
Attribute Grammars and Categorical Semantics

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
Kyoto, 606-8502, Japan sinya@kurims.kyoto-u.ac.jp

Abstract. We give a new formulation of attribute grammars (AG for short) called
monoidal AGs in traced symmetric monoidal categories. Monoidal AGs subsume
existing domain-theoretic, graph-theoretic and relational formulations of AGs.
Using a 2-categorical aspect of monoidal AGs, we also show that every monoidal
AG is equivalent to a synthesised one when the underlying category is closed,
and that there is a sound and complete translation from local dependency graphs
to relational AGs.

1 Introduction

Attribute grammars are a mechanism to assign computation with bidirectional infor-
mation flow to derivation trees of context free grammars [18]. Our intention is to give
a categorical formulation of AGs. We employ traced symmetric monoidal categories
(TSMC for short) as the underlying categories for the formulation.

The key notion that links AGs and TSMCs is the circular (or recursive) computation.

Fig. 1. Simple Description
of Attribute Grammars

Circular computation is tightly related to the charac-
teristic feature of AGs, namely computation with bidirec-
tional information flow. To illustrate this, we consider the
situation that an AG assigns to a derivation tree (top left
of Figure 1) a computation with bidirectional information
flow (top right of Figure 1). Boxes P,Q,R are computa-
tion units assigned by the AG to nodes p, q, r in the tree.
Depending on the configuration of P,Q,R, the entire com-
putation may involve circular computation. For instance,
on the bottom of Figure 1 the box P feed-backs the input
from R to Q so that the entire computation has a cycle.

It is therefore natural to formulate AGs in a mathemat-
ical theory that admits circular computation. In [16], Joyal
et al introduced the concept of traced monoidal categories.
From the viewpoint of computer science, they provide an
abstract account of feedback-loops, iteration and recursion
in the models of computation, such as domain theory, iteration theory [5], Conway the-
ory [6], relational models of flowcharts and networks [4], and so on.

The main observation of this paper is that by employing TSMCs as the underlying
mathematical theory, we can achieve higher degree of abstraction in AGs. Following
this observation, we propose a categorical formulation of AGs called monoidal AGs.
The merit of this formulation is that we are free from concrete representation of data

structures and computation. We show that three existing formulations of AGs: 1) Chirica
and Martin’s K-systems [8], 2) Dependency graphs in classical AGs and 3) Courcelle
and Deransart’s relational AGs [9] are formally related to the instances of monoidal
AGs. Subsequently, by exploiting a 2-categorical aspect of monoidal AGs we show
that in closed TSMCs every monoidal AG is equivalent to the one which does not use
inherited attributes, and that there exists a sound and complete translation from local
dependency graphs into relational AGs. The latter result, which technically hinges on
Selinger’s work [21], appears to be new.

Preliminaries We adopt the standard algebraic treatment of CFGs. We regard a CFG
G = (T,N, S , P) as a many-sorted signature ΣG = (N, P) by identifying each production
rule p : X0 → v0X1v1 · · ·Xnvn ∈ P (vi ∈ T ∗, Xi ∈ N, 0 ≤ i ≤ n) and an operator
p : X1 · · ·Xn → X0. We also identify the set of derivation trees of G beginning with a
non-terminal symbol X ∈ N and the set TΣG X of closed ΣG-terms of X. In this paper
terminal symbols and the starting symbol do not play any role, so when declaring a
CFG we just mention the set of nonterminal symbols and production rules.

The following concepts will be used in classical AGs. We fix a countably infinite
set Attr of attribute names, and assume that it is closed under prefixing “i.” (i ∈ N).
A named set is a finite sequence of pairs of an attribute name and a set such that each
attribute name in the sequence is different. For a named set R = a1 : V1, · · · , an : Vn,
by |R| we mean V1 × · · · × Vn; for x ∈ |R|, by xai we mean the i-th component of x; by
a(R) we mean a1, · · · , an ∈ Attr∗; by n(R) we mean {a1, · · · , an} ⊆ Attr; by i.R (i ∈ N)
we mean the named set i.a1 : V1, · · · , i.an : Vn. For l = a1, · · · , an ∈ Attr∗ with distinct
attribute names, by X l we mean the named set a1 : X, · · · , an : X. For a pair of tuples
a, b, by a; b we mean the concatenation of them; for example, (a, b); (c, d) = (a, b, c, d).

