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Abstract

In this paper, we discuss various “general nonsense” aspects of the geometry of
semi-graphs of profinite groups [cf. [Mzk3], Appendix], by applying the language of
anabelioids introduced in [Mzk4]. After proving certain basic properties concerning
various commensurators associated to a semi-graph of anabelioids, we show that the
geometry of a semi-graph of anabelioids may be recovered from the category-theoretic
structure of certain naturally associated categories — e.g., “temperoids” [in essence,
the analogue of a Galois category for the “tempered fundamental groups” of [André]]
and “categories of localizations”. Finally, we apply these techniques to obtain certain
results in the absolute anabelian geometry [cf. [Mzk3], [Mzk8]] of tempered fundamen-
tal groups associated to hyperbolic curves over p-adic local fields.
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Introduction

In this paper, we continue to pursue the theme of categorical representation
of scheme-theoretic geometries, which played a central role in [Mzk6], [Mzk7],
as well as in the previous anabelian work of the author [e.g., [Mzk2], [Mzk3],
[Mzk5], [Mzk8]]. The original motivation of the present work lies in the problem
of finding an appropriate and efficient way of representing, via categories, the
geometry of “formal localizations” of hyperbolic curves over p-adic local fields.
Here, we use the term “formal localizations” to refer to the localizations of the
p-adic formal completion of a stable log curve over the ring of integers of a p-adic
local field obtained by completing along the irreducible components and nodes
of the geometric logarithmic special fiber specified by some sub-semi-graph of
the “dual semi-graph with compact structure” [cf. [Mzk3], Appendix] associ-
ated to this geometric logarithmic special fiber. Since the geometry of such
formal localizations is substantially reflected in the geometry of localizations
of the semi-graph of profinite groups [cf. [Mzk3], Appendix] associated to this
geometric logarithmic special fiber, it is thus natural, from the point of view of
the goal of categorical representation of this geometry of formal localizations,
to study the geometry of this semi-graph of profinite groups. Moreover, when
working with profinite groups as “geometric objects”, it is natural to apply the
language of anabelioids introduced in [Mzk4].

The main results of this paper may be summarized as follows:

(1) In §1, we study the geometry of semi-graphs, and in particular, expose a
proof related to the author by M. Matsumoto of a sort of analogue for
certain types of morphisms of finite semi-graphs of “Zariski’s main theo-
rem” in scheme theory [cf. Theorem 1.2]. This result has some interesting
group-theoretic consequences related to the author by A. Tamagawa [cf.
Corollary 1.6]; in addition, it admits an interesting interpretation from a
more “arithmetic” point of view [cf. Remark 1.5.1].

(2) In §2, we begin our study of the geometry of semi-graphs of anabeloids.
Our main result [cf. Corollary 2.7] concerns certain properties of the com-
mensurator in the profinite fundamental group associated to a graph of
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anabelioids of the various subgroups associated to subgraphs of the given
graph of anabelioids.

(3) In §3, we take up the study of “tempered fundamental groups” [i.e., roughly
speaking, fundamental groups that correspond to coverings dominated by
the composite of an arbitrary finite covering and a [not necessarily finite]
covering of “some” associated semi-graph — cf. [André]], by working with
“temperoids”, i.e., the analogue for tempered fundamental groups of Galois
categories [in the case of profinite groups]. Our main result [cf. Theorem
3.7; Corollary 3.9] states that for certain kinds of graphs of anabelioids,
the vertices (respectively, edges) of the underlying graph may be recovered
from the associated tempered fundamental group as the [conjugacy classes
of] maximal compact subgroups (respectively, nontrivial intersections of
distinct maximal compact subgroups) of this tempered fundamental group.
We then apply this result to show, in the case of hyperbolic curves over
p-adic local fields, that the entire dual semi-graph with compact structure
may be recovered solely from the geometric tempered fundamental group of
such a curve [cf. Corollary 3.11].

(4) Although the tempered fundamental group furnishes perhaps the most effi-
cient way of reconstructing a graph of anabelioids from a naturally associ-
ated category, in §4, we examine another natural approach to this problem,
via categories of localizations. This approach is motivated partly by the ge-
ometry of formal localizations of stable log curves referred to above, and
partly by the naive observation that given a semi-graph of anabelioids, it is
natural to “localize” not just by considering coverings, but also by “physi-
cally localizing on the underlying semi-graph”. After studying various ba-
sic properties of such categories of localizations [including some interesting
properties that follow from “Zariski’s main theorem for semi-graphs” —
cf. Proposition 4.4, (i), (ii)], we show that, given a graph of anabelioids
satisfying certain properties, the original graph of anabelioids may be recov-
ered functorially from its associated category of localizations [cf. Theorem
4.8]. One recurrent theme in the theory of §4 [which is consistent with
the more general theme of “categorical representation of scheme-theoretic
geometries” referred to above] is the idea that the geometry that is hid-
den in such a category of localizations may be developed, using entirely
category-theoretic notions, in a fashion that is remarkably reminiscent of
classical scheme theory — cf. the application of “Zariski’s main theorem
for semi-graphs” in Proposition 4.4, (i), (ii); the “valuative criterion” of
Proposition 4.6.
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(5) In §3, 4, we considered semi-graphs of anabelioids that are not equipped
with “Galois actions”. Thus, in §5, we generalize the [more efficient] theory
of §3 [instead of the theory of §4, since this becomes somewhat cumbersome]
to the “arithmetic” situation that arises in the case of a hyperbolic curve
over a p-adic local field, i.e., of a semi-graph of anabelioids equipped with
an “arithmetic action” by a profinite group. The translation of the theory
of §3 into its “arithmetic analogue” in §5 is essentially routine, once one
replaces, for instance, “maximal compact subgroups” by “arithmetically
maximal compact subgroups” [cf. Theorem 5.4].

(6) In §6, we consider the tempered analogue of the absolute anabelian geome-
try developed in [Mzk8]. In particular, we show that in many respects, this
tempered analogue is essentially equivalent to the original profinite ver-
sion [cf. Theorem 6.6], and, moreover, that the various absolute anabelian
results of [Mzk8] concerning decomposition groups of closed points — in
particular, a sort of “weak section conjecture” — also hold in the tempered
case [cf. Theorem 6.8; Corollaries 6.9, 6.11]. This is particularly interesting
in that the tempered version exhibits, in a very explicit way, the geometry
of this “weak section conjecture” in a fashion that is quite reminiscent of
the “discrete real section conjecture” of [Mzk5], §3.2 [cf. Remark 6.9.1],
i.e., relative to the well-known analogy between geodesics on trees [cf., e.g.,
Lemma 1.8, (ii); [Serre]] and geodesics in Riemannian “straight line spaces”
[i.e., Riemannian spaces satisfying the condition (*) of [Mzk5], §3.2].

(7) In the Appendix, we discuss a slight generalization of the notions of “tem-
peroids” and “anabelioids” that sometimes appears in practice, especially
when one wishes to consider, from the point of view of the categories
discussed in the present paper, the “stack-theoretic analogue” of various
“scheme-theoretic notions” [cf., e.g., Remarks 4.1.2, 4.8.4]. The main re-
sult of the Appendix [cf. Theorem A.4] states that a temperoid may be
reconstructed category-theoretically from a certain type of subcategory of
the temperoid [i.e., a “quasi-temperoid”]. This sort of technical result is
also of interest, relative to the analogy between temperoids and anabelioids,
in the context of the theory of cores of anabelioids developed in [Mzk4].

Finally, we remark that to a certain extent, this paper was conceived by the
author as a piece of mathematical infrastructure, i.e., to develop the basic
properties and “general nonsense” of the very “primitive” [by comparison to
many modern mathematical notions] notion of a semi-graph of anabelioids in
maximal possible generality. Thus, although, for instance, the exposition of §2,
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§3 could be substantially simplified if one restricts oneself to the sort of semi-
graphs of anabelioids that arise from stable log curves, it seemed more natural
to the author to develop this theory under minimal possible hypotheses. As a
result of this choice on the part of the author, the present paper contains a
very large number of new terms, which may be ignored to a substantial extent
on a first reading of the present paper, by assuming, for instance, that all semi-
graphs of anabelioids are of the sort that arise from stable log curves. Also, it is
hoped that the Index provided at the end of the paper may aid in the tracking
down of unknown terminology.

§0. Notations and Conventions

Topological groups

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let
us write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G;

NG(H) def= {g ∈ G | g · H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g · H · g−1)
⋂

H has finite index in H, g · H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H)
are subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H).
Note that ZG(H), NG(H) are always closed in G, while CG(H) is not nec-

essarily closed in G. If H = CG(H), then we shall say that H is commensurably
terminal in G.

If G is center-free, then we have a natural exact sequence

1 → G → Aut(G) → Out(G) → 1

[where Aut(G) denotes the group of automorphisms of the topological group G;
the injective [since G is center-free!] homomorphism G → Aut(G) is obtained
by letting G act on G by inner automorphisms; Out(G) is defined so as to
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render the sequence exact]. If J → Out(G) is a homomorphism of groups, then
we shall write

G
out
� J

def= Aut(G) ×Out(G) J

for the “outer semi-direct product of J with G”. Thus, we have a natural exact

sequence: 1 → G → G
out
� J → J → 1.

Categories

Let C be a category. We shall denote the collection of objects of C by:

Ob(C)

If A ∈ Ob(C) is an object of C, then we shall denote by

CA

the category whose objects are morphisms B → A of C and whose morphisms
(from an object B1 → A to an object B2 → A) are A-morphisms B1 → B2 in
C. Thus, we have a natural functor

(jA)! : CA → C

(given by forgetting the structure morphism to A). Similarly, if f : A → B is
a morphism in C, then f defines a natural functor

f! : CA → CB

by mapping an arrow (i.e., an object of CA) C → A to the object of CB given
by the composite C → A → B with f . Also, we shall denote by

C[A] ⊆ C

the full subcategory determined by the objects of C that admit a morphism to
A.

If the category C admits finite products, then (jA)! is left adjoint to the
natural functor

j∗A : C → CA

given by taking the product with A, and f! is left adjoint to the natural functor

f∗ : CB → CA
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given by taking the fibered product over B with A. We shall call an object
A ∈ Ob(C) terminal if for every object B ∈ Ob(C), there exists a unique arrow
B → A in C.

We shall refer to a natural transformation between functors all of whose
component morphisms are isomorphisms as an isomorphism between the func-
tors in question. A functor φ : C1 → C2 between categories C1, C2 will be called
rigid if φ has no nontrivial automorphisms. A category C will be called slim if
the natural functor CA → C is rigid, for every A ∈ Ob(C).

If G is a profinite group, then we shall denote by

B(G)

the category of finite sets with continuous G-action. Thus, B(G) is a Galois
category, or, in the terminology of [Mzk4], a connected anabelioid. Moreover,
B(G) is slim if and only if, for every open subgroup H ⊆ G, we have ZG(H) =
{1} [cf. [Mzk4], Corollary 1.1.6, Definition 1.2.4].

A diagram of functors between categories will be called 1-commutative
if the various composite functors in question are isomorphic. When such a
diagram “commutes in the literal sense” we shall say that it 0-commutes. Note
that when a diagram in which the various composite functors are all rigid
“1-commutes”, it follows from the rigidity hypothesis that any isomorphism
between the composite functors in question is necessarily unique. Thus, to state
that such a diagram 1-commutes does not result in any “loss of information”
by comparison to the datum of a specific isomorphism between the various
composites in question.

Given two functors Φi : Ci → Di (where i = 1, 2) between categories Ci,
Di, we shall refer to a 1-commutative diagram

C1
∼→ C2�Φ1

�Φ2

D1
∼→ D2

— where the horizontal arrows are equivalences of categories — as an abstract
equivalence from Φ1 to Φ2. If there exists an abstract equivalence from Φ1 to
Φ2, then we shall say that Φ1, Φ2 are abstractly equivalent.

We shall say that a nonempty [i.e., non-initial] object A ∈ Ob(C) is con-
nected if it is not isomorphic to the coproduct of two nonempty objects of
C. We shall say that an object A ∈ Ob(C) is mobile if there exists an object
B ∈ Ob(C) such that the set HomC(A, B) has cardinality ≥ 2 [i.e., the diagonal
from this set to the product of this set with itself is not bijective]. We shall
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say that an object A ∈ Ob(C) is quasi-connected if it is either immobile [i.e.,
not mobile] or connected. Thus, connected objects are always quasi-connected.
If every object of a category C is quasi-connected, then we shall say that C is
a category of quasi-connected objects. We shall say that a category C is totally
(respectively, almost totally) epimorphic if every morphism in C whose domain
is arbitrary (respectively, nonempty) and whose codomain is quasi-connected is
an epimorphism.

We shall say that C is of finitely (respectively, countably) connected type
if it is closed under formation of finite (respectively, countable) coproducts;
every object of C is a coproduct of a finite (respectively, countable) collection of
connected objects; and, moreover, all finite (respectively, countable) coproducts∐

Ai in the category satisfy the condition that the natural map

∐
HomC(B, Ai) → HomC

(
B,

∐
Ai

)

is bijective, for all connected B ∈ Ob(C). If C is of finitely or countably connected
type, then every nonempty object of C is mobile; in particular, a nonempty
object of C is connected if and only if it is quasi-connected.

If a mobile object A ∈ Ob(C) satisfies the condition that every morphism
in C whose domain is nonempty and whose codomain is equal to A is an epi-
morphism, then A is connected. [Indeed, C1

∐
C2

∼→ A, where C1, C2 are
nonempty, implies that the composite map

HomC(A, B) ↪→HomC(A, B)×HomC(A, B) ↪→HomC(C1, B)×HomC(C2, B)

= HomC

(
C1

∐
C2, B

)
∼→ HomC(A, B)

is bijective, for all B ∈ Ob(C).]
If C is a category of finitely or countably connected type, then we shall

write
C0 ⊆ C

for the full subcategory of connected objects. [Note, however, that in general,
objects of C0 are not necessarily connected — or even quasi-connected — as
objects of C0!] On the other hand, if, in addition, C is almost totally epimor-
phic, then C0 is totally epimorphic, and, moreover, an object of C0 is connected
[as an object of C0!] if and only if [cf. the argument of the preceding para-
graph!] it is mobile [as an object of C0]; in particular, [assuming still that C is
almost totally epimorphic] every object of C0 is quasi-connected [as an object
of C0].
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If C is a category, then we shall write

C⊥ (respectively, C�)

for the category formed from C by taking arbitrary “formal” [possibly empty ]
finite (respectively, countables) coproducts of objects in C. That is to say, we
define the “Hom” of C⊥ (respectively, C�) by the following formula:

Hom
( ∐

i

Ai,
∐
j

Bj

)
def=

∏
i

∐
j

HomC(Ai, Bj)

[where the Ai, Bj are objects of C]. Thus, C⊥ (respectively, C�) is a category of
finitely (respectively, countably) connected type. Note that objects of C define
connected objects of C⊥ or C�. Moreover, there are natural [up to isomorphism]
equivalences of categories

(C⊥)0 ∼→ C; (C�)0 ∼→ C; (D0)⊥ ∼→ D; (E0)� ∼→ E

if D (respectively, E) is a category of finitely connected type (respectively, cat-
egory of countably connected type). If C is a totally epimorphic category of
quasi-connected objects, then C⊥ (respectively, C�) is an almost totally epimor-
phic category of finitely (respectively, countably) connected type.

In particular, the operations “0”, “⊥” (respectively, “�”) define one-to-one
correspondences [up to equivalence] between the totally epimorphic categories of
quasi-connected objects and the almost totally epimorphic categories of finitely
(respectively, countably) connected type.

If C is a [small ] category, then we shall write G(C) for the graph associated
to C. This graph is the graph with precisely one vertex for each object of C and
precisely one edge for each arrow of C [joining the vertices corresponding to the
domain and codomain of the arrow]. We shall refer to the full subcategory of
C determined by the objects and arrows that compose a connected component
of the graph G(C) as a connected component of C. In particular, we shall say
that C is connected if G(C) is connected. [Note that by working with respect
to some “sufficiently large” envelopping universe, it makes sense to speak of a
category which is not necessarily small as being connected.]

If C is a category, then we shall say that an object A ∈ Ob(C) is indissectible
if, for every pair of arrows A1 → A, A2 → A of C, where A1, A2 are nonempty,
there exists a pair of arrows ψ1 : B → A1, ψ2 : B → A2 such that φ1 ◦ ψ1 =
φ2 ◦ ψ2, where B is nonempty.

If C if a category and S is a collection of arrows in C, then we shall say that
an arrow A → B is minimal-adjoint to S if every factorization A → C → B of
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this arrow A → B in C such that A → C lies in S satisfies the property that
A → C is, in fact, an isomorphism. Often, the collection S will be taken to be
the collection of arrows satisfying a particular property P; in this case, we shall
refer to the property of being “minimal-adjoint to S” as the minimal-adjoint
notion to P.

Curves

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves
of genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall
denote the moduli stack of r-pointed stable curves of genus g (where we as-
sume the points to be unordered) by Mg,r [cf. [DM], [Knud] for an exposition
of the theory of such curves; strictly speaking, [Knud] treats the finite étale
covering of Mg,r determined by ordering the marked points]. The open sub-
stack Mg,r ⊆ Mg,r of smooth curves will be referred to as the moduli stack of
smooth r-pointed stable curves of genus g or, alternatively, as the moduli stack
of hyperbolic curves of type (g, r). The divisor at infinity Mg,r\Mg,r of Mg,r

determines a log structure on Mg,r; denote the resulting log stack by Mlog

g,r.
A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite
of an open immersion X ↪→ Y onto the complement Y \D of a relative di-
visor D ⊆ Y which is finite étale over S of relative degree r, and a family
Y → S of curves of genus g. One checks easily that, if S is normal, then the
pair (Y, D) is unique up to canonical isomorphism. (Indeed, when S is the
spectrum of a field, this fact is well-known from the elementary theory of al-
gebraic curves. Next, we consider an arbitrary connected normal S on which
a prime l is invertible (which, by Zariski localization, we may assume without
loss of generality). Denote by S′ → S the finite étale covering parametriz-
ing orderings of the marked points and trivializations of the l-torsion points of
the Jacobian of Y . Note that S′ → S is independent of the choice of (Y, D),
since (by the normality of S), S′ may be constructed as the normalization of
S in the function field of S′ (which is independent of the choice of (Y, D) since
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the restriction of (Y, D) to the generic point of S has already been shown to
be unique). Thus, the uniqueness of (Y, D) follows by considering the classi-
fying morphism (associated to (Y, D)) from S′ to the finite étale covering of
(Mg,r)Z[ 1l ] parametrizing orderings of the marked points and trivializations of
the l-torsion points of the Jacobian [since this covering is well-known to be a
scheme, for l sufficiently large].) We shall refer to Y (respectively, D; D; D) as
the compactification (respectively, divisor at infinity; divisor of cusps; divisor
of marked points) of X. A family of hyperbolic curves X → S is defined to be a
morphism X → S such that the restriction of this morphism to each connected
component of S is a family of hyperbolic curves of type (g, r) for some integers
(g, r) as above.

Write
Cg,r → Mg,r

for the tautological curve over Mg,r; Dg,r ⊆ Mg,r for the corresponding tau-
tological divisor of marked points. The divisor given by the union of Dg,r with
the inverse image in Cg,r of the divisor at infinity of Mg,r determines a log
structure on Cg,r; denote the resulting log stack by Clog

g,r. Thus, we obtain a
morphism of log stacks

Clog

g,r → Mlog

g,r

which we refer to as the tautological log curve over Mlog

g,r. If Slog is any log
scheme, then we shall refer to a morphism

C log → Slog

which is obtained as the pull-back of the tautological log curve via some [neces-
sarily uniquely determined — cf., e.g., [Mzk1], §3] classifying morphism Slog →
Mlog

g,r as a stable log curve. If C has no nodes, then we shall refer to C log → Slog

as a smooth log curve.
If XK (respectively, YL) is a hyperbolic curve over a field K (respectively,

L), then we shall say that XK is isogenous to YL if there exists a hyperbolic
curve ZM over a field M together with finite étale morphisms ZM → XK ,
ZM → YL.

§1. Zariski’s Main Theorem for Semi-graphs

In this §, we prove an analogue [cf. Theorem 1.2 below] for semi-graphs of
“Zariski’s main theorem” (for schemes).
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We begin with some general remarks concerning semi-graphs [a notion
defined in [Mzk3], Appendix]. First, we recall that a semi-graph G consists of
the following collection of data:

(1) a set V — whose elements we refer to as “vertices”;

(2) a set E — whose elements we refer to as “edges” — each of whose elements e

is a set of cardinality 2 satisfying the property “e 	= e′ ∈ E =⇒ e
⋂

e′ = ∅”;

(3) a collection ζ of maps ζe [one for each edge e] — which we refer to as the
“coincidence maps” — such that ζe : e → V

⋃
{V} [where we note that

V
⋂
{V} = ∅ since V /∈ V ] is a map from the set e to the set V

⋃
{V}.

We shall refer to the subset ζ−1
e (V) ⊆ e [i.e., the inverse image of the subset

V ⊆ V
⋃
{V} of elements 	= V ] as the verticial portion of an edge e; to the

restriction of ζe to the verticial portion of e as the verticial restriction of ζe;
and to the cardinality of the verticial portion of e as the verticial cardinality of
e. A graph G is a semi-graph G for which every e ∈ E has verticial cardinality
precisely 2. We shall refer to an element b ∈ e as a branch of the edge e. A semi-
graph will be called finite (respectively, countable) if both its set of vertices and
its set of edges are finite (respectively, countable). A component of a semi-graph
is defined to be the datum of either an edge or a vertex of the semi-graph.

Let G = {V , E , ζ} be a semi-graph. If e ∈ E is an edge of G of verticial
cardinality 2 whose image via ζe consists of (not necessarily distinct) elements
v1, v2 of V , then we shall say that e joins v1 to v2. If v = ζe(b), for some
branch b of an edge e [so v is a vertex], then we shall say that the edge e meets
or abuts to the vertex v, and that the branch b of the edge e abuts to the vertex
v. Thus, an edge of a graph always abuts to at least one vertex, while an edge of
a semi-graph may abut to no vertices at all. A morphism between semi-graphs

G = {V , E , ζ} → G′ = {V ′, E ′, ζ ′}

is a collection of maps V → V ′; E → E ′; and for each e ∈ E mapping to e′, a
bijection e

∼→ e′ [or, equivalently — since both e and e′ are sets of cardinality
2 — an injection e ↪→ e′] — all of which are compatible with the verticial
restrictions of the respective coincidence maps. Thus, here, we allow an edge
that abuts to no (respectively, precisely one) vertex to map to an edge that
abuts to any number ≥ 0 (respectively, ≥ 1) of vertices.

A semi-graph G may be thought of as a topological space as follows: We
regard each vertex v as a point [v]. If e is an edge, consisting of branches
b1, b2, then we regard e as the “interval” given by the set of formal sums
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A Typical Semi-graph
v, v′: vertices; e: a closed edge; e′: an open edge that abuts to v′

b: a branch of e that abuts to v; b′: a branch of e that abuts to v′

λ1 · [b1] + λ2 · [b2], where λ1, λ2 ∈ R [here, R denotes the topological field of
real numbers]; λ1 + λ2 = 1; for i = 1, 2, λi ≤ 1 (respectively, λi < 1) if bi abuts
(respectively, does not abut) to a vertex; moreover, if bi abuts to a vertex v,
then we identify the formal sum 1 · [bi]+0 · [b3−i] with [v]. Thus, relative to this
point of view, it is natural to think of the branch bi as the portion of the inter-
val just defined consisting of formal sums such that λi > 1

2 . Also, we observe
that this construction of an associated topological space is functorial: Every
morphism of semi-graphs induces a continuous morphism of the corresponding
topological spaces. In the following discussion, we shall often invoke this point
of view without further explanation.

A sub-semi-graph H of a semi-graph G is a semi-graph satisfying the fol-
lowing properties: (a) the set of vertices (respectively, edges) of H is a subset of
the set of vertices (respectively, edges) of G; (b) every branch of an edge of H

that abuts, relative to G, to a vertex v of G lying in H also abuts to v, relative
to H; (c) if a branch of an edge of H either abuts, relative to G, to a vertex v of
G that does not lie in H, or does not abut to a vertex, relative to G, then this
branch does not abut to a vertex, relative to H. A morphism of semi-graphs
will be called an embedding if it induces an isomorphism of the domain onto a
sub-semi-graph of the codomain.
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Let G be a semi-graph. Then we shall refer to an edge of G that is of ver-
ticial cardinality 2 (respectively, < 2; 0) as closed (respectively, open; isolated).
We shall say that two closed edges e and e′ of G are coverticial if the following
condition holds: the edge e abuts to a vertex v of G if and only if the edge e′

abuts to v. We shall say that G is locally finite if, for every vertex v of G, the
set of edges that abut to v is finite. We shall say that G is untangled if every
closed edge of G abuts to two distinct vertices. We shall refer to a connected
semi-graph that has precisely one vertex and precisely two edges, both of which
are open, as a joint. If a sub-semi-graph of a given semi-graph is a joint, then
we shall refer to this sub-semi-graph as a subjoint of the given semi-graph. We
shall refer to the sub-semi-graph of G obtained by omitting all of the open edges
as the maximal subgraph of the semi-graph. We shall refer to as the compacti-
fication of G the graph obtained from G by appending to G, for each branch b

of an edge of G that does not abut to a vertex, a new vertex vb to which b is to
abut. Thus, G forms a sub-semi-graph of its compactification. Moreover, any
morphism of semi-graphs induces a unique morphism between the respective
compactifications. Finally, we observe that every connected component of the
topological space associated to the maximal subgraph of G (respectively, G) is
a deformation retract [in the sense of algebraic topology] of the corresponding
connected component of the topological space associated to G (respectively,
the compactification of G). A semi-graph whose associated topological space
is contractible [in the sense of algebraic topology] will be referred to as a tree.

