
Preorders on Monads and Coalgebraic Simulations

Shin-ya Katsumata and Tetsuya Sato

Research Institute for Mathematical Sciences, Kyoto University, Kyoto,606-8502, Japan
{sinya,satoutet}@kurims.kyoto-u.ac.jp

Abstract. We study the construction of preorders onSet-monads by the semantic
⊤⊤-lifting. We show the universal property of this construction, and characterise
the class of preorders on a monad as a limit of aCardop-chain. We apply these
theoretical results to identifying preorders on some concrete monads, including
the powerset monad, maybe monad, and their composite monad. We alsorelate
the construction of preorders and coalgebraic formulation of simulations.

1 Introduction

In the coalgebraic treatment of labelled transition systems and process calculi, several
coalgebraic formulations ofbisimulationsare proposed [1, 12, 18], and their relation-
ships are well-studied [25]. On the other hand, to express the asymmetry of simulations
between coalgebras, we need to generalise the framework of bisimulations. One of the
earliest works in this direction is [13], where Hesselink and Thijs introduced a class of
relational liftings ofSet-functors calledrelational extensions, with which simulations
can be coalgebraically captured. Hughes and Jacobs tookpreordered functorsas a basis
for constructing relational extensions of endofunctors. This approach was further de-
veloped in the subsequent studies on coalgebraic trace semantics [10] and forward and
backward simulations of coalgebras [9]. The key assumptionin the last two works is
that anorder enrichmentis given to the Kleisli category of a monad.

One natural problem arising in this line of research is how tosystematically con-
struct preordered functors. In fact, many coalgebra functors of transition systems con-
tain the functor part ofmonadsto describe branching types of transition systems, and
they are the focal point when considering relational liftings and preorders on endo-
functors. Upon this observation, we address the problem of constructing preorders on
monads, and study its relationship to the coalgebraic formulation of simulations.

The main technical vehicle to tackle the problem issemantic⊤⊤-lifting [16], which
originates from the proof of the strong normalisation of Moggi’s computational meta-
language by reducibility candidates [21, 22]. We apply the semantic⊤⊤-lifting to con-
struct preorders on monads, and show that this constructionsatisfies a universal prop-
erty. We also characterise the class of preorders on a monad as the limit of a large chain
of certain preorders. We then apply these theoretical results to identifying preorders on
some concrete monads, including the semiring-valued multiset monad, powerset monad
and maybe monad. We finally show that the semantic⊤⊤-lifting satisfies a couple of
properties that are relevant to the coalgebraic formulation of simulations.

Preliminaries

Throughout this paper we assume the axiom of choice. We writePre (resp.Pos) for
the cartesian monoidal category of preorders (resp. posets) and monotone functions
between them. For setsI , J, by I ⇒ J we mean the set of functions fromI to J. Each
preorder≤ on a setJ extends to the pointwise preorder on a function spaceI ⇒ J,
which we denote bẏ≤. In this paper the metavariableT (and its variants) is reserved
for monads overSet. Its components are written by (T, η, µ). For a functionf : I → T J,
by f # we mean the Kleisli lifting off , that is, the functionµJ ◦ T f . A preordered
functor[13, 15] consists of an endofunctorF : Set→ Setand an assignmentI 7→ ⊑I of
a preorder onFI such that for any functionf : I → J, F f is a monotone function from
(FI ,⊑I) to (FJ,⊑J).

2 Preorders on Monads

Definition 1. Let I be a set. We call a binary relation S⊆ T I × T I substitutiveif for
each function f: I → T I and(x, y) ∈ S ,(f #(x), f #(y)) ∈ S .

Especially, a preorder≤ onT I is substitutive if and only if for each functionf : I → T I,
f # is a monotone function of type (T I,≤)→ (T I,≤).

Definition 2. Let I be a set. We call a preorder≤ on T I congruentif for each set J and
functions f,g : J→ T I, f ≤̇ g implies f# ≤̇ g#.

Under the correspondence between monads and algebraic theories,T I may be viewed
as the set ofI -many variable polynomials in the algebraic theory corresponding toT .
Then a binary relationS ⊆ T I × T I is substitutive if for each polynomial pair (t,u) ∈ S
and a simultaneous substitution [i := vi] i∈I of polynomials, we have (t[i := vi] i∈I ,u[i :=
vi] i∈I) ∈ S. The congruence of a preorder≤ on T I means that for each polynomial
v ∈ T J and two simultaneous substitutions [j := t j] j∈J and [j := u j] j∈J such that
t j ≤ u j , we havev[j := t j] j∈J ≤ v[j := u j] j∈J.

We introduce the main subject of this paper,preorders on monads.

Definition 3. A preorder⊑ onT is an assignment of a preorder⊑I on T I to each set I
such that

1. each preorder⊑I is congruent, and
2. for each function f: I → T J, f# is a monotone function from(T I,⊑I) to (T J,⊑J)

(we also call this propertysubstitutivity).

From this definition,⊑I is substitutive for each setI , and (T,⊑) is a preordered functor.
We writePre(T) for the class of preorders onT . We define a pointwise partial order
¹ on Pre(T) by: ⊑ ¹ ⊑′ if ⊑I ⊆ ⊑

′
I holds for each setI . The classPre(T) admits

intersections of arbitrary size: for a subcollection⊑ of Pre(T), its intersection is the
preorder

⋂

⊑ onT defined by:a (
⋂

⊑)I b if a⊑I b holds for each preorder⊑ ∈ ⊑.

Example 1.We write Tp for the powerset monad. For each setI , TpI has a natural
preorder given by the set inclusion. This is a preorder onTp.

Example 2.We writeTl for the monad whose functor part is given byTl I = I + {∗}; this
is known as themaybe monadin Haskell. We assign to each setI the flat partial order
onTl I that makesι2(∗) the least element. This is a preorder onTl .

Example 3.We writeTm for the free monoid monad. For each setI , we define a pre-
order⊑I on TmI by: x ⊑I y if the length ofx is equal or shorter thany. This isnot a
preorder onTm because it is not substitutive.

Suppose that the Kleisli categorySetT of a monadT is Pre-enriched, and moreover
the enrichment ispointwise, that is, (∀x ∈ SetT (1, I) . f #◦ x ⊑1,J g#◦ x) implies f ⊑I ,J g
for all f ,g ∈ SetT (I , J). Then the assignmentI 7→ ⊑1,I gives a preorder onT under the
identificationSetT (1, I) ≃ T I. Conversely, given a preorder⊑ onT , the assignment of
the preordeṙ⊑J to SetT (I , J) gives a pointwisePre-enrichment. This correspondence
between pointwisePre-enrichments onSetT and preorders onT is bijective.

