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There seems to be a marvellous interaction taking place between mathematical

physics and mathematics in the area of geometry, demanding a greater con-

tribution from non-commutative structures and higher cohomologies. It may

require a revolutional extension of the concept of spaces in order to explain the

dualities there. I am not the proper person to talk about the whole subject, but

will restrict myself to that part of the topic where I have been involved from the

view point of complex geometry, namely periods of integrals over vanishing cy-

cles. In order to attack a big mathematical problem, there are two approaches:

1) to generalize the problem and to develop a new general framework and

language within which the problem finds a natural place, or

2) to attempt to examine a cross-section of the problem and to give a precise

solution of that part of the problem.

The approach I adopt here in this paper is the second one, partly in the hope
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that it will provide a prototype understanding of some aspect of the problem,

but also for its inherent beauty since the mathematical world consists not only

of the general theories but also of interesting individuals (C. L. Siegel).

Part I Primitive Forms

1. Motive

I have been attracted by mathematical objects where the arithmetic nature

and the transcendental nature of the objects are closely combined. It is hard for

me to define what I mean by this statement though I have an instincitive feel

for it. So let me provide some typical examples.

The first examples are the transcendental numbers π and e, or, what amounts

to the same thing, the trigonometric functions and the exponential function.

They are certainly transcendental but also have arithmetic nature in a number

of respects, one being the addition formula. Further examples are the functions

related to the elliptic integral theory such as the elliptic modular function j,

modular forms E4, E6, ∆, . . ..

These examples are classical (some of them have a history of hundreds of

years), but they will always retain their attraction and are certain to remain

fresh in the future. Even more than that, experience tells us that it may not

be absurd to expect these functions in the future to yield again a new branch

of beautiful mathematics such as Moonshine from the Monster group to the

elliptic modular function (Borcherds).

These examples of functions have their origins in the study of the integrals

of arc-length of quadratic and cubic curves. This fact inspires the idea that

integrals over algebraic objects leads to transcendental objects (but, then for

instance, why the powers of π appear in the special values of the zeta-function,

why the family of cubic curves are related to Moonshine? There remain still

numerous unsolved questions).

A natural further development of the integral of arc-length for higher genus
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curves is the Abelian integral theory and the solution of Jacobi’s inversion prob-

lem by theta-functions (already established in the 19th century). For higher

dimensional varieties Hodge theory is a development. In fact, the study of

Abelian varieties, (Siegel) modular forms and mixed Hodge structures have

grown extensively and are attaining more and more importance in mathemat-

ics. However, I was annoyed, for instance, by the gap between the dimension

g(g + 1)/2 of the space of Abelian varieties and the dimension 3g − 3 of the

space of Jacobian varieties of curves of genus g > 1. The Siegel modular func-

tions (or theta null-wert) are not functions on the space of Jacobians! This led

me to study the integrals of the primitive forms, another generalization of the

elliptic integral theory, explained in the Part I of this article.

2. Elliptic Integrals

We first review the classical elliptic integral theory in the Weierstrass form

as the proto-type for what I explain later. Let P (z, g) := 4z3 − g2z − g3 be

a cubic polynomial in a complex variable z with two parameters g2, g3 and let

∆ := 27g2
3 − g3

2 be its discriminant. The elliptic integral of the first and the

second kinds are:

I1(g1, g2) =

∮
P−1/2dz and I2(g1, g2) =

∮
P−1/2zdz, (1)

where we integrate over closed paths (cycles) on the elliptic curve Eg defined

by the equation F (w, z, g) := w2−P (z, g) = 0. As functions in g = (g2, g3),

they satisfy the following total differential equation:
[
dI1

dI2

]
=

[
− 1

12d log∆ ω

[6pt]− 1
12g2ω

1
12d log∆

][
I1

I2

]
(2)

where d log∆ and ω = −3g2dg3+(9/2)g3dg2
∆ are the basis of logarithmic 1-forms

along the discriminant. From (2), one deduces that the integral of the second

kind is a logarithmic derivative of that of the first kind:

I2 =

(
6g3

∂

∂g2
+

1

3
g2
2

∂

∂g3

)
I1. (3)
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Eliminating I2 in (2), one obtains the system of second order equation:
((

6g3
∂

∂g2
+

1

3
g2
2

∂

∂g3

)2

+
g2
12

)
u = 0,

(
1

3
g2

∂

∂g2
+

1

2
g3

∂

∂g3
+

1

12

)
u = 0,

(4)

satisfied by the first integral I1. The equation is equivalent to the Gauss-

Legendre hypergeometric differential equation.

