
Relating Computational Effects by >>-Lifting

Shin-ya Katsumata

Research Institute for Mathematical Sciences
Kyoto University, Kyoto, 606-8502, Japan

sinya@kurims.kyoto-u.ac.jp

Abstract. We consider the problem of establishing a relationship between two
interpretations of base type terms of a λc-calculus with algebraic operations. We
show that the given relationship holds if it satisfies a set of natural conditions.
We apply this result to comparing interpretations of new name creation by two
monads: Stark’s new name creation monad [25] and a global counter monad.

1 Introduction

Suppose that two monadic semantics A1,A2 are given to a call-by-value functional
language, and each semanticsAi interprets a base type b by a set Aib and computational
effects by a monad Ti. After comparing these semantics, you find a relationship Vb ⊆
A1b × A2b between base type values, and also a relationship Cb ⊆ T1A1b × T2A2b
between base type computations. We then consider the following problem:

For any well-typed term x1 : b1, · · · , xn : bn ` M : b and (vi,wi) ∈ Vbi, do we
have (A1[[M]](v1, · · · , vn),A2[[M]](w1, · · · ,wn)) ∈ Cb?

We name this problem effect simulation problem and tackle it under the situation where
1) the call-by-value functional language is the simply typed λc-calculus with products,
coproducts, effect-free constants and algebraic operations [22], and 2) the underlying
category of a semantics is a bi-CCC with a strong monad. We show that the answer of
the effect simulation problem is “yes” if I) monad units η1, η2 map pairs in V to pairs
in C, II) V is closed under effect-free constants and III) C is closed under algebraic
operations in the λc-calculus. We prove this by extending Mitchell’s representation in-
dependence proof [17] with logical relations for monads constructed by categorical
>>-lifting [11], which is a semantic formulation of the leapfrog method introduced
by Lindley and Stark [14, 15]. The point of this result is the generality: it holds with
any monad, algebraic operation and relation V and C. We demonstrate the flexibility
of our solution by showing a general comparison theorem of two monadic semantics
related by strong monad morphisms (Section 4), and comparing two interpretations of
new name creation by Stark’s new name creation monad [25] and a global state monad
(Section 5). In Section 6 we consider the effect simulation problem under the presence
of recursive functions.

Preliminary A bold letter, such as x, abbreviates a sequence x1 · · · xn. The length of
the sequence is written by |x|. We regard every set as a discrete category. We write ⇒
and λ for exponentials and currying operators in a CCC. A bi-CCC is a CCC with finite
coproducts. For a monad (T, η, µ) and a morphism f : I → T J, we write f # for µJ ◦T f .

2 The λc-Calculus with Algebraic Operations

We adopt the simply-typed λc-calculus with effect-free constants and algebraic op-
erations [22] as an idealised call-by-value functional language. In Section 6 we add
recursive functions.

Let B be the set of base types. We use b (and its variants) to range over B. An
effect-free constant in the calculus takes a value of type b1 × . . . × bn and returns a
value of type

∑m
i=1
∏li

j=1 b′i j. We encode this type information by an element in B∗ ×
(B∗)∗. Examples of effect-free constants are the equality predicate: eqb : b × b →
1 + 1 and the division function with a reminder and error: div : nat × nat → nat ×
nat+ 1. An algebraic operation in the calculus has the form o(xb1

1 .M1, . . . , xbn
n .Mn). The

variables xi are bound in each subterm Mi. The number of subterms of the algebraic
operation and the types of the bound variables in each subterm are specified by an
element in (B∗)∗ called arity. For instance, an algebraic operation of arity (ε, b1b2) looks
like o(M1, x

b1
1 xb2

2 .M2). The symbols of effect-free constants and algebraic operations
added to the calculus are specified by a signature Σ over B. It assigns a set of symbols
to each element in B∗ × (B∗)∗ + (B∗)∗. We assume that Σ(x) is disjoint with each other.
We write Σb→a and Σa for the sets Σ(ι1(b, a)) and Σ(ι2(a)), respectively.

We define the computational lambda calculus λc(B, Σ) over the set B of base types
and a signature Σ over B. The types and terms of λc(B, Σ) are defined as follows:

ρ ::= b | ρ⇒ ρ | 1 | ρ × ρ | 0 | ρ + ρ
M ::= x | λx ρ . M | MM | ∗ | (M,M) | πi(M) | ⊥ρ |

ιi(M) | δ(M, x.M, x.M) | let x = M in M | c M | oρ(xb.M, · · · , xb.M)

where c, o ranges over the set of symbols for effect-free constants and algebraic opera-
tions specified by Σ. The type system of λc(B, Σ) extends the one for the simply typed
lambda calculus with products and sums (see e.g. [18]). The term⊥ρ denotes the unique
term of type 0 ⇒ ρ, and the δ-term denotes the sum elimination. The typing rules for
the last three terms are the following:

Γ ` M : ρ Γ, x : ρ ` N : σ
Γ ` let x = M in N : σ

Γ ` M : b1 × · · · × bn c ∈ Σb1···bn→(b′1,··· ,b′m)

Γ ` c M :
∑m

i=1
∏|b′i |

j=1 b′i j

Γ, xi1 : bi1, · · · , xi|bi | : bi|bi | ` Mi : ρ 1 ≤ i ≤ n o ∈ Σ(b1,··· ,bn)

Γ ` oρ(xb1
1 .M1, · · · , xbn

n .Mn) : ρ .

We move to the semantics of the λc(B, Σ)-calculus.

