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The Unipotent Albanese Map and Selmer
Varieties for Curves

Dedicated to the memory of my teacher Serge Lang

By

Minhyong Kim∗

Abstract

We study the unipotent Albanese map that associates the torsor of paths for
p-adic fundamental groups to a point on a hyperbolic curve. It is shown that the
map is very transcendental in nature, while standard conjectures about the structure
of mixed motives provide control over the image of the map. As a consequence,
conjectures of ‘Birch and Swinnerton-Dyer type’ are connected to finiteness theorems
of Faltings-Siegel type.

In a letter to Faltings [16] dated June, 1983, Grothendieck proposed several
striking conjectural connections between the arithmetic geometry of ‘anabelian
schemes’ and their fundamental groups, among which one finds issues of con-
siderable interest to classical Diophantine geometers. Here we will trouble the
reader with a careful formulation of just one of them. Let F be a number field
and

f : X→Spec(F )

a smooth, compact, hyperbolic curve over F . After the choice of an algebraic
closure

y : Spec(F̄ )→Spec(F )

and a base point
x : Spec(F̄ )→X

Communicated by A. Tamagawa. Received June 11, 2007. Revised December 21, 2007.
2000 Mathematics Subject Classification(s): 14G05, 11G30.

∗Department of Mathematics, University College London, Gower Street, London, WC1E
6BT, United Kingdom, and The Korea Institute for Advanced Study, Hoegiro 87,
Dongdaemun-Gu, Seoul 130-722, Korea.
e-mail: minhyong.kim@ucl.ac.uk

c© 2009 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



90 Minhyong Kim

such that f(x) = y, we get an exact sequence of fundamental groups:

0→π̂1(X̄, x)→π̂1(X, x)
f∗→ Γ→0,

where Γ = Gal(F̄ /F ) is the Galois group of F̄ over F and X̄ = X ⊗ F̄ is the
base change of X to F̄ . Now, suppose we are given a section s ∈ X(F ) of
the map X→Spec(F ), i.e., an F -rational point of X. This induces a map of
fundamental groups

s∗ : Γ→π̂1(X, x′)

where x′ = s(y). Choosing an étale path p from x′ to x determines an isomor-
phism

cp : π̂1(X, x′) � π̂1(X, x), l �→ p ◦ l ◦ p−1,

which is independent of p up to conjugacy. On the other hand, p maps to
an element γ ∈ Γ, and it is straightforward to check that cp ◦ s∗ ◦ cγ−1 is a
continuous splitting of f∗ : π̂1(X, x)→Γ. This splitting is well-defined up to the
equivalence relation ∼ given by conjugacy of sections, where γ ∈ π̂1(X, x) acts
on a section s as s �→ cγ ◦ s ◦ cf∗(γ)−1 . We get thereby a map

s �→ [cp ◦ s∗ ◦ cγ−1 ]

from X(F ) to the set Split(X))/ ∼ of splittings Split(X) of the exact sequence
modulo the equivalence relation ∼ given by conjugation. Grothendieck’s section
conjecture states that this map is a bijection:

X(F ) � Split(X)/ ∼

It seems that during the initial period of consideration, there was an expectation
that the section conjecture would ‘directly imply’ the Mordell conjecture. At
present the status of such an implication is unclear. Nevertheless, this fact
does not diminish the conceptual importance of the section conjecture and its
potential for broad ramifications in Diophantine geometry. In the long run, one
can hope that establishing the correct link between Diophantine geometry and
homotopy theory will provide us with the framework for a deeper understanding
of Diophantine finiteness, especially in relation to the analytic phenomenon of
hyperbolicity.

In this paper, we wish to make some preliminary comments on the fun-
damental groups/Diophantine geometry connection from a somewhat different
perspective which, needless to say, does not approach the depth of the section
conjecture. In fact, in our investigation, the main tool is the motivic fundamen-
tal group, especially p-adic realizations, rather than the pro-finite fundamental
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group. Nevertheless, what emerges is a (murky) picture containing at least
a few intriguing points of mystery that are rather surprising in view of the
relative poverty of unipotent completions. That is to say, one is surprised by
the Diophantine depth of an invariant that is so close to being linear. It is the
author’s belief that the Selmer varieties arising in this context, generalizing Qp-
Selmer groups of abelian varieties, are objects of central interest. Developing
the formalism for a systematic study of Selmer varieties is likely to be crucial for
continuing research along the lines suggested in this paper. However, the non-
abelian nature of the construction presents a formidable collection of obstacles
that are at present beyond the author’s power to surmount. In spite of this, it
is hoped that even a partial resolution of the problems can point us eventually
towards the full algebraic completion of the fundamental group, bringing a sort
of ‘motivic Simpson theory’ to bear upon the study of Diophantine sets.

We proceed then to a brief summary of the notions to be discussed and
a statement of the results, omitting precise definitions for the purposes of this
introduction. Although it will be clear that at least part of the formalism is
more general, we will focus our attention on curves in this paper, right at the
outset. So we let F be a number field and X/F a smooth hyperbolic curve,
possibly non-compact. Let R be the ring of S−integers in F for some finite set
S of primes. We assume that we are given a smooth model

X ↪→ X
↓ ↓

Spec(F ) ↪→ Spec(R)

of X and a compactification X ↪→X ′ relative to R where X ′ and the complement
D of X in X ′ are also smooth over R. The Diophantine set of interest in this
situation is X (R), the S-integral points of X . The theorems of Siegel and
Faltings say that this set is finite. After setting up the preliminary formalism,
our goal will be to investigate these theorems from a π1-viewpoint.

As already mentioned, the π1 we will be focusing on in this paper is a
part of the motivic π1 defined by Deligne [10]. In spite of the terminology,
we do not rely on any general theory of motives in our discussion of the fun-
damental group. Rather, there will always be specific realizations related by
the standard collection of comparison maps. Nevertheless, it is probably worth
emphasizing that the main idea underlying our approach is that of a motivic
unipotent Albanese map, of which the one defined by Hain [17] is the Hodge
realization. That is, whenever a point b ∈ X (R) is chosen as a basepoint, a
unipotent motivic fundamental group Umot := πmot

1 (X, b) as well as motivic
torsors Pmot(y) := πmot

1 (X; b, y) of paths associated to other points y should
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be determined. The idea is that if a suitable classifying space Dmot for such
torsors were to be constructed, the Albanese map would merely associate to a
point y, the class

[Pmot(y)] ∈ Dmot.

Coming back to the concrete consideration of realizations, the analytic
part of the machinery we need comes from the De Rham fundamental group
of Xv := X ⊗ Fv that depends only on the local arithmetic geometry. Here,
v is an archimedean valuation of F not contained in S. The definition of this
fundamental group requires the use of the category Un(Xv) of unipotent vector
bundles with connections on Xv. Given any base point b ∈ X (Rv), we get a
fiber functor eb : Un(X)→VectFv

to the category of vector spaces over Fv, and

UDR := π1,DR(Xv) := Aut⊗(eb)

in a rather obvious sense as functors on affine Fv-schemes. The functor
π1,DR(Xv) ends up being representable by a pro-unipotent pro-algebraic group.
Natural quotients

UDR
n := Zn\UDR

via the descending central series of UDR correspond to restricting eb to the
subcategory generated by bundles having index of unipotency ≤ n. These
quotients are unipotent algebraic groups over Fv. UDR is endowed with a
decreasing Hodge filtration by subgroups:

UDR ⊃ · · · ⊃ FnUDR ⊃ Fn+1UDR ⊃ · · · ⊃ F 0UDR

coming from a filtration of the coordinate ring by ideals. There is a comparison
isomorphism

UDR � Ucr ⊗K Fv = π1,cr(Yv, b̄)⊗K Fv

(where K is the maximal absolutely unramified subfield of Fv) with the crys-
talline fundamental group of the special fiber, defined using unipotent over-
convergent iso-crystals. The utility of this is that the Frobenius of the special
fiber comes to act naturally on the De Rham fundamental group. Of crucial
importance for us is the consideration of De Rham ‘path spaces’:

PDR(x) := π1,DR(Xv; x, b) := Isom⊗(eb, ex)

consisting of isomorphisms from the fiber functor eb to ex, x ∈ Xv(Rv). These
are pro-algebraic varieties also endowed with Hodge filtrations and crystalline
Frobenii that are compatible with their structure as right torsors for UDR, and
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the point is to study how the data vary with x. In fact, they turn out to be
classified by a natural ‘period space’

UDR/F 0UDR

giving us a higher De Rham unipotent Albanese map

jDR : X (Rv)→UDR/F 0UDR

that maps x to the class of PDR(x). By passing to (finite-dimensional) quotients
UDR

n , we also have finite-level versions

jDR
n : X (Rv)→UDR

n /F 0UDR
n

that fit into a compatible tower

|| ↓
X (Rv)→UDR

n+1/F 0

|| ↓
X (Rv)→ UDR

n /F 0

|| ↓
...

...
...

|| ↓
X (Rv)→ UDR

2 /F 0

At the very bottom, UDR
2 = HDR

1 (Xv) := (H1
DR(Xv))∗ and jDR

2 is nothing but
the logarithm of the usual Albanese map with respect to the base point b.

A comparison with the situation over C easily yields the following:

Theorem 1. For each n ≥ 2, the image of jDR
n is Zariski dense.

This statement can be interpreted as linear independence for multiple poly-
logarithms of higher genus. It has been pointed out by a referee that this the-
orem is also proved by Faltings in a preprint [11]. In fact, both Faltings and
Akio Tamagawa had indicated to the author earlier the possibility of proving
the denseness using trascendental methods in the genus zero case.

Unfortunately, this simple theorem is the only concrete result to be re-
ported on in this paper, the remaining parts being an extended commentary
on what else might be expected when allowed considerable optimism. Never-
theless, we proceed to summarize here our observations.

The construction described thus far will have to be compared with one
involving pro-unipotent étale fundamental groups that are associated to the
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situation in both local and global settings. That is, after a choice F̄v of an
algebraic closure for Fv, we can associate to the base-change X̄v := Xv ⊗ F̄v

the pro-unipotent étale fundamental group

Uet := π1,ét(X̄v, b)

that classifies unipotent lisse Qp-sheaves on X̄v. Furthermore, to each x, we can
also associate the space of unipotent étale paths P et = π1,ét(X̄v; x, b) which is a
torsor for Uet. Both carry actions of Gv := Gal(F̄v/Fv) and the torsor structure
is compatible with the action. The torsors that are associated in this way to
integral points x ∈ X (Rv) have the additional property of being trivialized
over a ring Bcr of p-adic periods (via a non-abelian comparison isomorphism
[30], [27]). We classify these torsors using a restricted Galois cohomology set
H1

f (Gv, U
et). A classifying map defined exactly analogously to the De Rham

setting provides a local étale Albanese map

jet
loc : X (Rv)→H1

f (Gv, U
et)

as well as finite-level versions

(jet
loc)n : X (Rv)→H1

f (Gv, U
et
n ).

The connection to jDR goes through a non-abelian extension of Fontaine’s
Dieudonné functor, interpreted as a morphism of varieties:

D : H1
f (Gv, U

et
n )→UDR

n /F 0

that fits into a commutative diagram

X (Rv)→ UDR
n /F 0

↘ ↑
H1

f (Gv, U
et
n ).

