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Abstract. We give a new characterisation of morphisms that are definable by the
interpretation of the simply typed lambda calculus with sums inanybi-Cartesian
closed category. The⊤⊤-closure operator will be used toconstructthe category
in which the collection of definable morphisms at sum types can be characterised
as the coproducts of such collections at lower types.

1 Introduction

Theλ-definability problemis to characterise the semantic elements that are definable by
denotational/ categorical semantics of the simply typedλ-calculus. A characterisation
of the λ-definable elements in full type hierarchies was first given by Plotkin using
Kripke logical relations. This result was later generalized by Jung and Tiuryn to any
Henkin model usingKripke logical predicates with varying arity[15]; its categorical
formulation was also given by Alimohamed [1].

These precursors considered the definability problem in thesimply typed lambda
calculus with only arrow types (and possibly product types). The problem becomes
more subtle when sum types are added. There is a natural definition of coproducts for
Kripke predicates with varying arity, but these coproductsare not sufficient to charac-
terise the definable elements at sum types. In [11] Fiore and Simpson overcome this
difficulty by introducing a new concept calledGrothendieck logical predicates. They
used Grothendieck topology to improve the definition of coproducts of Kripke pred-
icates. By constructing a suitable category of worlds and topology on it, Fiore and
Simpson succeeded in giving a characterisation of definablemorphisms in any bi-CCC
with stablecoproducts.

In this paper we approach the definability problem in the simply typed lambda cal-
culus with sums using a different technique called⊤⊤-closure operator. The main con-
tribution of this paper is the following:

1. We characterise the definability predicate (=the collection of definable morphisms)
at sum types by means of the standard coproducts for Kripke predicates and the
semantic⊤⊤-closure operator:

Def 0= 0̇⊤⊤, Def(τ + τ′) = (Def τ +̇ Def τ′)⊤⊤.

This characterisation holds with respect to the interpretation of the lambda calculus
with sums inanybi-CCC. We also give a characterisation of morphisms definable



by the simply typed lambda calculus with sums by means ofweak logical predi-
cates.

2. We analyse the underlying categorical essence of the above arguments, and present
it as therestriction theorem. The statement of the theorem is the following: letP be
a logical predicate in a sufficiently rich fibrationp : P → C. If P respects product
and arrow types, then we can restrictP to a full reflective subcategoryP⊤⊤ of P so
thatP respects sum types as well.

The characterisation stated in item 1 implies that in the categoryK⊤⊤ of ⊤⊤-closed
objects the definability predicates at sum types are given bythe coproducts of the defin-
ability predicates at lower types. By employingK⊤⊤ as a gluing category, we also show
that the inclusion from the free distributive categoryL0(B) over the setB of base types
to the free bi-CCCL1(B) over B is full. We note that this result is proved in [10], but
there a different gluing category is employed.

Preliminary We define categories and functors by the following table:

A category/ functor is ... when it has/ preserves ...

Cartesian finite products
co-Cartesian finite coproducts
bi-Cartesian finite products and finite coproducts

Cartesian closed (CC) finite products and exponentials
bi-Cartesian closed (bi-CC)finite products, finite coproducts and exponentials

2 Definability of Calculi with Sums

We deal with the definability problem in the context of functorial semantics, where
syntatic theories are treated as freely generated categories, and interpretations are rep-
resented by structure-preserving functors. We fix a small Cartesian categoryL that plays
the role of a syntactic theory, a bi-CCCC that plays the role of a semantic domain, and
a strict Cartesian functorF:

L
F // C

that gives an interpretation of the syntactic theory. We first review some basic properties
of the definability predicate forF in this setting, then extendL andF with additional
structures (coproducts/ exponentials) toward the main theorems of this paper. At this
moment we do not require thatL is a freely generated category, as the freeness does not
play any role in the following discussion.

2.1 Kripke Predicates with Varying Arity

We first introduce the posetCtxL that plays the role of Kripke structure for Kripke
predicates with varying arity. The carrier of the poset is (Obj (L))∗, the set of finite
sequences ofL-objects, and these sequences are ordered by the prefix ordering (that is,
τ ≤ σ if τ is a prefix ofσ). Below we treatCtxL as a category.



WhenL is identified as a syntactic (type) theory, the posetCtxL expresses inclusions
of typing contexts. We associate these inclusions with projections inL by the following
functor | − | : CtxL → Lop:

|τ1 · · · τn| = (· · · ((1× τ1) × τ2) · · · ) × τn, |τ1 · · · τn ≤ τ1 · · · τn+m| = id
m

︷       ︸︸       ︷

◦π ◦ · · · ◦ π,

whereπ is the first projection for appropriate objects.
We next define the categoryKF of Kripke predicates with varying arity.

– An object ofKF is a pair (C,X) whereC is aC-object andX is a subpresheaf of the
contravariant presehafC(F | − |,C) onCtxL.