3 Relational Liftings and Preorders on Monads

After reviewing a coalgebraic formulation of (bi)simulations in the categoryBRel of
binary relations and relation-respecting functions, we introduce a relational lifting of
monads, calledpreorder⊤⊤-lifting, and show that it gives rise to preorders on monads.

3.1 The Category BRel of Binary Relations

We define the categoryBRel (which is the same as Rel in [15]) by the following data.
An object inBRel is a triple (X, I1, I2) such thatX ⊆ I1× I2. A morphism from (X, I1, I2)
to (Y, J1, J2) is a pair (f1, f2) of functions f1 : I1 → J1 and f2 : I2 → J2 such that for
each (i1, i2) ∈ X, (f1(i1), f2(i2)) ∈ Y. We use bold lettersX,Y,Z to range over objects in
BRel, and refer to each component ofX ∈ BRel by (X0,X1,X2). We write iX : X0 →

X1 × X2 for the inclusion function. We say thatX ∈ BRel is above(I1, I2) ∈ Set2 if
X1 = I1 andX2 = I2. Objects above the sameSet2-object are ordered by the inclusion
of their relation part. We denote this order by⊆. For each objectX,Y in BRel and
morphism (f1, f2) : (X1,X2)→ (Y1,Y2) in Set2, we abbreviate (f1, f2) ∈ BRel(X,Y) to
(f1, f2) : X →̇Y. We call a pair (X,Y) of objects inBRel composableif X2 = Y1. Their
compositionX ∗ Y is given by the relational composition ofX0 andY0:

X ∗ Y = ({(x1, y2) | ∃z ∈ X2 . (x1, z) ∈ X0, (z, y2) ∈ Y0},X1,Y2).

A preorder≤ on a setI determines aBRel-object (≤, I , I), which we also denote by
≤. We write EqI for theBRel-object of the identity relation onI .

The categoryBRel arises as the vertex of the pullback of the subobject fibration
p : Sub(Set)→ Set(see [14, Chapter 0]) along the product functorD : Set2→ Set:

BRel //

π

²²

Sub(Set)

p

²²
Set2 D

// Set

whereπ is

{

π(X) = (X1,X2),
π(f1, f2) = (f1, f2)

The legπ : BRel→ Set2 of the pullback is a partial order fibration [14]. For an object
X in BRel and a morphism (f1, f2) : (I1, I2) → (X1,X2) in Set2, we define theinverse
image object(f1, f2)∗X by

(f1, f2)∗X = ({(x1, x2) | (f1(x1), f2(x2)) ∈ X}, I1, I2).

The categoryBRel has a bi-cartesian closed structure that is strictly preserved byπ.
The object part of this structure is given as follows:

˙∏
i∈I X i =

(

{(x, y) | ∀i ∈ I . (πi(x), πi(y)) ∈ (X i)0},
∏

i∈I (X i)1,
∏

i∈I (X i)2
)

˙∐
i∈I X i =

(⋃

i∈I {(ιi(x), ιi(y)) | (x, y) ∈ (X i)0},
∐

i∈I (X i)1,
∐

i∈I (X i)2
)

X ⇒̇ Y = ({(f ,g) | ∀(x, y) ∈ X0 . (f (x),g(y)) ∈ Y0},X1⇒ Y1,X2⇒ Y2).

This structure captures the essence oflogical relationsfor product, coproduct and arrow
types interpreted in type hierarchies [23]. We note that theequality functor Eq :Set→
BRel also preserves the bi-CC structure (identity extension).

3.2 Relational Liftings and Coalgebraic Simulations

Definition 4. A relational lifting of an endofunctor F: Set→ Set is an assignment
Ḟ : |BRel| → |BRel| such that for each morphism(f ,g) : X →̇ Y, we have(F f , Fg) :
ḞX →̇ ḞY. We say thaṫF is

– reflexiveif EqFI ⊆ ḞEqI ,
– lax compositionalif ḞX ∗ ḞY ⊆ Ḟ(X ∗ Y),
– compositionalif ḞX ∗ ḞY = Ḟ(X ∗ Y), and
– a relational extension[13] if it is reflexive and compositional.

A relational lifting bijectively corresponds to an endofunctor Ḟ : BRel → BRel such
thatπ ◦ Ḟ = F2 ◦ π. We later see that the lax compositionality guarantees thecompos-
ability of simulations between coalgebras.

Example 4.The bi-cartesian closed structure onBRel gives canonical relational exten-
sions of functors consisting of Id,CA (the constant functor for a setA), + and×. For
instance, the canonical lifting ofFX = CA + X × X is ḞX = EqA +̇ X ×̇ X.

Example 5.The following relational liftingF is known to capture the concept of bisim-
ulation betweenF-coalgebras in many cases (see e.g. [12]):

FX = (Im, FX1, FX2),

where Im is the image of〈Fπ1, Fπ2〉 ◦ FiX : FX0→ FX1 × FX2. It is always reflexive,
and also compositional if and only ifF preserves weak pullbacks [3].

Example 6.In [13, Section 4.1] Hesselink and Thijs give the following construction of
a relational liftingF+(⊑)(X) from a preordered functor (F,⊑):

F+(⊑)(X) = ⊑X1 ∗ FX ∗ ⊑X2.

They show that every relational extensionḞ of aSet-functorF gives rise to a preordered
functor (F, Ḟ(Eq−)), andḞ can be recovered aṡF = F+(Ḟ(Eq−)). In [20], it is shown that
the preordered functor (F,⊑) is stable(Definition 10, [20]) if and only ifF+(⊑) is a
relational extension such that (F+(⊑), F2) is an endomorphism overπ.

A natural generalisation of the coalgebraic formulation of(bi)simulations in [12,
15] is to make it parametrised by relational liftings of coalgebra functors.

Definition 5. Let Ḟ be a relational lifting of an endofunctor F: Set → Set. An Ḟ-
simulation from an F-coalgebra(I1, f1) to another F-coalgebra(I2, f2) is an object
X ∈ BRel above(I1, I2) such that(f1, f2) : X →̇ ḞX.

Example 7.Hermida and Jacobs formulated bisimulations betweenF-coalgebras asF-
simulations [12]. Later, Hughes and Jacobs employedF+(⊑)-simulations to capture the
concept of simulations betweenF-coalgebras [15].