Definition 1 ([22]). Let T = (T, η, µ, θ) be a strong monad over a CCC C and Z ∈ C.
We write stZ

I,J : I × (Z ⇒ J)→ Z ⇒ (I × J) for the strength of Z ⇒ −. A Z-ary algebraic
operation for T is a natural transformation αI : Z ⇒ T I → T I such that

αI×J ◦ Z ⇒ θI,J ◦ stZ
I,J = θI,J ◦ I × αJ , µI ◦ αT I = αI ◦ Z ⇒ µI .

Let A : B→ C be a functor to a bi-CCC C. We extend A to a functor A′ : (B∗)∗ → C by
A′(b1, · · · , bn) =

∑n
i=1
∏|bi |

j=1 Abi j. Below we simply write A for A′.

Definition 2. A λc(B, Σ)-structure is a tuple A = (C,T , A, k, α) where C is a bi-CCC,
T is a strong monad on C, A is a functor of type B → C, k assigns to each c ∈ Σb→a

a morphism kc :
∏|b|

i=1 Abi → Aa, and α assigns to each o ∈ Σa an Aa-ary algebraic
operation αo for T .

We writeA1 ×A2 to mean the evident product of two λc(B, Σ)-structuresA1,A2. Each
λc(B, Σ)-structureA determines a natural interpretationA[[−]] of types and well-typed
terms of λc(B, Σ) in the category of A (see e.g. CBV Translation in [1]). Effect-free
constants and algebraic operations are interpreted as follows:

A[[c M]] = T (kc) ◦ A[[M]]
A[[oρ(x1.M1, · · · , xn.Mn)]] = αoA[[ρ]] ◦ 〈λ|x1 |(A[[M1]]), · · · , λ|xn |(A[[Mn]])〉.

3 Effect Simulation Problem

The main problem we consider is the effect simulation problem. We first introduce a
set-theoretic version of it. LetA1 andA2 be λc(B, Σ)-structures over Set. A simulation
between A1 and A2 is a pair (V,C) where V and C are B-indexed families of binary
relations such that Vb ⊆ A1[[b]] × A2[[b]] and Cb ⊆ T1A1[[b]] × T2A2[[b]]; we call V
and C value simulation and computation simulation, respectively. The effect simulation
problem is the following:

Suppose that a simulation (V,C) between A1 and A2 is given. Then for any
well-typed term x1 : b1, · · · , xn : bn ` M : b and (vi,wi) ∈ Vbi, do we have
(A1[[M]](v),A2[[M]](w)) ∈ Cb?

Example 1. Let B be the set of base types and Σ be the signature that specifies only
two algebraic operation symbols: null ∈ Σε and join ∈ Σ(ε,ε). We regard λc(B, Σ)
as a call-by-value functional language with constructors for nondeterministic com-
putation. The standard semantics of λc(B, Σ) is given by the λc(B, Σ)-structure A1 =

(Set,Tp, A, k, α1), where Tp is the finite powerset monad, and α1 assigns algebraic op-
erations by α1(null) = ∅ and α1(join)(x, y) = x∪y. On the other hand, one may represent
nondeterministic choices by finite lists instead of finite sets. This representation corre-
sponds to the semantics of λc(B, Σ) by the λc(B, Σ)-structure A2 = (Set,Tm, A, k, α2)
where Tm is the free monoid monad, and α2 assigns algebraic operations by α2(null) = ε
(the empty list) and α2(join)(x, y) = x · y (the concatenation of two lists).

We expect that for any well-typed term x1 : b1, · · · , xn : bn ` M : b and vi ∈ Abi,
the denotationA1[[M]](v) gives the set of possible choices listed up inA2[[M]](v). That
is, we expect that the answer to the effect simulation problem with value simulation
Vb = {(v, v) | v ∈ Ab} and computation simulation Cb = {(X, l) ∈ TpAb × TmAb | X =
the set of elements in l} is yes.

We move on to the general situation where the underlying categories are other than
Set. To formulate the concept of relation between two objects from different categories,
we first formulate the concept of predicate over objects in arbitrary category in terms of
fibrational category theory, then derive the concept of relation as predicates over prod-
uct categories. Formulating logical relations in fibrational category theory is advocated
by Hermida [9], which subsumes subscone [19]; see Example 3-1.

Here we give brief definitions of fibration and related concepts; see [10] for the
complete detail. Let p : E → B be a functor. We say that X ∈ E is above I ∈ B if
pX = I. We use the same word for morphisms in E and B. A fibre category over I ∈ B
is the subcategory of E consisting of objects above I ∈ B and morphisms above idI . We
next assume that p is faithful. One easily sees that EI is a preorder. In this situation, we
regard EI as the preorder of predicates on I. For X,Y ∈ E, by f : X→̇Y we mean that
f ∈ B(pX, pY) and there exists a (necessarily unique) morphism ḟ : X → Y above f .
We call ḟ the witness of f : X→̇Y . The statement f : X→̇Y means that f is a morphism
that sends elements satisfying X to those satisfying Y .

Definition 3. A partial order bifibration with fibrewise small products is a faithful func-
tor p : E→ B such that:

(Partial Order) Each fibre category is a partial order.
(Fibration) 1 For any I ∈ B, Y ∈ E and f ∈ B(I, pY), there exists X ∈ E above I such

that f : X→̇Y and the following property holds: for any Z ∈ E and h : pZ → I,
f ◦ h : Z→̇Y implies h : Z→̇X. This property and EI being a partial order imply
that X is unique; hence we write it by f ∗Y, and the witness of f : f ∗Y→̇Y by f Y.
Furthermore, for any f ∈ B(I, J), the mapping Y ∈ EJ 7→ f ∗Y ∈ EI extends to a
functor f ∗ : EJ → EI . We call it inverse image functor. Intuitively, f ∗Y corresponds
to the predicate {i ∈ I | f (i) ∈ Y} on I.