The study of global points comes into the picture when we take the base-
point b itself from X (R), the set of global integral points, and consider the global
Qp pro-unipotent étale fundamental group π1,ét(X̄, b) with the action of Γ =
Gal(F̄ /F ). A choice of an embedding F̄ ↪→F̄v determines an inclusion Gv↪→Γ.
We have an isomorphism of pro-algebraic groups π1,ét(X̄, b) � π1,ét(X̄v, b) that
is compatible with the action of GV , so we will allow ourself a minimal abuse of
notation and denote the global fundamental group also by Uet. Any other global
point y then determines a torsor which is denoted P et(y) (again introducing
a bit of confusion with the local object). We denote by T the set of primes
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consisting of S together with all primes dividing the residue characteristic of v.
The action of G on Uet factors through GT , the Galois group of the maximal
subfield of F̄ unramified over the primes in T . Of crucial importance for our
purposes is the non-abelian cohomology set

H1(GT , Uet)

and a natural subset

H1
f (GT , Uet) ⊂ H1(GT , Uet)

defined by ‘Selmer conditions’ at the primes in T , which need not be too precise
at the primes not equal to v, but at v, requires the classes to map to H1

f (Gv, U
et)

under localization. All the cohomology sets thus far discussed can be inter-
preted as the points of a pro-algebraic variety (over Qp), and H1

f (GT , Uet) is
the Selmer variety occurring in the title of this paper. The finite-level versions
H1

f (GT , Uet
n ) and H1

f (Gv, U
et
n ) are algebraic varieties. In this interpretation,

the restriction map and the Dieudonné functor become algebraic maps of Qp-
schemes, the target of the latter being the Weil restriction ResFv

Qp
(UDR/F 0),

which of course has the property that

ResFv

Qp
(UDR/F 0)(Qp) = (UDR/F 0)(Fv).

We have thus described the fundamental diagram involving the various points
of the varieties:

X (R) → X (Rv) →UDR
n /F 0(Fv)

↓ ↓ ↗
H1

f (GT , Uet
n )→H1

f (Gv, U
et
n )

that provides for us the link between Diophantine geometry and the theory of
fundamental groups. The reader familiar with the method of Chabauty [4] will
recognize here a non-abelian lift of the diagram

X (R) → X (Rv) → Lie(J)⊗ Fv

↓ ↓ ↗
J(R)⊗Qp→ J(Rv)⊗Qp

where J is the Jacobian of X , which is essentially the case n = 2, that is, other
than the replacement of the Mordell-Weil group by the Selmer group. The
point is that the image of X (R) inside UDR

n /F 0 thus ends up being contained
inside the image of H1

f (GT , Uet
n ). The desired relation to Diophantine finiteness

is expressed by the
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Conjecture 1. Let F = Q and X be hyperbolic. Then

dim(H1
f (GT , Uet

n )) < dim(UDR
n /F 0)

for some n (possibly very large).

Whenever one can find an n for which this inequality of dimensions is
verified, finiteness of X (R) follows, exactly as in Chabauty’s argument. The
only difference is that the analytic functions that occur in the proof are p−adic
iterated integrals [14] rather than abelian integrals [7].

Unfortunately, this conjecture can be proved at present only when the
genus of X is zero [23] and some special genus one situations (with a slight
modification of the Selmer variety). However, there is perhaps some interest
in the tight connection we establish between the desired statement and various
conjectures of ‘Birch and Swinnerton-Dyer type.’ For example, our conjecture
is implied by any one of:

(1) a certain fragment of the Bloch-Kato conjecture [3];
(2) the Fontaine-Mazur conjecture [13];
(3) Jannsen’s conjecture on the vanishing of Galois cohomology (when X

is affine) [20].

In the case of CM elliptic curves (minus a point) it is easily seen to follow also
from the pseudo-nullity of a natural Iwasawa module. All of these
implications are rather easy once the formalism is properly set up.

It is amusing to note that these conjectures belong to what one might call
‘the structure theory of mixed motives.’ That is to say, the usual Diophantine
connection for them occurs through the theory of L-functions. It is thus rather
surprising that a non-linear (and non-trivial) phenomenon like Faltings’ theo-
rem can be linked to their validity. In the manner of physicists, it is perhaps
not out of place to view these implications as positive evidence for the structure
theory in question.

In relation to the ‘anabelian’ philosophy, we will explain in the last section
how these implications can be viewed as a working substitute for the desired
implication ‘section conjecture ⇒ Faltings’ theorem.’

§1. The De Rham Unipotent Albanese Map

To start out, we let L be any field of characteristic zero and S be a scheme
over L. Let f : X→S be a smooth scheme over S. We denote by Unn(X)



The Unipotent Albanese Map 97

the category of unipotent vector bundles with flat connection having index of
unipotency ≤ n. That is, the objects are (V ,∇V), vector bundles V equipped
with flat connections

∇V : V→ΩX/S ⊗ V
that admit a filtration

V = Vn ⊃ Vn−1 ⊃ · · · ⊃ V1 ⊃ V0 = 0

by sub-bundles stabilized by the connection, such that

(Vi+1/Vi,∇) � f∗(Wi,∇i),

for some bundles with connection (Wi,∇i) on S. The morphisms are maps of
sheaves preserving the connection. Obviously, Unn(X) is included in Unm(X)
as a full subcategory if m ≥ n, and we denote by Un(X) the correspond-
ing union. Let b ∈ X(S) be a rational point. It determines a fiber functor
eb : Un(X)→VectS to the category of vector bundles on S. Un(X) forms a
Tannakian category, and we denote by < Unn(X) > the Tannakian subcate-
gory of Un(X) generated by Unn(X).

Now let X be defined over L. Given any L-scheme S we follow the standard
notation of XS for the base-change of X to S. The points b and x in X(L)
then determine fiber functors eb(S), ex(S) : Un(XS)→VectS . We will use the
notation en

b (S), etc. to denote the restriction of the fiber functors to Unn(XS).
The notation < en

b (S) > will be used to denote the restriction to the category
< Unn(X) >, The De Rham fundamental group [10] π1,DR(X, b) is the pro-
unipotent pro-algebraic group over L that represents the functor on L-schemes
S:

S �→ Aut⊗(eb(S))

and the path space π1,DR(X; x, b) represents

S �→ Isom⊗(eb(S), ex(S))

We recall that the isomorphisms in the definition are required to respect the
tensor-product structure, i.e., if g ∈ Isom(eb(S), ex(S)) and V, W are objects in
Un(XS), then g(v⊗w) = g(v)⊗ g(w) for v ∈ Vb, w ∈Wb. It will be convenient
to consider also the L-module Hom(eb, ex) and the L-algebra End(eb).

We will fix a base point b and denote the fundamental group by UDR

and the path space by PDR(x). All these constructions are compatible with
base-change. Given three points x, y, z ∈ X, there is a ‘composition of paths’
map

π1,DR(X; z, y)× π1,DR(X; y, x)→π1,DR(X; z, x)
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that induces an isomorphism

π1,DR(X; z, y) � π1,DR(X; z, x)

whenever one picks a L-point p ∈ π1,DR(X; y, x) (if it exists). There is an
obvious compatibility when one composes three paths in different orders. In
particular, PDR(x) naturally has the structure of a right torsor for UDR. We
denote by ADR and PDR(x) the coordinate rings of UDR and PDR(x), respec-
tively. As described in [10], section 10, the PDR(x) fit together to form the
canonical torsor

PDR→X

which is a right torsor for X ×L UDR and has the property that the fiber over
a point x ∈ X(L) is exactly the previous PDR(x). We denote by PDR the
sheaf of algebras over X corresponding to the coordinate ring of PDR. In order
to describe this coordinate ring, it will be convenient to describe a universal
pro-unipotent pro-bundle associated to the canonical torsor.

The equivalence (loc. cit.) from the category of representations of UDR

to unipotent connections on X can be described as

V �→ V := (PDR × V )/UDR

Since PDR(b) is canonically isomorphic to UDR, Vb is canonically isomorphic to
V . Now let E be the universal enveloping algebra of LieUDR. Then E has the
structure of a co-commutative Hopf algebra and UDR is realized as the group-
like elements in E. That is, if Δ : E→E⊗̂E denotes the co-multiplication of E,
then UDR is canonically isomorphic to g ∈ E such that Δ(g) = g⊗g (of course,
as we vary over points in L-algebras). Let UDR act on E on the left, turning
E into a pro-representation of UDR: if I ⊂ E denotes the kernel of the co-unit
of E, then E is considered as the projective system of the finite-dimensional
representations E[n] := E/In. Define the universal pro-unipotent pro-bundle
with connection on X as

E := (PDR × E)/UDR

which is thus given by the projective system

E [n] := (PDR × E[n])/UDR.

Then E is characterized by the following universal property, which says that it
pro-represents the fiber functor:
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If V is a unipotent vector bundle with connection and v ∈ Vb, then there
exists a unique map

φv : E→V

such that 1 ∈ Eb→v ∈ Vb.
To see this note that V is associated to a representation V and that a map

E→V is determined by a map E = Eb→Vb→V of representations. But then,
if 1 �→ v, then f ∈ E must map to fv ∈ V , so that the map is completely
determined by the image of 1. To reformulate, there is a natural isomorphism

Hom(E ,V) � Vb.

By the definition of group-like elements, the co-multiplication Δ is a map
of UDR representations. Therefore, there is a map of connections

Δ : E→E ⊗ E

which turns E into a sheaf of co-commutative co-algebras. This map can be also
characterized as the unique map E→E ⊗E that takes 1 ∈ Eb to 1⊗1 ∈ (E ⊗E)b.
We note that there is a map

Ex→Hom(eb, ex)

defined as follows. Suppose V is a unipotent vector bundle with connection,
v ∈ Vb and f ∈ Ex. Then f · v := (φv)x(f) ∈ Vx. It is straightforward to
check that this map is linear in v and functorial in V . One also checks that
all functorial homomorphisms h : Vb→Vx arise in this way: Given such an h,
consider its value f ∈ Ex on 1 ∈ Eb. (There is an obvious way to evaluate h

on a pro-unipotent vector bundle with connection. Here as in other places, we
are being somewhat sloppy with this passage.) Now given any other v ∈ V , we
have φv : E→V described above. By functoriality, we must have a commutative
diagram

Eb
h→ Ex

φv↓ ↓φv

Vb
h→ Vx

Hence, we have

h(v) = h(φv(1)) = φv(h(1)) = φv(f) = f · v,

proving that the value of h is merely the action of f . Exactly the same argument
with en

b , en
x in place of eb, ex shows that E [n]x is functorially isomorphic to

Hom(en
b , en

x).
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Now define
P := E∗,

which therefore is an ind-unipotent vector bundle with connection. The co-
multiplication on E dualizes to endow P with the structure of a sheaf of com-
mutative algebras over X. Since PDR(x) consists of the tensor compatible
elements in Hom(eb, ex) = Ex, we see that this corresponds to the group-like
elements in Ex with respect to the co-multiplication, and hence, the algebra ho-
momorphisms P(x)→L. Although we’ve carried out this argument pointwise,
it applies uniformly to the whole family as follows: An argument identical to
the pointwise one gives us maps

E→Hom(Vb ⊗OX ,V)

of sheaves, that together induce an isomorphism of sheaves

E � Hom(eb ⊗OX , Id).