Here are some properties ofḞ-simulations. I)Ḟ-simulations are closed under the union
of arbitrary family. II) If Ḟ is reflexive,Ḟ-simulations areF-simulations. III) If Ḟ is lax
compositional,Ḟ-simulations are closed under the relational composition∗.

We extend the concept of relational liftings of endofunctors to monads.

Definition 6. A relational liftingofT is an assignmenṫT : |BRel| → |BRel| such that

– For each objectX in BRel, we have(ηX1, ηX2) : X →̇ ṪX, and
– for each morphism(f1, f2) : X →̇ ṪY, we have(f #

1 , f
#
2) : ṪX →̇ ṪY.

A relational lifting ofT bijectively corresponds to a monaḋT = (Ṫ, η̇, µ̇) over BRel
such that

π(ṪX) = (TX1,TX2), π(Ṫ(f1, f2)) = (T f1,T f2), η̇X = (ηX1, ηX2), µ̇X = (µX1, µX2).

We note that every relational liftinġT ofT is a strong monad overBRel, and its strength
θ̇ satisfiesπ(θ̇X,Y) = (θX1,Y1, θX2,Y2), whereθ is the canonical strength ofT .

The relational lifting in Example 5 extends to monads:

Proposition 1. For each monadT , T is a relational lifting ofT .

Larrecq, Lasota and Nowak further generalised this fact using subscones and mono
factorisation systems [8]. Hesselink and Thijs’s construction in Example 6 also yields
relational liftings of monads, when preorders on monads aresupplied:

Proposition 2. For each monadT and preorder⊑ onT , T+(⊑) is a lifting ofT .

3.3 Preorder⊤⊤-Lifting

Inspired from [22, 21, 24], in [16] the first author introduced semantic⊤⊤-lifting, a
method to lift strong monads on the base categoryB of a certain partial order fibration
p : E→ B to its total categoryE. This method takes a pair (R,S) such thatpS = TRas
a parameter of the lifting, and by varying this parameter we can derive various liftings
of T . In this paper, we apply the semantic⊤⊤-lifting to the strong monadT 2 over
Set2 and the fibrationπ : BRel → Set2, and we supply congruent (and substitutive)
preorders to the semantic⊤⊤-lifting as parameters.

Definition 7. A preorder parameterfor T is a pair (R,≤) of a set R and a congruent
preorder≤ on TR.

The following is a special case of the semantic⊤⊤-lifting [16, Definition 3.2], where a
preorder parameter is supplied.

Definition 8. Let (R,≤) be a preorder parameter forT . We writeσI for the function
λxk . k#(x) : T I → (I ⇒ TR) ⇒ TR.1 We define the assignment T⊤⊤(R,≤) : |BRel| →
|BRel| by:

T⊤⊤(R,≤)X = (σX1, σX2)
∗((X⇒̇ ≤)⇒̇ ≤). (1)

Below we callT⊤⊤(R,≤) preorder⊤⊤-lifting to distinguish it from the general semantic
⊤⊤-lifting. When the preorder parameter is obvious from context, we simply writeT⊤⊤

instead ofT⊤⊤(R,≤). An equivalent definition ofT⊤⊤X using an auxiliary objectX⊤ is:

X⊤ = X ⇒̇ ≤ = ({(f1, f2) | ∀(x1, x2) ∈ X0 . f1(x1) ≤ f2(x2)},X1⇒ TR,X2⇒ TR),

T⊤⊤X = (({(x1, x2) | ∀(f1, f2) ∈ (X⊤)0 . f #
1 (x1) ≤ f #

2 (x2)},TX1,TX2).

Theorem 1 ([16]).The preorder⊤⊤-lifting T⊤⊤ is a relational lifting ofT .

Example 8 (Example 3.6, [16]).We regardTp1 = {∅,1} as the congruent preorder∅ ≤
1. The preorder⊤⊤-lifting of Tp with this preorder parameter is

T⊤⊤p X = ({(P1,P2) | ∀x1 ∈ P1 . ∃x2 ∈ P2 . (x1, x2) ∈ X0},TpX1,TpX2).

Every preorder⊤⊤-lifting of a monadT yields a preorder onT .

Theorem 2. Let (R,≤) be a preorder parameter forT .

1. For each set I, we have T⊤⊤EqI = ({(x, y) | ∀ f : I → TR . f #(x) ≤ f #(y)},T I,T I).
2. The assignment I7→ T⊤⊤EqI is a preorder onT (which we denote by[≤]R).

Proof. We note that (T⊤⊤EqI)0 = {(x, y) | ∀ f ,g : I → TR . f ≤̇ g =⇒ f #(x) ≤ g#(y)}.

1. (⊇) Immediate. (⊆) Let x, y ∈ T I and assume∀h : I → TR . h#(x) ≤ h#(y). For
functions f ,g : I → TRsuch thatf ≤̇ g, we havef #(x) ≤ g#(x) as≤ is congruent,
and g#(x) ≤ g#(y) from the assumption. Thereforef #(x) ≤ g#(y) holds by the
transitivity of≤.

2. (Transitivity) Let (x, y), (y, z) ∈ T⊤⊤EqI . From 1, for any functionf : I → TR, we
havef #(x) ≤ f #(y) and f #(y) ≤ f #(z), hencef #(x) ≤ f #(z). (Reflexivity) Reflexivity
is immediate from the congruence of≤. (Congruence) The Kleisli lifting of (f ,g) :
EqI →̇ T⊤⊤EqJ satisfies (f #,g#) : T⊤⊤EqI →̇ ṪEqJ. From the reflexivity ofT⊤⊤EqI ,
we have (f #,g#) : EqT I ⊆ T⊤⊤EqI →̇ T⊤⊤EqI . (Substitutivity) Let f : I → T J be a
function andx, y ∈ T I such that (x, y) ∈ T⊤⊤EqI . For each functiong : J→ TR, we
have

g#(f #(x)) = (g# ◦ f)#(x) ≤ (g# ◦ f)#(y) = g#(f #(y)),

implying (f #(x), f #(x)) ∈ T⊤⊤EqJ.

Below we writeCSPre(T , I) for the set of congruent and substitutive preorders onT I,
ordered by inclusion. The mapping (−)I : ⊑ 7→ ⊑I is a monotone function of type
Pre(T) → CSPre(T , I). We characterise the assignment≤ 7→ [≤]R as the right adjoint
[−] I : CSPre(T , I)→ Pre(T) to (−)I .