We recall in passing that there is a semi-graph that is naturally associ-
ated to any pointed stable curve over an algebraically closed field [cf. [Mzk3],
Appendix]: That is to say, the vertices (respectively, closed edges; open edges;
branches of a closed edge) of this semi-graph are precisely the irreducible com-
ponents (respectively, nodes; marked points; branches of a node) of the pointed
stable curve. The coincidence maps are determined in an evident fashion by
the geometry of the pointed stable curve.

Let v (respectively, e; b) be a(n) vertex (respectively, edge; branch of an
edge) of G. Then we define morphisms of semi-graphs

G[v] → G; G[e] → G; G[b] → G

as follows: G[v] consists of a single vertex v′, which maps to v, and, for each
branch bv of an edge ev of G that abuts to v, an edge e′bv

of verticial cardinality
1 that maps to ev in such a way that the branch of e′bv

lying over bv abuts to
v′. G[e] consists of a single edge e′, which maps to e, and, for each branch be

of e abutting to a vertex vbe
of G, a vertex v′be

[of G[e]] that maps to vbe
and

is the abutment of the branch b′e′ of e′ that lies over be. If b is a branch of
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an edge eb that abuts to a vertex vb [of G], then G[b] is the sub-semi-graph of
G[eb] consisting of the unique edge of G[eb] and the vertex of G[eb] which is the
abutment of the branch of this unique edge that lies over b. Thus, G[v], G[e],
G[b] are all trees [even if G fails to be untangled]; if the branch b is a branch
of the edge e that abuts to v, then we have natural morphisms G[b] → G[v],
G[b] → G[e] over G.

A morphism
φ : GA → GB

between semi-graphs will be called an immersion [or an immersive morphism]
(respectively, excision [or an excisive morphism]) if it satisfies the condition
that, for every vertex vA of GA that maps to a vertex vB of GB, the induced
map from branches abutting to vA to branches abutting to vB is injective
(respectively, bijective). Thus, if we think of GA and GB as topological spaces,
then an immersion φ : GA → GB is locally [in some small neighborhood of
every point of GA] an embedding (respectively, a homeomorphism) of topological
spaces.

Observe that: the five classes of morphisms G[v] → G, G[b] → G[e], G[e] →
G, G[b] → G, G[b] → G[v], are all immersive; the first two of these classes are
always excisive; the last three of these classes are not excisive in general.

Also, we observe that a morphism of sub-semi-graphs GA ⊆ GB is immer-
sive (respectively, excisive) if and only if, for every vertex vA of GA mapping
to a vertex vB of GB, the induced morphism of semi-graphs GA[vA] → GB[vB ]
is an embedding (respectively, isomorphism).

A morphism of semi-graphs

φ : GA → GB

will be called proper if it preserves verticial cardinalities of edges. A proper ex-
cision will be referred to as a graph-covering. A graph-covering with finite fibers
will be referred to as a finite graph-covering. Note that if φ : GA → GB is a
graph-covering, with GA, GB connected, then the associated map of topological
spaces will be a covering in the sense of algebraic topology. Conversely, every
covering, in the sense of algebraic topology, of the topological space associated
to GB arises in this way. Also, we observe that, just as in the case of coverings
of topological spaces, it makes sense to speak of a graph-covering as Galois [i.e.,
“arising from a normal subgroup of the fundamental group”] and to speak of
the pull-back of a graph-covering by an arbitrary morphism of semi-graphs.

Proposition 1.1. Any immersion from a connected graph into a tree
is, in fact, an embedding.
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Proof. Indeed, suppose that we are given an immersion φ : GA → GB

into a tree GB which is not an embedding. If φ is injective on vertices, then it
follows from the definition of an immersion that φ is injective on edges, hence
that φ is an embedding. Thus, it suffices to show that φ is injective on vertices.

Suppose that there exist distinct vertices v1, v2 of GA that map to the same
vertex w of GB. Write γA for a path on GA that connects v1 to v2. Without
loss of generality, we may assume that γA has minimal length among paths on
GA that join distinct vertices of GA that map to the same vertex of GB . Write
γB

def= φ(γA). Then note that the minimality condition (together with the fact
that φ is an immersion) implies that γB does not intersect itself. Thus, γB is a
loop, starting and ending at w, and defined by a sequence of edges, all of which
are distinct. But this contradicts the fact that GB is a tree. This completes
the proof.

Thus, in particular, if we start with an arbitrary immersion of connected
graphs [which are not necessarily trees]

φ : GA → GB

then Proposition 1.1 implies that the induced morphism

G̃A → G̃B

on universal graph-coverings [i.e., the associated topological coverings are uni-
versal coverings of GA, GB , respectively, in the sense of algebraic topology]
— which are well-defined up to composition with deck transformations — is
an embedding [since it is an immersion into a tree]. More generally, given an
arbitrary graph-covering

GB′ → GB

one can ask when the base-changed immersion

φ′ : GA′ → GB′

is an embedding on each connected component of GA′ . Proposition 1.1 im-
plies that the universal graph-covering G̃B → GB is sufficient to realize this
condition.

In fact, however, when GA, GB are finite, this condition may be realized
by a finite graph-covering GB′ → GB:

Theorem 1.2 (“Zariski’s Main Theorem for Semi-graphs”). Let

φ : GA → GB

be an immersion of finite semi-graphs. Then:
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(i) The morphism φ factors as the composite of an embedding

GA ↪→ GB′

and a finite graph-covering GB′ → GB.

(ii) There exists a finite graph-covering GB′ → GB such that the re-
striction of the base-changed morphism

φ′ : GA′ → GB′

to each connected component of GA′ is an embedding.

Remark 1.2.1. The author is indebted to M. Matsumoto for the fol-
lowing elegant graph-theoretic proof of Theorem 1.2.

Remark 1.2.2. The general form of Theorem 1.2 is reminiscent of the
well-known result in algebraic geometry (“Zariski’s Main Theorem” — cf., e.g.,
[Milne], Chapter I, Theorem 1.8) that any separated quasi-finite morphism

f : X → Y

between noetherian schemes factors as the composite of an open immersion
X ↪→ Y ′ and a finite morphism Y ′ → Y — cf. also Lemma 1.5 below.

Proof. First, we observe that (ii) follows formally from (i) [by taking
the finite graph-covering of (ii) to be a Galois finite graph-covering of GB that
dominates the graph-covering of (i)]. Thus, it suffices to prove (i).

Next, let us observe that:

(a) Any immersion of semi-graphs for which the induced morphism between
the respective compactifications is an embedding is itself an embedding (of
semi-graphs).

(b) Restriction from the compactification of GB to GB induces an equivalence
of categories between the respective categories of finite graph-coverings.
Moreover, the compactification of a finite graph-covering of GB is naturally
isomorphic to the corresponding finite graph-covering of the compactifica-
tion of GB.

In particular, by replacing the semi-graphs involved by their compactifications,
it suffices to prove (i) in the case where all of the semi-graphs are, in fact,
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graphs. Thus, for the remainder of the proof, we assume that GA, GB are
graphs.

Let us write
Hn

(where n ≥ 1 is an integer) for the graph consisting of one vertex vH and n

edges eH,1; . . . ; eH,n (all of which run from vH to vH).
Next, let us observe that by Lemma 1.4 below, there exists an immersion

ζ : GB → Hn

which we may compose with φ to form an immersion:

ψ : GA → Hn

Moreover, since pull-backs of finite graph-coverings of Hn via ζ form finite
graph-coverings of GB, it follows that in order to prove that the assertion of
Theorem 1.2, (i), is true for φ, it suffices to prove that it is true for ψ. On the
other hand, Theorem 1.2, (i), follows for ψ by Lemma 1.5 below.

Note that, relative to the topological space point of view discussed above,
the vertex vH of the graph Hn meets precisely 2n branches.

Lemma 1.3. Let G be a finite graph. Then:

(i) To give a morphism
φ : G → Hn

is equivalent to assigning an orientation and a “color” ∈ {1, . . . , n} to each
edge of G.

(ii) The morphism φ is an immersion if and only if for each color i ∈
{1, . . . , n}, and at each vertex v of G, the number of branches of color i that
enter (respectively, leave) v — i.e., relative to the assigned orientations — is
≤ 1.

(iii) The morphism φ is an excision [or, equivalently, a finite graph-
covering ] if and only if for each color i ∈ {1, . . . , n}, and at each vertex v of
G, the number of branches of color i that enter (respectively, leave) v — i.e.,
relative to the assigned orientations — is = 1.

Proof. First, we fix an orientation on each edge eH,i of Hn, and regard
the edge eH,i as being of color i.
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Now let us prove (i). Given a morphism φ : G → Hn, we obtain orientations
and colors on the edges of G by pulling back the orientations and colors of Hn

via φ. Conversely, given a choice of orientations and colors on the edges of G,
we obtain a morphism φ : G → Hn by sending all the vertices of G to vH and
mapping the edges of G to the edges of Hn in the unique way which preserves
orientations and colors.

Assertions (ii) and (iii) follow immediately by considering the local struc-
ture of Hn at vH. Note that in general, a morphism of finite graphs is always
proper, hence is a finite graph-covering if and only if it is excisive.

Lemma 1.4. Every finite graph G admits an immersion G → Hn for
some integer n ≥ 1.

Proof. Indeed, if we take n to be the number of edges of G and assign
distinct colors to distinct edges of G, then it is immediate from Lemma 1.3,
(ii), that (for any assignment of orientations) the resulting morphism G → Hn

is an immersion.

Lemma 1.5. Let φ : G → Hn be an immersion of finite graphs. Then
φ extends to a finite graph-covering φ′ : G′ → Hn for some embedding G ↪→ G′.

Proof. We construct (G′, φ′) from (G, φ) by adding edges (equipped
with orientations and colors) to G until the resulting φ′ is excisive, i.e., satisfies
the condition of Lemma 1.3, (iii). Suppose that there exists a vertex v of G

that does not satisfy this condition. This means that there is some color i such
that either there does not exist a branch of color i entering v or there does not
exist a branch of color i leaving v (or both). If there do not exist any branches
of color i meeting v, then we simply add an edge of color i to G that runs from
v to v. Now suppose (without loss of generality) that there exists a branch of
color i leaving v, but that there does not exist a branch of color i entering v.
Then we follow the i-colored edge leaving v1

def= v to a new vertex v2 (necessarily
distinct from v1). Now there are two possibilities:

(1) There exists an i-colored edge leaving this vertex.

(2) There does not exist an i-colored edge leaving this vertex.

If (1) holds, then we repeat the above procedure — i.e., we follow this i-colored
edge out of v2 to another vertex v3, which is necessarily distinct from v2 since
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the unique (by Lemma 1.3, (ii)) i-colored edge entering v2 originated from a
vertex which is distinct from v2. Thus, continuing in this way, we obtain a
sequence

v1, v2, v3, . . .

of distinct (by Lemma 1.3, (ii)) vertices of G. Since G is finite, this sequence
must eventually terminate at some vertex vk satisfying (2). Then we add an
i-colored edge to G running from vk to v1 to form a pair (G[2], φ[2]) extending
the original (G[1], φ[1]) def= (G, φ).

Note that φ[2] is still an immersion, that G[2] has the same set of vertices
as G[1], that the set of “colors” [labeled 1, . . . , n] remains unchanged, and that
the cardinality of the [finite] set of [ordered] pairs consisting of a vertex and a
color which violate the condition of Lemma 1.3, (iii), relative to φ[2], is < the
cardinality of the [finite] set of [ordered] pairs consisting of a vertex and a color
which violate the condition of Lemma 1.3, (iii), relative to φ[1]. Thus, if we
apply the procedure

(G[1], φ[1]) → (G[2], φ[2])

to (G[2], φ[2]) to obtain some (G[3], φ[3]), and so on, we obtain a sequence of
pairs

(G[1], φ[1]); (G[2], φ[2]); (G[3], φ[3]); . . .

which — by the finiteness of the sets of vertices and colors — necessarily
terminates in a pair (G′, φ′) such that φ′ is a finite graph-covering, as
desired.

Remark 1.5.1. Consider the case of an immersion

φ : G → H1

where G is a finite connected graph. Since the (topological) fundamental group
of H1 is equal to Z, the isomorphism class of a (connected) finite graph-covering
G′ → H1 of H1 is determined by its degree d (a positive integer) [in the sense
of algebraic topology]. Then one can ask what conditions one must place on d

for the corresponding finite graph-covering to satisfy the property of Theorem
1.2, (ii). In some sense, there are essentially two phenomena that may occur:

(1) The case where φ itself is a finite graph-covering, of degree n. In this case,
the resulting condition on d is nonarchimedean, i.e.:

d ≡ 0 (mod n)



�

�

�

�

�

�

�

�

Semi-graphs of Anabelioids 241

(2) The case where G consists of n vertices v1, . . . , vn, and precisely one edge
joining vj to vj+1, for j = 1, . . . , n − 1 (and no other edges). In this case,
the resulting condition on d is archimedean, i.e.:

d ≥ n

The above analysis suggests that there is some interesting arithmetic “hidden”
in Theorem 1.2.

The following interesting consequence of Theorem 1.2 — which asserts,
in effect, that finitely generated subgroups of finite rank [discrete ] free groups
admit bases with properties reminiscent of their abelian counterparts — was
pointed out to the author by A. Tamagawa:

Corollary 1.6 (Finitely generated Subgroups of Finite Rank Free
Groups). Let F be a finitely generated subgroup of a free group G of finite
rank (so F is also free of finite rank). Then:

(i) There exists an immersion of finite graphs φ : GA → GB whose
induced morphism on (topological) fundamental groups is isomorphic to the
inclusion F ↪→ G.

(ii) There exists a finite index subgroup H ⊆ G such that H contains
F , and, moreover, there exists a set of free generators γ1, . . . , γr of H with the
property that for some s ≤ r, γ1, . . . , γs form a set of free generators of F .

Proof. First, observe that if GA ↪→ GB′ is an embedding, then any
set of free generators of the fundamental group of GA may be extended to
a set of free generators of the fundamental group of GB′ . In light of this
observation, assertion (ii) follows by applying Theorem 1.2, (i), to an immersion
as in assertion (i) (of the present Corollary).

Thus, it suffices to prove (i). Let GB be any graph whose fundamental
group is equal to G. Then the subgroup F ⊆ G defines an infinite graph-
covering

GA′ → GB

of GB. In particular, GA′ has fundamental group equal to F . Although, in
general, the graph GA′ will not necessarily be finite, it follows from the fact that
its fundamental group F is finitely generated that there exists a finite subgraph
GA ⊆ GA′ such that the natural injection of fundamental groups π1(GA) ↪→
π1(GA′) is, in fact, a bijection. Moreover, the composite GA ↪→ GA′ → GB is
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an immersion (since it is a composite of immersions). This completes the proof
of (i).

Another interesting consequence of Theorem 1.2 is the following well-
known result:

Corollary 1.7 (Residual Finiteness of Free Groups). Every discrete free
group F injects into its profinite completion.

Proof. Indeed, let G be a connected graph with π1(G) = F . If H ⊆
F is the kernel of the map from F to its profinite completion, write H →
G for the corresponding graph-covering. If H is not a tree, then one verifies
immediately that H contains a finite connected subgraph H′ which is not a
tree. In particular, H′ admits nontrivial finite graph-coverings. Let G′ be a
finite connected subgraph of G which contains the image of H′. Then if we
apply Theorem 1.2, (i), to the immersion H′ → G′, we obtain [since finite
graph-coverings of a subgraph of a given graph always extend to finite graph-
coverings of the given graph] that there exists a finite graph-covering K′ → G′

whose pull-back to H′ is nontrivial. Thus, if we extend K′ → G′ to a finite
graph-covering K → G, we obtain a finite graph-covering of G whose pull-back
to H is nontrivial. But this contradicts the definition of H.

Remark 1.7.1. We recall in passing that there is also a pro-l version
of this residual finiteness result — cf., e.g., [RZ], Proposition 3.3.15.

Finally, before continuing, we note the following useful result concerning
finite group actions on semi-graphs, which is implicit in the theory of [Serre]:

Lemma 1.8 (Finite Group Actions on Semi-graphs). Let G be a con-
nected semi-graph, equipped with the action of a finite group G. Then:

(i) Every finite sub-semi-graph G′ of G is contained in a finite connected
sub-semi-graph G′′ of G that is stabilized by the action of G.

(ii) Suppose that G is a tree. Then: (a) there exists at least one vertex or
edge of G that is fixed by G; (b) if G fixes two distinct vertices w1, w2 of G,
then G acts trivially on any “geodesic” [i.e., path of closed edges of minimal
length ] that joins w1, w2; (c) if G fixes three distinct vertices of G, then there
exists at least one subjoint of G on which G acts trivially.
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Proof. First, we consider assertion (i). Since G is connected, we may
assume without loss of generality that G′ is connected and contains the G-orbit
of some vertex. Then one verifies easily that if we take G′′ to be the G-orbit of
G′, then the desired properties are satisfied.

Next, we consider assertion (ii). First, we verify assertion (a). This follows
formally from [Serre], Chapter I, §6.5, Corollary 3 to Proposition 26, Propo-
sition 27 — at least if one assumes, as in done in [Serre], that G fixes some
orientation on the tree G. On the other hand, by “splitting” each edge of G

which violates this assumption into two new edges, corresponding to the two
branches of the original edge, one sees immediately that one still obtains as-
sertion (a), even without this assumption. This completes the proof of (ii),
(a).

Next, to prove (ii), (b), recall from [Serre], Chapter I, §2.2, Proposition 8,
that there is a unique path of minimal length from w1 to w2. Since G fixes w1,
w2, it thus follows that G fixes this path. Thus, [since it is evident that there
are no automorphisms of this path that fix w1, w2] we conclude that G acts
trivially on this path, as desired. This completes the proof of (ii), (b). Finally,
we observe that (ii), (c) follows formally from (ii), (b).

Remark 1.8.1. We observe, in passing, that Lemma 1.8, (ii), (a),
implies [the well-known fact — cf., e.g., [Serre], Chapter I, §3.4, Theorem 5]
that a free group [which may be thought of as the fundamental group of some
graph, hence admits a free action on some tree] does not contain any nontrivial
finite subgroups.

§2. Commensurability Properties

In this §, we begin our study of the geometry of semi-graphs of profinite
groups by considering various topics concerning commensurators and slimness.

In the following, we shall use the language of anabelioids of [Mzk4] — i.e.,
“multi-Galois categories” in the language of [SGA1] — which, in effect, amounts
to working with profinite groups up to inner automorphism [cf., e.g., [Mzk4],
Proposition 1.1.4]. If X is a connected anabelioid [i.e., a Galois category], then
we shall denote the profinite fundamental group [for some choice of basepoint]
of X by:

π̂1(X )

As is well-known, this profinite group is, in a natural sense, independent of the
choice of basepoint, up to inner automorphism.
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Definition 2.1. We shall refer to the following data G:

(a) a semi-graph G;

(b) for each vertex v of G, a connected anabelioid Gv;

(c) for each edge e of G, a connected anabelioid Ge, together with, for each
branch b ∈ e abutting to a vertex v, a morphism of anabelioids b∗ : Ge → Gv

as a semi-graph of (connected) anabelioids [cf. the notion of a “semi-graph of
profinite groups” introduced in [Mzk3], Appendix]. We shall refer to the various
Gv, Ge as the constituent anabelioids of G. Given two semi-graphs of anabelioids,
there is an evident notion of morphism between semi-graphs of anabelioids [cf.
also Remark 2.4.2 below]. If all of the b∗’s are π1-monomorphisms [i.e., induce
injective homomorphisms on associated fundamental groups — cf. [Mzk4],
Definition 1.1.12], then we shall say that G is of injective type. When the
underlying semi-graph G is a graph, we shall refer to a semi-graph of anabelioids
G as a graph of (connected) anabelioids.

Let G be a connected semi-graph of anabelioids [i.e., the underlying semi-
graph G is assumed to be connected]. If G has at least one vertex, then let us
denote by

B(G)

the category of objects given by data

{Sv, φe}

where v (respectively, e) ranges over the vertices (respectively, edges) of G; for
each vertex v, Sv ∈ Ob(Gv); for each edge e, with branches b1, b2 abutting to
vertices v1, v2, respectively, φe : {(b1)∗}∗Sv1

∼→ {(b2)∗}∗Sv2 is an isomorphism
in Ge, and morphisms given by morphisms [in the evident sense] between such
data. If G has no vertices — and hence precisely one edge e, which is necessarily
isolated — then we shall write B(G) def= Ge. One verifies immediately that this
category B(G) is a connected anabelioid.

Now let G′ ∈ Ob(B(G)); write

B′ def= B(G)G′ → B def= B(G)

for the corresponding finite étale covering of anabelioids [cf. [Mzk4], Definition
1.2.2, (i)]. Then it follows from the definition of the anabelioid B(G) associated
to the semi-graph of anabelioids G [i.e., in terms of finite étale coverings of each
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of the constituent anabelioids of G, together with gluing isomorphisms] that B′

itself arises naturally as the B(−) of some connected semi-graph of anabelioids
G′ equipped with a morphism

G′ → G

of semi-graphs of anabelioids which lies over some proper morphism of semi-
graphs:

G′ → G

Here, if v (respectively, e) is a vertex (respectively, edge) of G, then the vertices
v′ (respectively, edges e′) of G′ are the elements of the set of connected com-
ponents of the [not necessarily connected!] anabelioid B′ ×B Gv (respectively,
B′ ×B Ge). The connected anabelioid G′

v′ (respectively, G′
e′) is the connected

component anabelioid of B′ ×B Gv (respectively, B′ ×B Ge) determined by v′

(respectively, e′).
Let us denote by

ΠG

def= π̂1(G) def= π̂1(B(G))

the fundamental group of the connected anabelioid B(G) relative to some base-
point. Put another way, if we choose basepoints for the constituent anabelioids
of G, then G determines a “semi-graph of profinite groups” [cf. [Mzk3], Ap-
pendix, except that here the underlying semi-graph is not necessarily finite],
and one may think of ΠG as the profinite group associated to this semi-graph
of profinite groups.

For each vertex v (respectively, branch b of an edge e that abuts to the
vertex v) of G, let us write Πv (respectively, Πb) for the fundamental group
of the anabelioid Gv (respectively, Ge) for some choice of basepoint. Thus, we
have natural outer homomorphisms:

Πv → ΠG; Πb → ΠG

Moreover, the branch b determines an associated outer homomorphism:

Πb → Πv

If G is of injective type, then we shall also denote the image of Πb in Πv, which
is well-defined up to conjugation in Πv, by Πb. [Here, we note that the use
of the subscript “b” in the notation “Πb” — i.e., as opposed to “e” in, for
instance, the notation “Ge” — is useful in discussions concerning subgroups of
Πv [as opposed to just subgroups of ΠG].]

If H ⊆ G is a [not necessarily connected] sub-semi-graph of G, then we shall
write GH for the semi-graph of anabelioids determined by restricting G to H.
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That is to say, the underlying semi-graph of GH is H, and for each component
c (i.e., either an edge or vertex) of H, we let (GH)c

def= Gc; if a branch b of an
edge e of H abuts to a vertex v of H, then we take the associated morphism
b∗ : (GH)e → (GH)v to be the morphism associated to the corresponding branch
of G. If H is connected, then we shall write

ΠH

for the fundamental group of GH, for some choice of basepoint. Thus, we have
a natural outer homomorphism ΠH → ΠG.

Definition 2.2. (i) We shall refer to an arrow G′ → G that arises as in
the above discussion from a finite étale covering of anabelioids B′ def= B(G)G′ →
B def= B(G) as a finite étale covering [of G].

(ii) If a morphism of semi-graphs of anabelioids satisfies the property that
each of its induced morphisms between constituent anabelioids is an isomor-
phism (respectively, is finite étale; induces an homomorphism with open image
between the respective π̂1(−)’s), then we shall say that the morphism is locally
trivial (respectively, locally finite étale; locally open).

Remark 2.2.1. Note that by considering collections of normal open
subgroups of ΠG whose intersection is trivial, one may think of ΠG as acting on
a “universal pro-finite étale covering” of G. In particular, ΠG acts naturally on
the underlying “pro-semi-graph” of this “universal pro-finite étale covering”.
Moreover, it follows immediately from the definitions [cf. the discussion of the
universal covering associated to a graph of groups in [Serre], Chapter I, p. 51]
that the image of each Πv (respectively, Πb) in ΠG is equal to the stabilizer of
a compatible system of vertices (respectively, edges) of this pro-semi-graph.

Definition 2.3. Let G be a semi-graph of anabelioids of injective
type, with underlying semi-graph G.

(i) We shall say that G is of bounded order if there exists an integer M ≥ 1
such that all of the π̂1(Gv)’s, where v ranges over the vertices of the underlying
semi-graph G, are finite groups of order dividing M .

(ii) We shall refer to a morphism of semi-graphs of anabelioids

G → G′
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which induces an isomorphism on underlying semi-graphs G
∼→ G′ [relative to

which we may identify G, G′] and for which G′ is a semi-graph of anabelioids
of bounded order as an approximator for G. We shall say that an approxima-
tor is π1-epimorphic if each of the induced morphisms between the respective
constituent anabelioids is a π1-epimorphism [i.e., induces a surjective homo-
morphism on associated fundamental groups — cf. [Mzk4], Definition 1.1.12].

(iii) We shall say that G is quasi-coherent if, for every integer M ≥ 1, and
every collection of finite étale coverings Hc → Gc of degree ≤ M , where c

ranges over the components of G, there exists an approximator

G → G′

such that, for each component c of G, the pull-back to Gc of the “universal
covering” H′

c → G′
c of G′

c [i.e., the finite étale covering determined by the
trivial subgroup of π̂1(G′

c)] splits Hc → Gc. In this situation, we shall say that
this approximator splits the given collection of coverings. We shall say that a
quasi-coherent G is coherent if, for each component c of G, the profinite group
π̂1(Gc) is topologically finitely generated [which, as is well-known, implies that
Out(π̂1(Gc)) is equipped with a natural profinite group structure].