(Bi–) Each inverse image functor has a left adjoint called direct image functor.
(Fibrewise Small Products) Each fibre category has small products and inverse image

functors (necessarily) preserve them.

Definition 4. A category for logical relations over a bi-CCC C is a partial order bifi-
bration p : E→ C with fibrewise small products2 such that E is a bi-CCC and p strictly
preserves the bi-cartesian closed structure. Notational convention: we write the bi-
cartesian closed structure on E with dots on the top, like ⇒̇, 1̇, ×̇, 0̇, +̇, ėv, λ̇, 〈̇−,−〉̇, · · · .

In [10, Section 9.2], it is discussed when a fibration becomes a category for logical
relations. Particularly, the subobject fibration of any presheaf category is a category for
logical relations. Below we see a special case: the subobject fibration of Set.

Example 2. [10, Chapter 0] We define the category Pred by the following data: an
object in Pred is a pair (X, I) where X is a subset of I and a morphism from (X, I) to (Y, J)
is a function f : I → J such that for any i ∈ X, f (i) ∈ Y . This category is equivalent
to the category of subobjects of Set. The evident forgetful functor π : Pred → Set is
a bifibration; the inverse image functor for a function f : I → J is given by f ∗(Y, J) =
({x | f (x) ∈ Y}, I), and it has a left adjoint given by f∗(X, I) = ({ f (x) | x ∈ X}, J).
The fibre category PredI is the poset (2I ,⊆), and the intersection gives small products.
Therefore π is a partial order bifibration with fibrewise small products.

The category Pred has a bi-cartesian closed structure that is strictly preserved by π
[10, Exercise 9.2.1]. The exponential is given by (X, I) ⇒̇ (Y, J) = ({ f | ∀x ∈ X . f (x) ∈
Y}, I ⇒ J). To summarise, π is a category for logical relations.

1 This definition of fibration exploits the assumption that p is faithful. The concept of fibration
is actually defined on arbitrary functor [10, Definition 1.1.3].

2 We actually only use fibrewise products up to the cardinality of the set B of base types.

Proposition 1. Let p : E → B be a category for logical relations, C be a bi-CCC and
F : C→ B be a finite-product preserving functor. Then the pullback F∗(p) : F∗(E)→ C
of p along F is a category for logical relations.

Proof. This is a straightforward generalisation of the proof that any subscone is a CCC
[19]. We use direct image functors to construct finite coproducts in F∗(E).

Example 3. 1. A subscone [19] over a bi-CCC C is the category obtained by pulling
back π : Pred → Set along the global element functor C(1,−) : C → Set. The leg
from the subscone to C is a category for logical relations.

2. We pull-back π along the product functor − × − : Set2 → Set. This yields the
category Rel of binary relations, and the leg q : Rel → Set2 is a category for
logical relations.

Having abstracted the concept of predicates in terms of fibrational category theory, we
now generalise the effect simulation problem to the following effect property problem.
LetA = (C,T , A, k, α) be a λc(B, Σ)-structure and p : E → C be a category for logical
relations. A property over A is a pair (V,C) of functors V,C : B → E such that for all
base types b ∈ B, Vb is above Ab and Cb is above T Ab. The problem is:

Given a property (V,C) overA, does any well-typed term x1 : b1, · · · , xn : bn `
M : b satisfyA[[M]] : Vb1 ×̇ · · · ×̇ Vbn →̇Cb?

An effect simulation problem between two λc(B, Σ)-structures A1 and A2 is nothing
but an effect property problem over A1 × A2; particularly the set-theoretic one in the
beginning of this section uses q : Rel→ Set2 as a category for logical relations.

We say that a property (V,C) over a λc(B, Σ)-structureA = (C,T , A, k, α) satisfies:

(I) if for all base types b ∈ B, we have ηAb : Vb →̇Cb.
(C1) if for all (b, a) ∈ B∗ × (B∗)∗ and effect-free constant symbols c ∈ Σb→a, we have

kc :
∏̇|b|

i=1Vbi →̇ Va.
(C2) if for all arities a ∈ (B∗)∗, algebraic operation symbols o ∈ Σa and base types

b ∈ B, we have αoAb : Va ⇒̇Cb →̇Cb.

Theorem 1. LetA be a λc(B, Σ)-structure and (V,C) be a property overA that satisfies
(I), (C1) and (C2). Then for any well-typed term x1 : b1, · · · , xn : bn ` M : b, we have
A[[M]] : Vb1 ×̇ · · · ×̇ Vbn →̇Cb.

The rest of this section is the proof of the above theorem. The proof extends Mitchell’s
representation independence [17] using a logical relation with a special care on monads.
LetA = (C,T , A, k, α) be a λc(B, Σ)-structure and (V,C) be a property overA that satis-
fies (I), (C1) and (C2). We aim to construct a λc(B, Σ)-structureD = (E, Ṫ ,V, k̇, α̇) such
that 1) Ṫ ḟ , η̇X , µ̇X , θ̇X,Y are respectively above T (p ḟ), ηpX , µpX , θpX,pY , 2) k̇c is above kc,
3) α̇oX is above αopX and 4) ṪVb ≤ Cb holds in ET Ab.

