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Preface

This is an introduction to the program which we call “towards a
categorical construction of Lie Algebras”. That is, from the data of a
system of 4 integers W := (a, b, c; h), called a regular system of weights,
satisfying an arithmetic condition, we want to construct a certain gen-
eralization gW of a simple Lie algebra. Precisely, to a weight system, we
first associate a surface with a singular point. Then, using the geometry
of the singularity, a triangulated category is attached. Finally, we want
to read Lie theoretic data from the category and to construct the algebra
gW .1 The program is still in its early stages, and, in the present paper,
we are mainly concerned with some categorical aspects of the program,
and then ask questions on the possible constructions of Lie algebras.

The organization of the paper is as follows. In §1-9, we start by
recalling the classical relations of simple or simply elliptic singularities
with simple or elliptic Lie algebras, respectively, as the prototype of
relations between singularities and Lie algebras. This part is rather
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1This is a part of the long program “a categorical construction of primitive
forms” (see [Mat][Od1][Sa7] and Footnote 11 for a definition of a primitive form,
and consult the overview articles [Sa15]and [Sa19]). We expect that a good
class of primitive forms are constructed from the Lie algebra gW associated
with regular systems of weights W (see §4 and 12). In the present paper, we
are concerned with the part of the program before the construction of the Lie
algebra, and most parts are readable without a knowledge of a primitive form.
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sketchy and we suggest the reader either look at the references or skip
details. In §10-15, we start anew by introducing the concept of a regu-
lar system of weights and by associating a singularity to it. We discuss
about two geometric (algebraic and topological) aspects of the singu-
larity and about the possibly associated Lie algebra. We discuss also
about the ∗-duality on the set of regular weight systems. This part may
look somehow loose and involved without a clear focus. However, these
considerations seem to get converged to a clearer forcus by introducing
a categorical approach in §16-18. In §16, we descripbe the triangulated
category HMFgr

AW
(fW) associated with the singularity. Then we determine

the generating structure of the category for two basic cases in §17 and
18, which are the goal of the present paper.

Let us explain the contents in more details. One key observation in
§1-9 is that the Lie algebra side data: the Coxeter transformation c on
the root lattice is identified with the singularity side data: the Milnor
monodromy action c on the lattice of vanishing cycles (see §5). As in the
classical Lie theory [Bou], we consider exponents mi∈Z≥0 of eigenvalues
of c (see §8), and then, inspired by the theory of primitive forms (see
Footnotes 23, 24), we look at the generating function of the exponents:

(A) χ(T ) = Tm1 + Tm2 + · · ·+ Tmμ .

Then, we observe that, for any of the simple or elliptic Lie algebras (cor-
responding to simple or simply elliptic singularities), χ(T ) decomposes as:

(B) χ(T ) = T−h (Th − T a)(Th − T b)(Th − T c)
(T a − 1)(T b − 1)(T c − 1)

for some integers a, b, c and h := order of c with

(C) 0 < a, b, c < h and gcd(a, b, c) = 1.

In §10, we reverse our view point; we call a system of 4 integers W =
(a, b, c; h) satisfying (C) a regular system of weights (or, a regular weight
system), if the rational function in the RHS of (B) becomes a Laurent
polynomial. Then, we use the regular weight system as the starting
point for all of the later constructions. Actually, the Laurent polynomial
becomes a finite sum of monomials as in (A), where the exponents mi of
the monomials are allowed to be negative in general.

The regular weight systems are concisely classified by the smallest
exponent (= a + b + c− h), denoted by εW ∈Z. In fact, we see εW ≤ 1
in general, and that regular weight systems with εW =1 or 0 correspond
to simple or simply elliptic singularities, respectively. As for the next



Categorical construction of Lie algebras 103

class, εW =−1, we obtain 14+8+9 regular weight systems, which are the
objects of our main interest in the present paper.

In §11-15, associated with a regular weight system W , we introduce
and study a surface XW,0 which has an isolated singular point at the
origin 0. Namely, let fW be a generic weighted homogeneous polynomial
in coordinates x, y, z of weights a, b, c with the total degree h. Then,
the regularity of W is equivalent to the equation fW = 0 defining a
hypersurface XW,0 which has an isolated singular point at the origin
0. This is also equivalent to say that CW := (XW,0 \{0})/Gm being a
smooth orbifold curve, where the orbifold data (i.e. signature, see §11,
a)) is arithmetically determined from W . In other words, the curve CW

is equipped with a fractional (=ε−1
W ) power of the canonical bundle, and

the blowing down of its zero-section is the surface XW,0 with an isolated
singular point which we want to study (see §11).

As described in §3-7, in order to get the Lie algebra gW from the sim-
ple or simply elliptic singularity, historically, there were two approaches:
the algebraic one, using a resolution of the singularity, and the topologi-
cal one, using the set of vanishing cycles (see §5) in a smoothing (Milnor
fiber) of the singularity. Let us see below how these two approaches
work for each of the cases εW=1 and 0.

Case εW=1 (the simple singularity): in the first approach, the res-
olution diagram of the simple singularity is identified with the Dynkin
diagram of a simple Lie algebra (Du Val, see §3), and defines its Cartan
matrix. Then, as is standard in Lie theory, by the use of Chevalley gen-
erators and Serre relations associated to the Cartan matrix, we obtain a
simple Lie algebra gW . On the other hand, in the second approach, the
set of vanishing cycles in the middle homology group of a smoothing (=
Milnor fiber) of the singularity is identified with the set of roots of a fi-
nite root system in its root lattice of a simple Lie algebra (see §7). Then,
inside the lattice vertex algebra [Bo1] of the root lattice, we consider
the Lie-algebra g′W generated by the vertex operators eα of the roots α
([S-Y]§1). The Lie algebras gW and g′W constructed by these two ap-
proaches are canonically isomorphic, due to the fact that the vertices of
the Dynkin diagram obtained by the first approach gives arise a simple
basis of the root system obtained by the second approach, because of
the existence of the simultaneous resolution of the simple singularity due
to Brieskorn (§4 [Br1]). Further, Brieskorn’s description of the universal
family of the simple singularity enables us to describe a primitive form
by the Kostant-Kirillov forms on co-adjoint orbits of a simple Lie group.

Case εW = 0 (the simply elliptic singularity): the first approach to
use the exceptional set of the resolution of the singularity gives merely a
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single elliptic curve, and Lie theoretic data is not apparent (see Footnote
3). On the other hand, the data of the second approach, i.e. the set of
vanishing cycles of a simply elliptic singularity, is characterized as the set
of roots of an elliptic root system ([Sa 14] I, see §7 and Footnote 17). As
in the case of εW =1, we get the Lie algebra g′W generated by the vertex
operators of elliptic roots inside the lattice vertex algebra of the elliptic
root lattice. On the other hand, we construct arithmetically a certain
root basis for the elliptic root system, called the elliptic diagram (Table
7). Then, as in the first approach for the case of εW =1, we can construct
a Lie algebra gW by generalizing the Serre relations associated to the
Cartan matrix of the elliptic diagram. Actually, these two Lie algebras
gW and g′W are shown to be naturally isomorphic; we call this algebra
the elliptic Lie algebra (see §6 and [S-Y]).2

At this stage, we remark that there is a third approach for the
construction of Lie algebras g′′W by use of the representation theory of
finite dimensional algebras, which is sometimes called the Ringel-Hall
construction. Namely, Ringel [Ri 2,3,4] has determined the structure
constant among the Chevalley basis of a simple Lie algebra by using
the data of representations of a hereditary algebra (c.f. [Ga]). The idea
was further extended to the representation theory of tubular algebras by
Lin-Peng [L-P 1,2], and they obtained the elliptic Lie algebras of types
D

(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 (which are exactly the cases when the

elliptic Lie algebras are expected to admit primitive forms, [Sa14]II).
In fact, those hereditary algebras and tubular algebras are obtained as
the path algebras (see §16 6.(32)) of quivers associated to the classical
Dynkin diagrams or to the elliptic diagrams, respectively. Since the Lie
algebra depends only on the derived category of the abelian category of
modules over the path algebra, some generalizations of the method in
terms of triangulated category are in progress. The reader is referred to
[P-X], [Toë], [D-X] and [X-X-Z] for details.

We examine, in the present paper, the “Lie theoretic data” of the
above mentioned three approaches for the case εW =−1.

The singularities associated with the 14 weight systems with εW =−1
are called exceptional uni-modular singularities by Arnold [Ar3]. 1.
Topological approach: certain distinguished bases of the lattices of van-
ishing cycles for them have been obtained by Gabrielov ([Gab2], see

2As in simple Lie algebra case, the symplectic structures on the co-adjoint
orbits of the elliptic Lie group are expected to form a primitive form. See [Sa14]
VI (Integrable Highest Weight Modules), VII (Elliptic Groups and their Invari-
ants), in preparation, and [Ya3]).
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Table 12), where the triplet (p,q,r) of lengths of the three branches of
the diagram is called the Gabrielov number. 2. Algebraic approach: the
exceptional set of the minimal resolution of the 14 singularities is given
by a star-shape configuration of 4 rational curves (see Table 11), where
the triplet (p,q,r) of the minus of the self-intersection numbers of the
three branching curves is called the Dolgachev number. Then Arnold
observed that there is an involutive one to one correspondence from the
set of 14 exceptional uni-modular singularities to itself, which exchange
the Gabrielov number and the Dolgachev number. The involution is
called the Strange duality ([Ar3],§13). In the other words, the “Lie theo-
retic data” of the two approaches are exchanged by the strange duality.

The strange duality, which is nowadays understood as an appear-
ance of mirror symmetry 3, admitted several interpretations and expla-
nations. Among these, in §14, we introduce ∗-duality on regular systems
of weights, which is an involution ∗ on a set of regular systems of weights
characterized as follows: let us introduce the characteristic polynomial
of the weight system W by ϕW (λ) :=

∏μ
i=1(λ−exp(2π

√
−1 mi

h
)) ∈ Z[λ]. As

a cyclotomic polynomial, we decompose it as ϕW (λ) =
∏

i|h(λi−1)eW (i).
Then, another regular weight system W ∗ is the ∗-dual of W if and only
if h=h∗ and eW (i) + eW∗(h/i) = 0 for all i∈Z>0 with minor additional
conditions.4 Then, we prove that any weight system with εW = 1 is
selfdual; W = W ∗, and that the ∗-duality induces the strange duality
on the set of 14 weight systems with εW =−1. Therefore, we expect in
general that the ∗-duality exchanges the algebraic approach for a weight
system W with the topological approach for the dual system W ∗. Then,
instead of the naive study of resolution diagrams of the singularity XW,0

in the algebraic side of W , what stands for the lattice and the basis of
vanishing cycles of XW∗,0 in the topological side of W ∗?

Inspired by the recent studies of D-branes on mirror symmetry in
mathematical physics ([K-L 1,2], [H-W], [Wal] and [Or1], see §15), we
study the homotopy category HMFgr

AW
(fW ) of matrix factorizations of

3The reader is referred to [Kon],[Yau] for mirror symmetry in general and
to [K-Y][Ta1] for the Landau-Ginzburg orbifold case. Already in case of εW = 0,
the algebraic data, i.e. the elliptic curve in the exceptional set in the resolution
of the singularity, is not “mirror dual” to the elliptic root system of vanishing
cycles obtained topologically. In order to get mirror symmetry here, one should
think of the elliptic curve with a group action [Ta1]. A more comprehensive
description is obtained by considering the pairs of a regular weight system and
a group action. However, in the present paper, we do not get into such details.

4The ∗-dual of W may not exist for all W, but is unique if it exists and
is denoted by W ∗ with W ∗∗ = W [Sa17]. It seems interesting to extend the
concept of regular systems of weights (by considering group actions (Footnote
3) and non-hypersurface singularities), which is closed under the ∗-duality.
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the polynomial fW as the algebraic approach.5 We devote §16 to the
descriptions of three different definitions of this category and its basic
properties. We expect that the advantage of this approach is that this
category carries a “universality” such that it can recover all the three
approaches to the Lie algebra, which we have discussed above.6

In §17 and 18, we observe and explain this fact in the case of the
category for simple singularities with εW = 1 and for the exceptional
singularities with εW =−1.

We show that the category HMFgr
AW

(fW ) for εW=1 is generated by
a strongly exceptional collection E (see §16 4.), whose associated quiver
is a Dynkin quiver �Δ of type W , and that the path-algebra C�Δ (see
§16 6.) is isomorphic to the algebra End(E) consisting of all morphisms
among the objects of the exceptional collection. Therefore, we have the
equivalence HMFgr

AW
(fW )�Db(mod-C�Δ) due to a theorem of Bondal-

Kaplanov (see §16 4). Hence, using the classical result by Gabriel [Ga],
the K-group K0(HMFgr

AW
(fW )) and the image set in the K-group of

indecomposable objects of the category are isomorphic to the root lat-
tice and the set of roots of a finite root system, respectively. That is,
HMFgr

AW
(fW) recovers all three data for the Lie algebra discussed above,

inducing the natural isomorphisms gW �g′W �g′′W among them.
In the case εW=−1, the category HMFgr

AW
(fW) is generated again by

a strongly exceptional collection E whose associated quiver ΔA is given
in Table 14, where A is the signature set (13) of W (see Footnote 32).
We show again an isomorphism End(E) � C(ΔA, R) and an equivalence
HMFgr

AW
(fW )�Db(mod-C(ΔA, R)) of the categories, where C(ΔA, R) is

the quotient of the path-algebra CΔA by the relations R (see (32)and §18
Theorem). Hence, in the 14 uni-modular exceptional cases, comparing
Table 12 with 14 and in view of the strange duality, we conclude that
the K-group K0(HMFgr

AW
(fW )) is isomorphic to the lattice of vanishing

cycles for the ∗-dual weight system W ∗; this is what we expected.
We conjecture that the image set in the K-group of exceptional in-

decomposable objects of the category coincides with the set of vanishing
cycles for the singularity XW∗,0, and, hence, the three approaches to
the Lie algebra are available from the category HMFgr

AW
(fW ). Whether

the three Lie algebras gW , g′W and g′′W for them are isomorphic to each
other or not is an interesting and important open problem.

5This was proposed by Takahashi [Ta2] (c.f. Orlov [Orl1]) answering a prob-
lem posed by the author [Sa15] (5.3) Problem. The sections §16, 17 and 18 are
based on the joint works [K-S-T 1-2].

6It is also remarkable that the stability condition space [Br1][H-M-S] on this
category seems to have a close relationship with the period domain for period
maps of primitive forms [Sa22].
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§1. Simple polynomials

There are a finite number of regular polyhedra, namely, the icosa-
hedron, dodecahedron, octahedron, hexahedron and the tetrahedron,
known at the time of Platon. The regular dihedron, which has only
two faces of the n-gon (n ≥ 3), is nowadays included in the list of
regular polyhedra. The subgroup G of SO(3) consisting of rotations
of three dimensional Euclidean space, which moves a regular polyhe-
dron (centered at the origin) to itself, is called the regular polyhedral
group. The binary extension G̃ of the regular polyhedral group G is
obtained by taking the inverse image of G through the surjective ho-
momorphism SU(2) → SO(3). It is well-known that the binary regu-
lar polyhedral groups (including binary dihedral groups) and the cyclic

subgroups Zn :=
〈(

exp 2π
√

−1
n

0

0 exp
(
− 2π

√
−1

n

)
)〉

for n ∈ Z>0 together form

a complete list of finite subgroups of SU(2) up to conjugacy. As an
abstract group, all of the groups have a presentation:

〈p, q, r〉 := 〈 x, y, z | xp = yq = zr = xyz〉

for suitable integers p, q, r ∈ Z>0, given in the next Table 1 (here, x, y
and z induces the rotation of the polyhedron centered at the barycentre
of an edge, a face and a vertex).

〈1, b, c〉 � Zn � cyclic group of order n = b + c

〈2, 2, n〉 � D2n � binary dihedral group of n-gon n ≥ 2

〈2, 3, 3〉 � A4 � binary regular tetrahedral group

〈2, 3, 4〉 � S4 � binary regular octahedral group

〈2, 3, 5〉 � A5 � binary regular icosahedral group

Table 1.
In fact, these are the only cases when the group 〈p, q, r〉 is finite (see
[C-M]). The group is sometimes called the Kleinean group because of
the following result due to A. Schwarz [Sc] and F. Klein [Kl1].

Theorem. Let G̃ ⊂ SU(2) be a Kleinean group. Let it act linearly
on C2, and, hence, on the ring C[u, v] of polynomial functions on C2

(where u, v ares coordinates of C2). Then the subring C[u, v]G̃ := {P ∈
C[u, v] | gP =P ∀g∈G̃} of invariants is generated by 3-homogeneous ele-
ments, say x, y and z, which satisfy a single relation, say fG̃ = f(x, y, z).
That is:

C[u, v]G̃ � C[x, y, z]/(fG̃).
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The polynomial fG̃ is called a simple polynomial, which is listed in
the following table.

Type fG̃ Kleinean group
Al xl+1 + yz Zn

Dl x2y + y1−1 + z2 〈2, 2, n〉
E6 x4 + y3 + z2 〈2, 3, 3〉
E7 x4 + xy3 + z2 〈2, 3, 4〉
E8 x5 + y3 + z2 〈2, 3, 5〉
The Types in the left-side shall be explained in §3.

Table 2.
Note. From the polynomial fG̃, one can recover G̃. See Appendix 3.

F. Klein, in the introduction to his lecture notes on the icosahedron
[Kl1], described the time when he and Lie studied together in Berlin
and Paris during the years 1869-70: “At that time we jointly conceived
the scheme of investigating geometric or analytic forms susceptible of
transformation by means of groups of changes. This purpose has been
of directing influence in our subsequent labors, though these may have
appeared to lie far asunder. Whilst I primary directed my attention to
groups of discrete operations, and was thus led to the investigation of
regular solids and their relations to the theory of equations, Professor
Lie attacked the more recondite theory of continued groups of transfor-
mations, and therewith of differential equations”.

§2. Simple Lie algebras and root systems

Let us explain another stream of mathematics started from Lie and
Killing-Cartan.

The Lie algebras describe “the infinitesimal structure of continuous
groups”. The series of works [Ki] by Killing starting from the year 1888,
determining the structure of simple Lie algebras (which was completed
by E. Cartan [Ca]) has introduced a new mathematical structure (see
[Ha]) which goes far beyond the class of simple Lie algebras, and is
strongly influential on the present program.

Killing looked at the adjoint action of the maximal abelian (Cartan)
subalgebra of a simple Lie algebra and decomposed the Lie algebra into
a direct sum of equi-eigenspaces of the action. Since an equi-eigenvalue
(as an element of the dual space of the Cartan subalgebra) is a root
of the characteristic eigen-equation, he called it a root (Wurzel), and
showed that the system of roots for a simple Lie algebra satisfies some
properties, which are nowadays known as the axioms for a finite root
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system (see ([Bou]§6no1)). The classification of simple Lie algebras is
reduced to the classification of finite root systems. In fact, it is achieved
by determining the matrix (2I(α, β)/I(α, α))α,β∈Γ (called the Cartan
matrix), where I is Killing form on the root lattice and Γ is a simple
basis of the root system7.