2 Classical AGs

Fig. 2. Attribute Grammars

We first informally describe the central idea of AGs. Let
G = (N, P) be a CFG. An AG A assigns a “computa-
tion unit” fp (top of Figure 2) to each production rule
p : X1 · · ·Xn → X0 ∈ P. The computation unit has an
I/O-port for X0 at the top and n I/O-ports for X1 · · ·Xn at
the bottom (A also specifies types of I/O ports, but we ig-
nore them now). The unit processes all inputs and outputs
simultaneously, regardless of direction. The information
flowing downward is called inherited attributes, while
the one flowing upward synthesised attributes. Given a
derivation tree t of G, we construct a complex circuit by
connecting computation units provided by A with each
other according to the shape of t. The resulting circuit,
which has an I/O port only at the top, is the computation
assigned to t by the AG (bottom of Figure 2).

The above idea was proposed and formulated by
Knuth in [18], where computation units were represented

by set-theoretic functions. Fix a CFG G = (N, P). A classical AG for G is the tuple
A = (I, S, f) where

1. I and S are N-indexed family of named sets such that n(I X) ∩ n(S X) = ∅ for each
X ∈ N. Below we write Up for the named set 1. S X1, · · · , n. S Xn, I X0 and Dp for
the named set S X0, 1. I X1, · · · , n. I Xn.

2. f is a P-indexed family of functions such that fp : |Up | → |Dp | for each p :
X1 · · ·Xn → X0 ∈ P. They are called attribute calculation rule. By expanding the
definition of Up and Dp, we may also see fp as the following function:

fp : | S X1| × · · · × | S Xn| × | I X0| → | S X0| × | I X1| × · · · × | I Xn|. (1)

The assignment of computation to derivation trees is done by meaning functions. LetA
be an AG for G. A N-indexed family of functions

A[[−]]X : TΣG X → (| I X| → | S X|) (2)

(subscript X is often dropped) is called the meaning function of A if it satisfies the
following condition: for any p : X1 · · ·Xn → X0 ∈ P, ti ∈ TΣG Xi (1 ≤ i ≤ n) and
x ∈ | I X0|, there exists xi ∈ | I Xi| (1 ≤ i ≤ n) such that

A[[p(t1, · · · , tn)]](x); x1; · · · ; xn = fp(A[[t1]](x1); · · · ;A[[tn]](xn); x). (3)

Example 1. Consider a CFG Gp for expressions over integers:

Gp = ({V, n,+}, {E}, E, {cn : E → n, var : E → V, plus : E → E + E}),

where n ranges over Z. The following data gives an AGAp = (I, S, f) for Gp:

I E = i : R, S E = s : R

fcn (i) = n, fvar(i) = i, fplus(1.s, 2.s, i) = (1.s + 2.s, i, i).

If a meaning functionAp[[−]] : TΣGp
E → R→ R exists, then from (3) it satisfies

Ap[[cn]](i) = n, Ap[[var]](i) = i, Ap[[plus(t, t′)]](i) = Ap[[t]](i) +Ap[[t′]](i).

Thus the meaning function ofAp evaluates expressions over integers with real numbers.

The problem of classical AGs is that the existence of meaning functions is not al-
ways guaranteed. This is technically because the witnesses x1, · · · , xn ensuring (3) may
not exist under some situation. Another way to look at the problem is that the computa-
tion of valueA[[p(t1, · · · , tn)]] requires feed-backs of the output x1, · · · , xn of fp to itself,
but such circular computation can not be modelled in a naive way using set-theoretic
functions.

To resolve this problem, we shall either i) seek for AGs that do not induce circular
computation (such AGs are called non-circular or well-formed [18, 10]) or ii) reformu-
late AGs within a mathematical theory that admits circular computation, such as domain
theory. In this paper we take the latter option. For the mathematical foundation of the
formulations of AGs, we employ traced symmetric monoidal categories [16, 14], which
are recently recognised as providing an abstract representation of circular computation.

3 Traced Symmetric Monoidal Categories and Int Construction

We assume that readers are familiar with symmetric monoidal categories (SMC for
short), symmetric monoidal functors and monoidal natural transformations; see e.g.
[20]. We fix a common method for taking tensors of multiple objects in SMCs. Every
SMC is equivalent to a strict one (coherence theorem [20]), so we mainly talk about
strict SMCs for legibility. We reserve notations I,⊗ and c for the unit, tensor product
and symmetry for SMCs, respectively.

