1g2) + f(g1)

It follows that the 1-cocycles are given by those continuous maps f : G→M such that

f(g1g2) = g1f(g2) + f(g1).

Such maps are called crossed homomorphisms. In the special case when the action of G on M
is trivial, these are precisely the group homomorphisms G→M .

A principal crossed homomorphism is one of the form f(g) = g ·m−m for some m ∈M . These
are precisely the 1-boundaries, so by Proposition 20.19 the first cohomology group H1(G,M) is
the quotient group of crossed homomorphism modulo the principal ones. If the action of G on
M in trivial, then only the zero crossed homomorphism is principal, so that

H1(G,M) ≃ HomGrp(G,M).

Another consequence of Proposition 20.19 is that formation of continuous group cohomology
is compatible with filtered colimits. Using this, we will be able to show that it can be calculated
in terms of cohomology of finite groups.

Corollary 20.23. For any s ≥ 0, the functor M 7→ Hs(G,M) preserves filtered colimits.

Proof. This is immediate from Proposition 20.19, since taking cohomology of cochain complex,
the invariants functor and coinduction all preserve filtered colimits, the last one by Lemma 20.8.

□

Note that if M is a discrete G-module and H ≤ G is a closed normal subgroup, then the H-
invariants MH are again a discrete G-module. In fact, since H acts trivially, they are a discrete
G/H-module. We thus obtain a canonical map

Hs(G/H,MU )→ Hs(G,MU )→ Hs(G,M)

where the first arrow is functoriality in the group and the second one is induced by the inclusion
MH ↪→M .

Proposition 20.24. For any discrete G-module M and any s ≥ 0, we have

Hs(G,M) ≃ lim−→Hs(G/U,MU ).

where the colimit is taken over the (opposite of) the poset of open normal subgroups U ◁G.

Proof. Since both sides commute with filtered colimits in M by Corollary 20.23 and M is a
filtered colimit of its finitely generated submodules, we can assume that M is finitely generated
as a discrete G-module.

Since each of the finitely many generators of M is stabilizer by an open subgroup by Re-
mark 20.2, we deduce that if U is sufficiently small, then M =MU . Restricting to the subposet
of such open subgroups V , we only have to show that

Hs(G,M) ≃ lim−→Hs(G/V,M).
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By Proposition 20.19, we can calculate both sides by the group cochain complex, and the needed
claim follows from the fact that

mapcts(G
s,M) ≃ lim−→map((G/V )s,M)

since any locally constant function Gs →M factors through (G/V )s for small enough V . □

21. Cohomological dimension and mod p cohomology

In this lecture, we will introduce the notion of cohomological dimension of a profinite group.
We will show that the dimension depends only on the p-Sylow subgroups, and relate it in the
case of pro-p-groups to their mod p cohomology ring. Finally, we will relate the low dimensional
cohomology groups to generators and relations of the group itself.

Today, we will be only interested in cohomology with coefficients in torsion G-modules, which
admit a canonical decomposition along primes as we now describe.

Remark 21.1. Suppose that M is a discrete G-module which is torsion as an abelian group.
We then have a direct sum decomposition

M ≃
⊕
p

M [p∞],

into p-torsion parts for different primes p, which yields a cohomology decomposition

H∗(G,M) ≃
⊕
p

H∗(G,M [p∞]),

where we use that cohomology of a profinite group commutes with arbitrary direct sums as it
commutes with finite products and filtered colimits, the latter by Corollary 20.23.

It follows from Remark 21.1 that when studying cohomology with coefficients in torsion mod-
ules, we can fix a prime and consider only p-torsion modules. This makes the following definition
very natural:

Definition 21.2. Let G be a profinite group. We say that G is of (p)-cohomological dimension
(1) at most n, denoted by cdp(G) ≤ n, if

Hs(G,A) = 0

for any p-torsion discrete G-module A and any s > n,
(2) exactly n, denoted by cdp(G) = n, if cdp(G) ≤ n but cdp(G) ̸≤ n− 1,
(3) infinity if cdp(G) ̸≤ n for any finite n.

Notation 21.3. Throughout the rest of the lecture, we consider the prime p to be fixed and
call p-cohomological dimension simply cohomological dimension.

We will be interested in how cohomological dimension of a group interacts with dimensions
of its subgroups. We first observe that we have an easy inequality going in one direction.

Lemma 21.4. Let G be a profinite group and H ≤ G a closed subgroup. Then

cdp(H) ≤ cdp(G).

Proof. If A is a p-torsion discrete H-module, then coindGH(A) is a p-torsion discrete G-module.
Then

Hs(H,A) ≃ Hs(G, coindGH(A))

by Shapiro’s Lemma 20.15 and the claim follows. □

Similarly, one can bound the cohomological dimension of an extension using the dimensions
of the factors. This requires the use of an important spectral sequence which we recall now.
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Construction 21.5 (Lyndon-Hochschild-Serre spectral sequence). Let G be a profinite group
with closed normal subgroup N ◁G, so that G/N is again a profinite group. If M is a discrete
G-module, then MN has an induced action of the quotient group G/N . Moreover, there is a
canonical isomorphism

MG ≃ (MN )G/N ;

in other words, the diagram

(21.1)
ModG(Ab) Ab

ModG/N (Ab)

(−)G

(−)N (−)G/N

commutes. If A is an abelian group, then

(coindG1 (A))
N ≃ mapcts(G,A)

N ≃ mapcts(G/N,A),

so that the left vertical arrow in (21.1) takes H0(G,−)-acyclics to H0(G/N,−)-acyclics. We thus
have a Grothendieck spectral sequence of a composite of derived functors which is of signature

Hs(G/N,Ht(N,M))⇒ Hs+t(G,M).

This is known as the Lyndon-Hochschild-Serre spectral sequence.

Lemma 21.6. Let G be a profinite group and N ◁G a closed normal subgroup. Then

cdp(G) ≤ cdp(N) + cdp(G/N).

Proof. If A is a p-torsion discrete G-module, then Ht(N,M) is a discrete p-torsion G-module
for any t. Thus, all of the terms on the second page of the Lyndon-Hochschild-Serre spectral
sequence

Hs(G/N,Ht(N,M))⇒ Hs+t(G,M).

vanish when s > cdp(G/N) or t > cdp(N). In particular, they vanish when s+ t > cdp(G/N) +
cdp(N), which implies the desired statement. □

Warning 21.7. Beware that while being of finite cohomological dimension is stable under sub-
groups and extensions, as we observed above, it is most decidedly not stable under taking quo-
tients! For example, Zp is of finite cohomological dimension but Z/pZ is not, see Example 21.15
and Example 21.18 below.

Recall from Lemma 3.8 that any profinite group G has a Sylow p-subgroups S ≤ G, which is
a closed subgroup such that

(1) S is pro-p,
(2) G/S is a limit of finite groups of order coprime to p.

Moreover, any two such subgroups are conjugate. We will now show that the notion of p-
cohomological dimension depends only on the p-Sylow subgroup. This requires us to introduce
the covariant functoriality of group cohomology.

Construction 21.8. Let G be a profinite group, U ≤ G an open subgroup and M a discrete
G-module. Recall that associated to (the restriction of) M we have a coinduced modules

coindGU (M) := mapU
cts(G,M)

of U -equivariant continuous maps, with G-acting on the source by right multiplication. We
define a map of discrete G-modules

(21.2) π : coindGU (M)→M
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by
π(f) =

∑
i

x−1i f(xi)

where xi is any set of representatives for left cosets U\G. This does not depend on the choice
of representatives, since if xi = ux

′

i, then

x−1i f(xi) = (x
′

i)
−1u−1f(ux

′

i) = (x
′

i)
−1u−1uf(x

′

i) = (x
′

i)
−1f(x

′

i),

where we’ve used that f is U -equivariant. Applying G-cohomology functor to (21.2) and using
Shapiro’s Lemma 20.15 we obtain a map

(21.3) cores : H∗(U,M)→ H∗(G,M).

Remark 21.9. As we observed in Remark 20.11, if U ≤ G is open, then there is a canonical
isomorphism

coindGU (M) ≃ indGU (M)

between induced and coinduced modules. In terms of this explicit isomorphism, the map
coindGU (M) → M of Construction 21.8 is the counit map indGU (M) → M of the adjunction
indGU ⊣ resGU .

Definition 21.10. We call the map on cohomology groups of (21.3) the corestriction map.

An important property of the corestriction map is its behaviour when composed with the
contravariant functoriality of group cohomology; that is, the restriction of Construction 20.14.

Lemma 21.11. Let G be a profinite group, U ≤ G an open subgroup and M a discrete G-module.
Then the composite

H∗(G,M)→ H∗(U,M)→ H∗(G,M)

of the restriction and corestriction maps coincides with multiplication by the index |U : G|.

Proof. Both restriction and corestriction are obtained by applying cohomology to suitable maps
of discrete G-modules. We show something stronger, namely that the composite of these two
maps

M → coindGH(M)→M

coincides with multiplication by the index. To see this, we calculate that the composite is given
by

m 7→
∑
i

x−1i (xim) = |U : G| ·m

where xi is a set of representatives of left cosets. This gives the claim. □

Proposition 21.12. Let G be a profinite group and let S ≤ G be a Sylow subgroup. Then for
any p-torsion discrete G-module A, the restriction map

(21.4) H∗(G,A)→ H∗(S,A)

is injective. In particular,
cdp(G) = cdp(S).

Proof. Since both sides commute with filtered colimits in A by Corollary 20.23, we can assume
that A is finitely generated and hence stabilized by an open subgroup U ≤ G. Since the open
normal subgroups V ◁ G contained in U form a basis of open neighbourhoods of the identity
of G, and similarly with V ∩ S for S, using Proposition 20.24 we can identify (21.4) with the
filtered colimit of maps

H∗(G/V,A)→ H∗(S/(S ∩ V ), A).

Since S/(S ∩ V ) is a Sylow subgroup of G/V , the composite

H∗(G/V,A)→ H∗(S/(S ∩ V ), A)→ H∗(G/V,A)
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of restriction and corestriction is equal to multiplication by an integer coprime to p by Lemma 21.11.
As these groups are p-torsion, since A is, we deduce that the composite is an isomorphism and
hence the first map is injective. We deduce that so is the filtered colimit, as needed.

The injectivity of the restriction maps shows that cdp(G) ≤ cdp(S). The inequality going the
other way is Lemma 21.4. □

As a consequence of Proposition 21.12, when discussing p-cohomological dimension it is enough
to consider the case of pro-p-groups. In this case, cohomological dimension is characterized by
cohomology with respect to a single module.

Lemma 21.13 (Complete reducibility of p-torsion modules). Let G be a pro-p-group and let A
be a finitely generated p-torsion discrete G-module. Then A can be built from Fp using iterated
extensions, where we consider Fp with the trivial G-action.

Proof. If A is both p-torsion and finitely generated, then pk · A = 0 for some k ≥ 0. We thus
have a finite filtration

0 = pk ·A ⊆ pk−1 ·A ⊆ · · · ⊆ A
whose subquotients are simple p-torsion. This reduces us to the case when A is a finite-
dimensional Fp-vector space.

Choosing a basis, the action of G is specified by a continuous homomorphism G→ GLr(Fp),
where r = dimFp(A). As G is pro-p, this homomorphism factors through a Sylow subgroup of
the general linear group, which by changing the basis if necessary we can assume is given by the
subgroup Ur(Fp) ≤ GLr(Fp) of unitriangular matrices of Notation 6.13. It follows that with
respect to this basis, the action of G preserves the standard flag of subspaces

0 ≤ Fp ⊆ F⊕2p ⊆ . . . ⊆ F⊕rp ≃ A.
This gives a filtration of A by G-submodules with subquotients isomorphic to Fp, necessarily
with a trivial action since |Aut(Fp)| = p− 1, ending the argument. □

Proposition 21.14. Let G be a pro-p-group. The following are equivalent:
(1) cdp(G) ≤ n,
(2) Hs(G,Fp) = 0 for s > n,
(3) Hn+1(G,Fp) = 0.

Proof. The forward implications are clear, so we only argue (3)⇒ (1). Observe that if

0→ A→ B → C → 0

is a short exact sequence of discrete G-modules, then

Hn+1(G,A)→ Hn+1(G,B)→ Hn+1(G,C)

is exact in the middle. It follows that the class of discrete G-modules A such that Hn+1(G,A) = 0
is closed under extensions. By Corollary 20.23, it is also closed under filtered colimits. Since
Hn+1(G,Fp) = 0 by assumption, to show that Hn+1(G,A) = 0 for any p-torsion G, it is enough
to verify that p-torsion discrete G-modules are generated under filtered colimits and extensions
by Fp. This is immediate from Lemma 21.13 and the fact that any discrete G-module is a filtered
colimit of its finitely generated submodules.

Now suppose by induction that we showed that Hn+k(G,A) = 0 for all p-torsion A and some
k ≥ 1. We have a short exact sequence of p-torsion discrete G-modules

0→ A→ coindG1 (A)→ C → 0

where C is the cokernel of the unit map. Since coinduced modules have no positive degree
cohomology, the long exact sequence of cohomology associated to the above extension shows
that

Hn+k(G,C) ≃ Hn+k+1(G,A).
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The left hand side vanishes by the inductive assumption and hence so does the right hand side.
This shows that Hs(G,A) = 0 for all s > n, as needed. □

First, we observe that cohomological dimension is only interesting in the profinite case: no
finite groups, and no groups which contain torsion, can be finite-dimensional.

Example 21.15. Let Cp be the cyclic group with p elements. For finite groups, cohomology in
the sense of Definition 20.12 can be identified with cohomology of the classifying space.