We construct the strong monad Ṫ on E by categorical >>-lifting [11], which is a
semantic formulation of Lindley and Stark’s>>-lifting [15, 14]. Let X ∈ E be above I ∈
C. We first define the object X>>(Cb) above T I to be the inverse image of (X⇒̇Cb)⇒̇Cb
along the following morphism σT ,Ab

I : T I → (I ⇒ T Ab)⇒ T Ab:

σT ,Ab
I = λ(ev# ◦ θI⇒T Ab,I ◦ 〈π2, π1〉).

This is the strong monad morphism (see Section 4) from T to the continuation monad
(− ⇒ T Ab)⇒ T Ab. We then define Ṫ X by the following fibrewise product:

Ṫ X =
∧
b∈B

X>>(Cb)

=∧
b∈B

(σT ,Ab
I)∗((X ⇒̇Cb) ⇒̇Cb)

 . (1)

Proposition 2 ([11]). Let X,Y ∈ E.

1. For any morphism f in C, f : X →̇ Y implies T f : Ṫ X →̇ ṪY.
2. We have ηpX : X →̇ Ṫ X, µpX : Ṫ Ṫ X →̇ Ṫ X and θpX,pY : X ×̇ ṪY →̇ Ṫ (X ×̇ Y).

From this, for any morphism ḟ : X → Y in E, we define Ṫ ḟ to be the witness of
T (p ḟ) : Ṫ X →̇ ṪY . We similarly define morphisms η̇X , µ̇X , θ̇X,Y in E to be the witnesses
of the statements in Proposition 2-2. Then the tuple Ṫ = (Ṫ , η̇, µ̇, θ̇) forms a strong
monad over E satisfying the condition 1.

From (C1), for each (b, a) ∈ B∗× (B∗)∗ and c ∈ Σb→a, we define k̇c to be the witness
of kc :

∏̇|b|
i=1Vbi →̇ Va. This defines the component k̇ ofD satisfying the condition 2.

We construct the component α̇ of D satisfying the condition 3. We first prove a
general fact about algebraic operations for the >>-lifted monads Ṫ :

Proposition 3. Let Z ∈ C, α be an Z-ary algebraic operation for T and Ż ∈ E be above
Z. If αAb : Ż ⇒̇ Cb →̇ Cb holds for all base types b ∈ B, then for any object X ∈ E, we
have αpX : Ż ⇒̇ Ṫ X →̇ Ṫ X. 3

For any a ∈ (B∗)∗, Va is above Aa. Therefore from (C2) and Proposition 3, for any arity
a ∈ (B∗)∗, algebraic operation symbol o ∈ Σa and X ∈ E, we have αopX : Va⇒̇Ṫ X→̇Ṫ X.
We define α̇oX to be its witness. Then α̇o is a Va-ary algebraic operation for Ṫ .

We have obtained the λc(B, Σ)-structure D satisfying the conditions 1–3. One can
easily show the basic lemma of logical relations:

Proposition 4. For any well-typed λc(B, Σ)-term x1 : ρ1, · · · , xn : ρn ` M : ρ, we have
A[[M]] : D[[ρ1]] ×̇ · · · ×̇ D[[ρn]] →̇ ṪD[[ρ]]; its witness is given byD[[M]].

We finally show the condition 4.

Proposition 5. For any base type b ∈ B, we have ṪVb ≤ Cb in ET Ab.

Proof. As ṪVb =
∧

b′∈B T>>(Cb′)Vb, it is sufficient to show T>>(Cb)Vb ≤ Cb. Let us
write η̇b : Vb→ Cb for the witness of ηAb : Vb →̇Cb. Then in E we obtain a morphism

ėv ◦ 〈̇id, λ̇(η̇b ◦ π̇2)〉̇ ◦ σT ,Ab
Ab ((Vb ⇒̇Cb) ⇒̇Cb) : T>>(Cb)Vb→ Cb

which is above ev ◦ 〈id, λ(ηAb ◦ π2)〉 ◦ σT ,Ab
Ab = idT Ab. Therefore T>>(Cb)Vb ≤ Cb.

Theorem 1 is an immediate corollary of Proposition 4 and 5. This ends the proof.

3 Though we do not use it, the converse of this statement holds: if αpX : Ż ⇒̇ Ṫ X →̇ Ṫ X holds
for all X ∈ E, then αAb : Ż ⇒̇Cb →̇Cb holds for any base type b ∈ B.

4 Effect Simulation by Monad Morphism

Monadic semantics are often related by strong monad morphisms. LetTi = (Ti, ηi, µi, θi)
be strong monads (i = 1, 2) over a cartesian categoryC. A strong monad morphism from
T1 to T2 is a natural transformation σ : T1 → T2 such that

σI ◦ (η1)I = (η2)I σI ◦ (µ1)I = (µ2)I ◦ σT2I ◦ T1σI (θ2)I,J ◦ I × σJ = σI×J ◦ (θ1)I,J .

It transfers each Z-ary algebraic operation α for T1 to the following Z-ary algebraic
operation σα for T2:

(σα)I = Z ⇒ T2I
Z⇒(η1)T2 I // Z ⇒ T1T2I

αT2 I // T1T2I
σT2 I // T2T2I

(µ2)I // T2I.

We define the image of a λc(B, Σ)-structure A1 = (C,T1, A, k, α) along σ to be the
λc(B, Σ)-structure σA1 = (C,T2, A, k, σα), where σα assigns the algebraic operation
σ(αo) to each algebraic operation symbol o ∈ Σa of arity a ∈ (B∗)∗.