1 This is called theunit of the continuation monad transformer [4].

Theorem 3. For each set I, we have the following adjunction(−)I ⊣ [−] I such that
[−] I

I = id.

(CSPre(T , I),⊆) ⊤

[−] I
//
(Pre(T),¹).

(−)I

oo (2)

Proof. Monotonicity of [−] I is easy. We show⊑ ¹ [⊑I] I . Let J be a set and suppose
x ⊑J y. Then from the substitutivity of⊑, for each functionf : J → T I, we have
f #(x) ⊑I f #(y), that is,x [⊑I] I

J y. Next, we show [≤] I
I = ≤. We first calculate [≤] I

I :

[≤] I
I = {(x, y) | ∀ f : I → T I . f #(x) ≤ f #(y)}

Then≤ ⊆ [≤] I
I is equivalent to the substitutivity of≤, which is already assumed. To

show [≤] I
I ⊆ ≤, use the unitηI : I → T I of T .

Example 9. 1. We define a congruent preorder≤ on Tm2 = 2∗ by: x ≤ y if x is a
subsequence ofy. Then we havex [≤]2

I y if and only if x is a subsequence ofy.
2. For x ∈ TmI and i ∈ I , by o(x, i) we mean the number of occurrences ofi in

x. For each congruent preorder≤ on Tm1 ≃ N, we havex [≤]1
I y if and only if

∀i ∈ I . o(x, i) ≤ o(y, i).

4 Characterising Pre(T) as the Limit of a Large Chain

Using the family of adjunctions (2), for setsI , J we define the monotone functionϕI ,J :
CSPre(T , I)→ CSPre(T , J) by ϕI ,J(≤) = [≤] I

J. Theorem 3 assertsϕI ,I = id.

Lemma 1. For each⊑ ∈ Pre(T) and sets I, J such thatcard(I) ≤ card(J), we have
⊑I = [⊑J]J

I .

Proof. From ⊑ ¹ [⊑J]J, we have⊑I ⊆ [⊑J]J
I . We show the converse. We take an

injection i : I J and a surjections : J ։ I such thats◦ i = id. Supposex[⊑J]J
I y.

Then for the functionη ◦ i : I → T J, the following holds:

Ti(x) = (η ◦ i)#(x) ⊑J (η ◦ i)#(y) = Ti(y).

From the substitutivity of⊑, we obtainx⊑I y, because

x = T s◦ Ti(x) = (η ◦ s)#(Ti(x)) ⊑I (η ◦ s)#(Ti(y)) = T s◦ Ti(y) = y.

Lemma 2. For sets I, J,K such thatcard(I) ≤ card(J), we haveϕJ,I ◦ ϕK,J = ϕK,I .

Proof. We haveϕK,I (≤) = [≤]K
I
∗
= [[≤]K

J]J
I = ϕJ,I ◦ ϕK,J(≤); here,

∗
= is by Lemma 1.

This implies that when card(I) ≤ card(J), we haveϕJ,I ◦ ϕI ,J = id, henceϕI ,J is a split
monomorphism inPos.

Lemma 3. For each⊑ ∈ Pre(T) and sets I, J such thatcard(I) ≤ card(J), we have
[⊑I] I º [⊑J]J.

Proof. We have [⊑J]J ¹ [[⊑J]J
I] I = [⊑I] I ; the last step is by Lemma 1.

Thus each⊑ ∈ Pre(T) determines a descending chain of preorders onT indexed by
cardinals: [⊑0]0 º [⊑1]1 º · · · , and⊑ is a lower bound by Theorem 3. In fact,⊑ is the
greatestlower bound:

Theorem 4. For each⊑ ∈ Pre(T), we have⊑ =
⋂

α∈Card [⊑α]α.

Proof. It is sufficient to show
⋂

α∈Card [⊑α]α ¹ ⊑. Let I be a set,x, y ∈ T I and suppose
that x [⊑α]αI y holds for any cardinalα; so this especially holds at card(I). Taking a
bijectionh : I → card(I), we obtainTh(x) ⊑card(I) Th(y). As ⊑ is substitutive, we have
x = Th−1 ◦ Th(x) ⊑I Th−1 ◦ Th(y) = y.

Let us writeCard for the linear order of cardinals (recall that we assume the axiom
of choice). To clarify the relationship betweenPre(T) andCSPre(T ,−), we extend the
assignmentα ∈ Card 7→ CSPre(T , α) to a functorCSPre(T ,−) : Cardop→ Pre; the
morphism part is given byϕ. We thus obtain a large chain:

CSPre(T ,0) CSPre(T ,1)
ϕ1,0oo · · ·

ϕ2,1oo CSPre(T ,ℵ0)oo · · ·
ϕℵ0,ℵ1oo

We characterisePre(T) as a limit of this large chain.

Theorem 5. The family(−)α : Pre(T)→ CSPre(T , α) is a limiting cone.

Proof. We first show that (−)α : Pre(T) → CSPre(T , α) is a cone overCSPre(T ,−).
Let ⊑ ∈ Pre(T) andα, β be cardinals such thatα ≤ β. Thenϕβ,α(⊑β) = [⊑β]βα = ⊑α by
Lemma 1.

Next, letV be a class andp : V → CSPre(T ,−) be a cone. We construct the unique
mediating mappingm : V → Pre(T) such that (−)α ◦m = pα. For this, we first prove
the following lemma:

Lemma 4. For each class V, cone p: V → CSPre(T ,−) and cardinalsα, β such that
α ≤ β, we have[pα(v)]α º [pβ(v)]β.

Proof. As p is a cone, for any cardinalα ≤ β, we haveϕβ,α(pβ(v)) = [pβ(v)]βα = pα(v).
Then [pα(v)]α = [[pβ(v)]βα]α º [pβ(v)]β; the last step is by Lemma 3.

Therefore everyv ∈ V determines a decreasing sequence of preorders onT : [p0(v)]0 º

[p1(v)]1 º · · · . We then define a mappingm : V → Pre(T) by

m(v) =
⋂

α∈Card

[pα(v)]α.

This mapping satisfiesm(v)α = pα(v) because

m(v)α =
⋂

β∈Card

[pβ(v)]β
α
=

⋂

β∈Card,α≤β

[pβ(v)]β
α
=

⋂

β∈Card,α≤β

pα(v) = pα(v).