Remark 2.3.1. Relative to the notation of Definition 2.3, (iii), by
replacing the constituent anabelioids of G′ by the image anabelioids of the
constituent anabelioids of G [cf. [Mzk4], Definition 1.1.7, (i)], one may always
take the approximator of Definition 2.3, (iii), to be π1-epimorphic.

Definition 2.4. Let G be a semi-graph of anabelioids of injective
type, with underlying semi-graph G.

(i) Let v be a vertex of G. If, for every integer M ≥ 1, there exists a
π1-epimorphic approximator

G → G′

for G such that there exists a subgroup NM ⊆ π̂1(G′
v) of order ≥ M which has

trivial intersection with all of the conjugates, in π̂1(G′
v), of all of the π̂1(G′

e)
[where e ranges over the edges abutting to v], then we shall say that v is
elevated. If all of the vertices of G are elevated, then we shall say that G is
totally elevated.

(ii) If, for every vertex v of G, the anabelioid Gv is slim, then we shall say
that G is verticially slim.
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(iii) Let e be a closed edge of G. If there exists a finite étale covering
G′ → G of G such that the underlying graph G′ of G′ contains a pair of distinct
coverticial edges ea, eb, both of which map to e in G, then we shall say that e is
sub-coverticial. If, for every finite étale covering G′′ → G of G, it holds that ev-
ery edge e′′ of the underlying graph G′′ of G′′ that maps to e is sub-coverticial,
then we shall say that e is universally sub-coverticial. If every closed edge of
G is sub-coverticial (respectively, universally sub-coverticial), then we shall say
that G is totally sub-coverticial (respectively, totally universally sub-coverticial).

(iv) Let e be an edge of G. We shall say that e is aloof (respectively,
estranged) if, for every vertex v to which some branch b of e abuts and every
g ∈ Πv, the intersection in Πv of Πb with any subgroup of the form g ·Πb′ · g−1,
where either b′ 	= b is a branch of an edge that abuts to v or b′ = b and g /∈ Πb,
has infinite index in Πb (respectively, and is, in fact, trivial). If every edge of
G is aloof (respectively, estranged), then we shall say that G is totally aloof
(totally estranged).

Remark 2.4.1. It is immediate that “(totally) estranged” implies “(to-
tally) aloof ”. Moreover, one verifies easily that if G′ → G is a finite étale
covering, and v′ (respectively, e′; e′; e′) is a(n) vertex (respectively, edge; edge;
edge) of G′ that maps to a(n) elevated vertex v (respectively, universally sub-
coverticial edge e; aloof edge e; estranged edge e) of G, then v′ (respectively,
e′; e′; e′) is itself elevated (respectively, universally sub-coverticial; aloof ; es-
tranged).

Remark 2.4.2. Let φ : G → H be a morphism between semi-graphs of
anabelioids of injective type. Concretely speaking, this means that we are given,
for each vertex v (respectively, edge e) of G mapping to a vertex w (respectively,
edge f) of H, a 1-morphism of anabelioids

φv : Gv → Hw (respectively, φe : Ge → Hf )

together with an isomorphism φb of the composite 1-morphism of anabelioids
Ge → Gv → Hw with the composite 1-morphism of anabelioids Ge → Hf → Hw

whenever a branch b of e abuts v. That is to say, strictly speaking, φ is a
“1-morphism”; the 1-morphisms from G to H form a category, of which φ is
an object; one can then speak of isomorphisms between various objects of this
category.

On the other hand, observe that if we restrict our attention to locally open
morphisms φ between totally aloof semi-graphs of anabelioids, then it follows
formally from the definitions [cf. also [Mzk4], Corollary 1.1.6] that:
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The isomorphism class of φ is completely determined by the isomor-
phism class of the φv.

If, moreover, we restrict our attention to locally open morphisms φ between
totally aloof, verticially slim semi-graphs of anabelioids, then:

The 1-morphism φ has no nontrivial automorphisms.

That is to say, as long as we restrict our attention to locally open morphisms
[e.g., locally finite étale] between totally aloof, verticially slim semi-graphs of an-
abelioids, we may work with such morphisms as if they are simply “morphisms
in a category”, rather than 1-morphisms in a 2-category [cf. the situation for
finite étale morphisms between slim anabelioids: [Mzk4], Proposition 1.2.5]. In
the following, we shall often take this point of view without further mention.

Proposition 2.5 (Injectivity). Let G be a connected, quasi-
coherent graph of anabelioids. Let H ⊆ G be a connected subgraph of
the underlying graph G of G. Then:

(i) The natural morphisms Πb → ΠG, Πv → ΠG, ΠH → ΠG are injective.
By abuse of notation, we will denote their images, which are well-defined up to
conjugation in ΠG, by Πb, Πv, ΠH, respectively.

(ii) Suppose that G is of bounded order. Then there exists a normal
open subgroup H ⊆ ΠG, such that all of the natural morphisms Πb → ΠG/H,
Πv → ΠG/H are injective.

Proof. First, we consider assertion (i). Since the natural morphism
Πb → Πv is injective, and the morphism Πv → ΠG may be considered as a
special case of the morphism ΠH → ΠG [i.e., the case where H consists of
a single vertex and no edges], it suffices to show that any finite étale Galois
covering of GH may be split by a finite étale covering pulled back from G. Note
that this is immediate in the locally trivial case. Indeed, in this case, it suffices
to extend the given finite étale covering from GH to the remainder of G by gluing
[which is always possible, by the local triviality assumption!].

Thus, by our assumption of quasi-coherence, it suffices to construct, un-
der the further assumption that G is of bounded order, a finite étale cov-
ering of G each of whose constituent anabelioids is trivial. We construct
such a covering by gluing: Let M ≥ 1 be an integer such all of the orders
[π̂1(Gv) : 1] divide M . Over the vertex v, we take the covering to be the
union of M/[π̂1(Gv) : 1] copies of some “universal covering” of Gv [i.e., the
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finite étale covering determined by the trivial subgroup of π̂1(Gv)]. If e is an
edge that abuts to the vertex v, then the restriction of this covering to e is
a union of M/[π̂1(Ge) : 1] copies of some universal covering of Ge — i.e., a
covering of Ge whose isomorphism class is independent of v! Thus, by choosing
appropriate gluing isomorphisms, we obtain a covering of G having the desired
properties.

As for assertion (ii), the Galois closure of a covering such as that con-
structed in the preceding paragraph determines a normal open subgroup H ⊆
ΠG having the properties asserted in assertion (ii).

Remark 2.5.1. Note that the quasi-coherence hypothesis in the injec-
tivity assertion of Proposition 2.5, (i), is by no means superfluous: For instance,
let G

def= Z/lZ [where l is a prime number]; write GN for the profinite group
given by taking the direct product of a collection of copies of G indexed by
the set of natural numbers N. Write α : GN ↪→ GN for the continuous injec-
tion induced by the injection N ↪→ N given by N � n → n + 1. Then let us
observe that there does not exist a proper open subgroup H ⊆ GN such that
H = α−1(H). In particular, if one takes G to be the graph with precisely one
vertex and one edge [both of whose branches abut to the unique vertex], and G
to be the graph of anabelioids with underlying graph G such that the unique
vertex and unique edge are equipped with the anabelioid B(GN) and the mor-
phisms B(GN) → B(GN) corresponding to the two branches of the unique edge
are given by the identity and B(α), then one concludes from the above observa-
tion that the profinite fundamental group associated to this graph of anabelioids
G is trivial.

Proposition 2.6 (Commensurability). Let G be a connected, quasi-
coherent graph of anabelioids. Let H, K ⊆ G be connected subgraphs of
the underlying graph G of G. Suppose that there exists a component c of H

that does not belong to K and which is either an elevated vertex or a sub-
coverticial edge [i.e., relative to G ]. Then the intersection of ΠH with any
conjugate of ΠK has infinite index in ΠH. In particular, no conjugate of ΠH

is commensurable to a conjugate of ΠK.

Proof. First, we consider the case where c = v is a vertex. We may
assume without loss of generality that ΠK

⋂
ΠH has finite index in ΠH. Then

by taking “M” in Definition 2.4, (i), to be[
ΠH : ΠK

⋂
ΠH

]
+ 1
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and applying the fact that G is elevated at v, we obtain the existence of a
π1-epimorphic approximator

G → G′

such that, if we denote the various fundamental groups associated to G′ by
means of a “dash”, then there is a subgroup NM ⊆ Π′

v of order ≥ M that has
trivial intersection with each of the conjugates of the Π′

b, for branches b that
abut to v. Since G′ is of bounded order, it follows from Proposition 2.5, (ii),
that there exists a normal open subgroup K ⊆ Π′

K
such that Π′

w injects into
Π′

K
/K, for all vertices w of K; moreover, it follows that there exists an integer

M ′ that is divisible both by [Π′
K

: K] and by twice the orders of all of the Π′
w,

as w ranges over the vertices of G.
Now we construct a [not necessarily connected!] finite étale covering

G′′ → G′

as follows: Over K, we take this covering to be the union of M ′/[Π′
K

: K]
copies of the covering defined by the normal open subgroup K ⊆ Π′

K
. Over

vertices w 	= v not contained in K, we take this covering to be a union of
M ′/[Π′

w : 1] copies of a “universal covering” of G′
w. Over v, we take this

covering to be a union of M ′/2[Π′
v : NM ] copies of the covering defined by the

Π′
v-set Π′

v/NM and of M ′/2[Π′
v : 1] copies of a “universal covering” of G′

v. Note
that the restriction of any of these coverings over w or v to an abutting edge
e is isomorphic to a union of “universal coverings” of G′

e. Thus, by choosing
appropriate gluing isomorphisms, we obtain a covering G′′ → G′.

On the other hand, the existence of this covering leads to a contradiction,
as follows: This covering determines a finite ΠG-set S; write H ′′ def= Ker(ΠG →
Aut(S)); denote the images in ΠG/H ′′ of the various fundamental groups un-
der consideration by means of a “double dash”. Thus, we have equalities
Π′′

K
= ΠK/K, Π′′

v = Π′
v [because of the existence of “universal coverings” in

the restriction of G′′ to v] and inequalities as follows:

[Π′′
H : Π′′

K

⋂
Π′′

H] ≤ [ΠH : ΠK

⋂
ΠH] < M

Moreover, since Π′′
K

acts freely on S, it follows that Π′′
K

⋂
Π′′

H
also acts freely on

S, and hence that the isotropy subgroup I ⊆ Π′′
H

associated to an element of S

has order ≤ [Π′′
H

: Π′′
K

⋂
Π′′

H
] < M . In particular, Iv

def= I
⋂

Π′′
v has order < M .

On the other hand, by the construction of G′′, it follows that for some such
isotropy group Iv ⊆ Π′′

v = Π′
v, we have NM ⊆ Iv, where we recall that NM has

order ≥ M , a contradiction.
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Next, we consider the case where c = e is an edge. Since e is sub-coverticial,
it suffices [by replacing G by a finite étale covering of G] to show that ΠK

⋂
ΠH

has infinite index in ΠH under the assumption that H contains a pair of distinct
coverticial edges ea, eb, neither of which is contained in K. Thus, let us suppose
that ΠK

⋂
ΠH has finite index in ΠH; set M

def= [ΠH : ΠK

⋂
ΠH] + 1.

Now observe that by using the loop L of H constituted by ea, eb, we may
construct a finite graph-covering of degree M

G′ → G

which is trivial over K, but connected over L. Then considering the actions
of ΠH, ΠK on the corresponding finite ΠG-set yields a contradiction. This
completes the proof.

Remark 2.6.1. Note that the hypothesis in Proposition 2.6 concerning
the existence of an elevated vertex or a sub-coverticial edge is by no means
superfluous: Indeed, let G be a profinite group, H ⊆ G an open subgroup.
Suppose that G is the graph with precisely three vertices, labeled 1, 2, 3, and
precisely two edges, one of which joins the vertices 1, 2, the other of which
joins the vertices 2, 3. Suppose that the graph of anabelioids structure of G is
given by equipping the vertex 1 (respectively, 2; 3) with the anabelioid B(G)
(respectively, B(H); B(H)), the two edges with the anabelioid B(H); we take
the morphisms B(H) → B(H), B(H) → B(G) corresponding to the various
branches of edges to be the morphisms induced by the identity and inclusion
homomorphisms. Then one verifies immediately that the profinite fundamental
group associated to this graph of anabelioids is naturally isomorphic to G, but
that if one takes H to be the subgraph determined by the [non-elevated!] vertex
1 and K to be the subgraph determined by the vertices 2, 3 and the [non-sub-
coverticial!] edge that joins them, then the conclusion of Proposition 2.6 is false
[even if one interchanges H, K].

Corollary 2.7 (Slimness and Commensurators). Let G be a connected,
quasi-coherent graph of anabelioids. Let H, K ⊆ G be connected subgraphs
of the underlying graph G of G. Suppose that every vertex of H, K is elevated
[i.e., relative to G ]. Then:

(i) We have CΠG
(ΠH) = ΠH. In particular, if v is an elevated vertex of

G, then CΠG
(Πv) = Πv.

(ii) Suppose that H contains a vertex v such that Gv is slim. Then the
natural morphism B(GH) → B(G) is relatively slim [cf. [Mzk4], Definition
1.2.9]. In particular, B(G) is slim.
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(iii) Suppose that every edge of H, K is sub-coverticial [i.e., relative
to G ] and that ΠH is commensurable to a conjugate of ΠK in ΠG. Then
H = K.

Proof. First, we consider assertion (i). Suppose that g ∈ CΠG
(ΠH), but

g /∈ ΠH. Then there exists a connected finite Galois étale covering

G′ → G

— whose restriction to H def= GH, we denote by H′ → H — satisfying the
property that there exists a connected component H′′ of H′ such that g·H′′ 	= H′′

in G′. Since [as one verifies immediately] H′ injects into G′ as a subgraph, it
thus follows that g · H′′ ⋂ H′′ = ∅ [in G′]. Thus, assertion (i) follows from
Proposition 2.6.

Next, we consider assertion (ii). By assertion (i), we have, for any open
subgroup H ⊆ ΠH:

ZΠG
(H) ⊆ ZΠG

(H
⋂

Πv) ⊆ CΠG
(Πv) = Πv

Thus, we conclude [since Gv is slim] that ZΠG
(H) ⊆ ZΠv

(H
⋂

Πv) = {1}.
Finally, assertion (iii) is a formal consequence of Proposition 2.6.

Remark 2.7.1. There is a certain overlap between the content of Corol-
lary 2.7 and the results obtained in [HR]. The techniques of [HR], however,
are more group-theoretic in nature and somewhat different in spirit from those
employed in the present exposition.

Remark 2.7.2. Note that Corollary 2.7, (i), implies in particular that
[in the notation of loc. cit.] if J ⊆ ΠG is any [not necessarily closed! ] subgroup
such that Πv ⊆ J , then we have

CJ(Πv) ⊆ CΠG
(Πv) = Πv

— i.e., Πv is commensurably terminal in J .

Next, we consider some concrete examples:

Example 2.8. Trivial Edge Anabelioids. One verifies imme-
diately that every semi-graph of anabelioids G such that Ge is trivial for all edges
e is quasi-coherent. In this case, a vertex v of G is elevated if and only if Πv

is infinite. Similarly, a closed edge abutting to vertices v, w is sub-coverticial
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(respectively, universally sub-coverticial) if and only if both Πv and Πw are
nontrivial (respectively, infinite).

Definition 2.9. Let Σ be a set of prime numbers.

(i) We shall refer to as a Σ-integer any positive integer each of whose prime
factors belongs to Σ.

(ii) Let A be a connected anabelioid. Then we shall refer to as the pro-Σ
completion of A the connected anabelioid constituted by the full subcategory of
A determined by the objects dominated by a Galois covering of the final object
of A whose degree is a Σ-integer. Similarly, given a semi-graph of anabelioids,
we shall refer to as the pro-Σ completion of the given semi-graph of anabelioids
the semi-graph of anabelioids obtained by replacing each constituent anabelioid
by its pro-Σ completion.

Example 2.10. Stable Curves. Let Σ be a nonempty set of prime
numbers. Suppose that G is a semi-graph of anabelioids with the property that
each Πv is the maximal pro-Σ quotient of the fundamental group of a hyperbolic
Riemann surface of finite type, and that each Πb → Πv is the inclusion mor-
phism of the inertia group of one of the cusps. Now observe that a hyperbolic
Riemann surface of finite type admits Galois coverings of degree a Σ-integer
which are ramified with ramification index equal to an arbitrary given Σ-integer
at a given cusp, but which are unramified at all other cusps. In light of this
observation [together with various other properties that follow immediately
from the well-known structure of fundamental groups of hyperbolic Riemann
surfaces of finite type], one verifies immediately that G is coherent, totally el-
evated, totally universally sub-coverticial, totally estranged [cf. the proof of
[Mzk3], Lemma 1.3.7], and verticially slim [cf. the proof of [Mzk3], Lemma
1.3.1]. In particular, the pro-Σ completion of the semi-graph of anabelioids
determined by the semi-graph of profinite groups with compact structure asso-
ciated to a pointed stable curve over an algebraically closed field of characteristic
0 [cf. [Mzk3], Appendix] satisfies these properties. Similarly, if Σ contains at
least one prime 	= p, then a hyperbolic curve over a separably closed field of
characteristic p admits Galois coverings of degree a Σ-integer which are ramified
with ramification index equal to an arbitrary given Σ-integer prime to p at a
given cusp, but which are unramified at all other cusps; in light of this observa-
tion [together with various other well-known properties of fundamental groups
of hyperbolic curves over separably closed field of characteristic p], one verifies
easily that the pro-Σ completion of the semi-graph of anabelioids determined
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by the semi-graph of profinite groups with compact structure associated to a
stable curve over a separably closed field of characteristic p > 0 is coherent,
totally elevated, totally universally sub-coverticial, totally estranged [cf. the
proof of [Mzk3], Lemma 1.3.12], and verticially slim [cf. the proof of [Mzk3],
Lemma 1.3.10].

Remark 2.10.1. In the case of Example 2.10, it is not difficult to show,
using exactly the same techniques as those used in the proofs of Proposition
2.6, Corollary 2.7, that CΠG

(Πb) = Πb. Since, however, we shall not need this
result in the following, and, moreover, a precise description of the condition on
edges in the case of a more general G necessary to carry out such an argument
[i.e., the analogue for edges of the notion of an “elevated vertex”] would be
rather technical to write out in detail, we leave the task of working out the
routine details to the interested reader.

The case of Example 2.10 [cf. also Example 3.10 below] motivates the
following extension of the notion of a “morphism of semi-graphs of anabelioids”:
First, we observe that any semi-graph G may be regarded as a category

Cat(G)

as follows: The objects of this category are the components [i.e., vertices and
edges] of G. The morphisms of this category are the identity morphisms of the
components and the branches of edges [i.e., if b is a branch of an edge e that
abuts to a vertex v, then we regard b as a morphism e → v] of G. Thus, if G

is the underlying semi-graph of a semi-graph of anabelioids G, then for every
object c of Cat(G), we have an anabelioid Gc, and for every morphism b : e → v

of Cat(G), we have a morphism of anabelioids b∗ : Ge → Gv.

Definition 2.11. Let G, H be semi-graphs of anabelioids. Then a
generalized morphism of semi-graphs of anabelioids

Φ : G → H

is defined to be a collection of data, as follows:

(a) a functor Cat(Φ) : Cat(G) → Cat(H);

(b) for every object c of Cat(G) that is mapped by Cat(Φ) to an object d of
Cat(H), a morphism of anabelioids Φc : Gc → Hd;
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(c) for every arrow φ : c → c′ of Cat(G) that is mapped by Cat(Φ) to an arrow
ψ : d → d′ of Cat(H), an isomorphism Φφ : ψ∗ ◦ Φc

∼→ Φc′ ◦ φ∗, such that
Φφ is the identity whenever φ is an identity morphism.

Remark 2.11.1. It is immediate from the definitions that every [non-
generalized] morphism of semi-graphs of anabelioids determines a generalized
morphism of semi-graphs of anabelioids. Also, just as in the non-generalized
case, it is immediate from the definitions that every generalized morphism of
semi-graphs of connected anabelioids

Φ : G → H

determines, in a natural fashion, a morphism B(G) → B(H) between the asso-
ciated anabelioids.

§3. The Tempered Fundamental Group

In this §, we define and study the basic properties of the tempered fun-
damental group of a semi-graph of anabelioids. The notion of the tempered
fundamental group is introduced in [André], §4. In the present manuscript,
however, we wish to study this notion from a more categorical point of view.

Let Π be a topological group. Then let us write

Btemp(Π)

for the category whose objects are countable [i.e., of cardinality ≤ the cardinality
of the set of natural numbers], discrete sets equipped with a continuous Π-action
and whose morphisms are morphisms of Π-sets.

Definition 3.1. (i) If Π may be written as an inverse limit of an
inverse system of surjections of countable discrete topological groups, then we
shall say that Π is tempered.

(ii) Any category equivalent to a category of the form Btemp(Π) for some
tempered topological group Π will be referred to as a connected temperoid. Any
category equivalent to a product [in the sense of a product of categories] of a
countable [hence possibly empty!] collection of connected temperoids will be
referred to as a temperoid.

(iii) Let T1, T2 be temperoids. Then a morphism φ : T1 → T2 is defined to
be a functor φ∗ : T2 → T1 that preserves finite limits and countable colimits. A
morphism φ will be called rigid if the functor φ∗ is rigid [cf. §0].
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(iv) A connected object T of a temperoid T will be called Galois if, for any
two arrows ψ1, ψ2 : S → T of T , where S is connected, there exists a [unique]
automorphism α ∈ AutT (T ) of T such that ψ1 = α ◦ ψ2.

Remark 3.1.1. Observe that every profinite group is tempered. More-
over, just as in the case of profinite groups, if a tempered group may be written
as an inverse limit of an inverse system indexed by a countable set of surjections
of countable discrete topological groups, then the group is countably generated
[i.e., generated as a topological group by a countable set of generators].

Remark 3.1.2. Suppose that Π is tempered. Then every open sub-
group of Π is closed and of countable index in Π. Moreover, the topology of
Π admits a basis of open normal subgroups. If H ⊆ Π is an arbitrary sub-
group, then the Π-set Π/H forms an object of Btemp(Π) if and only if H is
open. If H1, H2 ⊆ Π are open, then there is a natural bijection between the
morphisms Π/H1 → Π/H2 and the cosets h · H2 satisfying h−1 · H1 · h ⊆ H2.
In particular, if T1, T2 are objects of a temperoid T , and T1 is connected, then
the set HomT (T1, T2) is countable. If Π′ is also tempered, then any continuous
homomorphism Π → Π′ determines [by composing the action of Π′ on a Π′-
set with this homomorphism so as to obtain a Π-set] a morphism of connected
temperoids Btemp(Π) → Btemp(Π′).

Remark 3.1.3. Suppose that Π is tempered. Then an object of Btemp(Π)
is Galois if and only if it is isomorphic to the object determined by a Π-set of
the form Π/N , where N ⊆ Π is an open normal subgroup. Alternatively, a
connected object T of T def= Btemp(Π) is Galois if and only if the product
T × T is isomorphic to the coproduct of copies of T indexed by the elements
of the [countable!] set AutT (T ), where the restriction to the copy labeled by
σ ∈ AutT (T ) of the projection to the first (respectively, second) factor of T ×T

is given by the identity (respectively, σ).

Remark 3.1.4. Note that if X is an anabelioid (respectively, connected
anabelioid), then

X� def= (X 0)�

[cf. §0] is a temperoid (respectively, connected temperoid). We shall refer to
X� as the temperification of X . Just as in the case of anabelioids, the decom-
position of a temperoid into a countable coproduct of connected temperoids —
each of which we shall refer to as a connected component of the original temper-
oid — may be recovered completely category-theoretically from the categorical
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structure of the original temperoid [i.e., by considering decompositions of the
terminal object — cf. [Mzk4], Definitions 1.1.8, 1.1.9]. Also, just as in the
case of anabelioids, to give a morphism between two temperoids is equivalent
to giving, for each connected component of the domain temperoid, a morphism
[of connected temperoids] — which we shall refer to as a component morphism
of the morphism — from that connected component to some connected com-
ponent of the codomain temperoid. Finally, we remark that, just as in the
case of anabelioids, it is crucial in the geometry of temperoids to allow for mul-
tiple connected components which arise, for instance, when one pulls back an
étale [cf. Definition 3.4, (i) below] morphism of connected temperoids via an
arbitrary morphism of connected temperoids.

Remark 3.1.5. It is immediate from the definitions that every temper-
oid is an almost totally epimorphic category of countably connected type [cf. §0].

Remark 3.1.6. Observe that although every endomorphism of a con-
nected object of an anabelioid is an automorphism, temperoids do not, in gen-
eral, satisfy this property. Indeed, if Π is a [discrete] free group on generators
e1, e2, and H ⊆ Π is the subgroup generated by elements of the form en

2 ·e1 ·e−n
2 ,

where n ranges over the positive integers, then conjugation by e2 determines
an endomorphism H → H [i.e., an endomorphism of the object determined by
the Π-set Π/H of Btemp(Π)] which is not an automorphism. Nevertheless, it is
immediate from the definitions that every endomorphism of a Galois connected
object of a temperoid is an automorphism.

Remark 3.1.7. In some situations, instead of considering temperoids
or anabelioids, it is useful to consider slightly more general versions of these
notions, which we shall refer to as “quasi-temperoids”, “quasi-anabelioids”,
respectively. For more on these “routine” generalizations, we refer to the Ap-
pendix.

Remark 3.1.8. For a more general treatment of “categories that behave
like anabelioids and temperoids”, we refer to [Dub].