– A morphism from (C,X) to (D,Y) is aC-morphism f : C → D such that for any
CtxL-objectΓ andC-morphismg ∈ XΓ, we havef ◦ g ∈ YΓ.

KF
r //

q
��

Sub([CtxL,Set])
p

��
C

HF

// [CtxL,Set]

Fig. 1.Derivation ofq

The categoryKF is constructed as follows. Let
HF : C → [CtxL,Set] be a functor defined by
HF (C) = C(F | − |,C). ThenKF is the vertex of
the change-of-base (pullback) of the subobject fi-
bration p : Sub([CtxL,Set]) → [CtxL,Set] along
HF (Figure 1). This construction is an instance of
subscone[22] or categorical gluing[1].

Proposition 1. The leg q: KF → C of the change-
of-base (Figure 1) is a strict bi-CC functor and a
partial order fibration with fibred small products.

Proof. Sincep is a partial order fibration with fi-
bred small products,q inherits these structures via
the change-of-base along the Cartesian functorHF . The bi-CC structure ofKF , which
is strictly preserved byq, is given as follows (see also Section 1.5, [1]):

1̇ = (1, {!F|Γ|}Γ)

(C,X) ×̇ (D,Y) = (C × D, {h | π1 ◦ h ∈ XΓ, π2 ◦ h ∈ YΓ}Γ)

0̇ = (0, ∅)

(C,X) +̇ (D,Y) = (C + D, ({inl ◦ f | f ∈ XΓ} ∪ {inr ◦ f | f ∈ YΓ})Γ)

(C,X) ⇒̇ (D,Y) = (C⇒ D, { f | ∀Γ′ ≥ Γ . ∀x ∈ XΓ′ . ev◦ 〈 f ◦ F |Γ ≤ Γ′|, x〉 ∈ YΓ′}Γ).

(here{· · · }Γ denotes a presheaf described by an auxiliary parameterΓ ∈ CtxL).

We define the target of our study, thedefinability functorDef : L→ KF , by

Def τ = (τ, {Fg ∈ C(F |Γ|, Fτ) | g ∈ L(|Γ|, τ)}Γ)

Def f = F f .

We call Defτ the definability predicate(of F) at τ. We refer to the presheaf part of
Def τ by Dτ; in other words,D = r ◦ Def (r is the other leg of the change-of-base).

Proposition 2. Def : L→ KF is a full strict Cartesian functor, and q◦ Def = F.
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(Figure 1)

· · ·

C · · ·

KF bi-CCC (̇1, ×̇, 0̇, +̇, ⇒̇)
C bi-CCC (1,×,0,+,⇒)
q strict bi-CC functor and partial order

fibration with fibered small products
L small Cartesian category
F strict Cartesian functor
Def full strict Cartesian functor

Fig. 2.Categories and Functors for the Argument of Definability

Figure 2 summarises categories and functors we have introduced so far.
One important property of the functor Def, which is implicitin the characterisation

of λ-definability by Jung and Tiuryn [15], is the following:

Lemma 1. For any L-objectsτ, τ′ andCtxL-objectΓ, we have

f ∈ r(Def τ ⇒̇ Def τ′)(Γ) ⇐⇒ λ−1( f ) ∈ Dτ′(Γτ),

(hereλ−1 denotes the uncurrying operator).

2.2 A Characterisation of Definability with Sums

We next assume that the categoryL in Figure 2 is a distributive category (in the sense of
Walters [26, 7]) andF is a strict bi-Cartesian functor. Recall that a distributive category
C is a bi-Cartesian category such that the canonical morphism

[A× inl,A× inr] : (A× B) + (A×C)→ A× (B+C)

has the inverse (calleddistributive law) 1 :

mCA,B,C : A× (B+C)→ (A× B) + (A×C).

We note thatF strictly preserves distributive laws, that is,F(mL
τ,τ′,ρ) = mCFτ,Fτ′ ,Fρ.

The functor Def in Figure 2 is still full strict Cartesian from Proposition 2, but not
co-Cartesian. We merely have the following inequations:

Def 0≥ 0̇, Def(τ + τ′) ≥ Def τ +̇ Def τ′. (1)

Interestingly, these inequations are equated when appliedto the contravariant functor
(− ⇒̇Def ρ).

Lemma 2. For any L-objectsτ, τ′, ρ, we have

Def 0⇒̇ Defρ = 0̇ ⇒̇Def ρ

Def(τ + τ′) ⇒̇ Defρ = (Def τ +̇ Def τ′) ⇒̇Def ρ.

1 The distributive law implies that the unique map 0→ A× 0 is the isomorphism; see [7].



Proof. We leave the proof of the first equation to the reader. We show the second equa-
tion. Let τ, τ′, ρ be L-objects. The inequation (1) implies half of the equation tobe
proved. We therefore show the other half displayed below:

Def(τ + τ′) ⇒̇Def ρ ≥ (Def τ +̇ Def τ′) ⇒̇ Defρ.