We have BC2 ≃ RP∞ and BCp ≃ Lp (the infinite lens space) for p > 2. Standard calculations
in algebraic topology then show that

H∗(C2,F2) ≃ F2[x],

a polynomial algebra on a class of degree |x| = 111. Here, the element x can be any generator of
the first cohomology group, which we can identify through Example 20.22 with an isomorphism
of groups Cp ≃ Fp.

At p > 2, we instead have
H∗(Cp,Fp) ≃ Λ(x)⊗ Fp[y],

a tensor product of an exterior algebra on a class of degree |x| = 1 and a polynomial algebra on
a class of degree |y| = 2 Here, x is again a chosen isomorphism Cp ≃ Fp and y = β(x) is given
by its Bockstein.

Remark 21.16. Note that at any prime p, cup product with the Bockstein β(x) of a generator
(which is equal to x2 when p = 2) induces an isomorphism

Hk(Cp,Fp) ≃ Hk+2(Cp,Fp)

for all k ≥ 0. This 2-fold periodicity in cohomology of a cyclic group will come up again as an
essential argument in §23, where we prove a partial converse to Proposition 21.17 below.

One consequence of the calculation of Example 21.15 is that torsion obstructs finiteness of
cohomological dimension:

Proposition 21.17. Let G be a profinite group of finite p-cohomological dimension. Then G is
p-torsion free; that is, if gp = e for some g ∈ G, then g = e.

Proof. We observed in Example 21.15 that Cp is of infinite cohomological dimension. If gp = e
and g ̸= 0, then Cp ≤ G as a subgroup generated by g, and it follows from Lemma 21.4 that
cdp(G) =∞. □

Note that in particular, Proposition 21.17 shows that all non-zero finite p-groups are of infinite
cohomological dimension. Thus, the latter notion is really only interesting for infinite groups.
The following gives an example of such a group.

Example 21.18. Using the fact that Zp is a free pro-p-group on a single generator, one can show
that the cohomology groups of a p-torsion Zp-module M can be calculated as the cohomology
of the cochain complex

M M
1−σ

,

where σ ∈ Zp is the topological generator. It follows that Zp is of p-cohomological dimension 1.

One reason why Proposition 21.14 is particularly useful is that mod p cohomology of a group
has a canonical structure of a ring. One way to see this is the isomorphism

H∗(G,Fp) ≃ lim−→H∗(G/U,Fp),

11The ring structure on cohomology is that of a cup product. In case of group cohomology, it can be produced
purely algebraically, as we will do in the next lecture.
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where on the right hand side we have a filtered colimit of rings since cohomology groups of a
finite group have a ring structure coming from the cup product using the identification with
cohomology of the classifying space. This also endows the cohomology groups with the action
of Steenrod operations.

Remark 21.19. In the next lecture, we will construct the product structure on cohomology
purely algebraically (in greater generality, allowing non-trivial coefficients). One can similarly
construct the Steenrod operations in a purely algebraic fashion, but any construction of the
Steenrod squares and powers is necessarily involved - too involved for us to do so in this course.

Another reason while considering mod p-cohomology is convenient is that low-dimensional
cohomology groups admit straightforward interpretation.

Lemma 21.20. Let G be a pro-p-group with Frattini subgroup G2 ≤ G. Then

H1(G,Fp) ≃ (G/G2)
∗ := Homcts

Fp
(G/G2,Fp);

that is, H1(G,Fp) is the continuous linear dual of the profinite Fp-vector space G/G2.

Proof. Since the action of G on Fp is trivial, by Example 20.22 we have

H1(G,Fp) ≃ Homcts(G,Fp),

the group of continuous group homomorphisms. Since Fp is abelian of exponent p, any such
homomorphism factors uniquely through G/G2. □

Corollary 21.21. A pro-p-group is finitely generated if and only if H1(G,Fp) is finite-dimensional
as an Fp-vector space.

Proof. This is a combination of Lemma 21.20 and Proposition 3.4, since a profinite Fp-vector
space is finitely generated if and only if it is finite-dimensional, if and only if its continuous dual
is finite-dimensional. □

By Lemma 21.20, elements of H1(G,Fp) can be thought of as “cogenerators” of G in the
sense that its elements can detect generators. More precisely, identifying first cohomology with
homomorphisms we have a pairing

H1(G,Fp)×G→ Fp

and a set of elements of G generates it if and only if no element of first cohomology vanishes on
the whole set.

Similary, one can think of H2(G,Fp) as encoding “relations” in the group. For example, we
have the following result, which relates the second cohomology to finite presentation:

Proposition 21.22. Let G be a pro-p-group generated by g1, . . . , gn and let R := ker(F (n)→ G)
be the kernel of the induced homomorphism from the free pro-p-group generated by n elements.
Then the following are equivalent:

(1) R is finitely generated,
(2) H2(G,Fp) is a finite-dimensional Fp-vector space.

We do not prove Proposition 21.22 in this course; an interested reader should consult [Ser97,
§4.3, Proposition 27]. Instead, we will prove a related result which will be useful in the next
lecture.

As motivation for the statement, observe that by Lemma 21.20 the group C×np is the smallest
pro-p-group whose first cohomology is n-dimensional. As the smallest such group, one can think
that it has the most “relations”. The following result relates this to the second cohomology being
sufficiently large.

Theorem 21.23 (Serre). Let G be a pro-p-group and let (yi)i∈I be a well-ordered basis of
H1(G,Fp). Then the following are equivalent:
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(1) the induced group homomorphism G→
∏

i∈I Cp is an isomorphism,
(2) the cohomology classes yiyj for i < j and β(yi) are linearly independent as elements of

H2(G,Fp).

Proof. Using the calculation of cohomology of H∗(Cp,Fp) of Example 21.15 (where at p = 2 we
have β(x) = x2) and the Künneth theorem for cohomology of products, we see that the given
elements form a basis of H2(−,Fp) for any finite product of Cp. Since an infinite product is a
limit of finite products, this is also a basis for infinite products by Proposition 20.24. This shows
that (1)⇒ (2).

We now argue that (2) ⇒ (1). Since yi ∈ H1(G,Fp) are linearly independent, the induced
map into any finite product of Cp is surjective. It follows that the map into the whole product
has dense image and thus is surjective as G is compact. Using the description of cohomology of
the product from the previous paragraph, we see that condition (2) is equivalent to the induced
map

H2(
∏
i∈I

Cp,Fp)→ H2(G,Fp)

being injective.
Let K = ker(G →

∏
Cp) be the kernel; we have to show that K is trivial. We have the

Lyndon-Hochschild-Serre spectral sequence of Construction 21.5o of signature

Hs(
∏

Cp, H
t(K,Fp))⇒ Hs+t(G,Fp)

whose second page (in low degrees) is given by

H0(
∏
Cp,H

1(K,Fp)) . . .

H0(
∏
Cp,Fp) H1(

∏
Cp,Fp) H2(

∏
Cp,Fp)

d2

Since H1(
∏
Cp,Fp) → H1(G,Fp) is an isomorphism by construction, on the E∞-page the

(0, 1)-term must vanish. The only way this can happen is if all of the non-zero elements support
the pictured d2 differential. However, as H2(

∏
Cp,Fp) → H2(G,Fp) is injective, none of the

elements in the (2, 0)-term can be hit by a differential. It follows that the pictured differential
vanishes so that

H0(
∏

Cp,H
1(K,Fp)) = 0.

Since any non-zero representation of a pro-p-group on a Fp-vector space has a non-zero vector
as a consequence of Lemma 21.13, this implies that

H1(K,Fp) = 0.

By Lemma 21.20, this implies that K = 0, as needed. □

22. The derived ∞-category and cup products

In the previous lecture, we observed that the mod p cohomology ring of a profinite group
acquires a ring structure with respect to the cup product using the isomorphism

H∗(G,Fp) ≃ lim−→H∗(G/U,Fp) ≃ lim−→H∗(B(G/U),Fp),

where the right hand side is given by the cohomology of the classifying space. Today, we will
give a general construction of cup product in group cohomology of a profinite group, allowing
non-trivial modules as coefficients.
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Warning 22.1. There is a low-technology construction of the cup product in group coho-
mology, given by writing down an explicit formula in terms of the group cochain complex of
Definition 20.17. However, we will proceed differently, instead endowing the derived∞-category
of discrete G-modules with a suitable symmetric monoidal structure, which is often useful in its
own right.

As a first step towards the construction of cup products, we observe that we have a suitable
symmetric monoidal structure on the category of coefficients.

Construction 22.2 (Tensor product of discrete G-modules). If M,N are discrete G-modules,
then their tensor product M ⊗Z N acquires a canonical discrete G-module structure defined
uniquely by

g · (a⊗ b) := (g · a)⊗ (g · b).
This makes ModG(Ab) into a presentably symmetric monoidal category with unit Z (equipped
with the trivial G-action). If m ∈ M , n ∈ N are G-invariants, then so is m⊗ n ∈ M ⊗N , and
this defines a bilinear pairing

(22.1) H0(G,M)⊗H0(G,N)→ H0(G,M ⊗N).

The cup product on cohomology should be obtained by a suitably extending (22.1) to a pairing
of derived functors. To more easily manipulate derived functors, it will be convenient to work
with a variant of the derived ∞-category of discrete G-modules.

Recollection 22.3 (Unseparated derived∞-category). If C is a presentable, stable∞-category
equipped with a t-structure compatible with filtered colimits, then the heart C♡ is a Grothendieck
abelian category. One can show that in this context, the construction

C 7→ C♡,

has a left adjoint12 which we denote by

A 7→ Ď(A),

see [Lur, Corollary C.5.8.9]. We call Ď(A) the unseparated derived ∞-category.

Remark 22.4. Concretely, the unseparated derived ∞-category Ď(A) can be described as the
homotopy coherent nerve of the category of chain complexes of injectives of A.

Remark 22.5 (Extension groups in terms of the derived∞-category). The unseparated derived
∞-category encodes the homological algebra of A in the sense that

(1) the unit map A → Ď(A)♡ of the adjunction of Recollection 22.3 is an equivalence of
categories,

(2) there are isomorphisms

ExtnA(a, b) ≃ π−nmapĎ(A)(a, b)

between the extension groups of A (in a classical sense, defined as derived functors) and
homotopy groups of the mapping spectra between a, b ∈ A, considered as objects of the
heart.

These are really the only two properties of the unseparated derived ∞-category which we will
use and we encourage a reader unfamiliar with this construction to take them on faith.

12For this to be true, one should really consider C → C♡ as a functor from presentable, stable ∞-categories
equipped with a right complete t-structure compatible with filtered colimits and t-exact left adjoints, into
Grothendieck abelian categories and exact left adjoints. This is more pleasantly expressed (although it would
mean the same thing) in the language of Grothendieck prestable ∞-categories. We recommend [Lur, Appendix
C] for details.
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Warning 22.6. The reader might be familiar with the separated derived ∞-category D(A),
which is the localization

Ď(A)→ D(A)

obtained by inverting all quasi-isomorphisms. This functor is often an equivalence; for example,
when A has enough projectives. Moreover, it always induces an equivalence between subcate-
gories of objects bounded with respect to the t-structure.

In particular, D(A) also satisfies the two properties outlined in Remark 22.5, and so for the
purpose of this course, either of these two ∞-categories would do. However, in our context, the
unseparated variant is both slightly easier to describe and better-behaved, so this is the one we
will work with.

To construct the cup product, we will endow the unseparated derived ∞-category of discrete
G-modules with a symmetric monoidal structure. To motivate our construction, we first describe
the category of discrete G-modules as an Ind-completion.

Lemma 22.7. If G is profinite and U ◁G is open normal, then Z[G/U ] is compact as an object
of the category of discrete G-modules. Moreover, objects of this form generate ModG(Ab) under
colimits.

Proof. We have
HomModG(Ab)(Z[G/U ],M) ≃MU ≃ H0(U,M)

so that compactness follows from Corollary 20.23. Since any element of a discrete G-module is
stabilized by some open subgroup, any element is in the image of a map from Z[G/U ] for some
U , and we deduce that these objects generate. □

Corollary 22.8. If M is discrete G-module which is finitely generated as an abelian group, then
M is compact. Conversely, any compact object is finitely generated as an an abelian group.

Proof. By Lemma 22.7, M can be written as a quotient of a direct sum of objects of the form
Z[G/U ] which are compact. Since M is finitely generated, the direct sum can be chosen to be
finite, so that the kernel is again finitely generated as an abelian group. We deduce that M
belongs to the smallest subcategory of ModG(Ab) containing Z[G/U ] and closed under finite
colimits, which is exactly the subcategory of compact objects. □

Theorem 22.9. Let ModG(Ab
fg) ⊆ModG(Ab) be the subcategory of modules which are finitely

generated as an abelian group. Then
(1) ModG(Ab

fg) ≃ lim−→ModG/U (Ab
fg), where the filtered colimit of categories is taken using

restriction functors and is indexed by the opposite of the poset of normal open subgroups,
(2) the inclusion induces an equivalence

ModG(Ab) ≃ Ind(ModG(Ab
fp)),

where the right hand side is the free cocompletion under filtered colimits.

Proof. Let M be a discrete G-module generated as an abelian group by elements m1, . . . ,mn ∈
M . Each of mi is stabilized by an open normal subgroup Ui, hence all of M is stabilized by
U := U1∩. . .∩Un. It follows thatM is obtained by restriction from G/U and thus the comparison
functor

lim−→ModG/U (Ab
fg)→ModG(Ab

fg)

is essentially surjective. Since each of ModG/U (Ab
fg)→ModG(Ab

fg) is fully faithful, so is the
comparison functor. This ends the first part.