Proposition 3.2 (The “Grothendieck Conjecture” for Connected Tem-
peroids). For i = 1, 2, let Πi be a tempered [topological ] group; write Ti

def=
Btemp(Πi). Then the category of morphisms

T1 → T2
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is equivalent to the category whose objects are continuous group homomor-
phisms φ : Π1 → Π2 and whose morphisms φ → ψ are elements g ∈ Π2 such
that γg ◦ φ = ψ, where we write γg for the automorphism of Π2 given by con-
jugating by g. In particular, there is a natural bijective correspondence
between the set of isomorphism classes of morphisms T1 → T2 and the set of
[continuous ] outer homomorphisms Π1 → Π2.

Proof. Observe that, by thinking of a Galois object T ∈ Ob(T2) as an
“AutT2(T )-torsor object” [cf. Remark 3.1.3], it follows that if φ : T1 → T2 is
a morphism of temperoids, then the object φ∗(T ) of T1 is Galois. In light of
this observation, the proof of Proposition 3.2 is formally entirely similar to that
of [Mzk4], Proposition 1.1.4 [i.e. the “Grothendieck Conjecture” for connected
anabelioids].

Remark 3.2.1. In particular, Proposition 3.2 implies that, if X is a
connected temperoid, then it makes sense to write πtemp

1 (X ). We shall refer to
this tempered group πtemp

1 (X ) [which is well-defined, up to inner automorphism]
as the tempered fundamental group of X .

Corollary 3.3 (Rigid Morphisms of Connected Temperoids). We main-
tain the notation of Proposition 3.2. Let φ : Π1 → Π2 be a continuous homo-
morphism that gives rise to a morphism of temperoids Btemp(φ) : T1 → T2.
Then Btemp(φ) is rigid if and only if the centralizer ZΠ2(Im(φ)) is trivial.

Proof. This is a formal consequence of Proposition 3.2 [cf. [Mzk4],
Corollary 1.1.6].

Next, let us observe that, if T ∈ Ob(T ) is an object of a connected temperoid
T , then the category

TT

forms a temperoid [which is connected if and only if T is connected]. More-
over, forming the product with T yields a functor T → TT which determines a
morphism of temperoids as follows:

TT → T

Thus, in the spirit of [Mzk4], §1.2, we make the following definition:

Definition 3.4. (i) An étale morphism of connected temperoids is
a morphism that is abstractly equivalent to a morphism of the form TT → T
considered in the above discussion. An étale morphism of temperoids is a
morphism each of whose component morphisms is étale.
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(ii) A continuous homomorphism of tempered groups Π1 → Π2 will be
called relatively temp-slim if, for every open subgroup H ⊆ Π1, the centralizer
ZΠ2(Im(H)) is trivial. A tempered group will be called temp-slim if its identity
morphism is relatively temp-slim. A temperoid will be called temp-slim if and
only if each of its connected components is equivalent to the “Btemp(−)” of
some temp-slim tempered group.

Remark 3.4.1. In light of Corollary 3.3 above [cf. also [Mzk4], Corol-
lary 1.1.6], one verifies immediately that a temperoid is slim as a category [cf.
§0] if and only if it is temp-slim as a temperoid; similarly, an anabelioid is slim
as an anabelioid [cf. [Mzk4], Definition 1.2.4, (ii)] if and only if it is slim as a
category [cf. §0]; moreover, an anabelioid is slim as an anabelioid if and only
if its temperification [cf. Remark 3.1.4] is temp-slim as a temperoid.

Remark 3.4.2. By Corollary 3.3, one may work with relatively temp-
slim morphisms of temperoids as if they are “morphisms in a category” [not
“1-morphisms in a 2-category”]. In particular, if one works under this con-
vention, then the category of étale objects over a given temp-slim temperoid
T forms a category which is equivalent to T itself [cf. [Mzk4], Proposition
1.2.5]. Moreover, just as in the case of anabelioids [cf. [Mzk4], §1.2], one may
work with “pro-temperoids” and hence consider universal coverings [which are
pro-temperoids] of a given temp-slim temperoid.

Now we return to semi-graphs of anabelioids. Let G be a connected, count-
able [i.e., the underlying semi-graph is countable] semi-graph of anabelioids. If
G has at least one vertex, then let us denote by

Bcov(G)

the category of objects given by data

{Sv, φe}

where v (respectively, e) ranges over the vertices (respectively, edges) of G; for
each vertex v, Sv ∈ Ob(G�

v ); for each edge e, with branches b1, b2 abutting to
vertices v1, v2, respectively, φe : {(b1)∗}∗Sv1

∼→ {(b2)∗}∗Sv2 is an isomorphism
in G�

e , and morphisms given by morphisms [in the evident sense] between such
data. If G has no vertices — and hence precisely one edge e, which is necessarily
isolated — then we shall write Bcov(G) def= G�

e .
The definition of Bcov(G) extends immediately to arbitrary semi-graphs of

anabelioids, each connected component of which is countable. Moreover, for
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such G, we have a natural full embedding:

B(G) ↪→ Bcov(G)

An object of Bcov(G) that lies in the essential image of B(G) will be called finite.
Now observe that we may associate, in a natural way, to any object of

Bcov(G) a morphism of countable semi-graphs of anabelioids:

G′ → G

[cf. the discussion of §2 following Definition 2.1 in the case of B(G)].

Definition 3.5. (i) We shall refer to a morphism of semi-graphs of
anabelioids G′ → G that may be constructed in this way as a covering of semi-
graphs of anabelioids [so, in the terminology of §2, coverings of semi-graphs
of anabelioids that arise from finite objects of Bcov(G) determine “finite étale
coverings of semi-graphs of anabelioids”].

(ii) Suppose that G′ → G satisfies the condition that there exists a finite
étale covering G′′ → G with the property that, for any component [i.e., vertex
or edge] c of G, the restriction of G′′ → G to Gc splits the restriction of G′ → G
to Gc. Then we shall say that the covering G′ → G, as well as the object of
Bcov(G) that gave rise to this covering, is tempered. Also, we shall write

Btemp(G) ⊆ Bcov(G)

for the full subcategory determined by the tempered objects. Thus, we have
natural full embeddings:

B(G) ↪→ Btemp(G) ↪→ Bcov(G)

(iii) An arrow φ : H1 → H2 of Bcov(G) with connected domain and
codomain will be called Galois if, for any two arrows ψ1, ψ2 : K → H1 such
that φ ◦ ψ1 = φ ◦ ψ2, there exists a [unique] automorphism α ∈ AutH2(H1) of
H1 over H2 such that ψ1 = α ◦ ψ2.

Remark 3.5.1. It is immediate from the definitions that passing to the
underlying morphism of semi-graphs yields an equivalence between the datum
of a locally trivial covering of the semi-graph of anabelioids G and the datum
of a graph-covering with countable fibers of the semi-graph G.
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Remark 3.5.2. It follows from Remark 2.4.2 that, if G is totally aloof
and verticially slim, then the construction given above of a covering of semi-
graphs of anabelioids associated to an object of Bcov(G) determines a natural
full embedding of Bcov(G) into the category of totally aloof, verticially slim semi-
graphs of anabelioids and locally finite étale morphisms over G.

Now let us assume that the semi-graph of anabelioids G is connected, count-
able, quasi-coherent, totally elevated, totally aloof, and verticially slim. Let

{Gi → G}i∈I

be some cofinal [i.e., in B(G)] collection of connected finite étale Galois cov-
erings, indexed by a set I. Thus, π̂1(G) may be constructed as the inverse
limit

lim←−
i

Gal(Gi/G)

of the resulting inverse system of finite groups Gal(Gi/G). Let us write

G∞,i → Gi

for the “combinatorial universal covering” of Gi [i.e., the covering of Gi deter-
mined by the universal graph-covering of the underlying semi-graph Gi; thus,
Gal(G∞,i/Gi) is a free discrete group]. One verifies immediately that G∞,i → G
is a Galois tempered covering. Then we set:

πtemp
1 (G) def= lim←−

i

Gal(G∞,i/G)

Note that πtemp
1 (G) is independent, up to inner automorphism, of the choice of

the cofinal system {Gi → G}i∈I .

Proposition 3.6 (The Tempered Fundamental Group of a Semi-graph of
Anabelioids). Let G, G′ be connected, countable, quasi-coherent, totally
elevated, totally aloof, verticially slim semi-graphs of anabelioids. Then:

(i) The topological group πtemp
1 (G) defined above is tempered.

(ii) There is a natural equivalence of categories:

Btemp(πtemp
1 (G)) ∼→ Btemp(G)

In particular, the category Btemp(G) is a connected temperoid. We shall
refer to πtemp

1 (G) as the tempered fundamental group of G.
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(iii) The full embedding B(G) ↪→ Btemp(G) induces an injection πtemp
1 (G)

↪→ π̂1(G) of topological groups.

(iv) Any morphism of semi-graphs of anabelioids G′ → G induces a mor-
phism of temperoids

Btemp(G′) → Btemp(G)

[by pulling back tempered coverings of G to tempered coverings of G′ ]. More-
over, if the original morphism of semi-graphs of anabelioids is locally open,
then this morphism of temperoids is relatively temp-slim. In particular, the
temperoid Btemp(G) is temp-slim.

(v) Suppose that G is coherent, and that we are given a tempered cov-
ering G′ → G. Then the resulting morphism of temperoids

Btemp(G′) → Btemp(G)

is étale.

Proof. Assertion (i) follows from the definitions and the fact that G
is countable. Next, we consider assertion (ii). First, we observe that, by the
definition of a tempered covering, it follows that every connected tempered
covering H → G appears as a subcovering of some G∞,i → G; in particular, we
may choose a factorization G∞,i → H → G. Thus, in light of the definition
of G∞,i as the “combinatorial universal covering” of Gi [together with the fact
that Gi → G is Galois], it follows immediately that the fiber product covering
G∞,i ×G H [regarded as a covering of G∞,i via the projection to the first factor]
splits as a covering of G∞,i. Similarly, [cf. also Remark 3.1.3] the covering
G∞,i ×G G∞,i [regarded as a covering of G∞,i via the projection to the first
factor] splits as a covering of G∞,i. Moreover, the action of Gal(G∞,i/G) on
the first factor of G∞,i ×G G∞,i determines an action of Gal(G∞,i/G) on the
set of components π0(G∞,i ×G G∞,i) which is transitive and free of fixed points
[cf. Remark 3.1.3]. On the other hand, since the domain and codomain of the
covering G∞,i → H are connected, one verifies immediately that the resulting
map on sets of connected components

ξ : π0(G∞,i ×G G∞,i) → π0(G∞,i ×G H)

is surjective and compatible with the natural actions of Gal(G∞,i/G) on the
domain and codomain [arising from the first factor of the fiber products]. In
particular, the fiber of the element of the codomain of ξ determined by the



�

�

�

�

�

�

�

�

264 Shinichi Mochizuki

“graph” of the covering morphism G∞,i → H is the H-orbit, for some subgroup
H ⊆ Gal(G∞,i/G), of the element of the domain of ξ determined by the “graph”
of the identity morphism G∞,i → G∞,i. Now forming the quotient of G∞,i by
H yields an intermediate covering G∞,i → GH → G such that the morphism
GH → G admits a factorization [by the definition of H!] GH → H → G. On the
other hand, by forming the fiber product with G∞,i over G and looking at the
induced morphisms on sets of connected components, we obtain surjections

π0(G∞,i ×G G∞,i) � π0(G∞,i ×G GH) � π0(G∞,i ×G H)

the composite of which is equal to ξ. Moreover, by the construction of GH ,
it follows formally that the first of these two surjections factors through the
quotient of the set π0(G∞,i×G G∞,i) by the action of H; we thus conclude [from
the fact that ξ induces a bijection of the quotient of the set π0(G∞,i ×G G∞,i)
by the action of H onto the set π0(G∞,i ×G H)] that the surjection π0(G∞,i ×G
GH) � π0(G∞,i ×G H) is, in fact, a bijection. But from this, one concludes
immediately that the covering morphism GH → H is an isomorphism. Thus,
in summary, we conclude that the covering H → G may be constructed as the
quotient of the covering G∞,i → G by the action of Gal(G∞,i/H) [i.e., H]; and
[by applying the surjectivity of ξ to the “graphs” of various covering morphisms]
that every morphism of coverings [of G] from G∞,i to H may be obtained
from the original morphism by composing with the action of Gal(G∞,i/G).
Conversely, one verifies immediately that the quotient of G∞,i → G by the
action of any subgroup of Gal(G∞,i/G) yields a subcovering of G∞,i → G. This
shows that there is a natural equivalence between Btemp(Gal(G∞,i/G)) and the
full subcategory of Btemp(G) determined by the subcoverings of G∞,i → G.
Passing to the limit over i then completes the proof of assertion (ii).

Assertion (iii) follows from the fact that discrete free groups [such as
Gal(G∞,i/Gi)] are always residually finite [cf., e.g., Corollary 1.7]. The first
sentence of assertion (iv) follows from the definitions; the remainder of as-
sertion (iv) follows, in light of the injection of assertion (iii), formally from
Corollary 2.7, (ii). Finally, to verify assertion (v), it suffices to show that the
composite of any tempered covering H′ → G′ with the given tempered covering
G′ → G forms a tempered covering H′ → G; moreover, [since composites of
“combinatorial” [i.e., locally trivial] coverings manifestly form “combinatorial”
coverings] we may assume without loss of generality that the covering H′ → G′

is finite étale. But then it follows from the coherence of G [cf. Definition 2.3,
(iii)] that there exists a finite étale covering H → G whose pull-back to G′

splits the restrictions of H′ → G′ to each of the G′
c [where c is a component

of G′].
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Theorem 3.7 (Maximal Compact Subgroups of the Tempered Funda-
mental Group). Let G be a connected, countable, quasi-coherent, to-
tally elevated, totally estranged, verticially slim semi-graph of anabe-
lioids. Assume that G has at least one vertex. Then:

(i) For each vertex v of G, there is a natural continuous, injective outer ho-
momorphism π̂1(Gv) ↪→ πtemp

1 (G). By abuse of notation, we shall write π̂1(Gv)
for the subgroup [well-defined up to conjugation ] determined by the image of
this homomorphism. We shall refer to the [necessarily compact! ] subgroups
of πtemp

1 (G) that arise in this way as the verticial subgroups.

(ii) Let us think of the verticial subgroups as being parametrized by a
vertex v of G and an element of the coset space πtemp

1 (G)/π̂1(Gv). Then if H1,
H2 are verticial subgroups of πtemp

1 (G) that arise from distinct parametriza-
tion data, then H1

⋂
H2 has infinite index in H1. In particular, verticial

subgroups that arise from distinct parametrization data are distinct.

(iii) Every compact subgroup of πtemp
1 (G) is contained in at least one

verticial subgroup. If a nontrivial compact subgroup of πtemp
1 (G) is contained

in more than one verticial subgroup, then it is contained in precisely two
verticial subgroups, determined by a compatible system of pairs of vertices of
the G∞,i [as i ranges over the elements of I ] joined to one another by a single
[closed ] edge. In particular, in this case, this compact subgroup is contained
in the image of some π̂1(Ge), for some edge e of G. We shall refer to such
images of “π̂1(Ge)’s” as the edge-like subgroups of πtemp

1 (G).

(iv) The maximal compact subgroups of πtemp
1 (G) are precisely the

verticial subgroups. The nontrivial intersections of two distinct maxi-
mal compact subgroups of πtemp

1 (G) are precisely the edge-like
subgroups.

Proof. In light of the injection of Proposition 3.6, (iii), assertion (i)
(respectively, (ii)) follows from the definitions; Proposition 2.5, (i) (respectively,
Proposition 2.6; Corollary 2.7, (i) [cf. also Remark 2.7.2]).

Now suppose that H ⊆ πtemp
1 (G) is a nontrivial compact subgroup. Then

H acts continuously on the semi-graph G∞,i, for each i ∈ I. Thus, this ac-
tion factors through a finite quotient. In particular, by Lemma 1.8, (ii), (a),
H fixes at least one edge or vertex of the semi-graph G∞,i. Since the ac-
tion of H is over G, it follows that if H fixes an edge, then it does not
switch the branches of the edge. Since G, hence also G∞,i, is connected
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and has at least one vertex, it thus follows that every edge of G∞,i abuts
to at least one vertex. In particular, we conclude that if H fixes an edge of
G∞,i, then it fixes a vertex, i.e., that H always fixes at least one vertex of
G∞,i.

Now suppose that for some cofinal subset J ⊆ I, H fixes ≥ 3 vertices of
G∞,j , for every j ∈ J . Then by Lemma 1.8, (ii), (c), we conclude that, for
every j ∈ J , H acts trivially on some subjoint of G∞,j . In particular, H acts
trivially on some subjoint of Gj . Since the semi-graphs Gj are all finite, we
thus conclude that we may choose a compatible system of such subjoints [i.e.,
on which H acts trivially] of the Gj . But this implies [cf. Remark 2.2.1] that H

is contained in some conjugate in the profinite fundamental group π̂1(G) of some
π̂1(Gv), and, moreover, that it is in fact contained, for two distinct branches b,
b′ abutting to v of edges e, e′, respectively [where e is not necessarily distinct
from e′], in the intersection of the images of π̂1(Ge), π̂1(Ge′), via b, b′. But
since G is assumed to be totally estranged, we thus conclude that H is trivial,
in contradiction to our hypotheses.

Thus, in summary, we have shown that for some cofinal subset J ⊆ I,
H fixes at least one, but no more than two vertices of G∞,j , for every j ∈ J .
Moreover, by Lemma 1.8, (ii), (b), it follows that if H fixes two vertices of
G∞,j , then these two vertices are joined to one another by a single [closed ]
edge. In particular, by possibly replacing J by some smaller cofinal subset,
we may assume that there exists a compatible system of vertices of G∞,j , for
j ∈ J , each of which is fixed by H. On the other hand, we may also conclude
that there exist at most two such compatible systems. This completes the
proof of assertion (iii). Finally, assertion (iv) follows formally from assertions
(ii), (iii).

Remark 3.7.1. The notion that

maximal compact subgroups correspond to points

is a recurrent theme in the geometry of group actions. Classical well-known
examples of this phenomenon include the theory of symmetric spaces obtained
as quotients of a real reductive group by a maximal compact subgroup or, in
the p-adic case, of Qp-valued points of a reductive group by Zp-valued points.
Another example of this sort of situation is the “discrete real section conjecture”
of [Mzk5], §3.2.
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Definition 3.8. We shall refer to as quasi-geometric any continuous
homomorphism of tempered groups

Π1 → Π2

that satisfies the following condition: Any maximal compact subgroup K1 ⊆ Π1

(respectively, nontrivial intersection K1

⋂
H1 of two distinct maximal compact

subgroups K1, H1 ⊆ Π1) maps surjectively to an open subgroup of some max-
imal compact subgroup K2 ⊆ Π2 (respectively, of some nontrivial intersection
K2

⋂
H2 of two distinct maximal compact subgroups K2, H2 ⊆ Π2). A quasi-

geometric morphism of temperoids is a morphism of temperoids each of whose
component morphisms arises [cf. Proposition 3.2] from a quasi-geometric con-
tinuous homomorphism of tempered groups.

Remark 3.8.1. It is immediate that any isomorphism of temperoids is
quasi-geometric.

Corollary 3.9 (Reconstruction of the Underlying Semi-graph of Anabe-
lioids). Let G, H be connected, countable, quasi-coherent, totally el-
evated, totally estranged, verticially slim graphs of anabelioids. Then
applying “Btemp(−)” determines a natural bijective correspondence between lo-
cally open morphisms of semi-graphs of anabelioids

G → H

and quasi-geometric morphisms of temperoids Btemp(G) → Btemp(H).

Proof. First, we note that any locally open morphism of semi-graphs
of anabelioids G → H determines a morphism of temperoids Btemp(G) →
Btemp(H) [cf. Proposition 3.6, (iv)] whose quasi-geometricity follows by “sub-
stituting” the equivalences of Theorem 3.7, (iv), into Definition 3.8. Next, we
observe that by Proposition 3.2; Definition 3.8; Theorem 3.7, (ii), (iii), any
quasi-geometric φ : Btemp(G) → Btemp(H) determines a map from the vertices
to G to the vertices of H — i.e., by considering the unique [conjugacy class
of] verticial subgroup(s) of πtemp

1 (H) that contain(s) the image of a given ver-
ticial subgroup of πtemp

1 (G). Similarly, by considering nontrivial intersections
of maximal compact subgroups, one obtains [in light of the fact that, since H
is totally elevated and totally aloof, all of the edge-like subgroups of πtemp

1 (H)
are infinite] that any quasi-geometric φ : Btemp(G) → Btemp(H) determines
a map from the edges to G to the edges of H which is compatible with the
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map obtained above on vertices. Thus, in summary, we conclude that a quasi-
geometric φ : Btemp(G) → Btemp(H) determines a map on the underlying graphs
G → H that is functorial in φ.

Next, we observe that if φ : Btemp(G) → Btemp(H) is quasi-geometric, then
any morphism

φ′ : Btemp(G′) → Btemp(H′)

induced by φ between étale coverings of the domain and codomain of φ [i.e.,
G′ → G, H′ → H are tempered coverings] is again quasi-geometric. Indeed, this
follows immediately from the characterization of nontrivial maximal compact
subgroups (respectively, nontrivial intersections of two distinct maximal com-
pact subgroups) as the verticial subgroups (respectively, edge-like subgroups) —
cf. Theorem 3.7, (iii), (iv). Thus, we obtain a morphism of graphs G′ → H′,
which is functorial in G′, H′. Finally, by varying G′, H′, we conclude that φ

arises from a morphism of graphs of anabelioids which [again by Theorem 3.7,
(iii), (iv)] is manifestly unique and locally open. This completes the proof of
Corollary 3.9.

Remark 3.9.1. Suppose that G is as in Theorem 3.7. Then observe
that, if G is a semi-graph which is not a graph, then the techniques developed
here are not sufficient, in general, to reconstruct the open edges of G from, say,
the isomorphism class of the tempered group πtemp

1 (G) — cf. Remark 4.8.1.

Example 3.10. Pointed Stable Curves over p-adic Local Fields I.
Let K be a finite extension of Qp; K an algebraic closure of K; X log

K a smooth

log curve over K [cf. §0]. Let us write X log

K

def= X log
K ×K K;

πtemp
1 (X log

K )

for the tempered fundamental group of [André], §4. Thus, πtemp
1 (X log

K ) is a
tempered topological group [in the sense of Definition 3.1, (i)] and fits into a
natural exact sequence:

1 → πtemp
1 (X log

K
) → πtemp

1 (X log
K ) → GK → 1

[where GK
def= Gal(K/K); we write πtemp

1 (X log

K
) for the geometric tempered

fundamental group of X log
K , i.e., the tempered fundamental group of X log

K
×K

(K)∧; the “∧” denotes the p-adic completion]. To simplify the notation, let us
write:

Π def= πtemp
1 (X log

K ); ∆ def= πtemp
1 (X log

K
)



�

�

�

�

�

�

�

�

Semi-graphs of Anabelioids 269

Note that ∆ is also tempered, so we obtain temperoids:

Btemp(Π); Btemp(∆)

Now let us write
G (respectively, Gc)

for the graph of anabelioids (respectively, semi-graph of anabelioids) determined
by the semi-graph of profinite groups [without compact structure!] (respec-
tively, with compact structure) associated to the geometric special fiber of the
stable model of X log

K
[cf. [Mzk3], Appendix] over the ring of integers OK of

K. Note that it follows from the definitions that we have a natural equivalence
Btemp(G) ∼→ Btemp(Gc) and a natural full embedding:

Btemp(G) ↪→ Btemp(∆)

Now suppose that we are given an exhaustive sequence of open characteristic
[hence normal] subgroups of finite index

· · · ⊆ Ni ⊆ · · · ⊆ ∆

[where i ranges over the positive integers] of ∆; write ∆i
def= ∆/Ni. Thus, Ni

determines a finite log étale covering of X log

K
, whose geometric special fiber

gives rise to semi-graphs of anabelioids

Gi; Gc
i

on which ∆i acts faithfully. Recall from Example 2.10 that Gi, Gc
i are coherent,

totally elevated, totally universally sub-coverticial, totally estranged, and verti-
cially slim. In particular, Gi satisfies the hypotheses of Theorem 3.7, Corol-
lary 3.9.

Next, let us observe that we obtain a natural compatible system of gener-
alized [cf. Definition 2.11] morphisms of graphs of anabelioids

Gi → Gj

[where i ≥ j], which are compatible with the actions of ∆i, ∆j , as follows: The
functor

Cat(Gi) → Cat(Gj)

is obtained by mapping a vertex v (respectively, vertex v; edge e; edge e) of
Gi to a(n) vertex v′ (respectively, edge e′; edge v′; edge e′) of Gj whenever
the map on geometric special fibers between the coverings determined by ∆i,
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∆j maps the irreducible component corresponding to v into the irreducible
component corresponding to v′ in such a way that the image of the irreducible
component corresponding to v is not equal to a node (respectively, the irre-
ducible component corresponding to v into the node corresponding to e′; the
node corresponding to e to a non-nodal point lying in the irreducible component
corresponding to v′; the node corresponding to e to the node corresponding to
e′). The remainder of the data necessary to define the generalized morphism of
graphs of anabelioids Gi → Gj is determined naturally by considering the map
on geometric special fibers between the coverings determined by ∆i, ∆j . For
a more group-theoretic description of these generalized morphisms Gi → Gj , we
refer to the discussion of Example 5.6 below.