§3. Du Val diagrams and Coxeter diagrams

Let us see how the two streams of mathematics, one starting with
Klein and the other with Lie-Killing, meet again in the year 1934, when
Du Val and Coxeter were together at Trinity college in Cambridge. At
that time, the concept of the Weyl group, generated by reflections sα

for all roots α of the Lie algebra, was established in connection with
the representation theory of simple Lie algebras (Weyl [We] (1925-6)
and Cartan [Ca]). The classification of root systems is reduced to the
classification of the Weyl group [Wae]. Then Coxeter, by use of the
fundamental domain (=Weyl chamber) of the Weyl group, classified all
finite reflection groups acting on Euclidean space. Namely, he gave an
explicit presentation of the Weyl group in terms of generators and re-
lations, known as the Coxeter relations [Co1].8 For the classification,
he introduced a diagram (tree) Γ, where the vertices correspond to the
generators and an edge is drawn between two vertices which are non-
commutative (see [Bou] for more details on reflection groups). In Table
3, the Coxeter’s diagram for the Weyl groups of types Al, Dl, or El are
given by removing i) the vertex ρ0 of the diagram and ii) the “tilde ˜ ”

7Recall [Bou](chap.6 §1 5.) that a simple basis of a (finite) root system
is characterized as a system of linear forms on the Cartan algebra, whose ze-
ros define the system of walls (oriented to the inside) of a Weyl chamber. It
is admirable that, even at such an early stage (1888) of the study of simple
Lie algebras, Killing (see [Ki]S12,13) began to study root basis Γ, the product∏

α∈Γ sα of the reflections sα associated to the basis (presently known as the
Coxeter-Killing transformation) and its eigenvalues (which presently defines the
exponents). However, for their geometric significance in terms of the Weyl group
and chambers, one must wait until Weyl’s work [We]. As we shall see, finding
generalizations of the simple root basis, Coxeter- Killing transformations and
the exponents are central problem in the present paper.

8The generators are given by the reflections attached to the walls of the
chamber (which is bijective to the set Γ of simple basis of Killing) and the
relations are given by the dihedral group relations for every pair of generators
along 2-codimensional facets of the chamber. The higher codimensional facets
of the chamber do not play a role in determining the group.
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from the types in RHS of table (see Appendix for more details on the
table).

Kleinean group Diagram Type

ρ0

ρ

ρ0 ρ

ρ0 ρ

ρρ0

ρ0 ρ

Zn

〈2, 2, n〉

〈2, 3, 3〉

〈2, 3, 4〉

〈2, 3, 5〉

Ãn−1

D̃n+2

Ẽ6

Ẽ7

Ẽ8

Table 3.

The complex hypersurface X0 in C3 defined by the zero-loci of a
simple polynomial in the list of Klein (Table 2) has an isolated singular
point at the origin 0 (cf. §11 Fact4.), called a simple singularity [Dur]. In
the year 1934, Du Val [Du] studied the (minimal) resolution π : X̃0 → X0

of the simple singularity. He associated a diagram Γ to the resolution:
decompose the exceptional set E := π−1(0) into irreducible components
∪l

i=1Ei, then, vertices xi of the diagram are in one to one correspondence
with irreducible components Ei and an edge is drawn between xi and
xj if and only if Ei ∩ Ej �= ∅. He observed that for each Kleinean
group on the LHS of Table 3, the diagram he obtained is exactly the
one given in the middle of the Table 3, deleting the vertex ρ0. In the
introduction of [Du], he wrote “It may be noted that the “trees” of curves
which we have had to consider bear a strict formal resemblance to the
spherical simplices whose submultiple of π, considered by Coxeter”. In
the same volume of the London Journal, Coxeter [Co1] listed diagrams
for reflection groups, answering to a request of Du Val (for the definitions
of diagrams for a basis of a lattice, see Footnote 41, and for a quiver,
see §16, 6).
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§4. Universal unfolding of simple singularities by Brieskorn

We observed in §3 that there is a one to one correspondence be-
tween the diagrams of Du Val associated to simple polynomials and those
of Coxeter in the classification of simple Lie algebras (recall Table 3).
However, at this stage, their relation remained a “strict resemblance”,
as Du Val wrote. A more direct and decisive relationship was found
40years later in the work of Brieskorn and Grothendieck. In ICM Nice
1970, Brieskorn [Br4] reported the following result.

Theorem. (Brieskorn [Br4]) Let X → S be the universal unfolding 9

of a simple singularity, and let g be the corresponding simple Lie algebra.
Then, one has a commutative diagram:

X ⊂ g

↓ ↓
S � g//Ad(g) � h//W

where i) the vertical arrow in right side of the diagram is the adjoint
quotient morphism due to Chevalley’s theorem, and ii) X ⊂ g is an
embedding of X onto a transversal slice to the nilpotent subvariety of g

at a subregular element.

Brieskorn further described the simultaneous resolution (c.f. [Br1,2])
of the universal family.10 He wrote “Maybe the two theories do not lie
so far asunder”.

Remark 1. The Brieskorn’s description of the universal unfolding
X→S of a simple singularity by use of a simple Lie algebra has the ad-
vantage in determining certain global differential geometric structures on
the family X→S, since, in the Lie algebra g, the integrability conditions
are already built in. For instance, the primitive form of the family X→S
11, which is defined by an infinite system of non-linear equations, for the
simple singularity is described by the Kostant-Kirirov symplectic form

9The concept of an unfolding of a singularity of a function f is due to R.
Thom [Th]. We shall give in §5 and in Footnote 12. a brief description of them.
From an algebraic geometric view point, it is essentially the same concept as
a semi-universal deformation of the hypersurface defined by f = 0 near at the
singular point (see [Sch] and [Tu]).

10This was reproven by a use of representation of quivers [Kr] (see the works
by H. Nakajima for further studies on the relationship between Lie algebras and
representations of quivers).

11For a primitive form, see [Mat][Od1][Sa7][Sa19]. It is a relative de-Rham
cohomology class ζ ∈ HDR(X/S) which 1) generates all the other de-Rham
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[Sa7] [Yah] [Ya1] [Yo]. The flat structure (Frobenius mfd structure) on
the deformation parameter space S is described by the Coxeter-Killing
transformation of the Weyl group [Sa16] [He] [Sab].

These facts motivated the author to convince the following: for
a further class of singularities, using suitable Lie algebras, construct
primitive forms and flat structures globally. However, the list of regular
polyhedral groups and that of the simple Lie algebras have already been
used up. Are these the only cases where singularity theory and Lie
theory come happily together?

§5. Universal unfolding of a hypersurface singularity

Before we go further, we prepare some terminologies on vanishing
cycles of a hypersurface isolated singular point studied by authors [Br3]
[Le1] [Gab1] [Eb1].

Let f(x) with x := (x0,· · ·, xn) (n ≥ 0) be a holomorphic function
defined in a neighborhood U of the origin 0 of Cn+1 with the coordinate
x. Assume that the hypersurface X0 := {(x) ∈ U | f(x) = 0} has an
isolated singular point at the origin 0∈X0. This is equivalent to that
Jf :=C{x}/

(
∂f(x)
∂x0

, · · · , ∂f(x)
∂xn

)
is of finite rank over C, where C{x} is the

local ring of all convergent series in x.
Theorem. (Milnor [Mi]) Consider a map f : Xδ,ε → Dε where

Xδ,ε := {x ∈ U | |x| < δ} ∩ f−1(Dε) and Dε := {t ∈ C | |t| ≤ ε} for
positive real numbers δ, ε such that 0 < ε << δ << 1. Then, f |X\f−1(0) :
X \ f−1(0)→ Dε \ {0} is a locally trivial topological fibration such that
the general fiber is homotopic to a bouquet of μf -copies of n-sphere Sn,
where μf := dimC Jf is called the Milnor number.

The fibration is called the Milnor fibration, whose general fiber over
a base point 1 ∈ Dε, denoted by X1, is called the Milnor fiber. If f
is globally defined weighted homogeneous polynomial of positive weights,
then we may choose δ = ε =∞.

As a consequence of this result, the (reduced) homology group of the
Milnor fiber is non-trivial only in dimension n, and we have H̃n(X1, Z)�
ZμW . Let us introduce particular elements of H̃n(X1, Z), called vanishing

cohomology classes as a DS-module, and 2) satisfies an infinite system of bi-
linear differential equation (by means of residue pairings). Its local existence on
S is known by [Sai]. Global existence on S is known only for simple or simply
elliptic singularities. It is believable that g is the Cartan prolongation of X with
respect to the primitive form. Such global construction of primitive forms by
means of globally defined integrable systems (such as Lie algebras) is the basic
motivation in the present paper. However, we shall not discuss the primitive
form itself in any further detail.
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cycles: let us consider a universal unfolding of f (Thom [Th]), which is
a function F (x, t) in x ∈ Cn+1 and t = (t1, · · · , tμf

) ∈Cμf defined in a
neighborhood of the origin (0, 0) ∈ Cn+1×Cμf satisfying i) F (x, 0)=
f(x), and ii) ∂F (x,0)

∂ti
(i=1, · · · , μf ) span the C-vector space Jf .

For a small value of t, again by choosing δ and ε suitably for ft(x)=
F (x, t), we consider the map ft : Xδ,ε→Dε such that, excluding finite
number of its fivers over the critical values, it gives a locally trivial
fibration, whose general fiber is homeomorphic to the Milnor fiber. If t
is general, then ft|X has exactly μf -number of non-degenerate critical
points and the (critical) values are distinct (that is, ft is a Morsification
of f). We may choose the “base point” 1 whose fiber f−1

t (1) is the
Milnor fiber X1 on the boundary of the disc Dε. Let g : [0, 1]→Dε be
any continuous path starting at the base point 1 ∈ Dε and ending at a
critical value c, without passing any critical points on [0, 1). Then the
pull-back X[0,1] of the fibration X→Dε over the interval [0, 1] retracts
to Xc. Thus, the natural inclusion X1⊂X[0,1] induces a homomorphism
ι : H̃n(X1, Z)→ H̃n(Xc, Z) whose kernel ker(ι) is rank 1 module Z (since
the Hessian of ft at the critical point is non-degenerate).

Definition Let the setting be as above. A base e (up to sign) of the
kernel ker(ι) in H̃n(X1, Z) is called a vanishing cycle along the path g.
We denoteby Rf the set of all vanishing cycles running all possible paths
g and the critical values c.

Let γ be a path in Dε which starts at the base point 1 and move
along g close to the critical value c and then turns once around c counter-
clockwisely, and then return to 1 along g. This path induces the mon-
odromy ρ(γ) ∈ Aut(H̃n(X1, Z)), whose action on u ∈ H̃n(X1, Z) is de-
scribed by the following Picard-Lefschetz formula:

ρ(γ)(u) = u− (−1)
n(n−1)

2 (u, e)e

where (·, ·) : H̃n(X1, Z)×H̃n(X1, Z)→Z is the intersection form on the
middle homology group (see Footnote 35). If n is even, it is symmetric
and (e, e)= (−1)n/22 so that ρ(γ) is a reflection action with respect to
the vector e, denoted by we.

•

••1

cμf

ci

c1

γ

•

•
•
•

•
•
•γ1

gi

gμf

γμf

g1

Table 4.

Now, we describe the distinguished basis
of the middle homology group H̃n(X1, Z), de-
pending on two choices: i) to give a number-
ing of the critical values, say c1, · · · , cμf

, of ft,
ii) to choose μf paths g1, · · · , gμ in Dε such
that a) each gi is a path connecting 1 with
ci as above, which is not self-intersecting, b)
distinct paths gi and gj are intersecting only
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at 1, and c) the passes g1, · · · , gμ are starting at the point 1 in the linear
order 1, . . . , μf counter-clock wisely (see Table 4).

Fact-Definition. Under the above the setting, the set e1,· · ·, eμf
of

vanishing cycles (up to choices of sign) associated to the paths g1,· · ·, gμf

form an ordered basis of H̃n(X1, Z), called a distinguished basis (see
[Br3], [Le1], [Gab1], [Eb1])
Monodromy. Let γ be the path starting at 1 turning once around
the boundary of Dε counter-clock wisely and comes back to 1. The
monodromy of this path c :=ρ(γ)∈Auto(H̃n(X1, Z)) is called the Milnor
monodromy. Since γ is homotopic to the product γ1 · · · γμf

of paths γi

(see Table 4), we express the monodromy c:
c = we1 · · ·weμf

as a product of reflections associated to a distinguished basis e1, · · · , eμf
.

••

•

•g1

gi+1

gμf

•

gi

cμf

c1

1

Table 5.

Braid group Bμf
action on distinguished

basis: First, we remark that the homo-
topy classes of the paths γ1, · · · , γμf

give a
free generator system of the group π1(Dε \
{c1,· · ·, cμf

}, 1). Thus the choice of the
paths g1,· · ·, gμf

, up to homotopy, corre-
sponds to a choice of a free generator sys-
tem of the free group. On the other hand,
the braid group Bμf

acts on the set of
free generator systems, as usual as follows:
for 1 ≤ i < μf , define an action σi :

γ1, · · · , γμf
�→ γ1, · · · , γi−1, γiγi+1γ

−1
i , γi, γi+2, · · · , γμf

. This causes
an action of σi on paths g1, · · · , gμf

to those given in Table 5.
and on the distinguished basis e1, · · · , eμf

to the distinguished basis
e1, · · · , ei−1, wγi(ei+1), ei, ei+2, · · · , eμf

. One can immediately verify
that σi (1≤ i<μf−1) satisfy Artin braid relations (see [Ar]) so that we
obtain a braid group action on the set of distinguished basis.

Remark 2. Even if we start with a globally defined weighted ho-
mogeneous polynomial f of positive weights, in order to construct the
fibration ft : X → Dε above, we need to shrink the domain of ft suit-
ably by a use of δ and ε as above. In fact, if one of the coordinate ti
has negative weight (c.f. §11,b),4)), the embedding of a Milnor fiber Xt

into the global affine surface X̂t := {x ∈ Cn+1 | F (x, t) = 0} induces a
non-trivial extension H̃n(Xt, Z)⊂ H̃n(X̂t, Z). The extension is achieved
by adding the lattice of the vanishing cycles “coming from∞” and is ex-
pected to play key role in analytic theory of primitive forms (see [Sa19]§6
Conjecture and Problem I’).
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Remark 3. In mathematical physics, hypersurface singularity is stud-
ied under the name of Landau-Ginzburg model.

§6. Simply elliptic singularities

We return to the main stream of our considerations in the present
paper: to seek for a connection of primitive forms with Lie theory.

In the year 1974, the author [Sa2] came up with a new class of normal
surface singularities, which are “located on the boundary” of the defor-
mation space of simple singularities. They are called the simply elliptic
singularities, which include the following three types of hypersurfaces:

Type equation fW E · E (μ+, μ0, μ−)

Ẽ6 or E
(1,1)
6 x3 + y3 + z3 + λxyz −3 0, 2, 6

Ẽ7 or E
(1,1)
7 x4 + y4 + z2 + λxyz −2 0, 2, 7

Ẽ8 or E
(1,1)
8 x6 + y3 + z2 + λxyz −1 0, 2, 8

Table 6.
The simple elliptic singularities X0 are characterized from two dif-

ferent view points: a) by the resolution of the singularity X0: a normal
singular point 0 of a surface X0 is simply elliptic if and only if, by defini-
tion, the exceptional set E=π−1(0) of the minimal resolution π :X̃0→X0

of the singularity contains only a single elliptic curve, and b) by defor-
mation of the singularity: a singular point 0 of a hypersurface surface
X0 is either simple or simply elliptic if and only if any singularity in a
local deformation of X0 admits a weighted homogeneous structure.12

12Let us explain what do we mean by 1. “singularity in a local deformation
of X0”, and 2. “weighted homogeneous structure” on a singularity X0.

Xϕ

01

C

Xϕ(x)

Cϕ

Dϕ

ϕ

Sϕ

0
x

X1
X0

C3

ϕ

Local deformation of X0

.
1. Recall §5 the universal unfolding F (x, t)

defined in a neighborhood Ũ of the origin of
Cn+1 × Cμf . Then, it defines a local analytic flat
family of analytic varieties ϕ : Xϕ → Sϕ where
Xϕ := {(x, t) ∈ Ũ | F (x, t) = 0}, Sϕ is a neigh-
borhood of the origin of Cμf , and ϕ is the projec-
tion to the second factor. The fiber ϕ−1(0) over 0
is nothing but the original singular surface X0 so
that the family {Xt := ϕ−1(t)}t∈Sϕ is called the
semi-universal deformation of the singularity X0

([K-S], [Sch]). One can show that the critical set
Cϕ of the map ϕ is (locally near at the origin 0)

a smooth subvariety of dimension μf − 1, which is finite over Sϕ so that the
image Dϕ := ϕ(Cϕ) is (locally near at 0) is a hypersurface in Sϕ, called the
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Here in the case of simply elliptic singularity, a) the resolution di-
agram in the sense of Du Val consists only of a single elliptic curve E
and Lie theoretic data are hardly seen, in contrast with the case of the
simple singularity. However, b) they show a new relation (in a symboli-
cal level) with Lie theory through deformation theory as follows: in the
local deformation (see 1. of Footnote 12) of an elliptic singularity of type
Γ̃ ∈ {Ẽ6, Ẽ7, Ẽ8}13, only an elliptic singularity of the same type Γ̃ or a
simple singularity can appear. The simple singularity of type Γ can ap-
pear if and only if Γ is a subdiagram of Γ̃. This fact was explained soon
after its finding by use of the lattice (H2(X1, Z), I) (here, I =−(·, ·), see
Footnote 35).14 Thus, for a simply elliptic singularity X0, a relationship
with Lie theory begun to appear from the lattice of the smoothing X1,
instead of the resolution X̃0. Do we need to change our view point?
15 We shall come back to this question of “change of view-points” later
when we discuss ∗-duality in §14 and 15.

discriminant of ϕ. Then, for any point x ∈ Cϕ, the variety Xϕ(x) = ϕ−1(ϕ(x))
is singular at the point x. This is a singularity in a local deformation of X0.
As we saw already, for a generic point x ∈ Cϕ, (Xϕ(x), x) is an ordinary double
point (i.e. Morse singularity).

2. Let X0 be a hypersurface in a neighborhood of the origin 0 of Cn+1

defined by an analytic equation f(x) = 0 with an isolated singular point
at 0. We say that X0 admits a weighted homogeneous structure at 0 if
there is a local analytic coordinate change at 0 such that the defining equa-
tion f(x) is transformed to a weighted homogeneous polynomial P (x) (i.e.
P (x) =

∑
a0i0+···anin=h ci0···inxi0

0 · · ·xin
n for some positive integers a0, · · · , an

and h). Then, the following i), ii) and iii) are equivalent [Sa1]: i) X0 admits an
weighted homogeneous structure, ii) The sequence: 0→ C→ OX0,0

d→ Ω1
X0,0 →

· · · d→ Ωn+1
X0,0 → 0 is exact, where (Ω·

X0,0, d) is the Poincaré complex over X0 at

0, and iii) f belongs to the ideal
(

∂f(x)
∂x0

, · · · , ∂f(x)
∂xn

)
in the local ring C{x}.

13The names Ẽi are taken from that of the affine Coxeter diagrams (Table
3) for the reason explained in this section. They are nowadays called also E

(1,1)
i

for the reason explained in the next §7.
14This is shown by using the fact that the lattice (H2(X1, Z), I) is isomor-

phic to QΓ̃ ⊕ Z (see [Ga], [Eb1,2]) where QΓ̃ is the affine root lattice of a type
Ẽ6, Ẽ6 and Ẽ8. See next §7.