The second part is a formal consequence of Lemma 22.7 and Corollary 22.8, since for any
cocomplete ∞-category C generated by its subcategory Cω ⊆ C of compact objects we have
Ind(Cω) ≃ C, see [Lur09, Proposition 5.3.5.11]. □
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To endow the derived ∞-category with a symmetric monoidal structure, we will describe
Ď(ModG(Ab)) in terms similar to the abelian case covered in Theorem 22.9.

Recollection 22.10. Recall that an object X ∈ D(Z) of the derived∞-category of the integers
is called perfect if it satisfies one of the following equivalent conditions:

(1) it is compact,
(2) it is dualizable with respect to the derived tensor product,
(3) it has finitely many non-zero homology groups, each of which is finitely generated as an

abelian group.

Notation 22.11. We write Perf(Z) ⊆ D(Z) for the full subcategory spanned by perfects.

Definition 22.12. The∞-category of discrete perfect G-modules is given by the filtered colimit

ModG(Perf(Z)) := lim−→Fun(B(G/U),Perf(Z))

of∞-categories of perfect complexes equipped with an action of G/U . Here, the colimit is taken
over the poset of open normal subgroups and the functors are given by restriction.

Note that for each normal open U ◁G

ModG/U (Perf(Z)) ≃ Fun(B(G/U),Perf(Z))
inherits a pointwise t-structure from perfect complexes with heart

ModG/U (Perf(Z))♡ ≃ModG/U (Perf(Z)♡) ≃ModG/U (Ab
fg)

Restriction of representation functors are t-exact with respect to these t-structures and it follows
that ModG(Perf(Z)) inherits a t-structure as a filtered colimit.

This t-structure then formally extends to one on Ind-completion, namely the unique one
compatible with filtered colimits, whose heart is given by

(22.2) Ind(ModG(Perf(Z)))♡ ≃ Ind(ModG(Perf(Z))♡) ≃ModG(Ab),

where the second identification is Theorem 22.9. Through the universal property of the unsepa-
rated derived ∞-category of Recollection 22.3, this equivalence induces a cocontinuous, t-exact
functor

(22.3) Ď(ModG(Ab))→ModG(D(Z)).

Theorem 22.13. The comparison functor of (22.3) is an equivalence of ∞-categories.

Proof. This is completely formal, but the argument requires some theory of Grothendieck prestable
∞-categories. We advise the reader not familiar with the latter to take the result on faith.

For an interested reader, we observe that by [Lur, Theorem C.6.7.1], the subcategory

(Ind(ModG(Perf(Z)))≥0 ≃ Ind(ModG(Perf(Z)≥0))
of connective objects is anticomplete. As it is also 0-complicial, generated under colimits by
Z[G/U ] for open normal subgroups U ◁ G, we deduce that it is an unseparated derived ∞-
category of its heart by [Lur, Corollary C.5.8.11]. □

As a consequence, we obtain the desired symmetric monoidal structure.

Construction 22.14. The ∞-category D(Z) has a canonical symmetric monoidal structure
given by the derived tensor product over the integers. Considering pointwise tensor product we
obtain an induced symmetric monoidal structure on each of the functor ∞-categories and hence
on the filtered colimit

ModG(Perf(Z)) ≃ lim−→Fun(B(G/U),Perf(Z)).
This is exact in each variable and hence uniquely extends to a symmetric monoidal structure on

Ď(ModG(Ab)) ≃ Ind(ModG(Perf(Z)))
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which preserves colimits in each variable.

Remark 22.15. The symmetric monoidal structure of Construction 22.14 is uniquely deter-
mined by the following two properties:

(1) for each open normal U ◁G, the composite

Fun(B(G/U),Perf(Z))→ModG(Perf(Z))→ Ind(ModG(Perf(Z))) ≃ Ď(ModG(Ab))

is symmetric monoidal,
(2) the tensor product preserves colimits in each variable.

More precisely, given a presentably symmetric monoidal stable ∞-category C, a collection of
compatible exact symmetric monoidal functors

Fun(B(G/U),Perf(Z))→ C

uniquely extends to a symmetric monoidal left adjoint Ď(ModG(Ab)).

Remark 22.16. One can similarly ask about a symmetric monoidal structure on the separated
(ie. classical) derived ∞-category D(ModG(Ab)). Since the forgetful functor

ModG(Ab)→ Ab

is a conservative exact left adjoint, we deduce that the same is true for

D(ModG(Ab))→ D(Z).

It follows that the quasi-isomorphisms in the unseparated derived ∞-category Ď(ModG(Ab))
can be identified with those maps which are inverted by the functor

(22.4) Ď(ModG(Ab))→ Ď(Ab) ≃ D(Z),
where we use that for the category of abelian groups, the two variants of the derived∞-category
coincide by [Lur, C.5.8.12].

Using the universal property of Remark 22.15, the functor of (22.4) can be made symmetric
monoidal, so that the class of arrows it inverts is closed under the tensor product on both sides.
We deduce formally that there is a unique symmetric monoidal structure on D(ModG(Ab)) such
that the canonical localization

Ď(ModG(Ab))→ D(ModG(Ab))

is symmetric monoidal.

Construction 22.17 (Cup products). Let Z ∈ Ď(ModG(Ab)) be the integers with the trivial
G-action, considered as an object of the heart. Since the derived ∞-category is stable, we have
an internal mapping spectrum functor

map(Z,−) : Ď(ModG(Ab))→ Sp

and since Z is the monoidal unit, this has a canonical lax symmetric monoidal structure. As
passing to homotopy groups is also lax symmetric monoidal, the same is true for the composite

π∗map(Z,−) : Ď(ModG(Ab))→ grAb.

If M,N are discrete G-modules, considered as objects of the heart, then

π−smap(Z,M) ≃ ExtsModG(Ab)(Z,M) ≃ Hs(G,M)

by Remark 22.5 and similarly for N . We have a canonical comparison map M ⊗L
Z N →M ⊗ZN

between the derived and ordinary tensor products, and the composite

π−smap(Z,M)⊗Z π−tmap(Z, N)→ π−s−tmap(Z,M ⊗L
Z N)→ π−s−tmap(Z,M ⊗Z L)

can be identified with a map

(22.5) Hs(G,M)⊗Z Ht(G,N)→ Hs+t(G,M ⊗Z N).
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Concretely, the map of (22.5) can be described as follows. A pair of classes x ∈ Hs(G,M) and
y ∈ Ht(G,N) can be identified with a homotopy class of maps x : Z → ΣsM and y : Z → ΣtN
in the derived ∞-category. The cup product is then represented by the homotopy class of the
composite

Z ≃ Z⊗ Z Σs+t(M ⊗L
Z N) Σs+t(M ⊗Z N)

x⊗y

Definition 22.18. We call the map of

∪ : Hs(G,M)⊗Z Ht(G,N)→ Hs+t(G,M ⊗Z N)

of Construction 22.17 the exterior cup product in cohomology.

The cup product endows the functor H∗(G,−) : ModG(Ab) → grAb with a lax symmetric
monoidal structure. In other words, the pairing of Definition 22.18 is suitably commutative,
associative and unital. Moreover, by unwrapping the arguments we see that in cohomological
degree zero it coincides with the pairing of invariants described in Construction 22.2.

Remark 22.19. Suppose that R is a monoid in ModG(Ab), which we can identify with a ring
R together with a continuous action of G through ring automorphisms. The composite

Hs(G,R)⊗Z Ht(G,R)→ Hs+t(G,R⊗Z R)→ Hs+t(G,R)

of the cup product and the ring multiplication is called the internal cup product. It endows
H∗(G,R) with a structure of a graded ring, and it is graded-commutative if R is a commuta-
tive. In the particular case of trivial action, this recovers the ring structure coming from the
isomorphism

H∗(G,R) ≃ lim−→H∗(G/U,R) ≃ lim−→H∗(B(G/U), R),

where the right hand side is endowed with the topological cup product.

We have previously constructed contravariant and covariant functoriality in group cohomol-
ogy, given respectively by restriction and corestriction. We now describe how these two opera-
tions interact with the cup product. This will require us to consider restriction and coinduction at
the level of derived∞-categories and the way they interact with the derived symmetric monoidal
structure.

Construction 22.20. If K ≤ G is a closed subgroup, we have an adjunction

resGK ⊣ coindGK : ModG(Ab) ⇄ ModK(Ab).

Both of these functors are exact left adjoints, in the case of coinduction by Lemma 20.8. Since
the association A → Ď(A) is functorial in exact left adjoints, we obtain an induced adjunction
between derived ∞-categories, which we also denote by

resGK ⊣ coindGK : Ď(ModG(Ab)) ⇄ Ď(ModK(Ab)).

In terms of the description of the derived∞-category of Theorem 22.13, the restriction is induced
by the functors

Fun(B(G/U),Perf(Z))→ Fun(B(K/(U ∩K),Perf(Z))→ Ď(ModK(Ab)).

This is canonically symmetric monoidal, and this produces a symmetric monoidal structure on
the restriction functor.

Lemma 22.21. Let K ≤ G be a closed subgroup. Then the restriction

res : H∗(G,−)→ H∗(K,−)
has a canonical structure of a monoidal transformation of functors ModG(Ab) → grAb. In
particular, for any monoid R in discrete G-modules, the map

H∗(G,R)→ H∗(K,R).

is a homomorphism of rings.
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Proof. We recall from Construction 20.14 that restriction on cohomology is defined as the mor-
phism on Ext-groups induced by resGK : ModG(Ab) → ModK(Ab). The latter can be identified
with the morphism induced on homotopy groups by the derived functor

resGK : Ď(ModG(Ab))→ Ď(ModK(Ab)).

This functor is symmetric monoidal by Construction 22.20 which yields the needed result. □

To describe the interaction of the cup product with corestriction, we will make use of the
projection formula.

Recollection 22.22. Suppose that we have an adjunction L ⊣ R : C ⇄ D between monoidal
categories such that L is monoidal. In this case, for any X ∈ D, Y ∈ C, we have a canonical
projection formula map

(22.6) R(X)⊗ Y → R(X ⊗ L(Y ))

defined as the adjoint of

L(R(X)⊗ Y ) ≃ L(R(X))⊗ L(Y )→ X ⊗ L(Y )

obtained by applying the counit to the left factor.

Remark 22.23. In the context of the restriction and coinduction adjunction, the projection
formula map of Recollection 22.22 for M ∈ModK(Ab) and N ∈ModG(Ab) takes the form

p : coindGK(M)⊗N → coindGK(M ⊗ resGK(N)).

Identifing coinduced modules with the set of K-equivariant functions in G, unwrapping the
definition we see that if f ∈ mapK

cts(G,M) and n ∈ N , then the projection formula map is
determined by

p(f ⊗ n) := (g 7→ f(g)⊗ gn).
From there, it is not difficult to verify that p is a natural isomorphism, although we will not
need this fact.

Lemma 22.24. Let U ≤ G be an open subgroup and let M,N be discrete G-modules. Then

cores(x) ∪ y = cores(x ∪ res(y)) ∈ Hs+t(G,M ⊗Z N)

for any x ∈ Hs(U,M), y ∈ Ht(G,N).

Proof. We first claim that the diagram

coindGK(M)⊗N coindGK(M ⊗ resGK(N))

M ⊗N

π1

π2

p

where the horizontal map is the projection formula map of Recollection 22.22 and the verti-
cal maps are induced by Construction 21.8, commutes. Calculating using the formula of Re-
mark 22.23, this amounts to observing that if xi are representatives for left cosets U\G, then

π1(f ⊗ n) = (
∑
i

x−1i f(xi))⊗ n =
∑
i

x−1i (f(xi)⊗ xin) = π2(p(f ⊗ n)).

We now prove the needed statment. We can identify the two cohomology classes of maps
with homotopy classes of maps x : Z → coindGK(M) and y : Z → N in the derived ∞-category
of discrete G-modules, where we suppress the suspensions from the notation. A diagram chase
shows that the class cores(x)∪ y is then represented by the composite π1 ◦ (x⊗ y), and the class
cores(x∪ res(y)) by the composite π2(p◦ (x⊗y)). Since the above diagram commutes, these two
are the same. □
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23. Torsion-free groups and locality of cohomological dimension

In general, cohomological dimension is not a local property of profinite groups; that is, it
cannot be detected on open subgroups. For example, the cyclic group Cp contains the trivial
group as an open subgroup, but it is not itself of finite cohomological dimension by the calculation
of Example 21.15.

More generally, any profinite group which contains p-torsion cannot be of finite cohomolog-
ical dimension since it contains a copy of Cp. The main result of this lecture is the following
beautiful result of Serre which shows that p-torsion is essentially the only obstruction to locality
of cohomological dimension:

Theorem 23.1 (Serre). Let G be a profinite group with U ≤ G an open subgroup of finite
p-cohomological dimension. Then the following are equivalent:

(1) G is of finite p-cohomological dimension,
(2) cdp(G) = cdp(U),
(3) G is p-torsion-free.

To prove Theorem 23.1, we will closely follow the original paper of Serre [Ser65]. The proof
is somewhat involved and will take the remainder of the lecture.

Recollection 23.2. Recall that a subset

V ⊆ F
×n
p

is called algebraic if it is cut out by polynomial equations; that is, if there exists a subset

S ⊆ Fp[x1, . . . , xn]

of a polynomial ring such that

V = { (a1, . . . , an) ∈ F
×n
p | f(a1, . . . , an) = 0 for all f ∈ S }.

Declaring algebraic subsets as closed defines the Zariski topology on F
×n
p . As a consequence of

the Nullstellensatz, the subset V determines the radical of S as

Rad(S) = { f ∈ Fp[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

Recollection 23.3. An Fp-vector subspace V ⊆ F
×n
p is called Fp-rational if there exists a

Fp-vector subspace V ′ ⊆ F×np such that

V = Fp ⊗Fp
V ′

as subspaces of F
×n
p ≃ Fp ⊗Fp F×np .