Theorem 2. LetA = (C,T1, A, k, α) be a λc(B, Σ)-structure such that C is small, T2 be
a strong monad over C and σ : T1 → T2 be a strong monad morphism. Then for any
well-typed term x1 : b1, · · · , xn : bn ` M : b, we have σ ◦ A[[M]] = (σA)[[M]].

Proof. We pull-back the subobject fibration Sub([Cop,Set]) → [Cop,Set] along the
finite-product preserving functor D : C2 → [Cop, Set] defined by D(I, J) = yI×yJ; here
y is yoneda embedding. From Proposition 1, the leg of the pullback, say q : K → C2,
is a category for logical relations. Now the following simulation (V,C) between A and
σA satisfies (I), (C1) and (C2):

VbH = {(f , f) | f ∈ C(H, Ab)} CbH = {(f , σAb ◦ f) | f ∈ C(H,T1Ab)} (H ∈ C)

The goal is a corollary of Theorem 1 with the above simulation.

Example 4. (Continued from Example 1) There is a monad morphism σ from Tm to
Tp mapping a list l ∈ TmI to the set σI(l) ∈ TpI of elements occurring in l. Thus from
Theorem 2, for any well-typed term x1 : b1, · · · , xn : bn ` M : b and value vi ∈ Abi,
A1[[M]](v) is the set of elements occurring inA2[[M]](v).

Example 5. Let A = (C,T , A, k, α) be a λc(B, Σ)-structure such that C is small. We
write CT ,⊥ for the continuation monad with respect to the monad T and a result type ⊥
(which is just an object inC). The functor part of CT ,⊥ is given by CT ,⊥I = (I ⇒ T⊥)⇒
T⊥. As we have seen in the proof of Theorem 1, there is a strong monad morphism
σT ,⊥ : T → CT ,⊥. We instantiate Theorem 2 with it, and obtain an equation σT ,⊥ ◦
A[[M]] = σT ,⊥A[[M]], particularly for any closed M. The r.h.s. of this equation is the
CPS semantics [2] of λc(B, Σ), while the l.h.s. roughly corresponds to λk . k#(A[[M]]).
This equation is indeed the monadic congruence result [2] restricted to base types.

A1 A2

Category [I, Set] Set
Monad T1F = colimQ∈I F(− + Q) T2I = N⇒ I × N

Name type object A1n = N : I ↪→ Set A2n = N

Name equality predicate (k1eq)P(i, j) =
{
ι1(∗) (i = j)
ι2(∗) (i , j) (k2eq)(i, j) =

{
ι1(∗) (i = j)
ι2(∗) (i , j)

Name creation α1ν: see (2) below α2ν = λ f x . f (x)(x + 1)
Table 1. Definition of two ν-calculus structures

5 Comparing Two Monadic Semantics of ν-Calculus

Dynamic name creation, such as the one in π-calculus, is often categorically modelled
in the presheaf category over the category I of finite sets and injections between them
[25, 26]. On the other hand, in practical programming names are represented by natural
numbers and dynamic name creation is implemented by a hidden global counter that
keeps track of the next fresh name.

In this section, we consider Stark’s ν-calculus [25] and discuss an effect simulation
problem between presheaf semantics and global counter semantics of name creation.
The ν-calculus has only one base type n for names, one effect-free constant eq : n×n→
1 + 1 for checking name equality, and one algebraic operation ν(xn.M) whose intended
meaning is to allocate a fresh name and bind it to x, like the one in π-calculus. We write
Σν for the signature specifying only these symbols. The ν-calculus is then defined to be
λc({n}, Σν). Below we call a λc({n}, Σν)-structure ν-calculus structure.

In Table 1 we present two ν-calculus structures with which we consider an effect
simulation problem. The ν-calculus structure A1 extracts the ingredients that are used
in the categorical semantics of the ν-calculus in [25]. The monad T1 is Stark’s dynamic
name creation monad:

T1FP = colimQ∈I F(P + Q) = {(Q, x) | Q ∈ I, x ∈ F(P + Q)}/ ∼

where (Q, x) ∼ (R, y) if there are S ∈ I and two injections l : Q� S ,m : R� S such
that F(P + l)(x) = F(P + m)(y). We note T FP ' F(P + 1). The object for the name
type is the inclusion functor N : I ↪→ Set; this is the standard choice for representing
names. The behaviour of the name equality predicate at a finite set P is given in Table
1; there i, j are elements in P. The algebraic operation α1ν for name creation is defined
by

((α1ν)F)P(α) = [1 + Q, F(i)(y)]∼ (where [Q, y]∼ = αP+1(ι1, ι2)) (2)

where i : (P + 1) + Q→ P + (1 + Q) is the coherence isomorphism.
The ν-calculus structure A2 is a semantic analogue of dynamic name creation by

a global state. We note that the interpretation A2[[−]] is not sound with respect to the
ν-calculus axioms in [25].

We compare the denotation of a well-typed term x1 : n, . . . , xn : n ` M : n in each
ν-calculus structure. Suppose that p names have been allocated, and some of them are
supplied to the free variables of M. Then M returns either one of the allocated names
supplied to its free variables, or M allocates a new name and returns it. This behaviour
is expressed differently in each ν-calculus structure:

– (inA1) Let P be the finite set consisting of p allocated names. We feed i1, . . . , in ∈
P to the free variables of M. When M returns an allocated name, the denotation
A1 ~M�P (i) ∈ T NP ' P + 1 is ι1(i) with some i ∈ P. Otherwise, M returns a new
name and the denotation is ι2(∗).