15This question is supported by the fact that the period domain for the
period map

∫
ζ of the primitive form is determined from the lattice H2(X1, Z)

[Sa7], [Sa14]II.
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§7. Vanishing cycles for simple and simply elliptic singularities
In order to sharpen the new view point, i.e. to study the lattice

(H2(X1, Z), I) of the middle homology group of the smoothing X1 of
singular surface X0, we consider a particular subset R ⊂ H2(X1, Z),
the set of vanishing cycles introduced in §5 (c.f. [Sa15](5.2),(5.3)). From
this view point, let us state some consequences of Brieskorn’s description
[Br4] on simple singularities:

1) The minimal resolution X̃0 and the smoothing X1 of a simple singular-
ity X0 of type Γ are homeomorphic. Hence one obtains an isomorphism
of lattices:
∗) H2(X1, Z) � H2(X̃0, Z) .
Here, the homotopy type of the homeomoprhims, and hence the isomor-
phism of lattices ∗) depend on the Weyl group of type Γ. In fact, the
ambiguity of the isomorphism can be resolved (up to an outer automor-
phism of the Weyl group) by choosing the base point 1 in the totally
real region of the deformation parameter space Sϕ (see Footnote 16).
2) The set of vanishing cycles R in H2(X1, Z) (see §5) forms a finite
root system of type Γ, and H2(X1, Z) is identified with the root lattice
QΓ of the root system.
3) The homology classes [Ei]∈H2(X̃0, Z) (i=1,· · ·, l) of the exceptional
curves Ei in the resolution X̃0 are mapped by the homomorphism ∗) to
a simple root basis Γ of the root system R, which are also distinguished
basis in the sense in §5.16

If X0 is a simply elliptic singularity, none of 1), 2) or 3) holds.
However, 2) suggests to regard the set of vanishing cycles in H2(X1, Z)
for a Milnor fiber X1 of an elliptic singularity as a generalization of
root systems. In fact, we can generalize the root systems17 by removing

16The paths g1,· · ·, gμf
in Sϕ (Footnote 12), with whom associated distin-

guished basis e1,· · ·, eμf
is the simple root basis, is given in [Sa20] §4.3 Figure

6. and Theorems 4.1 and 4.2, using semi-algebraic geometry of the real discrim-
inant Dϕ,R of the universal deformation of the simple singularity. Furthermore,
the associated paths γi i = 1,· · ·, μ (Table 4) generate the fundamental group
π1(Sϕ\Dϕ, 1) and satisfy Artin braid relations of type Γ so that the fundamen-
tal group becomes an Artin group ([Br5] [B-S]). Then, the intersection matrix
(I(ei, ej))ij=1,···,μ is shown to become the Cartan matrix of type Γ by solving the
braid relations where γ1,· · ·, γμ are substituted by Picard-Lefschetz formula for
ρ(γ1),· · ·, ρ(γμ) in §5.

17A subset R of a real vector space equipped with a symmetric form I is
called a (generalized) root system if ZR is a full lattice, 2I(α, β)/I(β, β)∈Z

and α−2I(α, β)/I(β, β)β∈R for ∀α, β ∈ R, and irreducible in a suitable sense
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the finiteness axiom from the classical one for a finite root system [Bou]
Chap. VI §1 so that the set of vanishing cycles for any even dimensional
hypersurface isolated singularity becomes a generalized root system. In
particular, the set of vanishing cycles for a simply elliptic singularity is
characterized as an elliptic root system, that is, a root system belonging
in a semipositive lattice with radical of rank 2 (see [Sa14] I).

However, by the lack of 1) and 3) for the case of simple singularity,
we cannot find a generalization of “the simple root basis” of the ellip-
tic root system naively from the resolution of X0. Also, no geometric
method to choose one particular distinguished basis (see §5) is knowm.18

However, we choose some root basis arithmetically19 such that the el-
liptic Coxeter-Killing transformation defined as a product of reflections
associated with the basis is of finite order. As in the case of classical
finite root systems, we associate a diagram, called an elliptic diagram, to
the basis (see Footnote 41). Some of the simply-laced elliptict diagrams
are given in following Table 7.

([Sa14]I). A root system is finite or affine if I is positive definite or semidefinite
and rank(radical)=1, respectively. A root system is called elliptic if I is positive
semidefinite and rank(radical)=2. The set of vanishing cycles for a simply elliptic
singularity of type Ẽ6, Ẽ7 or Ẽ8 is the elliptic root system of type E

(1,1)
6 , E

(1,1)
7

or E
(1,1)
8 .
18Gabrielov [Gab2] (Fig. 10 and 11.) obtained the diagrams in Table 7.

for certain distinguished basis as one of the possible choices after the braid
group action under the guiding principle to find the diagrams containing small
number of triangles. On the other hand, in the simple singularity case, the
semialgebraic geometry of the discriminant ([Sa20]) can yield the distinguished
basis which corresponds to the simple root basis of the finite root system (see
also A’Campo’s [AC]). There seems a gap between topology and semi-algebraic
geometry.

19There does not exist elliptic Weyl chambers and, hence, there seemed
no a priori definition of a simple basis for an elliptic root system (see [Klu]).
However, the elliptic diagram in Table 7. is defined by duplicating the vertex
of the affine diagram at the largest exponent (see [Sa14]I(8.6)). We define the
elliptic Coxeter-Killing transformation ce as the product of reflections (acting on
H2(X1, Z)) attached to the vertices of the elliptic diagram (in a suitable order).
Then one has: i) ce is of finite order h, and the eigenvalues of ce determine the
exponents of the elliptic root system (see §8 and Table 9), ii) the eigenvector of
ce belonging to the eigenvalue 1 is regular in the elliptic Cartan algebra he with
respect to the elliptic Weyl group We and iii) the universal central extension
W̃e of We is generated by a lift c̃h

e . Using i), ii) and iii), a flat structure on the
quotient space h̃e//W̃e is constructed ([Sa15]II, [Sat,1,2]).
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Table 7. Simply laced Elliptic diagrams of Codim=1 ([Sa14] I, Table
1).

1
3

6

0 5 4 3 12

4 2

3 2 1
2

1230E
(1,1)
7

E
(1,1)
8

1
23

2
1

120

1

1 0 1

1 2

E
(1,1)
6

D
(1,1)
4

The numbers attached at vertices are the exponents of the root system (see §7).

The diagrams plays basic role, as in the finite root system case, in
describing the elliptic root systems [Sa14]I, elliptic Weyl groups [ibid]III,
elliptic Lie algebras [S-Y]. The construction of the primitive forms from
the elliptic Lie algebras is a work in progress.20

§8. Exponents and weight systems

In this section, we first introduce the exponents for a finite or elliptic
root system, which play important role in the classical and elliptic Lie
theory21. Then, we try to extend the definition of exponents for a gen-
eralized root system, and meet with a problem of “choice of the phases”

20In [S-Y] the following three algebras are shown to be isomorphic: a) an
algebra generated by vertex operators [Bo1] for all elliptic real roots, b) an
algebra generated by the Chevalley triplets attached to the elliptic diagram
(Table 7) satisfying certain generalized Serre relations, and c) an amalgamation
of an affine algebra and a Heisenberg algebra. An algebra isomorphic to any
one of them is called an elliptic algebra. It is also a universal central extension
of a 2-toroidal algebra. We remark that the elliptic root systems and the Lie
algebras are found also from the representation theory of tubular algebras (see
Y. Lin and L. Peng [L-P,1&2]). Works on highest weight representations and
Chevalley type invariant theory for an elliptic algebra and group are in progress
(see Footnote 2). Due to the existence of the regular element (see Footnote 19),
several properties similar to classical algebraic groups and its invariant theory
hold for the elliptic Lie algebras and its adjoint groups. These facts supports
the program that the elliptic primitive forms are constructed on the elliptic Lie
algebras (see references in Footnote 2).

21The exponents are equal to the degrees of basic g- or W -invariants and
play basic roles in Lie theory (see [Ko],[Sp],[St1]), and also in the study of the
flat structures ([Sa16],[Sa14]II,[Sa7]).
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of the exponents. In order to solve the problem, we are lead to introduce
a new concept: the regular system of weights.

First, we recall a definition of exponents for a finite or elliptic root
system. In both cases, we define a Coxeter-Killing transformation as
a product c, in a suitable order, of reflection actions on the lattice
H2(X1, Z) attached to a simple root basis (recall §5). The c is of fi-
nite order h (called the Coxeter number, see §19 Remark)22. Then the
exponents m1, · · ·, mμ are integers such that exp(2π

√
−1mi

h
) (i= 1, · · ·, μ)

are the eigenvalues of c (see [Bou]Ch.v,no6.2 and [Sa14] I (9.7) Lemma
A.iii)). However, this determines the exponents only up to modulo h.
In case of finite root systems and elliptic root systems, one poses fur-
ther the constraint on the range 0 ≤mi ≤ h and on the symmetricity
mi+mμ−i+1 =h for i=1, · · ·, μ. Under these constraints, we determine
uniquely the exponents as in the next tables.

Type (a, b, c; h) exponents
Al (l ≥ 1) (1, b, c; l + 1) 1, 2, . . . , l (b+c= l+1)
Dl (l ≥ 3) (2, l−2, 1−1; 2(l−1)) 1, 3, 5, . . . , 2l − 3, l− 1
E6 (3, 4, 6; 12) 1, 4, 5, 7, 8, 11
E7 (4, 6, 9; 18) 1, 5, 7, 9, 11, 13, 17
E8 (6, 10, 15; 30) 1, 7, 11, 13, 17, 19, 23, 29

Table 8.

Type (a, b, c : h) exponents

E
(1,1)
6 (1, 1, 1 : 3) 0, 1, 1, 1, 2, 2, 2, 3

E
(1,1)
7 (1, 1, 2 : 4) 0, 1, 1, 2, 2, 2, 3, 3, 4

E
(1,1)
8 (1, 2, 3 : 6) 0, 1, 2, 2, 3, 3, 4, 4, 5, 6

Table 9.
We try further to introduce the exponents through Coxeter-Killing

transf. (Milnor Monodromy) for root systems of singularities (since they
are necessary data for primitive forms; see discussions below). In fact,

22The Coxeter-Killing transformation has distinguished properties: i) c is
of finite order h, ii) the primitive hth roots of unity (or, 1 for the case of an
elliptic root system) are eigenvalues of c, and iii) the eigenvectors of c belonging
to them are regular (i.e. they are not fixed by the Weyl group and the adjoint
group of the Lie algebra, [Col], [Bou] chap.V§6 no2, [Sa14]II §10 Lemma B). This
existence of regular eigenvectors is basic for the construction of the adjoint quo-
tient morphism g→ g//Ad(g) � h//W ([Ko],[Sp],[St1]) and of the flat structure
on h//W ([Sa16], [Sa14]II).
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we shall obtain in §18 quite interesting class of generalized root systems
of Witt index 2 together with some distinguished root basis. However,
we meet here at present a subtle problem: phase of exponents, which
lead the author to introduce the concept of the weight system below. To
explain the problem concretely, we cite some results from later sections
as follows.

1. Consider a polynomial in LHS of Table 10 in §13. The zero loci of
the polynomial in C3 defines a hypersurface X0 with an isolated singular
point at the origin.

2. The generalized root system (= the set of vanishing cycles) in
H2(X1, Z) in the middle homology group of a Milnor fiber X1 of X0 has
a root basis whose associated diagram is given in Table 12 (where p, q, r,
called the Gabrielov#, are given in Table 13).

3. Define the Coxeter-Killing transformation c as the product of re-
flection actions on H2(X1, Z) associated with the vertices of the diagram
in a suitable order. Then, c is of finite order h and the characteristic
polynomial of c is given in the form (15) for a suitable choice of a system
of integers mi called exponents given in Table 10.

4. Observes that mi’s in Table 10 is exceeding the interval [0, h].
Thus, the Coxeter-Killing transformation is unable to determine their
phases (:= [mi/h]) for these new class of root systems. On the other
hand, these mi/h without the ambiguity “modulo 1” are well defined
directly from a choice of a primitive form. 23

Concern: The root system with basis may not have sufficient data to
determine the phases of exponents and to construct the primitive forms.

We shall discuss again on this issue (see §14 Remark 7). This fact,
due to the important role of exponents [Sa7][Sai], leads the author to
handle them directly (but not through eigenvalues of Coxeter-Killing
transformation) as follows.

Consider the generating function (called a characteristic function)
24 for each type of exponents in Tables 8 and 9.

(1) χ(T ) := T m1 + T m2 + · · ·+ T mμ.

23The proportions mi/h are eigenvalues of an operator N in the flat struc-
ture associated to a primitive form, and are called exponents of the flat structure
([Sa4] and [Sa7] (3.3) Definition). Therefore, we should have stated more ex-
actly that, conjecturally, there exist a primitive form (constructed from the Lie
algebra which we shall study) such that the associated flat structure determines
the set of exponents mi/h.

24It is introduced as the Fourier transform of the distribution of the expo-
nents (see [Sa4] (3.1.1) and [Sa7] (3.3.14)) in order to study the zero-loci of χ.
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Then, these generating functions for the finite and elliptic root systems of
types Al, Dl, E6, E7, E8 and E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 have a decomposition25

of the form:

(2) χ(T ) = T−h (T h − T a)(T h − T b)(T h − T c)
(T a − 1)(T b − 1)(T c − 1)

where a, b, c, called weights, are integers and h, called the Coxeter num-
ber, is the order of the Coxeter element c such that

(3) 0 < a, b, c < h and gcd(a, b, c) = 1.

Note that the set of weights a, b, c are uniquely determined from the
characteristic function χ(T ), except for the type Ah−1.26 See Tables
8 and 9 for explicit lists of (a, b, c; h). The generating function (1) of
exponents for a finite or an elliptic root system are characterized by the
factorization (2) without a pole as follows. Consider abstractly a system:

(4) W := (a, b, c; h)

of 4 integers satisfying (3) (and additionally, a=1 if b+c=h called type
Ah−1), and call it a weight system, where a, b, c are called the weights
and h is called the Coxeter number.

Fact 1. ([Sa11]Theorem 2) If the function χW (2) for W has no poles,
then it is equal to a generating function (1) of exponents either for a
finite root system of type Al, Dl, E6, E7, E8 or for an elliptic root system
of type E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 .

Let us call the rational function χW := χ in (2) the characteristic
function associated to W , and call a weight system W is simple (resp.
elliptic) if its characteristic function χW is equal to a generating function
(1) for a finite root system (resp. elliptic root system) (explicitly, see
Table 8 and 9). 27

25In the present paper, we are interested in only the cases when all roots of
χ(T ) = 0 are on the unit circle. But, this is not the case in general for a general
primitive form (see [Sa4]).

26The characteristic function for the type Ah−1 is expressed as χAh−1 (T ) =

T + · · · + Th−1 = Th−T
T−1

= T−h (Th−T )(Th−Tb)(Th−Tc)

(T−1)(Tb−1)(Tc−1)
for a = 1 and for any

integer b, c with b + c = h.
27To be exact, one should add the diagram for D

(1,1)
4 (recall Table 7.) in the

list. A diagram is called simply-laced if it does not contain a multiple edges. Any
other diagrams for simple (or, elliptic) root system is obtained by the foldings
of these simply-laced diagrams.
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Before analyzing the characteristic function χW further, we state
another fact, which gives a geometric meaning to the weights a, b, c and
to the Coxeter number h in case of a simple and elliptic weight system
(see Table 2 and 4 for a proof):

Fact 2. A simple polynomial fG̃(x, y, z) in Table 2 (resp. an equation
for an elliptic singularity in Table 6) is a weighted homogeneous poly-
nomial of degree h with the weights a, b, c on the variables x, y, z for a
simple (resp. elliptic) weight system (a, b, c; h). The simple weight sys-
tem determines the simple polynomial, up to a homogeneous coordinate
change, uniquely. The elliptic weight system determines the equation up
to one parameter (=the modulus parameter of elliptic curves).

§9. Triangle Δ of weight system, geometry and algebra

Summarizing the results of previous sections, we obtain the following
triangle among three mathematical objects: weight system, geometry
and algebra:

{ Simple weight systems }
(5) ⇓ ⇑{

Kleinean groups
}
⇒
{

Simple Lie algebras
with simple root basis

}
.

Here, the three arrows are constructed as follows.
1) The correspondence ⇓ (denoted by Φ⇓ ) is given by the pair of the

fundamental group π1(X0 \ {0}) for the hypersurface X0 defined by the
polynomial in Table 2 and its action to the covering space X̃0 (use §1
Theorem, Fact 2 and a theorem due to Mumford [Mu1], see Appendix).

2) The correspondence ⇒ (denoted by Φ⇒) is given in three different
ways (depending on the view points), all of which give the same result:

a) Use the Du Val diagram for the simple singularity (§1 and 2) and
obtain the diagram of the simple root basis of the simple Lie algebra,

b) Use the set of vanishing cycles for the singularity (§5) and obtain
the set of real roots of the simple Lie algebra,

c) Use the McKay correspondence ([Mc], see Appendix) and obtain
the Dynkin graph for the simple Lie algebra.

Here, the first two approaches a) and b) are equivalent due to Brieskorn’s
theorem (recall §7 1),2) and 3)). The third approach c) gives the dual
basis of the basis given by a) with respect to the Killing form (see Ap-
pendix), but is more direct algebraic construction.
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3) The correspondence ⇑ (denoted by Φ ⇑ ) is given by the decomposi-

tion (2) of the generating function (1) of the exponents (Table 7) of the
root system of the simple Lie algebra.

By a direct inspection of the cases, we see that a composition of the
three arrows Φ⇓ , Φ⇒ and Φ ⇑ starting at any corner of the triangle (5)

is an identity.28 Here we stress that the key step among the three arrows
is the horizontal correspondence Φ⇒. The others are rather straight
forward. As a consequence of this observation, we conclude that

The datum of the set of exponents for a finite root system, which,
a priori, is a very small part of the information of the root system, is
sufficient to recover the whole root system and the simple Lie algebra.
In the same way, the datum of a system W of weights (4) is sufficient
to reconstruct the simple Lie algebra.

A similar triangle as (5) holds for the triple of elliptic weight sys-
tems, Heisenberg groups of rank 2 ([Sa14] II, Appendix) and elliptic Lie
algebras ([Sa14] IV). This supports the construction of the elliptic prim-
itive forms and the flat structures from the elliptic Lie algebras. This
motivates the author to generalize the triangle by starting with a wider
class of weight systems and search for corresponding Lie algebras.

We propose to use the top corner of the triangle (5) as the key to
uncover a new class of objects: consider any system W (4) of 4 integers,
relaxing the condition on χW (T ) (2) to be a polynomial to to be a Laurent
polynomial. Then, associated to the new weight system, we look for new
geometric objects in the left corner and new algebras in the right corner,
respectively. That is: we try to recover the triangle:

{ Weight system W }
(6) ⇓ ⇑

{Geometry of XW } =⇒ {Algebra gW }

with the goal to construct primitive forms and their associated period
mappings and automorphic forms (see [Sa19] for the details on the goal).
Actually, without this setting of the goal, the objects and the correspon-
dences in the triangle (6) are ambiguous (see §12). Note that each corner
of the triangle is not a category and the correspondences ⇒,⇓ and ⇑

28A similar triangle is obtained by replacing the three corners by {elliptic
weight systems}, {Heisenberg groups of rank 2 with the extension classes -3,-
2,-1} and {Elliptic Lie algebras of type E

(1,1)
6 ,E

(1,1)
7 , E

(1,1)
8 with their simple

basis}, where we choose the correspondence b) as for the arrow ⇒.
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are not functors. However, we expect a sort of “functoriarity” (yet to be
defined) due to the deformation relations among XW ’s.

§10. Top corner of the triangle: regular systems of weights

We start anew by introducing the concept of a regular system of
weights.29

Definition. A weight system W = (a, b, c; h) (4) satisfying (3) is

called regular if the function χW (T ) := T−h (Th−Ta)(Th−T b)(Th−T c)
(Ta−1)(T b−1)(T c−1) is a

Laurent polynomial in Z[T, T−1].