LetΓ be aCtxL-object andf ∈ r((Def τ +̇ Def τ′) ⇒̇ Defρ)(Γ). The isomorphism

(Def τ +̇ Def τ′) ⇒̇Def ρ � (Def τ ⇒̇Def ρ) ×̇ (Def τ′ ⇒̇Defρ)

implies thatλ(ev◦ ( f × inl)) ∈ r(Def τ ⇒̇ Def ρ)(Γ) andλ(ev◦ f × inr) ∈ r(Def τ′ ⇒̇
Defρ)(Γ). From Lemma 1, we obtain

(g1 =) ev◦ ( f × inl) ∈ Dρ(Γτ), (g2 =) ev◦ ( f × inr) ∈ Dρ(Γτ′).

We thus takeL-morphismsh1 : |Γτ| → ρ andh2 : |Γτ′| → ρ such thatg1 = Fh1 and
g2 = Fh2. SinceF is a strict bi-Cartesian functor, we have

[g1, g2] ◦mCF|Γ|,Fτ,Fτ′ = F([h1, h2] ◦mL
|Γ|,τ,τ′).

The left hand side is equal toev◦ ( f × (Fτ + Fτ′)):

[g1, g2] ◦m= ev◦ ( f × (Fτ + Fτ′)) ◦ [F |Γ| × inl, F |Γ| × inr] ◦m

= ev◦ ( f × (Fτ + Fτ′)).

Henceev◦ ( f × (Fτ+ Fτ′)) ∈ Dρ(Γ(τ+ τ′)). From Lemma 1, we obtainf ∈ r(Def(τ+
τ′) ⇒̇Def ρ)(Γ).

K
⊤⊤
F� _

ι
��

L

F
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(Figure 1)

· · ·
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Fig. 3. Restriction of Definability
Functor

We combine this lemma and thesemantic
⊤⊤-closure operator[16] to extractKF ’s full re-
flective sub bi-CCC whose coproducts can char-
acterise the definability predicates at sum types.
The semantic⊤⊤-closure operator (we may drop
the word “semantic” thereafter) is a semantic
analogue of Pitt’s⊤⊤-closure technique in [25],
and is an instance of the author’s semantic⊤⊤-
lifting [16]. The⊤⊤-closure operator in this sec-
tion is specialised to the argument of definabil-
ity. In Section 3 it will be re-introduced in more
general form, together with the proofs of propo-
sitions and theorems in this section.

The ⊤⊤-closure operator is defined as fol-
lows. Let X be aKF-object above aC-object I .
For eachL-objectρ, we defineX⊤⊤(ρ) to be the vertex of the following inverse image in
the fibrationq : KF → C:

X⊤⊤(ρ) // (X ⇒̇ Defρ) ⇒̇Def ρ KF

q
��

I
η

Fρ
I =λ(ev◦〈π′ ,π〉)

// (I ⇒ Fρ)⇒ Fρ C



whereηFρ
I is the unit of thecontinuation monad. We then defineX⊤⊤, the⊤⊤-closure

of X by

X⊤⊤ =
∧

ρ∈Obj (L)

X⊤⊤(ρ).

Proposition 3. The assignment X7→ X⊤⊤ extends to a monad overKF whose unit and
multiplication are vertical (c.f. Proposition 7).

Below we call the assignment(semantic)⊤⊤-closure operator. It indeed gives an idem-
potent closure operator at every fibre, as unit and multiplication are vertical.

Corollary 1. We have X≤ X⊤⊤ and(X⊤⊤)⊤⊤ = X⊤⊤, and the monad is idempotent (c.f.
Corollary 2).

We then considerKF ’s full reflective subcategoryK⊤⊤F consisting of⊤⊤-closed objects
(that is, objectsX such thatX⊤⊤ = X); see Figure 3. Some calculation shows that⊤⊤-
closed objects form anexponential ideal. Therefore we obtain the following:

Proposition 4. The categoryK⊤⊤F is a bi-CCC and q◦ ι is a strict bi-CC functor (c.f.
Theorem 4).

The CC structure inK⊤⊤F is inherited fromKF , while the co-Cartesian structure is given
by 0̇⊤⊤ and (X +̇ Y)⊤⊤. That the⊤⊤-closure operator is defined in terms of the defin-
ability predicates themselves implies the following important property:

Proposition 5. For every L-objectρ, Defρ is⊤⊤-closed (c.f. Proposition 8).