Finally, we observe that these generalized morphisms of graphs of an-
abelioids induce — by applying “Btemp(−)” [cf. Remark 2.11.1] — natural
morphisms of temperoids

· · · → Btemp(Gi) → · · · → Btemp(Gj) → · · · → Btemp(G)

compatible with the actions of the ∆i, hence also corresponding surjections
of tempered groups [where we note that each of the “outer semi-direct product
groups” [cf. §0] admits a natural topology with respect to which the resulting
topological group is tempered]:

∆ � · · · � ∆[i] def= πtemp
1 (Gi)

out
� ∆i � · · · � ∆[j] def= πtemp

1 (Gj)
out
� ∆j

� · · · � πtemp
1 (G)

Note that each ∆[i] is temp-slim. [Indeed, this follows from the fact that ∆i

acts faithfully on Gi, hence also faithfully on Btemp(Gi) [cf., e.g., the injectivity
portion of the bijection of Corollary 3.9]; the temp-slimness portion of Proposi-
tion 3.6, (iv).] Since ∆ is the inverse limit of the ∆[i], and GK is slim [cf. e.g.,
[Mzk3], Theorem 1.1.1], we thus conclude that both ∆ and Π are temp-slim.

Remark 3.10.1. We maintain the notation of Example 3.10. Write
Btemp(X log

K ) for the category of tempered coverings of X log
K [so Btemp(X log

K ) is a
temperoid whose tempered fundamental group is πtemp

1 (X log
K )]. Let Σ be a set

of prime numbers. Denote by

Btemp(X log
K )Σ ⊆ Btemp(X log

K )

the full subcategory determined by the tempered coverings dominated by cov-
erings which arise as a combinatorial covering [i.e., a covering arising from a
graph-covering of the dual graph of the geometric special fiber] of a finite étale
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Galois covering of X log
K whose degree is a Σ-integer. One verifies immediately

that Btemp(X log
K )Σ is a temperoid. We shall refer to the tempered fundamen-

tal group of this temperoid as the pro-Σ tempered fundamental group of X log
K .

Then, as long as Σ contains at least one prime 	= p, the entire discussion of
Example 3.10 may be carried out for the pro-Σ tempered fundamental group of
X log

K . [We leave the routine details to the interested reader.] Also, we observe
that the analogue of “G” (respectively, “Gc”) in the pro-Σ case is precisely
the pro-Σ completion [in the sense of Definition 2.9, (ii)] of the semi-graph of
anabelioids G (respectively, Gc).

In the case of tempered fundamental groups of pointed stable curves, i.e.,
Example 3.10, we observe [cf. Remark 3.9.1] that, in the notation of Example
3.10, not only G, but also the semi-graph of anabelioids Gc may be reconstructed
group-theoretically from the tempered fundamental group:

Corollary 3.11 (Reconstruction of Semi-graphs of Anabelioids Asso-
ciated to Pointed Stable Curves). For � = α, β, let K� be a finite exten-
sion of Qp� ; K� an algebraic closure of K�; (X log

� )K� a smooth log curve

over K� [cf. §0 ]. Let us write (X log
� )K�

def= (X log
� )K� ×K� K�; ∆[�] def=

πtemp
1 ((X log

� )K�
);

G[�] (respectively, Gc[�])

for the graph of anabelioids (respectively, semi-graph of anabelioids)
determined by the semi-graph of profinite groups [without compact structure! ]
(respectively, with compact structure) associated to the geometric special fiber of
the stable model of (X log

� )K�
[cf. [Mzk3] , Appendix ] over the ring of integers

OK�
of K� [cf. Example 3.10]. Then any isomorphism of topological groups

γ : ∆[α] ∼→ ∆[β]

determines a compatible isomorphism of semi-graphs of anabelioids

Gc[α] ∼→ Gc[β]

in a fashion that is functorial with respect to γ. Moreover, if such a γ exists,
then pα = pβ.

Proof. Let Σ be a set of prime numbers such that pα, pβ 	∈ Σ. Write
∆̂[�] for the profinite completion of ∆[�]; ∆[�]Σ for the pro-Σ tempered fun-
damental group of Remark 3.10.1; ∆̂[�]Σ for the maximal pro-Σ quotient of
∆̂[�]; Gc[�]Σ, G[�]Σ for the respective pro-Σ completions [in the sense of Def-
inition 2.9, (ii)] of Gc[�], G[�]. Moreover, since Galois coverings of degree a



�

�

�

�

�

�

�

�

272 Shinichi Mochizuki

Σ-integer are necessarily admissible [cf., e.g., [Mzk1], §3], it follows that ∆[�]Σ

may be identified with the tempered fundamental group πtemp
1 (Gc[�]Σ) ∼=

πtemp
1 (G[�]Σ).

Next, let us observe that the kernel

IΣ[�] def= Ker(∆[�] � ∆[�]Σ)

may be recovered as the kernel JΣ[�] of the natural morphism ∆[�] → ∆̂[�]Σ.
Indeed, since it follows from the definitions that the morphism ∆[�] → ∆̂[�]Σ

factors through ∆[�]Σ, we obtain that IΣ[�] ⊆ JΣ[�]. On the other hand, the
fact that JΣ[�] ⊆ IΣ[�] follows from the fact that free discrete groups inject
into their pro-Σ completions [cf. Remark 1.7.1]. This completes the proof of
the equality IΣ[�] = JΣ[�].

In particular, we conclude that the quotients

∆[�] � ∆[�]Σ ∼= πtemp
1 (G[�]Σ)

are compatible with γ. Thus, by Corollary 3.9, we conclude that γ induces a
natural, functorial isomorphism of graphs of anabelioids

G[α]Σ ∼→ G[β]Σ

hence, in particular, an isomorphism of graphs G[α] ∼→ G[β].
Next, let us observe, that:

(i) The technique used to obtain an isomorphism of graphs of anabelioids in
the preceding paragraph may also be applied to open subgroups of finite
index ∆′[α] ⊆ ∆[α], ∆′[β] ⊆ ∆[β] that correspond via γ.

Moreover, let us recall that:

(ii) The decomposition groups of cusps in ∆[�]Σ are commensurably terminal
[cf. [Mzk3], Lemma 1.3.7].

(iii) Every nontrivial image via the natural morphism

∆′[�]Σ → ∆[�]Σ

associated to some open subgroup of finite index ∆′[�] ⊆ ∆[�] of the de-
composition group of a node in ∆′[�]Σ [i.e., in the terminology of Theorem
3.7, an “edge-like subgroup”] is either an open subgroup of an edge-like
subgroup of ∆[�]Σ or an open subgroup of a decomposition group of a
cusp in ∆[�]Σ [but not both, since G[�]Σ is totally aloof — cf. Example
2.10, Remark 2.4.1].
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(iv) Every decomposition group of a cusp in ∆[�]Σ admits an open subgroup
that arises as the image via some morphism ∆′[�]Σ → ∆[�]Σ as in (ii) of
an edge-like subgroup of ∆′[�]Σ.

Indeed, (ii) follows from [Mzk3], Lemma 1.3.7; (iii) is immediate from the
definitions. On the other hand, (iv) may be verified as follows: Suppose
that

∆′[�] ⊆ ∆[�]

is an open normal subgroup of finite index that corresponds to a covering of
(X log

� )K�
whose ramification indices at the cusps are prime to p�, but which

is ramified over the irreducible component C� of the special fiber of the stable
model of (X log

� )K�
that contains [the restriction to the special fiber of] the cusp

of interest, which we shall denote by x�. [Note that such a ∆′[�] always exists:
Indeed, by passing to a Galois covering of degree a Σ-integer, one may assume
that the normalization of C� is of genus ≥ 2; then one verifies immediately
that the covering arising from “multiplication by p� on the Jacobian” satisfies
the conditions just stated.] Then the ramification over C� implies that this
covering has ≥ p� distinct cusps lying over x� which, nevertheless, map to the
same point of the normalization of C� in the [necessarily inseparable — by our
ramification assumption!] field extension of its function field determined by
the covering. Thus, we conclude that [the restrictions to the special fiber of]
these distinct cusps must lie on an irreducible component of the special fiber
[of the stable model] of the covering that collapses to [the restriction to the
special fiber of] x� [cf. also [Tama2], Theorem 0.2, for a more general result
concerning the existence of coverings with collapsing irreducible components].
Now, sorting through the definitions, we see that this completes the proof
of (iv).

Thus, in summary, it follows formally from (i), (ii), (iii), (iv) that the
natural, functorial isomorphism of graphs of anabelioids

G[α]Σ ∼→ G[β]Σ

induced by γ extends uniquely to a natural, functorial isomorphism of semi-
graphs of anabelioids

Gc[α]Σ ∼→ Gc[β]Σ

[which may also be regarded as being induced by γ], hence, in particular, an
isomorphism of semi-graphs Gc[α] ∼→ Gc[β].

Next, let us observe that, if ∆′[α] ⊆ ∆[α], ∆′[β] ⊆ ∆[β] are normal open
subgroups of finite index that correspond via γ, and we write G′[�], G′[�] for
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the corresponding graphs/graphs of anabelioids [without compact structure],
then the decomposition group

Dv ⊆ ∆[�]/∆′[�]

determined by a vertex v of G′[�] acts naturally on the anabelioid G′[�]Σv [i.e.,
the pro-Σ completion of the anabelioid G′[�]v]. Thus, the inertia group

Iv ⊆ Dv

at v — i.e., the subgroup that acts trivially on this anabelioid — is necessarily
of order a power of p�. (Indeed, here we use the easily verified fact that any
nontrivial automorphism of an irreducible component of the special fiber [of the
stable model of the covering determined by ∆′[�]] induces a nontrivial outer
automorphism of the tame pro-Σ fundamental group [i.e., where “tame” means
that one only allows tame ramification at the nodes and cusps] of the open
subscheme of this irreducible component given by taking the complement [in
this irreducible component] of the nodes and cusps.) In particular, [since there
exist ∆′[�] for which Iv is nontrivial — cf., e.g., the proof of assertion (iv)
given above] we obtain that pα = pβ. Thus, in the following, we shall write

p
def= pα = pβ.

Next, let us observe that the natural quotient

∆[�] � πtemp
1 (G[�]) ∼= πtemp

1 (Gc[�])

— i.e., the quotient determined by the “admissible quotient” of ∆̂[�], in the
sense of [Mzk3], §2 — may be characterized as follows: A normal open sub-
group of finite index ∆′[�] ⊆ ∆[�] arises from this quotient if and only if
no irreducible component of the special fiber of the stable model of the corre-
sponding covering collapses in the stable model of (X log

� )K�
, and, moreover,

the decomposition groups at the nodes and cusps (respectively, inertia groups
at the irreducible components) of the corresponding covering are prime to p (re-
spectively, trivial). Indeed, this follows immediately from well-known “purity
of the branch locus” results and the well-known “structure of local fundamen-
tal groups of stable curves” [cf., e.g., [Tama2], Lemma 2.1]. Now let us write
(G′)c[�], (G′)c[�] for the semi-graph/semigraph of anabelioids [with compact
structure!] associated to ∆′[�]. Then observe that this characterization is
equivalent to the following “group-theoretic” condition [i.e., condition compat-
ible with γ]:
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The natural map ∆′[�]Σ → ∆[�]Σ is quasi-geometric; the stabilizer ⊆
∆[�]/∆′[�] of any edge of the semi-graph (G′)c[�] has order prime to p;
the stabilizer ⊆ ∆[�]/∆′[�] of any vertex v of the semi-graph (G′)c[�]
acts faithfully on the anabelioid (G′)c[�]Σv [i.e., the pro-Σ completion
of the anabelioid (G′)c[�]v].

Thus, we conclude that γ induces an isomorphism

πtemp
1 (G[α]) ∼= πtemp

1 (G[β])

hence, by Corollary 3.9, we conclude that γ induces an isomorphism of graphs
of anabelioids

G[α] ∼→ G[β]

which — by applying the functorial isomorphisms “Gc[α] ∼→ Gc[β]” obtained
above to arbitrary normal open subgroups of finite index ∆′[�] ⊆ ∆[�] that
arise from the “admissible quotient” — induces a uniquely determined isomor-
phism of semi-graphs of anabelioids

Gc[α] ∼→ Gc[β]

[which is, of course, functorial in γ], as desired.

Remark 3.11.1. Note that for any set of primes Σ of cardinality ≥ 3
[i.e., so that Σ contains at least one prime 	= pα, pβ], the argument given above
also yields a “pro-Σ version” of Corollary 3.11, i.e., where one replaces the
isomorphism

γ : ∆[α] ∼→ ∆[β]

in the statement of Corollary 3.11 by an isomorphism

∆[α]Σ ∼→ ∆[β]Σ

between the respective pro-Σ tempered fundamental groups [in the sense of
Remark 3.10.1].

Remark 3.11.2. Once one recovers the “admissible quotients” ∆[�] �
πtemp

1 (Gc[�]), one may apply the results of [Tama1] to the various verticial sub-
groups of πtemp

1 (Gc[�]) to recover, in certain cases, the isomorphism class of the
curve determined by the complement of the nodes and cusps in the irreducible
component of the special fiber corresponding to this verticial subgroup.
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§4. Categories of Localizations

In this §, we consider categories of localizations of a semi-graph of anabe-
lioids satisfying certain conditions.

Let G be a totally aloof, verticially slim semi-graph of anabelioids [so that
we may apply Remark 2.4.2]; Γ a finite group of automorphisms of G [i.e., Γ
acts faithfully on G].

If H → G is a morphism of semi-graphs, then we shall write GH for the
semi-graph of anabelioids obtained by pulling back [in the evident sense] the
semi-graph of anabelioids structure of G via H → G. If v (respectively, e; b) is
a(n) vertex (respectively, edge; branch of an edge) of G, then we shall write

G[v] def= GG[v]; G[e] def= GG[e]; G[b] def= GG[b]

[i.e., relative to the natural morphisms G[v] → G, G[e] → G, G[b] → G of §1].

Definition 4.1. (i) We shall say that Γ acts piecewise faithfully on G
if every element γ ∈ Γ satisfies the following condition: If there exists a vertex
v of G such that γ fixes v as well as all of the branches of closed edges of G

that abut to v, then γ is the identity.

(ii) Any locally trivial morphism of totally aloof, verticially slim semi-
graphs of anabelioids G′ → G whose underlying morphism of semi-graphs is an
immersion (respectively, excision; embedding) will also be referred to as an im-
mersion (respectively, excision; embedding), or, alternatively, as an immersive
(respectively, excisive; embedding) morphism.

(iii) Let H be a totally aloof, verticially slim semi-graph of anabelioids.
Then we shall refer to as a (G, Γ)-structure on H any Γ-orbit [relative to the
action of Γ on G] of locally finite étale morphisms of totally aloof, verticially
slim semi-graphs of anabelioids H → G. We shall refer to any of the morphisms
in this orbit as a structure morphism [relative to this particular (G, Γ)-structure
on H]. We shall say that a (G, Γ)-structure on H is iso-immersive (respectively,
iso-excisive) if some [or, equivalently, every] structure morphism H → G factors
as the composite of an immersion (respectively, excision) H → G′ with a finite
étale morphism G′ → G such that G′ is untangled [so the composites of the
immersion H → G′ with the various H[v] → H, H[e] → H, H[b] → H are
all embeddings]. If H → H′ is a locally finite étale morphism between totally
aloof, verticially slim semi-graphs of anabelioids that are equipped with (G, Γ)-
structures, then we shall say that this morphism is compatible with the (G, Γ)-
structures if the composite of this morphism with a structure morphism of H′

yields a structure morphism of H.
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(iv) Let H be a totally aloof, verticially slim semi-graph of anabelioids.
Then we shall refer to as a local (G, Γ)-structure on H the datum of a (G, Γ)-
structure for each H[c], where c varies among the components [i.e., vertices and
edges] of the underlying semi-graph H satisfying the property that if a branch
b of an edge e of H abuts to a vertex v of H, then the given (G, Γ)-structures
on H[v], H[e] coincide on H[b]. We shall say that a local (G, Γ)-structure is iso-
immersive (respectively, iso-excisive) if each of its constituent (G, Γ)-structures
is iso-immersive (respectively, iso-excisive). We shall say that a local (G, Γ)-
structure is verticially iso-excisive if each of its constituent (G, Γ)-structures at
a vertex is iso-excisive. If H → H′ is a locally finite étale morphism between
totally aloof, verticially slim semi-graphs of anabelioids that are equipped with
local (G, Γ)-structures, then we shall say that this morphism is compatible with
the local (G, Γ)-structures if each of the induced morphisms H[c] → H[c′] (where
c is a component of H mapping to a component c′ of H′) is compatible with
the given (G, Γ)-structures.

Remark 4.1.1. Let H be a totally aloof, verticially slim semi-graph of
anabelioids, equipped with a local (G, Γ)-structure. Then each component c of
H determines a well-defined Γ-orbit of components of G [by mapping c to G via
a structure morphism]. In particular, if c is an edge, then it makes sense to say
that c lies over an open (respectively, closed) edge of G. In this case, we shall
say that c is G-open (respectively, G-closed). One verifies immediately that
any locally finite étale morphism compatible with given local (G, Γ)-structures
maps G-open (respectively, G-closed) edges to G-open (respectively, G-closed)
edges.

Remark 4.1.2. The reason for working with the action of Γ [which at
times may appear to be somewhat cumbersome — cf., e.g., Definition 4.1, (iii),
(iv)] is to “simulate” a stack-theoretic situation, of the sort which occurs nat-
urally, for instance, when one considers formal localizations of pointed stable
“orbicurves” [cf. the discussion in the Introduction]. In particular, this cir-
cumvents the need to introduce [conceivably even more cumbersome] notions
of “orbi-semi-graphs of anabelioids”, etc.

Next, we assume further that Γ acts piecewise faithfully on G, and that
G is finite, connected, coherent, totally elevated, and totally universally sub-
coverticial. Then we may define a category of localizations of G

Loc(G, Γ)
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associated to the pair (G, Γ) as follows: The (finite) closed objects are the con-
nected finite étale coverings G′ of G, which we regard as being equipped with the
resulting G- [i.e., (G, {1})-)] structure. The infinite open objects are the semi-
graphs of anabelioids G′′ that appear as connected tempered coverings of G of
infinite degree. We regard infinite open objects as being equipped with the re-
sulting G-structure. An object that is either closed or infinite open will be called
tempered. A finite open object H is a finite, connected, quasi-coherent, totally
elevated, totally universally sub-coverticial, totally aloof, verticially slim semi-
graph of anabelioids, equipped with an iso-immersive, verticially iso-excisive
local (G, Γ)-structure, such that H contains at least one non-isolated open edge
which is, however, G-closed. The morphisms between tempered objects (re-
spectively, morphisms from a finite open object to an arbitrary object) are the
locally finite étale morphisms of semi-graphs of anabelioids compatible with
the G-structure (respectively, local (G, Γ)-structure). There are no morphisms
from a tempered to a finite open object. This completes the definition of the
category Loc(G, Γ).

Definition 4.2. (i) The (possibly infinite) verticial length (respec-
tively, edge-wise length) of an object of Loc(G, Γ) is defined to be the cardinality
of the set of vertices (respectively, closed edges) of the underlying semi-graph.
An open object of verticial length 1 (respectively, 2) and edge-wise length 0
(respectively, 1) will be referred to as a nuclear object (respectively, link). A
locally trivial morphism from a nuclear object to a link (respectively, an arbi-
trary object) will be referred to as an NL-morphism (respectively, a verticial
morphism). The verticial degree of an arrow H → K in Loc(G, Γ) at a vertex v

of H mapping to a vertex w of K is defined to be the [necessarily finite] degree
of the finite étale morphism of anabelioids Hv → Kw induced by the arrow.

(ii) A graph-localization morphism in Loc(G, Γ) is defined to be a locally
trivial morphism which satisfies the condition that it is an isomorphism when-
ever its domain is closed. A strict graph-localization morphism is a graph-
localization morphism for which the induced arrow on underlying semi-graphs
is injective on vertices.

Remark 4.2.1. Note that a morphism in Loc(G, Γ) is locally trivial if
and only if it is excisive. [Indeed, sufficiency follows from the definition of
the term “excisive” [cf. Definition 4.1, (ii)]; as for necessity, the “local sur-
jectivity” of branches follows from the verticial iso-excisiveness of the local
(G, Γ)-structures involved; the “local injectivity” of branches follows, in light of
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the local triviality assumption, from the total aloofness of the semi-graphs of
anabelioids involved.]

Remark 4.2.2. One verifies immediately from the definitions that every
embedding in Loc(G, Γ) is a strict graph-localization morphism. The converse to
this statement, however, may easily be seen to be false in general.

Proposition 4.3 (Basic Properties of the Category of Localizations).

(i) The underlying semi-graph of anabelioids of an object of Loc(G, Γ) is
connected, coherent, totally elevated, totally universally sub-
coverticial, totally aloof, verticially slim, and of injective type; if, more-
over, this object is finite open, then it is of positive verticial length. The
underlying morphism of semi-graphs of a morphism of Loc(G, Γ) is locally
finite étale.

(ii) If H is a finite open object of Loc(G, Γ), then any excision H′ → H

of finite connected graphs of positive verticial length determines an excision
H′ def= HH′ → H of Loc(G, Γ).

(iii) Let φ : H → K be a morphism in Loc(G, Γ) from a finite open object
H to a tempered object K. Then φ is not an isomorphism of semi-graphs of
anabelioids.

(iv) Let H be a finite open object of Loc(G, Γ) such that H is a tree. Then
the local (G, Γ)-structure on H arises from a unique (G, Γ)-structure on H
[hence, in particular, from a [not necessarily unique ] G-structure ].

(v) Every morphism in Loc(G, Γ) is an epimorphism. In particular, the
category Loc(G, Γ) is totally epimorphic.

(vi) Every endomorphism of a finite [open or closed ] object of Loc(G, Γ)
is an automorphism. Moreover, the automorphism group of any finite object
of Loc(G, Γ) is finite.

Proof. Assertion (i) (respectively, (ii)) is immediate from the defini-
tions [cf. also Remark 2.4.1] (respectively, [cf. also the fact that the domain of
any nonproper excision admits an edge that maps to an edge of strictly greater
verticial cardinality]). As for assertion (iii), we may assume without loss of
generality that K is finite. Then assertion (iii) follows from the fact that φ
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necessarily maps an open, G-closed edge of H [which always exists, by the def-
inition of an open object] to an open, G-closed edge of K. But this contradicts
the easily verified fact that every G-closed edge of K is closed in K.

Next, we consider assertion (iv). The desired morphism H → G may be
constructed by gluing together local structure morphisms to G; the fact that
such a gluing operation may be performed — despite the “Γ-ambiguities” in-
volved — follows from our assumption that H is a tree. Finally, the uniqueness
of the (G, Γ)-structure follows by reducing to the case of nuclear H by assertion
(v) below [one checks immediately that there are no vicious circles in the argu-
ment], in which case the desired uniqueness is immediate from the definitions.

Next, we consider assertion (v). Let φ, ψ : H → K, ξ : H′ → H be mor-
phisms in Loc(G, Γ) such that φ ◦ ξ = ψ ◦ ξ. By localizing on H [and applying
the fact that any finite étale morphism of slim anabelioids is an epimorphism
in the category of finite étale morphisms of slim anabelioids], one verifies im-
mediately that it suffices to treat the case where ξ is an NL-morphism [so, in
particular, H′ is nuclear; H is a link]. Write eH for the unique closed edge of
H; bH for the branch of eH that abuts to the unique vertex v of H′. Since φ, ψ

then coincide on the edges of H that abut to v, we conclude that φ, ψ coincide
on H[eH ]. In particular, we may also assume that K is a link. Write eK for the
unique closed edge of K.

Now I claim that it suffices to show that φ, ψ coincide on H[eH ]. Indeed,
since H is a link, H[eH ] may be obtained from H by simply omitting the open
edges. Thus, it suffices to check that φ, ψ map each open edge e′ of H to the
same open edge e′′ of K and induce the same morphism He′ → Ke′′ . On the
other hand, since φ, ψ coincide on H[eH ], both of these assertions follow from
the fact that K is totally aloof. This completes the proof of the claim.

To show that φ, ψ coincide on H[eH ], we reason as follows: First, we ob-
serve that [by our definition of the category Loc(G, Γ); the piecewise faithfulness
of Γ] H[bH ] ; H[eH ]; K[eK ] may be equipped with G-structures that are compat-
ible with ξ, φ, and ψ. Thus, these G-structures induce injective [by Proposition
2.5, (i)] outer homomorphisms

π̂1(H′) = π̂1(H[bH ]) ↪→ π̂1(G);
π̂1(H) = π̂1(H[eH ]) ↪→ π̂1(G); π̂1(K) = π̂1(K[eK ]) ↪→ π̂1(G)

which are compatible with the outer homomorphisms

π̂1(ξ) : π̂1(H′) → π̂1(H); π̂1(φ), π̂1(ψ) : π̂1(H) → π̂1(K)

induced by ξ, φ, ψ. This compatibility implies that π̂1(φ), π̂1(ψ) differ by
conjugation by some element g ∈ π̂1(G). By the coincidence of φ, ψ on H′,
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however, we may assume that g centralizes [the image of] π̂1(H′). Thus, by
Corollary 2.7, (i), we conclude that g is the identity, and hence that π̂1(φ),
π̂1(ψ) coincide. On the other hand, by Corollary 2.7, (i), and the fact that K
is totally aloof, this implies that φ, ψ coincide on H[eH ], as desired.

Finally, we consider assertion (vi). Let φ be an endomorphism of a finite
[open or closed] object H. By finiteness, it is immediate that, for some integer
M ≥ 1, φM fixes some vertex v of H and induces the identity on the anabelioid
Hv. Thus, by assertion (v), we conclude that φM is the identity, so φ is an
automorphism, as desired. The finiteness of the automorphism group of H is
immediate from the finiteness of H itself.

Proposition 4.4 (Associated Anabelioids). Let H → K, L → K be
morphisms between finite [open or closed ] objects in Loc(G, Γ). Then:

(i) There exists a finite étale covering K′ → K of K such that the induced
morphism H′ → K′ from any connected component H′ of the pull-back of this
finite étale covering to H is an embedding.

(ii) There exists a finite étale covering K′ → K of K such that K′ embeds
into a finite étale covering G′ → G of G.

(iii) The morphism H → K in Loc(G, Γ) induces a relatively slim π1-
mono-morphism of slim anabelioids

B(H) → B(K)

which completely determines the original morphism H → K [among all
morphisms in Loc(G, Γ) from H to K ].