We give two basic properties of a regular system of weights in the
following Fact 3. and in Fact 4. in the next section. The two properties
are equivalent to the definition of the regular systems of weights, and
they already attribute to the properties in the right and left corners of
the triangle (6), respectively.

We first discuss about the new definition of exponents.

Fact 3.([Sa11]Theorem 1) A weight system W (4) is regular, if and only
if there exist integers m1, · · · , mμ with μ = μW = (h−a)(h−b)(h−c)

abc called
the rank of W , such that χW (2) is developed into the sum of monomials
of the form (1).

We call m1, · · · , mμ the exponents of W 30, which we order: m1 ≤
· · · ≤ mμ linearly. By use of the functional equality T hχW (T−1) =
χW (T ), one has the duality of exponents:

(7) mi + mμ−i+1 = h (i = 1, · · · , μ).

A fact which is not used in the present paper but shall be of basic
importance (see Footnote 22, ii)), is that there exists always an exponent
prime to h [Sa,13,18].

The advantage to start from a weight system is that the exponents
are a priori defined without an ambiguity of their phases (i.e. [mi/h] ∈

29This is slightly modified ([Yas]) from the original definition [Sa11]: χW (T )
has a pole at most only at T =0. Using a relation: ThχW (T−1) = χW (T ), the
two definitions are equivalent.

30In order to agree with the classical convention in Lie theory (e.g. [Bou]),
we have called the integers mi exponents. However, from a view point of the flat
structure on Sϕ (recall Footnote 23), one should better call the rational numbers
mi/h exponents. This view point becomes important again, when we consider
the category of graded matrix factorizations §16.
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Z). The smallest exponent min{m1,· · ·, mμ} is given and denoted by

(8) εW := a + b + c− h.

Actually, §8 Fact 1. implies that if εW>0 (resp.=0), then automatically
one has εW =1 (resp. =0) and W is a simple (resp. elliptic) weight sys-
tem, whose exponents coincide with the exponents of the corresponding
finite or elliptic root system.

For each negative integer ε < 0, there always exist a finite number
of regular systems of weights having ε as the smallest exponent (see
[Sa12, Sa17] Appendix 1,2. for many interesting examples of W with
εW < 0). In particular, there exist 14+8 regular systems of weights for
the case εW =−1 having no 0 exponents (see Table 10), on which we
shall discuss more in details in the present paper.

We are now to analyze the other corners of the triangle (6). Recall
that the finite or elliptic root system cannot be directly constructed
from the weight system, but we needed to turn the triangle (5) counter-
clockwisely. Similarly, we start with analyzing the left corner of (6) in
the next section.

§11. Left corner of the triangle: a geometry of XW

Finding the objects in the left corner of the triangle (6) and Φ⇓
follows from the following characterization Fact 4. of the regularity of a
weight system W .

For any given weight system W = (a, b, c; h), consider a weighted
homogeneous polynomial

(9) fW (x, y, z) :=
∑

ai+bj+ck=h cijkxiyjzk.

Fact 4. ([Sa11]Theorem 3) The weight system W (4) is regular, if and
only if there exists a polynomial fW of the form (9) such that the quotient
ring:

(10) JW := C[x, y, z]/
(

∂fW

∂x , ∂fW

∂y , ∂fW

∂z

)
,

called the Jacobi ring of fW , is of finite rank μW over C.
“If” part of the statement is trivial. Actually, any polynomial (9)

with generic coefficients carries this property.

In fact, Fact 4. is trivially equivalent to that the hypersurface

(11) XW,0 := {(x, y, z) ∈ C3 | fW (x, y, z) = 0}
has an isolated singular point at the origin, i.e. XW,0 is smooth except
at the origin 0 ∈ XW,0, due to the Nullstellensatz of Hilbert.
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Let us call fW in Fact 4. a polynomial of type W . We employ
the hypersurface XW,0 (11) with an isolated singular point at 0 and
admitting a C×-action31:

λ ∈ C× : (x, y, z) �→ (λax, λby, λcz)
as for the object in the left corner of the triangle (6). Following the
history in §2-7, we analyze XW,0 from two a) algebraic and b) topological
view points.

a) Orbi-bundle K
1

εW

CW
over the curve CW .

There are many studies on surface singularities with a good C×-
action (e.g. [Dol1,2,3,4], [Pin4,5], [Sa11,12,16], [Wa,1,2]). We recall a few
results of them, which are necessary in our purpose. First, we remark
that the smoothness of X0\{0} implies that the quotient variety

(12) CW := (XW,0 \ {0})/C× = Proj(C[x, y, z]/(fW (x, y, z))

is a smooth curve. However, the C×-bundle XW,0 \ {0} C
×
→ CW has

some finite number of singular fibers (i.e. fixed by some non-trivial finite
subgroups, called isotropy groups, of C×). In this sense, CW carries also
a structure of an orbifold curve (to be precise, an algebraic stack). The
pair (g : p1, · · · , pr) of the genus g of the curve CW and the set, called
the signature set, of the orders of the isotropy groups:

(13) A(W ) = {p1, · · · , pr}

is called the signature of the orbifold ([F-K]pp.182-190). In fact, we have
Fact 5. ([Sa11]Theo.6) The genus g of the curve CW is equal to the
multiplicity a0 := #{1 ≤ i ≤ μ | mi = 0} of exponents equal to 0.

The signature set A(W ), up to some pi = 1, is explicitly determined
from the weights W arithmetically.32

The orbifold Euler number: 2 − 2g +
∑

(1/pi − 1) is positive, 0 or
negative according to whether εW is positive, 0 or negative. Accordingly,
the orbifold universal covering of CW is either P1, the complex plane C

31The action is said good since the the exponents of the action a, b, c are
positive (or, equivalently, the coordinate ring RW := C[x, y, z]/(fW ) is non-
negatively graded.

32The genus and the signature set of the orbi-curve CW is explicitly give as
follows.

a0 := #{(i, j, k) ∈ Z3
≥0 | ai + bj + ck = h} = #{1 ≤ i ≤ μ | mi = 0},

A(W ) := {ai | ai � |h, 1 ≤ i ≤ 3} � { gcd(ai, aj) ∗ (m(ai, aj ;h)− 1), 1 ≤ i < j ≤ 3}

where {a1, a2, a3} = {a, b, c} and m(a, b; h) = #{(u, v) ∈ Z2
≥0 | au + bv = h}.
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or the complex upper half plane H := {z ∈C | Im(z) > 0}. Then, for a
weight system W with εW �= 0, we have the description of the C×-bundle:
XW,0\{0}→CW ([Dol3]Prop.1, [Sa11](5.5)Lemma)

Fact 6. Let W be a regular system of weights. According as εW > 0 or
< 0, one has the following natural commutative diagrams, respectively.

(14)

K
1

εW

P1 \ 0-section −→
/ Γ̃W

XW,0\ {0} K
1

εW

H
\ 0-section −→

/ Γ̃W

XW,0\ {0}⏐⏐�/ C×
⏐⏐�/ C× and

⏐⏐�/ C×
⏐⏐�/ C×

P1 −−−−−→
/ Γ̃W

CW H −−−−−→
/ Γ̃W

CW .

Here, 1) K
1

εW

P1 and K
1

εW

H
is a εW th root of the canonical bundle of P1 or

H, respectively, and 2) Γ̃W is a co-compact discrete subgroup of SU(2) or
PSL(2, R), whose actions on P1 or H are liftable to the bundles (Footnote
33), respectively.

The action of Γ̃W on P1 or H may have fixed points such that the
quotient map /Γ̃W gives the orbifold universal covering of CW . That is:
the signature of the group Γ̃W ([Ma]) coincides with that (a0 :A(W )) of
the orbifold curve CW .33

These imply that CW in a Deligne-Mumford stack. They give the
“algebraic data” of the geometry of XW,0 for εW �=0.34

Example. Case εW >0 (i.e. W is a simple weight system in Table

8). Then, we naturally have K
1

εW

P1 \{0} � C2 \ {0}, and the Γ̃W action
in LHS is identified with the Kleinean group G̃-action in RHS (recall
§1). I.e. the liftablity condition in Fact 6. is automatically satisfied).
The induced action of Γ̃W on P1 = (C2\{0})/C× is identified with the

33We have a similar geometry for εW =0. Namely, the three simply elliptic
singularities of types Ẽ6, Ẽ7 and Ẽ8 are quotients of the trivial C× bundle over
C by an action of a Heisenberg group of rank 2 of characteristic class -3,-2 and
-1, respectively ([Sa2],[Sa14]II Appendix).

34To be exact, there remains still the problem to characterize (or, to list up)
the pair (Γ̃W , ε) of a number ε ∈ Z<0 and a co-compact Fuchsian group Γ̃W ⊂
PSL(2, R) such that the action of Γ̃W on H is liftable to that on K

1/ε
H

. This
condition on (Γ̃W , ε) (in order to obtain a Gorenstein normal surface singularity
K

1/ε
H

//Γ̃∗
W ) is equivalent to finding a splitting factor Γ̃∗

W in Γ̃d of the central
extension 1 → Z/εZ → Γ̃d → Γ̃W → 1 (see [Sa12] (5.2)(5.3) and (5.4)). To list
the cases when K

1/ε
H

//Γ̃∗
W is a hypersurface requires further works (e.g. [Dol2]

[Wa1]) which is generally unsolved yet. To remain in the category of Gorenstein
singularities seems theoretically easier and natural.
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regular polyhedral group G-action on S2. So, there are three singular
orbits {centers of faces of the polyhedron}, {centers of edges of the
polyhedron} and {vertices of the polyhedron} of fixed points on P1.
Therefore, the signature set A(W ) (13) consists of the three numbers
p, q, r in Table 1.

Similarly, in case εW < 0, the Fuchsian group Γ̃W has elliptic fixed
points in H, whose orbits correspond in 1:1 to the elements of A(W ).

b) Generalized root system and Coxeter-Killing transfor-
mation.

We discuss about some of the topological data obtained from the
semi-universal deformation (also, called universal unfolding) of XW,0.

1) Generalized root system
Let us denote by QW the lattice (H2(XW,1, Z), I =−(·, ·)) of vanishing

cycles35 and by RW the set of vanishing cycles for fW (which depend
only on W but not on a choice of fW ). As is explained already, it is easy
to see that RW satisfies the axiom of generalized root system having QW

as its root lattice in the sense [Sa14] I. The following 2) and 3) describe
some strong properties carried by RW . However, we do not know a
characterization of a root system which arises as the set of vanishing
cycles associated to a singular point.

2) Coxeter-Killing transformation
The Milnor monodromy induces an automorphism c of finite order h

of the lattice QW , which we shall call also the Coxeter-Killing transfor-
mation of the root system RW . Using the weighted homogeneity of the
defining equation fW , it is easy to see that the characteristic polynomial
det(λ · idQ − c) is given by

(15) ϕW (λ) =
∏μ

i=1(λ − exp(2π
√
−1mi

h )) ∈ Z[λ].

35The middle homology group H2(XW,1, Z) admits the symmetric bilinear
form, called the intersection form, (u, v) :=〈u, P (v)〉 obtained from the Poincare
duality P :H2(XW,1, Z)→H2(XW,1, Z). In the above definiton of the lattice QW ,
we put the minus sign factor in order to adjust with the classical convention
in the Killing form that I(e, e) = 2 for any vanishing cycle e. The signature
(μ−, μ0, μ+) of I is given by μ− =#{1≤ i≤μ | mi < 0 or h<mi}, μ0 =#{1≤
i≤ μ | mi = 0 or h}= 2a0, μ+ = #{1 ≤ i≤ μ | 0 < mi < h}, ([Sai]). Then the
Witt index (=the maximal rank of totally isotropic subspace) of H2(XW,1, Z)=
μ0+μ− = #{exponents exceeding the interval (0, h)} is always even. This fact
supports the existence of the Coxeter-Killing transformation of finite order and
to ask for Chevalley type invariant theory to the algebra gW in §12 iv).
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The set {exp(2π
√
−1mi/h) | i = 1, · · · , μ} is closed under the action of

the Galois group over Q.36 Recall that:
Fact 7. ([Sa, 13(Theorem 1), 18(Theorem 5.1)]) Let us denote by
eW (h) the multiplicity of the hth primitive roots of unity in the roots of
the equation ϕW (λ) = 0. Then, for any regular system of weights W ,
one has eW (h) > 0.

Remark 4. In the classical simple Lie algebra case, the eigenvector
of the Coxeter-Killing transformation belonging in to the hth primitive
root of unity (in the Cartan subalgebra of gW ) is regular with respect to
the adjoint action of the simple Lie group and that of the Weyl group.
This gives a key role to the vector in the invariant theory by Kostant
[Ko], Springer [Sp], Steinberg [St1] as well as in the construction of the
primitive form and the flat structure [Sa18].

3) Root basis
Any distinguished basis (e1, · · · , eμW ) (recall §5) gives a root basis

of the root system RW in the sense: i) RW = ∪μW

i=1〈we1 , · · · , weμW
〉 ·

ei, and ii) the Coxeter-Killing transformation is given by the product
we1 · · · , weμW

. This implies: iii) QW =⊕μW

i=1Zei and iv) 〈we1 , · · · , weμW
〉

coincides with the group generated by reflections for all e∈RW (=the
Weyl group of the root system RW ).

As we saw already in §5, the braid group of μW -strings acts on the
set of distinguished basis. It is desirable to find some “simple” basis for
the root system RW by the use of the action. There are several works in
the direction by Gabrielov [Gab 1,2], Ebeling [Eb 1,2], Kluitman [Klu]
and others. However, purely topological data of the braid group action
alone seems insufficient to choose some distinguished ones. On the other
hand, one may still have a hope to choose some particular basis, either
by a use of semi-algebraic geometry of the discriminant of the family
Xϕ → Sϕ (see Footnote 12 and [Sa20]), or by the algebraic approach a)
by a use of the orbifold structure on CW given in the first half of the
present §. The study of this subject belongs still to a future work.
4) Cycles from ∞.

We already discussed about the cycles from infinity in §5 Remark2.
Under the setting of a regular system of weights W , let us discuss again
about it.

Let us define explicitely a universal unfolding of fW by

F (x, t) := fW (x) + ϕ1(x) · t1 + ϕ2(x) · t2 + · · ·+ 1 · tμW

36This is shown as follows. Substitute any power of exp(2π
√
−1/h) in (1).

(2) implies that it is a rational number.
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where ϕ1, ϕ2, · · · , ϕμ ≡ 1 are weighted homogeneous polynomials in
C[x, y, z] (with respect to the weights (a, b, c)) such that their images
in the Jacobi ring JW (10) gives its C-basis. Clearly, the function in
a neighborhood of origin gives the universal unfolding in the sense ex-
plained in §5. However, we remark that F (x, t) is affine globally defined,
where, by putting deg(ti) := h − deg(ϕi) = mi + εW (1 ≤ i ≤ μW ),
it is a weighted homogeneous polynomial. The lowest degree coordi-
nate is t1 and its degree is equal to 2εW . That is, the unfolding pa-
rameter t gets negative weights if (and only if) εW < 0. Consider
the affine global family of affine surfaces: ϕ̂W : X̂W → SW , where
X̂W := {(x, t) ∈ C3 × CμW | F (x, t) = 0}, SW := CμW and ϕ̂ is the
projection to the second factor. The discriminants of ϕ̂W is a divisor
of SW and decomposes into a union of DW,+, DW,0 and DW,− accord-
ing as the behavior of the vanishing cycles vanishing at the components
(see [Sa19]II §6). Then, as was shown in §5, the lattice QW of middle
homology group of the Milnor fiber is generated by the vanishing cycles
which are degenerating to the discriminant DW,+. Then, the extension
Q̂W := (H2(X̂W,t, Z),−I) for a generic parameter value t such that the
coordinate component t1 �= 0 is a orthogonal direct sum of the lattice
QW with the lattice Q∞

W generated by the vanishing cycles which are
degenerating to the discriminant DW,−. It is expected that the periods
of the cycles in Q∞

W give the denominators for primitive forms ([Sa19]II
§6 Conjecture and Problem).

Remark 5. The concept of the generalized root system of vanishing
cycles and the braid group action on its basis may better be lifted to a
categorical level due to the recent developments of the study of Floer ho-
mology groups of Lagrangean subvarieties in symplectic varieties [Sei].37

Remark 6. As we shall see in §16, for weight systems W having
its ∗-dual, the lattices QW and Q∞

W are expected to have a categorical
construction as the K-groups of the category of the graded and un-graded
matrix factorizations, respectively, where the Coxeter-Killing transf. is
defined as the A-R translation.

§12. Right corner of the triangle: an algebra gW

We now come to the main question of the present paper:

37A comprehensive treatment of this subject shall appear in: K. Fukaya,
Y.-G. Oh, H. Ohta, K. Ono: Lagrangian intersection Floer theory - anomaly
and obstruction, in preparation.
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Question. For any regular system of weights W , define the correspon-
dences Φ⇒ and Φ ⇑ which make the triangle (6) commutative. Precisely,

construct the algebra gW from the data of the geometry of XW , satisfying
the following conditions i) - vi).

Then, we automatically have Φ ⇑ and commutativity of the triangle.

We impose some working hypothetical conditions i)-vi) on the alge-
bra gW ; otherwise the question is ambiguous. Under these constraints,
we expect a sort of functoriality and uniqueness for the correspondence
Φ⇒ (recall §9).38

i) The algebra gW should be a simple Lie algebra for the case
εW > 0 and a elliptic Lie algebra for the case εW = 0.

ii) The algebra gW should carry an integrability structure, gener-
alizing the Jacobi identity for Lie algebras (i.e. gW should be the pro-
longation of XW with respect to the equations for a primitive form; see
the last paragraph in §4).

iii) gW should contain an abelian subalgebra hW isomorphic to
Hom(QW , C) (which we may call the Cartan-Killing subalgebra of gW ).
The adjoint action of hW on gW induces the root space decomposition
of gW so that RW should be the set of real roots (i.e. a root α ∈QW

such that I(α,α)>0), whose multiplicities are equal to 1. The real root
spaces gW,α for α ∈ RW generate the algebra gW .

iv) Depending on a choice (Note 3. below), one should have a family
of Chevalley type invariant theories for the adjoint group GW action
on gW and the adjoint quotient morphism with the identification of the
quotient varieties g̃W //Ad(g̃W ) � h̃W //W̃W . Here, g̃W , h̃W and W̃W are
suitable hyperbolic extensions of gW , hW and WW , if the Killing form I
has a degeneration .39

38Beside the classical construction of semi-simple Lie algebras, there are
several new approaches, e.g. using vertex operators [Bo1], or using Ringel-Hall
algebras [P-X], as was discussed in Preface. However, in connection with our
final goal (the construction of primitive forms), we would like to be cautious in
choosing the type of construction.

39One supporting reason for this condition is the following fact ([Sa13](2.2)
Theorem1, [Sa17] Theorem5.1 and (5.6)): for any regular system of weights,
there always exists an exponent which is prime to the Coxeter number h. This
generalizes the existence of an eigenvalue of a primitive hth root of unity of the
Coxeter-Killing transformation c in the classical case [Col] [Bou]Ch.v§6 Theorem
1. This is a key fact for the construction of the adjoint quotient morphism and
for the global construction of the flat structure (see Footnotes 18,19).
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v) The universal unfolding XW→SW of the singularity XW,0 should
be embedded into the adjoint quotient map gW → h̃W //W̃W (c.f. §4
when εW >0). The relative (with respect to the adjoint quotient map)
symplectic form on gW (Kostant-Kirirov form when εW > 0) induced
from the involutive structure given in ii) should (up to a unit factor)
induce a primitive form on the family XW → SW , whose exponents
(recall Footnote 23) coincide with the exponents of the weight system
W (up to the factor h).

vi) The flat structure on the quotient variety h̃W //W̃W (c.f. [Sa16],
[Sa14] II) and the flat structure on SW defined from the theory of prim-
itive forms [Sa7] should be identified by the isomorphism in iv). This, in
particular, requires that the set of exponents for the primitive form on
XW,0 should coincides with the set of exponents associated to the flat
structure of the algebra gW .