By definition, PDR represents

Isom⊗(eb ⊗OX , Id).

We conclude therefore that PDR = SpecX(P) and P = PDR.
Given any pro-algebraic group G, we denote by ZnG its descending central

series normalized by the indexing Z1G = G, Zn+1G = [G, ZnG]. Correspond-
ing to this, we have the quotient groups, Gn := G/ZnG. When the reference
to the group is clear from the context, we will often omit it from the notation
and write Zn for ZnG. A similar convention will apply to the various other
filtrations occurring the paper. Another convenient convention we may as well
mention here is that we will often omit the connection from the notation when
referring to a bundle with connection. That is, (V ,∇V) will often be denoted
simply by V .

In the case of UDR, we define PDR
n (x) to be the UDR

n torsor obtained by
push-out

PDR
n (x) = (PDR(x)× UDR

n )/UDR

Of course it turns out that PDR
n (x) represents the functor Isom⊗(< en

b >, <

en
x >). The pushout construction can be applied uniformly to the canonical

torsor PDR to get PDR
n which is a UDR

n -torsor over X.
If we define PDR[n] := E [n]∗, it gives a filtration

PDR[0] = OX ⊂ PDR[1] ⊂ PDR[2] ⊂ · · ·
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of PDR by finite-rank sub-bundles that we refer to as the Eilenberg-Maclane
filtration. Observe that the multiplication

E ⊗ E→E

is defined by taking f ∈ E and associating to it the unique homomorphism
φf : E→E . In particular, when we compose with the projection to E [n], it
factors through to a map

E [n]⊗ E[n]→E [n].

Hence, the torsor map
PDR→PDR ⊗ ADR

carries PDR[n] to PDR[n]⊗ADR[n]. Therefore, if PDR is trivialized by a point
p ∈ PDR(S) in some X-scheme S, then the induced isomorphism

ip : PDR ⊗OS � ADR ⊗OS

is compatible with the Eilenberg-Maclane filtration. We should also note that
if we embed L into C and view the whole situation over the complex numbers,
then the Eilenberg-Maclane filtration is the one induced by the length of iter-
ated integrals ([19], formula (1.14); this is one version of Chen’s π1 De Rham
theorem). In particular, for any complex point x ∈ X(C), the map obtained by
base-change PDR[n]x→PDR

x is injective. Thus, the inclusion PDR[n]x→PDR
x

is universally injective. (Proof: Given an X-scheme f : Z→X, any point z ∈ Z

lies over f(z) ∈ X. So injectivity of

f∗PDR[n]z→f∗PDR
z

reduces to that of
PDR[n]f(z)→PDR

f(z),

which then can be handled through a complex embedding.) Therefore, by the
constancy of dimension, we see that the trivializing map ip just mentioned must
be strictly compatible with the Eilenberg-Maclane filtration.

Now we let L = Fv, the completion of a number field F at a non-
archimedean place v and Rv the ring of integers in Fv. Let Xv be a smooth
curve over Fv. We will assume that we have a diagram

Xv ↪→ Xv ↪→ X ′
v

↓ ↓ ↓
Spec(Fv) ↪→ Spec(Rv) = Spec(Rv)
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where X ′
v is a smooth proper curve over Rv and Xv is the complement in X ′

v

of a smooth divisor Dv and Xv is the generic fiber of Xv. We also denote by
X ′

v (resp. Dv) the generic fiber of X ′
v (resp. Dv). Letting k denote the residue

field of Fv, we get varieties Y and Y ′ over k as the special fibers of Xv and X ′
v,

respectively. Given points b, x ∈ Xv(Rv), we let b̄ and x̄ be their reduction to
k-points of Y . Associated to Y and a point c ∈ Y (k), we have the crystalline
fundamental group π1,cr(Y, c) [6] which is a pro-unipotent pro-algebraic group
over K, the field of fraction of the ring of Witt vectors W of k. The definition
of this group uses the category Un(Y ) of over-convergent unipotent isocrystals
[1] on Y which, upon base-change to Fv, can be interpreted as vector bundles
(V ,∇) with connections on Xv satisfying the unipotence condition of the first
paragraph, a convergence condition on each residue disk ]c[ of point c ∈ Y , and
an over-convergence condition near the points of Dv. For each point c ∈ Y (k),
we get the fiber functor ec : Un(Y )→VectK which, again upon base-change
to Fv, associates to a pair (V ,∇) the set of flat sections V(]c[)∇=0 on the
residue disk ]c[ ([2], p. 26). π1,cr(Y, c) then represents the group of tensor
automorphisms this fiber functor. Similarly, using two points and the functor
Isom⊗(ec, ey), we get the π1,cr(Y, c)-torsor π1,cr(Y ; y, c) of crystalline paths
from c to y. As before, we will fix a c in the discussion and use the notation
Ucr = π1,cr(Y, c), P cr(y) = π1,cr(Y ; y, c). In fact, if we let c = b̄ and y = x̄,
then we have canonical isomorphisms ([6], prop. 2.4.1)

UDR � Ucr ⊗K Fv

PDR(x) � P cr(x̄)⊗K Fv

which are compatible with the torsor structures and, more generally, compo-
sition of paths. The key point is that all algebraic unipotent bundles satisfy
the (over-)convergence condition. Because P cr(y) is functorial, it carries a
pro-algebraic automorphism

φ : P cr(y) � P cr(y)

induced by the q = |k|-power map on OY . The various Frobenius maps are
also compatible with the torsor structures. The comparison isomorphism then
endows PDR with a map that we will again denote by φ. Given a point x ∈
Xv(Rv) that lies in the residue disk ]b̄[, we have

PDR(x) � Ucr ⊗K Fv

and it is worth chasing through the definition to see precisely what the path is
on the left-hand side corresponding to the identity in Ucr: Given a unipotent
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bundle (V ,∇), we construct an isomorphism Vb � Vx by finding the unique
flat section s over ]b̄[ with initial value at b equal to vb. Then the image of vb

under the isomorphism (i.e., the path) is s(x), the value of this flat section at x.
Since φ also respects the subcategories Unn(Y ) consisting of the overconvergent
isocrystals with index of unipotency ≤ n, it preserves the Eilenberg-Maclane
filtration on the PDR(x).

According to [32], theorem E, PDR possesses a Hodge filtration. This is a
filtration

PDR = F 0PDR ⊃ · · · ⊃ FnPDR ⊃ Fn+1PDR ⊃ · · ·
by sub-OX -modules that is compatible with the multiplicative structure. In
particular, the F i are ideals. This induces a filtration on the fibers PDR(x)
and in particular on the coordinate ring ADR of UDR. The Hodge filtration is
compatible with the torsor structure in that if the tensor product PDR⊗L ADR

is endowed with the tensor product filtration

Fn(PDR ⊗L ADR) = Σi+j=n(F iPDR)⊗L (F jADR)

then the torsor map
PDR→PDR ⊗L ADR

is compatible with the filtration. As in the case of the Eilenberg-Maclane
filtration, if we utilize their descriptions over C [19], we see immediately that the
inclusions F iPDR↪→PDR are also universally injective, and that if we restrict
the Hodge filtration to the terms in the Eilenberg-Maclane filtration, then the
rank of F iPDR[n] is equal to the dimension of F iADR[n]. Since the F i are
ideals, there are corresponding sub-X-schemes

F iPDR,

where F−i+1PDR is the defining ideal for F iPDR. In fact, F 0PDR is a F 0UDR-
torsor. To see the action, note that compatibility implies that the torsor map
takes F 1PDR, the defining ideal for F 0PDR, to

F 1PDR ⊗ADR + PDR ⊗ F 1ADR,

the latter being exactly the defining ideal for F 0PDR × F 0UDR inside PDR ×
UDR. Thus, we get the action map

F 0PDR × F 0UDR→F 0PDR.

On the other hand, assume we have a point p ∈ F 0PDR(S) in some X-scheme
S. Then the corresponding isomorphism

ip : PDR ⊗OS � ADR ⊗OS
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is compatible with the Hodge filtration and hence, strictly compatible because
of the universal injectivity mentioned above and the equality of ranks (of course
when restricted to the finite-rank terms of the Eilenberg-Maclane filtration).
Therefore, it induces an isomorphism

ip : F 0UDR � F 0PDR,

proving the torsor property. (The remaining compatibilities are obvious from
the corresponding properties for PDR.) Regarding these trivializations, we
note that if a point p ∈ PDR(S) induces an isomorphism as above compatible
with the Hodge filtration, then since p is recovered as ev0 ◦ ip, where ev0 :
ADR ⊗OS→OS is the origin of UDR

S , we see that p ∈ F 0PDR.
We will need some abstract definitions corresponding to the situation de-

scribed. Given an Fv-scheme Z, by a torsor over Z for UDR, we mean a right
UDR

Z torsor T = Spec(T ) over Z endowed with an ‘Eilenberg-Maclane’ filtra-
tion:

T [0] ⊂ T [1] ⊂ · · ·
and a ‘Hodge’ filtration

T = F 0T ⊃ F 1T ⊃ · · ·

of the coordinate ring. The Eilenberg-Maclane filtration should consist of
locally-free OZ-modules of finite rank equal to dimFv

ADR[n] with the property
that T [n]↪→T is universally injective. Furthermore, each F iT [n]↪→T [n] must
be universally injective and have rank equal to dimF iADR[n]. Both filtrations
are required to be compatible with the torsor structure in slightly different
senses, namely, that T [n] must be carried to T [n] ⊗ ADR[n] while FmT [n] is
to be taken to Σi+j=mF iT ⊗ F jADR. The torsor T must also carry a ‘Frobe-
nius’ automorphism of Z-schemes φ : T→T (we will denote all of them by the
same letter) which is required to be compatible with the torsor structure in the
sense that φ(t)φ(u) = φ(tu) for points t of T and u of U . We require that φ

preserves the Eilenberg-Maclane filtration, although not necessarily the Hodge
filtration. We will call the torsor T admissible, if it is separately trivializable
for the Frobenius structure and the Hodge filtration. That is, we are requiring
that there is a point pcr ∈ T (Z) which is invariant under the Frobenius, and
also that there is a point pDR ∈ F 0T (Z).

The following lemma follows from the argument of [2], cor. 3.2.

Lemma 1. Let T any torsor for UDR over an affine scheme Z. Then
T is uniquely trivializable with respect to the φ-structure. That is, there is a
unique point pcr

T ∈ T (Z) which is invariant under φ.
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The key fact is that the map UDR→UDR, x �→ φ(x−1)x is surjective.
Obviously, the canonical path is the identity for the trivial torsor UDR

Z .
Combining this lemma with the earlier remarks and the unipotence of

F 0UDR, we get that for any affine X-scheme Z, PDR
Z is an admissible torsor.