TrI
A,B(f) = f

TrX⊗Y
A,B (f) = TrX

A,B(TrY
A⊗X,B⊗X(f))

TrX
C⊗A,C⊗B(C ⊗ f) = C ⊗ TrX

A,B(f)
TrX

X,X(cX,X) = idX

TrX
A,B(f ◦ (g ⊗ X)) = TrX

A′,B(f) ◦ g
TrX

A,B′((g ⊗ X) ◦ f) = g ◦ TrX
A,B(f)

TrX
A,B((B ⊗ g) ◦ f) = TrY

A,B(f ◦ (B ⊗ g))

Fig. 3. Axioms for Trace Operators

In a SMC C, one can represent a
computation with n inputs and m outputs
as a C-morphism f : A1 ⊗ · · · ⊗ An →

B1 ⊗ · · · ⊗ Bm. In order to express feed-
back loops / circular computation under
this representation, we adopt the concept
of trace operators. They were originally
introduced to balanced monoidal cate-
gories (which subsume SMCs) by Joyal
et al in [16]. The following formulation
of trace operators on SMCs is due to
Hasegawa [14].

Definition 1 ([16, 14]). A trace operator on a SMC C is a family of mappings TrX
A,B :

C(A⊗X, B⊗X)→ C(A, B) that satisfies the axioms summarised in Figure 3 (see [16, 14,
2] for graphical presentations of the axioms). A traced symmetric monoidal category
(TSMC) is a pair of a SMC and a trace operator on it.

Let C,D be TSMCs. A traced symmetric monoidal functor is a strong symmetric

monoidal functor (F : C → D,mI : ID
�
→ FIC,mA,B : FA ⊗D FB

�
→ F(A ⊗C B)) that

preserves the trace operator in the following sense:

(TrD)FX
FA,FB(m−1

A,B ◦ F f ◦ mA,B) = F((TrC)X
A,B(f)).

Besides trace operators, in [16] Joyal et al gave a construction of categories called
Int. It was originally considered for the structure theorem for traced balanced monoidal
categories. In this paper Int construction will be used for obtaining the categories where
computation with bidirectional information flow can be naturally modeled.

Definition 2 ([16]). Let C be a TSMC. We define a category Int(C) by the following
data: an object is a pair (A−, A+) of C-objects1, and a morphism f : (A−, A+) →
(B−, B+) is a C-morphism f : A+ ⊗ B− → B+ ⊗ A−. The composition of f with
g : (B−, B+)→ (C−,C+) is defined to be the following morphism:

TrB−
A+⊗C− ,C+⊗A− ((C

+ ⊗ c) ◦ (g ⊗ A−) ◦ (B+ ⊗ c) ◦ (f ⊗C−) ◦ (A+ ⊗ c)).

Consider a computation unit that has an input port A+ and an output port A− at the
bottom, and an input port B− and an output port B+ at the top. This unit receives infor-
mation from the bottom via A+ and from the top via B−, then outputs processed infor-
mation to the bottom via A− and to the top via B+. In Int(C) such a unit is expressed

1 Compared to the original Int construction in [16], here the order of objects is swapped.

as a morphism f : (A−, A+) → (B−, B+), and its input-output relation is captured by
a C-morphism f : A+ ⊗ B− → A− ⊗ B+. The definition of the composition in Int(C)
is designed so that it correctly captures the input-output relation of the composition of
two computation units (Int(C)-morphisms); see [16, 1, 2] for graphical presentations of
the composition.

Category Int(C) is a compact closed category, that is, a SMC such that every object
has a left dual [17]. In this paper we only use the SMC structure of Int(C) given by

IInt(C) = (I, I) (A−, A+) ⊗Int(C) (B−, B+) = (A− ⊗ B−, A+ ⊗ B+).

This tensor products correspond to combining I/O ports (and computation units) in par-
allel. For instance, the computation unit drawn on the top of Figure 2 can be expressed
as an Int(C)-morphism fp : (X−1 , X

+
1) ⊗ · · · ⊗ (X−n , X

+
n)→ (X−0 , X

+
0).

Below we state the structure theorem for TSMCs. This is a specialisation of the one
for traced balanced monoidal categories in [16].

Theorem 1. The mappingC 7→ Int(C) can be extended to a left biadjoint to the forget-
ful functor from the 2-category of compact closed categories to that of TSMCs. The unit
NC : C → Int(C) of this biadjunction, which maps a C-object A to an Int(C)-object
(I, A), is full and faithful.

4 Monoidal AGs

In this section we give a categorical formulation of AGs, called monoidal AGs. We first
introduce the concept of Σ-algebras for SMCs, which are a monoidal version of set-
theoretic many-sorted algebras. We note that the concept of algebras in SMCs are also
related to operads [19].

Definition 3. Let Σ = (S ,O) be a signature and C be a SMC. A Σ-algebra in C is a
pair (A, α) such that A is a S -indexed family of C-objects and α is a O-indexed family
of C-morphisms such that αo : As1 ⊗ . . . ⊗ Asn → As for each o : s1 . . . sn → s ∈ O.