(iv) Suppose that H → K, L → K are finite étale. Then every morphism
H → L in Loc(G, Γ) lying over K is finite étale and induces a finite étale
morphism on associated anabelioids [cf. assertion (iii) ]. Moreover, the full
subcategory of such finite étale objects over K determines a full embedding:

B(K)0 ↪→ Loc(G, Γ)K

When K = G, we have Loc(G, Γ)K = Loc(G, Γ); the essential image of this
embedding is the full subcategory of closed objects.

Proof. First, we consider assertion (i). Since K is quasi-coherent, it
follows from Proposition 2.5, (i), that we may reduce immediately to the case
where the given morphism H → K is locally trivial. Thus, we are reduced to
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a problem in graph theory — a problem solved in §1 — cf. Theorem 1.2 [i.e.,
“Zariski’s main theorem for semi-graphs”].

Assertion (ii) may be shown as follows: Let K′′ → K be a combinatorial
universal covering. Although K′′ [i.e., K′′ → K] will not, in general, determine
an object of Loc(G, Γ)K, it can, nevertheless, be thought of as inductive limit
of Kα ∈ Ob(Loc(G, Γ)K) associated to connected finite sub-semi-graphs Kα of
K′′. By Proposition 4.3, (iv), these Kα admit compatible [i.e., as α varies]
morphisms [in Loc(G, Γ)K] to G. Moreover, the uniqueness, up to finitely many
possibilities, [cf. Proposition 4.3, (iv)] of such a compatible system implies that
some finite index subgroup of Gal(K′′/K) fixes such a compatible system. In
particular, we conclude that, for some finite subcovering K′′′ → K of K′′/K, we
obtain a morphism [in Loc(G, Γ)K] K′′′ → G. Thus, the existence of a K′ → K
as asserted follows by applying assertion (i) to the morphism K′′′ → G.

Next, we consider of assertion (iii). The fact that B(H), B(K) are slim
follows from Corollary 2.7, (ii). This slimness implies that the profinite funda-
mental groups of B(H), B(K) have no nontrivial normal finite closed subgroups.
Thus, by assertion (i), to show that B(H) → B(K) is a π1-monomorphism, it
suffices to show, under the further assumption that H → K is an embedding,
that any finite étale covering H′ → H of H may be split by the pull-back of a
finite étale covering K′ → K of K; moreover, by the injectivity of Proposition
2.5, (i), we may even assume further that H′ → H is locally trivial. But then
the existence of a covering K′ → K as desired follows from the [easily verified]
assertion that “a finite graph-covering of a connected sub-semi-graph of a given
connected semi-graph may be extended to a finite graph-covering of the given
connected semi-graph” [cf. the proof of Proposition 2.5, (i)]. This completes
the proof of the fact that B(H) → B(K) is a π1-monomorphism. Next, we show
that B(H) → B(K) is relatively slim and determines H → K. By Proposition
4.3, (v), we reduce immediately to the case where H is nuclear. Then our con-
clusion follows from Corollary 2.7, (i), (ii), (iii). This completes the proof of
assertion (iii).

Finally, assertion (iv) is a formal consequence of assertion (iii); Proposition
4.3, (iii); and the definitions.

Proposition 4.5 (The Subcategory of Tempered Objects). Let H, K be
tempered objects of Loc(G, Γ). Then every morphism H → K in Loc(G, Γ) is
a tempered covering. In particular, we have a natural full embedding

Btemp(G)0 ↪→ Loc(G, Γ)

whose essential image is the full subcategory of tempered objects.
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Proof. Indeed, by Proposition 3.6, (iv), (v), we obtain a morphism of
temperoids

Btemp(H) → Btemp(K)

that is compatible with the étale morphisms of temperoids Btemp(H) →
Btemp(G), Btemp(K) → Btemp(G) induced by the G-structures. It thus follows
formally that the morphism Btemp(H) → Btemp(K) is étale, hence corresponds
to some tempered covering H → K. But this tempered covering must coincide
with the original morphism H → K. Indeed, both morphisms induce the same
arrow Btemp(H) → Btemp(K). Thus, if v is a vertex of H, and K′ → K is an
excision with finite open domain such that the restrictions to H[v] of the two
morphisms in question both factor through K′, then we conclude that these
two morphisms both induce the same arrow B(Hv) → B(K′) [cf. Proposition
2.5, (i); Corollary 2.7, (i)], so we conclude by Proposition 4.3, (v); Proposition
4.4, (iii).

Proposition 4.6 (Valuative Criterion for Finite Étale Morphisms). Let
φ : H → K be a morphism between finite objects in Loc(G, Γ). Then φ is a
finite étale morphism if and only if the following condition is satisfied: for
every NL-morphism H0 → H1 and every commutative diagram

H0 −→H1� �
H −→ K

in Loc(G, Γ), there exists a commutative diagram

H0 −→H2�id

�
H0 −→H1

— where the horizontal arrows are NL-morphisms — such that the composite
commutative diagram

H0 −→H2� �
H −→ K

admits a morphism H2 → H in Loc(G, Γ) that makes the resulting triangles in
this diagram commute.

Proof. First, we consider necessity. By pulling back the finite étale
morphism H → K to H1, we reduce immediately to the case where H1 = K.
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But then the fact that the condition in question is satisfied follows immediately
from the definition of a finite étale morphism.

Next, we consider sufficiency. By base-changing H → K by some finite
étale morphism as in Proposition 4.4, (i), we reduce immediately to the case
where H → K is an embedding. But then the condition in question implies that
H → K is surjective, which implies that H → K is an isomorphism [hence, in
particular, finite étale], as desired.

Proposition 4.7 (Domination of Links). For i = 1, 2, let H0 → Hi be
an NL-morphism. Suppose that the unique closed edge of Hi is the image of
the same [i.e., for i = 1, 2] edge of H0. Then there exists an NL-morphism
H0 → H3 which fits into commutative diagrams

H0 −→H3�id

�
H0 −→ Hi

for i = 1, 2.

Proof. First, we observe that we may choose G-structures on H1, H2

that coincide when restricted to H0 [cf. Proposition 4.3, (iv)]. In the following,
“i” will always range over the elements of the set {1, 2}. Now by the definition
of Loc(G, Γ), there exists a finite Galois étale covering

G′ → G

together with finite étale subcoverings G′ → Gi → G [for i = 1, 2] such that G′,
Gi are untangled; there exists an embedding Hi → Gi compatible with the G-
structures. Then [by conjugating Gi appropriately] we may assume that there
exists a vertex v′ (respectively, edge e′) of G′ whose image in Gi is equal to
the image of the unique vertex of H0 (respectively, the unique closed edge of
Hi) via the composite morphism H0 → Hi → Gi (respectively, Hi → Gi), and,
moreover, that I

⋂
H1 = I

⋂
H2, where we write

Hi ⊆ Gal(G′/G)

for the subgroup determined by the subcovering Gi → G and

I ⊆ Gal(G′/G)

for the isotropy subgroup associated to v′. Set H3
def= I

⋂
H1 = I

⋂
H2; write

G3 → G for the subcovering determined by H3. Then if we take H3 to be
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the link contained in G3 which is determined by the images v3, e3 of v′, e′,
respectively, then the natural morphism G3 → Gi restricts to a morphism

H3 → Hi

with the desired properties.

Remark 4.7.1. Note that by applying Proposition 4.7 in an iterative
fashion, one may construct an NL-morphism with domain H0 that dominates
an arbitrary given finite collection of NL-morphisms H0 → Hi, for i = 1, . . . , n

[i.e., such that the unique closed edge of each Hi is the image of the same edge
of H0]. Moreover, given any pair of such dominating NL-morphisms H0 → Ha,
H0 → Hb, there exists [again by Proposition 4.7] an NL-morphism H0 → Hc

that dominates H0 → Ha, H0 → Hb. Observe that in this situation, although a
priori, we obtain two arrows Hc → Hi [i.e., one passing through Ha, the other
passing through Hb], these two arrows necessarily coincide [by Proposition 4.3,
(v)]. Thus, in summary, for each edge e of H0, we obtain a natural system of
dominating NL-morphisms with domain H0, each of whose codomains is a link
with closed edge given by the image [via the NL-morphism under consideration]
of e.

Theorem 4.8 (Category-Theoreticity of Categories of Localizations).
For i = 1, 2, let Gi be a finite, connected, coherent, totally elevated, to-
tally universally sub-coverticial, totally aloof, verticially slim graph
of anabelioids, with underlying graph Gi; let Γi be a finite group that acts
piecewise faithfully on Gi. Suppose that Gi has at least one edge. Write

Loc(Gi, Γi)fin ⊆ Loc(Gi, Γi)

for the full subcategory determined by the finite objects. Then the categories
Loc(Gi, Γi)fin (respectively, Loc(Gi, Γi)) are slim; every equivalence of cate-
gories

Φ : Loc(G1, Γ1)fin ∼→ Loc(G2, Γ2)fin

(respectively, Φ : Loc(G1, Γ1)
∼→ Loc(G2, Γ2))

arises, up to unique isomorphism, from a unique isomorphism of graphs
of anabelioids

G1
∼→ G2

together with a compatible isomorphism Γ1
∼→ Γ2.
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Proof. First, we reconstruct the underlying semi-graph of anabelioids
of an object H of C def= Loc(Gi, Γi)fin (respectively, C def= Loc(Gi, Γi)) [where
i = 1, 2] category-theoretically as follows: The objects of verticial length 1 are
precisely the indissectible [cf. §0] objects. An object H of verticial length
1 is nuclear if and only if the domain of every morphism with codomain H
is of verticial length 1. If H is nuclear, then the result of applying “⊥” to
the category CH of objects and morphisms over H is a Galois category iso-
morphic to the anabelioid B(H). The verticial morphisms are precisely the
morphisms with nuclear domain which are, moreover, minimal-adjoint [cf. §0]
to the morphisms with nuclear codomain. The vertices of the underlying semi-
graph of an object H are precisely the isomorphism classes, over H, of verticial
morphisms K → H. Thus, in particular, we conclude that Φ induces a bijec-
tion between the sets of vertices of the underlying semi-graphs of correspond-
ing objects, together with compatible isomorphisms of the various constituent
anabelioids at the vertices; moreover, these bijections and isomorphisms are
compatible with arrows in C. In particular, Φ preserves locally trivial mor-
phisms.

An object H is a link if and only if H is of verticial length 2, and,
moreover, any locally trivial morphism K → H, where K is also of verti-
cial length 2, is an isomorphism. The closed edges of the underlying semi-
graph of an object H are precisely the isomorphism classes, over H, of locally
trivial morphisms K → H, where K is a link. An [open] edge of a nuclear
object H is a system of compatible closed edges of NL-morphisms H → K,
as we vary the NL-morphism as described in Remark 4.7.1. Thus, we con-
clude that Φ induces an isomorphism between the underlying semi-graphs of
corresponding objects; moreover, these isomorphisms are compatible with ar-
rows in C. Note that this implies, for instance, that Φ preserves the embed-
dings.

In particular, Φ preserves the finite objects [i.e., objects of finite verticial
length], as well as the NL-morphisms. Moreover, by Proposition 4.6, Φ pre-
serves the finite étale morphisms between finite objects. Thus, by considering
the isotropy subgroups associated to the various vertices and edges in the Galois
group of a finite étale Galois covering, one sees that Φ induces an isomorphism
between the underlying semi-graphs of anabelioids of corresponding finite ob-
jects in a fashion that is compatible with arrows in C. Moreover, these induced
isomorphisms may be extended immediately to the case of infinite objects [i.e.,
when such objects exist in C] by representing such objects as inductive limits
of inductive systems consisting of finite objects and embeddings.
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Next, we observe that the closed objects H of C are precisely the finite
objects whose underlying semi-graph H is a graph; Gi is the unique closed object
of C, up to isomorphism, to which every other closed object maps.

Next, we observe that one may recover the various local (G, Γ)-structures
on open objects as follows: First, we note that we may reconstruct the auto-
morphisms Gi → Gi in Γi by localizing on Gi. That is to say, if φ : H → Gi

is a morphism with finite open domain [where we note that such a φ always
exists, for instance, if H is a tree — cf. Proposition 4.3, (iv)], then by Propo-
sition 4.3, (v), the Γi-span of φ is precisely the set of all morphisms H → Gi

in C. Moreover, since Γi acts piecewise faithfully, it follows that the cardi-
nality of this set is always equal to the order of Γi. Thus, by taking H to
be various localizations of Gi and then gluing, we recover first the set of mor-
phisms of semi-graphs of anabelioids Gi → Gi arising from elements of Γi and
then the group structure [by composing morphisms of semi-graphs of anabe-
lioids].

Thus, in summary, we have shown that Φ induces an isomorphism of semi-
graphs of anabelioids

G1
∼→ G2

together with a compatible isomorphism Γ1
∼→ Γ2. Moreover, we have shown

that Φ induces an isomorphism between the underlying semi-graph of anabe-
lioids of corresponding objects in a fashion that is compatible with arrows in C,
as well as with the given local (G, Γ)-structures. Thus, it is an easily verified
tautology that the equivalence Φ is isomorphic to the equivalence induced by
the isomorphisms G1

∼→ G2, Γ1
∼→ Γ2.

Finally, it remains to verify that C is slim. Let A ∈ Ob(C); suppose that ψ

is an automorphism of the natural functor CA → C. Concretely speaking, this
means that for every object β : B → A of CA, we are given an automorphism
ψβ ∈ AutC(B) in such a way that the assignment β → ψβ is compatible with
the image in C of arrows of CA. Since A is arbitrary, it suffices [by considering,
for given β : B → A, the automorphism of the resulting composite functor
CB → CA → C induced by ψ] to show that ψA [i.e., the automorphism assigned
to the identity A → A] is the identity. By considering β with nuclear domain,
we conclude immediately that ψβ fixes the set of vertices of A. Thus, since Gi

is totally aloof, we reduce to the case where A is nuclear.
Now since A is nuclear, to show that ψ is trivial, it suffices to show the

following: If v be a vertex of Gi; Γv ⊆ Γi is the corresponding isotropy subgroup;
and Hv is the extension of Γv by π̂1((Gi)v) arising from the action of Γv on
(Gi)v, then the profinite group Hv is slim. But this is an immediate formal



�

�

�

�

�

�

�

�

288 Shinichi Mochizuki

consequence of the fact that Gi is verticially slim and totally aloof, together
with our assumption that the action of Γi on Gi is piecewise faithful.

Remark 4.8.1. Returning to the notation used in the discussion pre-
ceding Theorem 4.8, suppose that the semi-graph G has at least one vertex.
Write H ⊆ G for the maximal subgraph [cf. §1] of G. Then observe that [when-
ever Loc(G, Γ) is defined] if we set H def= GH, then Γ acts naturally and piecewise
faithfully on H; Loc(H, Γ) is defined; and we have natural equivalences

Loc(G, Γ)fin ∼→ Loc(H, Γ)fin; Loc(G, Γ) ∼→ Loc(H, Γ)

[defined by simply omitting all G-open edges]. Thus, there is no essential loss
of generality in restricting Theorem 4.8 to the case where G is a graph.

Remark 4.8.2. One verifies easily that [whenever Loc(G, Γ) is defined]
the following five conditions are equivalent:

(i) G has no closed edges.

(ii) G is a tree [cf. §1] with at most one vertex.

(iii) Loc(G, Γ)⊥ is a Galois category.

(iv) Every monomorphism of Loc(G, Γ) is an isomorphism.

(v) Every object of Loc(G, Γ) is closed.

Moreover, if any of these conditions is satisfied, then there is a natural equiva-
lence

Loc(G, Γ)⊥ ∼→ B(G)

— so, in particular, Loc(G, Γ)⊥ does not depend on the action of Γ [which is,
at any rate, trivial, if G admits at least one vertex]. Thus, since equivalences
between connected anabelioids are “well-understood”, there is no essential loss
of generality in excluding from Theorem 4.8 the case in which these conditions
are satisfied.

Remark 4.8.3. In the resp’d case of Theorem 4.8 [i.e., where one in-
cludes the infinite objects], if one assumes further that Gi is totally estranged,
then the proof of Theorem 4.8 may be simplified somewhat, by applying Propo-
sition 4.5, Corollary 3.9.
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Remark 4.8.4. In the notation of the proof of Theorem 4.8, if an object
A of C is nuclear, then the category C⊥

A is easily verified to be a connected
anabelioid; the category C[A]⊥ [cf. §0] is easily verified to be a “connected
quasi-anabelioid” [cf. Remark A.4.2 of the Appendix].

§5. Arithmetic Semi-graphs of Anabelioids

In this §, we consider semi-graphs of anabelioids equipped with a continu-
ous action of a profinite group, which we think of as an “arithmetic structure”
on the semi-graph of anabelioids. We then proceed to study a certain “arith-
metic analogue” of the theory of maximal compact subgroups of §3.

Definition 5.1. (i) Let G be a connected, coherent, totally aloof,
verticially slim semi-graph of anabelioids. Let A be a slim connected anabelioid,
equipped with a basepoint, so we may speak of π̂1(A). We shall refer to as an
action of π̂1(A) on G the datum of a homomorphism

ρG : π̂1(A) → Aut(G)

[where Aut(G) denotes the group of automorphisms of G as a totally aloof,
verticially slim semi-graph of anabelioids]. Note that any such pair (G, ρG)
admits an “inner action” by π̂1(A) — i.e., by letting π̂1(A) act on π̂1(A) by
conjugation and on G via ρG . We shall say that an action of π̂1(A) on G is
continuous if, for some open subgroup H ⊆ π̂1(A), the following conditions are
satisfied:

(a) π̂1(A) is topologically finitely generated.

(b) The semi-graph G is locally finite.

(c) The action of H on G is trivial; the resulting outer homomorphism H →
Out(π̂1(Gv)), where v ranges over the vertices of G, is continuous [i.e.,
relative to the natural profinite group topology on Out(π̂1(Gv))].

(d) There is a finite set V of vertices of G such that for every vertex w of G,
there exists a v ∈ V and an isomorphism of semi-graphs of anabelioids
G[v] ∼→ G[w] that is compatible with the action of H on both sides.

(ii) A triple G = (G,A, ρG) as in (i), where ρG is a continuous action of π̂1(A)
on G, will be referred to as a connected arithmetic semi-graph of anabelioids
(over A). Suppose that G = (G,A, ρG) is a connected arithmetic semi-graph
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of anabelioids. Then we shall refer to G (respectively, A; ρG) as the geometric
component (respectively, arithmetic component; arithmetic action) of G. The
arithmetic action of an arithmetic semi-graph of groups induces [what, by abuse
of terminology, we shall also refer to as] “arithmetic actions” on various objects
[e.g., the underlying semi-graph, etc.] associated to this arithmetic semi-graph
of groups.

(iii) A [not necessarily connected] arithmetic semi-graph of anabelioids G
is defined to be a formal collection of connected arithmetic semi-graphs of
anabelioids; each object in this collection will be referred to as a connected
component of G. Note that the geometric components of each of the connected
components of G together determine a natural geometric component [i.e., a (not
necessarily connected) semi-graph of anabelioids] of G. We shall say that an
arithmetic semi-graph of anabelioids is finite (respectively, elevated at a vertex;
totally elevated; sub-coverticial at a closed edge; universally sub-coverticial at
a closed edge; totally sub-coverticial; totally universally sub-coverticial; aloof at
an edge; totally aloof; estranged at an edge; totally estranged) if its geometric
component is so.

(iv) Given two connected arithmetic semi-graphs of anabelioids G′
=

(G′,A′, ρG′), G = (G,A, ρG), a morphism of connected arithmetic semi-graphs
of anabelioids

G′ → G

consists of a pair
π̂1(A′) → π̂1(A); G′ → G

[i.e., a continuous homomorphism of profinite groups and a morphism of semi-
graphs of anabelioids] which is compatible with ρG′ , ρG , and which we regard up
to composition with the inner action of π̂1(A) on (G, ρG). We shall refer to the
morphism G′ → G (respectively, the induced morphism of anabelioids A′ → A)
as the geometric (respectively, arithmetic) component of the morphism. [In
particular, if we restrict our attention to G′ → G whose geometric component is
locally open, then we may work with such morphisms as if they are “morphisms
in a category” — cf. Remark 2.4.2.] A morphism of [not necessarily connected]
arithmetic semi-graphs of anabelioids

G′ → G

is defined to be a collection of morphisms, one from each connected compo-
nent of G′

to some connected component of G. We shall say that G′ → G
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is finite étale (respectively, tempered; locally trivial; locally open; locally finite
étale; immersive; excisive; an embedding; BC-finite étale) if each of its geomet-
ric components is finite étale (respectively, a tempered covering [a term which
we recall only makes sense when G is countable]; locally trivial; locally open;
locally finite étale; immersive; excisive; an embedding; an isomorphism); each
of its arithmetic components is finite étale (respectively, finite étale; an isomor-
phism; a composite of a π1-epimorphism with a finite étale morphism; finite
étale; an isomorphism; an isomorphism; an isomorphism; finite étale); and its
induced map on connected components has finite [but possibly empty] fibers
(respectively, has countable fibers; is arbitrary; is arbitrary; is arbitrary; is ar-
bitrary; is arbitrary; is injective; has finite [but possibly empty] fibers). [Here,
the abbreviation “BC” is to be understood to stand for the phrase “base of
constants”.]

Proposition 5.2 (Arithmetic Tempered Coverings). Let G = (G,A, ρG)
be a connected arithmetic semi-graph of anabelioids. Then:

(i) Every tempered covering of G appears as the geometric component of a
tempered covering of G.

(ii) Suppose that H → G, K → G are tempered coverings with isomorphic
geometric components. Then there exist BC-finite étale coverings H′ → H,
K′ → K such that H′

, K′
are isomorphic as tempered coverings over G.

(iii) Let us denote by

Btemp(G)

the category whose objects are tempered morphisms G′ → G and whose

morphisms are tempered morphisms over G. Then Btemp(G) is a connected
temperoid. Similarly, the full subcategory

B(G) ⊆ Btemp(G)

determined by the finite étale coverings forms a connected anabelioid. If G

is totally elevated, then Btemp(G) temp-slim, and B(G) is slim.

(iv) Write:

Πtemp

G
def= πtemp

1 (G) def= πtemp
1 (Btemp(G)); Πtemp

G
def= πtemp

1 (Btemp(G))=πtemp
1 (G)

ΠG
def= π̂1(G) def= π̂1(B(G)); ΠG

def= π̂1(B(G)) = π̂1(G)
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Then there are natural morphisms

Btemp(G) → Btemp(G) → A�; B(G) → B(G) → A

which induce natural exact sequences:

1 → Πtemp
G → Πtemp

G → ΠA → 1
1 → ΠG → ΠG → ΠA → 1

We shall refer to ΠG (respectively, Πtemp
G ; ΠG ; Πtemp

G ; ΠA
def= π̂1(A)) as the

geometric (respectively, geometric tempered; arithmetic; arithmetic
tempered; BC-) fundamental group of G.

Proof. Assertions (i), (ii) follow from the various finiteness assumptions
in our definition of a “continuous action” [cf. Definition 5.1, (i); the fact that G
is coherent]. [Note, in particular, that one must make use of the assumption of
Definition 5.1, (i), (d), in order to verify assertions (i), (ii) for arbitrary infinite
G.] Except for the final sentence of assertion (iii), assertions (iii), (iv) follow
immediately from the definitions and assertions (i), (ii); the final sentence of
assertion (iii) follows from Corollary 2.7, (ii).

Remark 5.2.1. At this point, one could proceed to develop a theory of
“categories of arithmetic localizations” of arithmetic semi-graphs of anabelioids,
in the style of §4. Although this is quite possible [we leave the details to the
enthusiastic reader!], it is rather cumbersome, so instead we restrict ourselves
[cf. Remark 4.8.3] to considering the categorical representation of arithmetic
semi-graphs of anabelioids afforded by the “arithmetically maximal compact
subgroups” [cf. Definition 5.3 below] of the tempered fundamental groups of
Proposition 5.2, in the style of Corollary 3.9.

Let G be a connected, countable, totally elevated, totally estranged arith-
metic semi-graph of anabelioids, with underlying semi-graph G. In the notation
of Proposition 5.2, we would like to consider compact subgroups of the arith-
metic tempered fundamental group Πtemp

G . Note that for every vertex v of G,
we obtain an associated decomposition group

Πtemp

G,v
⊆ Πtemp

G

[well-defined up to conjugation in Πtemp

G ], which [by Corollary 2.7, (i), (iii); the
injection of Proposition 3.6, (iii)] may be thought of as the commensurator in
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Πtemp

G of Πtemp
G,v

def= Πtemp

G,v

⋂
Πtemp

G . Similarly, if b is a branch of an edge e of G

that abuts to v, then we obtain a decomposition group

Πtemp

G,b
⊆ Πtemp

G,v
⊆ Πtemp

G

[well-defined up to conjugation in Πtemp

G ], which [since G is totally estranged,
hence, in particular totally aloof] may be thought of as the commensurator in
Πtemp

G,v
of Πtemp

G,b
def= Πtemp

G,b

⋂
Πtemp

G .

Definition 5.3. (i) A closed subgroup of Πtemp

G will be called arith-
metically ample if it surjects onto an open subgroup of ΠA. A compact sub-
group of Πtemp

G will be called arithmetically maximal if it is maximal among

arithmetically ample compact subgroups of Πtemp

G .

(ii) Let e be an edge of G. We shall say that e is arithmetically estranged if,
for every vertex v to which some branch b of e abuts and every g ∈ Πtemp

G,v
, the

intersection in Πtemp

G,v
of Πtemp

G,b
with any subgroup of the form g · Πtemp

G,b′
· g−1,

where either b′ 	= b is a branch of an edge that abuts to v or b′ = b and
g /∈ Πtemp

G,b
, fails to be arithmetically ample. If every edge of G is arithmetically

estranged, then we shall say that G is totally arithmetically estranged.