– (in A2) Natural numbers 0, . . . , p − 1 correspond to the allocated names. We thus
feed 0 ≤ i1 . . . in < p to the free variables of M. The global counter pointing
to the next fresh name is now p, so the name that M returns is given by i =
π1(A2 ~M� (i)(p)). When M returns an allocated name, 0 ≤ i < p; otherwise i > p.
In fact, this behaviour of M remains the same even when the counter is increased
from p. Therefore when M returns an allocated name i, for any k ≥ p we have
π1(A2 ~M� (i)(k)) = i; otherwise for any k ≥ p we have π1(A2 ~M� (i)(k)) ≥ k.

Based on this analysis, we establish a correspondence between the denotation of M
in each ν-calculus structure. As names are represented differently, this relationship is
parametrised by bijective correspondences between allocated names and natural num-
bers. Below for a finite set P, by |P| we mean its cardinality. For a natural number p, we
write p for the finite set {0, · · · , p − 1}. A name enumeration is a bijection σ : P→ |P|.
Theorem 3. Let x1 : n, . . . , xn : n ` M : n be a ν-calculus term. For any finite set P,
elements i1 . . . in ∈ P and a name enumeration σ : P→ |P|, either

– there is i ∈ P such that A1 ~M�P (i) = ι1(i) and for all k ≥ |P|, we have π1 ◦
A2 ~M� (σ(i))(k) = σ(i), or

– A1 ~M�P (i) = ι2(∗) and for all k ≥ |P|, we have π1 ◦ A2 ~M� (σ(i))(k) > k.

The rest of this section is the proof of this theorem. We construct a suitable category for
logical relations over [I, Set] × Set, and give a simulation (V,C) between A1 and A2
that implies the goal of the theorem. We then check that it satisfies (I), (C1) and (C2).

We observe that the theorem is parametrised by name enumerations, so we first
introduce the category E of name enumerations. As defined above, a name enumeration
is a bijection σ : P → |P|. A morphism h from σ to τ : Q → |Q| is a (necessarily
unique) injection h : P → Q such that σ = τ ◦ h. We note that E is actually equivalent
to (N,≤). There is an evident projection functor π : E → I.

We next pull-back the subobject fibration Sub([E,Set])→ [E,Set] along the finite-
product preserving functor D : [I,Set]×Set→ [E,Set] defined by D(F, I) = (F◦π)×∆I.
We obtain the category q : ERel → [I,Set] × Set for logical relations by Proposition
1. An object in ERel is a triple (X, F, I) where F ∈ [I,Set], I ∈ Set and X assigns a
binary relation Xσ ⊆ FP × I to each name enumeration σ : P → |P|. Moreover, X
should satisfy the monotonicity condition: for any h ∈ E(σ, τ) and (x, y) ∈ Xσ, we have
(Fhx, y) ∈ Xτ.

We give the simulation (V,C) betweenA1 andA2 that entails Theorem 3. For each
name enumeration σ : P→ |P|, we define Vnσ = {(i, σ(i)) | i ∈ P} and

Cnσ = {(ι1(i), f) | i ∈ P ∧ ∀k ≥ |P| . π1 ◦ f (k) = σ(i)} ∪
{(ι2(∗), f) | ∀k ≥ |P| . π1 ◦ f (k) ≥ k}.

Proposition 6. The above simulation (V,C) satisfies (I), (C1) and (C2).

Theorem 3 is an immediate corollary of Theorem 1 with the above simulation.

Γ, f : ρ→ σ, x : ρ ` M : σ
Γ ` µ f x.M : ρ→ σ

A[[Γ ` µ f x.M : ρ⇒ σ]]
= fixA[[Γ]]

A[[ρ⇒σ]](A[[λx . M]]# ◦ θA[[Γ]],A[[ρ⇒σ]]).

Fig. 1. Recursion: Typing Rule and Interpretation

6 Extending λc(B, Σ) with Recursive Functions

We next add the recursive function constructor µ f x.M to λc(B, Σ). This term creates a
closure that may recursively call itself inside M; see Figure 1 for its typing rule. We
call the extended calculus λfix

c (B, Σ). To interpret the recursion under the presence of
computation, we employ uniform T-fixpoint operator [24]. An equivalent, direct for-
mulation of recursion in call-by-value is also studied in [8]. Let T = (T, η, µ, θ) be a
strong monad over a cartesian category C. A uniform T-fixpoint operator for T is a
family of mappings fixI : C(T I,T I) → C(1,T I) such that fixI(f) = f ◦ fixI(f), and it
satisfies the uniformity principle: for any f : T I → T I, g : T J → T J and h : I → T J,
h# ◦ f = g ◦ h# implies g = h# ◦ fixI(f). When C is a CCC, we can parametrise it as
fixX

I : C(X × T I,T I)→ C(X,T I); see [24] for the detail.

Definition 5. A λfix
c (B, Σ)-structure is a pair of a λc(B, Σ)-structure A and a uniform

T-fixpoint operator fix for the strong monad ofA.

The interpretation of a recursive function constructor is given in Figure 1.
We aim to extend Theorem 1 to λfix

c (B, Σ) and a λfix
c (B, Σ) structure A where 1) the

category ofA is ωCPO-enriched4, 2) the strong monad ofA lifts the given domain and
3) the uniform T -fixpoint operator is given by the least fixpoint. That T lifts a given
domain (as defined below) is expressed by the fact that T admits an algebraic operation
denoting the least element of T I.