Let A = (A, α) be a Σ-algebra in C. The meaning function of A is a S -indexed
family of mappings {A[[−]]s : TΣ s → C(I, As)}s∈S such that the following holds for
each o : s1 · · · sn → s ∈ O (below we omit subscripts of meaning functions):

A[[o(t1, · · · , tn)]] = αo ◦ (A[[t1]] ⊗ · · · ⊗ A[[tn]]).

Definition 4. A monoidal AG for a CFG G = (N, P) in a TSMC C is a ΣG-algebra
A = (A, α) in Int(C).

This short and simple formulation captures essential information of AGs. We compare
monoidal AGs and classical AGs below.

1. The set of sorts of ΣG is N; so A assigns to each nonterminal symbol X ∈ N an
Int(C)-object, say (A−X, A+X). We regard them as the domains of inherited and
synthesised attributes respectively; so A plays the role of both I and S.

2. To each production rule p : X1 · · ·Xn → X0 ∈ P, α assigns an Int(C)-morphism
αp : AX1 ⊗ · · · ⊗ AXn → AX0, which is the following C-morphism by definition:

αp : A+X1 ⊗ · · · ⊗ A+Xn ⊗ A−X0 → A+X0 ⊗ A−X1 ⊗ · · · ⊗ A−Xn.

One can see the similarity between the domain and codomain of αp and those of at-
tribute calculation rule (1); here tensor products are used instead of direct products
(this is the reason of the name “monoidal” AG).

3. The meaning function of a monoidal AGA for G is a mapping (X ∈ N)

A[[−]] : TΣG X → Int(C)(I, (A−X, A+X)) � C(A−X, A+X),

so it assigns to a derivation tree t ∈ TΣG X a computation from A−X to A+X expressed
as a morphism in C; compare this with (2).

To see the suitability of our categorical formulation of AGs, in the subsequent sec-
tions we compare instances of monoidal AGs and three existing formulations of AGs:
i) Chirica and Martin’s K-systems, ii) local dependency graphs in classical AGs and iii)
Courcelle and Deransart’s relational AGs.

4.1 Monoidal AGs in ωCPPO

The category ωCPPO of ω-complete pointed partial orders and continuous functions
is Cartesian closed and has the least fixpoint operator fixD : [[D → D] → D], which
determines a trace operator:

TrU
AB(f)(a) = π(fixB×U(λ(b, u) . f (a, u)));

so ωCPPO is a traced CCC (for the above construction see [14]).
Monoidal AGs in ωCPPO are related to domain-theoretic formulations of AGs.

Among various such formulations, here we establish a formal connection between Chir-
ica and Martin’s K-systems [8] and monoidal AGs. Fix a CFG G = (N, P).

Definition 5 ([8]). A K-system for G is a tupleD = (D−,D+, f) such that

– D− and D+ are N-indexed family of ω-CPPOs called inherited and synthesised
attribute domains, respectively. For each X ∈ N, we write DX for D−X × D+X.

– f is a P-indexed family of continuous functions such that for each p : X1 · · ·Xn →

X0 ∈ P, fp : [DX0 × DX1 × · · · × DXn → D+X0 × D−X1 × · · · × D−Xn].

A K-system assigns a continuous function Dt : [D−X → D+X] to a derivation tree
t ∈ TΣG X (X ∈ N) as follows. We first recursively define a ω-CPPO Dt by

Dp(t1 ,...,tn) = D+X0 × D−X1 × · · · × D−Xn × Dt1 × · · · × Dtn (p : X1 · · ·Xn → X0 ∈ P)

For d ∈ Dt, by π(d) we mean the first projection of d. Next, we construct a continuous
function Ht : [D−X × Dt → Dt] by induction on the structure of t:

Hp(t1,...,tn)(i, (s, i1, . . . , in,w1, . . . ,wn))

= fp((i, s), (i1, π(w1)), . . . , (in, π(wn))); (Ht1(i1,w1), . . . ,Htn(in,wn)).

This function congregates one-step computation of inherited and synthesised attributes
at every node of t. We then define the continuous function Dt : [D−X → D+X] that
denotes the meaning of t byDt(i) = π(fix(λx ∈ Dt . Ht(i, x))).

Let D = (D−,D+, f) be a K-system for G. We construct a monoidal AG M(D) =
(D, δ) for G in ωCPPO as follows:

DX = (D−X,D+X)

δp(s1, . . . , sn, i) = fix(λ(s, i1, . . . , in) . fp((i, s), (i1, s1), . . . , (in, sn)))

where X ∈ N and p : X1 · · ·Xn → X0 ∈ P. On the other hand, every monoidal AG in
ωCPPO can be casted to a K-system in an obvious way. These constructions preserve
the meanings of ΣG-terms.