The two linearly independent solutions ω1, ω2 of the equation (4) are ob-

tained by the integrals
∮
γi

of the first kind over the two linearly independent

1-cycles γi (i = 1, 2) on the elliptic curve Eg . For brevity, let us call γi

vanishing cycles since they collapse to a singular point on the cuspidal cubic

curve E0 for g = 0. The multivalued correspondence g 7→ (ω1(g), ω2(g))

from the complement {(g2, g3) ∈ C2 | ∆(g2, g3) 6= 0} of the discrimi-

nant locus D := {∆(g) = 0} in the parameter space to the period domain

{(ω1, ω2) ∈ C2 | Im(ω1ω̄2 − ω2ω̄1) > 0} is called a period map. The map is

equi-2-dimensional and is locally bi-regular. Here one has a basic result (see,

for instance, [Si, cha.1]): the inverse to the period map is a univalent map. The

coordinates 1
60g2 and 1

140g3 of the inversion are given by the Eisenstein series

E4 =
∑′

m,n∈Z
1

(mω1+nω2)4
and E6 =

∑′
m,n∈Z

1
(mω1+nω2)6

, respectively. The

substitution ∆(60E4, 140E6) in the discriminant form is the generator of the

ideal of cusp forms (the automorphic forms defined on the period domain which

vanish at the cusps = {(ω1, ω2) | ω2

ω1
∈ Q ∪ {∞}} of the period domain).

Thus, starting from such simple objects as cubic polynomials, one arrives

at highly transcendental objects such as the elliptic modular forms and cusp

forms. Let us give a summary of the above story:

1) All elliptic integrals are obtained by differentiating the integral of the first

kind. This property may be called primitivity.

2) The dimension 2 of the parameters g2, g3 coincides with the rank 2 of the

lattice of vanishing cycles generated by γ1, γ2. The period map is locally

biregular. This property may be called equi-dimensionality.

3) The Eisenstein series E4, E6 combine globaly the two quantities: the pa-
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rameters g2, g3 and the periods ω1, ω2, where the discriminant loci corre-

spond to the cusps of the period domain.

3. Periods for Primitive Forms

We interpret the Weierstrass family F (z, w, g) = 0 as a universal unfolding1

of the cusp F (z, w, 0) = w2 − z3 by the parameter g. Generally, let f(x)

be any polynomial in several complex variables x, whose zeroloci defines a

hypersurface with an isolated singular point at the origin and let F (x, g) be its

universal unfolding1 by the parameter g ∈ Cµ, where the equation F (x, g) = 0

defines a flat family of affine varieties Xg . There is a concept of the discrimi-

nant ∆(g) of F (x, g), whose zeroloci describe the parameter-values g at which

Xg becomes singular. Remarkably, the rank µ of the lattice of vanishing cy-

cles of middle dimension in the homology group of Xg for g with ∆(g) 6= 0

(= the Milnor lattice, see [Mi]) coincides with the number µ of unfolding

parameters (g) = (g1, . . . , gµ). Thus, if one finds a family {ζg}g of differ-

ential forms of degree = dimXg on {Xg}g whose covariant differentiations

∇giζg with respect to the parameters g1, . . . , gµ form a basis of the de-Rham

cohomology group dual to the lattice of vanishing cycles (at generic g with

∆(g) 6= 0), then the integrals (
∮
γj(g)

ζg)j=1...µ over a basis of the lattice of

vanishing cycles should define a locally biregular period map since its Jacobian

( ∂
∂gi

∮
γj(g)

ζg)ij=1...µ = (
∮
γj(g)

∇giζg)ij=1...µ is, tautologically, of maximal

rank.

A primitive form ζg ([O], [S2], [SaM]) is such a family of differential forms

satisfying, further, a system of infinite bilinear differential equations with re-

spect to g. We shall not go into details of the bilinear equations defining the

primitive form2, but discuss some examples and consequences of the primi-

1 See [T] and also II.6 of the present paper. The description here is unprecise.
2 The system of equations on a primitive form, satisfied by the elliptic integral of the first kind,

is described in terms of higher residue pairings on the relative De-Rham cohomology groups. It
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tive forms. The period map3 for a primitive form from the complement of the

discriminant loci ∆ = 0 to a suitable non-classical period domain recovers 1)

primitivity and 2) equi-dimensionality, which we found in the elliptic integral

theory.

We expect an analogy of 3) for suitable primitive forms. In the end, one

needs to solve several problems, since the nature of 3) is global despite that of

1) and 2) are local. First of all, the existence of a primitive form is known only

in a small neighborhood of the singular point except for a few good examples

discussed later. So, these lead to the following inversion problem (in a rough

and naive formulation).

"#problem Under a suitable setting,

1. Give global existence and description of a primitive form.

2. Generalize the concepts of Eisenstein series. Using it, describe globally

the inversion map to the primitive period map.

3. Does
√
∆ define the fundamental anti-invariant on the period domain?

Is ∆ the generator of cusp forms in a suitable sense?

4. Examples

We discuss simple examples of primitive forms, where Problem 1 is an-

swered by two expressions. They indicate the close connection of the primitive

form with Lie theory and integrable systems.

requires a ‘purity of the Hodge component’ of the covariant differentiation of the primitive form

with respect to the parameter g (see [O], [S2], [SaM]). As a result, one obtains the analogue of

the total differential equation (2) and Gauss-Legendre equation (4), satisfying the integrability

conditions.
3 i) If there is a monodromy invariant vanishing cycle, then the period map is better defined by

the solutions of the generalized Gauss-Legendre equation. ii) There are examples where the

primitive integral is carried out not only over local vanishing cycles but over global cycles: a)

Seiberg-Witten integrals [Ta2], b) the period maps for the 14 exceptional unimodular singularities