The last condition vi) implies that the generating function (1) ([Sa7]
(3.3.14)) of the exponents for the flat structures of the algebra gW de-
composes as in (2), and defines the weight system W =(a, b, c; h), which
we had at the beginning. That is, the correspondence Φ ⇑ of the triangle

(6) is defined by the use of the decomposition of the generating function
(1) of the exponents of the algebra. Then, the composition Φ ⇑◦Φ⇒◦Φ⇓
is the identity on the top of the triangle (6). Thus, we shall obtain a
family of primitive forms having the exponents given at the beginning
by a regular system of weights, when the problem is solved.

Obviously, the simple Lie algebra gW of type W for a simple weight
system W satisfies all conditions i)-vi). The elliptic algebra gW for an
elliptic weight system W satisfies i), ii) and iii), and the flat structure on
h̃W //W̃W has been constructed. However, the construction of the adjoint
quotient space g̃W //Ad(g̃W ) is still a work in progress (see Footnote 20).

For general weight system W , we introduce in §16 a category HMFgr
AW

(fW ), which is expected to give three constructions of Lie algebras. We
ask to clarify the relationship among the constructions, and whether
they satisfy i)-vi) (up to the ∗-duality which we shall introduce in §14)
(see Problem at the end of §18).

On the other hand, elliptic root systems have a radical of rank 2. Then,
depending on the choice of its rank 1 subspace, called a marking, one defines the
extensions g̃W , h̃W and W̃W (see [S-Y],[Sa14]I,II,[S-T]). These extensions, called
hyperbolic, are necessary for the construction of the flat structure [Sa14]II as
well as in the representation theory and invariant theory of the elliptic algebra.
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Note. 1. If the Killing form I on the root lattice QW = H2(XW,1, Z)
degenerates (⇔ the genus a0 of the curve CW is positive, see Fact 5,
Footnotes 32 and 35), then the algebra gW may have a “radical” (cor-
responding to the moduli parameter of the curve CW ). In that case, as
for gW , we assign the universal algebra (i.e. the one having the largest
radicals) for the unicity of the notation gW .

2. The other problem in answering Question is, which view-point
a) or b) in §9 do we generalize? It seems likely that, in the above iii),
the two view points a) and b) give two different root systems and two
different algebras. Let us tentatively denote by Φa)

⇒ the correspondence
using the algebraic geometric data of the singularity XW,0 and by Φb)

⇒
the correspondence using the topological data of the deformations of
XW,0. In fact, these two different view points are, nowadays, called
mirror symmetric to each other (see [Kon1], [Yau] for mirror symmetry
in general). There is a duality operation on the set of weight systems,
called the ∗-duality, which conjecturally exchanges the two approaches
(see §14 Addition to Question). Then, the conditions iv) and v) on
the period map seem to choose Φb)

⇒ for the correspondence XW ⇒ gW .
3. The denominator of an elliptic primitive form depends on a choice

of a primitive element in the radical of the root lattice ([Sa7] (3.1) Exam-
ple), which determines the polarization (marking [Sa14] I) of the elliptic
root system. Similarly, the primitive form for the 14 exceptional uni-
modular singularities is conjectured to be a proportion of a form with its
integral over the cycle coming from infinity (see [Sa19]II 6. Conjecture,
§11b) 4) and Footnote 49).

§13. Strange duality of Arnold

In order to get an insight to the Question in §12 and also to sharpen
it by Addition to Question in the next §14, we look closely at the case
εW = −1 in this section where the singularities are called exceptional
unimodular singularties. We recall the strange duality among the 14
cases due to Arnold [Ar4].

There are 14+8+9 regular systems of weights of εW =−1, where the
first 14+8 cases are genus a0 =0 and the remaining 9 cases are positive
genus a0 > 0. The multiplicity eW (h) of the first 14 weight systems is
equal to 1 and that of the next 8 weight systems are either equal to 2
or 3. Accordingly, the signature set A(W ) (Footnote 32) consists of 3
elements for the first 14 cases, and of 4 or 5 elements for the 8 cases
(where fW depends on parameter(s)). (see [Sa11, Tables 3,4 and 5] for
details on the geometry of them in the sense of §11). In the present
paper, we study only the 14+8 cases where genus a0 is zero.
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Table 10. 14+8 regular systems of weights of genus a0 = 0 and εW = −1

Polynomial fW (a, b, c; h) exponents
x7 + y3 + z2 : (6, 14, 21; 42) −1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 43
yx5 + y3 + z2 : (4, 10, 15; 30) −1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 31
x4z + y3 + z2 : (3, 8, 12; 24) −1, 2, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 25
x5 + xy3 + z2 : (6, 8, 15; 30) −1, 5, 7, 11, 13, 15, 17, 19, 23, 25, 31
yx4 + xy3 + z2 : (4, 6, 11; 22) −1, 3, 5, 7, 9, 11, 11, 13, 15, 17, 19, 23
x3z + xy3 + z2 : (3, 5, 9; 18) −1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 19
x5 + y2z + z2 : (4, 5, 10; 20) −1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 21
yx4 + y2z + z2 : (3, 4, 8; 16) −1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17
x4 + y3 + xz2 : (6, 8, 9; 24) −1, 5, 7, 8, 11, 13, 16, 17, 19, 25
x3y + y3 + xz2 : (4, 6, 7; 18) −1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 19
x3z + y3 + xz2 : (3, 5, 6; 15) −1, 2, 4, 5, 5, 7, 8, 10, 10, 11, 13, 16
x4 + y2z + z2x : (4, 5, 6; 16) −1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 17
x3y + y2z + z2x : (3, 4, 5; 13) −1, 2.3.4.5.6.7.8.9.10.11.14
x4 + yz(y − z) : (3, 4, 4; 12) −1, 2, 3, 3, 5, 6, 6, 7, 9, 9, 10, 13

y(y − x3)(y − λx3) : (2, 6, 9; 18) −1, 1, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 15, 17, 19
xy(y − x2)(y − λx2) + z2 : (2, 4, 7; 14) −1, 1, 3, 3, 5, 5, 7, 7, 7, 9, 9, 11, 11, 13, 15
y(y − x2)(y − λx2) + xz2 : (2, 4, 5; 12) −1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9, 9, 11, 13
(y2 − x3)(y2 − λx3) + z2 : (2, 3, 6; 12) −1, 1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 13
x(z − x2)(z − λx2) + y2z : (2, 3, 4; 10) −1, 1, 2, 3, 3, 4, 55, 6, 7, 7, 8, 9, 11
x3y + z(z − y)(z − λy) : (2, 3, 3; 9) −1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 10
xy(x− y)(y − λ1x)(y − λ2x) + z2 : (2, 2, 5; 10) −1, 1, 1, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 9, 9, 11
y(y − x)(y − λ1x)(y − λ2x) + xz2 : (2, 2, 3; 8) −1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 9

Here λ, λ1 and λ2 are parameters �= 0, 1 and λ1 �= λ2.

In order to construct Φ⇒, remember a) and b) of §9, 1) for the case
εW = 1. An immediate analogy of Φa)

⇒ is to study the resolution of
the singularity XW,0. The minimal resolution π : X̃W,0 → XW,0 of
the singularity is determined by [Dol1] as follows: the exceptional set
π−1(0) ⊂ X̃0 of the minimal resolution is a union of 4-rational curves
E0, E1, E2 and E3, which intersect transversely as illustrated in Table
11 and are self-intersecting as

−1 = E2
0 , −p = E2

1 , −q = E2
2 , −r = E2

3

where p, q, r are positive integers such that (0 : p, q, r) is the signature
of the orbifold curve CW (§11 Fact 5., [Dol 1,2,3,4], [Pin4,5],[Sa 11,12]).
The signature set A(W ) = {p, q, r} (13), in this particular case, was
called the Dolgachev numbers [Ar3] [Dol1], which are listed in Table 13.
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Table 11. Exceptional set Resolution diagram

−1−p −r

E1 E2

E0

E3

−q

On the other hand, as for the correspondence Φb)
⇒, one should know

the set of vanishing cycles in the lattice H2(XW,1, Z), whose signature
is (2, 0, ∗) (Footnote 35.). The distinguished basis of the lattices were
studied by the authors A.M. Gabrielov [Gab1,2] and W. Ebeling [Eb1,2].
In particular, they found certain “simple”40 distinguished basis for each
of the 14 exceptional singularities, which is expressed by the following
diagram41:

Table 12. Distinguished basis for the exceptional unimodular singular-
ities.

q

r

p
where the length p, q, r of the three branches is called the Gabrielov
numbers [Ar3].42

40Here, we mean by “simple” the following: 1) the vertices of the diagram is
a Z-basis of the lattice H2(X, Z), 2) a product in suitable order of the reflections
on the lattice attached to the vertices of the diagram (i.e. a Coxeter-Killing
transformation) is of finite order h and its eigenvalues are exp(2π

√
−1mi/h) for

the exponents mi, 3) consider the group W acting on the lattice generated by the
reflections attached to the vertices of the diagram. Then the set of the vanishing
cycles is equal to the union of the W -orbits of the vertices of the diagram.

41Let e1, · · · , eμ be a basis of a lattice QW such that I(ei, ei) = 2 for i =
1,· · ·, μ. Then, we associate a diagram to the basis as follows: to each basis
element ei for i =1,· · ·, μ, we associate ith vertex of the diagram. Between ith
and jth vertices of the diagram, we draw −I(ei, ej) edges if I(ei, ej)<0, I(ei, ej)
dotted edges if I(ei, ej)>0 and no edges if I(ei, ej)=0.

42There is a strong reason to suspect that the diagram should be (a part
of) the correspondence Φ⇒ for the 14 weight systems, since it partially answers
to the questions iv) and v) in §12 as follows. Let ξ, ξ be the eigenvectors of the
Coxeter-Killing transformation belonging to the eigenvalues exp(±2π

√
−1/h).

Then each belongs to the two connected component of the cone {x ∈ QW ⊗Z C |
I(x, x) < 0, I(x, x) = 0} over a symmetric domain of type IV and is regular



Categorical construction of Lie algebras 137

Then, Arnold [Ar3] observed the following duality and called it the
strange duality: there exists an involutive bijection σ on the set of
14 exceptional singularities, by which Dolgachev numbers and Gabrielov
numbers interchange.

In the next table, we indicate the involution σ by the two-sided
arrows↔ between the weight systems corresponding to the singularities.

(4, 6, 11; 22)
(6, 8, 15; 30)
(3, 8, 12; 24)
(4, 10, 15; 30)
(6, 14, 21; 42)

2, 4, 6
2, 3, 8
3, 3, 4
2, 4, 5
2, 3, 7

2, 4, 6
2, 4, 5
2, 3, 9
2, 3, 8
2, 3, 7

Weights
(3, 4, 4; 12)

A(W )=Dolgachev# Gabrielov# ϕW (λ)

4, 4, 4
(3, 4, 5; 13)
(4, 5, 6; 16)

3, 4, 5

(4, 6, 7; 18)
(6, 8, 9; 24)
(3, 4, 8; 16)
(4, 5, 10; 20)
(3, 5, 9; 18)

(3, 5, 6; 15)
2, 5, 6
3, 3, 6
2, 4, 7
2, 3, 9
3, 4, 4
2, 5, 5
3, 3, 5

3, 3, 6
3, 3, 5
3, 3, 4
2, 5, 6
2, 5, 5
2, 4, 7

3, 4, 4
3, 4, 5 (λ13−1)

(λ−1)

4, 4, 4 (λ12−1)(λ4−1)
(λ3−1)(λ−1)

(λ16−1)(λ4−1)
(λ8−1)(λ−1)

(λ15−1)(λ3−1)
(λ5−1)(λ−1)

(λ18−1)(λ3−1)
(λ9−1)(λ−1)

(λ24−1)(λ4−1)(λ3−1)
(λ12−1)(λ8−1)(λ−1)
(λ16−1)(λ2−1)
(λ4−1)(λ−1)

(λ20−1)(λ5−1)(λ2−1)
(λ10−1)(λ4−1)(λ−1)
(λ18−1)(λ2−1)
(λ6−1)(λ−1)

(λ22−1)(λ2−1)
(λ11−1)(λ−1)
(λ30−1)(λ5−1)(λ2−1)
(λ15−1)(λ10−1)(λ−1)
(λ24−1)(λ3−1)(λ2−1)
(λ8−1)(λ6−1)(λ−1)

(λ30−1)(λ3−1)(λ2−1)
(λ15−1)(λ6−1)(λ−1)
(λ42−1)(λ7−1)(λ3−1)(λ2−1)
(λ21−1)(λ14−1)(λ6−1)(λ−1)

Table 13. The strange duality and the ∗-duality.

The strange duality captured the attention of many authors and was
interpreted by Dolgachev, Nikulin and Pikham in terms of duality be-
tween algebraic cycles and transcendental cycles on certain K3 surfaces
[Pin1,2]. Further generalizations of the duality were studied by several
authors [N-G][Pin4,5][Lo4][E-W].

In §14, we induce the strange duality from the ∗-duality of weight
systems [Sa17], which is interpreted as a mirror symmetry [Ta1].

§14. ∗-duality of regular systems of weights

We introduce one key operation ∗ of the present paper: the ∗-duality
on regular systems of weights [Sa17]. It induces the strange duality in the
arithmetical level, and induces, a much wider class of dualities among
weight systems beyond the strange duality.

w.r.t. the Weyl group (i.e. does not belong to any reflection hyperplane ([Sa15]
(5.6) Lemma 2). We remark also that the diagram defines a splitting hyperbolic
plane of the lattice QW .
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Recall the characteristic polynomial ϕW (λ) (15) of a regular system
of weights W . Since ϕW ∈ Z[λ] (recall §11 b) and Footnote 36) and is a
cyclotomic polynomial, there exists a unique expression:

(16) ϕW (λ) =
∏
i|h

(λi − 1)eW (i)

for some integer eW (i) ∈ Z for all i ∈ Z>0 with i|h, where h is the
Coxeter number of W .

Definition. A regular system of weights W ′ is called ∗-dual to W
if 1) its Coxeter number h′ coincides with that h of W , and 2) one has
the duality relation:

(17) eW (i) + eW ′(h/i) = 0 for ∀i ∈ Z>0.

Here, we put eW (i) = eW ′(i) = 0 for an integer i with i � |h.

Example. 1. The characteristic polynomial for the type E8 decom-
poses as

ϕE8(λ) =
(λ30 − 1)(λ5 − 1)(λ3 − 1)(λ2 − 1)
(λ − 1)(λ6 − 1)(λ10 − 1)(λ15 − 1)

.

Then eE8(30)+eE8(1) = eE8(5)+eE8(6) = eE8(3)+eE8(10) = eE8(2)+
eE8(15) = 0. This implies E8 is selfdual. This is a special case of the
next 2.

2. All regular weight systems W with εW > 1 (i.e. simple weight
systems) are selfdual ([Sa17] Theo.7.10.1). This fact resemble the result
of Brieskorn in §7, 1). However, the ∗-duality, in general, implies neither
of the the homeomorphisms X̃W,0 � XW∗,1 nor X̃W∗,0 � XW,1 (see the
examples below). Therefore, it seems interesting to ask what the natural
generalization of [O-O] is for the ∗-dual pair?

3. Any regular system of weights W of rank μW equal to 24 is
selfdual. It is curious to observe that there are 11 such weight systems
with εW < 0, and the set of their characteristic polynomials is exactly
equal to the set of all selfdual characteristic polynomials of the conjugacy
classes of the Conway group ·0 ([Sa17] Appendix 1) except for the four
6A, 10A, 15D and 18A.

We have the following uniqueness of the ∗-dual weight system.

Theorem. ([Sa17] The.7.8) 1. For a regular system of weights W if
there exists a ∗-dual weight system, then it is uniquely determined from
W , which we denote by W ∗. By definition, we have (W ∗)∗ = W .

2. The smallest exponent of W ∗ is equal to that of W , εW = εW∗.
3. The multiplicities eW (h) and eW∗(h) are equal to 1.
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In general, there does not exist a dual weight system W ∗ for a given
regular system of weights W (eg. if the multiplicity eW (h) is larger or
equal than 2, then W cannot have the dual weight system), but if the
∗-dual for W exists, then it is purely arithmetically determined from W .
In fact, we have a complete list of dual pair of regular systems of weights
([Sa17] The.7.9). As a consequence, we can prove the following.

Fact 7. ([Sa17] Theo.7.10.2 & §12) Any of the 14 regular systems of
weights W in Table 10 (i.e. εW =−1, a0 = 0 and eW (h) = 1) is ∗-dual
to a weight system in the same Table. Further, if W and W ∗ are dual,
then μW + μW∗ =2443 and

Dolgachev # of W = Gabrielov # of W ∗

Dolgachev # of W ∗ = Gabrielov # of W

That is: the strange duality of Arnold is induced from the ∗-duality.

Remark 7. Whether W ∗ is dual to W or not is determined only by
the characteristic polynomials ϕW∗ and ϕW , and hence, in view of (15),
it is determined only by the exponential: exp(2π

√
−1mi/h) (i=1,· · ·, μ)

and exp(2π
√
−1m∗

i /h) (i = 1,· · ·, μ∗). That is, the information of the
phases [mi/h], [m∗

i /h] of the exponents are unnecessary to determine
the ∗-duality.

This brings us to a puzzle: we had mentioned (§8 Concern) that
the eigenvalues exp(2π

√
−1mi/h) of a Coxeter-Killing transformation

may not be sufficient to recover the phases of the exponents. This was
the main reason why we introduced the concept of regular systems of
weights in §10 (but not a root system with a simple basis) as our starting
point, since a regular system of weights carries the full data of the set
of exponents. From this starting point, we arrive at a result that the
phase is unnecessary for the definition of duality among them.

The author does not have a good answer to this puzzle. The only
fact, we can mention here is that a regular system of weights W , which
admits the dual W ∗, has a peculiarity such that the datum of the set
of exponentials {exp(2π

√
−1mi/h) | i =1,· · ·, μ} is sufficient to recover

{mi | i=1,· · ·, μ} (see the proof of [Sa17] The.7.9).
Namely, the uniqueness of the dual weight system can be shown

briefly as follows: if a weight system W admits a dual weight system,
then the characteristic polynomial ϕW (λ) is reduced (i.e. eW (i)∈{0,±1}
for i ∈ Z>0). This is equivalent to eW (h) = 1 and we call such W
simple. On the other hand, a simple weight system W is arithmetically

43In the original proof [Sa17] Theorem 7.10, 2., the rank relation was not
stated explicitly.
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reconstructed from its characteristic polynomial ϕW ([ibid] The.6.3).
This proves the uniqueness of W (and W ∗).

Perhaps, the above puzzle is closely related to another puzzle: the
∗-duality is described purely in terms of arithmetic whereas the strange
duality in general exchanges the algebraic and the transcendental struc-
tures in geometry.

Remark 8. It seems an interesting and important problem to find a
reasonable extension of regular systems of weights, which is closed under
the ∗-duality. For instance, the end remark of Footnote 34 suggests
that Gorenstein surface singularities with good G × A×-action should
be included (see [Ta1]). However, in the present paper, we do not go
into any details of the question. Instead, we proceed here as if we were
already in the extended category which is closed under the ∗-duality,
and ask the following follow-up to the question in §12.