Theorem 2. Let D be a K-system for a CFG G = (N, P) and A be a monoidal AG
for G in ωCPPO. Then for any t ∈ TΣG X (X ∈ N), we have M(D) ~t� = Dt and
(K(A))t = A ~t�.

4.2 Monoidal AGs in Rel+

The category Rel of sets and relations has Cartesian (bi)products, which, at object level,
takes the disjoint sum of given sets. In [16] it was shown that the following is a trace
operator with respect to the Cartesian products:

TrU
AB(R) = RAB ∪ RUB ◦ (RUU)∗ ◦ RAU ,

where RXY (X ∈ {A,U}, Y ∈ {B,U}) is the restriction R to the relation between X and
Y, and (RUU)∗ is the transitive reflexive closure of RUU . The same operation was also
considered in [4]. We call this TSMC Rel+.

βcn i s

βvar i // s

βplus i

{{vv
vv

##HHHH s

1.i 1.s

;;vvvv
2.i 2.s

ccHHHH

i

zzuu
uu

$$IIII s

1.i 1.s

::uuuu
2.i

zzuu
u

$$II
I 2.s

ddIIII

2.1.i // 2.1.s

::uuu
2.2.i 2.2.s

ddIII

Fig. 4. LDG β of Ap (top) and an
example of CDG (bottom)

Monoidal AGs in Rel+ are related to the con-
cept of local dependency graphs (LDG for short)
in classical AGs [18, 10]. Let A = (I, S, f) be
a classical AG for a CFG G = (N, P). We look
at the syntactic definition of f , and assign to
each production rule p : X1 · · ·Xn → X0 ∈ P
the following digraph αp: the set of vertices is
n(Up) ∪ n(Dp), and there is an edge in αp from
a ∈ n(Up) to a′ ∈ n(Dp) if and only if the a′-
component of the result of fp depends on the
a-component of fp’s input. We usually draw αp

so that n(I X0, S X0) are placed at the top and
n(k. I Xk, k. S Xk) (1 ≤ k ≤ n) are placed at the
bottom. The family α of digraphs constructed
from A is called the LDG of A. For instance,
the LDG β of the classical AG Ap in Example 1
is at the top of Figure 4.

LDGs are used to construct compound depen-
dency graphs (CDG for short) of derivation trees. Let α be a LDG. For t ∈ TΣG X

(X ∈ N), we recursively construct a graph CDGα(t) as follows: CDGα(p(t1, · · · , tn))
is the union of αp and the graphs obtained by adding a prefix “k.” (1 ≤ k ≤ n) to every
node in CDGα(tk). In the bottom of Figure 4 CDGβ(plus(c3, plus(var, c2))) is drawn.
CDGs are a primary tool for detecting circular computation in classical AGs; see [18,
10].

By letting AX = (n(I X), n(S X)), each digraph αp (p : X1 · · ·Xn → X0 ∈ P) of a
LDG α can be identified with a morphism in Int(Rel+):

αp ∈ P(n(Up) × n(Dp)) � Int(Rel+)(AX1 × · · · × AXn, AX0).

Thus a local dependency graph α of a classical AG for a CFG G specifies a monoidal
AG α = (A, α) for G in Rel+.

Theorem 3. Let α be a LDG of a classical AGA for a CFG G = (N, P), and t ∈ TΣG X
(X ∈ N). Then there exists a path from i ∈ n(I X) to s ∈ n(S X) in CDGα(t) if and only if
(i, s) ∈ α[[t]].

For example, (i, s) ∈ β[[plus(c3, plus(var, c2))]] as there is a path i → 2.i → 2.1.i →
2.1.s→ 2.s→ s in CDGβ(plus(c3, plus(var, c2))), the graph on the bottom of Figure 4.

4.3 Monoidal AGs in Rel×

The category Rel has another symmetric monoidal structure given by A ⊗ B = A × B
(Cartesian products of sets). This is a part of the compact closed structure over Rel,
so Rel is canonically traced [16]; we call this TSMC Rel×. The trace operator derived
from the compact closed structure is the following:

TrU
AB(R) = {(a, b) ∈ A × B | ∃u ∈ U . ((a, u), (b, u)) ∈ R}.