Thus functor Def can be restricted to the full Cartesian functor (Def′ in Figure 3) to
K
⊤⊤
F . Furthermore, from Lemma 2 we obtain acharacterisation of the definability pred-

icates at sum types(c.f. Theorem 5-2):

Def 0= (Def 0)⊤⊤ = 0̇⊤⊤ (2)

Def(τ + τ′) = (Def(τ + τ′))⊤⊤ = (Def τ +̇ Def τ′)⊤⊤. (3)

This is equivalent to saying that Def′ is a strict co-Cartesian functor. To summarise:

Theorem 1 (Restriction Theorem for Definability Functor). In Figure 3, assume
that L is a small distributive category and F is a strict bi-Cartesian functor. ThenDef′

is a full strict bi-Cartesian functor.

We next letL be a small bi-CCC andF : L → C be a strict bi-CC functor. Under this
situation, the restriction of the definability functor toK⊤⊤F becomes a bi-CC functor.
Since any bi-CCC is a distributive category, Def′ in Figure 3 is full bi-Cartesian from
the restriction theorem. Moreover, as shown in [1] (c.f. [15]), the functor Def (and Def′)
strictly preserves exponentials. Therefore we obtain the following theorem:

Theorem 2. In figure 3, assume that L is a small bi-CCC and F is a strict bi-CC functor.
ThenDef′ in Figure 3 is a full strict bi-CC functor.



2.3 Fullness of Free Distributive Categories in Free Bi-CCCs

As an application of the restriction theorem, we show that the canonical inclusion from
the free distribute category to the free bi-CCC is full. We note that this result (and
faithfulness) is proved in [10] using a different gluing category.

We fix the setB of base types and regard it as a discrete category. In this paper, by
the free distributive category (L0(B), η0 : B→ L0(B)) overB, we mean the distributive
category with the following universal property: for any distributive categoryC and a
functor F : B → C, there exists a unique strict bi-Cartesian functorF : L0(B) → C
such thatF ◦ η0 = F. We also define the free bi-CCC (L1(B), η1 : B → L1(B)) over
B as the one having the similar universal property. Such free categories arise as term
categories of the simply typed (lambda) calculus with sums.We omit the detail of the
construction of free categories due to lack of space; see e.g. [18].

We instantiate Figure 3 with the following data:

1. L = L0(B), the free distributive category overB.
2. C = L1(B), the free bi-CCC overB.
3. F = η1 : L0(B)→ L1(B), the strict bi-Cartesian functor derived from the universal

property ofL0(B).

Lafont applied categorical gluing to show that any small Cartesian categoryC can be
fully embedded into the CCC that is relatively free with respect toC [17]. We apply
his proof technique to the show thatη1 is full. Here we useK⊤⊤F as a substitute for the
gluing category.

Theorem 3. The strict bi-Cartesian functorη1 : L0(B)→ L1(B) is full.

Proof. Below we writeF for η1. From Theorem 1 we obtain a full strict bi-Cartesian
functor Def′ : L0(B)→ K⊤⊤F . From Proposition 4,K⊤⊤F is a bi-CCC; hence we obtain a

strict bi-CC functorJ = Def′ ◦η0 : L1(B) → K⊤⊤F . Furthermore,q ◦ ι is a strict bi-CC
functor, soq◦ι◦J = Id by the universal property ofL1(B). This implies thatJ is faithful.

L1(B)

J
��

L0(B)

F
77nnnnnnnnn

Def′ //

F ''PPPPPPPPP
K
⊤⊤
F

q◦ι
��

L1(B)

In the above diagram, the upper half of the triangle commutesfrom the universal prop-
erty ofL0(B). The lower half of the triangle also commutes from Figure 3.We now show
thatF is full. Let f : Fτ → Fσ be aL1(B)-morphism. We seek for aL0(B)-morphism
g such thatf = Fg. We first haveJ f : Def′ τ → Def′ σ. Since Def′ is full, there exists
a L0(B)-morphismg : τ → σ such thatJ f = Def′ g = J(Fg). SinceJ is faithful, we
obtain f = Fg.



3 ⊤⊤-Closure Operators and the Restriction Theorem

In this section we focus on the general scheme that underliesin the derivation of the
restriction theorem (Theorem 1), and re-establish it in more general form.

We first identify the class of fibrations in which we can consider⊤⊤-closure oper-
ators. If a functorU : P→ C satisfies the following conditions:

P

U
��
C

P bi-CCC (̇1, ×̇, 0̇, +̇, ⇒̇, !̇, π̇, π̇′, λ̇, ėv, · · · )
C bi-CCC (1,×, 0,+,⇒, !, π, π′, λ, ev, · · · )
U strict bi-CC functor and partial order

fibration with fibered small products

we say thatU admits⊤⊤-closure operators. Below we give a sufficient condition for
ensuring that a fibration admits⊤⊤-closure operators.

Proposition 6. Let p : E → B be a partial order bifibration such thatB is a bi-CCC,
p has fibred small products, fibred finite coproducts, fibred exponentials and simple
products (see e.g. Jacobs [14]). Then p admits⊤⊤-closure operators.