(see II.9, ii)).
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There is a celebrated one-to-one correspondence, observed by McKay [Mc],

between the conjugacy classes of finite subgroups of SU(2) and the simply-

laced Dynkin diagrams (see [B]) of types Al, Dl and El for suitable l. So, let

Γ be the Dynkin diagram assigned to a finite group G ⊂ SU(2) (this means

that the exceptional set of the minimal resolution of the quotient singularity

C2/G is the Dynkin curve of type Γ (see [GSpV])). Then the universal un-

folding of C2/G is described by the coadjoint quotient map gΓ → hΓ /WΓ

where gΓ , hΓ and WΓ are the simple Lie algebra, its Cartan subalgebra and

Weyl group of type Γ , respectively, and hΓ /WΓ is the parameter space of the

unfolding (Brieskorn [Br1], Kronheimer [Kr]). The primitive form for this case

coincides with the Kostant-Killirov form, induced from the Killing form on gΓ

and defining the symplectic structure on the coadjoint orbits (the first expres-

sion [Y1]). In these quotient singularity cases, the primitive form ζg is given by

Res[dx/F (x, g)] in terms of the defining equation F (x, g) = 0 of the unfolding

(likewise the elliptic integral case) (the second expression, see II.7, [S2]).

Two different period maps are attached to this setting. The first one is straight-

forward: the lattice of vanishing cycles of C2/G is identified with the root lat-

tice Q(Γ )(−1) of type Γ ([Br1]), and the primitive period map is identified

with the inverse map hΓ /WΓ → hΓ . So, the inverse of the period map is the

quotient map hΓ → hΓ /WΓ , where the discriminant ∆ is the square of the

fundamental W -anti-invariant polynomial. One easily deduces from classical

results on finite reflection groups affirmative answers to the Problems 1–3 for

this period map.

The second period map, which I explain below, is highly nontrivial. Solutions

to the inversion problem for them are not known in general.

There is an operation: ∗S0 (join with 0-dimensional sphere), which brings

the lattices of even-dimensional vanishing cycles (with symmetric bilinear forms)

to the lattices of odd-dimensional vanishing cycles (with skew-symmetric bilin-

ear forms) and vice versa such that (∗S0)2 = −1. Can we provide a description

of the period map for the odd lattice Q(Γ ) ∗ S0 for a root lattice Q(Γ ) of type

Γ ? In fact, Q(A1) ∗ S0 and Q(A2) ∗ S0 are identified with the first homology
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group of two-punctured conics and one punctured elliptic curves, respectively.

The primitive forms for the typesA1 andA2 are identified with the arcsine inte-

gral (Gauss) or the elliptic integral of the first kind, respectively. Therefore, as

we saw already, their inversion maps are given by the exponential function and

elliptic Eisenstein series, respectively. For any lattice Q(Γ )∗S0 of type Γ , one

can also describe the primitive period map by a certain Abelian integral over

affine curves, which maps the complement hΓ /WΓ \ {∆ = 0} of the discrimi-

nant loci to the period domain B̃(Γ ) locally biregulary, where the monodromy:

a subgroup of the symplectic group O( ˜Q(Γ ) ∗ S0) generated by transvections

acts on B̃(Γ ) properly discontinuously. Even in such a classical setting, we

know yet very little about the inversion map B̃(Γ ) → hΓ /WΓ \ {∆ = 0}.
Problems 2 and 3 are open except for the types A1, A2 (see [Mu], [S7]).

5. More Structures

Returning to the general setting of the period map for any primitive form, let

us explain two more structures, which should help us to ask and formulate the

inversion problems globally.

"#Flat Structure The unfolding parameter space {(g)} posesses a global graded

affine linear structure with respect to a flat metric4. Hence the inversion map

to the primitive period map splits into graded linear coordinate components,

each of which is an ‘automorphic form’ with respect to the monodromy

group. For brevity, let us call each component a primitive automorphic form

(see the examples below).

4 More precisely, a primitive form identifies the tangent bundle of the parameter space with the

Hodge bundle of the unfolding. Consequently, the tangent bundle obtains three structures: a

commutative algebra, Lie algebra and a flat metric J with suitable compatibilities, which leads

to a potential to the flat metric. This structure is called the flat structure [S2]. The structure

is found also in 2-dimensional topological field theory and is called the Frobenius structure

[Db], [Ma].
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We illustrate the flat metric for the previous Examples by determining it el-

ementarily only by a use of a Coxeter element [B], [S7]. Recall that the un-

folding parameter space is given by h/W = Spec(S(h∗)W ), where the ring

S(h∗)W of W -invariant polynomials on h, according to Chevalley, is gener-

ated by algebraically independent homogeneous elements, say P1, . . . , Pl,

of degrees m1 + 1 = 2 < · · · < ml + 1 = h, and the discriminant

∆ = (
∏
lα)