Monoidal AGs in Rel× are related to Courcelle and Deransart’s relational AGs [9].
We first fix a many-sorted first-order logicL with a standard set-theoretic interpretation
[[−]]. For a typing context Γ of L, by i.Γ we mean the context obtained by adding a
prefix “i.” to each variable in Γ. For a well-typed formula Γ ` Φ, we define i.Φ to be
the formulaΦ[i.x/x]x∈var(Γ) (where var(Γ) is the set of variables in Γ). Clearly i.Γ ` i.Φ.

Fix a CFG G = (N, P).

Definition 6 ([9]). A relational AG for G in L is a tuple R = (Γ,Φ) such that

– Γ is a N-indexed family of typing contexts and
– Φ is a P-indexed family of formuli such that for each p : X1 · · ·Xn → X0 ∈ P, Φp is

the following well-typed formula:

1.ΓX1, . . . , n.ΓXn, ΓX0 ` Φp.

Let R = (Γ,Φ) be a relational AG for G. For any t ∈ TΣG X (X ∈ N), we recursively
define a formula ΓX ` Φt by

Φp(t1 ,...,tn) = ∃1.ΓX1, . . . , n.ΓXn.Φp ∧ 1.Φt1 ∧ . . . ∧ n.Φtn (p : X1 · · ·Xn → X0 ∈ P).

We also define the relation Rt to be ~Φt�.
From a relational AG R = (Γ,Φ) for G in L, we construct a monoidal AG in Rel×

as follows. By letting AX = (1, ~ΓX�) for X ∈ N, we notice that the relation [[Φp]] for
each p : X1 · · ·Xn → X0 ∈ P can be identified with a morphism in Int(Rel×):

~Φp� ∈ P(~1.ΓX1, . . . , n.ΓXn, ΓX0�) � Int(Rel×)(AX1 ⊗ . . . ⊗ AXn, AX0).

Therefore R specifies a monoidal AG R = (A, α) where αp = ~Φp�.

Theorem 4. Let R be a relational AG for a CFG G = (N, P) in L. Then for any X ∈ N
and t ∈ TΣG X, we have Rt = R ~t�.

5 Relating Monoidal AGs

We next see that functors and natural transformations between TSMCs give transla-
tions of monoidal AGs and relations between such translations. We begin with some
categorical aspects of algebras in SMCs. Fix a signature Σ = (S ,O).

Definition 7. Let A = (A, α) and B = (B, β) be Σ-algebras in a SMC C. A Σ-algebra
homomorphism from A to B is a S -indexed family {hs : As → Bs}s∈S of C-morphisms
satisfying βo ◦ (hs1 ⊗ . . .⊗hsn) = hs ◦αo for each o : s1 · · · sn → s ∈ O. We write AlgΣ(C)
for the category of Σ-algebras and Σ-algebra homomorphisms in C.

We write SMC for the 2-category of small SMCs, symmetric monoidal functors and
monoidal natural transformations. One can easily check that the mappingC 7→ AlgΣ(C)
extends to a 2-functor AlgΣ : SMC → Cat. We note that set-theoretic Σ-algebras are
precisely captured by AlgΣ(Set), where Set is the category of sets and functions with
tensors given by Cartesian products.

The meaning function in Definition 3 can be seen as initial algebra semantics. We
write TΣ = (TΣ, ι) for the initial object in AlgΣ(Set).

Definition 8. 1. Let C be a SMC. We define a symmetric monoidal functor GC : C →
Set by GC = C(I,−).

2. Let C,D be SMCs and (F : C→ D,mI : ID → FIC,mA,B : FA⊗DFB→ F(A⊗CB))
be a symmetric monoidal functor. We define a monoidal natural transformation
GF : GC → GD ◦ F by (GF)C(f) = F f ◦ mI .

3. For a Σ-algebra A in a SMC C, by |A| we mean the underlying set-theoretic Σ-
algebra AlgΣ(GC)(A). We say that two Σ-algebras in C are equivalent if their un-
derlying algebras are isomorphic in AlgΣ(Set).

The meaning function A ~−� of a Σ-algebra A in a SMC C is equal to the unique
morphism ! : TΣ → |A| in AlgΣ(Set). We regard two equivalent algebras as giving
the same meaning to Σ-terms, because their meaning functions are equal modulo an
isomorphism.

The general algebraic concepts above will be used as follows. Let G be a CFG. The
mapping AGG : C 7→ AlgΣG

(Int(C)) is the construction of the category of monoidal
AGs for G in a TSMC C. It extends to a 2-functor AGG from the 2-category of TSMCs
to Cat, so relationships between TSMCs will immediately be reflected to those between

different formulations of AGs. Below we apply this fact to show that i) in closed TSMCs
every monoidal AGs are equivalent to those which do not use inherited attributes, and
ii) there is a sound and complete translation from LDGs to relational AGs.