3.1 ⊤⊤-Closure Operators

We fix a fibrationU : P → C which admits⊤⊤-closure operators. Each⊤⊤-closure
operator takes aP-object as a parameter calledclosure parameter. Let S be a closure
parameter. For aP-objectX, we defineX⊤⊤(S) to be the vertex of the following inverse
image:

X⊤⊤(S) // (X ⇒̇ S) ⇒̇ S P

U
��

UX
ηUS

UX=λ(ev◦〈π′ ,π〉)
// (UX⇒ US)⇒ US C

We note that theC-morphismηUS
UX is the unit of the continuation monad (− ⇒ US) ⇒

US. This construction exactly coincides with thesemantic⊤⊤-lifting [16] of the iden-
tity monad.

Proposition 7. [16] Let S be a closure parameter. The assignment X7→ X⊤⊤(S) ex-
tends to an endofunctor(−)⊤⊤(S) : P → P such that U◦ (−)⊤⊤(S) = U. Furthermore,
there exists vertical natural transformationsη⊤⊤(S) and µ⊤⊤(S) that make the triple
((−)⊤⊤(S), η⊤⊤(S), µ⊤⊤(S)) a monad.

Corollary 2. Let S be a closure parameter. For anyP-object X, we have

X ≤ X⊤⊤(S), (X⊤⊤(S))⊤⊤(S) = X⊤⊤(S), S = S⊤⊤(S).

Proof. In this proof we simply write⊤⊤ for ⊤⊤(S). The first two (in)equations are
immediate consequences of the previous lemma. To showS⊤⊤ = S, it is sufficient to
showS⊤⊤ ≤ S. We consider the following diagram:

S⊤⊤ // (S ⇒̇ S) ⇒̇ S
ėv◦〈id,λ̇(π̇′)◦!̇〉

// S P

U
��

US
ηUS

US

// (US⇒ US)⇒ US
ev◦〈id,λ(π′)◦!〉

// US C



The composite of morphisms inC is the identity. HenceS⊤⊤ ≤ S holds.

We next generalise⊤⊤-closure operators to take multiple closure parameters. Let S =
{Si}i∈I be a set-indexed family of closure parameters. We define (−)⊤⊤(S) by

X⊤⊤(S) =
∧

i∈I

X⊤⊤(Si )

where
∧

denotes the fibred product. Below we only consider set-indexed family of
closure parameters.

Proposition 8. Let S = {Si}i∈I be a family of closure parameters. The mapping X7→
X⊤⊤(S) extends to a monad overP whose unit and multiplication are vertical. Further-
more, for anyP-object X, we have

X ≤ X⊤⊤(S), (X⊤⊤(S))⊤⊤(S) = X⊤⊤(S), Si = S⊤⊤(S)
i (i ∈ I ).

3.2 Full Reflective Subcategory of⊤⊤-Closed Objects

We investigate the structure of the full reflective subcategory of⊤⊤-closed objects. Let
S be a family of closure parameters. We writeP⊤⊤(S) for P’s full reflective subcategory
consisting of⊤⊤(S)-closed objects (that is, objectsX such thatX⊤⊤(S) = X). We writeι
for the inclusion functor fromP⊤⊤(S) to P.

SinceP is bi-Cartesian,P⊤⊤(S) is also bi-Cartesian (see e.g. Proposition 3.5.3 and
3.5.4, [6]). The Cartesian structure is inherited fromP, while the co-Cartesian structure
is given by the following diagram:

X
˙inl // X +̇ Y

≤ // (X +̇ Y)⊤⊤(S) X +̇ Y
≥oo Y

˙inroo (4)

We next show that⊤⊤(S)-closed objects form anexponential ideal.

Lemma 3. Let S = {Si}i∈I be a family of closure parameters. Then for anyP-object X
and Y above I and J respectively, Y⊤⊤(S) = Y implies(X ⇒̇ Y)⊤⊤(S) = X ⇒̇ Y.

Proof. Below we only show (X ⇒̇ Y)⊤⊤(S) ≤ X ⇒̇ Y; the other direction is clear as
(−)⊤⊤(S) is a closure operator. Leti ∈ I . We defineẇ : (X ⇒̇ Y)⊤⊤(S) → (((X ⇒̇ Y) ⇒̇
Si) ⇒̇ Si) to be the composite ofP-morphisms in the following diagram:

(X ⇒̇ Y)⊤⊤(S)

≤
��

(X ⇒̇ Y)⊤⊤(Si ) // ((X ⇒̇ Y) ⇒̇ Si) ⇒̇ Si P

U
��

I ⇒ J
η

USi
I⇒J

// ((I ⇒ J)⇒ USi)⇒ USi C

From the diagram, ˙w is aboveηUSi
I⇒J. We also define aP-morphismċ : X ×̇ (Y ⇒̇ Si) →

(X ⇒̇ Y) ⇒̇ Si by
ċ = λ̇(ėv◦ (id ×̇ ėv) ◦ 〈π̇′ ◦ π̇, 〈π̇′, π̇ ◦ π̇〉〉),



which is above the followingC-morphismc : I × (J⇒ USi)→ (I ⇒ J)⇒ USi :

c = λ(ev◦ (id × ev) ◦ 〈π′ ◦ π, 〈π′, π ◦ π〉〉).