We say two admissible torsors are isomorphic if there is a torsor isomor-
phism between them that is simultaneously compatible with the Frobenius and
Hodge filtration.

Let T be an admissible UDR torsor over an Fv-algebra L. Choose a triv-
ialization pH

T ∈ F 0T (L). There then exists a unique element uT ∈ UDR such
that pcr

T uT = pH
T . Clearly, a different choice of pH will change the result only

by right multiplication with an element of F 0UDR. Thus, we get an element
[uT ] ∈ UDR/F 0UDR which is independent of the choice of pH

T .

Proposition 1. The map

T �→ [uT ]

defines a natural bijection from the isomorphism classes of admissible torsors to
UDR/F 0UDR. That is to say, the scheme UDR/F 0UDR represents the functor
that assigns to each Fv algebra L the isomorphism classes of admissible torsors
on L.

Proof. The map defined is clearly functorial, so we need only check bijec-
tivity on points. Suppose [uT ] = [uS ]. Then there exists a u0 ∈ F 0UDR such
that uS = uT u0. The elements pcr

T and pcr
S already determine φ-compatible

isomorphisms
f : S � UDR � T ; pcr

S u �→ u �→ pcr
T u

It suffices to check that this isomorphism is compatible with the Hodge filtra-
tion. But we already know that the map

h : pH
S g �→ g �→ pH

T g

is compatible with the Hodge filtration, and writing the φ-compatible map f

with respect to the pH ’s, we get

pH
S g = pcr

S uSg �→ pcr
T uSg = pHu−1

T uSg = pHu0g.

That is, it corresponds merely to a different choice pHu0 of the trivialization.
So we need to check that pHu0 ∈ F 0T , i.e., that it is a Hodge trivialization.
Its values on the coordinate ring of T is expressed through the composition

T →T ⊗ADR pH×u0

→ L
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But then, since the action takes F 1T to

F 1T ⊗ADR + T ⊗ F 1ADR,

F 1T is clearly killed by this evaluation, i.e., pHu0 ∈ F 0T .
Thus the map of functors described is injective. To see that it is surjective,

note that for any Z, we have

[UDR/F 0UDR](Z) = UDR(Z)/F 0UDR(Z).

Now, given g ∈ UDR, we consider UDR with the same Hodge filtration, but
with the automorphism twisted to φg(h) = g−1φ(gh). This automorphism is
compatible with right multiplication, that is, the right torsor structure on UDR:

φg(hk) = g−1φ(ghk) = g−1φ(gh)φ(k) = φg(h)φ(k)

Thus, we end up with an admissible torsor Tg. The φg-fixed element here is
clearly g−1, and thus, uTg

= g, as desired.

Already we have the language necessary to define the De Rham unipotent
Albanese map:

jDRXv(Rv)→UDR/F 0UDR

by
jDR(x) := [PDR(x)].

The finite-level versions jDR
n are defined by composing with the natural pro-

jections
UDR/F 0UDR→UDR

n /F 0UDR
n .

There is a parallel discussion of admissible torsors for UDR
n out of which one

can extract the interpretation of

jDR
n : Xv(Rv)→UDR

n /F 0UDR
n

as
x �→ [PDR

n (x)]

In order to describe the map, it will be convenient to have a rather ex-
plicit construction of UDR and PDR. We will carry this out assuming Xv is
affine, which is the only case we will need. The construction depends on the
choice α1, α2, · · · , αm of global algebraic differential forms representing a basis
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of H1
DR(Xv). So here, we have m = 2g + s− 1, where s is the order of X ′

v \Xv.
Corresponding to this choice, there is a free non-commutative algebra

Fv < A1, . . . , Am >

generated by the symbols A1, A2, . . . , Am. Thus, it is the group algebra of the
free group on m generators. Let I be its augmentation ideal. The algebra
Fv < A1, . . . , Am > has a natural comultiplication map Δ with values Δ(Ai) =
Ai ⊗ 1 + 1⊗Ai. Now we consider the completion

E := lim←−Fv < A1, . . . , Am > /In

Δ extends naturally to a comultiplication E→E⊗̂E. We can also consider the
quotients

E[n] := E/In+1 = Fv < A1, . . . , Am > /In+1

that carry induced maps

E[n]→⊕i+j=n E[i]⊗ E[j]

Now let E be the pro-unipotent pro-vector bundle E ⊗OXv
with the con-

nection ∇ determined by
∇f = −ΣiAifαi

for constant sections f ∈ E. We also have the finite-level quotients E [n] :=
E[n] ⊗ OXv

. This construction ends up as the ‘universal’ pro-unipotent pro-
bundle with connection in the sense of the beginning paragraphs, justifying the
conflation of notation. To see this, we need a lemma.

Lemma 2. Let (V,∇) be a unipotent bundle with flat connection on Xv

of rank r. Then there exist strictly upper-triangular matrices Ni such that

(V,∇) � (Or
X , d + ΣiαiNi)

Proof of lemma. Since Xv is affine and (V,∇) is unipotent, by choosing
vector bundle splittings of the filtration, there exists a trivialization V � Or

X

such that ∇ takes the form d + ω for some strictly upper-triangular n × n

matrix of 1-forms ω. It will be convenient to write ω = ΣωijEij where Eij is
the elementary n × n matrix with a 1 in the (i, j)-entry and zero elsewhere,
and ωij = 0 unless j > i. Recall that a gauge transformation G will change the
connection matrix by

ω �→ G−1ωG + G−1dG



108 Minhyong Kim

For a gauge transformation of the form G = I − aEij (j �= i), we have
G−1 = I + aEij while G−1dG = daEij . We wish to perform a series of gauge
transformations so that each entry ωij is replaced by a linear combination of
the αi’s and βj ’s. Now, any single one-form can be written as such a combina-
tion after adding an exact form. We will show how to change ωij by induction
on j − i. Assume we are done for j − i < c. So let i, j satisfy j − i = c. First
find a such ωij + da is a linear combination of the αi and βj . Now consider the
gauge transformation G = I − aEij . We compute

G−1ω = (I + aEij)(ΣωklEkl) = ω + ΣlωjlaEil =: ω′

Note the only non-zero l occurring in the sum are strictly bigger than j. Thus,
ω′

μν �= ωμν only occurs for μ = i and ν > j, that is, for ν − μ > j − i. On the
other side,

ω′G = (Σω′
klEkl)(I − aEij) = ω′ − Σω′

kiEkj

and all the k appearing in the sum are < i. Therefore, we see that all the
entries ωG

kl of ωG := G−1ωG are equal to ωkl for l− k ≤ c. On the other hand,
G−1dG = daEij . Performing such a gauge transformation for each i, j such
that j − i = c clearly achieves what we want.

Now we can formulate the universal property of E :

Lemma 3. Given any object (V,∇) in Un(Xv) together with a an el-
ement v ∈ Vb (the fiber at b), there exists a unique morphism φ : E→V in
Un(Xv) such that 1 ∈ Eb �→ v. That is, E is the same as the bundle with the
same notation from the beginning of the section.

Proof. First we will show uniqueness. For this, we can choose an embed-
ding of Fv into the complex numbers and assume that everything is defined over
C (and for convenience, we will omit the base-change to C from the notation).
By uniqueness of solutions to differential equations with given initial condition,
we see that any map of bundles φ : E→V is completely determined by its value
at b. (Actually, for this, we needn’t go to C. It suffices to use uniqueness of
formal solutions.) So we need to check that the value of the map is determined
at b by the given conditions. Let π be the topological fundamental group of
Xv(C) and let C[π] be the complex group algebra of π. The holonomy trans-
formations give an action of C[π] on the fibers Eb and Vb. Since φ respects the
connections, φb is equivariant for this action. But over C, one can compute the
holonomy using iterated integrals. Given a word w = Ai1Ai2 · · ·Ain

in the Ai
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and a piece-wise smooth path γ, denote by
∫

γ
αw, the iterated integral

∫
γ

αi1αı2 · · ·αin
.

We are using the normalization whereby if γ∗(ωi) = fi(t)dt, then∫
γ

ω1ω2 · · ·ωn =
∫ 1

0

f1(t1)
∫ t1

0

f2(t2)
∫ t2

0

f3(t3)
∫
· · ·

∫ tn−1

0

fn(tn)dtndtn−1 · · · dt1.

On a contractible open set U , if we pick a base point c and define the function
Gc(z) with values in E on U by

Gc(z) = Σw

(∫ z

c

αw

)
[w],

where the iterated integral occurs along any path from c to z, then dGc =
ΣiαiAiGc so that Gc(z) can be viewed as a flat section of E . In particular, for
the holonomy around a loop γ based at b,

γ · f = Σw

(∫
γ

αw

)
[w]f

for f ∈ E = Eb. Thus, we must have

φ

[
Σw

(∫
γ

αw

)
[w]1

]
= γφ(1) = γv

Now consider the map C[π]→E given by the formula

γ �→ Gγ := Σw

(∫
γ

αw

)
[w]

(We will use the natural notation
∫

γ
αw := Σici

∫
γi

αw if γ = Σiciγi, ci ∈
C, γi ∈ π.) To conclude the proof of uniqueness, we just need to see that the
composition to each of the finite-dimensional quotients En is surjective. But if
not, we would have a non-trivial linear relation between the

∫
· αw regarded as

functions on C[π]. We show by induction on the length of w that they are in
fact linearly independent. For this, let a1, . . . , am be elements of C[π] whose
classes in homology form a dual basis to the αi. Assume

Σ|w|≤ncw

∫
γ

αw = 0
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for all γ ∈ π. Write this as

Σ|w|≤n−1

(
ΣicAiw

∫
γ

αAiw

)
= 0

and apply it to ajγ. Then we have

Σ|w|≤n−1

(
ΣicAiw

∫
ajγ

αiαw

)
= 0

The co-product formula for iterated integrals [5] can then be applied to give

Σ|w|≤n−1

[
ΣicAiw

(
deg(aj)

∫
γ

αiαw +
∫

aj

αi

∫
γ

αw + · · ·
)]

= 0,

where deg(Σcγ [γ]) = Σcγ on elements of C[π]. From this, we subtract (deg(aj)
times) the original relation to get

Σ|w|=n−1cAjw

∫
γ

αw + Σ|w|≤n−2bw

∫
γ

αw = 0

for some constants bw. Since this holds for all γ, by induction, we have cAjw = 0
for |w| = n− 1, and hence cw = 0 for |w| = n when the argument is applied to
each Aj . Then again by induction, all the cw must vanish.

The existence part is easy. We may assume that (V,∇) is of the form
(Or

Xv
, d − ΣiαiNi) as in the previous lemma, except we have changed Ni to

−Ni. Now given the vector v ∈ Vb, define the map E→V that sends a section
Σfw[w] of E to ΣwfwNwv where the notation is that if a word has the form w =
Ai1Ai2 · · ·Ain

, then Nw is the matrix Ni1Ni2 · · ·Nin
. This map is obviously

compatible with the connection and takes the constant section 1 to the constant
section v (in particular, at the point b).

As mentioned already, another way of phrasing the lemma is to say that
there is a canonical isomorphism:

Hom(E , V ) � Vb

In particular, Hom(E , E) � Eb = E and it is easily checked that this isomor-
phism is compatible with the algebra structure.