Since Fp ⊆ Fp has Galois group generated by the Frobenius x 7→ xp, if F : F
×n
p → F

×n
p

denotes Frobenius morphism defined by

F (x1, . . . , xn) := (xp1, . . . , x
p
n),

one can show that V is Fp-rational if and only if F (V ) ⊆ V .

Proposition 23.4. Let V ⊆ F
×n
p be an algebraic subset such that

(1) λ · V ⊆ V for all λ ∈ Fp (that is, V is a cone),
(2) θ(V ) ⊆ V , where θ := F + id

F
×n
p

.

Then V is a union of Fp-rational linear subspaces.

Proof. If x ∈ V and r ≥ 1, we write Wr(x) to be the Fp-linear subspace of F
×n
p generated by

x, Fx, . . . , F r−1x. We first argue by induction that Wr(x) ⊆ X. The case of r = 1 follows from
the first condition on V .
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Now suppose that r > 1 and that Wr−1(x) ⊆ V . Any element of Wr(x) can be written as

y1 · x+ . . .+ yrF
r−1x

for some yi ∈ Fp. By inductive assumption and the two conditions on V , all elements of the
form

z0(z + Fz)

with z0 ∈ Fp and
z = z1 · x+ . . .+ zr−1F

r−2x ∈Wr−1(x),

belong to V . Thus, it is enough to show that any element of Wr(x) can be written in this form.
Since Fz = zp1Fx+ . . .+ zpr−1F

r−1x, by comparing the coefficients of F kx for 0 ≤ k ≤ r − 1,
this amounts to solving a system of polynomial equations

y1 = z0z1

y2 = z0(z2 + zp1)

y3 = z0(z3 + zp2)

. . .

yr = z0z
p
r−1

An elementary calculation shows that this system of equations has a solution whenever y1 and
at least one of y2, . . . , yr is non-zero. Combinations of yi with this property form a Zariski-dense
subset of the space of all combinations and since V is Zariski closed, we deduce that Wr(x) ⊆ V .

We now prove the Proposition. If x ∈ V , then by what we shown above we have

W (x) := ∪r≥1Wr(x) ⊆ V.

Since W (x) is an F -stable linear subspace of V , it is Fp-rational by Recollection 23.3. As any
point of V is contained in a rational linear subspace, we deduce that V is a union of such
subspaces, as needed. □

Corollary 23.5. Let S ⊆ Fp[x1, . . . , xn] be a non-zero ideal defining an algebraic subset V ⊆
F
×n
p satisfying the conditions of Proposition 23.4. Then S contains a product∏

1≤i≤k

ui

for some k and ui ∈ Fp[x1, . . . , xn] non-zero homogeneous polynomials of degree one.

Proof. Note that since Fp is finite, there are only finitely many Fp-rational subspaces of F
×n
p ,

hence V is in fact a finite union of such subspaces. Since the ideal is non-zero, V is not the whole
affine space, so each such such subspace is proper. In particular, there exists a homogeneous
degree one polynomial vanishing on it.

The product of such polynomials for each subspace then vanishes on all of V and thus belongs
to the radical of S. It follows that some power of the product, which is also a product of
polynomial of degree one, is in S. □

To relate the above analysis to group cohomology, we will need to use Steenrod operations,
whose existence follows from the isomorphism

H∗(G,Fp) ≃ H∗(B(G/U),Fp)

of Proposition 20.24 between cohomology of a profinite group and the colimit of cohomologies
of the classifying spaces of finite quotients. We will only need very formal properties of the
Steenrod operations; see [Hat78, §4.L] for an introduction.
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Proposition 23.6. Let G be a profinite group and let x1, . . . , xn ∈ H2(G,Fp). If p = 2, assume
moreover that Sq1xi = 0 for all 1 ≤ i ≤ n. Let S be the kernel of the induced homomorphism

π : Fp[x1, . . . , xn]→ H2(G,Fp).

Then S contains a product of homogeneous polynomials of degree one.

Proof. By Corollary 23.5, it is enough to verify that the algebraic subset corresponding to S
satisfies the conditions of Proposition 23.4. It satisfies the first one since S is a kernel of a
homomorphism of graded rings if we make each xi of degree two. We move on to the second
condition, where we will need to use Steenrod powers.

First assume that p > 2. By the Cartan formula, the total Steenrod power

P :=
∑
i≥0

Pi

induces a ring endomorphism of the cohomology algebra
⊕

q≥0 H
q(G,Fp). If x ∈ H2(G,Fp), we

have P0x = x, P1x = xp and Pix = 0 for i > 0, so that

P(x) = x+ xp.

Thus, if θ denotes the endomorphism of Fp[x1, . . . , xn] uniquely determined by θ(xi) = xi + xpi ,
then P ◦ π = π ◦ θ. Thus, S ⊆ θ−1(S), which implies that the algebraic subset cut out by S
satisfies the needed second condition.

If p = 2, we have a ring endomorphism of the cohomology algebra given by the total Steenrod
square

Sq :=
∑
i≥0

Sqi.

On x ∈ H2(G,Fp), it is given by

Sq(x) = x+ Sq1x+ x2.

Thus, by the additional assumption on xi, we have

Sq(xi) = xi + x2i .

The rest of the argument proceeds as in the previous paragraph. □

Proposition 23.7. Let G be a profinite group with a well-ordered basis (yi)i∈I of H1(G,Fp).
Suppose that there exists a non-trivial relation

(23.1)
∑
i<j

ai,jyiyj +
∑
i

biβ(yi) = 0 ∈ H2(G,Fp)

with ai,j , bi ∈ Fp. Then, there exists a sequence z1, . . . , zm of non-zero elements of H1(G,Fp)
such that ∏

1≤i≤m

β(zi) = 0 ∈ H2m(G,Fp).

Proof. Suppose first that all of ai,j are zero. In this case, we can take m = 1 and

z1 =
∑
i

biyi

since β(z1) = 0, as needed.
Now suppose that one of ai,j is non-zero. If we write xi = β(yi), then

P 1(xi) = xpi , P
1(yi) = 0, β(xi) = 0

when p > 2 and
Sq2(xi) = x2i ,Sq

2(yi) = 0, β(xi) = 0
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when p = 2. It follows that if we apply the operation β ◦ P 1 ◦ β when p > 2 or β ◦ Sq2 ◦ β when
p = 2, (23.1) becomes

(23.2)
∑
i<j

ai,jx
p
i xj − xix

p
j = 0,

where we use the Cartan formula to calculate the Steenrod powers evaluated on a cup product.
Since we assumed one of ai,j is non-zero, (23.2) is also non-trivial. If we choose the finitely
many indices such that x1, . . . , xm appear in the non-zero relation, we deduce that the ideal of
relations between these elements is non-zero, so that by Proposition 23.6 there exists a relation∏

1≤i≤k

ui

where each ui is a non-zero linear combination of xi. If we write

ui =
∑

1≤j≤m

ci,jxj ,

then we can set
zi :=

∑
1≤j≤m

ci,jyj

and we see that
∏
β(zi) =

∏
ui = 0 as needed. □

We now move to the study of p-cohomological dimension. The main idea is to reduce to the
case of pro-p groups and prove the needed result by induction on the index. The most interesting
case is that when

U ≤ G

is a normal subgroup of index p, so that G/U ≃ Cp, the cyclic group of order p.
As we observed in Remark 21.16, if x ∈ H1(Cp,Fp) denotes a generator, then cup product

with β(x) ∈ H2(Cp,Fp) induces a 2-fold periodicity in the cohomology algebra of the cyclic
group. We now observe that this periodicity is visible in cohomology with any coefficients, and
leaves a slightly weaker periodicity in cohomology of G itself under the assumption that U is of
finite cohomological dimension.

Lemma 23.8. Let A be a Cp-module in Fp-vector spaces. Then

β(x) · − : Hk(Cp, A)→ Hk+2(Cp, A)

induced by the cup product is
(1) an epimorphism when k = 0,
(2) an isomorphism when k > 0.

Proof. We can identify the cohomology groups appearing in the statement with homotopy groups

Hk(Cp, A) ≃ π−kmapCp
(Fp, A)

of the mapping spectrum in the derived∞-category of Cp-modules in Fp-vector spaces. In these
terms, the claim is equivalent to the cofibre of the map

mapCp
(Fp, A)→ Σ2mapCp

(Fp, A)

induced by the cup product with β(x) being connective. This condition is stable under extensions
and filtered colimits, and since any A-module in Fp-vector spaces is built out of filtered colimits
and extensions out of Fp by Lemma 21.13, the result follows. □
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Proposition 23.9. Suppose we have an extension of profinite groups

0→ U → G→ Cp → 0

and that U is of finite p-cohomological dimension q. If x ∈ H1(G,Fp) denotes the image of a
generator of H1(Cp,Fp), then for any discrete G-module A in Fp-vector spaces the map

β(x) · − : Hk(G,A)→ Hk+2(G,A)

induced by the cup product is
(1) an epimorphism when k = q,
(2) an isomorphism when k > q.

In particular, either cdp(G) = cdp(U) or the cohomological dimension of G is infinite.

Proof. As in the proof of Lemma 23.8 above, the relevant cohomology groups can be identified
with homotopy groups of a mapping spectrum in the derived ∞-category of continuous G-
modules in Fp-vector spaces. The claim is equivalent to showing that the cup product map

mapG(Fp, A)→ Σ2mapG(Fp, A)

has a −q-connective cofibre. We have an identification

mapG(Fp, A) ≃ mapCp
(mapU (Fp, A))

(this is the identification inducing the Lyndon-Hochschild-Serre spectral sequence of Construc-
tion 21.5). Since U is of finite cohomological dimension, the homotopy groups of mapU (Fp, A)
are concentrated in degrees between −q and 0. It follows that by using the Postinikov tower,
mapU (Fp, A) can be obtained by iterated extensions from k-th shift of objects in the heart for
−q ≤ k ≤ 0. Each of those has a cofibre of β(x) · − which is −q-connective by Lemma 23.8 and
hence so does their extension, as needed. □

Corollary 23.10. In the context of Proposition 23.9, for G to be of finite cohomological dimen-
sion, it is sufficient and necessary for some power of β(x) to be zero.

Lemma 23.11. Let G be a pro-p group such that all of its open normal subgroups U ◁ G of
index p are of finite cohomological dimension. Then either G is itself of finite cohomological
dimension or it is isomorphic to Cp.

Proof. By the given condition on normal subgroups, if G is isomorphic to a (possibly infinite)
product of Cp, then it is isomorphic to Cp itself. We thus have to show that if G is not isomorphic
to such a product, then it is of finite cohomological dimension.

By Theorem 21.23, if (yi)i∈I ∈ H1(G,Fp) is a well-ordered basis, then the elements yiyj for
i < j and β(yi) are not linearly independent. By Proposition 23.7, it follows that there exists a
sequence z1, . . . , zm ∈ H1(G,Fp) of non-zero elements such that the product

β(z1) · . . . · β(zm)

is zero. Each of zi can be identified with a surjective homomorphism G→ Cp whose kernel is of
finite cohomological dimension by assumption, so that

β(zi) · − : Hk(G,Fp)→ Hk+2(G,Fp)

is an isomorphism for large enough k by Proposition 23.9. It follows that the multiplication by
the product of β(zi) induces an isomorphism

Hk(G,Fp) ≃ Hk+2m(G,Fp)

for k large enough. Since this product is zero, it follows that these groups vanish in large enough
degrees. Since G is pro-p by assumption, it follows that it is of finite cohomological dimension
by Proposition 21.14. □
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Lemma 23.12. Let G be a profinite group and let Hα be a cofiltered family of closed subgroups
of G with intersection H :=

⋂
αHα. Then

H∗(H,Fp) ≃ lim−→H∗(Hα,Fp).

Proof. If Vi is a basis of open normal subgroups of G, then

H∗(H,Fp) ≃ lim−→
i

H∗(H/(H ∩ Vi),Fp) ≃ lim−→
i

lim−→
α

H∗(Hα/(Hα ∩ V ))

where the first isomorphism is that of Corollary 20.23 and the second is the observation that
Hα/(Hα ∩ V ) ≃ H/(H ∩ V ) for small enough Hα. As colimits commute with colimits, we can
rewrite this as

H∗(H,Fp) ≃ lim−→
α

lim−→
i

H∗(Hα/(Hα ∩ V )) ≃ lim−→
α

H∗(Hα,Fp).

□

Lemma 23.13. Let G be a profinite group which contains an open normal subgroup of index p
which is of finite cohomological dimension. Let S be the poset of closed subgroups H of infinite
cohomological dimension. If S is not empty, then it has a minimal element.

Proof. By Zorn’s lemma, it is enough to show that if Hα is a descending chain of closed normal
subgroups of G which are of infinite cohomological dimension, then H :=

⋂
αHα is also of infinite

cohomological dimension. Since the p-cohomological dimension of a profinite group is the same
as that of its Sylow subgroup by Proposition 21.12, by intersecting Hα with a Sylow subgroup
of G we can assume that G itself is pro-p and hence so are its subgroups.

By assumption, there exists an element z ∈ H1(G,Fp), which we can identify with a group
homomorphism G → Fp whose kernel U is of finite cohomological dimension. Since Hα are of
infinite cohomological dimension by assumption, they cannot be contained in U , hence the image
of the class z in H1(Hα,Fp) is non-zero for all α. It follows from Corollary 23.10 that all of the
powers of β(z) are also non-zero in H∗(Hα,Fp). By , we have

H∗(H,Fp) ≃ lim−→H∗(Hα,Fp)

and thus the powers of β(z) are also non-zero in H∗(H,Fp), so that H is also of infinite coho-
mological dimension by another application of Corollary 23.10. □

Proof of Theorem 23.1: We observed that (1 ⇒ 3) holds in Proposition 21.17. We will prove
(3⇒ 2). Since (2⇒ 1) is immediate, this will end the proof of the result.