When another mappingm′ : V → Pre(T) satisfiesm′(v)α = pα(v), thenm′(v) = m(v)
because

m′(v) =
⋂

α∈Card

[m′(v)α]
α =

⋂

α∈Card

[pα(v)]α = m(v).

Corollary 1. We have an isomorphismCSPre(T , α) ≃ Pre(T) if ϕβ,α is an isomor-
phism for each cardinalβ ≥ α.

Finding such a cardinalα is not obvious and depends onT . Below we present a conve-
nient condition for finding suchα; see Example 11 for a concrete case.

Definition 9. We say that a cardinalα is large enough for preorder axiomsonT if for
each cardinalβ ≥ α and x, y ∈ Tβ, there exists functions g: β → Tα and f : α → Tβ
(depending on x, y) such that f# ◦ g#(x) = x and f# ◦ g#(y) = y.

Theorem 6. If α is large enough for preorder axioms onT , then CSPre(T , α) ≃
Pre(T).

Proof. We show thatϕα,β is surjective as a function for any cardinalβ ≥ α. When this is
shown,ϕα,β becomes the inverse ofϕβ,α in Posbecauseϕα,β is a split monomorphism.

Let β be a cardinal such thatβ ≥ α, and suppose that it is witnessed by an injection
w : α β. For each congruent and substitutive preorder≤ ∈ CSPre(T, β), we define a
binary relation≤′⊆ Tα × Tα by

a ≤′ b ⇐⇒ there exists an injectionm : α β such thatTm(a) ≤ Tm(b).

Lemma 5. ≤′ ∈ CSPre(T , α).

We omit the proof of this lemma. We next show that≤ is the image of≤′ by ϕα,β.

Lemma 6. ϕα,β(≤′) =≤.

Proof. Let x, y ∈ Tβ such thatx ≤ y. For each functionf : β→ Tα, we obtain

Tw◦ f #(x) = (Tw◦ f)#(x) ≤ (Tw◦ f)#(y) = Tw◦ f #(y)

from the substitutivity of≤, thus f #(x) ≤′ f #(y). Therefore we obtainx [≤′]αβ y.
Conversely, supposex [≤′]αβ y. From the assumption, we haveg : β → Tα and

f : α → Tβ such thatf # ◦ g#(x) = x and f # ◦ g#(y) = y. We thus haveg#(x) ≤′ g#(y),
hence there is an injectionm : α β such thatTm◦ g#(x) ≤ Tm◦ g#(y). Now take a
surjections : β ։ α such thats◦m = idα. Then we have a functionf ◦ s : β → Tβ,
and as the preorder≤ is substitutive, we have

x = (f ◦ s)# ◦ Tm◦ g#(x) ≤ (f ◦ s)# ◦ Tm◦ g#(y) = y.

Theorem 7. The rank of a monadT , if it exists, is large enough for preorder axioms
onT .

Proof. We writeα for the rank ofT . Letβ be a cardinal such thatβ ≥ α andx1, x2 ∈ Tβ.
There exists a cardinal 0< γ < α (witnessed by an injectioni′ : γ α), m1,m2 ∈ Tγ
and an injectioni : γ β such thatT(i)(mi) = xi (i = 1,2). We then take surjections
s : β ։ γ and s′ : α ։ γ that are left inverses toi and i′, respectively. Thenf =
η ◦ i′ ◦ s : β→ Tα andg = η ◦ i ◦ s′ : α→ Tβ satisfyg# ◦ f #(xi) = xi because

g# ◦ f #(xi) = Ti ◦ T s′ ◦ Ti′ ◦ T s◦ Ti(mi) = Ti(mi) = xi (i = 1,2).

5 Enumerating and Identifying Preorders on Monads

The understanding of the categorical status ofPre(T) allows us to identify its contents
in several ways. Below we illustrate some methods with concrete monads.

5.1 Showing the Adjunction(2) being an Isomorphism

Let M be a semiring. We writeT M
c for the M-valued finite multiset monad, whose

functor part is given byTM
c I = { f : I → M | supp(f) is finite}; here, supp(f) = {i ∈

I | f (i) , 0}. Below we show that the adjunction (2) becomes an isomorphism for I = 1.
The following is the key lemma, which states that each preorder onT M

c is pointwise:

Lemma 7. Each preorder⊑ onT M
c satisfies: d⊑I d′ ⇐⇒ ∀i ∈ I . d(i) ⊑1 d′(i).

This implies [⊑1]1 ¹ ⊑. Therefore from Theorem 3, we obtain:

Theorem 8. We haveCSPre(T M
c ,1) ≃ Pre(T M

c).

By letting M be the two-point boolean algebra and removing the finitenessrestriction,
T M

c becomes the powerset monadTp. A similar argument then identifiesPre(Tp):

Theorem 9. We have4 ≃ CSPre(Tp,1) ≃ Pre(Tp). The preorders onTp are: I) the
discrete order, II) the inclusion order, III) the opposite of II and IV) the trivial preorder
(that is,⊑I = TpI × TpI).

5.2 Collecting Preorders of the Form [≤]R

From Theorem 4, every preorder⊑ on T is the intersection of preorders of the form
[≤]R. Therefore if the collection{[≤]R | R ∈ Set, ≤ ∈ CSPre(T ,R)} is closed under
intersections of arbitrary size, then it is equal toPre(T). Below we identifyPre(Tl)
using this fact. We note that Levy identifiedPre(Tl) using a different method called
boolean precongruences[19]; see Section 7.

Example 10.Let (R,≤) be a preorder parameter forTl . Then [≤]R is either I) the discrete
order, II) the flat order withι2(∗) being the least element, III) the opposite of II, or
IV) the trivial order. For proving this statement, we consider the combinations of two
subcases: A) whetherι2(∗) is the least element in (R,≤) or not, and B) whetherι2(∗)
is the greatest element in (R,≤) or not. From this, we conclude that I—IV are the only
preorders onTl .

5.3 Computing CSPre(T , α) with a Large Enough α for Preorder Axioms

In the previous method, we have managed to find a good case analysis of preorder pa-
rameters. However, when the monadT becomes more complex, we immediately have
no idea what kind of case analysis on preorder parameters is sufficient for classifying
all the preorders on the monad. The second method presented in this section circum-
vents this problem by exploiting Theorem 6. We find a finite cardinal α that is large
enough for preorder axioms onT , then computeCSPre(T , α). Below we examine the

case where this computation is feasible. First, we assume thatTα is finite. We introduce
the following preorder⊳ onTα × Tα:

(x1, y1) ⊳ (x2, y2) ⇐⇒ ∃ f : α→ Tα . (f #x1, f
#y1) = (x2, y2)

and the followingcongruent closure operatorC:

C(B) = {(f #(w),g#(w)) | X ∈ Set,w ∈ TX, (f ,g) : EqX →̇ (B,Tα,Tα)}.