Recall the evaluation fiber functor eb : Un(Xv)→VectFv
. Since E is the

universal pro-unipotent vector bundle with connection, E = Eb is canonically
isomorphic to End(eb) and E = Ex is canonically isomorphic to Hom(eb, ex).
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It is equally easy to see that E[n] canonically isomorphic to End(en
b ) and

Hom(en
b , en

x).
If we examine the co-multiplication Δ : E→E ⊗ E associated to the E

as a universal object, that is, the unique map that sends 1 to 1 ⊗ 1, by the
definition of the connection on E , it takes Ai to Ai ⊗ 1 + 1 ⊗ Ai. That is, the
co-multiplication is compatible with the one defined formally on E = Eb. So
we also have that Aut⊗(eb) and Isom⊗(eb, ex) are represented by the group-like
elements in Eb = E = Ex and that E∗, the dual bundle of E , with its structure
of a commutative algebra is nothing but PDR.

Now PDR carries a Hodge filtration by sub-bundles, but its explicit de-
scription will be unnecessary for our purposes. All we will need is that F 0P

is a torsor for the group F 0UDR, and hence, can be trivialized over Xv in the
case it is affine.

Proof of theorem 1. First note that if Xv happens to be compact, we
can delete an Rv point x0 away from the residue disk of b to get X 0

v =
Xv \ x0, still equipped with an Rv point b. Since restriction embeds the unipo-
tent bundles with flat connection on Xv as a full subcategory of the unipo-
tent bundles on X0

v (see, for example, [2], cor. 2.15), we get a surjection
π1,DR(X0

v , b)→π1,DR(Xv, b). This map is compatible with the Frobenius be-
cause the comparison isomorphism is induced by the functor that associates to
a unipotent bundle with connection E the overconvergent isocrystal j†Erig ([6],
Prop. 2.4.1), which is obviously compatible with maps of varieties.

Functoriality of the Hodge filtration can be deduced either from an exam-
inination of Wojkowiak’s construction or the usual functoriality over C [18]. Of
course, an identical argument can be applied to the path spaces, giving us a
commutative diagram

X 0(Rv)→ π1,DR(X0
v , b)/F 0

↓ ↓
X (Rv) → π1,DR(Xv, b)/F 0

where the right vertical map is surjective. Therefore, it suffices to prove the
theorem for an affine curve.

In fact, we will show that the image of the residue disk ]b̄[ is already Zariski
dense. Now, as described above, there exists a canonical UDR torsor PDR on
Xv with the property that the fiber over x is exactly PDR(x) which is, in fact,
admissible. This is because of the unique Frobenius invariant element and the
fact that F 0PDR is a F 0UDR-torsor, and hence, has a section over an affine
scheme. (Since vector groups have no non-trivial torsors over affine schemes,
neither do unipotent groups.) Choose such a trivialization pH ∈ F 0PDR(Xv).
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It is important to note here that F 0PDR becomes thereby algebraically trivial-
ized. We can compare this with any other algebraic trivialization g ∈ PDR(Xv).
That is, there exists an algebraic map γ : Xv→UDR such that gγ = pH . For
any x ∈ Xv, we have a point u(x) ∈ UDR such that pcr(x)u(x) = g(x)so that
pcr(x)u(x)γ(x) = pH(x). That is, jDR(x) = [u(x)γ(x)]. Therefore, it suffice
to show that the image of x �→ u(x)γ(x) is Zariski dense in UDR(X). As pre-
viously discussed, given (V,∇), on ]b̄[, the element pcr(x) is obtained from the
diagram

V (]b̄[)∇=0

�↙ ↘�
Vb Vx

as the inverse of the left arrow followed by the right arrow. We proceed now to
describe the various objects in local coordinates to obtain the desired result.

Take g to be the trivialization of PDR determined by the previously de-
scribed trivialization of E . That is, since we have identified Isom⊗(eb, ex) = E,
the element in question is 1 ∈ E. For x ∈]b̄[ u(x) is then identified with the
value of the function u :]b̄[→E that is the unique horizontal section of E con-
vergent on ]b̄[ such that u(b) = 1. Write u = Σwuw[w], where w runs over the
words in Ai. We will show:

Lemma 4. The uw are linearly independent over the algebraic functions
on Xv.

It is easy to see that this lemma implies the theorem:
We have

jDR(x) = Σwjw(x)[w] = u(x)γ(x) = Σ[σw′w′′=wuw′(x)γw′′(x)][w],

where γ = Σwγw[w] If the image of jDR
n were in a Zariski closed subspace, we

would have a linear relation among the jw, by the description we have given of
the coordinate ring of UDR. Let us see by induction on the length of w that
the jw are linearly independent. Assume we have a relation

Σ|w|≤ncwjw = 0

Then
Σ|w|≤ncw[Σw′w′′=wuw′γw′′ ] = 0.

This would give us a relation of the form

Σ|w|≤nawuw = 0
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where the aw are algebraic functions. Hence, all aw = 0. But for |w| = n, we
have aw = cwγ0 and γ0 = 1 because γ is group-like. Therefore, we must have
cw = 0 for all |w| = n. The result follows by induction.

So we need only give the
Proof of lemma. The proof here is entirely similar to the uniqueness part

of Lemma 4. Even though the uw are convergent on ]b̄[ we can regard them
as formal power series and show independence over the algebraic functions in
there. For this, we choose an embedding Fv↪→C into the complex numbers,
so that we are in the situation of a connection on a curve over C. Uniqueness
of formal solutions show that the uw are just the power series expansions of
analytic solutions near b. But the analytic solutions can be obtained as iterated
integrals: in a contractible neighborhood of b, choose a path c from b to x. Then
for w = Ai1Ai2 · · ·Ain

, we have

uw =
∫

c

αi1αi2 · · ·αin

We see therefore, that u(x) can also be continued as a multi-valued function to
all of Xv (which, recall, we are now regarding as a complex curve). Regard the
uw as functions on the universal covering X̃v after choosing a point b′ ∈ X̃v

lying over b. Let the topological fundamental group π of Xv act this time on
the space of analytic functions on X̃v by γ : f(z) �→ fγ(z) = f(zγ). This
extends to an action of the complex group algebra C[π]. To compute uγ

w(z) for
an element γ ∈ π, we proceed as follows: Choose a path c from b′γ to z. Now
choose a lifting γ̃ of γ to a path in X̃v from b′ to b′γ. Then

uw(zγ) =
∫

cγ̃

αi1 · · ·αin
= uw(z) +

∫
c

αi1 · · ·αin−1

∫
γ̃

αin

+
∫

c

αi1 · · ·αin−2

∫
γ̃

αin−1αin−2 + · · ·

As before, let ai ∈ C[π] be elements whose image in H1(Xv, C) form a basis
dual to the αi. Then we see that

uai

wAi
= deg(ai)uwAi

+ uw + Σ|w′|<|w|cw′uw′

for constants cw′ .
Now we prove the desired independence by induction on |w|. So assume

we are done for |w| < n, and suppose we have a linear relation

Σ|w|≤nhwuw = 0
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where the hw are algebraic. In particular, they are single-valued on Xv, and so
are acted on trivially by π. We write this relation as

Σ|w|=nhwuw + Σ|w|=n−1hwuw + Σ|w|≤n−2hwuw = 0

or

Σi[Σ|w|=n−1hwAi
uwAi

+ Σ|w|=n−2hwAi
uwAi

] + Σ|w|≤n−2hwuw = 0

When we apply aj − deg(aj)I to this relation, we get

Σ|w|=n−1hwAj
uw + Σ|w|≤n−2bwuw = 0

for some algebraic functions bw. By induction, we get hwAj
= 0 for all w. Since

this works for any j, we are done. �

§2. Étale Realizations

This time we start with a smooth scheme X over a field L of characteristic
zero and put X̄ = X ⊗L L̄. We have on X̄ the category Unet

p (X̄) of unipotent
Qp-lisse sheaves. Here, the unipotence refers to the existence of a filtration
by sub-lisse-sheaves such that the associated graded objects are direct sums of
the trivial Qp-sheaf. Choosing a point b ∈ X̄ then determines a fiber functor
eb : Unet

p (X)→VectQp
by taking stalks. We define the pro-unipotent p-adic

étale fundamental group (see, e.g., [31]) and path space by

π1,ét(X̄, b) = Aut⊗(eb)

and
π

1,ét(X̄; x, b) = Isom⊗(eb, ex),

where, as usual, we have represented an obvious functor on Qp algebras. When
both b and x are in X(L), we get an action of G = Gal(L̄/L). In particular,
P et(x) = π1,ét(X̄; x, b) = Spec(Pet) is a right Uet = π1,ét(X̄, b) = Spec(Aet)
torsor in a manner compatible with the Galois action. Here as well, we can
consider the subcategory Unet

p,n(X̄) of unipotent Qp local systems V having
index of unipotency ≤ n in that V is endowed with a filtration

V = Vn ⊃ Vn−1 ⊃ · · · ⊃ V1 ⊃ V0 = 0

such that each successively quotient is isomorphic to a trivial Qp-sheaf. The
corresponding restrictions of the fiber functors will again be denoted en

b , etc.
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We denote by < Unet
p,n(X̄) > the Tannakian subcategory of Unet

p (X̄) generated
by Unet

p,n(X̄). Using the restrictions < en
b >:= eb| < Unet

p,n(X̄) > and < en
x >:=

ex| < Unet
p,n(X̄) > of the fiber functors, we then get Uet

n and P et
n (x). In the

above, we can everywhere consider homomorphisms of functors rather than
tensor isomorphisms, like Hom(eb, ex), which of course have the structure of
Qp vector spaces.

It might be useful to recall at this point some rudimentary points about
the structure of these groups and torsors, although it is not necessary to be as
explicit as in the De Rham case.

Let Eet be the universal enveloping algebra of Lie Uet. Then Eet again
has the structure of a co-commutative Hopf algebra, and we define Eet[n] :=
Eet/In, where I ⊂ E is the kernel of the counit Eet→Qp. As in the De
Rham situation, we have the universal pro-unipotent lisse Qp-sheaf Eet that
can be constructed, for example, by twisting the canonical profinite torsor
T̂ := P∧|X × b, in the notation of [10], section 10.17, with representation of
the profinite π̂1(X̄, b) obtained by composing the natural map

π̂1(X̄, b)→Uet

with the left multiplication of Uet on E. By an argument identical to the
De Rham setting, we deduce the property that Eet

x is canonically isomorphic
to Hom(eb, ex) and the finite-rank quotients Eet[n] corresponding to E/In are
isomorphic in their turn Hom(en

b , en
x). Once again the universal property gives

us a comultiplication
Δ : Eet→Eet ⊗ Eet

(here and henceforward, a tensor product without an explicit subscript will
refer to tensoring over Qp) so that if we define Pet = Hom(Eet, Qp), then Pet is
an ind-Qp lisse sheaf with the property that Pet

x is the coordinate ring of P et(x).
There is also a parallel (to the De Rham setting) discussion corresponding to
Pet[n], Pet

n , and P et
n , which we will assume without further comment. We will

refer again to the filtration by the Pet[n] as the Eilenberg-Maclane filtration.
When x ∈ X(L), since the categories Unet

p.n(X̄) are invariant under the Galois
action, so is Pet[n](x). Therefore, Pet is a direct limit of the finite-dimensional
Galois modules Pet[n](x), allowing much of the theory of finite-dimensional
representations, for example Fontaine’s theory of the Dieudonné functor [12],
to apply.