For two decades, inspired from mathematical physics, one observes
“symmetry relations” called mirror symmetry between some symplec-
tic topological varieties, called the A-model side and some algebraic (or
complex analytic) varieties, called the B-model side. Mirror symmetry
is formulated at different levels: from identities of numerical invariants
of the varieties to the equivalence of categories associated to the vari-
eties. In the present paper, we do not go into any details of the sub-
ject but just refer the reader to some of the literature (see for instance
[Kon1],[Yau],[H-V]). It is expected that the models on both sides fi-
nally should induce an isomorphic flat structures (recall the condition
vi) in §12). Mirror symmetry on topological Landau-Ginzburg orbifold
model (which corresponds to the singularity theory in mathematics) is
described by Kawai-Yang [K-Y] in terms of the duality of orbifoldized
Poincaré polynomials. Therefore, it is natural to ask whether (and this
was actually proven by A. Takahashi [Ta1]) the ∗-duality of weight sys-
tems is equivalent to mirror symmetry in the Landau-Ginzburg orbifold
model in mathematical physics.44

Having these background, we ask the following mathematical ques-
tion.

Addition to §12 Question. Does there exist an involutive correspon-
dence g �→ g∗ on the set of algebras in the right corner of the triangle
(6) so that one has the isomorphism: gW∗ � (gW )∗ ? That is: does

44Accordingly, the definition of the ∗-duality for the weight systems of type
V in the classification of [Sa17] §5 is modified.
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there exist a ∗-duality in the right corner of the triangle (6) making the
following diagram commutative?
(18)
{Regular systems of weights W} ⇔ {Algebras gW }

� ∗ � ∗
{Regular systems of weights W ∗} ⇔ {Algebras gW∗ � (gW )∗} .

This means that we seek duality operations in each corner of the triangle
(6) (i.e. the ∗-duality on the top, the mirror symmetry in the left and the
new conjectural ∗-duality in the right) so that the arrows are compatible
with them. Likewise, the domain of the definition of the ∗-duality in the
top is restricted, so a similar constraint on the domain of the definition
in the RHS might exist. Note also that the ∗-duality in the RHS does
not keep the rank μW (of the Killing-subalgebra hW , recall §12 iii)), but
is rather complementary in the sense that μW + μW∗ = 24 in case of
εW = −1.

What seems remarkable here is the fact that the ∗-duality in the
RHS exchanges the algebras which are constructed from algebraic data
with that from transcendental data, whereas the ∗-duality in the LHS
is purely arithmetically defined. In §15, we shall discuss the duality at
a categorical level.

η-product. In the rest of this section, we give a digression on the
reformulation of the ∗-duality in terms of eta products ([Sa17] §13).

1. Let η(τ) := q1/24
∏∞

n=1(1 − qn) (where qa := exp(2π
√
−1aτ) be

Dedekind eta function. To the product (16), we associate a product

(19) ηW (τ) :=
∏
i|h

η(iτ)eW (i).

Assertion ([Sa17](13.3)) Two weight systems W and W ∗ are dual to
each other if and only if one of the following (equivalent) relations holds:

ηW (−1/hτ) · ηW∗(τ) = (τ/
√
−1)a0/

√
dW∗ ,

ηW∗(−1/hτ) · ηW (τ) = (
√
−1/τ)a0/

√
dW ,

where dW is the discriminant defined by
∏

i|h ieW (i).

2. We observe the following behavior of the coefficients of the ex-
pansion of ηW (τ) in the powers of q (called the Fourier coefficients of
ηW (τ) at ∞).

i) Fourier coefficients of the eta-products of type Al (l ≥ 1), Dl (l ≥
4) and El (l = 6, 7, 8) are positive and are exponentially growing.



142 K. Saito

ii) Fourier coefficients of the eta-products of type D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7

or E
(1,1)
8 are non-negative and are polynomially growing. For example:

η
E

(1,1)
8

(12τ) := η(30·12τ)η(5·12τ)η(3·12τ)η(2·12τ)
η(12τ)η(6·12τ)η(10·12τ)η(15·12τ)

= q5+q17+q29+q41+q53+2q65+q89+q101+q113+2q125+q137+q149+· · · .

Here, i) is trivially checked but ii) requires some work [Sa14]V, where
the Melin transform LW (s) of ηW is expressed by the L-functions of
the cyclotomic field Q(

√
−1), Q(

√
−3), Q(

√
−1,
√
−2) or Q(

√
−1,
√
−3) with

abelian Galois group according to W is of type D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or

E
(1,1)
8 . Then, their L-functions have quadratic expressions by Dirich-

let L-functions. For example: using some Dirichlet characters ε, χ on
Z/12Z, the L-function of type E

(1,1)
8 is expressed as

L
E

(1,1)
8

(s)=
1
4

∏
p∈P1

1
(1− p−s)2

∏
p∈Pε∪Pεχ

1
1− p−2s

{∏
p∈Pχ

1
(1− p−1)2

−
∏

p∈Pχ

1
(1 + p−1)2

}
.

A direct inspection on this Euler product shows the non-negativity of
all Dirichlet coefficients of them.

For each elliptic root system, we associate the eta-product (19) using
the decomposition (16) of the characteristic polynomial of its Coxeter-
Killing transformation. Then,

Fact 8. The Fourier coefficients are non-negative if and only if the
root system is of type D

(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 , which are exactly the

types of simply-laced elliptic root systems admitting the flat structure
(compare [Sa14]V, Theorem with [Sa14]II, §11 Theorem.)

Finally, we remark that a stronger form45 of the following statement
was conjectured in [Sa17](Conjecture 13.5) and is proven by S. Yasuda
[Yas].

Fact 9. Let us define the dual rank νW of W by νW :=−
∑

i|h eW (h/i)i
(νW = μW∗ if the ∗-dual of W exists). Then, all Fourier coefficients of
ηW (τ) at ∞ are non-negative integers if and only if νW ≥ 0.

In particular, if a weight system W admits the ∗-dual, then all
Fourier coefficients of ηW are non-negative.
Question: Interpret the Fourier series of ηW as the generating function
of counting of some objects either from the geometry of XW or from the
algebra gW .

45An eta product η(hτ)νηW (τ) has non-negative Fourier coefficients if and
only if νW ≥ ν.
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§15. Towards algebraic construction of the correspondence Φ⇒

We return to the question of constructing the correspondence Φ⇒
posed in §12. According the program §12 iii), the algebra gW should
have the root space decomposition with respect to the adjoint action of
the Cartan-Killing subalgebra h � H2(X1, C) with the generalized root
system RW of the vanishing cycles in H2(X1, Z) (§5,7). So, our first task
should be to give a good description of the set of vanishing cycles RW

and to find a good basis for it.
For the 14 cases of εW=−1, we explained already that the diagram in

Table 12. due to Gabrielov is a good candidate for the simple root basis
for the generalized root system (recall Footnotes 40 and 42). However,
the diagrams were obtained after several braid actions on the basis of
the lattice of vanishing cycles ([Gab2], see also [Eb1]). It seems as if the
diagrams are obtainded ad hoc, and hard to find an explanation on their
naturarity and necessity from purely topological machinery alone.

On the other hand, once we introduce the use of ∗-duality in §14,
the situation changes drastically. Namely, owing to §14 Fact 7., the
Gabrielov numbers of the diagram of the 14 weight systems W with
εW =−1 are given by the signature set A(W ∗) ((13) and Footnote 32) of
the ∗-dual weight system W ∗. That is, the Gabrielov number for W is
determined “intrinsically” by two arithmetic steps: step 1. calculate the
∗-dual weight system W ∗ from W ([Sa17] The.7.9) and step 2. calculate
the signature set A(W ∗) of W ∗ ([Sa11] The.6), which can be done with-
out any ambiguity. That is: the diagram in Table 12. for W is, at least
in its numerical level, determined from the algebraic approach through
the ∗-dual W ∗. Actually, the same phenomenon occurred already for
the simple singularities, where εW >0 and the weight system W is self-
dual (§14 Example 2) and then the signature set A(W ∗) (=A(W )) gives
the branch lengths of the diagram of the simple basis of the finite root
system RW (recall §7, 3), §11 a) Example and Table 3).

These facts led the author to ask the following question: 46

Problem: Construct the root system RW and its basis through the alge-
braic approach Φa)

⇒(XW∗) instead of the topological approach Φb)
⇒(XW ).

46Problem ([Sa15], in English translation p.124). Construct directly from
the system of weights (a, b, c;h), without pathing through the homology group of
the Milnor fiber, arithmetically or combinatorially, the generalized root system
(Q, I,R, c) given above. That is to say, give a basis α1, · · · , αμ and their inner
products I(αi, αj) (1≤ i≤j≤μ) directly from the data (a, b, c;h).
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The numerical data A(W ∗) alone are not sufficient, and we need to
find a structural approach to reconstruct the root system RW and its ba-
sis. Based on recent developments in mathematical physics47, A. Taka-
hashi [Ta2] gave an answer to the first part of the problem (i.e. the
construction of the root system RW ). He conjectured that the K-group
of the category of graded matrix factorizations for fW∗ should be iso-
morphic to the lattice of vanishing cycles (H2(X1, Z), I). He has shown
that the category for the case of the polynomial fAl

= xl+1 of type Al

is derived equivalent to the category of modules over the path algebra
for the Dynkin quiver of type Al, so that the set of indecomposable ob-
jects in the K-group gives the set of roots of type Al, and he further
conjectured that this should hold for all the other simple polynomials.

In the following three sections 16, 17 and 18, we report the results of
some joint works of H. Kajiura, A. Takahashi and the author along these
line and on its further development. We introduce in §16 the homotopy
category HMFgr

AW
(fW ) of graded matrix factorizations for fW , in three

different formulations.
In §17, we study the category for a simple weight system W for

εW =1, and show that it is generated by a strongly exceptional collection
(see §16, 4. for a definition) whose associated quiver is a classical Dynkin
quiver of the type W = W ∗ [K-S-T 1]. Then, due to a classical result
by Gabriel [Ga], the set of indecomposable objects in the category form
the classical finite root system in the associated Grothendieck group (=
K-group), as was expected.

In §18, we study [K-S-T 2] the category for a weight system W of
14 + 8 weight systems of εW = −1 with a0 = 0. We show that it is
generated by a strongly exceptional collection whose associated quiver
is of the form Table 14, where the set of lengths of branches of the
quiver is given by the signature set A(W ) (13) of the weight system
W . We show further that the path algebra for the quiver with relations
is isomorphic to the finite dimensional algebra consisting of morphisms
among the objects of the exceptional collection. Then, owing to a result
of Bondal-Kapranov [B-K], the category is equivalent to the bounded

47A hint was given by the Gonzalez-Verdier interpretation of c) ([G-V],
see Appendix), where the dual basis of the simple root basis was constructed
by certain vector bundles on X̃W,0. Then, the derived category of the abelian
category of coherent sheaves was acknowledged in the recent development in
mirror symmetry of D-branes due to Kapustin-Li [K-L 1,2], Hori-Walcher [H-W]
and Walcher [Wal].

The category of graded D-branes of type B in Landau-Ginzburg models was
formulated by D. Orlov [Orl2] as the triangulated category of the singularity X.
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derived category of that of modules over the path algebra of wild type
with two relations. In particular, in the 14 exceptional modular cases,
in view of the ∗-duality (§14, Fact 7.) and by the comparison of Table
12 with 14, the Grothendieck group K0(HMFgr

AW
(fW )) is isomorphic to

the lattice of vanishing cycles H2(XW∗,1, Z) for the ∗-dual weight system
W ∗ of W . “Whether the generalized root system RW∗ in H2(XW∗,1, Z)
(i.e. the set of vanishing cycles, see §11,b), 1) ) is exactly the image of
the set of exceptional indecomposable objects in HMFgr

AW
(fW ) or not” is

an open and interesting question.48

The above results on the category of graded matrix factorization for
εW=±1 seem to suggest that the category HMFgr

AW
(fW ) for W with a0=

0 may possibly have certain canonical strongly exceptional collections,
which are liftings, at the categorical level, of an answer to the latter half
of Problem in Footnote 46.

§16. The category of graded matrix factorizations

In this section, we introduce the triangulated category TW associ-
ated with a regular system of weights W in three equivalent forms: by
the homotopy category of the graded matrix factorizations,49 by the sta-
ble category of maximal Cohen-Macaulay modules, and by the category
of singularities ([Bu],[Orl1],[Ta2]). We discuss some basic properties
of the category such as Serre duality, the generation of the category,

48One should lift the question into the categorical level as follows: since
RW∗ is a union of the Weyl group orbits of a distinguished basis due to the
irreducibility of the discriminant Dϕ (Footnote 12), and a distinguished basis
is the image of the objects of an exceptional collection, we ask “whether any
exceptional indecompsable object in HMFgr

AW
(fW ) is obtained by a successive

application of mutations on the objects of the exceptional collection or not?”.
49The concept of a matrix factorization is introduced by D. Eisenbud [Ei]

in order to describe the two periodic resolutions of maximal Cohen-Macaulay
modules. It was applied in the study of hypersurface isolated singularities
([Kn1,2],[Gr],[Sch]). It obtained a new impetus through mathematical physics
([K-L], [H-W]) and found new application to the categorification of link invari-
ants ([K-R]). From a graded matrix factorization, forgetting about its grading
one obtains a ungraded Marx factorization. This induces a comparison of the
categories of graded and ungraded Matrix factorizations. This forgetful functor
induces the embedding of the corresponding K-groups, which should conjec-
turally mirror dual to the embedding of the lattice of vanishing cycles to that of
cycles coming from infinity. However, in the present paper, we shall not discuss
this subject further (see §11 b) 4) and §12 Note 3.).
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exceptional collections and Auslander-Reiten translation. For basic ter-
minology and concepts in category theory, one is referred to [Ke].

Let W=(a, b, c; h) be a regular system of weights. We regard the poly-
nomial ring

AW := C[x, y, z]
to be graded by the weight deg(x)=2a/h, deg(y)=2b/h,deg(z)=2c/h.50

Fix a polynomial fW ∈AW of type W (9), which is of degree 2. Put 51

RW := AW /(fW ) = C[x, y, z]/(fW ).

Obvious remarks are that AW is a regular ring and RW is a Gorenstein
ring. By definition, both AW and RW are graded rings graded by 2

hZ≥0.
In the present paper, by a graded module M over AW or RW , we always
mean a module which is graded by 2

hZ, i.e. M =⊕d∈ 2
h ZMd. A graded

homomorphism f : M → N of degree a between graded modules is
defined as usual a homomorphism with f(Md)⊂Nd+a for any d ∈ 2

hZ.
We denote by gr-AW or gr-RW the category of finitely generated graded
AW or RW -modules, respectively, whose morphisms are homogeneous
of degree 0. We denote by τ the degree shift operator on the set of
graded modules to itself defined by (τM)d =Md+ 2

h
. For a morphism f ,

we associate the same morphism τ(f) :τM→τN .
For M, N ∈gr-AW , the module HomAW (M, N) of all AW -homomor-

phisms naturally belongs to gr-AW by letting HomAW (M, N) 2n
h

:=Hom
gr-AW (M, τnN). The same statement replacing AW by RW holds also.

1. The homotopy category of graded matrix factorizations for
fW .

Definition. i) A graded matrix factorization for fW is a system

M := (P0

p0
�
p1

P1)

where P1, P2 are graded free AW -modules of finite rank and p0, p1 are
graded AW -homomorphisms such that p0p1 =fW · idP0 , p1p0 =fW · idP1

and deg(p0)=0, deg(p1)=2. The set of all graded matrix factorizations
for fW is denoted by

MFgr
AW

(fW ) := {graded matrix factorizations for fW }.

50In order to compare with the conventions of matrix factorizations, we
have to duplicate the grading compared with that for the flat structure. Hence,
one should note that deg(fW )=2.

51The reader is notified with the fact that there is an unfortunate coinci-
dence of this notation with that for the set of vanishing cycles in §11 b) 1).
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ii) A graded homomorphism from M =(P0

p0
�
p1

P1) to M ′ =(P ′
0

p′
0

�
p′
1

P ′
1) is

a pair Φ=(φ0, φ1) : (P0, P1)→ (P ′
0, P

′
1) of graded AW -homomorphisms

homogeneous of degree 0 making the following diagram commutative.
p1−→ P0

p0−→ P1
p1−→ P0

p0−→
· · ·

⏐⏐�φ0

⏐⏐�φ1

⏐⏐�φ0 · · ·
p′
1−→ P ′

0

p′
0−→ P ′

1

p′
1−→ P ′

0

p′
0−→

The set of all graded homomorphisms is denoted by HomMFgr
AW

(fW )(M,

M ′).

iii) We denote also by MFgr
AW

(fW ) the additive category of all matrix
factorizations with respect to above defined homomorphisms.

Definition. We denote by HMFgr
AW

(fW ) the homotopy category
of MFgr

AW
(fW ). That is, the objects of HMFgr

AW
(fW ) are the same as

MFgr
AW

(fW ). The module of homomorphisms is defined as the quotient
space by the homotopy equivalence

HomHMFgr
AW

(fW )(M, M ′) := HomMFgr
AW

(fW )(M, M ′)/ ∼

where a morphism Φ=(φ0, φ1) is homotopic to zero, denoted by Φ ∼ 0,
if there exists AW -homomorphisms h0 : P0 → P ′

1 and h1 : P1 → P ′
0

with deg(h0) = −2 and deg(h1) = 0 such that φ0 = p′1h0 +h1p0 and
φ1 =p′0h1+h0p1.

p1−→ P0
p0−→ P1

p1−→ P0
p0−→

· · · ↙
⏐⏐�φ0 ↙h1

⏐⏐�φ1 ↙ h0

⏐⏐�φ0 ↙ · · ·
p′
1−→ P ′

0

p′
0−→ P ′

1

p′
1−→ P ′

0

p′
0−→

Example. The AW

1

�
f

AW and AW

f

�
1

τhAW are matrix fac-

torizations which are homotopic to 0, since we have the following com-
mutative diagram:

→ AW
f→ AW

1→ AW
f→

↙ 1

⏐⏐�1 ↙0

⏐⏐�1 ↙ 1

⏐⏐�1 ↙ 0

→ AW
f→ AW

1→ AW →

Any 0-object M (i.e. 1M ∼ 0) in the category HMFgr
AW

(fW ) is a direct

sum of copies of some τ -powers shifts of (AW

1

�
f

AW ) and (AW

f

�
1

AW ).
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Definition. (Shift functors) We introduce two auto-equivalence
functors:

τ(P0

p0
�
p1

P1) := (τP0

τp0
�
τp1

τP1), τ(φ0, φ1) = (τφ0, τφ1),

T (P0

p0
�
p1

P1) := (P1

−p1
�

−τhp0

τhP0), T (φ0, φ1) = (−φ1,−τhφ0).