For a finite setD, a subsetA ⊆ D and a monotone increasing functionf overTpD, the
following functionlfp computes the least fixpoint off includingA:

lfp(A, f){
if(A = f (A)) { return A; } else { return lfp(f (A), f); }

}

If f is computable thenlfp terminates in finite steps.
We construct the following algorithmNaive to computeCSPre(T , α):

CTU(A) { return lfp(A, C ◦ T ◦ U); }

f1(L) { return L ∪ { CTU(B∪ {(x, y)}) | B ∈ L, (x, y) ∈ Tα × Tα \ B }; }

Naive() { return lfp({EqTα}, f1); }

where,U is the upward closure operator on (Tα × Tα,⊳) andT is the transitive closure
operator; they are both computable. The functionCTU thus computes the congruent
transitive upward closure of a given binary relation overTα. WhenC is computable, the
above algorithm is also computable.

Proposition 3. Naive() = CSPre(T , α).

We explain how the algorithmNaive runs with the following example.

Example 11.First, the cardinal 3 is large enough for preorder axioms on the nonempty
powerset monadTp+ , because for each pair (x, y) ∈ Tp+X × Tp+X, the following two
functions f : X→ Tp+3 andg: 3→ Tp+X satisfyg# ◦ f #x = x andg# ◦ f #y = y:

f (a) =

{0} a ∈ x\y

{1} a ∈ y\x

{2} otherwise

, g(b) =

y b= 1

x∩ y b= 2 andx∩ y , ∅

x otherwise

SinceTp+3 is finite and the multiplication ofTp+ is the set union operation,R is congru-
ent if and only ifR satisfies (x1, y1), (x2, y2) ∈ R =⇒ (x1 ∪ x2, y1 ∪ y2) ∈ R. Therefore,
the following algorithm computesC:

C(A){ return lfp(A, f2); } where f2(B){ return B∪ {x∪ y | x, y ∈ B}; }

We haveCSPre(T , α) ≃ 4. The orders onTp+ remains the same as the one forTp.

Type of preorders The definition ofx ⊑I y
Trivial preorder true
Equivalence relationsx = y, (x = y) ∨ (⊥ ∈ x∧ ⊥ ∈ y),

x\{⊥} = y\{⊥}
Partial orders x ⊆ y, x = y∨ x = y\{⊥},

x = y∨ (x ⊆ y∧ ⊥ ∈ x), x = y∨ (x ⊆ y∧ ⊥ ∈ y),
(x = y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

Proper preorders x = y∨ ⊥ ∈ x, x ⊆ y∨ ⊥ ∈ y,
(x ⊆ y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

Table 1.All Preorders onTpl (we omit opposite ones)

We rewrite the naive algorithm to an efficient one. The basic idea to improve the
efficiency is to work on the poset (Tα×Tα/∼, [⊳]) rather than the preorder (Tα×Tα,⊳),
where∼ is the equivalence relation⊳ ∩ ⊲ and [⊳] is the extension of⊳ to the partial
order on∼-equivalence classes.

SinceTα is finite, the set of all∼-equivalence classes and the order [⊳] between
them are computable. We then rewrite the naive algorithmsCTU andNaive to,

CTU(A) { return lfp(A, C′ ◦ T′ ◦ U′); }

f3(L) { return L ∪ { CTU(B∪ {d}) | B ∈ L,d ∈ (Tα × Tα/∼) \ B}; }

Modified() { return lfp({{[(x, y)] | (x, y) ∈ EqTα}}, f3); }

respectively. Here,U′ is the upward closure operator on (Tα × Tα/∼, [⊳]), C′(B) =
{[(x, y)] | (x, y) ∈ C(

⋃

B)}, andT′(B) = {[(x, y)] | (x, y) ∈ T(
⋃

B)}. Since an upward
closed subsetB of (Tα × Tα,⊳) is the union

⋃

B′ of an upward closed subsetB′ of
(Tα × Tα/∼, [⊳]), we have{

⋃

B | B ∈ Modified()} = CSPre(T , α).
Algorithm Modified is faster thanNaive because the upward closure operatorU’

and the set comprehension inf3 works on the smaller poset (Tα × Tα/ ∼, [⊳]) than
(Tα × Tα,⊳). Functionf1 also has a redundant computation: it computesCTU(B ∪
{(x, y)}) for each pair (x, y) ∈ Tα × Tα \ B, but the results of this computation are the
same when∼-equivalent pairs are supplied. The functionf3 avoids such duplicated
computation by working on∼-equivalence classes.

We demonstrate an execution ofModified. Below, we writeTpl for the composite
monadTp ◦ Tl using the canonical distributive law betweenTp andTl .

Example 12.The cardinal 2= {a,b} is large enough for preorder axioms onTpl.
First we calculate all∼-equivalence classes and the partial order [⊳]. We haveTpl2 ×
Tpl2/∼ = {p1, p2, · · · , p28} where,

p1 = [({a}, {b})] p8 = [({a,⊥}, {b})] p15 = [({a}, {b,⊥})] p22 = [({a,⊥}, {b,⊥})]
p2 = [({a,b}, {b})] p9 = [({a,b,⊥}, {b})] p16 = [({a,b}, {b,⊥})] p23 = [({a,b,⊥}, {b,⊥})]
p3 = [({a}, {a,b})] p10 = [({a,⊥}, {a,b})] p17 = [({a}, {a,b,⊥})] p24 = [({a,⊥}, {a,b,⊥})]
p4 = [({a}, {a})] p11 = [({a,⊥}, {a})] p18 = [({a}, {a,⊥})] p25 = [({a,⊥}, {a,⊥})]
p5 = [({a}, ∅)] p12 = [({a,⊥}, ∅)] p19 = [({a}, {⊥})] p26 = [({a,⊥}, {⊥})]
p6 = [(∅, {a})] p13 = [({⊥}, {a})] p20 = [(∅, {a,⊥})] p27 = [({⊥}, {a,⊥})]
p7 = [(∅, ∅)] p14 = [({⊥}, ∅)] p21 = [(∅, {⊥})] p28 = [({⊥}, {⊥})]