In the subsequent discussion, fix a quotient group G through which the
action of Gal(L̄/L) factors.

We recall some notions from [23]. Given a Qp-algebra R, we give it
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the inductive limit topology obtained from the natural topology on finite-
dimensional Qp-subspaces. Then by a torsor for Uet over R, we mean a Uet

R

torsor T = Spec(T ) in the usual sense, except that we require that
(1)T = lim−→n

T [n] for some locally free sub-R-modules T [n] that are local
direct summands and of finite rank equal to dimAet[n], as n runs through the
non-negative integers.

(2) T is equipped with a continuous R-linear action of G that stabilizes
the T [n].

(3) The torsor structure

T →T ⊗R (Aet ⊗R)

is compatible with the G-action and takes T [n] to T [n]⊗R (Aet[n]⊗R).
When L is the completion Fv of a number field F as in the introduction

and G = Gv = Gal(Fv/F ), we get a classifying pro-variety H1(Gv, U
et) [23]

defined over Qp for torsors, as well as a subvariety H1
g (Gv, U

et), consisting of
those torsors that trivialize upon base-change to BDR. We warn the reader at
this point that this subvariety was denoted H1

f in the reference [23]. In this
paper, we will use the notation H1

f for a certain subvariety of H1
g defined using

Bcr in place of BDR (see below). Let us spell out what this BDR condition
means. If T = Spec(T ) is a torsor for Uet over R, we say it is a De Rham
torsor if there is a Gv-equivariant algebra homomorphism

t : T →R⊗BDR

or equivalently,
tBDR

: T ⊗BDR→R⊗BDR.

That is, we are requiring the existence of a Gv-invariant point in TBDR
(R ⊗

BDR). Then t induces an isomorphism of BDR-algebras

Ct : T ⊗BDR � Aet ⊗R⊗BDR

that is Gv-equivariant. Furthermore, since tBDR
is a homomorphism of BDR

algebras, it respects the Hodge filtration induced by that on BDR. Hence, so
does Ct. Since there is the identity homomorphism

e : Aet ⊗R⊗BDR→R⊗BDR,

out of which we recover t as e ◦ Ct, we see that the datum of Ct is equivalent
to the De Rham condition.
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Taking Gv-invariants, we get an isomorphism

CtGv : D(T ) := (T ⊗BDR)Gv � (Aet ⊗BDR)Gv ⊗R

�ADR ⊗R = ADR ⊗Fv
(Fv ⊗ R)

Here, we are using the fact that D(Aet) � ADR in a manner compatible with
the Hodge filtration ([27], [30], [11]). As a consequence of the definition, the co-
ordinate ring T becomes a limit of finite-dimensional De Rham representations
in the sense of [12] and hence, the inclusion

D(T )↪→T ⊗BDR

induces an isomorphism

D(T )⊗Fv
BDR � T ⊗BDR.

If we examine what happens to the torsor structure T →T ⊗R (Aet ⊗ R), it
extends to

T ⊗BDR→T ⊗R (Aet ⊗R)⊗BDR

But

T ⊗R (Aet ⊗R)⊗BDR = (T ⊗Aet)⊗BDR = (T ⊗BDR)⊗BDR
(Aet ⊗BDR)

= ((T ⊗BDR)Gv ⊗Fv
BDR)⊗BDR

((Aet ⊗BDR)Gv ⊗Fv
BDR)

= D(T )⊗Fv
D(Aet)⊗BDR

So taking Gv-invariants gives us

D(T )→D(T )⊗Fv
ADR = D(T )⊗R⊗Fv

(ADR ⊗Fv
(R⊗ Fv)).

This defines the structure of a UDR-torsor over R ⊗ Fv on D(T ) which is
trivialized by the point tGv : D(T )→R ⊗ Fv obtained from t by restricting to
the Gv-invariants. In fact, the map

D(T )→ADR ⊗Fv
(R⊗ Fv)

obtained from tGv is seen to be none other than the earlier isomorphism CtGv .
The compatibility of the torsor structure with the Eilenberg-Maclane filtration
follows from the fact that the comparison isomorphism of [27] arises from an
equivalence of categories

Unet
p (X̄)⊗BDR � UnDR(X)⊗Fv

BDR
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that respects the subcategories specified by the index of unipotency on either
side.

The Hodge filtration on D(T ) is defined to be the one induced by the Hodge
filtration on BDR. Since this is true also of the one on ADR = D(Aet) and
T ⊗BDR � Aet⊗R⊗BDR preserves the filtration, so does D(T ) � ADR⊗Fv

R.
We conclude that the UDR torsor thus obtained can be trivialized together with
the Hodge filtration, in the sense of the previous section.

There is a parallel discussion with Bcr in place of BDR that defines a crys-
talline Uet-torsor T over R to be one that trivializes over Bcr or, equivalently,
admits a Gv-equivariant isomorphism of torsors

T ⊗Bcr � Aet ⊗Bcr.

Using the usual inclusion of Bcr into BDR, we see that a crystalline torsor
is also De Rham. It is easy to show that the crystalline condition defines a
subvariety

H1
f (Gv, U

et) ⊂ H1
g (Gv, U

et)

However, since the reference [23] dealt explicitly only with Hg, we sketch the
modification necessary to represent the crystalline torsors. For each n, consider
the functor on Qp-algebras

H0(Gv, U
et,Bcr
n /Uet

n ) : R �→ H0(Gv, U
et
n (Bcr ⊗R)/Uet

n (R))

Then we have

Lemma 5. H0(Gv, U
et,Bcr
n /Uet

n ) is representable by an affine variety
over Qp.

The proof is verbatim the same as [23], section 1, proposition 3 and will be
therefore omitted. And then, as in the few paragraphs preceding that proposi-
tion, we have an exact sequence

0→Uet
n (R)→Uet

n (R⊗Bcr)→Uet
n (R⊗Bcr)/Uet

n (R)→0

from which we get the connecting homomorphism

H0(Gv, U
et
n (R⊗Bcr)/Uet

n (R))→H1(Gv, U
et
n (R))

which is functorial in R. Thus, it is represented by a map of varieties, and
its image is a subvariety of H1(Uet

n (R)). But by looking at the crystalline
condition as the existence of a Gv-invariant point in P et(R⊗Bcr), we see that
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the image consists exactly of the crystalline torsors (exactly as in the proof
of [23], section 2, lemma 6). By passing to the limit over n, we see that the
set of isomorphisms classes of crystalline torsors for Uet is represented by a
pro-algebraic subvariety H1

f (Gv, U
et) of H1

g (Gv, U
et).

If we denote by K the absolutely unramified subfield of Fv, then we get
a functor Dcr from crystalline Uet-torsors over R to (trivial) Ucr-torsors over
R⊗K endowed with a Frobenius endomorphism: This functor of course sends
T = Spec(T ) to

Dcr(T ) := Spec((T ⊗Bcr)Gv ).

By the comparison isomorphism of [27], a discussion entirely parallel to the
BDR case shows that Dcr(T ) is endowed with a Frobenius endomorphism and
is a torsor for Ucr = Dcr(Uet) in a manner compatible with this extra structure.
As always, this torsor is canonically trivial. We have the comparison

D(T ) � Dcr(T )⊗K Fv.

Thereby, for crystalline torsors T , D(T ) is endowed with both a Hodge filtration
and a Frobenius.

To summarize, the functor T �→ D(T ) defines a map from the isomorphism
classes of crystalline Uet-torsors over R to admissible UDR torsors over R⊗Fv.
It is therefore represented by a pro-algebraic map

D : H1
f (Gv, U

et)→ResFv

Qp
(UDR/F 0).

Going back from abstract considerations to the study of rational points,
each P et(x) defines a class in H1

f (Gv, U
et) [27]. We are thus given an étale

unipotent Albanese map

jet
loc : x �→ [P et(x)] ∈ H1

f (Gv, U
et).

When we let L = F , the number field itself and let b ∈ X (R) be an integral
point, then the Γ = Gal(F̄ /F )-action factors through G = GT (as in [31], proof
of theorem 2.8), with notation following the introduction. Here R and T are
as in the introduction. As explained in loc. cit., the point here is that there is
an exact sequence

0→Uet→Uet,ar→GT→0

that is split by the base-point b, accounting for the Γ action on Uet and also for
the twisted actions corresponding to other points. (Here, the middle term is an
‘arithmetic’ fundamental group obtained by pushing out a pro-finite arithmetic
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fundamental group π̂1(X , b) using Uet.) Therefore, we have a global continuous
cohomology pro-variety

H1(GT , Uet)

and a classifying sub-variety

H1
f (GT , Uet) ⊂ H1(GT , Uet),

defined to be the inverse image of H1
f (Gv, U

et) under the restriction map

H1(GT , Uet)→H1(Gv, U
et).

Using this environment, we can finally define the global unipotent Albanese
map

jet
glob : x ∈ X (R) �→ [P et(x)] ∈ H1

f (GT , Uet).

To conclude, we have constructed a commutative diagram

X (R) → Xv(Rv) →ResFv

Qp
(UDR/F 0)(Qp)

↓ ↓ ↗
H1(GT , Uet)→H1

f (Gv, U
et)(Qp)

where the commutativity of the triangle on the right is in [11] and [27], following
earlier cases of [28], [30]. The key point here is the comparison isomorphism:

πDR
1 (Xv; b, x)⊗Bcr � π1,ét(X̄v; b, x)⊗Bcr

that respects the action of Gv as well as the Hodge filtration on Frobenius
action.

Passing from here to the finite-level quotients for each n gives us the dia-
gram from the introduction:

X (R) → Xv(Rv) →ResFv

Qp
(UDR

n /F 0)(Qp)
↓ ↓ ↗

H1(GT , Uet
n )→H1(Gv, U

et
n )(Qp)

§3. Comments I

The proof of the statement that conjecture 1 implies the finiteness of X (R)
is exactly as in [23] and in Chabauty’s original argument. The dimension
assumption implies that for n as in the conjecture, the image of the map

H1
f (GT , Uet

n )→UDR
n /F 0
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is contained in a proper Zariski-closed subset. Hence, so is the image of

X (R)→UDR
n /F 0.

We deduce that there is a non-zero algebraic function on Uet
n /F 0 that vanishes

on this image. But by theorem 1, the pull-back of this function is not identically
zero on any residue disk of X (Rv) and is a Coleman function [2]. Therefore, its
zero set on X (Rv) is finite. It is perhaps worth noting that X (Rv)→UDR

n /F 0

is at most finite-to-one (this follows from the n = 2 case). The essential point
we have shown then is that

Im(X (R)) ⊂ Im(X (Rv)) ∩ Im(H1
f (GT , Uet

n ))

and that the latter intersection is finite (of course assuming conjecture 1).
Therefore, the strategy of this paper is reminiscent of Serge Lang’s suggestion
[25] to prove directly that the intersection of a curve with the Mordell-Weil
group of its Jacobian is finite, except that the approach here is p-adic and
non-abelian.