By definition, they satisfy an obvious but basic relation:
(20) T 2 = τh

Here are some elementary properties of the category HMFgr
A (fW ).

i) HMFgr
A (fW ) is a Krull-Schmidt category: i.e. if e ∈ EndHMFgr

R (f)

(M) for an object M is idempotent e2 =e, then there exist an object M ′

and morphisms Φ′ : M ′→M and Φ : M→M ′ such that Φ′ ◦ Φ = e and
Φ ◦ Φ′=idM ′ .

ii) HMFgr
A (fW ) is of Ext-finite type: i.e. ⊕n∈ZHom(M, T nN) is fi-

nite dimensional vector space for all objects M and N of the category.
Sketch of proof. The direct sum ⊕n∈ZHomHMFgr

A (fW )(M, τnM ′) is a
finitely generated AW -module. Since the sum is annihilated by mul-
tiplications by ∂xfW , ∂yfW , ∂zfW , it is a finite module over JW :=
AW /(∂xfW , ∂yfW , ∂zfW ). Since fW is of type W and in view of §11
Fact 4., it is of finite rank over C. �

Definition. (Mapping cone) For any morphism Φ = (φ0, φ1) ∈
HomMFgr

R (f)(M, M ′), we introduce the mapping cone C(Φ) ∈ MFgr
R (f)

as follows. ⎛⎜⎜⎜⎜⎝
P1

(
−p1 0
φ1 p′

0

)
τhP0

⊕ � ⊕

P ′
0

(
−τhp0 0
τhφ0 p′

1

)
P ′

1

⎞⎟⎟⎟⎟⎠
and obtains a sequence: ∗) M

Φ−→ M ′ inclusion−−−−−−→ C(Φ)
−projection−−−−−−−−→

TM . Then, we have the following general fact (c.f. [G-M], [K-S], [B-K2],
[Ta2]).

Theorem. The additive category HMFgr
AW

(fW ) endowed with the
shift function T and distinguished triangles isomorphic to ∗) for all mor-
phisms Φ forms an enhanced triangulated category of Ext-finite type.

See [B-K2] for a definition of the enhanced triangulated category.

2. The stable category of maximal Cohen-Macaulay modules
over RW .
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Definition. A graded module M ∈ gr-RW is a maximal Cohen-
Macaulay module over RW if depth(M) = dim(RW ) (=: d = 2) (⇔
ExtiR(RW /(x, y, z), M) = 0 for i < d = 2). The full subcategory of
gr-RW consisting of all graded maximal Cohen-Macaulay modules over
RW is denoted by CMgr(RW ).

For an element M of gr-RW and n≥ d, the n-th syzygy syzn(M)
(:=nth kernel of a graded free resolution of M) up to a free module factor
becomes a maximal Cohen-Macaulay module and doubly periodic in n.
Hence, one sees CMgr(RW ) is a Frobenius category (i.e. it has enough
injective and projective objects which coincide to each other). Then,
the stable category CMgr(RW ), defined below, becomes a triangulated
category (c.f. [Ke]): the objects of the stable category CMgr(RW ) is the
same as CMgr(RW ) and the space of morphisms is given by

Homgr-RW
(M, N) := Homgr-RW (M, N)/P(M, N),

where P(M, N) is the subspace of Homgr-RW (M, N) consisting of mor-
phisms which factor through projective modules.

Fact 10. For a graded matrix factorization M ∈MFgr
AW

(fW ), we asso-
ciate a maximal Cohen-Macaulay module coker(P1

p1→ P0) ∈ CMgr(RW )
over RW . This correspondence induces an equivalence of the triangulated
categories:

(21) HMFgr
AW

(fW ) � CMgr(RW ).

The advantage of the category CMgr(RW ) is that it easily admits
the concepts: Auslander-Reiten triangles and Serre duality, which we
explain below. For details on the subject, the reader is referred to text-
books, e.g. [Hap], [Yos].

We first define the Auslander transpose tr(M) (up to free module

factor) of M ∈gr-RW by putting tr(M) := Coker(tf) where F1
f→F0→

M→0 is a finite presentation of M and tf is the contragradient homo-
morphism of f . Let us denote by syzd(tr(M)) the reduced dth syzygy of
tr(M) obtained by avoiding all graded free summands from a dth syzygy
of tr(M). Then, the Auslander-Reiten translation, or A-R translation,
τAR(M) ∈ gr-RW is defined by

A-R translation : τAR(M) := HomRW (syzd(tr(M)), KRW )

where KRW =ResXW,0

[
AW dxdydz

fW

]
= τ−εW RW is the canonical mod-

ule of RW = AW /(fW ). If M is a maximal Cohen-Macaulay module
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without a free direct summand, then we easily see that syz2(tr(M)) �
HomRW (M, RW ), and, hence,

(22) τAR(M) � τ−εW M.

The auto-equivalence of the category CMgr(RW ) induced by τAR is de-
noted again by τAR. In view of the relation (20), we have the following
relation:

τh
AR = (T 2)−εW .

The following duality was shown by Auslander and Reiten [A-R3]:

Extd
gr-RW

(HomRW
(M, N), KRW ) � Ext1gr-RW

(N, τAR(M))

for M, N ∈ CMgr(RW ). This, in particular, implies the following

Serre duality : HomC(Homgr-RW
(M, N), C) � Homgr-RW

(N, SM)

as a bi-functorial isomorphism of vector spaces for M, N ∈ CMgr(RW ),
where S is an auto-equivalence of the category CMgr(RW ), called Serre
functor [B-K1], defined by
(23) S := TτAR.

As a consequence of Serre duality, one can show that, for any in-
decomposable object Z of CMgr(RW ), there exists the AR-triangle of
Z in the following sense: let Z

w→ TτAR(Z) be the morphism, which,
by Serre duality, corresponds to the dual of the identity element in
HomC(Homgr-RW

(Z, Z), C). Then, there exists an object AR(Z) and
the triangle, called A-R triangle, in CMgr(RW ):

A-R triangle : τAR(Z) u→ AR(Z) v→ Z
w→ TτAR(Z)

such that, for any morphism g : W → Z in CMgr(RW ) which is not a
split epimorphism, there exists h : W → AR(Z) with vh = g.

3. The category of the singularity XW,0 := Spec(RW ).

Definition. ([Orl1]) The triangulated category of the singularity
XW,0 is

Dgr
Sg(RW ) := Db(gr-RW )/Db(gr proj-RW )

where Db(gr-RW ) is the bounded derived category of the abelian cate-
gory gr-RW with the natural triangulated structure and Db(gr proj-RW )
is its full triangulated subcategory consisting of objects which are iso-
morphic to the bounded complexes of projectives. Actually, the subcat-
egory is the derived category of the exact category of graded projective
modules [Ke], and is called the subcategory of perfect complexes.
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Since RW defines the hypersurface XW,0 and is Gorenstein, we have

Theorem. (Buchweitz [Bu], Orlov [Orl2]§1.3) The natural inclu-
sion map CMgr(RW ) → gr-RW induces the equivalence of triangulated
categories:

(24) CMgr(RW ) � Dgr
Sg(RW ).

Orlov [Orl2] gave further a comparison Theorem of Dgr
Sg(RW )with the

quotient abelian category qgr-RW := gr-RW/tors-RW where tors-RW is
the full subcategory of gr-RW consisting of all finite dimensional RW -
modules. Actually, in case when CW is a rational curve, we may regard
it as a weighted projective line in the sense of Geigle and Lenzing [G-L
1]. Then qgr-RW is derived equivalent to thecategoryofcoherentsheaves
on the weighted projective line [G-L 2].52

4. The triangulated category TW associated with a regular
system of weights W .

Owing to (21) and (24), we introduce an enhanced triangulated category

(25) TW := HMFgr
AW

(fW ) � CMgr(RW ) � Dgr
Sg(RW )

associated to a regular system of weights W up to equivalences. The
advantage of the third expression is that we have the following generation
theorem ([K-S-T 2]), which we shall use in the proof of our main theorem
in §18.

Theorem. Let T be a right-admissible full triangulated subcategory
of TW satisfying:

i) The shift functor τ induces an auto-equivalence of T .
ii) There is an object of T which is isomorphic to the pure complex

of the torsion (sky-scraper) module RW /(x, y, z) in TW .
Then the natural inclusion T ⊂ TW induces the triangulated equivalence.

Here, a subcategory T ′ of a triangulated category T is called right-
admissible if, for any object X of T , there exist N ∈T ′, M ∈T ′⊥ :={M ∈
T | HomT (N, M)=0 ∀N ∈T ′} and a triangle: N → X → M → TN in
T .

For a later use, we recall some terminologies and results from [Bon].

52[G-L 2] treats the case corresponding to the regular weight systems with
εW = 1. A general proof which covers the case for any regular weight system
of genus 0 shall appear in: H. Kajiura, K. Saito and A. Takahashi: Weighted
projective lines associated to regular systems of weights, in preparation.
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Definition. i) An object E in a triangulated category T over C is
called exceptional if HomT (E, T pE) � C if p = 0 and 0 if p �= 0.

ii) An exceptional collection is a sequence (E1, · · · , Eμ) of excep-
tional objects satisfying HomT (Ei, T

pEj) = 0 for ∀p ∈ Z and 0 ≤ j <
i ≤ μ.

iii) An exceptional collection (E1, · · · , Eμ) is called strongly excep-
tional if HomT (Ei, T

pEj) = 0 for all 1 ≤ i, j ≤ μ and p �= 0.
iv) For an exceptional collection E := (E1, · · · , Eμ), we denote by

〈E〉 :=〈E1, · · · , Eμ〉 the smallest triangulated full subcategory containing
E1, · · · , Eμ. We say that E generates T if 〈E〉 is equivalent to T .

v) For a strongly exceptional collection E := (E1, · · · , Eμ), let us
introduce a finite dimensional agebra

Hom(E , E) := ⊕0≤i,j≤μHomT (Ei, Ej)

and call it the hom-algebra of the collection E .

Theorem. ([Bon],[B-K2]) Let T be an enhanced triangulated cat-
egory of Ext-finite type, and let E be a strongly exceptional collection.
Then, 〈E〉 is right admissible and is, as an enhanced triangulated cate-
gory, equivalent to the bounded derived category

(26) Db(mod-Hom(E , E)).

5. K-group and Auslander-Reiten translation of TW .
In this paragraph, we show that the Auslander-Reiten translation

induces an automorphism of the K-group of the category, which is ex-
pressed as the product of reflections. This expression is presumably the
mirror dual of the expresion given in §5 of the Milnor monodromy c by
the product of reflections.

For a triangulated category T , let K0(T ) be its Grothendieck group
(or K-group), i.e. the quotient group of the free abelian group generated
by the equivalence classes [X ] of objects X of T divided by the submod-
ule generated by [X ]+[Z]−[Y ] for all triangles X→Y →Z→TX . We de-
note by [X ] the image element in K0 of X . If a set E1, · · · , Eμ of objects
generates the triangulated category, then their images [E1], · · · , [Eμ]
generates the K-group over Z.

The shift functor T on T induces an action [T ]=−idK0(T ) on K0(T ),
since [X]+[TX]=0 for any object X because of the triangle X

1→X→0→
TX. In particular T 2 induces identity on the K-group

The Auslander-Reiten translation τAR is an auto-equivalence of the
triangulated category, so that it induces an automorphism of the group
K0(T ), denoted by [τAR]. For the category TW associated to a regular



Categorical construction of Lie algebras 153

weight system W , it is of finite order h, since, using the expression (22)
and the fact (20), we calculate as

[τAR]h = [T−2εW ] = (−idK0(TW ))−2εW = idK0(TW ).

If T is of Ext-finite type over C, the Euler pairing is defined by

χ(X, Y ) :=
∑

n∈Z
(−1)nhomT (X, T nY )

for any two objects X and Y of T . Because of the (co-)homological
property of homT , it induces a bilinear form on K0(T ), which we denote
again by χ. We equip the K-group with the symmetric bilinear form
(e.g. see [Ri1] 2.4) 53:

(27) I(e, f) := χ(e, f) + χ(f, e).

for e, f ∈ K0(T ). We remark that if e = [E] where E is an exceptional
object of T , then χ(e, e) = 1 and, hence, I(e, e) = 2. Then, similarly
to Picard-Lefschetz formula in §5, we can define the reflection we ∈
O(K0(T ), I) by letting

we(u) := u− I(u, e)e for u ∈ K0(T ).

The [τAR] preserves the bilinear form χ, i.e. [τAR] ∈ O(K0(T ), I).
Let us express now [τAR] as a product of reflections on K0(T ).

Let E := (E1, · · · , Eμ) be a strongly exceptional collection of T .
Assume that E1, · · · , Eμ generate T and, hence [E1], · · · , [Eμ] is a basis
of K0(T ). Associated to [E1], · · · , [Eμ], we consider two basis: f1, · · · , fμ

and g1, · · · , gμ of K0(T ) defined by the following relations:

(28) [Ei] =
∑μ

j=1 χ(Ei, Ej)fj =
∑μ

j=1 gjχ(Ej , Ei)

Here, we remark that the matrix χE := (χ(Ei, Ej))ij=1,··· ,μ is an upper
triangular matrix with 1 at each diagonal entry so that χ is invertible.
Let us denote by CE = (CE,ij)ij=1,··· ,μ the inverse matrix χ−1

E (which
is also an upper triangular integral matrix). In fact, using the mapping
cone constructions, one can find objects Fi and Gi in T such that fi =[Fi]
and gi =[Gi] for i=1, · · · , μ.54 The intersection matrix of them are given

53For the purpose of the period map for odd dimensional Milnor fiber, we
need to study the skew symmetric bilnear form: Iodd(e, f) := χ(e, f) − χ(f, e)
(see [Sa18]§6 (6.2.2)), [Sa19] latter half of §4). However, we shall not treat them
in the present paper.

54Actually, these objects Fi and Gi are constructed by use of mutations
and are shown to be exceptional objects ([Bon]).
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by CE as follows:
(29)

χ([Fi], [Fj ]) = χ([Gi], [Gj ]) = CE,ji for i, j = 1, · · · , μ.

Since I([Fi], [Fi]) = I([Gi], [Gi]) = 2 for 1 ≤ i ≤ μ, we define reflections
w[F1], · · · , w[Fμ] and w[G1], · · · , w[Gμ]. Then, one can easily verify the
formula:

Fact 11. Let (E1, · · · , Eμ) be a strongly exceptional collection, then the
transformation [τAR] is expressed as the product of reflections associated
to the basis:

(30) [τAR] = w[F1] · · ·w[Fμ] = w[G1] · · ·w[Gμ] .

6. Quiver and path algebra associated with E.
In this paragraph, associated with a strongly exceptional collection,

we consider a slight generalization of a quiver, and then, associated to the
(generalized) quiver, we introduce a path algebra with relations, which
we shall use in §17 and 18 (see [Ri1] for quivers and path algebras).

Let E = (E1, · · · , Eμ) be a strongly exceptional collection of a tri-
angulated category T . Then, we associated a quiver ΔE given by a
pair

(31) ΔE = (Δ0, Δ1),

where Δ0 = {v1, · · · , vμ} is a set of μ elements, called the vertices,
and Δ1, called the set of allows, is a multi-set of triplet (vi, vj , ε) ∈
Δ0×Δ0×{±} where (vi, vj , +) appears in Δ1 only when i �=j, CE,ij <0
and −CE,ij-times, and (vi, vj ,−) appears in Δ1 only when i �=j, CE,ij >0
and CE,ij-times. We regard (vi, vj , +) ∈ Δ1 as an arrow (with positive
sign) from the vertex vi to the vertex vj , and similarly (vi, vj ,−) ∈ Δ1

as a dotted arrow from vi to vj .

Remark 16.1. If one forgets the directions of the arrows from the
quiver ΔE and leaves only lines or dotted lines together with the ver-
tices, then one obtains automatically the intersection diagram Γ of the
symmetric bilinear form I with respect to the basis [F1], · · · , [Fμ] or
[G1], · · · , [Gμ] of K0(T ), i.e. Γ is the intersection diagram for the sym-
metrization of the matrix (29)) (for instance, [Sa14]I (8.2)).

Associated with the above given quiver ΔE (31), the path algebra

(32) C(ΔE , R)

with relations R is defined as follows. Let Δ1 =Δ+
1 �Δ−

1 be the decom-
position of the set of arrows into those of positive and negative signs.
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We regard Δ+
E := (Δ0, Δ+

1 ) as the quiver in the classical sense (e.g.
[Ri1] 2.1), then by concatenating arrows, one defines paths and the path
algebra CΔ+ as usual ([ibid]). Let

R : Δ−
1 −→ CΔ+

E
be a map such that the image of an arrow (vi, vj ,−) belongs in the
subspace (vj | vj) · CΔ+

E · (vi | vi) spanned by all paths from vi to vj

(here, we denote by (v | v) the path of length 0 at a vertex v). Then,
we put

(32) C(ΔE , R) := CΔ+
E / (CΔ+

E ·R(Δ−
1 ) · CΔ+

E ),

where CΔ+
E · R(Δ−

1 ) · CΔ+
E is the both-sided ideal of the path algebra

CΔ+
E generated by the image set R(Δ−

1 ). We call C(ΔE , R) the path-
algebra with relations R.

Remark 16.2. Assigning to each arrow (vi, vj ; +) ∈ Δ+
1 a mor-

phism fij ∈ HomT (Ei, Ej), we can define a ring homomorphism:

C(ΔE , R) −→ Hom(E , E) := ⊕0≤i,j≤μHomT (Ei, Ej)

for a suitable choice of relations R. In general, the homomorphism can
neither be isomorphic nor induce derived equivalence for any choices of
fij and R.

Example. Let us consider a strongly exceptional collection E = (E1, E2,

E3) such that χE =

[
1 1 1
0 1 1
0 0 1

]
and CE =

[
1 −1 0
0 1 −1
0 0 1

]
. Then the associ-

ated quiver is a Dynkin quiver ΔE = ◦→◦→◦ of type A2 and CΔE is a
path algebra of type A2. On the other hand, there are two cases of the
structure of the hom-algebra Hom(E , E) := ⊕1≤i≤j≤3Hom(Ei, Ej) de-
pending on whether the product Hom(E1, E2)×Hom(E2, E3)→ Hom(E1,
E3) is a) non-zero or b) zero. Then the homomorphism CΔE → Hom(E , E)
assigning the two arrows in ΔE to the base of Hom(E1, E2) and Hom(E2,
E3), respectively, is isomorphic in the case a), but neither isomorphic
nor derived equivalent in the case b).

§17. The category of matrix factorizations: the case εW = 1.

In this section, we study the category TW =HMFgr
AW

(fW ) associated
with a weight system W with εW =1. Recall that, in this case, the weight
systems are classified into types Al (l ≥ 1), Dl (l ≥ 4), E6, E7 and E8

(see Table 8), and that the associated polynomials fW of type W are
called the simple polynomials (see Table 2).
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Then the following theorem is proven in [K-S-T 1] (c.f. also [Ue]).

Theorem. Let W be a regular system of weights of type ADE. For
any Dynkin quiver �Δ of type W (see Note below), there exists a unique
strongly exceptional collection E�Δ of the category TW (25) such that

i) the E�Δ generate the triangulated category TW ,
ii) the quiver associated with the collection E�Δ is isomorphic to �Δ,

iii) the path algebra C�Δ is isomorphic to the hom-algebra HomTW (E�Δ,
E�Δ).

Note. By a Dynkin quiver, we mean an oriented Dynkin diagram of type
ADE.

Sketch of proof. According to the works [Ei], [A-R1] and [Au], the
Auslander-Reiten quiver for the triangulated category HMFÔ(fW ) of un-
graded matrix factorizations over the local ringsO and Ô are well-known

to be isomorphic to the both side oriented Dynkin quiver
↔
Δ of type W .

We consider the natural forgetful functor: HMFgr
AW

(fW )→HMFÔ(fW )
forgetting the gradings on matrix factorizations. Then, by “lifting” the
results on HMFÔ(fW ) back to the graded category together with the
knowledge of the Serre duality, in [K-S-T 1], we determine the list of all
indecomposable objects and all irreducible morphisms in HMFgr

AW
(fW ).

Using these data, we can verify directly the existence (up to τ -shift) of
a strongly exceptional collection E�Δ of HMFgr

AW
(fW ), and of the natural

isomorphism: C�Δ � Hom(E�Δ, E�Δ) (i.e. the non-vanishing of composi-
tions of morphisms corresponding to concatenations of arrows in �Δ).�

Applying a theorem of Bondal-Kaplanov to the enhanced category
HMFgr

AW
(fW ), we see the equivalence among the triangulated categories:

(33) Db(mod - C�Δ) � Db(mod -Hom(E�Δ, E�Δ)) � HMFgr
AW

(fW ).