We draw the following Hasse diagram of the poset (Tpl2× Tpl2/∼, [⊳]).

p1

p2p3

p4

p5p6

p7

p8

p10
p9

p11

p13

p12

p14

p15

p17

p16

p18p20

p19

p21

p22

p23p24

p25

p26p27

p28

33fffffffff
kkXXXXXXXXX

66mmmmmmmmmmmmmm

hhQQQQQQQQQQQQQQ

llZZZZZZZZZ
ccGGGG

66nnnnnnnnnnnn
22ddddddddd

;;wwww

hhPPPPPPPPPPPP

OO

aa

ggOOOOO

44iiiiiiiiiiiiiiiiiii
77ooooo

jjUUUUUUUUUUUUUUUUUUU

aaDDDD 22eeeeeee

__ 66mmmmmm

EE®®®®®®

bb
]];;;;;;

DD©©©©

ggPPPPPPPPPPPPPP

JJ·····
dd

55llll
mmZZZZZZZZZZZZZZZZZZ

^^<<<<<<<

llYYYYYY
==zzzz

??AA¤¤¤¤¤¤

ZZ6666

77nnnnnnnnnnnnn

hhQQQQQQ

YY333333

<<

TT*****
::

@@£££££££

iiRRRR
11dddddddddddddddddd

33hhhhhhh
kkVVVVVVV

llYYYYYY

ZZ666622eeeeee

DD©©©©

OO iiRRRR55llll

Next, we demonstrate the execution ofModified(). It computes the least fixpoint of
f3 containing{{p4, p7, p25, p28}}. We now see the first loop oflfp in the execution
of Modified() in detail. The functionf3 picks up an equivalence class other than
{p4, p7, p25, p28}, sayp6, then pass{p4, p7, p25, p28, p6} to CTU . The functionCTU pro-
cesses its argument by the closure operatorsU’, T’, C’ repeatedly until it gets stationary.
The following is the first pass of this process:

– U′({p4, p7, p25, p28, p6}) = {p4, p6, p7, p20, p21, p25, p28}

– T′({p4, p6, p7, p20, p21, p25, p28}) = {p4, p6, p7, p20, p21, p25, p28}

– C′({p4, p6, p7, p20, p21, p25, p28}) = {p3, p4, p6, p7, p17, p18, p20, p21, p24, p25, p27, p28}

The result of the last calculation byC′, which we callH below, is already closed under
U′, T′ andC′. Therefore,CTU({p4, p7, p25, p28, p6}) = H. The functionf3 similarly cal-
culatesCTU({p4, p7, p25, p28, p}) for each equivalence classpother thanp4, p7, p25, p28, p6,
and returns the union of the results of the calculations ofCTUs andf3’s argumentL. This
finishes the first call off3. The functionlfp in Modified repeats callingf3 until we
obtain the least fixpoint off3. The algorithmModified() yields 20 sets of equivalence
classes, henceCSPre(Tpl,2) ≃ 20 (see also Section 7 for Levy’s result).

After this computation, we manually extract the definitionsof preorders onTpl from
each set of equivalence classes. The 20 preorders are listedin Table 5.3. For this extrac-
tion, we first identify the meaning of the binary relation

⋃

B over Tpl2 for each set
B ∈ Modified() of equivalence classes, then manually characterise [

⋃

B]2
I for each set

I . For instance,
⋃

H = ⊆2, and from this we obtain [⊆2]2
I =⊆I .

Another method to enumerate congruent substitutive preorders onTα is to reduce the
problem to finding the valuationsρ that satisfy the following boolean formula:

∧

(Q1,Q2)∈V

(
∧

p∈Q1

Pp =⇒
∧

p∈Q2

Pq) (3)

Here,Pp is the propositional variable assigned to eachp ∈ Tα×Tα/∼, andV is the set
of the following pairs:

– ({p}, {q}) for all p,q ∈ Tα × Tα/∼ such thatp⊳ q
– (∅, [(x, x)]) for all x ∈ Tα
– ({[(x, y)], [(y, z)]}, {[(x, z)]}) for all x, y, z ∈ Tα

– (Q, C′(Q)) for all Q ⊆ Tα × Tα/∼ such thatC′(Q) , Q.

The setV encodes the conditions of congruent substitutive preorder. If Tα is finite and
C is computable, the boolean formula (3) is finite and can be generated by an algorithm.

The satisfying assignments of the boolean formula (3) bijectively correspond to
preorders inCSPre(T , α). The number ofCSPre(T , α) is the solution of the problem
of counting the number of satisfying assignments of the formula, and this problem is
known as #SAT problem [5].

6 Some Properties on Preorder⊤⊤-Lifting

We show that preorder⊤⊤-liftings satisfy a couple of properties that are relevant to the
coalgebraic simulations discussed in Section 3.2. The firstproperty relates oplax coal-
gebra morphisms and simulations. We restrict our attentionto T F-coalgebras, where
T is the functor part of a monad andF consists of Id,CA,+,× only. Below for each
functiong : I → J, we defineGr (g) to be theBRel-object ({(i,g(i)) | i ∈ I }, I , J) of the
graph ofg. We noteḞ(Grg) = Gr (Fg).

Theorem 10. Let (R,≤) be a preorder parameter, and(I i , fi) be T F-coalgebras (i=
1,2). For each function g: I1 → I2, Gr (g) is a T⊤⊤Ḟ-simulation from(I1, f1) to (I2, f2)
if and only if g is an oplax morphism of coalgebras with respect to [≤]R, that is, T Fg◦
f1 ˙[≤]

R
FI2

f2 ◦ g.

In general, preorder⊤⊤-liftings may not be lax compositional. We here present a
condition to guarantee the lax compositionality.

Theorem 11. Let (R,≤) be a congruent preorder such that≤ satisfies the following
condition for all subsets X,Y ⊆ TR:

(∀x ∈ X, y ∈ Y . x ≤ y) =⇒ ∃z ∈ TR.∀x ∈ X, y ∈ Y . x ≤ z∧ z≤ y. (4)

Then T⊤⊤ is lax compositional.

For instance, (4) is satisfied when the preorder parameter (R,≤) is a complete lattice.