By combining these, we obtain aP-morphism

λ̇(ėv◦ (ẇ ×̇ ċ) ◦ ȧ) : (X ⇒̇ Y)⊤⊤(S) ×̇ X→ (Y ⇒̇ Si) ⇒̇ Si

above

η
USi
J ◦ evI ,J = λ(ev◦ (ηUSi

I⇒J × c) ◦ a) : (I ⇒ J) × I → (J⇒ USi)⇒ USi

(wherea andȧ are associativity morphisms inC andP respectively). This implies that
the following inequation holds for everyi ∈ I in the fibre over (I ⇒ J) × I :

(X ⇒̇ Y)⊤⊤(S) ×̇ X 6 ev∗I ,J(Y⊤⊤(Si )).

Therefore we have

(X ⇒̇ Y)⊤⊤(S) ×̇ X 6
∧

i∈I

ev∗I ,J(Y⊤⊤(Si )) = ev∗I ,J(Y
⊤⊤(S)).

Now the composite, say ˙v, of P-morphisms in the following diagram is aboveevI ,J:

(X ⇒̇ Y)⊤⊤(S) ×̇ X

≤
��

ev∗I ,J(Y
⊤⊤(S)) // Y⊤⊤(S) P

U
��

(I ⇒ J) × I evI ,J

// J C

so λ̇(v̇) : (X ⇒̇ Y)⊤⊤(S) → X ⇒̇ Y⊤⊤(S) is aboveλ(evI ,J) = id. Hence (X ⇒̇ Y)⊤⊤(S) ≤

X ⇒̇ Y⊤⊤(S) = X ⇒̇ Y.

Theorem 4. For any familyS of closure parameters,⊤⊤(S)-closed objects form a full
reflective sub bi-CCCP⊤⊤(S) of P, and U ◦ ι : P⊤⊤(S) → C is a faithful strict bi-CC
functor.

Proof. ThatP⊤⊤(S) is a bi-CCC follows from Lemma 3 and Day’s reflection theorem [8].
The CC structure onP⊤⊤(S) is inherited fromP; so ι is a strict CC functor. In general,ι
is not a co-Cartesian functor, but the coproduct diagram in (4) is strictly mapped to the
coproduct diagram inC by U ◦ ι. HenceU ◦ ι is a strict bi-CC functor. The faithfulness
is obvious.

3.3 Restriction Theorem

We next consider a small categoryL and functorsF : L → C andP : L → P such that
U ◦ P = F (see the lower half of the commutative diagram in Figure 4). The functorP
specifies a family of closure parametersP = {Pτ}τ∈Obj (L).



P
⊤⊤(P)

� _

ι

��
L

P′
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P
//

F
''OOOOOOOOOOO P

U
��
C

P bi-CCC (̇1, ×̇, 0̇, +̇, ⇒̇)
C bi-CCC (1,×,0,+,⇒)
U strict bi-CC functor and partial order

fibration with fibred small products
L smallcategory
P,F functors
P
⊤⊤(P) bi-CCC of⊤⊤(P)-closed objects
ι strict CC inclusion functor

Fig. 4.Restriction ofP to⊤⊤(P)-Closed Objects

Proposition 9. The functor P: L→ P restricts toP⊤⊤(P) (see P′ in Figure 4).

Proof. From Proposition 8, (Pτ)⊤⊤(P) = Pτ holds for anyL-objectτ, that is,Pτ is an
object in the full subcategoryP⊤⊤(P) of P. HenceP restricts toP⊤⊤(P).

Theorem 5 (Restriction Theorem).In the commutative diagram in Figure 4,

1. If L is a Cartesian (closed) category and F and P are strict Cartesian (closed)
functors, then P′ is also a strict Cartesian (closed) functor.

2. If F is a strict co-Cartesian functor and P satisfies

P0 ⇒̇ Pρ = 0̇ ⇒̇ Pρ, P(τ + τ′) ⇒̇ Pρ = (Pτ +̇ Pτ′) ⇒̇ Pρ

then P′ is a strict co-Cartesian functor.
3. If L is a bi-CCC, F is a strict bi-CC functor and P is a strict CC functor, then P

satisfies the above equations (hence P′ is a strict bi-CC functor).