2 (lα = the linear form defining the reflection hyperplane of

W ) has a form ∆ = A0P
l
l + A1P

l−1
l + · · · + Al (Ai = a polynomial

in P1, . . . , Pl−1 of total degree hi). A Coxeter element c ∈ W , defined

as the product of simple reflections of W , has order h and its eigenvec-

tor, say ξ, for a primitive hth root of unity is regular (i.e. fixed by no

reflections in W ). Then the condition degPi < h implies Pi(ξ) = 0

(1 ≤ i < l) and the regularity of ξ implies ∆(ξ) 6= 0, and therefore

A0 6= 0. That is: the discriminant ∆ is a monic polynomial in Pl of de-

gree l. The Killing form I(x) as an inner product on h (' h∗) induces also

an inner product I(dPi, dPj) =
∑

m,n
∂Pi
∂xm

∂Pj
∂xn

I(xm, xn) on the cotangent

vectors dPi (i = 1, . . . , l) on h/W . This inner product degenerates along

the discriminant since det(I(dPi, dPj))
l
ij=1 = ∆. By a use of the deriva-

tion D := ∂
∂Pl

(which is unique up to a constant factor), we define a new

inner product J(dPi, dPj) := DI(dPi, dPj) on h/W . Then one can show i)

det(J(dPi, dPj))
l
ij=1 = A0 6= 0 i.e. the J is nondegenerate, ii) the form J

is independent of the coordinates P1, . . . , Pl, iii) the Levi-Civita connection

for J is flat, i.e. there is an affine linear coordinate, say Q1, . . . , Ql
5, on

h/W so that J(dQi, dQj) are constants. Such coordinates are called flat.

In particular, it turns out that g = (g2, g3) for the Weierstrass familyF (z, w, g)

are the flat coordinates of type A2, and so, the primitive automorphic forms

5 The iii) follows from the integrability of the Levi-Civita connection ∇ for the Killing form I

([S7]). The identification in footnote 4 induces that of∇ and I with the Gauss-Manin connection

and the intersection form on the lattice of vanishing cycles, respectively. The J is given by

residue pairing on the de-Rham cohomology group, which corresponds to the Yukawa coupling

in the topological field theory.
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of type A2 are the Eisenstein series E4 and E6.

"#Infinite Dimensional Lie Algebra One would like to generalize the McKay

correspondence in such a manner that one attaches to a singularity a Lie al-

gebra which gives a global description of the unfolding as well as the primi-

tive forms of the singularity. This programme is in progress for some special

cases ([S3], [S-T], [S-Y], [Sl 1,2], [H-S]). Here we describe an aproach gen-

eralizing the concept of a root system.

Root systems (historically, finite or affine) are quite simple combinatorial

objects, where the data of the Lie algebras and groups as well as the Weyl

groups are coded [B]. Let us reformulate the axioms for a root system in

order to include a wider class of objects. A subsetR of a real vector space h∗R
equipped with a symmetric bilinear form I consisting of elements of positive

norms is a root system if 1) R generates a full lattice, 2) 2I(α, β)/I(α, α) ∈
Z for α, β ∈ R, 3) the reflection for any α ∈ R preserves the set R, 4) R is

irreducible. Actually, these axioms recover the classical case: I is positive

definite (resp. semidefinite with 1-dim. radical) if and only if R is a finite

(resp. affine) root system.

The set R of vanishing cycles of the unfolding of an even dimensional sin-

gularity6 with the intersection form I satisfies the axioms of a root system.

So, one has the correspondence: {isolated singularities} → {root systems}.
In the McKay case, as we saw, the lattice of vanishing cycles for the sin-

gularity C2/G is Q(Γ )(−1) and so, R is the finite root system of type Γ .

But, McKay correspondence states something stronger: the diagram Γ gives

a simple basis ([B]) of the root system R such that the product of reflections

associated to Γ defines a Coxeter element (see II.7). This fact inspires the

second inversion problem:

6 The R is the collection of primitive elements α of the middle dimensional homology group of

the general fibre Xt of the unfolding where the pararel translation of α vanishes as t tends to

generic points of the discriminant loci (see [Br2, Appendix]).
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"#problem

4 Classify the generalized root system which admits a simple basis in a

suitable sense such that the Coxeter element as the product of the reflec-

tions of the basis is of finite order h and that the eigenspace belonging

to a primitive h-th root of unity is regular with respect to the Weyl group

W generated by reflections of the roots7. G

5 Attached to such generalized root system R, construct the following i)

invariant theory for the group WR and the flat structure on B̃h/WR, ii)

a Lie algebra gR and co-adjoint quotient morphism B̃gR → B̃h/WR,

iii) the first expression of the primitive form as the Kostant Killirov form,

primitive period map and primitive automorphic forms8.

6. What Is the Dual?

The primitive automorphic forms seem to me to be an arithmetic and tran-

scendental way of describing the degeneration of spaces, likewise the exponen-

tial and elliptic functions can describe the degenerations of conics and cubics.