Combining with the well known results on the representations of the
hereditary algebra C�Δ (c.f. [Ga], [Ri1], [Hap]), we obtain the following
expected results.

Corollary. Let the setting be as in Theorem. Then, i) the K-group
K0(TW ) of TW is isomorphic to the root lattice of type W = W ∗, ii)
the image set in K0(TW ) of indecomposable objects form the root system
RW∗ of type W ∗, and iii) the image in K0(TW ) of a strongly exceptional
collection E�Δ forms a simple root basis of the root system RW∗ .

Remark. As in the Al case [Ta2], a stability condition (Bridgeland
[Bri 1]) can be naturally given by the grading of matrix factorizations.
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The abelian category associated to the stability condition (as a full sub-
category of HMFgr

AW
(fW )) is equivalent to the category mod - C�Δ of fi-

nite modules over the path algebra of a Dynkin quiver �Δ of the principal
orientation introduced in [Sa21].

§18. The category of matrix factorizations: the case εW = −1

In this section, we describe the category TW = HMFgr
AW

(fW ) associ-
ated with a regular system of weights W with εW=−1 and a0=0. Recall
that the orbifold curve CW (12) is of genus a0 so that we are considering
the case of rational orbifold curves. There are 14+8 such weight systems,
which are listed in Table 10. The associated polynomials fW of type W
are also listed in Table 10, where we remark that, in the first 14 weight
systems, there are 3 orbifold points on the curve CW so that the polyno-
mial fW contains no moduli parameter, whereas, in the latter 8 weight
systems case, there are either 4 or 5 orbifold points on the curve CW so
that the polynomial fW contains either one or two moduli parameters
λ or λ1, λ2, respectively.

In order to recall Theorem in [K-S-T 2] 5.4, we introduce some par-
ticular quiver ΔA(W ) depending only on the signature set A(W ) (13) (see
Footnote 32) for the orbifold structure on CW . Slightly more generally,
let us define

Definition. Let A = {α1, · · · , αr}
be a multi-set of r positive integers for some r ∈ Z≥0. Then the quiver
ΔA of type A is defined by the following figure and data.

Table 14. ΔA = (ΠA,EA)

v1,α1

v1,α1−1

v1,3 v0

vr,αr

vr,αr−1

v2,α2 vr−1,2

v̄1

v1,2

vr,3

vr,2

v2,3v2,α2−1

v1

vr−1,αr−1
v2,2 vr−1,3 vr−1,αr−1−1
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where the set of vertices and the set of arrows are given as follows:

ΠA := {v0, v1, v1} � �r
i=1{vi,2, · · · , vi,αi},

EA := {(v1, v0; +), (v1, v1;−)1, (v1, v1;−)2}
� �r

i=1 {(vi,2, v1; +), · · · , (vi,αi , vi,αi−1; +), (v1, vi,2; +)}.

Remark 9. We have only two negatively signed arrows between the
vertices v̄1 and v1. They are distinguished by the subscripts 1 and 2
as (v1, v1;−)1 and (v1, v1;−)2. They shall later turn to relations in the
path algebra.

Before we state the main theorem, we introduce one more numerical
invariant: the dual rank νW for any regular weight system W . It is
defined by using exponents eW (i) defined at Preface of the paper, as

(34) νW := −
∑

j|h j · eW (h/j).

It is introduced [Sa17] (7.2) as the rank of W ∗ (if it exists). Actually,
we prove the formula (whose proof will appear elsewhere):

νW =
∑r

i=1(αi − 1) + 2(1− a0)− εW

where A(W )={α1,· · ·, αr} is the signature set of W (see Footnote 31).

Remark 10. In this section, we have εW = −1 and a0 = 0. So the
formula reduces to

νW =
∑r

i=1(αi − 1) + 3.

Then, one observes that the first term of this formula coincides with the
number of vertices on the r branches of the diagram ΔA and the last
term 3 coincides with the number of vertices on the central axis of the
diagram ΔA.

The same interpretation is possible for the case of the previous sec-
tion §17, where one has εW = 1 and a0 = 0 so that one has νW =∑r

i=1(αi − 1) + 1. Then this formula again describes the number of
vertices in a Dynkin diagram. However, in the case when the weight
systems are selfdual, rank and dual rank coincide with each other, and
it is unnecessary to introduce such dual rank.

Theorem. Let W be a regular system of weights with εW =−1 and
a0 =0. We fix a polynomial fW of type W . Let TW (25) be triangulated
category associated to fW . Then, there exists a strongly exceptional col-
lection EΔA = (E1, · · · , EνW ) of the category TW satisfying the following
properties.
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i) The EΔA generate the triangulated category TW .
ii)) The quiver associated with the collection EΔA is equal to ΔA

(Table 14), where A is equal to the signature set A(W ) of W .
iii) If the (vi, vj ; +) is a real arrow of ΔA, then HomTW (Ei, Ej) is a

vector space of rank −CE,ij(= 1). If, further, the arrow (vi, vj ; +) is on
the branches of ΔA, then HomTW (Ei, Ej) is spanned by an irreducible
homomorphism.

iv) The assignments

(vi, vj , +) �−→ fij

of a base fij of HomTW (Ei, Ej) to each arrow (vi, vj ; +) of Δ+
E together

with suitable choices, depending on fW and fij, of the relations

(35)
R((v1, v1;−)1) =

∑r
i=1 λ1,i (v1, vi,2; +) ◦ (vi,2, v1; +),

R((v1, v1;−)2) =
∑r

i=1 λ2,i (v1, vi,2; +) ◦ (vi,2, v1; +),

induce an isomorphism:

(36) C(ΔA(W ), R) � HomTW (E , E)

between the path algebra (32) and the hom-algebra (recall §16 4. Theo-
rem).

Combining the isomorphism (36) with the theorem of Bondal-Kapla-
nov (see §16 4.) on the enhanced category HMFgr

AW
(fW ), we obtain:

Corollary. We have the equivalence between the triangulated cate-
gories:

Db(mod - C(ΔA(W ), R)) � HMFgr
AW

(fW ).

Recall that the signature set A(W ) for the 14 weight systems coin-
cides with the set of Dolgachev numbers (§13), and that it is equal to
the set of Gabrielov numbers (recall Table 12, 13) for the ∗-dual weight
system W ∗ (§14, Fact 7.).

Recall the basis fi (or gi) defined by the formula (28) of the K-
group of the category Db(mod - C(ΔA(W ), R)). In view of the definition
(27) of the bilinear form on the K-group and the intesection number
(29) among the basis elements, we see that the K-group, as a lattice,
coincides with the lattice associated with the Gabrielov diagram (Table
12) for the dual weight system W ∗. That is, we have the isomorphism
of lattices equipped with symmetric bilinear forms:

(37) K0(TW ) � H2(XW∗,1, Z)
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of the K-group of the category for the weight system W and the middle
homology group of the Milnor fiber (see Footnote 35) of the dual weight
system W ∗. In this sense, mirror symmetry at the homology group
level is confirmed. However, the characterization of the subset in the
LHS corresponding to the set of vanishing cycles RW∗ in the RHS is
unknown. We ask whether it is the set of images of indecomposable
exceptional objects in TW or not (see Footnote 48).

As was discussed in the Preface, there are three Lie algebras associ-
ated to the 14 regular weight systems W (which admit a ∗-dual weight
system W ∗):

i) the algebra gW∗ defined by the Chevalley generators and gener-
alized Serre relations [S-Y] (4.1.1) for the Cartan matrix associated to
the diagram ΔA(W ),

ii) the algebra g′W∗ generated by the vertex operators eα for roots
α ∈ RW∗ in the Lie algebra VK0(TW )/DVK0(TW ) ([Bo1], [S-Y](3.2.1)) for
the lattice K0(TW ),

iii) the algebra g′′W∗ constructed by Ringel-Hall construction ([To],
[P-X], [X-X-Z]) for the derived category Db(mod-C(ΔA(W ), R)) of the
path algebra C(ΔA(W ), R).

The following question is the last question of the present paper.

Problem. Clarify the relationship among these three Lie algebras. Are
they isomorphic to each other? Do any of (or the covering of) these
algebras satisfies the requirements posed by Question in §12 and by
Addition to Question in §14?

Remark. For the 14 exceptional weight systems W , the (conjectural)
period domain for the period map for the primitive form of type W is
introduced [Lo6], [Sa22] (c.f. [Ao]) as

BV := { ϕ ∈ HomR(V, C) | ker(ϕ) < 0}

where V := (QW ⊗ R, I) is the real vector space equipped with a qua-
dratic form I of the signature (l+2, 0, 2), and ker(ϕ)<0 means that the
restriction of I to the subspace ker(ϕ) is negative definite. It is interest-
ing to clarify the relationship of the period domain BV for W with the
space of stability conditions (Bridgeland [Bri 1,2,3],[H-M-S]) for the cat-
egory TW∗ through the identification K0(TW∗) � (QW ,−I) due to the
above Theorem. The ring of “automorphic forms” (in suitable sense, c.f.
[Ao]) on BV with respect to the group WW is expected to carry the flat
structure (c.f. §12 Question vi)). For some recent developments on the
geometry of the modular varieties for the orthogonal groups O(2, n), we
refer to [Bo1, Bo2, Bo3], [G-H-S 1, G-H-S 2, G-H-S 3] and [Gr].
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§19. Appendix. McKay correspondence and its Inverse.

1. McKay correspondence (1979) [Mc].

We recall McKay correspondence in its original form [Mc]. For its
further understanding from a categorical view point, see [B-K-R].

Let ρ be the faithful representation of the Kleinean group G̃ into
SU(2). Let {ρ0 =1, ρ2, . . . , ρn} be the set of isomorphism classes of all
irreducible representations of G̃. Consider the decomposition

ρ⊗ ρj =
∑n

i=φ nijρi (j = 0, . . . , n)

for some nonnegative integers nij ∈ Z≥0. Then, one has:
0) nij ∈ {0, 1}
i) nii = 0 (i = 0, . . . , n)
ii) nij = nji

iii) C̃ := 2In+1−(nij)n
i,j=0 is negative semi-definite with 1-dimen-

sional kernel.
Actually, from these properties, it is not hard see that C̃ is an affine
Cartan matrix of one of types Ãl, D̃l or Ẽ6, Ẽ7 or Ẽ8, and that the matrix
C obtained by deleting column and low for the trivial representation is
a Cartan matrix of one of types Al, Dl, E6, E7 or E8 (see Table 3.). The
correspondence:
(MC): G̃ �−→ Γ := the graph associated to C
induces the bijection, called the McKay correspondence:

{Kleinean groups} ∼−→ {Simply laced Coxeter-Dynkin graphs of
finite type}

McKay wrote [Mc] “Would not the Greeks appreciate the result that
the simple Lie algebras may be derived from Platonic solids?”.

2. Gonzalez-Verdier interpretation of McKay correspondence

The work by Gonzalez-Verdier [G-V] says that the representations
ρi are interpreted as vector bundles Ṽi on the resolution X̃0 of the sin-
gularity X0. Then, the 1-st Chern classes c1(Ṽi) of the vector bundles
form the dual basis to the homology classes of the exceptional curves
[Ei] in X̃0. That is: c1(Ṽi) form the fundamental weight for the simple
root system.

Let ρi : G→ GL(Vi) be an irred. repr. of G. So G acts on C2 × Vi

diagonally. Then the diagram (not precise)

(C2 × Vi)/G ← Ṽi

↓ ↓
C2/G � X0 ← X̃0
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defines an irreducible vector bundle Ṽi on X̃0

Theorem (Gonzalez-Verdier 1984). The first Chern class c1(Ṽi) of
Ṽi defines a divisor (a smooth curve) in X̃0, which is transversal to
exactly one irreducible component, say Ei, of E = π−1(0). That is:
c1(Ṽ1), · · · , c1(Ṽl) ∈ H2(X̃0, C) forms the dual basis of [E1], . . . , [El] ∈
H2(X̃0, Z) � Q :=

l
⊕

i=1
Zρv

i .

Table 15. The first Chern classes of irreducible vector bundles over
X̃A4,0.

E1
E3

E2 c1(Ṽ2)E4
c1(Ṽ4)

c1(Ṽ5)

c1(Ṽ3)c1(Ṽ1)

3. The inverse of McKay correspondence: Γ �→ WΓ �→ 〈A(WΓ)〉.
Let us construct conceptually the inverse of the McKay correspon-

dence (MC) (through regular systems of weights) without using the clas-
sification.

Let a simply-laced Dynkin diagram Γ (or, equivalently a Cartan
matrix C of finite type) be given. The data determine the Coxeter-
Killing transformation c and using its eigenvalues, as we did in §8, we
obtain the system of exponents m1, · · · , mμ. Then, as was discussed in
§8, the generating function (1) of the exponents decomposes as (2) so
that we obtain a simple weight system W = WΓ.

How to recover the Kleinean group G̃ from a simple weight system
W?

Let W be a simple weight system (i.e. εW > 0, see §8 Fact 1). Let
fW be the simple polynomial of the type W (9), and let us consider
the associated hypersurface XW,0 (11) (the simple singularity). Due to
Fact 2 in §8 and Theorem in §1, the fundamental group of XW,0 \ {0} is
nothing but the isomorphic to the Kleinean group to define the simple
singularity. on the other hand, we can determine the fundamental group
purely arithmetically as follows.

Fact 12. Let W be either a simple weight system or one of the 14 non-
degenerate weight systems with εW =−1 and a0 =0. Then, we have the
following isomorphism:

π1(XW,0 \ {0}, ∗) � 〈A(W )〉,
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where we recall that A(W ) is the signature set of W (see §11 a) Fact 5.)
and that 〈{p, q, r}〉 := 〈p, q, r〉 denotes the group defined in §1.

Proof. Combining a result of Mumford, which we quote below, and
the description of the singularity XW,0 in §11 a) Fact 6. (see also its
following Example), we get the result. �

Theorem (Mumford 1961). Let X0 be a two dimensional normal
singularity, and let X̃0→X0 be a resolution of the singularity such that
the exceptional set E := π−1(0) is a union of P1 such that the intersec-
tion diagram is a tree. Then, by the use of the data of the tree (details
are omitted), one can write down π1(X0\{0}, ∗) by suitable generators
and relations, explicitly.

References

[Ac] N. A’Campo, Le nombre de Lefschetz d’une monodromie, Indag. Math.,
35 (1973), 113–118.

[Ao] H. Aoki, Automorphic forms on the expanded symmetric domain of
type IV, Publ. Res. Inst. Math. Sci., 35 (1999), 263–283.

[Ar1] V. I. Arnol’d, Normal forms of functions near degenerate critical points,
the Weyl groups Ak,Dk, and Ek, and Lagrangian singularities,
Funct. Anal. Appl., 6 (1972), 254–272.

[Ar2] , Remarks on the stationary phase method and Coxeter num-
bers, Russian Math. Surveys, 28 (1973), no. 5, 19–48.

[Ar3] , Critical points of smooth functions, Proc. Internat. Congr.
Math., Vancouver, 1974, 1, pp. 19–39.

[Ar4] , Critical points of smooth functions and their normal forms,
Russian Math. Surveys, 30 (1975), no. 5, 1–75.

[Art] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math.,
88 (1966), 129–136.

[A-W] M. Artin and J.-L. Verdier, Reflective modules over rational double
points, Math. Ann., 270 (1985), 79–82.

[Au] M. Auslander, Rational singularities and almost split sequences, Trans.
Amer. Math. Soc., 293 (1986), 511–531.

[A-R1] M. Auslander and I. Reiten, Almost split sequences for rational double
points, Trans. Amer. Math. Soc., 302 (1987), 87–99.

[A-R2] M. Auslander and I. Reiten, Cohen-Macaulay modules for graded
Cohen-Macaulay rings and their completions, Commutative algebra,
Berkeley, CA, 1987, Math. Sci. Res. Inst. Publ., 15, Springer-Verlag,
1989, pp. 21–31.



164 K. Saito

[A-R3] M. Auslander and I. Reiten, Almost split sequences for Z-graded rings,
Singularities representation of algebras, and vector bundles, Lam-
brecht, 1985, Lecture Notes in Math., 1273, Springer-Verlag, 1987,
pp. 232-243.

[Bon] A. Bondal, Representations of associative algebras and coherent
sheaves, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 25–44; transla-
tion in Math. USSR-Izv., 34 (1990), 23–42; Helices, representations
of quivers and Koszul algebras, Helices and vector bundles, 75–95,
London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press,
Cambridge, 1990.

[B-K1] A. Bondal and M. Kapranov, Representable functors, Serre functors
and Mutations, IZv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1183–
1205; English transl. in Math. USSR Izv., 35 (1990), 519–541.

[B-K2] A. Bondal and M. Kapranov, Enhanced triangulated categories, Math.
USSR Sbornik, 70 (1991), 93–107.

[B-O] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic
varieties, arXiv:math.AG/9506012.

[Bo1] R. Borcherds, Vertex algebras, Kac-Moody algebras and the Monster,
Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071.

[Bo2] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra, 115
(1988), 501–512.

[Bo3] R. Borcherds, Automorphic forms on Os+2,2(R) and infinite products,
Invent. Math., 120 (1995), 161–213.
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(Gauthier-Villars), 1952, t. I1, 137–287); b) Sur la réduction à sa
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Funkcional Anal. i Priložen., Translated in Funct. Anal. Appl., 8
(1974), 160–161.

[Dol2] , Automorphic forms and quasihomogeneous singularities,
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of quasihomogeneous complete intersections, Abh. Math. Sem. Univ.
Hamburg, 74 (2004), 175–179.

[Ei] D. Eisenbud, Homological algebra on a complete intersection, with an
application to group representations, Trans. Amer. Math. Soc., 260
(1980), 35–64.

[Fr] I. B. Frenkel, Representations of Kac-Moody Algebras and Dual Reso-
nance Models, Lect. Appl. Math., 21 (1985), 325–353.

[F-K] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen
Funktionen, I, Teubner, Leipzig, 1897.

[Ga] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972),
71–163.
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schetz, Ann. Sci. École Norm. Sup. (4), 6 (1973), 317–366.

[H-R] D. Happel and C. Ringel, The derived category of a tubular algebra,
Lecture Notes in Math., 1273, Springer-Verlag, 1986, pp. 156–180.



168 K. Saito

[Hap] D. Happel, Triangulated categories in the representation theory of
finite-dimensional algebras, London Math. Soc. Lecture Note Ser.,
119, Cambridge Univ. Press, Cambridge, 1988, x+208p.

[Ha] T. Hawkins, Wilhelm Killing and the Structure of Lie Algebras, Arch.
Hist. Exact Sci., 26 (1982), 127–192.

[H-S 1] S. Helmke and P. Slodowy, On Unstable Principal Bundles over Elliptic
Curves, preprint, April 2000.

[H-S 2] S. Helmke and P. Slodowy, Loop groups, elliptic singularities and prin-
cipal bundles over elliptic curves, MathSci. MR2055872.

[He] C. Hertling, Frobenius manifolds and moduli spaces for singularities,
Cambridge Univ. Press, 2002.

[H-W] K. Hori and J. Walcher, F-term equations near Gepner points, J. High
Energy Phys., (1):008, 23 pp. (electronic), 2005.

[H-I-V] K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-
th/0005247, 2000.

[H-V] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222, 2000.
[H-M-S] D. Huybrechts, E. Macri and P. Stellari, Stability conditions for generic

K3 categories, math.AG/0608430.
[I-M] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the

structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes
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