We proceed to comment on the relation between conjecture 1 and various
standard conjectures. Such a connection is based upon a study of various
groups of Selmer type. Given a Qp-representation V of GT we will be especially
interested in

Sel0T (V ) := Ker(H1(GT , V )→⊕w∈T H1(Gw, V ))

Conjecture 2. Let X/F be a smooth curve and let Vn = H1
et(X̄,

Qp)⊗n(1). Then Sel0T (Vn) = 0 for n >> 0.

This conjecture appears to be a special case of some general expecta-
tions about motivic representations, and I am not sure to whom it should
be attributed. Notice that Vn is a direct summand of Hn(X̄n, Qp(1)), by the
Künneth formula. There is are maps from K-theory ([3], section 5)

chn,r : K
(r)
2r−n−1(X

n)→H1(Gal(F̄ /F ), Hn(X̄n, Qp(r)))

for 2r − 1 �= n, where the superscript in the K-group refers to an associated
graded space for the gamma filtration. The images of the chn,r lie inside the
subspaces H1

g (Gal(F̄ /F ), Hn(X̄n, Qp(r))) consisting of cohomology classes that
are unramified at almost all primes and potentially semi-stable at p. In any
case,

Sel0T (Vn) ⊂ H1
g (Gal(F̄ /F ), Hn(X̄n, Qp(1))).
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In the course of formulating their famous conjectures, Bloch and Kato
conjectured ([3], conjecture 5.3) that chn,r induces an isomorphism

K
(r)
2r−n−1(X

n)⊗Qp � H1
g (Gal(F̄ /F ), Hn(X̄n, Qp(r)))

It is also stating that certain extensions are geometric in a specific sense. Of
course, the section conjecture can also be viewed in a similar light. In any case,
if n > 2r − 1 the K-groups are zero. Therefore

Observation 1. The conjecture of Bloch and Kato implies conjecture 2.

Tony Scholl has pointed out to me that

Observation 2. Conjecture 2 is also implied by the Fontaine-Mazur
conjecture [13].

Recall that the Fontaine-Mazur conjecture proposes that a continuous ir-
reducible Qp-representation of Gal(Q̄/Q) that is unramified at almost all places
and potentially semi-stable at p is motivic. An extension of two such is then
conjectured to be a Qp-linear combination of motivic representations in a suit-
able Ext group. Hence, an extension

0→Vn→E→Qp→0

corresponding to an element of Sel0T (Vn) must be a Qp linear combination of
extensions of geometric origin. In particular, it must carry a weight filtration.
Vn is pure of weight n−2. Since a map between mixed representations is strict
for the weight filtration, there exists a vector v ∈ W0E that maps to 1 ∈ Qp.
If n ≥ 3, then W0E ∩ Vn = 0, and hence, W0E must be a 1-dimensional
complement to Vn. Thus, the extension must split.

We will show

Proposition 2. Conjecture 2 implies conjecture 1.

If we use the symbol UM for the fundamental group in any of the realiza-
tions of interest and UM

n = Zn\UM , then we have an exact sequence

0→Zn+1\Zn→UM
n+1→UM

n →0

We need to calculate the dimension dn of Zn+1\Zn. This is achieved as follows:
UM is the unipotent completion of either a free group on m = 2g + s − 1
generators, where g is the genus of X ′ and s the order of X ′ \ X, or a free



The Unipotent Albanese Map 123

group on 2g generators modulo a single relation of degree 2 (the compact case).
According to [24] dn is given by the recursive formula

Σk|nkdk = mn

in the open case and

Σk|nkdk = (g +
√

g2 − 1)n + (g −
√

g2 − 1)n

in the compact case. So one gets the asymptotics dn ≈ mn/n in the non-
compact case and dn ≈ (g +

√
g2 − 1)n/n in the compact case. (The small

difference between the two formulas appears to be significant. Even after con-
siderable effort, the argument of observation 3 below could not be adapted to
the compact case.) Notice here that in the compact case, g ≥ 2. We can also
estimate F 0(Zn+1\Zn) in the De Rham realization by noting that it is a quo-
tient of HDR

1 (Xv)⊗n which has the filtration dual to that on H1
DR(Xv)⊗n. So

F 0HDR
1 (Xv)⊗n has dimension equal to the codimension of

F 1H1
DR(Xv)⊗n

= [F 1H1
DR ⊗ (H1

DR)⊗(n−1)]⊕ [H1
DR ⊗ F 1H1

DR ⊗ (H1
DR)⊗(n−2)]⊕ · · ·

⊕[(H1
DR)⊗(n−1) ⊗ F 1H1

DR]

which therefore is equal to

dimH1(OX′
v
)⊗n = gn.

Therefore, F 0(Zn+1\Zn) ≤ gn. In particular, it does not contribute to the
asymptotics. That is, the jump in dimensions as one goes from UDR

n to UDR
n+1

is determined by the asymptotics of dn. On the other hand, in the étale real-
ization, we have

0→H1(GT , Zn+1\Zn)→H1(GT , Uet
n+1)→H1(GT , Uet

n )

in the sense of [23] section 1, whereby the middle term is an H1(GT , Zn+1\Zn)-
torsor over a subvariety of the last term. So we can control the change in
dimensions using the Euler characteristic formula

dimH1(GT , Zn+1\Zn)− dimH2(GT , Zn+1\Zn) = dim(Zn+1\Zn)−,

where the negative superscript refers to the (-1) eigenspace of complex conju-
gation. By comparison with complex Hodge theory, we see that the right hand
side is dn/2 for n odd. So it remains to observe that



124 Minhyong Kim

Lemma 6. Conjecture 2 implies

dimH2(GT , Zn+1\Zn) ≤ P (n)gn

for an effective polynomial P (n) of n.

Proof of lemma. Since the p-cohomological dimension of GT is 2 [26],
we have a surjection

H2(GT , H1(X̄, Qp)⊗n)→H2(GT , Zn+1\Zn)→0,

so it suffices to prove the estimate for the first group. But by conjecture 2 and
Poitou-Tate duality, we get an injection

H2(GT , H1(X̄, Qp)⊗n)↪→⊕w∈T H2(Gw, H1(X̄, Qp)⊗n)

for n sufficiently large. Hence, we need only estimate the dimension of the local
groups. Applying local duality allows us to reduce this to the study of

H0(Gw, H1(X̄, Qp)⊗n(1)).

For w not dividing p, we have a filtration

W : W0 ⊂W1 ⊂W2 = H1(X̄, Qp)

coming (after a finite base-change corresponding to semi-stable reduction) from
the theory of Raynaud’s universal covering

0→Γ→G→JX→0

where G is an extension of an abelian variety B by a torus T . That is, we have
a sequence of inclusions

Tl(T )↪→Tl(G)↪→Tl(JX)

whose dual gives us the filtration W ([8], section 2). Because W0 � GrW
2 (−1),

we have dimW0 = dimGrW
2 ≤ g. From this, we get immediately that

dimH0(Gw, H1(X̄, Qp)⊗n(1)) ≤ ndimGrW
2 gn−1 +

n(n− 1)
2

(dimGrW
1 )2gn−2

For w dividing p, we use the Hodge-Tate decomposition:

H1(X̄, Qp)⊗ Cp � H0(X ′, ΩX′(log D))⊗ Cp(−1)⊕H1(X ′,OX′)⊗ Cp
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as Gw-representations. Thus,

H0(Gw, H1(X̄, Qp)⊗n(1))

↪→H0(Gw, [H0(X ′, ΩX′(log D))⊗ Cp(−1)⊕H1(X ′,OX′)⊗ Cp]⊗n(1))

from which we easily extract the estimate

dimH0(Gw, H1(X̄, Qp)⊗n(1)) ≤ n(g + s− 1)gn−1

Since we have already discussed the structure of UM in the proof of the
previous proposition, it becomes easy to outline the relationship to a conjecture
of Jannsen. There, one starts with any smooth projective variety V over F

having good reduction outside a finite set T of primes (which we take to include
all primes dividing p) and considers H2(GT , Hn(V̄ , Qp)(r)) with various twists
r. Then Jannsen conjectures:

H2(GT , Hn(V̄ , Qp)(r)) = 0

for r ≥ n + 2.
In fact, we need only a weaker variant
(Weak Jannsen conjecture) There exists a k > 0 such that for varieties V

as above
H2(GT , Hn(V̄ , Qp)(r)) = 0

for r ≥ n + k.

Observation 3. When X is affine, Jannsen’s conjecture in the weaker
version implies conjecture 1.

The point here is to try once more to estimate the H2. But in the affine
case, the growth rate of Zn+1\Zn is like mn/n, so it will certainly suffice to
show that H2(GT , H1(X̄, Qp)⊗n) is bounded by Can for some a < m. Now,
easy homological arguments give us the existence of a constant K such that

dimH2(GT , V ) ≤ KdimV

Recall that m = 2g + s− 1 and that H1(X̄, Qp) fits into an exact sequence

0→W→H1(X̄, Qp)→V→0

where W = Qp(1)s−1 and V = H1(X̄ ′, Qp). (Here, we have passed to a finite
extension where all the points at infinity are rational. This passage is admissible
for our H2 considerations.) Therefore, in the Grothendieck group, we get

H1(X̄, Qp)⊗n = V ⊗n ⊕ n(V ⊗(n−1) ⊗W )⊕ · · · ⊕
(

n

k

)
(V ⊗(n−k) ⊗W k)⊕ · · ·
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But V � H1(X̄ ′, Qp)(1) so that V ⊗l is a direct summand of H l((X̄ ′)l, Qp)(l).
Therefore, H2(GT , V ⊗l(r)) = 0 for r ≥ k. Hence,

dimH2(GT , H1(X̄, Qp)⊗n) ≤ P (n)Σk−1
l=0 dimH2(GT , V ⊗(n−l)(l))

for some polynomial P (n). We analyze the cohomology groups on the right.
The Weil pairing induces an inclusion

Qp(1)↪→V ⊗2

which continues to an inclusion

Qp(k)↪→V ⊗(2k)

with image a direct summand. Write V ⊗2k = M ⊕ Qp(k). On the one hand,
since any M⊗i is a direct summand of a V ⊗l, we have

H2(GT , V ⊗i ⊗M⊗j(r)) = 0

for r ≥ k. On the other,

V ⊗2kn = M⊗n ⊕M ′(k)

where M ′ is a direct sum of (non-negative) tensor products of M and Qp(1).
Hence,

V ⊗(2kn+i) = M⊗n ⊗ V ⊗i ⊕M ′ ⊗ V ⊗i(k)

and
H2(GT , V ⊗(2kn+i)(l)) = H2(GT , M⊗n ⊗ V ⊗i(l))

for l ≥ 0. Therefore, as i runs through 0, . . . , 2k − 1

dimH2(GT , V ⊗(2kn+i)(l)) ≤ Kdim(V )idimM⊗n ≤ Kdim(V )2k−1((2g)2k − 1)n

≤ Kdim(V )2k−1((2g)2k − 1)(2kn+i)/(2k).