Let G be a torsion-free profinite group with an open subgroup U ≤ G of finite cohomological
dimension; we have to show that cdp(G) = cdp(U). By Proposition 21.12, a profinite group has
the same p-cohomological dimension as its Sylow subgroup, so we can assume that G is pro-p.
By intersecting U with its conjugates, we can assume that it is normal. Since G/U is a a finite
p-group, by repeatedly choosing a central subgroup of index p, we construct a finite filtration

U = U0 ≤ U1 ≤ . . . ≤ Uk = G

where each subgroup is normal and of index p in the next one. By induction, we can thus assume
that U ≤ G is of index p. Let S be the poset of closed subgroups of G which are of infinite
cohomological dimension. We want to show that S is empty.

Assume by contradiction that S is not empty, in which case it has a minimal element H ≤ G
by Lemma 23.13. It follows that all proper subgroups of H, in particular all open subgroup of
index p, are of finite cohomological dimension. Since H is not by assumption, we deduce that it
is finite cyclic by Lemma 23.11, which is a contradiction since G is torsion-free.

This shows that G is also of finite dimension, and so we must have cdp(G) = cdp(U) by
Proposition 23.9, ending the argument. □
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24. Poincaré duality

If X is a topological space and k is a ring, then the cohomology groups H∗(X, k) acquire a
canonical structure of a ring with respect to the cup product. The celebrated Poincaré duality
theorem tells us that if X is an orientable, compact manifold of dimension n and k is a field,
then

(1) Hn(X, k) is one-dimensional,
(2) the cup product Hk(X, k)⊗k Hn−k(X, k) → Hn(X, k) is a perfect pairing for all k ∈ Z;

that is, it induces an isomorphism

Homk(H
k(X, k),Hn(X, k)) ≃ Hn−k(X, k).

This motivates the following definition:

Definition 24.1. We say that a pro-p group G is Poincaré of dimension n (at a prime p) if:
(1) Hn(G,Fp) is a 1-dimensional as a Fp-vector space,
(2) for all k ∈ Z, the cup product pairing

Hk(G,Fp)×Hn−k(G,Fp)→ Hn(G,Fp)

is perfect; that is, it induces an isomorphism

Hk(G,Fp) ≃ HomFp(H
n−k(G,Fp),H

n(G,Fp)).

Example 24.2. Using the description of cohomology of the p-adics Zp of Example 24.14 one
can show that H0(Zp,Fp) ≃ Fp, H1(Zp,Fp) ≃ Fp and that the other cohomology groups vanish.
It follows that

H∗(Zp,Fp) ≃ ΛFp
(x),

an exterior algebra on a single class of degree |x| = 1. It follows that Zp is Poincaré of dimension
one.

The main result of this lecture is that for pro-p groups, being Poincaré in the sense Defini-
tion 24.1 is equivalent to having a duality in cohomology with coefficients in any finite p-local
G-module, namely that:

(1) there is a G-equivariant analogue of Pontryagin duality A 7→ A∗G which yields a self-
duality of the category of ModG(Ab

ω
(p)) of G-modules in finite abelian p-groups,

(2) there are natural isomorphisms

Hk(G,A∗G) ≃ Hn−k(G,A)∗,

where (−)∗ = HomAb(−,Z/p∞) denotes the classical Pontryagin duality.
The conditions (1) and (2) combined give a reasonable definition of being Poincaré in the

setting of a general profinite group, not necessarily pro-p. A pleasant property of this notion is
that for profinite groups of cohomological dimension n, being Poincaré is a local property; that
is, it can be detected on open subgroups. We will later use this to show that all torsion-free
compact p-adic analytic groups are Poincaré.

Warning 24.3. Beware that Definition 24.1 is really only appropriate in the context of pro-p
groups. In the case of a general profinite group, one needs to use the more elaborate Defini-
tion 24.24. The two are equivalent for pro-p groups.

Warning 24.4. If X is an orientable compact manifold, then a choice of an isomorphism
Hn(X, k) ≃ k combined with Poincaré duality gives a degree-shifting isomorphism

Hk(X, k) ≃ Homk(H
n−k(X, k),Hn(X, k)) ≃ Homk(H

n−k(X, k), k) ≃ Hn−k(X, k)

between homology and cohomology.
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Beware that in general, there is no naive notion of homology of profinite groups that would
be a dual to cohomology, which is why our discussion of Poincaré duality will be only in terms of
cohomology and the cup product. For a specific example, if I is a countable indexing set, then

H1(
∏
i∈I

Fp,Fp) ≃ Homcts
Grp(

∏
i∈I

Fp,Fp) ≃
⊕
i∈I

Fp.

This is a countably dimensional Fp-vector space, hence it is not a linear dual of any other
Fp-vector space. However, for certain special classes of profinite groups, it is possible to have
well-behaved homology, see [SW00, §3.7].

We first show that Poincaré pro-p groups have a duality in cohomology with coefficients in
G-modules in Fp-vector spaces.

Lemma 24.5. Let G be a pro-p groups which is Poincaré of dimension n. Then
(1) Hk(G,Fp) is finite-dimensional for every k ∈ Z.
(2) G is finitely generated and of p-cohomological dimension n.

Proof. Applying the second property of Definition 24.1 to k and n− k we see that Hk(G,Fp) is
isomorphic to the linear dual of Hn−k(G,Fp) and vice versa. This can only happen if both are
finite-dimensional, as otherwise the linear dual has a basis of strictly larger cardinality.

The finiteness of cohomological dimension in the pro-p case follows immediately from Proposi-
tion 21.14 and the fact that Hk(G,−) vanishes for k < 0. Finite generation is Corollary 21.21. □

Proposition 24.6. Let G be Poincaré of dimension n which is a pro-p-group. Then for discrete
G-module V which is a finite-dimensional Fp-vector space and any k ∈ Z the cup product pairing

Hk(G,V )×Hn−k(G,V ∗)→ Hn(G,V ⊗Fp
V ∗)→ Hn(G,Fp)

induces an isomorphism

Hk(G,V ) ≃ HomFp(H
n−k(G,V ∗),Hn(G,Fp))

Proof. We work in the ∞-category of Fp-modules in the derived ∞-category Ď(ModG(Ab)),
which one can identify with the derived ∞-category Ď(ModG(VectFp

)) of discrete Fp-vector
spaces. If V is a Fp-vector space in discrete G-modules, then its cohomology groups can be
identified with homotopy of

mapG(Fp, V ) := mapĎ(ModG(VectFp ))
(Fp, V ).

This is canonically an object of the derived ∞-category D(Fp) of vector spaces, and since the
latter is semisimple, we have a canonical direct sum decomposition

mapG(Fp, V ) ≃
⊕
k∈Z

Σ−k(Hk(G,V )),

where we identify each cohomology group with an object of the heart.
In these terms, the cup product pairing in question is induced by the composite

mapG(Fp, V )⊗Fp
mapG(Fp, V

∗)→ mapG(Fp,Fp)→ Σ−n(Hn(G,Fp))

which is adjoint to a map in D(Fp) of the form

(24.1) mapG(Fp, V )→ mapFp
(mapG(Fp, V

∗),Σ−n(Hn(G,Fp))).

The desired statement is equivalent to the assertion that this map is an equivalence.
By assumption, (24.1) is an equivalence when V = Fp. Since short exact sequences of discrete

G-modules become cofibre sequences in the derived ∞-category, both sides of (24.1) take short
exact sequences to cofibre sequences in D(Fp). As G is pro-p, any finite-dimensional Fp-vector
space in discrete G-modules can be built using iterated extensions from Fp by Lemma 21.13 and
the claim follows. □
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Corollary 24.7. Let G be a pro-p-group which is Poincaré of dimension n and let U ≤ G be an
open subgroup. Then

(1) corestriction induces an isomorphism Hn(U,Fp) ≃ Hn(G,Fp),
(2) U is also Poincaré of dimension n.

Proof. For the first property we recall that

Hn(U,Fp) ≃ Hn(G, coindGU (Fp))

and that the corestriction map is induced by the surjection coindGU (Fp) → Fp of Construc-
tion 21.8. Using Proposition 24.6, the corestriction map on top cohomology can be identified
(by choosing an isomorphism Hn(G,Fp) ≃ Fp) with the linear dual of

H0(G,Fp)→ H0(G, coindGU (Fp)
∗) ≃ H0(G,Fp[G/U ])

induced by the map Fp ↪→ Fp[G/U ] defined by 1 7→
∑

g∈G/U g. This map is an isomorphism on
invariants, as needed.

We move on to the second property. By the first part, we know that Hn(U,Fp) is one-
dimensional and we are left with verifying the non-degeneracy of the cup product. By Re-
mark 20.11, there’s a canonical self-duality isomorphism

coindGU (Fp)
∗ ≃ indGU (Fp)

∗ ≃ coindGU (Fp)

under which the cup product pairing

Hk(U,Fp)×Hn−k(U,Fp)→ Hn(U,Fp)

gets identified with the pairing

Hk(G, coindGU (Fp))×Hn−k(G, coindGU (Fp))→ Hn(G,Fp)

This is a perfect pairing by Proposition 24.6, giving the needed claim. □

Remark 24.8 (Poincaré duality interchanges restriction and corestriction). Suppose that G is
a Poincaré pro-p group of dimension n and that we fix an isomorphism Hn(G,Fp) ≃ Fp. In this
case, by Proposition 24.6, for any discrete G-module V in finite-dimensional Fp-vector spaces,
the cup product induces a duality isomorphism

Hk(G,V ) ≃ Hn−k(G,V ∗)∗.

If U ≤ G is an open subgroup, then by Lemma 22.24 corestriction induces an isomorphism
Fp ≃ H∗(G,Fp) ≃ Hn(U,Fp), and we similarly have duality in cohomology of U . Thus, applying
linear duals to the restriction homomorphism we obtain for each k ∈ Z a canonical map

Hk(U, V ) ≃ Hn−k(U, V ∗)∗ Hn−k(G,V ∗)∗ ≃ Hk(G,V )res∗

As a consequence of Lemma 22.24, this map can be identified with the corestriction homomor-
phism in cohomology.

To extend the duality in cohomology of Proposition 24.6 from Fp-vector spaces to arbitrary
p-torsion coefficients, we will need a more refined notion of duality in coefficients than just the
linear duality of vector space. This duality is given by a G-equivariant version of Pontryagin
duality.

The construction of the needed self-duality of the category of coefficients rests on the notion of
a dualizing module, which exists more generally for profinite group of p-cohomological dimension
n. This is a discrete G-module I which, informally, represents the functor

M 7→ Hn(G,M)

on the category of p-torsion G-modules. As stated, this does not quite make sense, since the
cohomology functor is covariant in the module, but any functor represented by an object is
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necessarily contravariant. To fix this discrepency, we will make use of Pontryagin duality in
p-torsion abelian groups, which we now recall.

Recollection 24.9 (p-torsion Pontryagin duality). In the category of p-local abelian groups,
the group

Z/p∞ ≃ lim−→Z/pk ≃ Qp/Zp

is an injective cogenerator; that is, it is injective and any object embeds into a sufficiently large
product of Z/p∞. The classical Pontryagin daulity theorem shows that the functor

HomAb(−,Z/p∞) : (Abω(p))
op → Abω(p)

is a self-duality (that is, a contravariant autoequivalence) of the category of finite abelian p-
groups. If A is a p-torsion abelian group, we write

A∗ := HomAb(A,Z/p∞)

for its Pontryagan dual.

Example 24.10. Since the simple p-torsion subgroup of Z/p∞ is given by Z/p ≃ Fp, if A is an
Fp-vector space, then its Pontryagin dual as an abelian group can be identified with its linear
dual; that is

A∗ ≃ HomFp
(A,Fp).

Remark 24.11. Using the simple calculation that

HomAb(Z/pk,Z/p∞) ≃ Z/pk

and classification of finite abelian groups, one can show that for any finite p-local abelian group
there exists a non-canonical isomorphism

A ≃ A∗.
Taking into account Example 24.10, this extends the familiar fact that any finite-dimensional
vector space is non-canonically isomorphic to its linear dual.

Definition 24.12. Let G be a profinite group of p-cohomological dimension n. A (p-typical)
dualizing module is a discrete G-module I representing the functor

M 7→ Hn(G,M)∗ ≃ HomAb(H
n(G,M),Z/p∞)

on the category of p-torsion discrete G-modules.

Note that to represent a functor is an additional structure rather than a property. In more
detail, a dualizing module is a discrete G-module I together with a map

α : Hn(G, I)→ Z/p∞

such that for any p-torsion M , composition with α yields a bijection

HomModG(Ab)(M, I) ≃ Hn(G,M)∗

Proposition 24.13. Let G be a profinite group of p-cohomological dimension at most n. Then
a dualizing module I for G exists.

Proof. Let us denote by
Modp−torsG (Ab) ⊆ModG(Ab)

the full subcategory spanned by p-torsion discrete G-modules. This subcategory is closed under
extensions, quotients, kernels and direct sums, so that it is a localizing subcategory. In particular,
it is itself Grothendieck abelian and hence presentable.