From the view point of mirror symmetry, this is only one side. Then, what sort

of global (Kählerian?) geometry do they describe in the dual model side i.e.

in Gromov-Witten geometry? This question is not yet answered even for the

elliptic integral, i.e. A2-case, since the virtual dimension of the dual model is

a fraction and the concept of spaces that we have at present is too narrow to

allow such duality. A full understanding of the dual objects may, as was said

7 If the Coxeter element (in this sense) is quasi-unipotent then the Witt-index of I(= µ0 + µ−) is

even. Thus affine and hyperbolic root lattices are excluded as for the lattice of vanishing cycles

(see II.7 and 8). For the study of root basis arising from singularities, one refers to a series of

works by Ebeling ([Eb1]).
8 Here B̃ is an unexplained operation to define the period domain (cf. II.9). For an elliptic sin-

gularity, Problems 4, 5 i) are solved in [S3], [Sat 1,2]. The Lie algebra g(R) can be constructed

by a use of vertex operators (see [S-Y]) which have close similarities with the simple Lie alge-

bras because of the existence of the Coxeter element, but are beyond Kac-Moody algebras (see

[S-Y], [Sl2]).
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at the beginning, require a new concept of spaces allowing for tensor products,

for which we shall have to wait for the mathematics of the 21st century.

Part II Regular Systems of Weights

We proposed the Inversion Problems 1–5 for primitive period maps in Part I.

We saw that even for the finite root system cases, the description of the primi-

tive automorphic forms for the lattice of odd dimensional vanishing cycles re-

mains as an attractive open problem. Nevertheless, the purpose of this present

Part II is to propose a wider class of primitive period maps than these classi-

cal cases, where I suspect that all Inversion Problems should have reasonable

answers. Roughly speaking, the classical cases treated only finite root systems

with positive definite forms I . We extend the study to infinite root systems with

semi-definite or indefinite forms I . How are we to find them?

The new objects are introduced by a use of regular weight systems (see II.1

below. References on the subject are [S4-6]). Attached to a regular weight

system, one considers several mathematical structures such as the singularity

and its vanishing cycles, the flat structure, the primitive form and its period

map and, finally, the primimitive automorphic forms. Their descriptions are

fragmentary, which altogether may form a puzzle, since we don’t know yet the

whole picture and many things are yet to be worked out. Nevertheless, alto-

gether they seem to form a quite rich mathematical world worthwhile studying,

whose goal as mentioned in the title of the present paper should be the study of

the primitive automorphic forms for the regular weight systems.

1. Regular Weight System

Let us start with elementary arithmetics. We call a system W = (a, b, c;h)

of 4 integers with 0 < a, b, c < h and gcd(a, b, c) = 1 a regular weight system

if the rational function:
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χW (T ) := T−h
(Th − T a)(T h − T b)(T h − T c)

(T a − 1)(T b − 1)(T c − 1)

does not have a pole except at T = 0. Then, χW has a development

χW (T ) =

µ∑

i=1

Tmi

in a finite sum of Laurent monomials, where mi ∈ Z are called exponents.

The smallest exponent = a + b + c − h is denoted by ε(W ). The number

µ = µW := χW (1) = (h− a)(h− b)(h− c)/abc of exponents shall be called

the rank and h = hW shall be called the Coxeter number.

2. Classification

There is a one to one correspondence: {regular weight systems having only

positive exponents} ' {finite root systems of type Al, Dl and El} such that

their exponents coincide with each other. Let us call such a weight system

classical. Dl : (2, l − 2, l − 1; 2(l − 1)), E6 : (3, 4, 6; 12), E7 : (4, 6, 9; 18),

E8 : (6, 10, 15; 30), where ε(W ) = 1 for all.

There are three regular weight systems: Ẽ6: (1, 1, 1; 3), Ẽ7: (1, 1, 2; 4), Ẽ8:

(1, 2, 3; 6), having only non-negative but 0 exponents. They are called elliptic.

These are the cases when ε(W ) = 0.

There are 14 + 8 + 6 + 3 regular weight systems when ε(W ) = −1. The

first 14 are the cases when there is no exponent equal to 0 or 1 and we shall

call them, tentatively, e-hyperbolic (an abbreviation for elliptic hyperbolic. See

II.7). For any ε ∈ Z<0 there are a finite number of regular weight systems with

ε(W ) = ε. Each of them has its own arithmetics and beauty (e.g. II.7), but we

shall not go into details here.

3. Singularity

For a given system of weights W = (a, b, c;h), consider the graded polyno-

mial ring C[x, y, z] with deg x = a,deg y = b,deg z = c. Consider a weighted
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homogeneous polynomial of degree h fW (x, y, z) =
∑

la+mb+nc=h cl,m,nx
lymzc

whose coefficients are generic. Then, the weight system W is regular

⇔ the hypersurface X0 := {fW (x, y, z) = 0} has an isolated singular

point at the origin. This is equivalent to saying that the Jacobi ring

JW := C[x, y, z]/(∂fW∂x , ∂fW∂y , ∂fW∂z ) is of finite rank, and then the Poincaré

polynomial PJW (T ) :=
∑

dim(JW,d)T
d is equal to T−ε(W )χW (T ).

If W is classical, i.e. ε(W ) = 1, then there is a finite subgroup G ⊂ SU(2)

so that X0,C ' C2/G. This means that the classical regular weight systems

give the inverse of the McKay correspondence in a sense.

If W is elliptic, i.e. ε(W ) = 0, then depending on fW , there is τ ∈ H and

an action on C2 of an infinite cyclic central extension H of the lattice Z + τZ
so that X0,C \ {0} = C2/H is a principal C×-bundle over an elliptic curve

C/Z + τZ. The singularity is called simply elliptic and named Ẽ6, Ẽ7, Ẽ8

according to the weight system [S1].