7 Conclusion and Related Work

We showed that preorder⊤⊤-liftings construct preorders on monads, and this construc-
tion enjoys a universal property. We gave a characterisation of the collectionPre(T) of
preorders onT as the limit of the large diagramCSPre(T ,−) : Cardop→ Set. We then
applied these theoretical results to identifying preorders on some concrete monads. We
also showed the properties of the preorder⊤⊤-lifting that are relevant to the coalgebraic
formulation of simulations.

Besides [13, 11, 15], we briefly mention some recent works on (bi)simulations and
relational liftings. Ĉırstea studies modular constructions of relational extensions and
modal logics characterising simulations using the categorical structures onBRel [7].
Klin studies the least fibred lifting ofSet-functors across the fibrationERel → Set,

whereERel is the category of equivalence relations [17]. His lifting works for mono-
preserving functors, and when they preserve weak pullbacks, his lifting coincides with
the one in Example 5. Balan and Kurz give liftings and extensions of finitarySet-
functors to endofunctors overPre andPos [2]. Their method uses the fact that every
finitary Set-functor T is presented as LanI (T ◦ I), whereI : Finord → Set is the in-
clusion functor. Bilkova et al. derive a natural definition of relations between preorders
using Sierpinski-space enriched categories, and give relational liftings of endofunctors
over Pre in this context [6]. Levy extends the characterisation of bisimilarity by final
coalgebras to similarity [20].

The novelty of our approach is that we exploit the structure of monadto relationally
lift functors. The principle of the semantic⊤⊤-lifting seems fundamentally different
from the lifting methods employed in the above works. One distinguishing feature of
the semantic⊤⊤-lifting is its flexibility. By changing the preorder parameter, we can
uniformly derive various relational liftings and preorders on monads. The source of this
flexibility lies at continuation monads, which are a special case of enrichedright Kan
extensions.

Levy introduces the concept calleddeterministic/ nondeterministic boolean pre-
congruences(DBPandNDBP for short) in [19]. They are defined in our language by:

DBPE = CSPre(T E
e ,2), NDBPE = CSPre(Tp+ ◦ T

E
e ,2);

here,T E
e is theerror monad, whose functor part is given byTE

e I = I + E. He shows
CSPre(T ,2) ≃ Pre(T) for T = T E

e andT = Tp+ ◦ T
E
e , and enumerates the following

boolean precongruences together with their definitions:

DBP0 ≃ 2, DBP1 ≃ 4, DBP2 ≃ 13, NDBP0 ≃ 4, NDBP1 ≃ 20.

He also gives modal logics that have Hennesy-Milner property with respect to the con-
cept of simulations derived from boolean precongruences. His results are derived by the
method that is specialised to these monads.

AcknowledgementWe are grateful to Naohiko Hoshino, Norihiro Tsumagari and Hasuo
Ichiro for valuable discussions. This work was supported byJSPS KAKENHI Grant
Number 24700012.

References

1. P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, D. Rydeheard, P. Dybjer,
A. Pitts, and A. Poigńe, editors,Category Theory and Computer Science, volume 389 of
LNCS, pages 357–365. Springer, 1989.

2. A. Balan and A. Kurz. Finitary functors: From set to preord and poset. In Andrea Corra-
dini, Bartek Klin, and Corina Ĉırstea, editors,CALCO, volume 6859 ofLNCS, pages 85–99.
Springer, 2011.

3. M. Barr. Relational algebras. In S. MacLane, H. Applegate, M. Barr, B. Day, E. Dubuc,
Phreilambud, A. Pultr, R. Street, M. Tierney, and S. Swierczkowski, editors, Reports of the
Midwest Category Seminar IV, volume 137 ofLNM, pages 39–55. Springer Berlin Heidel-
berg, 1970.

4. N. Benton, J. Hughes, and E. Moggi. Monads and effects. InProc. APPSEM ’00, volume
2395 ofLNCS, pages 42–122. Springer, 2002.

5. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.Handbook of Satisfiability, volume
185 ofFrontiers in Artificial Intelligence and Applications. IOS Press, February 2009.

6. M. Bı́lková, A. Kurz, D. Petrisan, and J. Velebil. Relation liftings on preorders andposets.
CoRR, abs/1210.1433, 2012.

7. C. Ĉırstea. A modular approach to defining and characterising notions of simulation. Infor-
mation and Computation, 204(4):469 – 502, 2006.

8. J. G.-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. InProc. CSL
’02, volume 2471 ofLNCS, pages 553–568. Springer, 2002.

9. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns, editors,
CONCUR, volume 4137 ofLNCS, pages 406–420. Springer, 2006.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory.Electr. Notes Theor. Comput.
Sci., 164(1):47–65, 2006.

11. C. Hermida and B. Jacobs. An algebraic view of structural induction. In Proc. CSL ’94,
volume 933 ofLNCS, pages 412–426. Springer-Verlag, 1995.

12. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.Inf.
Comput., 145(2):107–152, 1998.

13. W. H. Hesselink and A. Thijs. Fixpoint semantics and simulation.Theor. Comput. Sci.,
238(1-2):275–311, 2000.

14. B. Jacobs.Categorical Logic and Type Theory. Elsevier, 1999.
15. B. Jacobs and J. Hughes. Simulations in coalgebra.Electr. Notes Theor. Comput. Sci.,

82(1):128–149, 2003.
16. S. Katsumata. A semantic formulation of⊤⊤-lifting and logical predicates for computational

metalanguage. InProc. CSL ’05, volume 3634 ofLNCS, pages 87–102. Springer, 2005.
17. B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. InProcs.

CALCO, volume 3629 ofLNCS, pages 247–262, 2005.
18. A. Kurz.Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-

Maximilians-Universiẗat, Munchen, 2000.
19. P. Levy. Boolean precongruences. Manuscript, 2009.
20. P. Levy. Similarity quotients as final coalgebras. In Martin Hofmann,editor, FOSSACS,

volume 6604 ofLNCS, pages 27–41. Springer, 2011.
21. S. Lindley.Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, University of Edinburgh, 2004.
22. S. Lindley and I. Stark. Reducibility and tt-lifting for computation types. In Pawel Urzyczyn,

editor,TLCA, volume 3461 ofLNCS, pages 262–277. Springer, 2005.
23. J. Mitchell.Foundations for Programming Languages. MIT Press, 1996.
24. A. Pitts. Parametric polymorphism and operational equivalence.Mathematical Structures in

Computer Science, 10(3):321–359, 2000.
25. S. Staton. Relating coalgebraic notions of bisimulation.Logical Methods in Computer

Science, 7(1), 2011.