In any presentable category, a functor is representable if and only if it takes colimits to limits.
Thus, we have to verify that

M 7→ HomAb(H
n(G,M),Z/p∞).
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takes colimits to limits. Since HomAb(−,Z/p∞) has this property, it’s enough to check that

Hn(G,−) : Modp−torsG (Ab)→ Ab

preserves colimits. By Corollary 20.23, it preserves filtered colimits, so it’s enough to verify that
it is right exact. If

0→ A→ B → C → 0

is a short exact sequence of p-torsion discrete G-modules, then the long exact sequence of coho-
mology ends in

. . .→ Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ 0

by the assumption that G is of cohomological dimension n. This shows that Hn(G,−) is right
exact, as needed. □

Example 24.14. We recall the fact previously used in Example 21.18 that for p-torsion discrete
Zp-modules, their group cohomology can be calculated as the cohomology of the cochain complex

M M
1−σ

,

where σ ∈ Zp is the topological generator. Since (−)∗ is exact, we deduce that

HomModZp (Ab)(M, I) ≃ H1(Zp,M)∗

can be calculated as the kernel of
M∗ M∗

1−σ
.

If M is a finite discrete G-module, then so is M∗, and we can rewrite this as

HomModZp (Ab)(M, I) ≃ H0(Zp,M
∗) ≃ HomAb(M,Z/p∞)Zp ≃ HomModZp (Ab)(M,Z/p∞).

It follows that for G = Zp, the dualizing module is given by Z/p∞, equipped with the trivial
G-action.

We now show that Example 24.14 is somewhat typical; namely, that a dualizing module of
a Poincaré pro-p group G is isomorphic as an abelian group Z/p∞ (possibly with a non-trivial
G-action). The first step is to verify that formation of dualizing modules is compatible with
passing to open subgroups.

Lemma 24.15. Let G be a cohomological group of p-cohomological dimension at most n. Then
for any open subgroup U ≤ G, the restriction resGU (I) of the dualizing module for G is the
dualizing module for U .

Proof. Let A be a finite p-local discrete U -module. Then

Hn(U,A)∗ ≃ Hn(G, coindGU (A))
∗ ≃ HomModG(Ab)(coind

G
U , I)) ≃ HomModU (Ab)(U, res

G
U (I)),

where we use that for open subgroups, the coinduction functor is also left adjoint to restriction,
as observed in Remark 20.11. □

Lemma 24.16. Let G be an Poincaré pro-p-group. Then for any finite p-local discrete G-module
A, the groups Hk(G,A) are finite.

Proof. This is immediate from Lemma 24.5, Lemma 21.13 and the long exact sequence of coho-
mology. □

Lemma 24.17. Let G be a pro-p Poincaré group of dimension n and for each k ∈ Z consider
the functor

A 7→ Tk(A) := lim←−Hk(U,A),

where the limit is taken over the poset of open normal subgroups U◁G along corestriction maps.
Then

(1) Tk(A) vanishes for k ̸= n and all A,
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(2) A 7→ Tn(A) is exact.

Proof. As a consequence of Lemma 24.16 and Corollary 24.7, the groups Hk(U,A) are finite for
each k ∈ Z and each open normal subgroup U . It follows that for each k and each A, the diagram
Hk(−, A) satisfies the Mittag-Leffler condition and thus the derived functors of the limit vanish.
We deduce that a short exact sequence of modules induces a long exact sequences of functors
Tk. This implies that the second part of the claim will follow from the first.

Using the long exact sequence and Lemma 21.13, it is enough to verify the vanishing of Tk(Fp)
for k ̸= n. We have

Tk(Fp) ≃ lim−→Hk(U,Fp) ≃ lim−→Hn−k(U,Fp)
∗ ≃ (lim−→Hn−k(U,Fp))

∗,

where the colimit on the right is taken over restriction homomorphism, where we use that
Poincaré duality interchanges restriction and corestriction as observed in Remark 24.8. We have

lim−→Hn−k(U,Fp) ≃ lim−→Hn−k(G, coindGU (Fp)) ≃ Hn−k(G, coindG1 (Fp)) ≃ Hn−k(1,Fp)

which vanishes unless k = n, ending the argument. □

Theorem 24.18. Let G be a profinite group of cohomological dimension n which has an open
subgroup which is a Poincaré pro-p-group. Then the the dualizing module I of G is isomorphic,
as an abelian group, to Z/p∞.

Proof. By Lemma 24.15, formation of the dualizing module is compatible with passing to open
subgroups, so that we can assume that G itself is pro-p. By another application of this result, if
A is a finite p-local discrete G-module, then

Hn(U,A) ≃ HomModU (Ab)(A, I)
∗.

Passing to the limit over the poset of open subgroups along the corestriction maps, we see that

Tn(A) ≃ (lim−→HomModU (Ab)(A, I))
∗ ≃ HomAb(HomAb(A, I)),Z/p∞),

where the left hand side is the functor appearing in Lemma 24.17. This is exact, and since Z/p∞
is an injective cogenerator of of p-local abelian groups, we deduce that

A 7→ HomAb(A, I)

is exact. It follows that I is injective.
As I is injective, the map p : I → I is surjective, and as it is p-torsion by construction, to

verify that I ≃ Z/p∞ as abelian groups it is enough to verify that

HomAb(Fp, I) ≃ Fp.

Since G is Poincaré, we have Hn(U,Fp) ≃ Fp for all open subgroups by Corollary 24.7, and thus

Fp ≃ Tn(Fp) ≃ HomAb(HomAb(Fp, I)),Z/p∞)

which gives the needed result. □

For groups whose dualizing module is isomorphic to Z/p∞, such as Poincaré pro-p groups,
Pontryagin duality has the following G-equivariant variation:

Definition 24.19. Let G be a group whose dualizing module I is isomorphic as an abelian
group to Z/p∞. If A is a finite p-local discrete G-module, its G-Pontryagin dual is given by

A∗G := HomAb(A, I),

with action defined by
(g · f)(a) = g · f(g−1a).
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Remark 24.20. The Pontryagin dual of Definition 24.19 can be identified with the internal
Hom in discrete G-modules; that is, the right adjoint to the tensor product. It has the property
that

(A∗G)U ≃ HomModU (Ab)(A, I)

for any open subgroup U . More generally, the same formula defines the internal Hom whenever
A is finitely generated.13

It follows from the corresponding properties of Pontryagin duality that the functor ∗G defines
an exact contravariant equivalence from the category of finite p-local discrete G-modules to itself.
Moreover, there is a canonical isomorphism

A ≃ (A∗G)∗G .

Remark 24.21. If G is pro-p group satisfying the conditions of Definition 24.19, then the simple
p-torsion subgroup

I[p] ≃ (Z/p∞)[p] ≃ Z/p
is necessarily acted on trivially by G. It follows that a choice of an isomorphism I[p] ≃ Fp yields
for any discrete G-Fp-vector space V an isomorphism

V ∗G ≃ V ∗ ≃ HomFp
(V,Fp)

In other words, for pro-p groups, G-Pontryagin duality is essentially equivalent to the usual
linear duality of vector spaces.

The notion of a G-equivariant Pontryagin dual is important, as cohomology of A and its dual
are naturally related by a bilinear pairing:

Construction 24.22. Let G be a profinite group whose dualizing module I is isomorphic to
Z/p∞ as an abelian group. If A is a discrete G-module in finite abelian p-groups, then the map
A×A∗G → I defined by

a× f 7→ f(a)

induces a map of G-modules
A⊗Z A

∗G → I.

For any k we obtain a bilinear pairing as a composite

Hk(G,A)×Hn−k(G,A∗G)→ Hn(G,A⊗Z A
∗G)→ Hn(G, I)→ Z/p∞.

This yields a map
Hn−k(G,A∗G)→ Hk(G,A)∗,

where the right hand side is the classical Pontryagin dual of the cohomology group.

If G is pro-p, by Proposition 24.6 linear duality of Fp-vector spaces gives a duality in co-
homology. Since the latter is a special case of G-Pontryagin duality by Remark 24.21, it is
not unreasonable to expect that the latter yields a duality in cohomology with more general
coefficients. This is indeed the case, and it characterizes Poincaé pro-p groups as we now show:

Theorem 24.23. Let G be a pro-p group of cohomological dimension n whose dualizing module
is isomorphic as an abelian group to Z/p∞. Then the following are equivalent:

(1) G is Poincaré of dimension n in the sense of Definition 24.1,

13Beware that HomAb(A, I) is not necessarily the internal Hom in discrete G-modules if A is not finitely
generated. For example

HomAb(mapcts(G,Fp),Fp) ≃ FpJGK,

which is not discrete as a G-module. In general, the internal Hom is given by the submodule of HomAb consisting
of those vectors which are stabilized by some open subgroup.
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(2) the map of Construction 24.22 induces an isomorphism

Hn−k(G,A∗G)→ Hk(G,A)∗,

for any discrete G-module A in finite abelian p-groups.

Proof. The argument for (1 ⇒ 2) is essentially the same as in Proposition 24.6, using that
A 7→ A∗G is exact since I is injective as an abelian group and that any finite p-local discrete
G-module can be obtained by iterated extensions from Fp.

We now argue that (2 ⇒ 1) by verifying the two conditions of Definition 24.1. Observe that
we have isomorphisms

F∗Gp ≃ HomAb(Fp, I) ≃ I[p]
and that all three have trivial G-actions since they’re one-dimensional and G is pro-p. By
assumption, we have

I[p] ≃ H0(G, I[p]) ≃ H0(G,F∗Gp ) ≃ Hn(G,Fp)

so the latter is one-dimensional as needed, verifying the first condition.
For the second condition, observe that

Hn(G, I[p])→ Hn(G, I)→ Z/p∞

the composite is non-zero, or else the pairing of Construction 24.22 would be zero for all Fp-
vector spaces. Since the source is one-dimensional by the previous paragraph, the composite
induces an isomorphism

Hn(G, I[p]) ≃ (Z/p∞)[p].

Since the pairing of Construction 24.22 is perfect by assumption, it follows that the pairing of
Fp-vector spaces

Hk(G,Fp)×Hn−k(G, I[p])→ Hn(G, I[p])

is also perfect. Since I[p] ≃ Fp as G-modules, this implies the same for the cup product pairing

Hk(G,Fp)×Hn−k(G,Fp)→ Hn(G,Fp),

which is what we wanted to show. □

Using the above result, we can extend the notion of being Poincaré to general profinite groups:

Definition 24.24. We say a profinite group G is Poincaré of dimension n (at a prime p) if:
(1) it is of cohomological dimension n,
(2) the dualizing module I is isomorphic to Z/p∞ as an abelian group,
(3) the pairing of Construction 24.22 induces an isomorphism

Hn−k(G,A∗G)→ Hk(G,A)∗,

for any discrete G-module A in finite abelian p-groups.

Warning 24.25. If G is pro-p, then the above definition of Poincaré group is equivalent to
the one we gave in Definition 24.24 as a consequence of Definition 24.24. In other words, for
pro-p groups, Poincaré duality is detected by the non-degeneracy of the cup product in mod p
cohomology.

Beware that this is not true for general profinite groups. For a concrete example, let us
identify the cyclic group Cp−1 ≤ Z×p with the subgroup of (p − 1)-th roots of unity. This acts
on Zp by multiplication and we can consider the semi-direct product

G := Zp ⋊ Cp−1.

Since Cp−1 is of order coprime to p, the Lyndon-Hochschild-Serre spectral sequence of Construc-
tion 21.5 collapses and we see that

H∗(G,Fp) ≃ H∗(Zp,Fp)
Cp−1 .
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Since H1(Zp,Fp) is generated by the quotient map Zp → Fp (under the description of Exam-
ple 20.22), it is acted on non-trivially by the roots of unity, so that H∗(G,Fp) vanishes in positive
degrees. Despite this, G is not a Poincaré group of dimension zero.

As the last part of today’s class, we describe how the property of being Poincaré interacts
with passing to open subgroups:

Lemma 24.26. Let G be profinite group of cohomological dimension n and let U ≤ G be an
open subgroup. Then the following are equivalent:

(1) G is Poincaré of dimension n,
(2) U is Poincaré of dimension n.

Warning 24.27. In the context of Lemma 24.26, beware that it is important to assume that G
is of finite cohomological dimension. For example, the cyclic group Cp has the trivial group as
an open subgroup, which is necessarily Poincaré of dimension zero. However, Cp is not of finite
cohomological dimension by the calculation of Example 21.15, so in particular it is not Poincaré.

Proof of Lemma 24.26: By Lemma 21.4, U is also of cohomological dimension at most n. By
Lemma 24.15, G has a dualizing module isomorphic as an abelian group to Z/p∞ if and only if
U does. Thus, we only need to verify that the third condition of Definition 24.24 holds for G if
and only if it holds for U .

First assume that it holds for G. If A is a discrete U -module in finite abelian p-groups, then
H∗(U,A) ≃ H∗(G, coindGU (A)) by Shapiro’s Lemma 20.15. Moreover, the map

Hn−k(U,A∗U )→ Hk(U,A)∗

can be identified with

Hn−k(G, (coindGU (A))
∗G)→ Hk(G, coindGU (A))

∗

and so it is an isomorphism.
Now suppose that U is Poincaré and let A be a discrete G-module in finite abelian p-groups.

Since they are given by Ext-groups, in terms of the derived ∞-category of §22, the cohomology
groups can be identified

H∗(G,A) ≃ π−∗(mapĎ(ModG(Ab))(Z, A)).

In these terms, the map of Construction 24.22 is obtained by applying π−∗(−) to a map of
spectra

(24.2) mapĎ(ModG(Ab))(Z, A
∗G)→ mapD(Z)(mapĎ(ModG(Ab))(Z, A),Z/p

∞).

We denote the cofibre of this map by C(A); we want to show that it is zero. By construction, it
has homotopy concentrated in degrees −n ≤ k ≤ 1.

Since both the source and target of (24.2) do, the construction A 7→ C(A) takes short exact
sequences of modules to cofibre sequences of spectra. Consider the short exact sequence

0→ A→ coindGU (A)→ coindGU (A)→ 0,

where the underline denotes the cokernel of the first map. Since the pairing on G-cohomology
of coindGU (A) can be identified with the pairing on U -cohomology of A which is an isomorphism
by assumption, we deduce that C(coindGU (A)) = 0 and thus

C(coindGU (A)) ≃ ΣC(A).