Proof. 1. The Cartesian (closed) structure inP⊤⊤(P) is the restriction of that inP to
P
⊤⊤(P). SinceP strictly preserves Cartesian (closed) structure, so doesP′.

2. SupposeP(τ+ τ′) ⇒̇Pρ = (Pτ +̇Pτ′) ⇒̇Pρ. From the definition of⊤⊤(P), we have

P(τ + τ′) = P(τ + τ′)⊤⊤(P)

=
∧

ρ∈Obj (L)

(ηFρ
Fτ+Fτ′ )

∗((P(τ + τ′) ⇒̇ Pρ) ⇒̇ Pρ)

=
∧

ρ∈Obj (L)

(ηFρ
Fτ+Fτ′ )

∗(((Pτ +̇ Pτ′) ⇒̇ Pρ) ⇒̇ Pρ)

= (Pτ +̇ Pτ′)⊤⊤(P).

One can similarly showP0 = (P0)⊤⊤(P).
3. We show that the equations in 2 holds for each strict CC functor P such thatU ◦P =

F. In any bi-CCCD there is an isomorphism

(A+ B)⇒ C
α

A,B,C
D // (A⇒ C) × (B⇒ C)
β

A,B,C
D

oo



which is preserved by strict bi-CC functors. Consider the following diagram:

P(τ + τ′) ⇒̇ Pρ

P((τ + τ′)⇒ ρ)
P(ατ,τ

′ ,ρ

L )
// P((τ⇒ ρ) × (τ′ ⇒ ρ)) P

U

��

(Pτ +̇ Pτ′) ⇒̇ Pρ (Pτ ⇒̇ Pρ) ×̇ (Pτ′ ⇒̇ Pρ)
β

Pτ,Pτ′ ,Pρ
P

oo

(Fτ + Fτ′)⇒ Fρ
α

Fτ,Fτ′ ,Fρ
C // (Fτ⇒ Fρ) × (Fτ′ ⇒ Fρ)
β

Fτ,Fτ′ ,Fρ
C

oo C

From U ◦ P = F, the morphismP(ατ,τ
′,ρ

L ) is aboveαFτ,Fτ′ ,Fρ
C

. Therefore the com-

position of morphisms inP is aboveβFτ,Fτ′ ,Fρ
C

◦ α
Fτ,Fτ′ ,Fρ
C

= id. Thus we obtain
P(τ + τ′) ⇒̇ Pρ ≤ (Pτ +̇ Pτ′) ⇒̇ Pρ. The other direction,P(τ + τ′) ⇒̇ Pρ ≥
(Pτ +̇ Pτ′) ⇒̇ Pρ, follows from a similar argument.
We leave the proof ofP0 ⇒̇ Pρ = 0̇ ⇒̇ Pρ to the reader.

Theorem 1 is an instance of this general restriction theorem. In Figure 4 we instantiate
U with q : KF → C, L with a small distributive category,F with a bi-Cartesian functor
andP with the definability functor ofF. From Proposition 2, Lemma 2 and Theorem
5-2, we obtain Theorem 1.

3.4 A Characterisation of Definable Morphisms by Weak Logical Predicates

We finally give a characterisation of morphisms definable by the simply typed lambda
calculus with sums by means ofweak logical predicates. Let B be the set of base types,
F : L1(B) → C be a bi-CC functor andU : P → C be a fibration admitting⊤⊤-
closure operators. AnObj (L1(B))-indexed familyP of P-objects is calledweak logical
predicate(with respect toF andU) if the following holds for anyL1(B)-objectsτ, τ′, ρ:

– Pτ is aboveFτ,
– P(τ × τ′) = Pτ ×̇ Pτ′, P1 = 1̇, P(τ⇒ τ′) = Pτ ⇒̇ Pτ′, and
– (Pτ +̇ Pτ) ⇒̇ Pρ = P((τ + τ′)⇒ ρ), 0̇ ⇒̇ Pρ = P(0⇒ ρ); (c.f. Theorem 5-2).

We say that aC-morphismf : Fτ → Fτ′ is invariant under Pif there exists a (neces-
sarily unique)P-morphismg : Pτ→ Pτ′ abovef .

Lemma 4 (Basic Lemma for Weak Logical Predicates).Let P be a weak logical
predicate with respect to a bi-CC functor F: L1(B) → C and a fibration U : P → C
admitting⊤⊤-closure operators. Then for any L1(B)-morphism f : τ → σ, F f is
invariant under P.

Theorem 6. Let C be a bi-CCC and F: L1(B) → C be a bi-CC functor. Then aC-
morphism f is definable by F (i.e. f is in the image of F) if and only if f is invariant
under any weak logical predicate with respect to any fibration U : P → C admitting
⊤⊤-closure operators.