5.1 Equivalence between Monoidal AGs and Synthesised Ones

AGs that do not use inherited attributes are called synthesised AG (S-AG for short).
In [8] Chirica and Martin showed that by using function spaces as attribute domains,
every K-system can be reduced to the one which does not use inherited attributes. This
technique was also applied to the encoding of AGs by higher-order catamorphisms [11].

In this section we further generalise these results to monoidal AGs. We introduce
a monoidal version of synthesised AGs (monoidal S-AGs), and show that in closed
TSMCs every monoidal AG is equivalent to a monoidal S-AG. Fix a CFG G = (N, P).

Definition 9. A monoidal S-AG for G in a TSMC C is a monoidal AG (A, α) for G such
that A−X = I for each X ∈ N.

It is easy to see that a monoidal AGA for G in a TSMC C is S-AG if and only if there
exists a ΣG-algebraA′ in C such thatA = AlgΣG

(NC)(A′).
To show that every monoidal AG is equivalent to a monoidal S-AG, we need an extra

structure on C. Recall that a SMC C is closed if − ⊗ B has a right adjoint B (− for
everyC-object B. The key of the equivalence is the following theorem due to Hasegawa.

Theorem 5 ([13]). LetC be a TSMC. ThenNC : C→ Int(C) has a symmetric monoidal
right adjoint RC : Int(C)→ C if and only if C is closed.

When C is closed, RC can be defined by RC(A−, A+) = A− (A+.

Theorem 6. LetA be a monoidal AG for G in a closed TSMC C. ThenA is equivalent
to the monoidal S-AG AlgΣG

(NC)(AlgΣG
(RC)(A)).

5.2 A Translation from Local Dependency Graphs to Relational AGs

Two TSMCs Rel+ and Rel×, which provide the underlying category for local depen-
dency graphs and relational AGs, are linked by the finite multiset endofunctor M :
Rel → Rel defined as follows. First, we define the set MA to be the set of finite mul-
tisets of A. We identify an element of MA and a function f ∈ A → N that returns
non-zero at finitely many elements in A (so MA = A → N if A is finite). We write {a}
(a ∈ A) for the function that returns 1 only at a. The endofunctorM is then defined by

MA = MA, MR = {(h1, h2) | h ∈ MR}

where h1(a) =
∑

b∈B,(a,b)∈R h(a, b) and h2(b) =
∑

a∈A,(a,b)∈R h(a, b). For any relation R ⊆
A × B, we have (a, b) ∈ R if and only if ({a}, {b}) ∈ MR; so functorM is faithful.

Theorem 7 ([21]). The above data gives a TSM functorM : Rel+ → Rel×.

Fix a CFG G = (N, P). We consider the functor AGG(M) : AGG(Rel+)→ AGG(Rel×)
that gives a translation between monoidal AGs for G.

Proposition 1. Let A be a monoidal AG for G in Rel+. Then (i, s) ∈ A[[t]] if and only
if ({i}, {s}) ∈ (AGG(M)(A))[[t]].

Functor AGG(M) is the key of a sound and complete translation from LDGs to re-
lational AGs. Let α be a LDG of a classical AG A = (I, S, f) for G. For each p :
X1 . . .Xn → X0 ∈ P, we define Ap by Ap = 1. I X1, 1. S X1, · · · , n. I Xn, n. S Xn, I X0, S X0.
Then we can encodeMαp as a set of vectors of natural numbers:

Mαp � { f ∈ |Na(Ap)| | ∃h ∈ αp → N.
∧

a∈n(Dp)

fa = h1(a) ∧
∧

a∈n(Up)

fb = h2(a)}.

The relation on the right hand side can be expressed in a first-order logic with natural
numbers and the standard interpretation of them (we only need the sort nat for natural
numbers, logical connectives ∃,∧,>,= and constants 0,+). Therefore from the LDG α
we can construct a relational AG Rα = (Γ,Φ) as follows: for each X ∈ N, we define the
context ΓX to be i1 : nat, · · · , in : nat, s1 : nat, · · · , sm : nat where i1, · · · , in = a(I X)
and s1, · · · , sm = a(S X), and we define the formula Φp (p : X1 . . .Xn → X0 ∈ P) to be

∃{he}e∈αp .



















∧

a∈n(Dp)

a =
∑

b∈n(Up),(a,b)∈αp

h(a,b)



















∧



















∧

b∈n(Up)

b =
∑

a∈n(Dp),(a,b)∈αp

h(a,b)



















.

For a named set R and a ∈ n(R), by δa we mean the tuple (0, · · · , 0,
a

1̆, 0, · · · , 0) ∈ |Na(R)|.