If ε(W ) = −d < 0, then there is a co-compact Fuchsian group Γ ⊂
PSL(2,R) and its lifting Γ̃ ⊂ P̃SL(2,R) (=the central extension by Z/d)

so that X0,C \ {0} = H̃d/Γ̃ (Arnold[Ar], Dolgachev[Dl1], Pinkham).

4. Duality

For any regular weight system W , define a polynomial:

ϕW (λ) :=

µ∏

i=1

(λ− exp(2π
√
−1mi/h))

which is a cyclotomic polynomial 9 and hence decomposes in a form:

ϕW (λ) :=
∏

i|h

(λi − 1)eW (i)

for suitable eW (i) ∈ Z. We call two weight systems W and W ∗ dual to each

other if their Coxeter number h coincides and eW (i) + eW∗(h/i) = 0 for all

9 The ϕW shall be naturally identified with the characteristic polynomial of the Coxeter element

acting on the root lattice QW (cf. II.8).
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i|h (with some exceptions, see [S6], [Ta1]).

All the classical weight systems of type Al, Dl, El are selfdual. There is

an involution ∗ on the set of 14 e-hyperbolic weight systems such that W and

W ∗ are dual to each other. In fact, this purely arithmetically proven duality on

the 14 weight systems induces the strange duality of Arnold on the 14 excep-

tional unimodular singularities [Ar]. It suggests a duality between the lattices

of algebraic and transcendental cycles.

It is interesting to observe that i) All the regular weight systems of rank

24 (there are 12 such weight systems having negative exponent) are selfdual,

ii) Except for 4 cases, all selfdual characteristic polynomials of the Conway

group ·0 are described as either that of direct sum of classical weight system

(Niemeier case), that of dual pair of e-hyperbolic weight systems or that of the

12 rank 24 weight systems ([S6], [E2]).

5. Eta-Product

Before we go further, let us look at some arithmetics. Let η(τ) = q
1
24

∏∞
n=1(1−

qn) be the Dedekind eta-function for q = exp(2π
√
−1τ) and τ ∈ H. For W ,

define an eta-product 10 by

ηW (τ) :=
∏

i|h

η(iτ)eW (i).

By a use of the eta-product, the duality between two weight systems W and

W ∗ is characterized by the relation ηW (−1/hτ) · ηW∗(τ) ·
√
dW = 1, where

dW = dW∗ is a constant called the discriminant of W .

The eta-product ηW is holomorphic (resp. cuspidal) if and only if the dual-

rank νW := −
∑

i|h i · eW (h/i) is non-positive (resp. negative). Let ηW =
∑

n c(n)q
n be the Fourier expansion at∞. Then, we ask:

10 The eta-product can be more naturally introduced as the Poincare series for the action of the

Coxeter element on the symmetric tensor algebra of the root lattice QW , which is the building

block for the infinite dimensional Lie algebra attached to the singularity (cf. I.5 and II.7, 8).
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"#conjecture The Fourier coefficients c(n) at ∞ of the eta-product ηW at-

tached to W are non-negative if and only if ηW is not a cusp form.

One direction ‘only if’ is trivial. The case νW < 0 is also trivial. So the

remaining case is when νW = 0. The eta-products for the elliptic weight

systems Ẽl for l = 6, 7 and 8 are the first non-trivial non-cuspidal holomor-

phic automorphic forms with νW = 0, where the conjecture is proven by

a use of the following Euler product expansions of their Mellin transforms

LW (s) :=
∑∞

n=1 c(n)n
−s of the eta-product.

LẼ6
(s) =

∏

p6=3

1

(1−
(
p
3

)
p−s)(1−p−s) =

∏

p≡1 (3)

1

(1−p−s)2
∏

p≡2 (3)

1

1−p−2s

LẼ7
(s) =

1

4

∏

p≡1 (8)

1

(1−p−s)2
∏

p≡5,7 (8)

1

1−p−2s




∏

p≡3 (8)

1

(1−p−s)2 −
∏

p≡3 (8)

1

(1 + p−s)2




LẼ8
(s) =

1

4

∏

p≡1 (12)

1

(1−p−s)2
∏

p≡7,11 (12)

1

1−p−2s




∏

p≡5 (12)

1

(1−p−s)2 −
∏

p≡5 (12)