Definition 6. We call a strong monad T over a Pos-enriched bi-CCC C pseudo-lifting
if it has an 0-ary algebraic operation ⊥ such that for any I ∈ C, ⊥I is the least element
in C(0⇒ T I,T I) ' C(1,T I).

We note that for any pseudo-lifting monad (T1,⊥) over a Pos-enriched bi-CCC C, T2
be another strong monad over C and strong monad morphism σ : T1 → T2, the pair
(T2, σ⊥) is pseudo-lifting and σ is strict, that is, σI ◦ ⊥I = (σ⊥)I .

Definition 7. An ωCPO-enriched λc(B, Σ)-structure is a tuple (C,T , A, k, α,⊥) such
that the first five components form a λc(B, Σ)-structure, C is an ωCPO-enriched bi-
CCC and (T ,⊥) is a pseudo-lifting monad.

We can turn every ωCPO-enriched λc(B, Σ)-structure into a λfix
c (B, Σ)-structure by par-

ing it with the uniform T -fixpoint operator given by fixI(f) =
⊔

n∈N f (n) ◦ ⊥I .
LetA = (C,T , A, k, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure, and p : E→ C

be a category for logical relations. Since p is faithful, we can restrict the partial order

4 We write Pos for the category of posets and monotone functions with finite products as the
symmetric monoidal structure. The category ωCPO is a subcategory of Pos where objects are
ω-complete partial orders and and morphisms are continuous functions.

on C(pX, pY) to E(X,Y). Moreover, as p strictly preserves bi-cartesian closed structure,
E becomes a Pos-enriched bi-CCC. We call X ∈ E above T I admissible if 1) ⊥I : 1̇→̇X
and 2) for any Y ∈ E and ω-chain ḟi in E(Y, X), we have

⊔∞
i=0(p ḟi) : Y →̇ X.

Theorem 4. Let A = (C,T , A, k, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure, p :
E → C be a category for logical relations, (V,C) be a property over (C,T , A, k, α)
such that it satisfies (I), (C1) and (C2) and Cb is admissible for all base types b ∈ B.
Then for any well-typed λfix

c (B, Σ)-term x1 : b1, · · · , xn : bn ` M : b, we have A[[M]] :
Vb1 ×̇ · · · ×̇ Vbn →̇ Ob.

Proof. As done in the proof of Theorem 1, we obtain a λc(B, Σ)-structure (E, Ṫ ,V, α̇).
We next show that for any object X in E above an object I in C and morphism

f : Ṫ X → Ṫ X in E, we have fix(p f) : 1̇ →̇ Ṫ X. From ⊥Ab : 1̇ →̇ Ob for each b, we
obtain ⊥I : 1̇ →̇ Ṫ X for any object X in E by Proposition 2. We write ⊥̇X : 1̇→ Ṫ X for
its witness. We then have an ω-chain f (n) ◦ ⊥̇X in E(1̇, Ṫ X). From the definition of Ṫ X,
for any b we have another ω-chain: λ̇−1(σb

I ◦ f (n) ◦⊥̇I) in E(1̇ ×̇ (X ⇒̇Ob),Ob). Since Ob
is admissible, we have λ−1(σb

I ◦ fix(p f)) : 1̇ ×̇ (X ⇒̇Ob) →̇Ob. Thus by currying it, we
have σb

I ◦ fix(p f) : 1̇ →̇ (X ⇒̇Ob) ⇒̇Ob. As E is a fibration, we have fix(p f) : 1̇ →̇ Ṫ X.
We name the witness of this fi̇x f : 1̇→ Ṫ X.

One can easily check that the mapping f 7→ fi̇x f is indeed a uniform T -fixpoint
operator for Ṫ . Therefore the tuple D = (E, Ṫ ,V, α̇, fi̇x) is a λfix

c (B, Σ)-structure such
that for any well-typed λfix

c (B, Σ)-term x1 : ρ1, · · · , xn : ρn ` M : ρ, we have pD[[M]] =
A[[M]] (the basic lemma of logical relation). Theorem 4 then follows from this.

Theorem 5. LetA = (C,T1, k, A, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure such
that C is small, T2 be a strong monad over C and σ : T1 → T2 be a strong monad
morphism. Then for any well-typed λfix

c (B, Σ)-term x1 : b1, · · · , xn : bn ` M : b, we have
σ ◦ A[[M]] = (σA)[[M]].

Proof. The proof is the same as that of Theorem 2. To apply Theorem 4, it suffices to
check that the simulation Ob satisfies 1) (⊥Ab, σ⊥Ab) : 1̇ →̇ Ob and 2) for any object X
in K and ω-chain fi in K(X,Ob), we have

⊔∞
i=0 p fi : X →̇ Ob. Below we write (gi, hi)

for p fi.
1) is immediate from the strictness of σ.
2) Let H be an object in C and (a, b) ∈ XH. We show

(⊔∞
i=0 hi

)
◦b = σAb◦

(⊔∞
i=0 gi

)
◦

a. First, from the assumption fi : X → Ob, we obtain hi ◦b = σAb ◦gi ◦a for any natural
number i. Next, as gi and hi are ω-chains in C(pX,T Ab), their l.u.b.