G(C,K,a) //
� _

��

ClSubK ([C,Set])� _

��
L1(B)

DefF
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Ka

��

// Sub([C,Set])

��
C

Ha

// [C,Set]

Fig. 5. Construction of the Category of Grothendieck Predicates

Proof. If f is invariant under any weak logical predicate, then it should be so under Def
with respect toF andq in Section 2. Since Def is full,f is definable byF. The converse
is immediate from Lemma 4.

4 Related Work

4.1 Grothendieck Logical Predicates

We briefly review Fiore and Simpson’sGrothendieck logical predicates[11]. They are
a further refinement of Jung and Tiuryn’s Kripke predicates with varying arity using
Grothendieck topology. Let C be a small category,K be a Grothendieck topology onC
anda : C → C be a functor calledarity functor. The topologyK induces anidempo-
tent monadK over the categorySub([Cop,Set]) of subpresheaves [4], and one obtains
the full reflective subcategoryClSubK ([C,Set]) → Sub([C,Set]) of K-closed subob-
jects. One can verify thatClSubK ([C,Set]) is a bi-CCC, and the composite of functors
ClSubK ([C,Set]) → Sub([C,Set]) → [C,Set] strictly preserves the bi-CC structure.
We then take the pullback of the composite alongHa : C → [Cop,Set] defined by
Ha(C) = C(a−,C). This yields the categoryG(C,K, a) of Grothendieck predicates,
which is also a bi-CCC (see Figure 5). Every Grothendieck logical predicate is then
formulated as a bi-CC functor fromL1(B) (the free bi-CCC over the setB of base
types) toG(C,K, a).

Let C be a bi-CCC whose coproducts are stable andF : L → C be a strict bi-CC
functor. For the characterisation of the morphisms definable byF, Fiore and Simpson
instantiatedC with a syntactically constructed category of constrained contexts,K with
a suitable topology onC anda with the interpretation of contexts byF. They showed
that the functor Def :L1(B) → G(C,K, a) that captures the morphisms definable byF
is a bi-CC functor, that is, a Grothendieck logical predicate.

We give an informal comparison of their approach and our approach.

1. In our approach the parameter category for Kripke predicates is the partial order
CtxL of context inclusions, while in [11] a non-partial order category of constrained
contexts and renamings is used (although it can be switched to the partial order
calledDiaconescu coverwithout affecting the result; see Section 5, [11]).



2. The closure operatorK can be restricted to the oneK|Ka overKa, andG(C,K, a)
can be seen as the full reflective subcategory of theK|Ka-closed subobjects. In
our approach we derived the (⊤⊤-)closure operator overKF from the definability
predicates itself, and considered the full reflective subcategoryK⊤⊤F of ⊤⊤-closed
subobjects. Both approaches perform a similar categoricalconstruction to obtain
the category for characterising the definability predicates, but with different closure
operators.

3. One drawback of our characterisation is that the definability predicates at sum types
arenot inductively characterised, although they are coproducts of the definability
predicates at lower types. This is because the⊤⊤-closure operator used in equations
(2) and (3) refers to the definability predicates at every type. On the other hand, in
Fiore and Simpson’s work the definability predicates at sum types are completely
determined by those at lower types.

4. One advantage of our characterisation is that it holds forany interpretation of the
simply typed lambda calculus with sums inanybi-CCC.

4.2 Other Related Work

Pitts introduced⊤⊤-closure operator for capturing the concept of admissible relations
in the syntactic study of a polymorphic functional language[24]. Operators that are
similar to the⊤⊤-closure had already appeared in various forms: the dualityoperator
in the phase-space semantics of linear logic [13] and Parigot’s technique of the strong
normalisation of the second order classical natural deduction [23] are such instances.
The notion of⊤⊤-closure operators also appears in other studies [21, 5].

Hinted from Pitts’⊤⊤-closure operator, Lindley and Stark introduced a new tech-
nique called⊤⊤-lifting for extending the strong normalisation proof using computabil-
ity predicate technique to Moggi’s computational metalanguage [20, 19]. Their⊤⊤-
lifting was later categorically formulated as a method to lift strong monads on the base
category of a fibration to the one on its total category [16] bythe author. There,⊤⊤-
closure operators are formulated as the⊤⊤-lifting of the identity monad.

It is widely recognised that re-establishing properties that hold in the lambda calcu-
lus with only arrow types is difficult under the presence of sum types. For instance, the
design of a confluent and strongly normalising rewriting system (withβ-reduction and
η-expansion) for the simply typed lambda calculus with sums [12] and the proof of the
completeness of the equational theory of the lambda calculus with sums inSet [9] ex-
hibits the intrinsic difficulty in handling sums. In this stream of research Grothendieck
logical predicates are shown to be an effective tool in reasoning about the lambda cal-
culus with sums. They are applied to the correctness of the normalisation-by-evaluation
algorithm [2] and the proof of the extensional normalisation [3] for the lambda calculus
with sums.
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