(iii) We shall refer to subgroups of Πtemp

G of the form “Πtemp

G,v
” (respectively,

“Πtemp

G,b
”) as verticial (respectively, edge-like).

Remark 5.3.1. Note that all verticial and edge-like subgroups of Πtemp

G
are compact and arithmetically ample. Also, the intersection with Πtemp

G of a(n)
verticial (respectively, edge-like) subgroup of Πtemp

G is a(n) verticial (respec-

tively, edge-like) subgroup of Πtemp
G in the sense of Theorem 3.7.

The main result of the present §5 is the following “arithmetic analogue”
of Theorem 3.7, Corollary 3.9:

Theorem 5.4 (Arithmetically Maximal Compact Subgroups). Let G,
H be connected, countable, totally elevated, totally arithmetically es-
tranged arithmetic graphs of anabelioids, with the same arithmetic com-
ponent A. Suppose, moreover, that the arithmetic actions on the underlying
graphs G, H do not switch the branches of any edge. Then:
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(i) Every arithmetically ample compact subgroup of πtemp
1 (G) is contained

in at least one verticial subgroup. If an arithmetically ample compact sub-
group of πtemp

1 (G) is contained in more than one verticial subgroup, then it
is contained in precisely two verticial subgroups, whose intersection forms an
edge-like subgroup.

(ii) The arithmetically maximal compact subgroups of πtemp
1 (G) are

precisely the verticial subgroups. The arithmetically ample intersec-
tions of two distinct arithmetically maximal compact subgroups of πtemp

1 (G)
are precisely the edge-like subgroups.

(iii) Applying “Btemp(−)” determines a natural bijective correspondence
between locally open morphisms of arithmetic semi-graphs of anabe-
lioids

G → H

over A and “arithmetically quasi-geometric” morphisms of temperoids
Btemp(G) → Btemp(H) over A�, i.e., morphisms that arise from a continuous
morphism Πtemp

G → Πtemp

H that maps any arithmetically maximal compact sub-

group K1 ⊆ Πtemp

G (respectively, arithmetically ample intersection K1

⋂
H1 of

two distinct arithmetically maximal compact subgroups K1, H1 ⊆ Πtemp

G ) to an

open subgroup of some arithmetically maximal compact subgroup K2 ⊆ Πtemp

H
(respectively, of some arithmetically ample intersection K2

⋂
H2 of two distinct

arithmetically maximal compact subgroups K2, H2 ⊆ Πtemp

H ).

Proof. Modulo the evident “arithmetic translation” — e.g., “nontriv-
ial” is to be replaced by “arithmetically ample” and “estranged” by “arith-
metically estranged” — the proofs are entirely parallel to those of Theorem
3.7, Corollary 3.9.

Before proceeding, we review the following well-known result:

Lemma 5.5 (Decomposition Groups of Proper Hyperbolic Curves over
Finite Fields). Let X be a proper hyperbolic curve over a finite field
k. Write ΠX for the étale fundamental group of X; ΠX � Gk for the natural
augmentation to the absolute Galois group of k. Then a k-valued point x ∈ X(k)
is determined by the outer homomorphism σx : Gk → ΠX that it induces.

Proof. Write J for the Jacobian of X; assume for simplicity that there
exists a point x0 ∈ X(k). Then x0 determines a closed embedding X ↪→
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J whose induced morphism on étale fundamental groups ΠX � ΠJ may be
identified with the quotient of ΠX by the commutator subgroup of the kernel
of the surjection ΠX � Gk. Thus, it suffices to show that a point a ∈ J(k) is
determined by the outer homomorphism σa : Gk → ΠJ that it induces.

Write σ0 : Gk → ΠJ for the outer homomorphism induced by the identity
element of J(k). Then the difference between σa and σ0 may be thought of as
an element of ηa ∈ H1(k, T ), where we define T to be the kernel of the natural
surjection ΠJ � Gk. Note, moreover, that we have a natural isomorphism
T

∼→ Hom(Q/Z, J(k)), where k is the algebraic closure of k determined by
the basepoint of k implicit in the discussion. On the other hand, by well-
known general nonsense [cf., e.g., [Naka], Claim (2.2); [NTs], Lemma (4.14);
[Mzk2], the Remark preceding Definition 6.2], there is a natural isomorphism
H1(k, T ) ∼→ J(k), which maps ηa to a. In particular, ηa, hence also σa, is
sufficient to determine a itself.

Example 5.6. Pointed Stable Curves over p-adic Local Fields II.
We work in the notation of Example 3.10. Also, Suppose that we are given an
exhaustive sequence of open characteristic [hence normal] subgroups of finite
index

· · · ⊆ Mi ⊆ · · · ⊆ Π

[where i ranges over the positive integers] of Π such that Ni = Mi

⋂
∆; write

Πi
def= Π/Mi. Thus, Mi determines a finite log étale covering of X log

K ; we assume
that Mi has been chosen so that this covering has stable reduction over the ring
of integers of the finite extension of K that it determines. Then the outer action
of Mi on Ni determines an arithmetic action on the semi-graphs of anabelioids
Gi, Gc

i of Example 3.10; that is to say, we obtain arithmetic semi-graphs of
anabelioids

Gi; Gc

i

with underlying semi-graphs of anabelioids Gi, Gc
i , respectively, equipped with

natural actions by Πi. Moreover, Gi, G
c

i are connected, finite, totally elevated,
and totally universally sub-coverticial [cf. Example 3.10]. Also, it follows im-
mediately from Lemma 5.5 that Gi, G

c

i are totally arithmetically estranged. In
particular, [at least for i sufficiently large] Gi satisfies the hypotheses of Theo-
rem 5.4.

Now I claim that the generalized morphisms of arithmetic graphs of an-
abelioids

Gi → Gj
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[where i ≥ j] — i.e., the generalized morphisms of graphs of anabelioids of Ex-
ample 3.10 considered together with the natural compatible arithmetic actions
on the domain and codomain — may be recovered group-theoretically from the
associated morphisms of tempered fundamental groups

Πtemp

Gi
→ Πtemp

Gj

as follows: First, we consider the functor Cat(Gi) → Cat(Gj). Now observe
that if v (respectively, e) is a(n) vertex (respectively, edge) of Gi such that the
image in Πtemp

Gj
of the verticial (respectively, edge-like) subgroup determined by

v (respectively, e) is contained in a [necessarily unique] edge-like subgroup H of
Πtemp

Gj
, then this functor maps v (respectively, e) to the edge of Gj determined

by H. On the other hand, if v (respectively, e) is a(n) vertex (respectively,
edge) of Gi such that the image in Πtemp

Gj
of the verticial (respectively, edge-

like) subgroup determined by v (respectively, e) is not contained in an edge-like
subgroup of Πtemp

Gj
, but is contained in a verticial subgroup H of Πtemp

Gj
, then

this functor maps v (respectively, e) to the vertex of Gj determined by H [cf.
Lemma 5.5 in the case where this image fails to be an open subgroup of H].
That these characterizations make sense and, moreover, do indeed yield the map
on objects determined by the functor in question follows from Theorem 5.4, (i),
(ii); Lemma 5.5. The remainder of the data necessary to define the generalized
morphism of arithmetic graphs of anabelioids Gi → Gj is determined naturally
by considering the maps between the various verticial and edge-like subgroups
of Πtemp

Gi
, Πtemp

Gj
. This completes the proof of the claim.

Moreover, by a similar argument, together with the technique of Corollary
3.11, one may reconstruct the generalized morphisms of arithmetic semi-graphs
of anabelioids

Gc

i → Gc

j

[where i ≥ j] group-theoretically from the corresponding morphisms of tempered
groups Mi → Mj .

Remark 5.6.1. There is an immediate profinite generalization of the
group-theoretic reconstruction in Example 5.6 of the generalized morphism of
arithmetic graphs of anabelioids

Gc

i → Gc

j

[where i ≥ j] from the corresponding morphism of profinite groups:

M∧
i → M∧

j
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[where the “∧” denotes profinite completion]. Indeed, this follows by applying
[in place of Theorem 5.4, the technique of Corollary 3.11] the fact that the
“dual semi-graph with compact structure of the geometric special fiber” may
be recovered even in the profinite case, from the Galois action on the geometric
profinite fundamental group [cf. [Mzk3], Lemma 2.3].

§6. Tempered Anabelian Geometry

In this §, we observe that the theory of Galois sections in absolute anabelian
geometry [cf. [Mzk8]] admits a fairly straightforward generalization to the case
of tempered fundamental groups.

Let K be a finite extension of Qp; K an algebraic closure of K; XK a

hyperbolic curve over K. Let us write XK
def= XK ×K K;

πtemp
1 (XK)

for the tempered fundamental group of [André], §4 [cf. also the group
“πtemp

1 (X log
K )” of Examples 3.10, 5.6]. Thus, πtemp

1 (XK) is a tempered topo-
logical group [in the sense of Definition 3.1, (i)] and fits into a natural exact
sequence:

1 → πtemp
1 (XK) → πtemp

1 (XK) → GK → 1

[where GK
def= Gal(K/K); we write πtemp

1 (XK) for the geometric tempered

fundamental group of XK , i.e., the tempered fundamental group of XK ×K K̂;
the “∧” denotes the p-adic completion]. To simplify the notation, let us write:

Πtemp
XK

def= πtemp
1 (XK); ∆temp

X
def= πtemp

1 (XK)

In the following discussion, we shall denote the profinite completion of a group
by means of a “∧”. Also, we shall write ΠXK

def= Π̂temp
XK

; ∆X
def= ∆̂temp

X . It
follows from the well-known residual finiteness of discrete free groups [cf., e.g.,
Corollary 1.7] that we have natural injections Πtemp

XK
↪→ ΠXK

, ∆temp
X ↪→ ∆X

[cf. the discussion of [André], §4.5].

Lemma 6.1 (Profinite Normalizers).

(i) Let F be a finitely generated [discrete ] free group of rank > 1.
Then NF̂ (F ) = F .

(ii) We have: N∆X
(∆temp

X ) = ∆temp
X .
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(iii) We have: NΠXK
(Πtemp

XK
) = Πtemp

XK
.

Proof. Assertion (i) (respectively, (ii)) is the content of [André], Lemma
3.2.1 (respectively, [André], Corollary 6.2.2). Assertion (iii) follows immediately
from assertion (ii).

Definition 6.2. Let F , F1, F2 be tempered groups [cf. Definition 3.1,
(i)]. Then:

(i) We shall refer to a [not necessarily closed] subgroup H ⊆ F as being
of DFG-type [i.e., “dense, finitely generated type”] if it is dense in some open
subgroup of the profinite completion F̂ , and, moreover, for any open normal
subgroup J ⊆ F , the image of H in F/J is finitely generated.

(ii) We shall refer to a [not necessarily closed] subgroup H ⊆ F as being of
DOF-type [i.e., “dense in an open subgroup of finite index type”] if it is dense
in some open subgroup of F of finite index.

(iii) A continuous homomorphism F1 → F2 will be said to be of DFG-
type (respectively, of DOF-type) if its image is a subgroup of F2 of DFG-type
(respectively, of DOF-type).

Lemma 6.3 (Dense Subgroups).

(i) Let F be a finitely generated [discrete ] free group of rank > 1.
Suppose that H ⊆ F is a finitely generated subgroup which is dense in F̂ .
Then H = F .

(ii) Let F be either Πtemp
XK

or ∆temp
X ; write F̂ for the profinite comple-

tion of F . Then a subgroup H ⊆ F is of DFG-type if and only if it is of
DOF-type.

(iii) Let F , F̂ be as in (ii). Suppose that F1, F2 ⊆ F are subgroups of DOF-
type which are dense in F̂ . Then, for any f ∈ F̂ such that f · F1 · f−1 = F2,
it follows that f ∈ F .

Proof. Assertion (i) follows immediately from the “structure theory of
finitely generated subgroups of free groups of finite rank” [cf., e.g., Corollary
1.6, (ii)]. As for assertion (ii), let us first observe that by replacing F by an
open subgroup of F of finite index containing H, we may assume that H is
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dense in F̂ . Now sufficiency is immediate. To prove necessity, we note that it
follows from assertion (i), together with the assumption that H is dense in F̂ ,
that the image of H in each F/J is equal to F/J , i.e., that H is dense in F ,
as desired. Finally, assertion (iii) follows from Lemma 6.1, (i) [cf. the proofs of
Lemma 6.1, (ii), (iii)].

Now suppose that L ⊆ K is also a finite extension of Qp; YL is a hyperbolic
curve over L. We shall use similar notation for the various fundamental groups
[i.e., tempered, profinite étale, etc.] associated to YL to the notation used thus
far for XK . Now we have the following result [cf. [Mzk8], Theorem 1.2]:

Theorem 6.4 (Tempered Anabelian Theorem for Hyperbolic
Curves over Local Fields). The tempered fundamental group functor deter-
mines a bijection between the set of dominant morphisms of schemes

XK → YL

and the set of outer homomorphisms of DOF-type φ : Πtemp
XK

→ Πtemp
YL

that fit into a commutative diagram

Πtemp
XK

φ−→Πtemp
YL� �

GK −→ GL

for which the induced morphism GK → GL is an open immersion [i.e., an
isomorphism onto an open subgroup of GL ] which arises from an embedding of
fields L ↪→ K.

Proof. One verifies immediately from the definition of the “tempered
fundamental group” that any Πtemp

XK
→ Πtemp

YL
that arises geometrically is of

DFG-type, hence, by Lemma 6.3, (ii), of DOF-type. On the other hand, given
a homomorphism φ : Πtemp

XK
→ Πtemp

YL
of DOF-type, profinite completion yields

an open homomorphism φ̂ : ΠXK
→ ΠYL

, so by [Mzk8], Theorem 1.2 [i.e., in
essence, [Mzk2], Theorem A], we obtain that φ̂ arises, up to inner automor-
phism, from a dominant morphism of schemes XK → YL. In particular, this
dominant morphism of schemes induces a homomorphism ψ : Πtemp

XK
→ Πtemp

YL
of

DOF-type, whose profinite completion ψ̂ : ΠXK
→ ΠYL

differs from φ̂ by com-
position with an inner automorphism of ΠYL

. On the other hand, by Lemma
6.3, (iii), we thus conclude that φ differs from ψ by composition with an inner
automorphism of Πtemp

YL
, as desired.
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Next, let us write XK ↪→ XK for the compactification [cf. §0] of XK . Let

x ∈ XK

be a closed point. Thus, x determines, up to conjugation by an element of
Πtemp

XK
, a decomposition group:

Dx ⊆ Πtemp
XK

We shall refer to a closed subgroup of Πtemp
XK

which arises in this way as a decom-
position group of Πtemp

XK
. If x is a cusp, then we shall refer to the decomposition

group Dx as cuspidal. Note that Dx always surjects onto an open subgroup of
GK . Moreover, the subgroup

Ix
def= Dx

⋂
∆temp

X

is isomorphic to Ẑ(1) [i.e., the profinite completion of Z, Tate twisted once]
(respectively, {1}) if x is (respectively, is not) a cusp. We shall refer to a
closed subgroup of Πtemp

XK
which is equal to “Ix” for some cusp x as a cuspidal

geometric decomposition group.

Theorem 6.5 (Tempered Decomposition Groups).

(i) (Determination of the Point) The closed point x is completely de-
termined by the conjugacy class of the closed subgroup Dx ⊆ Πtemp

XK
. If x is

a cusp, then x is completely determined by the conjugacy class of the closed
subgroup Ix ⊆ Πtemp

XK
.

(ii) (Commensurable Terminality) The subgroup Dx is commensurably
terminal in Πtemp

XK
. If x is a cusp, then Dx = CΠtemp

XK

(H) for any open subgroup
H ⊆ Ix.

(iii) (Absoluteness of Cuspidal Decomposition Groups) Every iso-
morphism of tempered groups

α : Πtemp
XK

∼→ Πtemp
YL

preserves cuspidal decomposition groups and cuspidal geometric decomposition
groups.

(iv) (Cuspidal and Noncuspidal Decomposition Groups) No non-
cuspidal decomposition group of Πtemp

XK
is contained in a cuspidal decomposition

group of Πtemp
XK

.
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Proof. Assertions (i), (ii), (iv) follow formally from [Mzk8], Theorem
1.3, (i), (ii), (iv), respectively. Assertion (iii) follows from Corollary 3.11.

To a large extent, the absolute anabelian geometry of tempered fundamental
groups is essentially equivalent to the absolute anabelian geometry of profinite
fundamental groups. Indeed, we have the following result:

Theorem 6.6 (Tempered and Profinite Outer Isomorphisms). Every
outer isomorphism

ΠXK

∼→ ΠYL

of profinite groups arises from a unique outer isomorphism

Πtemp
XK

∼→ Πtemp
YL

of tempered groups.

Proof. Indeed, it is immediate that every outer isomorphism Πtemp
XK∼→ Πtemp

YL
determines an outer isomorphism ΠXK

∼→ ΠYL
. Now let

α̂ : ΠXK

∼→ ΠYL

be an arbitrary outer isomorphism. Let HX ⊆ ΠXK
, HY ⊆ ΠYL

be open
normal subgroups [of finite index] that correspond via α̂. Then by [Mzk3],
Lemma 2.3, α̂ determines a natural isomorphism

α̂H : Gc
HX

∼→ Gc
HY

between the “semi-graphs of anabelioids with compact structure” Gc
HX

, Gc
HY

[cf.
Example 2.10; [Mzk3], Appendix] associated to the geometric special fibers of
the coverings corresponding to HX , HY . Moreover, α̂H is compatible with the
natural actions of H ′

X
def= ΠXK

/(HX

⋂
∆X), H ′

Y
def= ΠYL

/(HY

⋂
∆Y ), relative

to the isomorphism α̂H′ : H ′
X

∼→ H ′
Y induced by α̂.

In particular, we conclude that the closed subgroups JX ⊆ HX

⋂
∆temp

X ⊆
∆temp

X , JY ⊆ HY

⋂
∆temp

Y ⊆ ∆temp
Y determined by considering the pro-tempered

coverings of XK , YK arising from the various tempered coverings [cf. §3] of
Gc

HX
, Gc

HY
satisfy α̂(J∧

X) = J∧
Y [where the “∧” denotes profinite completion,

or, equivalently, closure in ΠXK
, ΠYL

]. Also, we note that the natural outer
actions of H ′

X , H ′
Y on πtemp

1 (Gc
HX

), πtemp
1 (Gc

HY
), respectively, determine natural

isomorphisms

Πtemp
XK

/JX
∼→ πtemp

1 (Gc
HX

)
out
� H ′

X

Πtemp
YL

/JY
∼→ πtemp

1 (Gc
HY

)
out
� H ′

Y
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which we shall use in the following discussion to identify the quotients on the
left with the “outer semi-direct products” [cf. §0] on the right.

Now let us write

βH : πtemp
1 (Gc

HX
)

out
� H ′

X
∼→ πtemp

1 (Gc
HY

)
out
� H ′

Y

for the isomorphism induced by α̂H , α̂H′ . The functoriality of the construction
of α̂H in [Mzk3], Lemma 2.3, implies that the profinite completion β̂H dif-
fers from the isomorphism ΠXK

/J∧
X

∼→ ΠYL
/J∧

Y induced by α̂ by composition
with an inner automorphism. Also, we observe that, as one varies HX , HY ,
consideration of the resulting “generalized morphisms of arithmetic graphs of
anabelioids” [cf. Example 5.6, Remark 5.6.1] shows that the resulting βH ’s are
compatible [up to inner automorphism]. Thus, by passing to the corresponding
inverse limit, we conclude that the various βH determine an isomorphism of
tempered fundamental groups

β : Πtemp
XK

∼→ Πtemp
YL

whose profinite completion β̂ differs from α̂ by an inner automorphism, as
desired. That such a β is unique, up to inner automorphism, follows from
Lemma 6.1, (iii).

Remark 6.6.1. One verifies easily that the technique used in the proof
of Theorem 6.6 may also be applied to give another proof of Theorem 6.5, (iii)
[i.e., without resorting to the theory of §3].

Now that we have the tempered versions — i.e., Theorems 6.4, 6.5 — of
[Mzk8], Theorems 1.2, 1.3, the theory of [Mzk8], §2, concerning the category
of dominant localizations DLocK(XK) [cf. loc. cit.] generalizes in a fairly
straightforward fashion to the tempered case:

First, we define the category

DLocGK
(Πtemp

XK
)

as follows: An object of this category is a surjection of tempered groups

H � J

where H ⊆ Πtemp
XK

is an open subgroup of finite index; J is the quotient of H by
the closed normal subgroup generated by some collection of cuspidal geometric
decomposition groups; and we assume that J is “hyperbolic”, in the sense that
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the image of ∆temp
X

⋂
H in J is nonabelian. Given two objects Hi � Ji, where

i = 1, 2, of this category, a morphism in this category is defined to be a diagram
of the form

H1 H2� �
J1 −→ J2

where the vertical morphisms are the given morphisms, and the horizontal
morphism is an outer homomorphism of DOF-type that is compatible with the
various natural [open] outer homomorphisms from the Hi, Ji to GK .

Next, let
Dx ⊆ Πtemp

XK

be a decomposition group associated to some closed point x ∈ XK .

Definition 6.7. We shall say that x or Dx is of tempered DLoc-type if
Dx admits an open subgroup that arises as the image via a morphism Z → XK

of DLocK(XK) of some cuspidal decomposition group of Πtemp
Z .

Theorem 6.8 (Tempered Group-theoreticity of the Category of Domi-
nant Localizations). Let K, L be finite extensions of Qp; XK (respectively,
YL) a hyperbolic curve over K (respectively, L). Then:

(i) The tempered fundamental group functor determines equivalences of
categories

DLocK(XK) ∼→ DLocGK
(Πtemp

XK
); DLocL(YL) ∼→ DLocGL

(Πtemp
YL

)

(ii) Every isomorphism of tempered groups

α : Πtemp
XK

∼→ Πtemp
YL

induces an equivalence of categories

DLocGK
(Πtemp

XK
) ∼→ DLocGL

(Πtemp
YL

)

hence also [by applying the equivalences of (i)] an equivalence of categories

DLocK(XK) ∼→ DLocL(YL)

in a fashion that is functorial, up to unique isomorphisms of equivalences
of categories, with respect to α. Moreover, α preserves the decomposition
groups of tempered DLoc-type.
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(iii) In the situation of (ii) above, suppose further that XK , YL are once-
punctured elliptic curves. Then α preserves the decomposition groups of
the “torsion closed points” — i.e., the closed points that arise from torsion
points of the underlying elliptic curve. Moreover, the resulting bijection be-
tween torsion closed points of XK , YL is compatible with the isomorphism
on abelianizations of geometric fundamental groups ∆ab

X
∼→ ∆ab

Y — i.e., “Tate
modules” — induced by α.

(iv) In the situation of (ii) above, suppose further that XK , YL are isoge-
nous [cf. §0] to hyperbolic curves of genus zero. Then the isomorphism α

preserves the decomposition groups of the algebraic closed points. In particu-
lar, XK is defined over a number field if and only if YL is.

Proof. In light of Theorems 6.4, 6.5, the present Theorem 6.8 follows
by exactly the same arguments as those applied in [Mzk8] to prove [Mzk8],
Theorem 2.3; Corollaries 2.5, 2.6, 2.8.

Remark 6.8.1. Just as in the case of [Mzk8], Corollaries 2.6, 2.8,
the proofs of Theorem 6.8, (iii), (iv), only require the isomorphism version of
Theorem 6.4 [cf. [Mzk8], Remark 2.8.1].

Corollary 6.9 (Tempered Absoluteness of Decomposition Groups for
Genus Zero). In the situation of Theorem 6.8, (iv), suppose further both XK

and YL are defined over a number field. Then the isomorphism α preserves
the decomposition groups of all the closed points.

Proof. Corollary 6.9 follows from Theorem 6.8, (iv), by applying a sim-
ilar argument to the argument used in the proof of [Mzk8], Corollary 3.2. In
the present tempered case, one must therefore verify the tempered analogue
of [Mzk8], Lemma 3.1. We do this as follows: First, we choose a sequence of
characteristic open subgroups [cf., e.g., [André], Lemma 6.1.2, (i)]

· · · ⊆ ∆temp
X [j + 1] ⊆ ∆temp

X [j] ⊆ · · · ⊆ ∆temp
X

[where j ranges over the positive integers] of ∆temp
X such that the ∆temp

X [j]
form a base of the topology of ∆temp

X . Next, let us observe that if H ⊆ ∆temp
X

is a characteristic open subgroup of finite index, then the open subgroup of H

determined by the combinatorial universal covering of the dual graph of the
geometric special fiber of the covering corresponding to H is still characteristic
[cf. [André], Lemma 6.1.1, or, indeed, Corollary 3.11 of the present paper].
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Thus, we may assume, without loss of generality, that [for all positive integers
j] the dual graph Gj of the [geometric] special fiber of each of the tempered
covering of XK corresponding to ∆temp

X [j] is a tree. In particular, given any
section

σ : GK → Πtemp
XK

we obtain open subgroups

Πtemp
XK [j,σ]

def= Im(σ) · ∆temp
X [j] ⊆ Πtemp

XK

[where Im(σ) denotes the image of σ in Πtemp
XK

] corresponding to a tower of
tempered coverings of XK :

· · · → XK [j + 1, σ] → XK [j, σ] → · · · → XK

Also, we observe that the natural action of Πtemp
XK

on the tree Gj factors through
∆temp

X[j] .
Now suppose that Im(σ) is not contained in any cuspidal decomposition

group of Πtemp
XK

. Then the following conditions on σ are equivalent:

(i) σ arises from a point x ∈ XK(K) [i.e., “Im(σ) = Dx”].

(ii) For every integer j ≥ 1, XK [j, σ](K) 	= ∅.

(iii) For every integer j ≥ 1, XK [j, σ](K)alg 	= ∅ [where the superscript
“alg” denotes the subset of algebraic K-rational points, i.e., K-rational points
that map to algebraic points of XK(K)].