Iterating this we see that
C((coindGU )

n+2(A)) ≃ Σn+2C(A).

Since the left hand side has homotopy in degrees −n ≤ k ≤ 1 and the right hand side (as an
(n + 2)-fold suspension) in degrees 2 ≤ k ≤ n + 3, we deduce that they are both zero, ending
the argument. □
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25. Cohomology of p-adic analytic groups

In this lecture, we will prove a theorem of Lazard that uniform groups have very simple mod
p cohomology; in particular, they are Poincaré groups. Since any compact p-adic analytic group
has a normal open uniform subgroup, this gives an efficient way of calculating their cohomology
in general, by first calculating the cohomology of a uniform subgroup and then using the Lyndon-
Hochschild-Serre spectral sequence.

Theorem 25.1 (Lazard). Let G be a uniform pro-p-group. Then the inclusion of elements of
cohomological degree one induces an isomorphism

H∗(G,Fp) ≃ ΛFp
H1(G,Fp)

between the cohomology algebra and the exterior algebra on the first cohomology group.

Using the work of Serre on cohomology of profinite groups, we deduce the following:

Corollary 25.2. Let G be a compact p-torsion-free p-adic analytic group. Then G is a Poincaré
group of cohomological dimension equal to its dimension as a p-adic manifold.

Proof. First assume thatG is uniform, so that its dimension is equal to its rank. As a consequence
of Theorem 6.9, a rank of a powerful pro-p-group is equal to the cardinality of a minimal
generating set, which by Lemma 21.20 is equal to the dimension of H1(G,Fp). It follows that
Hrk(G)(G,Fp) is one-dimensional. Since in an exterior algebra the products are non-degenerate,
the statement follows from Theorem 25.1 and Theorem 24.23.

If G a general compact p-adic analytic group, then it has a finite index open uniform subgroup
U ≤ G of rank equal to the dimension of G by Theorem 19.11. It follows from the previous
paragraph that U is Poincaré. Since G is p-torsion-free, it is of the same cohomological dimension
as U by Serre’s Theorem 23.1. It follows that it is also Poincaré by Lemma 24.26. □

We first describe the general idea leading to the proof of Theorem 25.1. If G is a finite
group, then G-modules in Fp-vector spaces can be identified with left modules over the group
algebra Fp[G]. Similarly, if G is profinite, then a discrete G-module determines a module over
the completed group algebra FpJGK ≃ lim←−Fp[G/U ], and this functor is fully faithful14. Using
this correspondence, discrete G-modules can be studied by applying ring-theoretic techniques to
the completed group algebra.

In §15, we described a canonical filtration on the completed group algebra of a uniform
group, and we had shown that the associated graded ring has a very regular structure. Any
multiplicative filtration on a ring determines a spectral sequence relating the Ext-groups of the
ring itself with the associated graded. In this lecture, we apply a variation on this spectral
sequence to calculate the cohomology of uniform groups.

The bulk of this lecture is devoted to the construction of a convergent spectral sequence. The
methods we employ work in vast generality, but for concreteness we focus on the case of finitely
generated pro-p-groups and the augmentation ideal filtration, making the following convention:

Notation 25.3. Throughout this lecture, G denotes a finitely generated pro-p-group,

FpJGK := lim←−Fp[G/Gk]

denotes the completed group algebra, and

I := ker(FpJGK→ Fp)

denotes the augmentation ideal.

14The inclusion of discrete G-modules into left FpJGK-modules is fully faithful, but not an equivalence of
categories unless G is finite. For example, if G is infinite then FpJGK itself is not induced from any discrete
G-module.
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The most natural method of constructing and manipualting spectral sequences is to use the
language of filtered objects in stable ∞-categories, which we now recall.

Notation 25.4. If X ∈ D(Fp) is an object of the derived ∞-category of Fp, we use the
homotopical notation and write

πk(X) := (X≥0)≤0 ∈ D(Fp)
♡ ≃ VectFp

for its homotopy groups with respect to the standard t-structure. This notation is justified by
the fact that D(Fp) can be identified with Fp-modules in spectra, and in these terms πk(X) is
really the k-th homotopy group of the underlying spectrum.

Note that in terms of the classical description of D(Fp) using chain complexes, πk(−) corre-
sponds to the k-th homology group.

Definition 25.5. A filtered complex is a functor of ∞-categories X : Zop → D(Fp), where we
consider Z as a poset. The filtered derived ∞-category

Dfil(Fp) := Fun(Zop,D(Fp))

is the ∞-category of filtered complexes and natural transformations.

Concretely, a filtered complex can be identified with a diagram

. . .→ X1 → X0 → X−1 → . . .

where Xi ∈ D(Fp) and the arrows are in the derived ∞-category.

Recollection 25.6 (Local grading). The filtered derived ∞-category has a canonical self-
equivalence (−)(1) := Dfil(Fp)→ Dfil(Fp) induced from the function −+ 1 · Z→ Z, concretely
given by

X(1)n := Xn−1

We refer to X(i) as shifts of X.

Recollection 25.7. There are two important objects one can associate to a filtered complex:
(1) the associated graded object

grp(X) := cofib(Xp+1 → Xp),

which we can identify with a functor Zds → D(Fp), where Zds denotes the category of
integers with only identity morphisms,

(2) the colimit
lim−→X := lim−→ (. . .→ X1 → X0 → X−1 → . . .)

which is an object of D(Fp).
Both of these constructions are exact and preserve colimits. Moreover, they are jointly conser-
vative; that is, if gr∗(X) = 0 and lim−→X = 0, then X = 0.

Recollection 25.8 (The spectral sequence). Associated to a filtered complex X we have a
spectral sequence of Fp-vector spaces with first page

Ep,q
1 = πp+q(grp(X))

and differentials of degree
dr : E

p,q
r → Ep+r,q−r−1

r .

If we assume that there exists a N ∈ Z such that Xn = 0 for n ≥ N , this is a convergent spectral
sequence of signature

Ep,q
1 ⇒ πp+q(lim−→X).

For details on this construction, see [Lur17, §1.2.2].
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In our case, the relevant filtered object will arise from a resolution of a module over a filtered
ring. To discuss the latter, we recall the symmetric monoidal structure on the filtered derived
∞-category.

Recollection 25.9 (Tensor product of filtered complexes). The filtered derived ∞-category
Dfil(Z) has a canonical symmetric monoidal structure induced by left Kan extension from that
the (derived) tensor product of complexes and the abelian group structure of Z. Concretely, the
filtered tensor product is given by the formula

(X ⊗ Y )n := lim−→Xk ⊗Z Yl

where the colimit is taken over the poset

(Zop × Zop)−/n = {(a, b) ∈ Zop × Zop | a+ b ≥ n}.

Recollection 25.10. With respect to the tensor product of filtered complexes, both the colimit
functor

lim−→ : Dfil(Fp)→ D(Fp)

and the associated graded object

gr : Dfil(Z)→ Fun(Zds,D(Fp))

are symmetric monoidal, where we equip the∞-category Fun(Zds,D(Fp)) of graded objects with
the graded tensor product given by

(X ⊗ Y )n :=
⊕
k∈Z

Xk ⊗ Yn−k.

Example 25.11. Suppose that R is an Fp-algebra and that I ≤ R is a two-sided ideal. Then,
the filtered complex defined by the formula

FIRn :=

{
In n ≥ 0

R otherwise,

where we think of each In ⊆ R as an element of the heart D(Fp) ≃ VectFp
, admits a unique

structure of an associative algebra such that the obvious isomorphism

lim−→FIRn ≃ R

is an isomorphism of algebras. The associated graded object is given by the associated graded
algebra

grn(FIR) ≃

{
In/In+1 k ≥ 0

0 otherwise,

Moreover, if M is a a left R-module, then the formula

FIM :=

{
InM n ≥ 0

M otherwise,

with In ⊆M the submodule generated by In ·M , defines a left module over FIR in the filtered
derived ∞-category.

In our case, we will work with the filtered ring defined by the completed group algebra.

Construction 25.12. Let FpJGK be the completed group algebra, considered as a filtered ring
using the I-adic filtration, where I is the augmentation ideal. As in Example 25.11, FpJGK
defines an associative algebra object of the filtered derived ∞-category, so that we have the
associated ∞-category of left modules. The forgetful functor

ModFI(FpJGK)(D
fil(Fp))→ Dfil(Fp)
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admits a right adjoint given by the cofree module construction

X ∈ Dfil(Fp) 7→ map(FI(FpJGK), X)

where map is the internal mapping object of the filtered derived ∞-category, concretely given
by

map(FI(FpJGK), X)n ≃ mapDfil(Fp)(FI(FpJGK)(n), X),

the mapping spectrum from a shift by the local grading as in Recollection 25.6.

We now show that on the class of filtered modules which are bounded from above in the
Beilinson t-structure, Construction 25.12 can be identified with a filtered refinement of the
coinduced discrete G-module construction

M 7→ coindG1 (M) ≃ mapcts(G,M),

relating it to continuous group cohomology. This is not obvious, since a naive guess might be that
since we work with the completed group algebra, we would instead obtain a filtered refinement
of

M 7→ HomFp
(FpJGK,M),

which is a different functor if G is infinite.
This automatic continuity essentially follows from the following consideration. Suppose that

M is non-positively filtered vector space together with a module structure over FpJGK compatible
with the I-adic filtration. Then, since

Ik+1 ·Mk ⊆M−1 = 0

we see that in any given degree, the action factors through that of FpJGK/Ik+1. It follows that
the induced action of G is continuous if we equip M with the discrete topology.

In practice, even though we are essentially only interested in filtered vector spaces, the cate-
gory of the latter has somewhat pathological properties (for example, it is not abelian), so that
it is easier to work with filtered complexes in the sense of Definition 25.5. Our argument will
essentially be a derived version of the one sketched in the previous paragraph.

Recollection 25.13. A filtered complex X is Beilinson connective if grn(X) ∈ D(Fp)≥−n for
all n. It is Beilinson coconnective if Xn ∈ D(Fp)≤−n for all n ∈ Z. The pair of subcategories

(Dfil(Fp)≥0,D
fil(Fp)≤0)

of Beilinson (co)connective objects defines a pair t-structure on the filtered derived ∞-category,
see [BMS19, §5.1].

Example 25.14. Let V∗ be a non-positively filtered vector space, which we can identify with a
filtered complex

V0 ↪→ V−1 ↪→ . . .

which is levelwise contained in the heart and which vanishes in positive degrees. Then V∗ is
Beilinson coconnective.

Lemma 25.15. For each k ≥ 0, let FI(FpJGK/Ik) denote the I-adic filtration on FpJGK/Ik.
Then for any filtered complex X which is bounded above ewith respect to the Beilinson t-structure:

(1) the quotient maps induce an equivalence

lim−→
k

map(FI(FpJGK/Ik), X) ≃ map(FI(FpJGK), X)

of filtered complexes
(2) for any k ≥ 0, the canonical map

lim−→map(FI(FpJGK/Ik, X)→ mapFp
(FpJGK/Ik, lim−→X)

is an equivalence in D(Fp).
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Proof. Since map(−, X)n ≃ map(,X(−n)), and a shift of a Beilinson bounded above filtered
complex is again bounded above, it’s enough to verify the claim on ordinary mapping spectra;
that is, to check that

lim−→
k

map(FI(FpJGK/Ik), X) ≃ map(FI(FpJGK), X).

By shifting X if necessary, we can assume that it is 0-coconnective. We claim that in this
case for each k ≥ 0, the map

(25.1) map(FI(FpJGK/Ik), X)→ map(FI(FpJGK), X)

has a −k-coconnective cofibre. Thus, as k goes to ∞, it becomes an equivalence, as needed. We
have a cofibre sequence of filtered complexes

(. . .→ Ik+2 → Ik+1 → Ik → Ik . . .)→ FI(FpJGK)→ FI(FpJGK/Ik)

The left hand term is (−k)-Beilinson connective. It follows from t-structure axioms that

map(. . .→ Ik+2 → Ik+1 → Ik → Ik . . . , X)

is (−k)-coconnective as a spectrum. Since this mapping spectrum can be identified with the
cofibre of (25.1), this ends the proof of the first part.

For the second part, we observe that since FI(FpJGK/Ik) vanishes in sufficiently high degrees
and has finite-dimensional associated graded concentrated in degrees k ≥ i ≥ 0, it can be
obtained in finitely many extensions from positive shifts of the free filtered complex generated
in degree zero, which is of the form

. . .→ 0→ 0→ Fp → Fp → . . .

It follows that FI(FpJGK/Ik) is compact as an object of Dfil(Fp) which implies the claim. □

Using Lemma 25.15, we now relate the category of filtered FI(FpJGK)-modules to the derived
∞-category of discrete G-modules.

Construction 25.16. The forgetful functor from discrete G-modules in Fp-vector spaces gives
rise an adjunction

D(ModG(VectFp
)) ⇄ D(Fp).