1

(1+p−s)2




6. Universal Unfolding, Discriminant and Primitive Forms

We define a universal unfolding (Thom [T]) of the polynomial fW as a

weighted homogeneous polynomial FW (x, y, z, g) where g = (g1, . . . , gµ)

is a set of unfolding parameters with deg gi = mi + ε(W ) (1 ≤ i ≤ µ)

such that i) FW (x, y, z, 0) = fW (x, y, z), ii) ∂
∂gµ

FW (x, y, z, g) = 1, iii)
∂
∂gi

FW (x, y, z, 0) (i = 1, . . . , µ) span the Jacobi ring JW . 11

11 The FW is not uniquely determined by these conditions, since the universal unfolding is a local

analytic property near the origin [T]. In fact, two universal unfoldings differ globally by a finite

correspondence of the unfoldings-parameter spaces. This fact should cause later a subtle problem

of levels of primitive automorphic forms with respect to the modular groups Γ0 and Γ− coming

from the discriminants DW,0 and DW,−. But, we do not go into them at this early stage.
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The projection ϕW : XW := {(x, y, z, g) | FW (x, y, z, g) = 0} → SW =

the unfoling parameter space = {g} induces a A×-equivariant fibration, where

the 2-dimensional fibre over a point g is denoted by Xg . Note that SW obtains

negatively weighted coordinate components if and only if ε(W ) < 0. The

discriminant loci DW = {∆ = 0} of the fibration ϕW (= the set of points g

of SW where the fibre Xg ‘degenerates’ in a suitable sense) consists of three

different type components:

DW,+ = {g ∈ SW | Xg obtains an isolated singular point whose vanish-

ing cycles also vanish at 0 ∈ X0},

DW,0 = {g ∈ SW | Xg obtains non-isolated singular loci}.

DW,− = {g ∈ SW | Xg obtains an isolated singular point whose vanish-

ing cycles do not vanish at 0 ∈ X0},

where DW,0 ∪ DW,− depends heavily on FW 11. The discriminant form ∆

(= the equation for the discriminant loci as a divisor in SW ) should play a basic

role in a description of the flat structure on SW , but here we use the discriminant

forms only to describe a conjecture on primitive forms.

Primitive forms are holomorphic 2-forms defined in a neighbourhood of the

origin of XW , satisfying bilinear equations (recall footnote 2), which we con-

sider now globally on XW for some particular cases.

i) Classical weight system W . The unfolding parameter space SW is posi-

tively graded and the discriminant DW consists only of DW,+. The prim-

itive form for this case is given by Res[ dx∧dy∧dz
FW (x,y,z,g) ] up to a constant.

ii) Elliptic weight system W . There is one unfolding parameter g1 of weight

0. The g1 describes the deformation of the elliptic curve Eg which ap-

pear as the boundary X̄g = Xg ∪ Eg . One has DW = DW,+ ∪ DW,0

where DW,0 describes the loci where Eg degenerates. The primitive form

is given by the proporstion Res[ dx∧dy∧dz
FW (x,y,z,g) ]/

∮
a
Res[ dx∧dy∧dz

FW (x,y,z,g) ] where a

is a vanishing cycle, called a marking, vanishing at DW,0 ([S2]).
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iii) E-hyperbolic weight system. There is one unfolding parameter, say g1, of

negative weight = 2ε(W ) = −2. One has DW = DW,+ ∪DW,−. There

are some evidences which support the following conjecture.

"#conjecture and problem 1′ The primitive form for an e-hyperbolic weight

system W has the expression:

Res

[
dx ∧ dy ∧ dz
FW (x, y, z, g)

]
/

∮

γ

Res

[
dx ∧ dy ∧ dz
FW (x, y, z, g)

]
(5)

where γ is a cycle vanishing at the discriminant DW,0 ∪DW,−. Do similar

expressions hold for the primitive forms for W with ε(W ) ≤ 0?

7. Vanishing Cycles and Generalized Root Systems

Denote by RW (resp. RW,−) the set of cycles (∈ H2(Xg,Z) for a generic

point g) vanishing as the parameter g tends to a generic point of DW,+ (resp.

DW,−) (see Footnote 6). They form mutually orthogonal root systems with

respect to the intersection form I . The root lattice QW (−1) := ZRW is rank

µ. The restriction of I on QW has the signature (µ+, µ0, µ−) with µ = µ+ +

µ0+µ−, µ0 = 2#{1 ≤ i ≤ µ | mi = 0} and µ− = 2#{1 ≤ i ≤ µ | mi < 0}.
In Problem 4 we asked to find a reasonable simple root basis of RW . Let us

illustrate some examples.

i) Classical weight system. The RW is a finite root system and a choice of a

Weyl chamber determines a simple root basis ΓW like this [B].

q

p

r

Here, p, q, r is a set of suitable integers with 1
p + 1

q +
1
r > 1 depending

on W .

ii) Elliptic weight system. The RW is an elliptic root system. Depending on

the marking a, a simple root basis ΓW is determined ([S3,I]).
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iii) E-hyperbolic weight system. The RW is an e-hyperbolic root system.

Gabrielov gave the following simple basis.

p
r

q

Here, p, q, r, called Gabrielov numbers, is a set of integers with
1
p + 1

q +
1
r < 1 depending on W .

For further study of bases, one is referred to the works of W. Ebeling [E1],

Gabrielov. On the other hand, it is interesting to observe that the set of integers

p, q, r in the above i) and iii) (and, conjecturely, also ii) after a good definition

of the virtual dual weight system W ∗) are purely arithmetically determined as

the set of signature A(W ∗) of the dual weight system W ∗ (see [S6 §’s 10,12]).

This suggests the following strengthening of Problem 4.

"#problem 4′ Depending on a choice of a primitive form (i.e. on the cycle

γ in (5)), find a direct arithmetic way of describing one or several simple

root basis ΓW of the root system RW such that the Coxeter element as the

product of reflections of the basis (in a suitable order) is of finite order h with

the characteristic polynomial ϕW (λ).