Theorem 8. Let α be a LDG for a classical AG A = (I, S, f) of a CFG G = (N, P).
Then for any t ∈ TΣG X (X ∈ N), i ∈ I X and s ∈ S X, (δi, δs) ∈ (Rα)t if and only if there
exists a path from i to s in CDGα(t).

6 Related Work

We have seen that our categorical formulation of AGs, namely monoidal AGs, are re-
lated to three existing formulations of AGs; K-systems [8], local dependency graphs
[18] and Courcelle and Deransart’s relational AGs [9]. However, there are many other
formulations of AGs [7, 22, 15] that are not covered in this paper. The study of relation-
ships between such AGs and monoidal AGs is left to the future work.

In [12] Girard proposed a novel interpretation of cut elimination called geome-
try of interaction (GoI), which was later analysed by researchers including Abramsky,
Haghverdi, Jagadeesan and Scott [1–3]. It was revealed that TSMCs and Int construc-
tion were the key for an axiomatic account of GoI, and as a by-product many concrete
TSMCs were investigated; see e.g. [1, 2]. It is interesting to examine if monoidal AGs
in the TSMCs discovered in the study of GoI are useful in the applications of AGs, such
as compiler constructions, program transformations and XML processing.

Acknowledgment I am indebted to Masahito Hasegawa for technical advises and stimu-
lating discussions. I am also grateful to Susumu Nishimura, Keisuke Nakano, Kazuyuki
Asada, Naohiko Hoshino and Ichiro Hasuo for valuable discussions.

References

1. Samson Abramsky. Retracting some paths in process algebra. In Proc. CONCUR ’96,
volume 1119 of LNCS, pages 1–17, 1996.

2. Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geometry of interaction and
linear combinatory algebras. Math. Struct. in Comput. Sci., 12(5):625–665, 2002.

3. Samson Abramsky and Radha Jagadeesan. New foundations for the geometry of interaction.
Inf. Comput., 111(1):53–119, 1994.

4. E. S. Bainbridge. Feedbacks and generalized logic. Inf. Control, 31(1):75–96, 1976.
5. Stephen L. Bloom and Zoltán Ésik. Iteration theories; the equational logic of iterative pro-

cesses. Springer-Verlag, 1993.
6. Stephen L. Bloom and Zoltán Ésik. Fixed-point operations on ccc’s. part I. Theor. Comput.

Sci., 155(1):1–38, 1996.
7. John Boyland. Conditional attribute grammars. ACM Trans. Program. Lang. Syst., 18(1):73–

108, 1996.
8. Laurian M. Chirica and David F. Martin. An order-algebraic definition of Knuthian seman-

tics. Math. Sys. Theory, 13:1–27, 1979.
9. Bruno Courcelle and Pierre Deransart. Proofs of partial correctness for attribute grammars

with applications to recursive procedures and logic programming. Inf. Comput., 78(1):1–55,
1988.

10. Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars; Definitions,
Systems and Bibliography, volume 323 of LNCS. Springer-Verlag, 1988.

11. Maarten Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer. A translation from
attribute grammars to catamorphisms. The Squiggolist, 2(1):20–26, 1991.

12. Jean-Yves Girard. Geometry of Interaction I: Interpretation of System F. In R. Ferro et al.,
editor, Logic Colloquium ’88. North-Holland, 1989.

13. Masahito Hasegawa. On traced monoidal closed categories. Invited talk at Traced Monoidal
Categories, Network Algebras, and Applications 2007.

14. Masahito Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec.
Springer-Verlag, 1999.

15. Bart Jacobs and Tarmo Uustalu. Semantics of grammars and attributes via initiality. In
Reflections on Type Theory, Lambda Calculus, and the Mind. Essays Dedicated to Henk
Barendregt on the Occasion of his 60th Birthday, pages 181–196. Radboud University, 2007.

16. Andre Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.

17. G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal of Pure
and Applied Algebra, 19:193–213, 1980.

18. Donald E. Knuth. Semantics of context-free languages. Math. Sys. Theory, 2(2):127–145,
1968. See Math. Sys. Theory, 5(1) 95-96, 1971 for a correction.

19. Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Math. Soc. Lec-
ture Note Series. Cambridge University Press, 2004.

20. Saunders MacLane. Categories for the Working Mathematician (Second Edition), volume 5
of Graduate Texts in Mathematics. Springer, 1998.

21. Peter Selinger. A note on Bainbridge’s power set construction. Manuscript, 1998.
22. S. Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In Attribute Gram-

mars, Applications and Systems, volume 545 of LNCS, pages 256–296. Springer, 1991.