The left adjoint is conservative15, so that we can identify the source with the ∞-category of
algebras for the associated comonad, which we can identify with the derived functor of the
comonad

mapcts(G,−) ≃ Homcts
Fp

(FpJGK,−) ≃ lim−→HomFp
(FpJGK/Ik,−)

on vector spaces. Using the last description, we see that D(ModG(VectFp
)) can be identified

with coalgebras for the comonad on D(Fp) defined by

lim−→mapD(Fp)(FpJGK/Ik,−)

By Lemma 25.15, if X is a FI(FpJGK)-module which is bounded above in the Beilinson t-
structure, then its colimit has a canonical structure of a coalgebra for this comonad. It follows
that the colimit functor can be refined to a functor U which makes the diagram

ModFI(FpJGK)(D
fil(Fp)<∞) D(ModG(Fp))

Dfil(Fp) D(Fp)

U

lim−→

15The conservativity of the left adjoint follows since it is a derived functor of ModG(VectFp ) → VectFp , which
is conservative. This would not be true if we work with the unseparated variant of the derived ∞-category of
discrete G-modules as in §22; that is, the functor Ď(ModG(VectFp )) → Ď(Fp) ≃ D(Fp) is not conservative.
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commute, where both of the vertical arrows are forgetful functors and

Dfil(Fp)<∞ :=
⋃
n∈Z

Dfil(Fp)≤n

is the Beilinson bounded above filtered derived ∞-category.

Remark 25.17. More informally, ModFI(FpJGK)(D
fil(Fp)<∞) can be thought of as a filtered

variant of the derived ∞-category of discrete G-modules, where the behaviour of stabilizers is
controlled by the filtration. In this picture, the functor U of Construction 25.16 is akin to
forgetting the filtration.

If M is a discrete G-module in vector spaces, we can consider it as an object of the heart
of D(ModG(VectFp

)), in which case the homotopy groups of the mapping spectrum out of Fp

encode cohomology in the sense that

Hk(G,M) ≃ ExtkModG(VectFp )
(M,N) ≃ π−kmapD(ModG(VectFp ))

(M,N).

We now show that if M is equipped with a filtration which makes it into a FI(FpJGK)-module,
we can use the comparison functor U to provide a filtered refinement of this mapping spectrum
and hence a spectral sequence.

Definition 25.18. A filtered discrete G-module M is a diagram

M0 ↪→M−1 ↪→M−2 ↪→ . . .

of discrete G-modules such that the induced FpJGK-action makes it into FI(FpJGK)-module; that
is, such that

Ik ·Mn ⊆Mn+k

for all n, k

Example 25.19. The trivial G-module Fp can be promoted to a filtered discrete G-module by
equipping with the constant filtration

Fp ↪→ Fp ↪→ Fp ↪→ . . . .

The underlying filtered complex is the free one generated in degree zero.

If M is a filtered discrete G-module, then it gives rise to a filtered complex contained levelwise
in the heart and vanishing in positive degrees. The condition on the action of G guarantees that
the FpJGK-action makes it into a FI(FpJGK)-module. This determines a fully faithful functor
of ∞-categories so that we abusively identify filtered discrete G-modules with a subcategory of
modules in filtered complexes. In these terms, we can give one more natural example.

Example 25.20. Let V be a non-positively filtered vectored spaces thought of as a filtered
complex as in Example 25.14. Then the internal mapping object

mapDfil(Fp)(FI(FpJGK), V )

is a filtered discrete G-module. Unwrapping the proof of Lemma 25.15, we see that it can be
identified with the coinduced G-module mapcts(G,V ) with filtration which is in degree n given
by the subvector space spanned by the images of the maps

HomFp
(FpJGK/Ik+n, Vk)→ mapcts(G,V )

for all k ∈ Z. This is the filtered analogue of the coinduced module construction.

Associated to a filtered discrete G-module we have an internal mapping object defined by

map
ModFI

(FpJGK)
(Fp, X)n ≃ mapModFI

(FpJGK)(Fp(n), X),

where the right hand side is the mapping spectrum in modules and Fp denotes the constant
filtered module of Example 25.19. Since both the source and target are bounded above in the
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Beilinson t-structure, Construction 25.16 induces a map from the colimit of this filtered spectrum
into the mapping spectrum in the derived ∞-category.

Proposition 25.21. For any filtered discrete G-module X the canonical map

lim−→map
ModFI

(FpJGK)
(Fp, X)→ mapD(ModG(VectFp ))

(Fp, X)

is an equivalence of spectra.

Proof. Since the underlying filtered complex of Fp is free in degree zero, the internal filtered
mapping spectrum in FI(FpJGK)-modules appearing on the left hand side can be identified with
limit in filtered spectra of the cobar cosimplicial diagram

X C(X) C2(X) . . .

where
C(−) = map

Dfil(Fp)
(FI(FpJGK),−)

Here, each of Ck(X) is a non-negatively filtered vector space with underlying vector space
lim−→Ck(X)n ≃ mapcts(G

×k, X) as in Example 25.20.
Since the homotopy groups of the totalization of a cosimplicial vector space, considered as as

a cosimplicial spectrum levelwise contained in the heart, corresponds to the cohomology of the
corresponding cochain complex, we have

π−kmap
ModFI

(FpJGK)
(Fp, X)n ≃ Hk(Xn → C(X)n → C2(X)n → . . .).

Since cohomology commutes with filtered colimits, we deduce that the homotopy groups of the
left hand side in the statement can be calculated as the cohomology of the cochain complex

X → mapcts(G,X)→ mapcts(G
×2, X)→ . . . .

This is the group cochain complex which also calculates the homotopy of the right hand side by
Proposition 20.19. □

More informally, Proposition 25.21 guarantees that if X is a discrete G-module, then a filtra-
tion on X satisfying the conditions of Definition 25.18 induces a filtration on its group cochain
complex and hence a spectral sequence calculating its cohomology through Recollection 25.8.

This filtration can be presented very explicitly in terms of group cochains using Example 25.20.
The advantage of our categorical approach is that the filtration comes out of very abstract
considerations. This makes it quite easy to describe the first page of the associated spectral
sequence; equivalently, the homotopy groups of the associated graded of the filtration.

Proposition 25.22. Let X be a filtered discrete G-module. Then, there is a canonical isomor-
phism

Ep,q
1 = πp+qgrp(map

ModFI
(FpJGK)

(Fp, X)) ≃ Extgr∗(FpJGK)(Fp, gr∗(X))

between the first page of the spectral sequence associated to the filtration of Proposition 25.21
and the Ext-groups in the category of graded modules over gr∗(FpJGK) ≃ I∗/I∗+1.

Proof. For any pair X,Y of filtered complexes, there’s a canonical equivalence

gr∗(map
Dfil(Fp)

(X,Y )) ≃ map
Fun(Zds,D(Fp))

(gr∗(X), gr∗(Y ))

between the associated graded of the filtered mapping spectrum and maps between associated
graded objects. If X,Y are FI(FpJGK)-modules, this becomes

gr∗(map
ModFI (FpJGK)(Dfil(Fp))

(X,Y )) ≃ map
Modgr∗(FpJGK)(Fun(Zds,D(Fp)))

(gr∗(X), gr∗(Y )).

Since the inclusion of objects contained in the heart induces an equivalence

Fun(Zds,D(Fp)) ≃ D(grVectFp
)
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and gr∗(FpJGK) is levelwise contained in the heart, we have

Modgr∗(FpJGK)(Fun(Zds,D(Fp))) ≃ D(Modgr∗(FpJGK)(grVectFp
)).

It follows that the first page of the spectral sequence can be identified with homotopy classes
of maps Fp → gr∗(X) in the derived ∞-category of modules over gr∗(FpJGK) ≃ I∗/I∗+1. The
latter can be identified with the relevant Ext-groups, as needed. □

We can summarize the discussion up to this point as follows:

Theorem 25.23. Let X be a discrete G-module in Fp-vector spaces. Then any exhaustive
filtration

X0 ↪→ X−1 ↪→ X−2 ↪→ . . .

satisfying the conditions of Definition 25.18 induces a convergent spectral sequence of signature

Ep,q
1 = Ext−p−q,pI∗/I∗+1(Fp, gr∗(X))⇒ H−p−q(G,X).

Proof. This spectral sequence is induced by the identification of Proposition 25.21. The descrip-
tion of the first page of the spectral sequence follows from Proposition 25.22. □

The rest of this lecture is devoted to the proof of Lazard’s Theorem 25.1. To recall the latter,
we want to show that if G is uniform, then the inclusion of elements of cohomological degree
one induces an isomorphism of algebras

H∗(G,Fp) ≃ ΛFpH
1(G,Fp)

Our main tool will be the spectral sequence of Theorem 25.23. The needed algebraic input is
the description of the associated graded of the completed group algebra of a uniform group.

Previously in §14, we gave a description of the p-adic completed group algebra. This can be
used to easily deduce the structure of the Fp-group algebra, which we now describe.

Proposition 25.24. If G is uniform, then the associated graded ring gr∗I(FpJGK) := I∗/I∗+1 is
commutative. Moreover, for any minimal generating set g1, . . . , gn ∈ G, the inclusion of classes
of the the elements bi := gi − 1 ∈ I induces an isomorphism

Fp[b1, . . . , bn] ≃ gr∗I(FpJGK)

between the associated graded ring and a graded polynomial algebra on classes in degree |bi| = 1.

Proof. Let ZpJGK := Zp[G/Gk] denote the p-adic completed group algebra and let

J := ker(ZpJGK→ Fp).

denote the p-adic augmentation ideal. The quotient map of rings ZpJGK → FpJGK induces an
epimorphism J ↠ I and hence an epimorphism of the associated graded rings.

We claim that for each k ≥ 1, multiplication by the class p̃ ∈ J/J2 of p ∈ J induces a short
exact sequence

Ik−1/Ik Ik/Ik+1 Jk/Jk+1 0
p̃

.

This is clearly exact on the right. We have to check that it is also exact on the middle.
Suppose that the image of x ∈ Jk vanishes in Ik/Ik+1. We have to show that the class of x in

Jk/Jk+1 is in the image of multiplication by p̃. If x ∈ Jk+1, there is nothing to be done, so let’s
assume that’s not the case. Then ∥x∥ = p−k, where ∥−∥ denotes the J-adic filtration norm.

If the image of x is zero in Ik/Ik+1, then since Jk+1 → Ik+1 is an epimorphism, we can write

(25.2) x = j + p · y

for some j ∈ Jk+1 and y ∈ ZpJGK, so that

x ≡ p · y mod Jk+1.
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By Theorem 15.5, the norm on ZpJGK extends to a norm on rationalization and since ∥x∥ = p−k,
we deduce from (25.2) that

∥y∥ = pk−1,

hence y ∈ Jk−1. Thus, x = p̃ · y in Jk/Jk+1, as needed.
We deduce that we have an isomorphism

gr∗I(FpJGK) ≃ gr∗J(ZpJGK)/p̃.

The right hand side is the degree zero-part of the associated graded of the p̃-adic filtration which
we described explicitly in Theorem 15.8 as a polynomial ring in the specified variables. This
ends the argument. □

Proof of Lazard’s Theorem 25.1: We first show that the inclusion of elements of cohomological
degree one extends to a map of graded algebras

ΛFp
H1(G,Fp)→ H∗(G,Fp).

As the target is graded-commutative, we only have to show that the elements of H1(G,Fp)
square to zero. If p > 2, this already follows from graded commutativity of the target, since

x · x = (−1) · x · x.

If p = 2, we have to work a little harder. We can identify the square operator on elements of
cohomological degree one with the Bockstein

x 7→ x2 = β(x)

associated to the short exact sequence of trivial G-modules

0→ F2 → Z/4→ F2 → 0.

Thus, we have to show that any class x ∈ H1(G,F2) lifts to a class in H1(G,Z/4). Using
Example 20.22, we can identify such an x with a homomorphism of groups G → F2, and the
claim is that any such homomorphism lifts to Z/4. Since G is powerful and p = 2, G/G4 is
abelian. As G/G2 ≃ F⊕r2 where r = H1(G,F2) is the rank, cardinality considerations and
uniformity imply that

G/G2 ≃ (Z/4)⊕r

which gives the desired claim.
By Theorem 25.23, we have a spectral sequence

Ext∗,∗I∗/I∗+1(Fp,Fp)⇒ H∗(G,Fp).

Since G is uniform, by Proposition 25.24 the graded ring I∗/I∗+1 is a polynomial algebra in r
variables of degree one, so that

Ext∗,∗I∗/I∗+1(Fp,Fp) ≃ ΛFp
(y1, . . . , yr);

an exterior algebra on classes of degree |yi| = (1, 1). We claim that this is really a spectral
sequence of algebras; that is, that

(1) the differentials satisfy the Leibniz rule,
(2) the multiplication on the first page corresponds to the Yoneda product on Ext,
(3) the E∞-page is an associated graded with respect to a multiplicative filtration on

H∗(G,Fp) considered as a ring under the cup product.
To see this, note that the spectral sequence comes from the filtered spectrum

map
ModFI

(FpJGK)
(Fp,Fp)
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This is an associative algebra in filtered spectra with respect to composition and this makes the
associated spectral sequence multiplicative. Properties two and three follow from the fact that
the identifications

lim−→map
ModFI

(FpJGK)
(Fp,Fp) ≃ mapD(ModG(VectFp ))

(Fp,Fp)

and
gr∗(map

ModFI
(FpJGK)

(Fp,Fp)) ≃ map
D(I∗/I∗+1)

(Fp,Fp)

are induced by a functor and so are similarly identifications of associative algebras under com-
position16.

Observe that the generating classes yi ∈ ExtI∗/I∗+1(Fp,Fp) are the only elements on the
first page of cohomological degree 1. Since dimFp

(H1(G,Fp)) = rank(G) = r by Lemma 21.20,
we deduce that all linear combinations of yi are permanent cycles as otherwise the E∞ page
would be too small. Since they multiplicatively generate the whole first page, we deduce that
all elements are permanent cycles so that the spectral sequence collapses.

The elements yi lift to H1(G,Fp) and since their images generate E∞ page, which is an
associated graded of H∗(G,Fp), we deduce that they generate the whole cohomology ring. It
follows that the map

ΛFpH
1(G,Fp)→ H∗(G,Fp).

is surjective and hence an isomorphism by a dimension count. □
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