8. Coxeter Element

We restrict our attention to Problem 5 i). The flat (or, Frobenius) structure

on (a covering of) SW is determined by a choice of the primitive form (see

Footnote 4). On the other hand, we saw that in the classical case, due to a

solution of the second inversion problem, one has SW ' h/WW for the Weyl

groupWW (=the group generated by reflections ofRW ) and the flat structure is

determined only inside the Weyl group invariant theory (I.4, 5). Recall further
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that it was crucial for the description that i) a Coxeter element has primitive

hth root of unities as its eigenvalue, and ii) the associated eigenvectors are

regular w.r.t. the Weyl group. It is marvellous that one has already a partial

generalization of this fact [S6]: for any regular weight system W , there exist

exponents which are either equal to 1 or −1. In particular, ϕW (λ) = 0 has

always hth primitive roots of unity as its roots. Accordingly, we conjecture the

following:

"#problem 5′ The eigenspace belonging to the eigenvalue exp(2π
√
−1/h)

(or,exp(−2π
√
−1/h)) is regular with respect to the Weyl group WW .

Of course, this is true for the classical case. For the elliptic and e-hyperbolic

cases, it is also true by modifying the formulation in a stronger form as will be

explained in the following period domain.

9. Period Maps, Period Domain

Consider the period maps for even dimensional vanishing cycles.

i) Elliptic weight system W . The root system RW is semidefinite and has

two dimensional radical. So, the period map (defined by the solutions of

the Gauss-Legendre equation for W ) has one component which cannot be

given by integration of the primitive form. Accordingly, the period domain

is a complex one dimensional extension ẼW of the complex half-space

EW := {ϕ ∈ HomR(QW,R,C) | ker(ϕ) > 0}0/C× (here > 0 means

positive definite and ‘0’ means a connected component). Then Problem 5’

is modifiedly true that the 1-eigenspace for the Coxeter element defined by

the diagram 7.ii) defines a 1-dimensional affine line in EW which does not

belong to any affine reflection hyperplane. This fact leads to the construc-

tion of the flat structure on ẼW //W̃W (see [S3,II], and Satake [Sat2] for

the descriptions of the flat coordinates. For a description of the action of Γ0

on the flat structure, see [Sat1]. See also Looijenga [Lo1]). The full answer
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to the second inversion problems is still in progress (see Helmke-Slodowy

[H-S], Saito-Yoshii [S-Y], [S-T] and [Y2]).

ii) E-hyperbolic weight system W . The root lattice QW has the signature

(l+2, 0, 2) with l+4 = µW . So, the intersection form I is non degenerate,

the period map is defined only by integration of the primitive form, and the

period domain is given by B̃W := {ϕ ∈ HomR(QW,R,C) | ker(ϕ) > 0}0
where the meanings of > 0 and ‘0’ are as before. The problem 5’ is affir-

matively answered that the two eigenspaces\{0} for the two eigenvalues

exp(±2π
√
−1/h) belong either to the period domain or to its orientation

reversed component, and they are regular with respect to the Weyl group

action on the period domain.

Even though B̃W is not a classical domain, its double cover is a classical do-

main of type IV as follows. Recall the big lattice LW := QW ⊕ ZRW,−(−1)
(recall 7. for RW,−) of signature (l + 3, 0, 2), and consider the attached sym-

metric domain D̃W := {ϕ ∈ HomR(LW ,C) | ϕ · ϕ = 0, ϕ · ϕ̄ > 0}/C×

where we denote by ‘·’ the inner product induced from I on the dual space

of LW,R = LW ⊗ R. The restriction ϕ → ϕ|QW induces the quotient map

D̃W → B̃W by the action of W (RW,−) ' Z/2Z. Since the integral of the

primitive form (5) over the big lattice LW maps the complement of the dis-

criminant loci to the domain D̃W , we are naturaly lead to consider the inversion

map: D̃W → SW \ DW , whose flat linear factors are the primitive automor-

phic forms. Recall that there is a unique unfolding parameter, say g1, of the

negative weight −2 corresponding to the quadratic form I(x, x), which is the

unique algebraic primitive automorphic form. The rest of the primitive auto-

morphic forms have positive weights and are transcendental forms coming from

the cover D̃W . The descriptions of the automorphic forms on B̃W as well as

on D̃W are in progress (see Aoki [Ao], Zagier). For a geometric description of

the period map, see [Lo2].
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10. Primitive Automorphic Forms

We are still far from a complete description of the flat structure and the prim-

itive automorphic forms for the e-hyperbolic weight systems. It seems reason-

able to expect them to be described as combinations of characters of certain

representations of the Lie algebras discussed in I.5. The work of Borcherds

[Bo] seems to suggest a description of the discriminant form ∆ for the dual

weight system W ∗, where the duality between the root systems of Witt index

1 and 2 seems to play a role. The clarifications of the relations of the primitive

automorphic forms and the discriminant form with the ‘character formula’ and

the ‘denominator formula’ for the Lie algebra gW attached to the root system

RW of the signature (l + 2, 0, 2) remains as the subject of study in the future.
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