The point is that as one goes through the range 2kn to 2kn + (2k − 1), the
dimension of

dimH2(GT , V ⊗(2kn+i)(l))

can be bounded by a constant times (dimM)n. Rewriting the exponent, we
have that for any n ≥ 0,

dimH2(GT , V ⊗n(l)) ≤ Kdim(V )2k−1[((2g)2k − 1)1/(2k)]n

and the desired estimate follows.
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§4. Comments II

It is rather interesting to consider the special case of an elliptic curve minus
the origin. For example, our method shows finiteness of integral points for CM-
elliptic curves E defined over Q of rank 1, independently of any conjecture. This
follows from analyzing somewhat carefully a refined Selmer variety

SelT (Un),

defined to be the classes in H1
f (GT , Uet

n ) that are potentially unramified at
primes not equal to p and potentially crystalline at p. (Here of course, the U

refer to the unipotent fundamental groups of E minus the origin.) The defini-
tion of this subvariety depends on the construction of certain local subvarieties

H1
pf (Gv, Hv; Uet

n ) ⊂ H1(Gv, U
et
n )

(v|p) and
H1

pun(Gv, Hv; Uet
n ) ⊂ H1(Gv, U

et
n )

(v not dividing p) for various v and subgroups of finite index Hv ⊂ Gv.
Since the pattern is exactly as in [23], section 1, we will omit the details.
The point is that if N is a closed subgroup of G, then the restriction map
H1(G, Uet

n )→H1(N, Uet
n ) is functorial. We can therefore construct the unram-

ified cohomology varieties H1
un(Gv, U

et
n ) as the inverse image of the base-point

in H1(Iv, Uet
n ), where Iv ⊂ Gv is the inertia subgroup. For this last object, we

need only deal with it when the action of Iv on Uet
n is trivial. In this case, the

cohomology functor is not necessarily representable by a variety. However, we
still have functorial sequences

0→H1(Iv, Zn+1\Zn)→H1(Iv, Uet
n+1)→H1(Iv, Uet

n )

which are exact in the naive sense that the inverse image of the base point
under the second map is the kernel. (However, the other fibers may be empty.)
Now, the condition that a class c ∈ H1(G, Uet

n+1) goes to zero in H1(Iv, Uet
n+1)

is an intersection of the condition that it goes to zero in H1(Iv, U
et
n ), which

defines a subvariety by induction, and then the condition that the image in
H1(Iv, Zn+1\Zn) is trivial. This last space is a vector group, and hence, the
resulting condition defines the desired ‘unramified’ subvariety at level n + 1.

Then, by considering the restriction maps

rv : H1(Gv, U
et
n )→H1(Hv, U

et
n ),
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to subgroups of finite index, we get the potentially unramified subvarieties

H1
pun(Gv, Hv; Uet

n ) := r−1
v (H1

un(Hv, U
et
n ))

and potentially crystalline subvarieties

H1
pf (Gv, Hv; Uet

n ) := r−1
v (H1

f (Hv, U
et
n )).

We know that E acquires good reduction everywhere after base extension to
the field F generated by the 12-torsion ([29] p. 498, Corollary 3 and section 4).
We then take the Hv to be the Galois groups of the completions Fv for each
place v of F lying above a place of T . Finally, we define

H1
pf (Gp, U

et
n ) := ∩v|pH1

pf (Gp, Hv, U
et
n ),

and
H1

pun(Gv, U
et
n ) := ∩w|vH1

pun(Gv, Hw, Uet
n ),

for v �= p. Then the global group SelT (Un) is defined to be the intersection of
the inverse images of all these local groups under the global-to-local restriction
maps:

SelT (Un) := ∩v∈T [(Resglob
loc,v)−1(H1

pun/pf (Gv, U
et
n ))] ⊂ H1(GT , Uet

n ).

With these definitions in place we claim there is an exact sequence

0→SelT (Zn+1\Zn)→SelT (GT , Uet
n+1)→SelT (Uet

n )

again in the sense that the vector group on the left acts freely on the middle with
quotient a subvariety of the right hand side. Most of the proof is a consequence
of the exactness of

0→H1(GT , Zn+1\Zn)→H1(GT , Uet
n+1)→H1(GT , Uet

n ),

([23], section 1) leaving us to check that if c1, c2 are two elements of SelT (GT ,

Uet
n+1) mapping to the same class in SelT (GT , Uet

n ), then one is a translate of
the other by a class in SelT (Zn+1\Zn). This can be checked locally at each
prime. So let w be a prime of F lying above p and let c1, c2 ∈ Z1(Hw, Uet

n+1) be
two cocycles representing classes of H1

f (Hw, Uet
n+1) and assume they have the

same image in H1
f (Hw, Uet

n ). We already know that c2 = c1z for some cocycle
z ∈ Z1(Hw, Zn+1\Zn) and we need to check that it trivializes over Bcr. Since
both c1 and c2 trivialize over Bcr, there are elements u1, u2 ∈ Uet

n+1(Bcr) such
that ci(g) = g(u−1

i )ui for g ∈ Hw. Then z(g) = g(u1u
−1
2 )u2u

−1
1 . Therefore, we
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see that u2u
−1
1 maps to an Hw-invariant element in Uet

n (Bcr). But the invariant
points just comprise UDR

n and the map UDR
n+1→UDR

n is surjective. Therefore,
there is an Hw-invariant element v ∈ Un+1(Bcr) such that u2u

−1
1 = vc for

some c ∈ Zn+1\Zn(Bcr). Hence, z(g) = g((vc)−1)(vc) = g(c−1)c, giving us the
triviality we want. (Of course we should have included a Qp-algebra R in the
notation to prove all this functorially, but we have omitted it for brevity.) At
a prime w not dividing p, the condition to check concerns unramified cocycles,
and hence is easier: Suppose c1, c2 are two unramified cocycles with values in
Uet

n+1 that map to the same class in H1(Hw, Uet
n ). Then c2 = c1z for some

cocycle z with values in Zn+1\Zn. But since the action on Uet
n+1 itself is

unramified, all cocycles restricted to the inertia group Iw are homomorphisms.
Then since c1 and c2 are in fact trivial on Iw, so is z.

For n = 2, we get from this the inequality of dimensions

dimSelT (Uet
3 ) ≤ dimSelT (Uet

2 ) + dimSelT (Z3\Z2).

However,
Z3\Z2 � H1(Ē, Qp) ∧H1(Ē, Qp) � Qp(1).

This implies that SelT (Z3\Z2) consists of the units in Z tensor Qp, and hence,
is zero ([3], example 3.9). Therefore,

dimSelT (Uet
3 ) = dimSelT (Uet

2 ) = dimSelT (H1(Ē, Qp)) = 1,

by the rank one hypothesis.
On the De Rham side, we have the same dimension count (= 1) for Z3\Z2.

Meanwhile, considering the quotient map

HDR
1 (Ep)⊗HDR

1 (Ep)→Z3\Z2

and the fact that F 0H1 ∧ F 0H1 = 0, we get F 0(Z3\Z2) = 0. So

dimF 0UDR
3 = dimF 0UDR

2 = 1

and
dimUDR

3 /F 0 = 3− 1 = 2.

Therefore, jDR
3 suffices to finish the job.

This calculation shows that in explicit situations like this with a fixed n, it
is worth imposing extra Selmer conditions to improve the dimension estimate,
in contrast to the general finiteness problem where refined conditions appear
to be irrelevant. It is probably also worth looking into this case more carefully
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with a view towards working out explicit bounds in the manner of Coleman’s re-
finement of Chabauty [7]. The suspicion is that this will require understanding
the Dieudonné map D more precisely, along the lines of ‘non-abelian explicit
reciprocity laws’ à là Kato [22].

It was pointed out to me by John Coates that the general CM case is
intimately related to a pseudo-nullity conjecture from the Iwasawa theory of
elliptic curves. That is, let F∞ be the field generated by the p-power torsion
of E, F1 the field generated by the p-torsion, G∞ = Gal(F∞/F1), and Λ =
Zp[[G∞]] the Iwasawa algebra of G∞. Let I be the Galois group of the maximal
abelian unramified pro-p extension of F∞ split over the primes lying above T .
Coates and Sujatha have conjectured [9] that I is pseudo-null as a Λ-module.

Observation 4. This pseudo-nullity implies conjecture 1 for E \ {0}.

Recall that what is necessary is to estimate H2(GT , Zn+1\Zn) which is
implied by an estimate for H2(GT , H1(Ē, Qp)⊗n). But for just this part, we
can assume that the base-field is F1 since the corestriction map is surjective on
H2. In fact, the pseudo-nullity implies that

dimH2(GT , H1(Ē, Qp)⊗n) ≤ P (n)

for some polynomial P (n). To see this, first note that it suffices to prove such
an inequality for the Selmer group

Ker(H2(GT , H1(Ē, Qp)⊗n)→⊕v∈T H2(Gv, H1(Ē, Qp)⊗n))

since the local contributions can be bounded exactly as in section 3 (note that
g = 1 in this case). So, Poitou-Tate duality, it suffices to bound the H1 Selmer
group

Sel0T (H1(Ē, Qp)⊗n(1)) = Ker(H1(GT , H1(Ē, Qp)⊗n(1))

→⊕v∈T H1(Gv, H
1(Ē, Qp)⊗n(1))),

and we have an isomorphism:

Sel0T (H1(Ē, Qp)⊗n(1)) � HomΛ(I, H1(Ē, Qp)⊗n)(1))

coming from the Hochschild-Serre spectral sequence. To see this, it is perhaps
convenient to utilize the language of continuous étale cohomology [21] applied
to the inverse system

(Ti) = (H1(Ē, Z/pi)⊗n(1)).
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The Hochschild-Serre spectral sequence in this context gives us the exact se-
quence

0→H1(G∞, (H0(N, Ti)))→H1(GT , (Ti))

→H0(G∞, (H1(N, Ti)))→H2(G∞, (H0(N, Ti)))

([21], theorem 3.3), where N ⊂ GT is the subgroup fixing F∞. Since the
N -action is trivial, all the H0(N, Ti) are just Ti, and hence, satisfy the Mittag-
Leffler condition. Therefore, all the terms but one become readily identified
with the continuous Galois cohomology of T = lim←−Ti = H1(Ē, Zp)⊗n(1) while

H0(G∞, (H1(N, Ti))) := lim←−HomG∞(N, Ti) = HomG∞(N, T ).

When we tensor with Q, we get therefore

H1(GT , H1(Ē, Qp)⊗n(1)) � HomΛ(N, H1(Ē, Qp)⊗n(1)).

Passing to the Selmer group, the last group gets replaced by HomΛ(I,

H1(Ē, Qp)⊗n(1)).
But the pseudo-nullity implies that I is finitely generated over Zp (see,

e.g., [15], section 2, paragraph following lemma 2). Thus, if we fix a Frobenius
element F in G∞, then only finitely many eigenvalues can occur for F in I⊗Qp.
Weight considerations imply then that

HomΛ(I, H1(Ē, Qp)⊗n(1)) = 0

for n >> 0.
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