⊔∞
i=0 gi,

⊔∞
i=0 hi

exist. Then from the continuity of composition of C, we obtain ∞⊔
i=0

hi

 ◦ b =
∞⊔

i=0

(hi ◦ b) =
∞⊔

i=0

(σAb ◦ gi ◦ a) = σAb ◦
 ∞⊔

i=0

gi

 ◦ a.

7 Related Work

Filinski is one of the pioneers in logical relations for monads [3], and developed vari-
ous techniques to establish relationships between semantics of higher-order languages

with effects [2–6]. He pointed out at least three methods to obtain logical relations for
monads: 1) When T is a syntactically constructed monad, such as state monad and
continuation monad, then define a logical relation Ṫ for T in the same way as T is
constructed. 2) For a logical relation Ṫ for a monad T and a strong monad morphism
σ : S → T , the inverse image σ∗Ṫ is a logical relation for S . 3) For a family of logical
relations Ṫi for a monad T , the intersection

∧
i Ṫi is again a logical relation for T . A

method based on factorisation systems is also proposed by Larrecq et al [13].
The categorical >>-lifting is technically a particular combination of the methods

1–3 (in fibrational category theory). However, what is new about >>-lifting is that we
use the simulation / property we would like to establish on computational effects to
define the logical relation Ṫ ; see definition (1). This idea is a secret recipe in the proofs
of various results by the precursors of categorical >>-lifting, such as biorthogonality
[7, 16, 20], >>-closure [21] and leapfrog method [14, 15]; see also [12].

The advantage of logical relations for monads by >>-lifting is that it does not limit
the form of simulation / property we would like to establish on computational effects.
Furthermore, Proposition 3 gives a good characterisation of when algebraic operations
are related by the logical relations given by >>-lifting. On the other hand, it is rather
difficult to check whether non-algebraic operations that manipulate computational ef-
fects, such as Felleisen’s C- and A-operators, are related by the logical relations given
by >>-lifting; this shall be discussed in a separate paper. Extending our results with
recursive types and handlers for algebraic effects [23] is also a future work.

Acknowledgement The author is grateful to Masahito Hasegawa, Naohiko Hoshino and
Susumu Nishimura for fruitful discussions. He thanks anonymous reviewers for valu-
able comments. This research was partly supported by Grant-in-Aid for Young Scien-
tists (B) 20700012.

References

1. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Proc. APPSEM 2000, volume
2395 of LNCS, pages 42–122. Springer, 2002.

2. Andrzej Filinski. Representing monads. In Proc. POPL 1994, pages 446–457, 1994.
3. Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.
4. Andrzej Filinski. Representing layered monads. In Proc. POPL 1999, pages 175–188, 1999.
5. Andrzej Filinski. On the relations between monadic semantics. Theor. Comput. Sci., 375(1-

3):41–75, 2007.
6. Andrzej Filinski and K. Støvring. Inductive reasoning about effectful data types. In R. Hinze

and N. Ramsey, editors, ICFP, pages 97–110. ACM, 2007.
7. Jean.-Yves. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.
8. Masahito Hasegawa and Yoshihiko Kakutani. Axioms for recursion in call-by-value. Higher-

Order and Symbolic Computation, 15(2-3):235–264, 2002.
9. Claudio Hermida. Fibrations, Logical Predicates and Indeterminants. PhD thesis, University

of Edinburgh, 1993.
10. Bart Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
11. Shin-ya Katsumata. A semantic formulation of >>-lifting and logical predicates for compu-

tational metalanguage. In Proc. CSL 2005, volume 3634 of LNCS, pages 87–102. Springer,
2005.

12. Shin-ya Katsumata. A characterisation of lambda definability with sums via >>-closure
operators. In Proc. CSL 2008, volume 5213 of LNCS, pages 278–292. Springer, 2008.

13. J.-G. Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. Math. Struct.
in Comp. Science, 18:1169–1217, 2008.

14. Samuel Lindley. Normalisation by Evaluation in the Compilation of Typed Functional Pro-
gramming Languages. PhD thesis, University of Edinburgh, 2004.

15. Samuel Lindley and Ian Stark. Reducibility and >>-lifting for computation types. In Proc.
TLCA, pages 262–277, 2005.

16. Paul-André Melliès and Jerome Vouillon. Recursive polymorphic types and parametricity in
an operational framework. In LICS, pages 82–91. IEEE Computer Society, 2005.

17. John Mitchell. Representation independence and data abstraction. In Proc. POPL 1986,
pages 263–276, 1986.

18. John Mitchell. Foundations for Programming Languages. MIT Press, 1996.
19. John Mitchell and Andre Scedrov. Notes on sconing and relators. In CSL, volume 702 of

Lecture Notes in Computer Science, pages 352–378. Springer, 1992.
20. Michel Parigot. Proofs of strong normalisation for second order classical natural deduction.

Journal of Symbolic Logic, 62(4):1461–1479, 1997.
21. Andrew Pitts. Parametric polymorphism and operational equivalence. Mathematical Struc-

tures in Computer Science, 10(3):321–359, 2000.
22. Gordon Plotkin and John Power. Semantics for algebraic operations. Electr. Notes Theor.

Comput. Sci., 45, 2001.
23. Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe Castagna,

editor, ESOP, volume 5502 of LNCS, pages 80–94. Springer, 2009.
24. Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators.

In LICS, pages 30–41, 2000.
25. Ian Stark. Categorical models for local names. Lisp and Symbolic Computation, 9(1):77–

107, February 1996.
26. Ian Stark. A fully abstract domain model for the π-calculus. In Proc. LICS 1996, pages

36–42. IEEE, 1996.