(iv) For every integer j ≥ 1, Πtemp
XK [j,σ] contains a decomposition group [i.e.,

relative to Πtemp
XK

] of an algebraic closed point of XK that surjects onto GK .

Indeed, the implications (i) =⇒ (ii); (iii) =⇒ (ii), (iv); and (iv) =⇒ (iii) follow
formally as in the proof of [Mzk8], Lemma 3.1. Moreover, the implication (ii)
=⇒ (iii) — i.e., “approximation via Krasner’s lemma” [cf. the proof of [Mzk8],
Lemma 3.1] — follows as in loc. cit., since given any point xj ∈ XK [j, σ](K)
with image x ∈ XK(K), the completion at [the OK -valued point determined
by] xj of the normalization in XK [j, σ] of some proper model of XK over OK

is finite over the completion of this proper model at [the OK-valued point
determined by] x.

Finally, we consider the implication (ii) =⇒ (i). In the case of loc. cit.,
this implication followed formally from the fact that the topological space∏

j≥1

XK [j, σ](K)
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was [in the case of loc. cit.] manifestly compact. In the present tempered case,
although this compactness is not immediate, we may nevertheless conclude, at
least for some cofinal set of j, the compactness of XK [j, σ](K) by observing
that the points of XK [j, σ](K) always determine components [i.e., vertices or
edges] of Gj that are fixed by the natural action of the image Im(Πtemp

XK [j,σ]) ⊆
Πtemp

XK
/∆temp

X[j] , i.e., by the natural action of GK on Gj via σ. On the other
hand, it follows from our assumption that the Gj are trees [cf. Theorem 3.7,
Theorem 5.4, and their proofs; Lemma 1.8, (ii)] that, at least for some cofinal
set of j, this set of fixed components of Gj is finite, thus implying the desired
compactness of XK [j, σ](K).

Remark 6.9.1. As observed in Remark 3.7.1, the argument used in the
final portion of the proof of Corollary 6.9 is reminiscent of the argument used in
the “discrete real section conjecture” of [Mzk5], §3.2. This is interesting since
Corollary 6.9 itself may be regarded as a weak form of the “section conjecture”
for Πtemp

XK
� GK [i.e., roughly speaking, the assertion that all sections of this

surjection arise geometrically]. This state of affairs suggests that:

Perhaps it is more natural to consider the section conjecture for the
tempered fundamental group Πtemp

XK
than for its profinite completion

ΠXK
.

Indeed, if one considers the section conjecture for the tempered fundamental
group Πtemp

XK
, it seems natural to expect that the theory of arithmetically max-

imal compact subgroups discussed in §5 could provide useful insights that are
not available in the profinite case.

Next, let
Dx ⊆ Πtemp

XK

be a decomposition group associated to some closed point x ∈ XK(K). Then
one has tempered analogues of the various notions of “absoluteness” given in
[Mzk8], Definition 4.1, (iv); [Mzk8], Definition 4.8 — which we denote by means
of a prefix “temp-”. Observe that Dx also forms a “profinite Dx ⊆ ΠXK

” in
the sense of [Mzk8]. Moreover, since finitely generated free groups are well-
known to be “good” [i.e., the natural map from the cohomology of the profinite
completion of this group with coefficients in a finite [i.e., as a set] module to
the cohomology of the original group in the same module is an isomorphism],
it is immediate that Πtemp

XK
is also good. We thus conclude [cf. Theorem 6.6]

the following:
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Corollary 6.10 (Tempered Absoluteness).

(i) The point x is a discretely absolute cusp (respectively, an inte-
grally absolute cusp) if and only if it is a discretely temp-absolute cusp
(respectively, an integrally temp-absolute cusp).

(ii) The hyperbolic curve XK is unitwise absolute if and only if it is
unitwise temp-absolute.

Corollary 6.11 (Unitwise and Integral Temp-absoluteness for Genus
Zero). Let XK be a hyperbolic curve over K, with stable reduction
over OK , which is isogenous to a hyperbolic curve of genus zero. Then
XK is unitwise temp-absolute, and every cusp of XK is integrally temp-
absolute.

Proof. Indeed, this follows by formally “substituting” the equivalences
of Corollary 6.10, (i), (ii), into [Mzk8], Corollary 4.11.

Finally, we also observe that it is immediate that the tempered analogue
of [Mzk8], Theorem 4.3, holds:

Theorem 6.12 (Rigidity of Cuspidal Geometric Decomposition Groups).
In the notation of Theorem 6.8, (ii), suppose that α induces isomorphisms

Ix
∼→ Iy; µ

Ẑ
(K) ∼→ µ

Ẑ
(L)

where x ∈ XK(K) (respectively, y ∈ Y L(L)) is a cusp; µ
Ẑ
(−) is as in [Mzk8],

Theorem 4.3. Then these isomorphisms are compatible with the natural
isomorphisms µ

Ẑ
(K) ∼→ Ix; µ

Ẑ
(L) ∼→ Iy.

Remark 6.12.1. Note that unlike Corollaries 6.10, 6.11; Theorem 6.12,
results such as Theorem 6.8, (iii), (iv); Corollary 6.9 do not follow formally
from their profinite analogues, since, in the latter case, it is by no means clear
that any ΠXK

-conjugate of the decomposition group of a closed point that
happens to be contained in Πtemp

XK
⊆ ΠXK

is necessarily a Πtemp
XK

-conjugate of
the decomposition group of a closed point.

Appendix : Quasi-temperoids

In this Appendix, we discuss a certain minor generalization of the notion
of a temperoid introduced in §3.
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Let T be a temperoid. If A is an object of T , write π0(A) for the set of
connected components of A and

T [A] ⊆ T

for the full subcategory determined by the objects of T that admit a morphism
to A [cf §0]. This Appendix is devoted to the resolution [cf. Theorem A.4
below] of the following question:

Given the abstract category T [A], is it possible to reconstruct the cate-
gory T category-theoretically from T [A]?

This sort of issue occurs naturally, for instance, in the study of cores of anabe-
lioids, and, indeed, is addressed implicitly in [Mzk4], Proposition 2.1.1, (iii).
Since, however, this sort of technical issue is a bit more technically complicated
in the case of temperoids than in the case of anabelioids, and, moreover, even
in the case of anabelioids, this sort of issue is not addressed explicitly or in
detail in [Mzk4], it seemed appropriate to the author to give the details in the
present Appendix of how this sort of issue may be resolved.

Definition A.1. (i) Any category equivalent to a category of the
form

T [A]

— where A is a connected object, and T is a connected temperoid — will be
referred to as a connected quasi-temperoid.

(ii) A category equivalent to a product [in the sense of a product of cat-
egories] of a countable [hence possibly empty!] collection of connected quasi-
temperoids will be referred to as a quasi-temperoid. An object A of a quasi-
temperoid Q will be called nondegenerate if, for every connected object B of
Q, there exist arrows C → B, C → A, for some connected object C of Q.

(iii) Let Q1, Q2 be quasi-temperoids. Then a quasi-morphism φ : Q1 → Q2

is defined to be a functor φ∗ : Q2 → Q1 that preserves finite limits and count-
able colimits. A quasi-morphism φ will be called rigid (respectively, a mor-
phism) if the functor φ∗ is rigid [cf. §0] (respectively, preserves nondegenerate
objects).

Remark A.1.1. One verifies immediately that a quasi-temperoid is an
almost totally epimorphic category of countably connected type [cf. §0].
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Remark A.1.2. Unlike the situation with temperoids, a quasi-tem-
peroid does not, in general, admit a terminal object. Thus, it is not in general
the case that a quasi-morphism of quasi-temperoids is necessarily a morphism.
Indeed, if Q is a connected quasi-temperoid that does not admit a terminal
object, then one verifies immediately that the functor Q → Q that maps all
objects of Q to some empty object of Q preserves finite limits and countable
colimits, but fails to preserve nondegenerate objects.

Proposition A.2 (Connected Components of Quasi-temperoids). Let
E, E′ be countable sets; for each e ∈ E (respectively, e′ ∈ E′), let Qe (respec-
tively, Q′

e′) be a connected quasi-temperoid; set:

Q def=
∏
e∈E

Qe; Q′ def=
∏

e′∈E′

Q′
e′

Also, let φ : Q → Q′ be a quasi-morphism of quasi-temperoids. Then:

(i) For each e ∈ E, the natural projection functor

π∗
e : Q → Qe

determines a morphism of quasi-temperoids Qe → Q.

(ii) For each e ∈ E, write

ιe : Qe → Q

for the natural inclusion functor [i.e., the functor whose composite with π∗
f ,

where f ∈ E, maps all objects of Qe to empty [i.e., initial ] objects of Qf if
f 	= e, and is the identity if f = e ]. If ε is a connected component of the full
subcategory of connected objects Q0 ⊆ Q [cf. §0], then write

Qε ⊆ Q

for the full subcategory determined by the objects A of Q such that all of the
connected components of A belong to ε. Then the essential image of ιe is
equal to Qε for a unique ε, and, moreover, the resulting correspondence

e → ε

determines a bijection between E and the set of connected components of Q0.
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(iii) The nondegenerate objects of Q are precisely the objects each of
whose component objects ∈ Ob(Qe) is nonempty.

(iv) If φ is a morphism of quasi-temperoids, and both E and E′ are
of cardinality one, then the functor φ∗ is faithful.

(v) If φ is a morphism of quasi-temperoids, then φ induces a map
ψ : E → E′, and, for each e ∈ E, a morphism of quasi-temperoids φe : Qe →
Q′

ψ(e) such that φ coincides with the morphism of quasi-temperoids formed by
“taking the product” [in the evident sense ] of the φe.

Proof. Assertion (i) (respectively, (iii)) follows immediately from the
definitions (respectively, and assertion (ii)). To prove assertion (ii), we argue
as follows: By unraveling the definitions, one verifies immediately that every
connected object of Q lies in the essential image of a unique ιe, and that two
connected objects of Q lie in the essential image of the same ιe if and only if
they belong to the same connected component of Q0. Now assertion (ii) follows
formally from these observations.

Next, we verify assertion (iv). First, in light of Remark A.1.1, it suffices to
check faithfulness on arrows A → B between connected objects A, B of Q′. But
since A, B are connected, it follows immediately that there exists a connected
object C of Q′ such that the products A×C, B×C split as coproducts of copies
of C. Since A, B, C are connected [hence nonempty], they are nondegenerate
[cf. assertion (iii)]. Moreover, again by Remark A.1.1, arrows A → B are
represented faithfully by the maps π0(A × C) → π0(B × C) they induce. But,
since φ∗(A), φ∗(B), φ∗(C) are nondegenerate, hence, in particular, nonempty,
this implies that φ∗ itself is faithful, as desired.

Finally, we verify assertion (v). Let us consider the various composite
functors

κ[e′, e] def= π∗
e ◦ φ∗ ◦ ιe′ : Q′

e′ → Qe

where e ∈ E, e′ ∈ E′. Now observe that, if we fix e and allow e′ to vary,
then since the product of objects belonging to distinct Q′

ε′ ’s will always be an
empty object of Q′, it follows from the fact that πe, φ are quasi-morphisms of
quasi-temperoids [together with the easily verified observation that any product
of nonempty objects of a connected quasi-temperoid will always be nonempty]
that there is at most one e′ ∈ E′ such that the essential image of κ[e′, e] contains
nonempty objects. On the other hand, since π∗

e ◦φ∗ preserves nondegenerate ob-
jects, it follows [cf. assertion (iii)] that there exists at least one e′ ∈ E′ such that
the essential image of κ[e′, e] contains nonempty objects. Thus, in summary,
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for each e ∈ E, there exists a unique e′ ∈ E′ such that the essential image of
κ[e′, e] contains nonempty objects; set ψ(e) def= e′. Then it follows immediately
again from the fact that the functor π∗

e ◦ φ∗ preserves nondegenerate objects
that the functor κ[ψ(e), e] preserves nondegenerate objects, hence determines
a morphism of quasi-temperoids Qe → Q′

ψ(e). Moreover, unraveling the defini-
tions, we see that the remainder of assertion (v) follows formally from what we
have done thus far.

Remark A.2.1. Thus, Proposition A.2 serves, in effect, to reduce the
theory of arbitrary quasi-temperoids to the theory of connected quasi-temperoids.

Definition A.3. Let Q be a connected quasi-temperoid. Then:

(i) Any pair (A, ΓA), where A is an object of Q, and ΓA ⊆ AutQ(A) is a
subgroup, will be referred to as a QD- [or quotient data] pair [of Q]. If ΓA acts
transitively on π0(A), then we shall say that this QD-pair is weakly connected;
if A is connected, then we shall say that this QD-pair is strongly connected.
[Thus, every strongly connected QD-pair is weakly connected.]

(ii) A morphism of QD-pairs of Q

(A, ΓA) → (B, ΓB)

is defined to be a morphism φ : A → B such that, for every γA ∈ ΓA, there
exists a γB ∈ ΓB such that γB ◦φ = φ◦γA. If, moreover, φ induces a surjection
π0(A) � π0(B), then we shall say that this morphism is 0-proper. Thus,
in the 0-proper case, it follows from the fact that the category Q is almost
totally epimorphic that γB is unique, hence that the correspondence γA → γB

determines an associated group homomorphism ΓA → ΓB.

(iii) Let (A, ΓA) be a QD-pair. Then we shall say that an arrow φ : A → B

of Q forms a quotient of this QD-pair — and write B ∼= A/ΓA — if the following
two properties are satisfied: (a) φ ◦ γA = φ, ∀ γA ∈ ΓA; (b) for every arrow
ψA : A → C satisfying ψA ◦ γA = ψA, ∀ γA ∈ ΓA, there exists a unique arrow
ψB : B → C such that ψB ◦ φ = ψA. [Thus, one verifies immediately that the
quotient of a QD-pair is unique, up to unique isomorphism, if it exists, and
that the quotient of a QD-pair is connected if and only if the QD-pair is weakly
connected.]

(iv) A 0-proper morphism of QD-pairs of Q

(A, ΓA) → (B, ΓB)
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will be called 1-proper if the associated homomorphism ΓA → ΓB is surjective,
and, moreover, the arrow A → B forms a quotient of the QD-pair (A, Ker(ΓA �
ΓB)). [Thus, under the 1-properness assumption, one verifies immediately that
if B → C forms a quotient of (B, ΓB), then the composite arrow A → B → C

forms a quotient of (A, ΓA).]

Remark A.3.1. One verifies immediately that the following conditions
on a morphism of QD-pairs (A, ΓA) → (B, ΓB) are equivalent:

(a) (A, ΓA) → (B, ΓB) is 0-proper.

(b) A → B is an epimorphism in Q [cf. Remark A.1.1].

(c) B is the colimit in Q of the diagram formed by the two projections A ×B

A → A.

Moreover, the notion of a “quotient” given in Definition A.3, (iii), may also be
stated in terms of colimits. In particular, the condition that (A, ΓA) → (B, ΓB)
be 1-proper may be stated entirely in terms of colimits.

Theorem A.4 (Connected Quasi-temperoids). For i = 1, 2, let Ti be a
connected temperoid; let Ai be a connected object of Ti; write

λi : Qi
def= Ti[Ai] → Ti

for the natural functor. Then any morphism of quasi-temperoids φ : Q1 →
Q2 fits into a 1-commutative diagram

Q1
φ−→Q2�λ1

�λ2

T1
ψ−→ T2

— where the morphism of [quasi-]temperoids ψ : T1 → T2 that makes this
diagram 1-commute is unique, up to unique isomorphism.

Proof. Write
Di

for the category whose objects are QD-pairs of Qi and whose morphisms are
morphisms of QD-pairs. Note that it follows immediately from the definitions
that if (B, ΓB) is a QD-pair of Qi, then the QD-pair λi(B, ΓB) of Ti admits a
quotient in Ti. Thus, we obtain a natural functor

qi : Di → Ti
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given by the assignment (B, ΓB) → B/ΓB. Note that this functor maps 1-
proper morphisms of Di to isomorphisms of Ti. Moreover, one verifies immedi-
ately that this functor qi is essentially surjective; that qi((B, ΓB)) is connected
if and only if (B, ΓB) is weakly connected; and that every connected object of
Ti is isomorphic to the image via qi of a strongly connected QD-pair.

Thus, to reconstruct Ti from Di, it suffices to reconstruct the morphisms

B/ΓB → C/ΓC

in Ti between the images via qi of two objects (B, ΓB), (C, ΓC) of Di. To this
end, we define

Hom((B, ΓB), (C, ΓC)) def= HomDi
((B, ΓB), (C, ΓC))/ΓC

[i.e., where ΓC acts by composition from the right], so that the functor qi

induces a natural map:

Hom((B, ΓB), (C, ΓC)) → HomTi
(B/ΓB, C/ΓC)

Since Ti is an almost totally epimorphic category countably connected type, it
suffices to describe the morphisms between connected objects of Ti.

Next, suppose that (B, ΓB), (C, ΓC) are strongly connected QD-pairs. Then
observe that the functor qi induces an injection:

Hom((B, ΓB), (C, ΓC)) ↪→ HomTi
(B/ΓB, C/ΓC)

Indeed, this follows immediately by considering the natural splitting [in Qi or
Ti] of C ×C/ΓC

C into a coproduct of copies of C indexed by ΓC [together with
the fact that (B, ΓB), (C, ΓC) are strongly connected QD-pairs]. Moreover, one
verifies immediately that every element of HomTi

(B/ΓB, C/ΓC) arises from
some morphism of strongly connected QD-pairs

(B′, ΓB′) → (C, ΓC)

where (B′, ΓB′) → (B, ΓB) is a 1-proper morphism of strongly connected QD-
pairs [so we obtain a morphism B/ΓB → C/ΓC by composing the induced mor-
phism B′/ΓB′ → C/ΓC with the inverse of the induced isomorphism
B′/ΓB′

∼→ B/ΓB]. Now one verifies easily that any two 1-proper morphisms
of strongly connected QD-pairs (B′, ΓB′) → (B, ΓB), (B′′, ΓB′′) → (B, ΓB)
fit into a commutative diagram of 1-proper morphisms of strongly connected
QD-pairs of Di:

(B′′′, ΓB′′′)−→ (B′′, ΓB′′)� �
(B′, ΓB′) −→ (B, ΓB)
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Thus, we conclude that HomTi
(B/ΓB, C/ΓC) may be reconstructed as the fol-

lowing filtered inductive limit:

Hom((B, ΓB), (C, ΓC)) def= lim
−→

Hom((B′, ΓB′), (C, ΓC))

[i.e., over 1-proper morphisms of strongly connected QD-pairs (B′, ΓB′) →
(B, ΓB) and transition morphisms (B′′, ΓB′′) → (B′, ΓB′) over (B, ΓB)]. More-
over, one verifies immediately that this reconstruction is compatible with com-
position of arrows [i.e., composition of arrows in Di induces composition of
“Hom-arrows”].

Next, suppose that (B, ΓB), (C, ΓC) are weakly connected QD-pairs. Then
observe that each connected component B′ of B determines a strongly con-
nected QD-pair (B′, ΓB′) [i.e., where we take ΓB′ ⊆ ΓB to be the subgroup of
automorphisms that fix the element [B′] ∈ π0(B) determined by B′] such that
qi((B′, ΓB′)) ∼= qi((B, ΓB)); a similar statement holds for (C, ΓC). Moreover, if
B′, B′′ (respectively, C ′, C ′′) are connected components of B (respectively, C),
then one verifies immediately that any choice of elements γB ∈ ΓB, γC ∈ ΓC

such that γB(B′) = B′′, γC(C ′) = C ′′ determines a bijection

Hom((B′, ΓB′), (C ′, ΓC′)) ∼→ Hom((B′′, ΓB′′), (C ′′, ΓC′′))

which is, in fact, independent of the choice of γB, γC . Thus, if we define

Hom((B, ΓB), (C, ΓC)) ⊆
∏

B′,C′

Hom((B′, ΓB′), (C ′, ΓC′))

[where the product ranges over all choices of connected components B′, C ′ of B,
C, respectively] to be the subset of collections of elements that correspond via
these bijections, then the natural projections of this direct product determine
bijections as follows:

Hom((B, ΓB), (C, ΓC)) ∼→ Hom((B′, ΓB′), (C ′, ΓC′))
∼→ HomTi

(qi((B′, ΓB′)), qi((C ′, ΓC′)))
∼→ HomTi

(qi((B, ΓB)), qi((C, ΓC)))

Moreover, it follows immediately from the definitions that we have a natural
map:

Hom((B, ΓB), (C, ΓC)) → Hom((B, ΓB), (C, ΓC))

Finally, as observed above, since Ti is an almost totally epimorphic category
countably connected type, the definition of “Hom”, as well as the resulting bi-
jection of “Hom” with “HomTi

” and the natural map from “Hom” to “Hom”
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extend immediately to pairs of objects of Di that are not necessarily weakly
connected.

Thus, in summary, if we write

Pi

for the category whose objects are the objects of Di and whose morphisms are
given by the “Hom’s”, then we obtain natural functors

Qi → Di → Pi
∼→ Ti

— i.e., the first functor maps an object B of Qi to the QD-pair (B, {1});
the second functor arises from the construction of Pi; the third functor is the
equivalence induced by the natural functor Di → Ti considered above.

Now observe that the functor φ∗ : Q2 → Q1 induces a 1-commutative
diagram

Q2 −→D2 −→P2�φ∗
� �

Q1 −→D1 −→P1

Indeed, the construction of the second vertical arrow is immediate from the
definitions. The construction of the third vertical arrow follows by observing
that since φ∗ preserves countable colimits, it follows that the functor D2 → D1

preserves 0- and 1-proper morphisms [cf. Remark A.3.1]. Thus, by combining
this diagram with the equivalences Pi

∼→ Ti, we obtain a diagram as in the
statement of Theorem A.4.

The fact that the resulting functor ψ∗ : T2 → T1 preserves countable col-
imits (respectively, fibered products) follows by a routine argument from the
fact that φ∗ preserves countable colimits (respectively, countable colimits and
finite limits). Thus, to show that ψ is a morphism of temperoids [i.e., that ψ∗

preserves finite limits], it suffices to show that ψ∗ preserves terminal objects.
Now let B be a connected object of Q2 such that B × B splits as a coproduct
of copies of B [i.e., in other words, B is a connected Galois object of T2 that
admits a morphism in T2 to A2]. Note that such a B always exists. Then if we
let Aut(B) act on, say, the second factor of B ×B, then the resulting QD-pair
(B×B, Aut(B)) maps via φ∗ to a QD-pair (φ∗(B)×φ∗(B), φ∗(Aut(B))) of Q1.
Moreover, since the first projection B ×B → B forms a quotient of the former
QD-pair, it follows that the first projection φ∗(B) × φ∗(B) → φ∗(B) forms a
quotient of the latter QD-pair. It thus follows immediately that φ∗(Aut(B))
acts transitively on π0(φ∗(B)). Next, observe that B×B is a coproduct of copies
of B. Thus, we conclude that φ∗(B)×φ∗(B) is a coproduct of copies of φ∗(B).



�

�

�

�

�

�

�

�

316 Shinichi Mochizuki

But this implies that the connected components of φ∗(B), all of which are iso-
morphic to one another [by the transitivity observed above], form Galois objects
of T1. Thus, the preceding observation concerning the quotient of the QD-pair
in Q1 implies that the stabilizer in φ∗(Aut(B)) of any connected component
φ∗(B) is necessarily equal to the entire automorphism group of this connected
component. Moreover, since φ∗ preserves nondegenerate objects, it follows that
φ∗(B) is nonempty [i.e., φ∗(B) has at least one connected component]. Thus,
in summary, φ∗ maps the QD-pair (B, Aut(B)) [any quotient of which forms a
terminal object in T2] to a QD-pair (φ∗(B), φ∗(Aut(B))) any quotient of which
forms a terminal object in T1. That is to say, we have shown that ψ∗ preserves
terminal objects, as desired.

Finally, the asserted uniqueness of ψ [up to unique isomorphism] follows
immediately from the fact that arbitrary objects of Ti may be obtained as
quotients of QD-pairs of Qi.

Remark A.4.1. Thus, Theorem A.4 serves, in effect, to reduce the
theory of arbitrary connected quasi-temperoids to the theory of connected tem-
peroids.

Remark A.4.2. One verifies immediately that, by replacing the term
“temperoid” by the term “anabelioid” [and the terms “countable/countably”
by the terms “finite/finitely”], one obtains an entirely analogous [but, in fact,
slightly easier] theory of “quasi-anabelioids” to the theory of quasi-temperoids
developed above. We leave the routine details to the reader.
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open edge, §1
open object, after 4.1.2

π1-epimorphic approximator, 2.3, ii
π1-monomorphism, 2.1
piecewise faithfully, 4.1, i
proper morphism of semi-graphs, §1
properties of an arithmetic semi-graph of anabelioids, 5.1, iii
pro-Σ-completion, 2.9, ii
pro-temperoids, 3.4.2

QD-pair, A.3, i
quasi-anabelioid, A.4.2
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quasi-connected, §0, Categories
quasi-geometric, 3.8
quasi-morphism of quasi-temperoids, A.1, iii
quasi-temperoid (connected), A.1, i, ii
quotient of a QD-pair, A.3, iii
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(semi-)graph of anabelioids, 2.1
Σ-integer, 2.9, i
slim, §0, Categories
strongly connected, A.3, i
structure morphism, 4.1, iii
sub-coverticial (totally, universally), 2.4, iii
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temperification, 3.1.4
temperoid, 3.1, ii
temp-slim (relatively), 3.4, ii
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totally epimorphic, §0, Categories
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universal graph-covering, §1
universal pro-finite étale covering, 2.2.1
untangled semi-graph, §1

vertex, §1
verticial cardinality, §1
verticial degree, 4.2, i
verticial length, 4.2, i
verticially iso-excisive, 4.1, iv
verticially slim, 2.4, ii
verticial morphism, 4.2, i
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